organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(R)-4-(4-Amino­phenyl)-2,2,4-tri­methyl­chroman and (S)-4-(4-amino­phenyl)-2,2,4-tri­methyl­thia­chroman

CROSSMARK_Color_square_no_text.svg

aPharmorphix Solid State Services, A Sigma–Aldrich Company, 250 Cambridge Science Park, Milton Road, Cambridge CB4 0WE, England, and bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: chris.frampton@sial.com

(Received 22 March 2011; accepted 31 March 2011; online 16 April 2011)

The title compounds, C18H21NO and C18H21NS, in their enantio­merically pure forms are isostructural with the enantio­merically pure 4-(4-hy­droxy­phenyl)-2,2,4-trimethyl­chroman and 4-(2,4-dihy­droxy­phenyl)-2,2,4-trimethyl­chroman analogues and form extended linear chains via N—H⋯O or N—H⋯S hydrogen bonding along the [100] direction. The absolute configuration for both compounds was determined by anomalous dispersion methods with reference to both the Flack parameter and, for the light-atom compound, Bayesian statistics on Bijvoet differences.

Comment

As part of our continuing studies of the structural properties of materials that demonstrate a close relationship with Dianin's compound [4-(4-hy­droxy­phenyl)-2,2,4-trimethyl­chro­man], (I)[link], we have focused on how small incremental changes to the scaffold of Dianin's compound can affect the crystal engineering properties of this classic host–guest material (Hardy et al., 1977[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1145-1147.], 1979[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072-1077.]; Beresford et al., 1999[Beresford, T. W., Frampton, C. S., Gall, J. H. & MacNicol, D. D. (1999). Zh. Strukt. Khim. 40, 872-882.]; Frampton et al., 1992[Frampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551-555.]) [structural data for (I), together with ellipsoid and packing plots, are available in the Supplementary material ]. In its racemic form, Dianin's compound and its thia- and selenachroman analogues (Hardy et al., 1979[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072-1077.]; MacNicol et al., 1969[MacNicol, D. D., Mills, H. H. & Wilson, F. B. (1969). J. Chem. Soc. D, pp. 1332-1333.], 1987[MacNicol, D. D., Mallinson, P. R., Keates, R. A. B. & Wilson, F. B. (1987). J. Inclusion Phenom. Mol. Recognit. Chem. 5, 373-377.]; MacNicol & Wilson, 1971[MacNicol, D. D. & Wilson, F. B. (1971). J. Chem. Soc. D, pp. 786-787.]) form a series of isomorphous and isostructural clathrates having the common space group R[\overline{3}] with approximate cell paramenters a = 27 Å and c = 11 Å. In contrast, Dianin's compound in its enantio­merically pure form has a packing arrangement that is significantly different from that of the racemate and does not form a clathrate-type structure (Brienne & Jaques, 1975[Brienne, M. J. & Jaques, J. (1975). Tetrahedron Lett. 28, 2349-2352.]). The crystal structure of Dianin's compound as the enantio­merically pure S isomer has been described previously (Lloyd & Bredenkamp, 2005[Lloyd, G. O. & Bredenkamp, M. W. (2005). Acta Cryst. E61, o1512-o1514.]) and crystallizes with one mol­ecule in the asymmetric unit in the ortho­rhom­bic space group P212121. The absolute configuration in this instance was derived from the purification of the (S,S)-4-(2,2,4-trimethyl­chroman-4-yl)phenyl camphonate of known stereochemistry, rather than by anomalous dispersion methods.

[Scheme 1]

The crystal structures of the two title compounds, (III)[link] and (IV)[link], where the 4-hy­droxy substituents of 4-(4-hy­droxy­phenyl)-2,2,4-trimethyl­chroman and 4-(4-hy­droxy­phenyl)-2,2,4-trimethyl­thia­chroman are replaced by a 4-amino group, are described here. For comparison purposes, we also report the structure of racemic `guest-free' Dianin's compound, (I)[link], at 100 K, since the two previously published structures were performed at room temperature (Goldup & Smith, 1971[Goldup, A. & Smith, G. W. (1971). Sep. Sci. 6, 791-817.]; Imashiro et al., 1998[Imashiro, F., Yoshimura, M. & Fujiwara, T. (1998). Acta Cryst. C54, 1357-1360.]).

Compounds (III)[link] and (IV)[link] (Figs. 1[link] and 2[link]) are isostructural not only with each other but also, suprisingly, with the enantio­merically pure forms of the 4-(4-hy­droxy­phenyl)-, (I)[link] (Lloyd & Bredenkamp, 2005[Lloyd, G. O. & Bredenkamp, M. W. (2005). Acta Cryst. E61, o1512-o1514.]), and 4-(2,4-dihy­droxy­phenyl)-2,2,4-trimethyl­chroman, (II)[link] (Beresford et al., 1999[Beresford, T. W., Frampton, C. S., Gall, J. H. & MacNicol, D. D. (1999). Zh. Strukt. Khim. 40, 872-882.]), analogues. Crystals of both (III)[link] and (IV)[link] were obtained by spontaneous resolution on crystallization, yielding a 50:50 mixture of the pure enantio­mers. The heterocyclic chroman ring in both compounds adopts an envelope conformation or E form, with atom C2 displaced from the mean plane defined by atoms O1(S1)/C10/C5/C4/C3 by 0.641 (1) and 0.809 (2) Å, respectively, which are directly comparable with the displacements of −0.649 and −0.647 Å found for atom C2 for the 4-hy­droxy­phenyl and 2,4-dihy­droxy­phenyl analogues, respectively. In marked contrast, the conformation of the heterocyclic chroman ring in the racemic forms of (I)[link] and (II)[link] (Beresford et al., 1999[Beresford, T. W., Frampton, C. S., Gall, J. H. & MacNicol, D. D. (1999). Zh. Strukt. Khim. 40, 872-882.]) is best described as a half-chair or H form, with atoms C2 and C3 displaced from the mean plane defined by atoms O1/C10/C5/C4 by 0.331 (2) and −0.352 (2) Å for (I)[link], and 0.384 (3) and −0.317 (3) Å for (II)[link]. A change in the magnitude of the C2—C3—C4—C11 torsion angle from ca 80° in the racemic forms of (I)[link] and (II)[link] to ca 150° in the pure enantio­mers leads to very short intra­molecular contacts between the syn-related methyl groups, C17 and C18, of 3.287, 3.325 (3), 3.314 (2) and 3.419 (2) Å for (I)[link]–(IV)[link], respectively, which are all less than the sum of the van der Waals radii of 4 Å (Chang, 2000[Chang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences, p. 681. Herndon, VA: University Science Books.]). The corresponding C17⋯C18 distance in the racemic forms is 4.9066 (15) Å for (I)[link] and 4.925 (4) Å for (II)[link].

The absolute configurations of (III)[link] and (IV)[link], respectively R and S at the chiral centre C4, were determined by anomalous-dispersion methods (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). The determination of the absolute configuration of (III)[link] was challenging, given that the mol­ecule contains only a single N and a single O atom. To maximize the likelihood of success, a full sphere of data was collected at 100 K using Cu Kα radiation to a maximum resolution of 0.80 Å. A total of 25 124 reflections were collected, yielding a Flack parameter x and standard uncertainty u for this structure of −0.07 (18). The value of u is beyond the limit of enantio­pure sufficient distinguishing power (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), and for further confirmation of the absolute configuration a determination using Bayesian statistics on Bijvoet differences (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]), as implemented in the program PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), was performed. This gave probability values P3(true), P3(twin) and P3(wrong) of 1.000, 0.000 and 0.000, respectively. The calculation was based on 14 290 Bijvoet pairs. The determination of the absolute configuration of (IV)[link] was less challenging, owing to the presence of the heavy S atom, and in this case the Flack parameter was determined as 0.016 (11).

The crystal packing arrangements for the 4-amino­phenyl analogues (III)[link] and (IV)[link] are very similar to those found in both the enantiopure 4-hy­droxy­phenyl and 2,4-dihy­droxy­phenyl analogues, (I)[link] and (II)[link], with the formation of an extended linear N—H⋯O or N—H⋯S hydrogen-bonded chain along the [100] direction (Figs. 3–6[link][link][link][link], and Tables 1[link] and 2[link]). However, in the case of the amino compounds, only one of the two available N—H bonds of the amino group is utilized in the hydrogen-bonding arrangement, thereby breaking Etter's first rule of hydrogen bonding for organic compounds which states that all good proton donors and acceptors are used in hydrogen bonding (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). Further work is currently in progress on racemic and quasi-racemic analogues of Dianin's compound.

[Figure 1]
Figure 1
The mol­ecular structure of (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The packing of (III)[link], viewed down the c axis, showing the formation of the extended linear N—H⋯O hydrogen-bonded chain along the [100] direction (thin lines).
[Figure 4]
Figure 4
The packing of (IV)[link], viewed down the c axis, showing the formation of the extended linear N—H⋯S hydrogen-bonded chain along the [100] direction (thin lines).
[Figure 5]
Figure 5
The packing of (III)[link], viewed down the a axis. Only amine H atoms are shown.
[Figure 6]
Figure 6
The packing of (IV)[link], viewed down the a axis. Only amine H atoms are shown.

Experimental

For the preparation of 4-(4-amino­phenyl)-2,2,4-trimethyl­chroman, (III)[link], 2-phenyl-3-[4-(2,2,4-trimethyl­chroman-4-yl)phenyl]quinazolin-4(3H)-one (Gilmore et al., 1977[Gilmore, C. J., Hardy, A. D. U., MacNicol, D. D. & Wilson, D. R. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1427-1434.]) (4.5 g, 9.5 mmol) was heated (Scherrer & Beatty, 1972[Scherrer, R. A. & Beatty, H. R. (1972). J. Org. Chem. 37, 1681-1686.]) at 423 K for 22 h in ethyl­ene glycol (100 ml) with KOH pellets (6.5 g) under pure nitro­gen with magnetic stirring. After ether extraction (3 × 100 ml), washing with brine and removal of the solvent, the amine (2.37 g, 93%) was recrystallized from ethanol or CCl4 to give prisms [m.p. 409–410 K (sealed tube)]. Analysis for C18H21NO requires (found): C 80.86 (80.59), H 7.92 (7.62), N 5.24% (5.51%). MS m/z: 267.16204, calc. 267.162306. 1H NMR (100 MHz, CDCl3): δ 0.97 (s, 3H), 1.37 (s, 3H), 1.68 (s, 3H), 2.19 (q, 2H, δAB = 0.29 p.p.m., JAB = 14 Hz), 3.8–3.3 (br s, 2H), 7.4–6.4 (aromatic, 8H); FT–IR (νmax, ATR, cm−1): 3467, 3369 [ν(N—H)].

For the preparation of 4-(4-amino­phenyl)-2,2,4-trimethyl­thia­chroman, (IV)[link], 2-phenyl-3-[4-(2,2,4-trimethyl­thia­chroman-4-yl)phenyl]quinazolin-4(3H)-one (6.7 g, 13.7 mmol) was heated at 423 K for 22 h in ethyl­ene glycol (120 ml) with KOH pellets (13 g) under pure nitro­gen with magnetic stirring. After ether extraction (3 × 250 ml), washing with brine and removal of the solvent, the amine (3.6 g, 92.5%) was recrystallized from ethanol after decolorizing with powdered animal charcoal to give colourless needles [m.p. 410–411 K (sealed tube)]. Analysis for C18H21NS requires (found): C 76.30 (76.14), H 7.47 (7.46), N 4.94 (4.65), S 11.31% (11.67%). MS m/z: 283, calc. 283. 1H NMR (100 MHz, CDCl3): δ 1.1 (s, 3H), 1.39 (s, 3H), 1.73 (s, 3H), 2.27 (q, 2H, δAB = 0.32 p.p.m., JAB = 14Hz), 3.51 (br s, 2H), 7.3–6.6 (aromatic, 8H); FT–IR (νmax, ATR, cm−1): 3442, 3353 [ν(N—H)].

`Guest-free' racemic 4-(4-hy­droxy­phenyl)-2,2,4-trimethyl­chroman, (I)[link], was prepared as follows. Racemic (I)[link] was prepared and desolvated as described by Baker et al. (1956[Baker, W., Floyd, A. J., McOmie, J. F. W., Pope, G., Weaving, A. S. & Wild, J. H. (1956). J. Chem. Soc. pp. 2010-2017.]). Clear colourless prisms of the guest-free form of (I)[link] suitable for X-ray analysis were obtained by sublimation of desolvated material in vacuo (at ca 10−3 mm Hg). 1H NMR (400 MHz, CDCl3): δ 0.93 (s, 3H), 1.36 (s, 3H), 1.69 (s, 3H), 2.07 (d, 1H, JAB = 14 Hz), 2.36 (d, 1H, JAB = 14 Hz), 4.61 (br s, 1H), 6.68–6.73 (m, 2H), 6.86–6.90 (m, 1H), 6.91–6.96 (m, 1H), 7.04–7.09 (m, 2H), 7.15–7.23 (m, 2H); FT–IR (νmax, ATR, cm−1): 3285 (br) [ν(O—H)].

Compound (III)[link]

Crystal data
  • C18H21NO

  • Mr = 267.36

  • Orthorhombic, P 21 21 21

  • a = 10.23394 (11) Å

  • b = 10.25106 (10) Å

  • c = 13.47563 (13) Å

  • V = 1413.71 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.50 × 0.45 × 0.20 mm

Data collection
  • Agilent SuperNova dual source diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Version 1.171.34.46. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.697, Tmax = 1.000

  • 25124 measured reflections

  • 2876 independent reflections

  • 2864 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.00

  • 2876 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1221 Friedel pairs; Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.])

  • Flack parameter: −0.07 (18)

Table 1
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.956 (19) 2.323 (19) 3.2295 (14) 157.9 (15)
Symmetry code: (i) x-1, y, z.

Compound (IV)[link]

Crystal data
  • C18H21NS

  • Mr = 283.42

  • Orthorhombic, P 21 21 21

  • a = 10.6043 (6) Å

  • b = 10.4104 (5) Å

  • c = 13.4126 (6) Å

  • V = 1480.68 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.83 mm−1

  • T = 100 K

  • 0.50 × 0.45 × 0.20 mm

Data collection
  • Agilent SuperNova dual source diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Version 1.171.34.46. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.654, Tmax = 1.000

  • 6825 measured reflections

  • 3015 independent reflections

  • 2976 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.00

  • 3015 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1281 Friedel pairs

  • Flack parameter: 0.016 (11)

Table 2
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.88 (2) 2.82 (2) 3.6562 (14) 158.3 (16)
Symmetry code: (i) x-1, y, z.

The nonstandard unit cell for (IV)[link], with a > b < c, was necessary to preserve the isostructural element of the four structures under comparison. H atoms bonded to N atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the methyl C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) otherwise.

For all compounds, data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Version 1.171.34.46. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Version 2.4; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and Mercury.

Supporting information


Comment top

As part of our continuing studies into the structural properties of materials that demonstrate a close relationship with Dianin's compound, 4-(4-hydroxyphenyl)-2,2,4-trimethylchroman, (I), we have focused on how small incremental changes to the scaffold of Dianin's compound can affect the crystal engineering properties of this classic host–guest material (Hardy et al., 1977, 1979; Beresford et al., 1999; Frampton et al., 1992). In its racemic form, Dianin's compound and its thia and selenachroman analogues (Hardy et al., 1979; MacNicol et al., 1969, 1987; MacNicol & Wilson, 1971), form a series of isomorphous and isostructural clathrates having the common space group R3 with approximate cell paramenters a = 27 and c = 11 Å. In contrast, Dianin's compound in its enantiomerically pure form has a packing arrangement that is significantly different from that of the racemate and does not form a clathrate-type structure (Brienne & Jaques, 1975). The crystal structure of Dianin's compound as the enantiomerically pure S isomer has been described (Lloyd & Bredenkamp, 2005) and is shown to crystallize with one molecule in the asymmetric unit in the orthorhombic space group P212121. The absolute configuration in this instance was derived from the purification of the (S,S)-4-(2,2,4-trimethylchroman-4-yl)phenyl camphonate of known stereochemistry, rather than by anomalous dispersion methods.

The crystal structures of the two title compounds, (III) and (IV), where the 4-hydroxy substituents of 4-(4-hydroxyphenyl)-2,2,4-trimethylchroman and 4-(4-hydroxyphenyl)-2,2,4-trimethylthiachroman are replaced by a 4-amino group, are described here. For comparison purposes we also report the structure of racemic `guest-free' 4-(4-hydroxyphenyl)-2,2,4-trimethylchroman, Dianin's compound, (I), at 100 K, since the two previously published structures were performed at room temperature (Goldup & Smith, 1971; Imashiro et al., 1998).

Compounds (III) and (IV) (Figs. 1 and 2) are isostructural not only with each other but also, suprisingly, with the enantiomerically pure forms of the 4-(4-hydroxyphenyl), (I) (Lloyd & Bredenkamp, 2005), and 4-(2,4-dihydroxyphenyl)-2,2,4-trimethylchroman, (II) (Beresford et al., 1999), analogues. Crystals of both (III) and (IV) were obtained by spontaneous resolution on crystallization, yielding a 50:50 mixture of the pure enantiomers. The heterocyclic chroman ring in both compounds adopts an envelope conformation or E form, with atom C2 displaced from the mean plane defined by atoms O1(S1)/C10/C5/C4/C3 of 0.641 (1) and 0.809 (2) Å, respectively, which is directly comparable with that found for the 4-hydroxyphenyl and 2,4-dihydroxyphenyl analogues, which have corresponding displacements for atom C2 of -0.649 and -0.647 Å, respectively. In marked contrast, the conformation of the heterocyclic chroman ring in the racemic forms of (I) and (II) is best described as a half-chair or H form, with atoms C2 and C3 displaced from the mean plane defined by atoms O1/C10/C5/C4 by 0.331 (2) and -0.352 (2)Å for (I), and 0.384 (3) and -0.317 (3)Å for (II). A change in the magnitude of the C2—C3—C4—C11 torsion angle from ca -80° in the racemic forms of (I) and (II) to ca 150° in the pure enantiomers leads to very short intramolecular contacts between the syn-related methyl groups, C17 and C18, of 3.287, 3.325, 3.314 and 3.419 Å, for (I)–(IV), respectively, which are less than the sum of the van der Waals radii of 4 Å (Standard reference?). The corresponding C17···C18 distance in the racemic forms is 4.907 (1) Å for (I) and 4.925 (4) Å for (II).

The absolute configurations of (III) and (IV), respectively R and S at the chiral centre C4, was determined by anomalous-dispersion methods (Flack, 1983). The determination of the absolute configuration of (III) was challenging, given that the molecule contains only a single N and a single O atom. To maximize the likelyhood of success, a full sphere of data was collected at 100 K using Cu Kα radiation to a maximum resolution of 0.80 Å. A total of 25124 reflections were collected, yielding a Flack parameter x and standard uncertantiy u for this structure of -0.07 (18). The value of u is beyond the limit of enantiopure sufficient distinguishing power (Flack & Bernardinelli, 2000), and for further confirmation of the absolute configuration a determination using Bayesian statistics on Bijvoet differences (Hooft et al., 2008), as implemented in the program PLATON (Spek, 2009), was performed. This gave probability values p3(ok), p3(twin) and p3(wrong) of 1.000, 0.000 and 0.000, respectively. The calculation was based on 972 Bijvoet pairs out of a possible 14290. The determination of the absolute configuration of (IV) was less challenging, owing to the presence of the heavy S atom, and in this case the Flack parameter was determined as 0.016 (11).

The crystal packing arrangements for the 4-aminophenyl analogues (III) and (IV) are very similar to those found in both the 4-hydroxyphenyl and 2,4-dihydroxyphenyl analogues, (I) and (II), with the formation of an extended linear N—H···O or N—H···S hydrogen-bonded chain along the [100] direction. However, in the case of the amino compounds, only one of the two available N—H bonds of the amino group is utilized in the hydrogen-bonding arrangement, thereby breaking Etter's first rule of hydrogen bonding for organic compounds which states that all good proton donors and acceptors are used in hydrogen bonding (Etter, 1990). Further work is currently in progress on racemic and quasi-racemic analogues of Dianin's compound.

Related literature top

For related literature, see: Baker et al. (1956); Beresford et al. (1999); Brienne & Jaques (1975); Etter (1990); Flack (1983); Flack & Bernardinelli (2000); Frampton et al. (1992); Gilmore et al. (1977); Goldup & Smith (1971); Hardy et al. (1977, 1979); Hooft et al. (2008); Imashiro et al. (1998); Lloyd & Bredenkamp (2005); MacNicol & Wilson (1971); MacNicol et al. (1969, 1987); Scherrer & Beatty (1972); Spek (2009).

Experimental top

For the preparation of 4-(4-aminophenyl)-2,2,4-trimethylchroman, (III), 2-phenyl-3-[4-(2,2,4-trimethylchroman-4-yl)phenyl]quinazolin-4(3H)-one (Gilmore et al., 1977) (4.5 g, 9.5 mmol) was heated (Scherrer & Beatty, 1972) at 423 K for 22 h in ethylene glycol (100 ml) with KOH pellets (6.5 g) under pure nitrogen with magnetic stirring. After ether extraction (3 × 100 ml), washing with brine and removal of the solvent, the amine (2.37 g, 93%) was recrystallized from ethanol or CCl4 to give prisms [m.p. 409-410 K (sealed tube)]. Analysis: C18H21NO requires (found): C 80.86 (80.59), H 7.92 (7.62), N 5.24 (5.51%). MS m/z 267.16204, calc. 267.162306. Spectroscopic analysis: 1H NMR (100 MHz, CDCl3, δ, p.p.m.): 0.97 (s, 3H), 1.37 (s, 3H), 1.68 (s, 3H), 2.19 (q, 2H, δAB = 0.29 p.p.m., JAB = 14 Hz), 3.8–3.3 (br s, 2H), 7.4–6.4 (aromatic, 8H); FT–IR (νmax, ATR, cm-1): 3467, 3369 [ν(N—H)].

For the preparation of 4-(4-aminophenyl)-2,2,4-trimethylthiachroman, (IV), 2-phenyl-3-[4-(2,2,4-trimethylthiachroman-4-yl)phenyl]quinazolin-4(3H)- one (Gilmore et al., 1977) (6.7 g, 13.7 mmol) was heated (Scherrer & Beatty, 1972), at 423 K for 22 h in ethylene glycol (120 ml) with KOH pellets (13 g) under pure nitrogen with magnetic stirring. After ether extraction (3 × 250 ml), washing with brine and removal of the solvent, the amine (3.6 g, 92.5%) was recrystallized from ethanol after decolorizing with powdered animal charcoal to give colourless needles [m.p. 410–411 K (sealed tube)]. Analysis: C18H21NS requires (found): C 76.30 (76.14), H 7.47 (7.46), N 4.94 (4.65), S 11.31 (11.67%). MS m/z 283, calc. 283. Spectroscopic analysis: 1H NMR (100 MHz, CDCl3, δ, p.p.m.): 1.1 (s, 3H), 1.39 (s, 3H), 1.73 (s, 3H), 2.27 (q, 2H, δAB = 0.32 p.p.m., JAB = 14Hz), 3.51 (br s, 2H), 7.3–6.6 (aromatic, 8H); FT–IR (νmax, ATR, cm-1): 3442, 3353 [ν(N—H)].

`Guest-free' racemic 4-(4-hydroxyphenyl)-2,2,4-trimethylchroman, (I), was prepared as follows. Racemic (I) was prepared and desolvated as described by Baker et al. (1956). Clear colourless prisms of the guest-free form of (I) suitable for X-ray analysis were obtained by sublimation of desolvated material in vacuo (at ca 10-3 mm Hg). Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 0.93 (s, 3H), 1.36 (s, 3H), 1.69 (s, 3H), 2.07 (d, 1H, JAB = 14 Hz), 2.36 (d, 1H, JAB = 14 Hz), 4.61 (br s, 1H), 6.68–6.73 (m, 2H), 6.86–6.90 (m, 1H), 6.91–6.96 (m, 1H), 7.04–7.09 (m, 2H), 7.15–7.23 (m, 2H); FT–IR (νmax, ATR, cm-1): 3285 (br) [ν(O—H)].

Refinement top

The non-standard unit cell for (IV), with a > b < c, was necessary to preserve the isostructural element of the four structures under comparison. H atoms bonded to N atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the methyl C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2(1.5 for methyl groups)Ueq(C).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Version 2.4; Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and Mercury (Version 2.4; Macrae et al., 2008).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
Fig. 1. The molecular structure of (III), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The molecular structure of (IV), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3. The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 4. The packing of (III), viewed down the c axis, showing the formation of the extended linear N—H···O hydrogen-bonded chain along the [100] direction (dashed lines). [The `dashed' lines are solid - please revise, using black dashed lines for clarity. Also, axes labels should not overlap or touch their axes.]

Fig. 5. The packing of (IV), viewed down the c axis, showing the formation of the extended linear N—H···S hydrogen-bonded chain along the [100] direction (dashed lines). [The `dashed' lines are solid - please revise, using black dashed lines for clarity. Also, axes labels should not overlap or touch their axes.]

Fig. 6. The packing of (III), viewed down the a axis. Only H atoms attached to heteroatoms are shown. [Please revise - axes labels should not overlap or touch their axes.]

Fig. 7. The packing of (IV), viewed down the a axis. Only H atoms attached to heteroatoms are shown. [Please revise - axes labels should not overlap or touch their axes.]

Fig. 8. The packing of (I), viewed down the c axis. Only H atoms attached to heteroatoms are shown. [Please revise, using black dashed lines for hydrogen bonds for clarity. Also, axes labels should not overlap or touch their axes.]
(I) 4-(4-hydroxyphenyl)-2,2,4-trimethylchroman top
Crystal data top
C18H20O2Dx = 1.192 Mg m3
Mr = 268.34Cu Kα radiation, λ = 1.54178 Å
Hexagonal, R3Cell parameters from 6337 reflections
a = 26.7321 (5) Åθ = 3.3–76.0°
c = 10.8700 (3) ŵ = 0.60 mm1
V = 6727.1 (3) Å3T = 100 K
Z = 18Prism, colourless
F(000) = 25920.55 × 0.25 × 0.25 mm
Data collection top
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
3047 independent reflections
Radiation source: SuperNova (Cu) X-ray source2871 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.5598 pixels mm-1θmax = 74.5°, θmin = 9.0°
ω scansh = 3133
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 3333
Tmin = 0.836, Tmax = 1.000l = 1311
11837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 3.P]
where P = (Fo2 + 2Fc2)/3
3047 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H20O2Z = 18
Mr = 268.34Cu Kα radiation
Hexagonal, R3µ = 0.60 mm1
a = 26.7321 (5) ÅT = 100 K
c = 10.8700 (3) Å0.55 × 0.25 × 0.25 mm
V = 6727.1 (3) Å3
Data collection top
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
3047 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
2871 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 1.000Rint = 0.018
11837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.26 e Å3
3047 reflectionsΔρmin = 0.26 e Å3
188 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07179 (3)0.57876 (3)0.03764 (6)0.0167 (2)
O20.21522 (3)0.60269 (4)0.64902 (7)0.0232 (2)
H2A0.2306 (8)0.5849 (8)0.6528 (18)0.044 (5)*
C20.10884 (4)0.55538 (4)0.07176 (9)0.0149 (2)
C30.07361 (4)0.50052 (4)0.14702 (8)0.0144 (2)
H3A0.09910.48510.17030.017*
H3B0.04260.47140.09400.017*
C40.04576 (4)0.50773 (4)0.26490 (9)0.0137 (2)
C50.02017 (4)0.54590 (4)0.23359 (9)0.0142 (2)
C60.02024 (4)0.54841 (4)0.31163 (9)0.0162 (2)
H6A0.03130.52610.38500.019*
C70.04456 (4)0.58248 (4)0.28507 (9)0.0182 (2)
H7A0.07160.58360.33990.022*
C80.02891 (4)0.61496 (4)0.17747 (10)0.0182 (2)
H8A0.04510.63870.15880.022*
C90.01026 (4)0.61267 (4)0.09758 (9)0.0167 (2)
H9A0.02040.63430.02340.020*
C100.03508 (4)0.57864 (4)0.12539 (9)0.0144 (2)
C110.08958 (4)0.53276 (4)0.37129 (8)0.0139 (2)
C120.11769 (4)0.50340 (4)0.41207 (9)0.0161 (2)
H12A0.10830.46750.37540.019*
C130.15895 (4)0.52555 (5)0.50485 (9)0.0173 (2)
H13A0.17730.50480.53110.021*
C140.17331 (4)0.57812 (4)0.55921 (9)0.0158 (2)
C150.14512 (4)0.60733 (4)0.52297 (9)0.0164 (2)
H15A0.15390.64270.56150.020*
C160.10388 (4)0.58463 (4)0.42984 (9)0.0154 (2)
H16A0.08490.60510.40550.018*
C170.00316 (4)0.44682 (4)0.30097 (9)0.0174 (2)
H17A0.02010.44890.37940.026*
H17B0.01260.42080.30930.026*
H17C0.03300.43210.23700.026*
C180.12616 (5)0.54015 (5)0.04963 (9)0.0195 (2)
H18A0.14580.57480.10110.029*
H18B0.09160.51070.09220.029*
H18C0.15230.52510.03390.029*
C190.16176 (4)0.60295 (4)0.13728 (9)0.0183 (2)
H19A0.18410.63470.07980.028*
H19B0.18590.58740.16700.028*
H19C0.14930.61730.20710.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (4)0.0197 (4)0.0156 (4)0.0116 (3)0.0024 (3)0.0040 (3)
O20.0198 (4)0.0281 (4)0.0192 (4)0.0102 (3)0.0056 (3)0.0009 (3)
C20.0154 (5)0.0150 (5)0.0157 (5)0.0087 (4)0.0008 (3)0.0005 (3)
C30.0165 (5)0.0131 (4)0.0140 (5)0.0078 (4)0.0002 (3)0.0007 (3)
C40.0150 (4)0.0126 (4)0.0139 (5)0.0071 (4)0.0003 (3)0.0001 (3)
C50.0142 (4)0.0125 (4)0.0155 (5)0.0064 (4)0.0025 (3)0.0021 (3)
C60.0161 (5)0.0170 (5)0.0155 (4)0.0083 (4)0.0013 (3)0.0016 (3)
C70.0168 (5)0.0197 (5)0.0200 (5)0.0104 (4)0.0011 (4)0.0046 (4)
C80.0176 (5)0.0161 (5)0.0234 (5)0.0103 (4)0.0052 (4)0.0033 (4)
C90.0166 (5)0.0143 (5)0.0183 (5)0.0071 (4)0.0030 (4)0.0004 (3)
C100.0127 (4)0.0131 (4)0.0158 (5)0.0052 (3)0.0014 (3)0.0016 (3)
C110.0142 (4)0.0150 (5)0.0124 (4)0.0072 (4)0.0024 (3)0.0017 (3)
C120.0189 (5)0.0158 (5)0.0155 (5)0.0101 (4)0.0014 (4)0.0002 (3)
C130.0185 (5)0.0212 (5)0.0162 (5)0.0130 (4)0.0014 (4)0.0023 (4)
C140.0140 (5)0.0184 (5)0.0131 (4)0.0066 (4)0.0004 (3)0.0013 (3)
C150.0187 (5)0.0143 (4)0.0152 (4)0.0075 (4)0.0003 (4)0.0002 (3)
C160.0172 (5)0.0148 (5)0.0159 (5)0.0092 (4)0.0009 (3)0.0018 (3)
C170.0161 (5)0.0138 (5)0.0206 (5)0.0061 (4)0.0014 (3)0.0021 (3)
C180.0232 (5)0.0202 (5)0.0164 (5)0.0118 (4)0.0036 (4)0.0005 (4)
C190.0169 (5)0.0163 (5)0.0192 (5)0.0063 (4)0.0004 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—C101.3674 (12)C9—C101.4009 (14)
O1—C21.4587 (11)C9—H9A0.9500
O2—C141.3798 (12)C11—C161.3943 (14)
O2—H2A0.77 (2)C11—C121.4025 (13)
C2—C181.5199 (13)C12—C131.3897 (14)
C2—C31.5251 (13)C12—H12A0.9500
C2—C191.5252 (13)C13—C141.3899 (14)
C3—C41.5418 (12)C13—H13A0.9500
C3—H3A0.9900C14—C151.3863 (14)
C3—H3B0.9900C15—C161.3926 (14)
C4—C51.5241 (13)C15—H15A0.9500
C4—C111.5406 (13)C16—H16A0.9500
C4—C171.5446 (13)C17—H17A0.9800
C5—C101.3998 (13)C17—H17B0.9800
C5—C61.4012 (13)C17—H17C0.9800
C6—C71.3884 (14)C18—H18A0.9800
C6—H6A0.9500C18—H18B0.9800
C7—C81.3905 (15)C18—H18C0.9800
C7—H7A0.9500C19—H19A0.9800
C8—C91.3852 (14)C19—H19B0.9800
C8—H8A0.9500C19—H19C0.9800
C10—O1—C2117.51 (7)C5—C10—C9120.53 (9)
C14—O2—H2A107.5 (14)C16—C11—C12117.08 (9)
O1—C2—C18104.90 (7)C16—C11—C4123.05 (8)
O1—C2—C3108.86 (8)C12—C11—C4119.87 (8)
C18—C2—C3109.41 (8)C13—C12—C11121.60 (9)
O1—C2—C19107.88 (8)C13—C12—H12A119.2
C18—C2—C19110.42 (8)C11—C12—H12A119.2
C3—C2—C19114.87 (8)C12—C13—C14119.91 (9)
C2—C3—C4115.48 (8)C12—C13—H13A120.0
C2—C3—H3A108.4C14—C13—H13A120.0
C4—C3—H3A108.4O2—C14—C15118.27 (9)
C2—C3—H3B108.4O2—C14—C13122.02 (9)
C4—C3—H3B108.4C15—C14—C13119.71 (9)
H3A—C3—H3B107.5C14—C15—C16119.74 (9)
C5—C4—C11112.04 (8)C14—C15—H15A120.1
C5—C4—C3107.74 (8)C16—C15—H15A120.1
C11—C4—C3111.60 (8)C15—C16—C11121.92 (9)
C5—C4—C17109.61 (8)C15—C16—H16A119.0
C11—C4—C17109.06 (8)C11—C16—H16A119.0
C3—C4—C17106.64 (7)C4—C17—H17A109.5
C10—C5—C6117.66 (9)C4—C17—H17B109.5
C10—C5—C4121.56 (9)H17A—C17—H17B109.5
C6—C5—C4120.77 (9)C4—C17—H17C109.5
C7—C6—C5122.04 (9)H17A—C17—H17C109.5
C7—C6—H6A119.0H17B—C17—H17C109.5
C5—C6—H6A119.0C2—C18—H18A109.5
C6—C7—C8119.42 (9)C2—C18—H18B109.5
C6—C7—H7A120.3H18A—C18—H18B109.5
C8—C7—H7A120.3C2—C18—H18C109.5
C9—C8—C7119.86 (9)H18A—C18—H18C109.5
C9—C8—H8A120.1H18B—C18—H18C109.5
C7—C8—H8A120.1C2—C19—H19A109.5
C8—C9—C10120.49 (9)C2—C19—H19B109.5
C8—C9—H9A119.8H19A—C19—H19B109.5
C10—C9—H9A119.8C2—C19—H19C109.5
O1—C10—C5124.56 (9)H19A—C19—H19C109.5
O1—C10—C9114.86 (8)H19B—C19—H19C109.5
C10—O1—C2—C18159.09 (8)C6—C5—C10—O1177.00 (9)
C10—O1—C2—C342.07 (11)C4—C5—C10—O11.70 (14)
C10—O1—C2—C1983.19 (10)C6—C5—C10—C90.24 (14)
O1—C2—C3—C457.81 (10)C4—C5—C10—C9178.93 (8)
C18—C2—C3—C4171.92 (8)C8—C9—C10—O1178.24 (9)
C19—C2—C3—C463.25 (11)C8—C9—C10—C50.75 (14)
C2—C3—C4—C543.21 (10)C5—C4—C11—C160.58 (13)
C2—C3—C4—C1180.17 (10)C3—C4—C11—C16120.33 (10)
C2—C3—C4—C17160.82 (8)C17—C4—C11—C16122.10 (10)
C11—C4—C5—C10108.14 (10)C5—C4—C11—C12179.68 (8)
C3—C4—C5—C1014.99 (12)C3—C4—C11—C1258.76 (11)
C17—C4—C5—C10130.66 (9)C17—C4—C11—C1258.80 (11)
C11—C4—C5—C673.21 (11)C16—C11—C12—C131.41 (14)
C3—C4—C5—C6163.66 (8)C4—C11—C12—C13177.74 (8)
C17—C4—C5—C648.00 (11)C11—C12—C13—C140.20 (15)
C10—C5—C6—C70.86 (14)C12—C13—C14—O2178.01 (9)
C4—C5—C6—C7179.56 (9)C12—C13—C14—C151.89 (15)
C5—C6—C7—C80.48 (15)O2—C14—C15—C16177.99 (9)
C6—C7—C8—C90.54 (15)C13—C14—C15—C161.91 (14)
C7—C8—C9—C101.15 (15)C14—C15—C16—C110.25 (15)
C2—O1—C10—C516.20 (13)C12—C11—C16—C151.39 (14)
C2—O1—C10—C9166.42 (8)C4—C11—C16—C15177.74 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.77 (2)2.00 (2)2.7642 (8)170 (2)
Symmetry code: (i) xy+2/3, x+1/3, z+4/3.
(III) (R)-4-(4-Aminophenyl)-2,2,4-trimethylchroman top
Crystal data top
C18H21NODx = 1.256 Mg m3
Mr = 267.36Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 19066 reflections
a = 10.23394 (11) Åθ = 3.3–76.1°
b = 10.25106 (10) ŵ = 0.60 mm1
c = 13.47563 (13) ÅT = 100 K
V = 1413.71 (2) Å3Block, colourless
Z = 40.50 × 0.45 × 0.20 mm
F(000) = 576
Data collection top
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
2876 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2864 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.5598 pixels mm-1θmax = 74.5°, θmin = 9.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1212
Tmin = 0.697, Tmax = 1.000l = 1616
25124 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.235P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.21 e Å3
2876 reflectionsΔρmin = 0.14 e Å3
193 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0082 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1221 Friedel pairs; Hooft et al. (2008)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (18)
Crystal data top
C18H21NOV = 1413.71 (2) Å3
Mr = 267.36Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.23394 (11) ŵ = 0.60 mm1
b = 10.25106 (10) ÅT = 100 K
c = 13.47563 (13) Å0.50 × 0.45 × 0.20 mm
Data collection top
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
2876 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
2864 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 1.000Rint = 0.024
25124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072Δρmax = 0.21 e Å3
S = 1.00Δρmin = 0.14 e Å3
2876 reflectionsAbsolute structure: Flack (1983), with 1221 Friedel pairs; Hooft et al. (2008)
193 parametersAbsolute structure parameter: 0.07 (18)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88215 (7)0.94223 (7)0.65565 (5)0.01961 (17)
N10.13938 (10)0.86523 (11)0.52978 (9)0.0337 (2)
H1A0.0613 (18)0.8628 (18)0.5687 (13)0.046 (5)*
H1B0.1449 (17)0.8104 (17)0.4768 (13)0.045 (4)*
C20.83851 (9)0.89108 (10)0.75111 (7)0.0175 (2)
C30.68941 (9)0.88319 (10)0.74965 (7)0.0171 (2)
H3A0.65960.85020.81490.021*
H3B0.66320.81840.69900.021*
C40.61698 (10)1.01271 (9)0.72775 (7)0.0162 (2)
C50.69978 (9)1.09576 (9)0.65762 (7)0.0158 (2)
C60.65302 (10)1.21559 (10)0.62335 (8)0.0190 (2)
H6A0.56971.24490.64500.023*
C70.72424 (11)1.29314 (10)0.55870 (8)0.0211 (2)
H7A0.69041.37470.53720.025*
C80.84560 (10)1.25052 (10)0.52562 (7)0.0208 (2)
H8A0.89461.30220.48050.025*
C90.89490 (10)1.13243 (10)0.55870 (7)0.0189 (2)
H9A0.97761.10290.53580.023*
C100.82369 (10)1.05686 (9)0.62538 (7)0.0164 (2)
C110.48717 (9)0.97822 (9)0.67655 (7)0.0159 (2)
C120.36565 (10)0.98970 (10)0.72178 (8)0.0200 (2)
H12A0.36051.02510.78680.024*
C130.25137 (10)0.95068 (10)0.67439 (9)0.0233 (2)
H13A0.17000.95960.70770.028*
C140.25438 (10)0.89886 (10)0.57923 (8)0.0218 (2)
C150.37561 (10)0.88785 (10)0.53240 (7)0.0207 (2)
H15A0.38040.85330.46710.025*
C160.48875 (10)0.92670 (9)0.58016 (7)0.0182 (2)
H16A0.57000.91820.54660.022*
C170.59236 (10)1.08932 (10)0.82441 (7)0.0205 (2)
H17A0.67621.11290.85460.031*
H17B0.54241.03500.87070.031*
H17C0.54291.16870.80940.031*
C180.89498 (10)0.97503 (10)0.83433 (8)0.0218 (2)
H18A0.99020.96480.83600.033*
H18B0.85790.94740.89800.033*
H18C0.87311.06680.82240.033*
C190.89637 (10)0.75535 (10)0.75672 (8)0.0222 (2)
H19A0.99170.76070.75080.033*
H19B0.86140.70200.70250.033*
H19C0.87350.71550.82050.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (3)0.0202 (4)0.0189 (3)0.0046 (3)0.0024 (3)0.0034 (3)
N10.0214 (5)0.0369 (6)0.0428 (6)0.0024 (4)0.0080 (4)0.0102 (5)
C20.0184 (4)0.0183 (5)0.0158 (4)0.0006 (4)0.0013 (4)0.0023 (4)
C30.0185 (5)0.0151 (4)0.0178 (4)0.0014 (4)0.0008 (4)0.0014 (4)
C40.0171 (4)0.0153 (4)0.0160 (4)0.0005 (4)0.0008 (3)0.0002 (4)
C50.0176 (4)0.0145 (4)0.0152 (4)0.0021 (4)0.0013 (4)0.0009 (3)
C60.0180 (5)0.0172 (5)0.0217 (5)0.0001 (4)0.0009 (4)0.0003 (4)
C70.0240 (5)0.0165 (4)0.0228 (5)0.0021 (4)0.0034 (4)0.0034 (4)
C80.0239 (5)0.0201 (5)0.0182 (5)0.0071 (4)0.0010 (4)0.0025 (4)
C90.0174 (4)0.0224 (5)0.0169 (4)0.0021 (4)0.0003 (4)0.0021 (4)
C100.0182 (5)0.0158 (5)0.0152 (4)0.0001 (4)0.0024 (4)0.0005 (3)
C110.0171 (5)0.0127 (4)0.0180 (5)0.0004 (4)0.0002 (4)0.0026 (3)
C120.0198 (5)0.0180 (5)0.0222 (5)0.0001 (4)0.0030 (4)0.0021 (4)
C130.0168 (5)0.0212 (5)0.0321 (6)0.0002 (4)0.0038 (4)0.0012 (4)
C140.0202 (5)0.0163 (4)0.0291 (5)0.0001 (4)0.0052 (4)0.0032 (4)
C150.0245 (5)0.0183 (4)0.0191 (4)0.0004 (4)0.0028 (4)0.0023 (4)
C160.0193 (5)0.0171 (4)0.0181 (5)0.0000 (4)0.0012 (4)0.0027 (4)
C170.0223 (5)0.0216 (5)0.0175 (4)0.0001 (4)0.0010 (4)0.0030 (4)
C180.0213 (5)0.0224 (5)0.0216 (5)0.0019 (4)0.0037 (4)0.0009 (4)
C190.0235 (5)0.0201 (5)0.0230 (5)0.0027 (4)0.0039 (4)0.0025 (4)
Geometric parameters (Å, º) top
O1—C101.3803 (12)C9—C101.3924 (14)
O1—C21.4592 (11)C9—H9A0.9500
N1—C141.3957 (14)C11—C121.3899 (14)
N1—H1A0.956 (19)C11—C161.4024 (13)
N1—H1B0.911 (18)C12—C131.3913 (15)
C2—C191.5140 (14)C12—H12A0.9500
C2—C181.5272 (14)C13—C141.3883 (16)
C2—C31.5281 (13)C13—H13A0.9500
C3—C41.5490 (13)C14—C151.3966 (15)
C3—H3A0.9900C15—C161.3833 (15)
C3—H3B0.9900C15—H15A0.9500
C4—C51.5283 (13)C16—H16A0.9500
C4—C111.5382 (13)C17—H17A0.9800
C4—C171.5417 (13)C17—H17B0.9800
C5—C61.3969 (14)C17—H17C0.9800
C5—C101.3985 (14)C18—H18A0.9800
C6—C71.3864 (15)C18—H18B0.9800
C6—H6A0.9500C18—H18C0.9800
C7—C81.3900 (15)C19—H19A0.9800
C7—H7A0.9500C19—H19B0.9800
C8—C91.3851 (15)C19—H19C0.9800
C8—H8A0.9500
C10—O1—C2115.71 (8)O1—C10—C5122.95 (9)
C14—N1—H1A116.7 (10)C9—C10—C5121.10 (9)
C14—N1—H1B118.3 (11)C12—C11—C16116.64 (9)
H1A—N1—H1B117.8 (15)C12—C11—C4123.82 (8)
O1—C2—C19104.74 (8)C16—C11—C4119.48 (8)
O1—C2—C18109.21 (8)C11—C12—C13121.77 (9)
C19—C2—C18109.47 (8)C11—C12—H12A119.1
O1—C2—C3108.25 (8)C13—C12—H12A119.1
C19—C2—C3110.03 (8)C14—C13—C12121.02 (10)
C18—C2—C3114.66 (8)C14—C13—H13A119.5
C2—C3—C4115.78 (8)C12—C13—H13A119.5
C2—C3—H3A108.3C13—C14—N1121.12 (10)
C4—C3—H3A108.3C13—C14—C15117.91 (9)
C2—C3—H3B108.3N1—C14—C15120.89 (10)
C4—C3—H3B108.3C16—C15—C14120.67 (9)
H3A—C3—H3B107.4C16—C15—H15A119.7
C5—C4—C11109.24 (7)C14—C15—H15A119.7
C5—C4—C17109.22 (8)C15—C16—C11121.99 (9)
C11—C4—C17110.79 (8)C15—C16—H16A119.0
C5—C4—C3109.27 (8)C11—C16—H16A119.0
C11—C4—C3107.56 (8)C4—C17—H17A109.5
C17—C4—C3110.73 (8)C4—C17—H17B109.5
C6—C5—C10117.30 (9)H17A—C17—H17B109.5
C6—C5—C4120.29 (9)C4—C17—H17C109.5
C10—C5—C4122.41 (9)H17A—C17—H17C109.5
C7—C6—C5122.14 (10)H17B—C17—H17C109.5
C7—C6—H6A118.9C2—C18—H18A109.5
C5—C6—H6A118.9C2—C18—H18B109.5
C6—C7—C8119.41 (10)H18A—C18—H18B109.5
C6—C7—H7A120.3C2—C18—H18C109.5
C8—C7—H7A120.3H18A—C18—H18C109.5
C9—C8—C7119.80 (10)H18B—C18—H18C109.5
C9—C8—H8A120.1C2—C19—H19A109.5
C7—C8—H8A120.1C2—C19—H19B109.5
C8—C9—C10120.21 (10)H19A—C19—H19B109.5
C8—C9—H9A119.9C2—C19—H19C109.5
C10—C9—H9A119.9H19A—C19—H19C109.5
O1—C10—C9115.94 (9)H19B—C19—H19C109.5
C10—O1—C2—C19169.32 (8)C8—C9—C10—O1178.64 (8)
C10—O1—C2—C1873.51 (10)C8—C9—C10—C52.24 (14)
C10—O1—C2—C351.95 (11)C6—C5—C10—O1178.45 (9)
O1—C2—C3—C457.00 (10)C4—C5—C10—O11.35 (14)
C19—C2—C3—C4170.92 (8)C6—C5—C10—C92.50 (13)
C18—C2—C3—C465.18 (11)C4—C5—C10—C9177.70 (9)
C2—C3—C4—C532.29 (11)C5—C4—C11—C12133.17 (9)
C2—C3—C4—C11150.77 (8)C17—C4—C11—C1212.80 (13)
C2—C3—C4—C1788.05 (10)C3—C4—C11—C12108.34 (10)
C11—C4—C5—C659.95 (11)C5—C4—C11—C1649.71 (11)
C17—C4—C5—C661.37 (12)C17—C4—C11—C16170.07 (8)
C3—C4—C5—C6177.37 (8)C3—C4—C11—C1668.79 (10)
C11—C4—C5—C10120.26 (10)C16—C11—C12—C130.73 (14)
C17—C4—C5—C10118.42 (10)C4—C11—C12—C13176.47 (9)
C3—C4—C5—C102.84 (12)C11—C12—C13—C140.25 (16)
C10—C5—C6—C71.03 (15)C12—C13—C14—N1177.03 (10)
C4—C5—C6—C7179.17 (9)C12—C13—C14—C150.36 (16)
C5—C6—C7—C80.72 (16)C13—C14—C15—C160.46 (15)
C6—C7—C8—C91.03 (15)N1—C14—C15—C16177.14 (10)
C7—C8—C9—C100.42 (15)C14—C15—C16—C110.03 (15)
C2—O1—C10—C9155.85 (8)C12—C11—C16—C150.62 (14)
C2—O1—C10—C525.06 (13)C4—C11—C16—C15176.71 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.956 (19)2.323 (19)3.2295 (14)157.9 (15)
Symmetry code: (i) x1, y, z.
(IV) (S)-4-(4-Aminophenyl)-2,2,4-trimethylthiachroman top
Crystal data top
C18H21NSDx = 1.271 Mg m3
Mr = 283.42Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 5377 reflections
a = 10.6043 (6) Åθ = 3.3–75.8°
b = 10.4104 (5) ŵ = 1.83 mm1
c = 13.4126 (6) ÅT = 100 K
V = 1480.68 (13) Å3Block, colourless
Z = 40.50 × 0.45 × 0.20 mm
F(000) = 608
Data collection top
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
3015 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2976 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.5598 pixels mm-1θmax = 74.5°, θmin = 8.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1113
Tmin = 0.654, Tmax = 1.000l = 1116
6825 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.051P)2 + 0.185P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3015 reflectionsΔρmax = 0.23 e Å3
193 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1281 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (11)
Crystal data top
C18H21NSV = 1480.68 (13) Å3
Mr = 283.42Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.6043 (6) ŵ = 1.83 mm1
b = 10.4104 (5) ÅT = 100 K
c = 13.4126 (6) Å0.50 × 0.45 × 0.20 mm
Data collection top
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
3015 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
2976 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 1.000Rint = 0.019
6825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.26 e Å3
3015 reflectionsAbsolute structure: Flack (1983), with 1281 Friedel pairs
193 parametersAbsolute structure parameter: 0.016 (11)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38897 (3)0.91546 (3)0.36886 (2)0.01926 (9)
N10.31310 (12)0.85585 (12)0.49801 (10)0.0248 (3)
H1A0.3838 (19)0.8461 (18)0.4644 (13)0.025 (4)*
H1B0.2944 (19)0.788 (2)0.5429 (15)0.035 (5)*
C20.33254 (12)0.87819 (12)0.24344 (9)0.0169 (2)
C30.18820 (11)0.88597 (12)0.24655 (9)0.0153 (2)
H3A0.15820.82050.29450.018*
H3B0.15630.86070.18000.018*
C40.12454 (11)1.01631 (11)0.27477 (8)0.0141 (2)
C50.20406 (11)1.10235 (12)0.34388 (9)0.0144 (2)
C60.15741 (12)1.22434 (12)0.36787 (10)0.0189 (2)
H6A0.07941.25080.33970.023*
C70.22048 (13)1.30817 (13)0.43106 (10)0.0208 (3)
H7A0.18611.39040.44520.025*
C80.33499 (13)1.27065 (13)0.47374 (9)0.0196 (2)
H8A0.37901.32670.51750.024*
C90.38292 (12)1.15119 (13)0.45126 (9)0.0181 (2)
H9A0.46091.12530.47970.022*
C100.31913 (11)1.06723 (12)0.38749 (8)0.0150 (2)
C110.00344 (12)0.98106 (11)0.33143 (9)0.0140 (2)
C120.11773 (12)0.99061 (11)0.29291 (9)0.0171 (2)
H12A0.12971.02720.22870.021*
C130.22232 (12)0.94758 (13)0.34639 (10)0.0192 (3)
H13A0.30400.95470.31780.023*
C140.20898 (11)0.89450 (12)0.44087 (10)0.0175 (2)
C150.08745 (12)0.88703 (12)0.48142 (9)0.0173 (2)
H15A0.07580.85300.54650.021*
C160.01529 (11)0.92868 (12)0.42750 (9)0.0151 (2)
H16A0.09690.92170.45620.018*
C170.09506 (12)1.09065 (13)0.17800 (9)0.0191 (2)
H17A0.04981.17000.19440.029*
H17B0.04261.03730.13440.029*
H17C0.17401.11180.14380.029*
C180.39319 (13)0.96648 (10)0.16643 (8)0.0248 (3)
H18A0.35930.94680.10020.037*
H18B0.48470.95330.16640.037*
H18C0.37451.05610.18320.037*
C190.37274 (13)0.73983 (13)0.22426 (10)0.0216 (3)
H19A0.34450.71340.15780.032*
H19B0.33480.68360.27460.032*
H19C0.46480.73350.22810.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01732 (14)0.01801 (15)0.02245 (14)0.00423 (11)0.00470 (11)0.00267 (11)
N10.0178 (6)0.0242 (6)0.0323 (6)0.0056 (5)0.0048 (5)0.0010 (5)
C20.0149 (5)0.0174 (6)0.0182 (5)0.0016 (4)0.0025 (4)0.0015 (4)
C30.0138 (5)0.0152 (5)0.0169 (5)0.0004 (4)0.0001 (4)0.0016 (4)
C40.0142 (5)0.0127 (5)0.0154 (5)0.0002 (4)0.0016 (4)0.0007 (4)
C50.0142 (5)0.0137 (5)0.0153 (5)0.0016 (4)0.0015 (4)0.0013 (4)
C60.0184 (6)0.0152 (5)0.0231 (5)0.0005 (5)0.0014 (5)0.0002 (5)
C70.0225 (6)0.0154 (6)0.0246 (6)0.0016 (5)0.0022 (5)0.0025 (5)
C80.0212 (6)0.0190 (6)0.0187 (5)0.0068 (5)0.0013 (5)0.0015 (5)
C90.0152 (5)0.0224 (6)0.0168 (5)0.0037 (5)0.0009 (5)0.0017 (5)
C100.0148 (5)0.0144 (5)0.0159 (5)0.0011 (5)0.0023 (4)0.0014 (4)
C110.0148 (6)0.0092 (5)0.0180 (5)0.0002 (4)0.0001 (4)0.0017 (4)
C120.0168 (6)0.0144 (5)0.0202 (5)0.0010 (5)0.0034 (5)0.0004 (4)
C130.0137 (5)0.0176 (6)0.0263 (6)0.0014 (5)0.0030 (5)0.0007 (5)
C140.0161 (6)0.0118 (6)0.0247 (6)0.0022 (4)0.0035 (5)0.0031 (5)
C150.0188 (6)0.0143 (6)0.0190 (5)0.0001 (4)0.0001 (5)0.0002 (4)
C160.0149 (5)0.0128 (5)0.0176 (5)0.0000 (4)0.0019 (4)0.0019 (5)
C170.0203 (6)0.0190 (6)0.0180 (5)0.0000 (5)0.0017 (4)0.0037 (5)
C180.0228 (6)0.0255 (7)0.0261 (6)0.0013 (6)0.0093 (6)0.0021 (5)
C190.0195 (6)0.0196 (6)0.0257 (6)0.0031 (5)0.0026 (5)0.0033 (5)
Geometric parameters (Å, º) top
S1—C101.7627 (13)C9—C101.3975 (17)
S1—C21.8271 (13)C9—H9A0.9500
N1—C141.4030 (16)C11—C121.3885 (17)
N1—H1A0.88 (2)C11—C161.4047 (17)
N1—H1B0.95 (2)C12—C131.3947 (18)
C2—C191.5240 (17)C12—H12A0.9500
C2—C181.5249 (17)C13—C141.3897 (19)
C2—C31.5334 (17)C13—H13A0.9500
C3—C41.5622 (16)C14—C151.4010 (17)
C3—H3A0.9900C15—C161.3777 (18)
C3—H3B0.9900C15—H15A0.9500
C4—C111.5367 (16)C16—H16A0.9500
C4—C51.5403 (16)C17—H17A0.9800
C4—C171.5432 (15)C17—H17B0.9800
C5—C61.4004 (17)C17—H17C0.9800
C5—C101.4017 (17)C18—H18A0.9800
C6—C71.3883 (19)C18—H18B0.9800
C6—H6A0.9500C18—H18C0.9800
C7—C81.398 (2)C19—H19A0.9800
C7—H7A0.9500C19—H19B0.9800
C8—C91.3770 (19)C19—H19C0.9800
C8—H8A0.9500
C10—S1—C2100.56 (6)C9—C10—S1116.35 (10)
C14—N1—H1A115.1 (12)C5—C10—S1122.71 (10)
C14—N1—H1B113.3 (12)C12—C11—C16116.87 (11)
H1A—N1—H1B114.7 (17)C12—C11—C4124.90 (11)
C19—C2—C18109.71 (10)C16—C11—C4118.14 (10)
C19—C2—C3109.49 (10)C11—C12—C13121.43 (11)
C18—C2—C3114.05 (11)C11—C12—H12A119.3
C19—C2—S1105.34 (9)C13—C12—H12A119.3
C18—C2—S1110.95 (9)C14—C13—C12121.05 (11)
C3—C2—S1106.90 (8)C14—C13—H13A119.5
C2—C3—C4118.93 (10)C12—C13—H13A119.5
C2—C3—H3A107.6C13—C14—C15118.01 (11)
C4—C3—H3A107.6C13—C14—N1122.15 (12)
C2—C3—H3B107.6C15—C14—N1119.73 (12)
C4—C3—H3B107.6C16—C15—C14120.41 (11)
H3A—C3—H3B107.0C16—C15—H15A119.8
C11—C4—C5107.38 (9)C14—C15—H15A119.8
C11—C4—C17111.50 (10)C15—C16—C11122.20 (11)
C5—C4—C17109.00 (10)C15—C16—H16A118.9
C11—C4—C3105.87 (9)C11—C16—H16A118.9
C5—C4—C3114.48 (10)C4—C17—H17A109.5
C17—C4—C3108.62 (10)C4—C17—H17B109.5
C6—C5—C10116.63 (11)H17A—C17—H17B109.5
C6—C5—C4118.18 (10)C4—C17—H17C109.5
C10—C5—C4125.17 (11)H17A—C17—H17C109.5
C7—C6—C5122.70 (12)H17B—C17—H17C109.5
C7—C6—H6A118.7C2—C18—H18A109.5
C5—C6—H6A118.7C2—C18—H18B109.5
C6—C7—C8119.52 (13)H18A—C18—H18B109.5
C6—C7—H7A120.2C2—C18—H18C109.5
C8—C7—H7A120.2H18A—C18—H18C109.5
C9—C8—C7118.90 (12)H18B—C18—H18C109.5
C9—C8—H8A120.5C2—C19—H19A109.5
C7—C8—H8A120.5C2—C19—H19B109.5
C8—C9—C10121.34 (12)H19A—C19—H19B109.5
C8—C9—H9A119.3C2—C19—H19C109.5
C10—C9—H9A119.3H19A—C19—H19C109.5
C9—C10—C5120.91 (12)H19B—C19—H19C109.5
C10—S1—C2—C19172.58 (8)C6—C5—C10—C90.20 (16)
C10—S1—C2—C1868.76 (10)C4—C5—C10—C9178.45 (11)
C10—S1—C2—C356.16 (9)C6—C5—C10—S1177.84 (9)
C19—C2—C3—C4174.57 (10)C4—C5—C10—S10.41 (16)
C18—C2—C3—C462.07 (14)C2—S1—C10—C9151.41 (9)
S1—C2—C3—C460.94 (12)C2—S1—C10—C530.47 (11)
C2—C3—C4—C11146.59 (11)C5—C4—C11—C12131.44 (12)
C2—C3—C4—C528.51 (15)C17—C4—C11—C1212.11 (17)
C2—C3—C4—C1793.55 (12)C3—C4—C11—C12105.85 (13)
C11—C4—C5—C666.66 (13)C5—C4—C11—C1652.17 (14)
C17—C4—C5—C654.26 (14)C17—C4—C11—C16171.50 (10)
C3—C4—C5—C6176.12 (10)C3—C4—C11—C1670.54 (13)
C11—C4—C5—C10111.56 (13)C16—C11—C12—C131.34 (18)
C17—C4—C5—C10127.51 (12)C4—C11—C12—C13175.09 (12)
C3—C4—C5—C105.66 (16)C11—C12—C13—C140.6 (2)
C10—C5—C6—C70.29 (18)C12—C13—C14—C150.84 (19)
C4—C5—C6—C7178.67 (12)C12—C13—C14—N1177.07 (12)
C5—C6—C7—C80.4 (2)C13—C14—C15—C161.47 (19)
C6—C7—C8—C90.46 (19)N1—C14—C15—C16177.79 (12)
C7—C8—C9—C100.38 (19)C14—C15—C16—C110.72 (18)
C8—C9—C10—C50.26 (18)C12—C11—C16—C150.69 (18)
C8—C9—C10—S1177.90 (9)C4—C11—C16—C15175.99 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.88 (2)2.82 (2)3.6562 (14)158.3 (16)
Symmetry code: (i) x1, y, z.

Experimental details

(I)(III)(IV)
Crystal data
Chemical formulaC18H20O2C18H21NOC18H21NS
Mr268.34267.36283.42
Crystal system, space groupHexagonal, R3Orthorhombic, P212121Orthorhombic, P212121
Temperature (K)100100100
a, b, c (Å)26.7321 (5), 26.7321 (5), 10.8700 (3)10.23394 (11), 10.25106 (10), 13.47563 (13)10.6043 (6), 10.4104 (5), 13.4126 (6)
α, β, γ (°)90, 90, 12090, 90, 9090, 90, 90
V3)6727.1 (3)1413.71 (2)1480.68 (13)
Z1844
Radiation typeCu KαCu KαCu Kα
µ (mm1)0.600.601.83
Crystal size (mm)0.55 × 0.25 × 0.250.50 × 0.45 × 0.200.50 × 0.45 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
Agilent SuperNova Dual (Cu at zero) with Atlas detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.836, 1.0000.697, 1.0000.654, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11837, 3047, 2871 25124, 2876, 2864 6825, 3015, 2976
Rint0.0180.0240.019
(sin θ/λ)max1)0.6250.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.126, 1.00 0.026, 0.072, 1.00 0.027, 0.070, 1.00
No. of reflections304728763015
No. of parameters188193193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.260.21, 0.140.23, 0.26
Absolute structure?Flack (1983), with 1221 Friedel pairs; Hooft et al. (2008)Flack (1983), with 1281 Friedel pairs
Absolute structure parameter?0.07 (18)0.016 (11)

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXTL (Sheldrick, 2008) and Mercury (Version 2.4; Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.77 (2)2.00 (2)2.7642 (8)170 (2)
Symmetry code: (i) xy+2/3, x+1/3, z+4/3.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.956 (19)2.323 (19)3.2295 (14)157.9 (15)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.88 (2)2.82 (2)3.6562 (14)158.3 (16)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the EPSRC for financial support (to DRW).

References

First citationAgilent Technologies (2010). CrysAlis PRO. Version 1.171.34.46. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBaker, W., Floyd, A. J., McOmie, J. F. W., Pope, G., Weaving, A. S. & Wild, J. H. (1956). J. Chem. Soc. pp. 2010–2017.  CrossRef Web of Science Google Scholar
First citationBeresford, T. W., Frampton, C. S., Gall, J. H. & MacNicol, D. D. (1999). Zh. Strukt. Khim. 40, 872–882.  Google Scholar
First citationBrienne, M. J. & Jaques, J. (1975). Tetrahedron Lett. 28, 2349–2352.  CrossRef Google Scholar
First citationChang, R. (2000). Physical Chemistry for the Chemical and Biological Sciences, p. 681. Herndon, VA: University Science Books.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551–555.  CrossRef CAS Google Scholar
First citationGilmore, C. J., Hardy, A. D. U., MacNicol, D. D. & Wilson, D. R. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1427–1434.  CrossRef Google Scholar
First citationGoldup, A. & Smith, G. W. (1971). Sep. Sci. 6, 791–817.  CAS Google Scholar
First citationHardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1145–1147.  CrossRef Google Scholar
First citationHardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072–1077.  CrossRef Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationImashiro, F., Yoshimura, M. & Fujiwara, T. (1998). Acta Cryst. C54, 1357–1360.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLloyd, G. O. & Bredenkamp, M. W. (2005). Acta Cryst. E61, o1512–o1514.  CSD CrossRef IUCr Journals Google Scholar
First citationMacNicol, D. D., Mallinson, P. R., Keates, R. A. B. & Wilson, F. B. (1987). J. Inclusion Phenom. Mol. Recognit. Chem. 5, 373–377.  CrossRef CAS Google Scholar
First citationMacNicol, D. D., Mills, H. H. & Wilson, F. B. (1969). J. Chem. Soc. D, pp. 1332–1333.  Google Scholar
First citationMacNicol, D. D. & Wilson, F. B. (1971). J. Chem. Soc. D, pp. 786–787.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScherrer, R. A. & Beatty, H. R. (1972). J. Org. Chem. 37, 1681–1686.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds