organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Acidic and anionic forms of 1,3-cyclic dihy­dr­oxy­acetone phosphate (cDHAP) di­methyl acetal

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
*Correspondence e-mail: slep@eto.wchuwr.pl

(Received 3 February 2011; accepted 29 March 2011; online 13 April 2011)

The six-membered cyclic phosphate diester, 5,5-dimeth­oxy-2-hydroxy-1,3,2-dioxaphospho­rinan-2-one, C5H11O6P or (MeO)2cDHAP, which is the dimethyl acetal of cyclic dihy­droxy­acetone phosphate (cDHAP), has been obtained in the form of two new cyclo­hexyl­ammonium (cha) salts, cyclohexylammonium 5,5-dimeth­oxy-2-oxo-1,3,2-dioxaphospho­rinan-2-ol­ate monohydrate, (cha)[(MeO)2cDHAP]·H2O or C6H14N+·C5H10O6P·H2O, and cyclohexylammonium 5,5-dimeth­oxy-2-oxo-1,3,2-dioxaphospho­rinan-2-olate, (cha)[(MeO)2cDHAP] or C6H14N+·C5H10O6P, as well as in the form of the anhydrous free acid, (MeO)2cDHAP. It is shown that protonation of the cyclic phosphate group influences the chair conformation of the P/O/C/C/C/O 1,3,2-dioxaphosphorinane ring, and that differences in the ring conformation correlate with different deformations observed in the ionized and protonated phosphate groups. The ring is more evenly puckered in the anions, in contrast with the flattening observed in the structure of the free acid.

Comment

Six-membered cyclic phosphate esters are constituents of a number of biologically important mol­ecules, such as 3′:5′-cyclic nucleotides, e.g. cAMP. Dihy­droxy­acetone phosphate (DHAP), the linear form of cDHAP, is one of the most important biochemical inter­mediates and of great importance for all living cells [for a review, see Ślepokura & Lis (2010[Ślepokura, K. & Lis, T. (2010). Carbohydr. Res. 345, 512-529.])]. The cyclic form, cDHAP, has aroused inter­est recently as a new mol­ecule of biological importance (Goswami & Adak, 2002[Goswami, S. & Adak, A. K. (2002). Tetrahedron Lett. 43, 503-505.]). Occurring in living organisms, small cyclic phosphates of cDHAP-like structure began to attract attention when their biological activity as signalling mol­ecules was suggested (Shinitzky et al., 2000[Shinitzky, M., Haimovitz, R., Nemas, M., Cahana, N., Mamillapalli, R. & Seger, R. (2000). Eur. J. Biochem. 267, 2547-2554.]). Cyclic glycerophosphates can be formed by enzymatic degradation of phospho­lipids, e.g. 1,3-cyclic glycerophosphate is naturally formed by the action of phospho­lipase C on phosphatidyl glycerol.

Only five of more than 160 hits for cyclic phosphates with six-membered rings deposited in the Cambridge Structural Database (CSD, Version 5.32; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) bear the H atom at the exocyclic O atom. We will discuss just three of the reported protonated cyclic phosphates [CSD refcodes ETPHOS (Gerlt et al., 1980[Gerlt, J. A., Chodosh, D. F., Drews, R. E. & Adams, R. D. (1980). J. Org. Chem. 45, 1282-1286.]), KADPUA (Johnson et al., 1989[Johnson, O., Jones, D. W. & Edmundson, R. S. (1989). Acta Cryst. C45, 142-145.]) and SEZRUL (Samas et al., 2007[Samas, B., Groendyke, T., Blackburn, A. C. & Godrej, D. B. (2007). Acta Cryst. E63, o1276-o1278.])], because the remaining two have high R factors and low bond precision, and the positions of the H atoms were not determined.

Previously, we have reported the synthesis and structural investigations of nine different salts of (MeO)2cDHAP with both organic and inorganic cations [(5a)–(5e) and (5e′)–(5h); Ślepokura, 2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]], along with its phenyl derivative, (MeO)2cDHAP(Ph) [(4); Ślepokura & Lis, 2004b[Ślepokura, K. & Lis, T. (2004b). Acta Cryst. C60, o315-o317.]]. Among these, the structures of two cyclo­hexyl­ammonium (cha) salts and the acid in the form of an oxonium salt were presented: (cha)[(MeO)2cDHAP]·3H2O, (5a), (cha)[(MeO)2cDHAP]·H2O, (5b), and (H5O2)[(MeO)2cDHAP], (5c).

The present paper concerns the synthesis and crystal structure of 5,5-dimeth­oxy-2-hydroxy-1,3,2-dioxaphospho­ri­nan-2-one, the dimethyl acetal of cyclic dihy­droxy­acetone phosphate, (MeO)2cDHAP, in the form of two crystalline cha salts, (cha)[(MeO)2cDHAP]·H2O, (5i)[link] [polymorphous form of (5b)], and anhydrous (cha)[(MeO)2cDHAP], (5j)[link], as well as in the form of the free acid, (MeO)2cDHAP, (5k)[link].

[Scheme 1]

The overall structures of the (MeO)2cDHAP anions in compounds (5i)[link] and (5j)[link] bear great similarities with each other and with the previously reported anions in (5a)–(5h) (Ślepokura, 2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]). The six-membered 1,3,2-dioxaphospho­rinane ring adopts a chair (C) conformation only slightly distorted towards an envelope (E), which is reflected in the values of the dihedral angles between the least-squares plane through the four central atoms of the ring (O1/O3/C1/C3) and the O1/P/O3 and C1/C2/C3 planes (φ1 and φ2), as well as in the Cremer–Pople puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; see Table 1[link]). The values of |φ2φ1| for (5a), (5b), (5i)[link] and (5j)[link] clearly show that the flattening of the dioxaphospho­rinane ring at the P atom is negligible in the (MeO)2cDHAP anions and that the conformation of the rings is close to an ideal chair.

Selected geometric parameters for (5i)[link]–(5k)[link] are given in Table 2[link]. The deformation of the phosphate group from the ideal tetra­hedral shape, which was observed previously in (5a)–(5h), is also observed in (5i)[link] and (5j)[link]. The deformation of the ionized cyclic phosphate is seen particularly in the endocyclic O1—P1—O3 and exocyclic O4—P1—O5 bond angles, which are, respectively, the smallest [101.73 (11)° on average for (5a)–(5j)] and the largest [119.24 (12)° on average]. The values of the endo- and exocyclic O—P—O angles correlate with the respective P—O bond lengths. In all the known (MeO)2cDHAP anions, the P—Oendo bonds are all approximately 1.60 Å and more than 0.1 Å longer than the P—Oexo bonds.

A completely different deformation is present in the protonated phosphate group of the (MeO)2cDHAP mol­ecule in (5k)[link]. The hydroxy group in (5k)[link] adopts an axial position similar to the previously reported structures ETPHOS, KADPUA and SEZRUL. As can be seen by the P—Oendo, P—O(H) and P=O distances (Table 2[link]), the protonation of the phosphate group affects to a larger extent the length of the P—Oendo bonds (becoming, on average, 0.03 Å shorter than in the anion) than that of the exocyclic equatorially oriented P1=O5 bond [becoming formally double, but only slightly shortened compared with the P—Oexo bonds in the (MeO)2cDHAP anions]. Within the O—P—O angles in (5k)[link], the exocyclic O4—P1—O5 angle is the largest [115.13 (6)°], although none of them is distinctly smaller than the others. Instead, in the protonated phosphate group, three lower values for the angles involving endocyclic O atoms and three higher values for the angles involving P=O bonds are observed. It may be noted that the geometry of the phosphate group in (5k)[link] is similar to that observed in the phenyl derivative, (4). These differences in the deformations observed in the ionized and protonated phosphate groups are accompanied by different distortions of the P/O/C/C/C/O rings. In contrast with the almost ideal chair conformation in the (MeO)2cDHAP anions of (5a)–(5j)[link], the ring in acidic (5k)[link] is significantly flattened at the P atom (see Table 1[link]), which is comparable with the conformations observed in phenyl derivative (4) and the acidic cyclic phosphates ETPHOS and SEZRUL.

[Scheme 2]

It has been shown that the acetal group in the analogous linear compounds, different salts of (MeO)2DHAP and (MeO)2DHAP(Ph) [(6a)–(6e); Ślepokura & Lis, 2006[Ślepokura, K. & Lis, T. (2006). Carbohydr. Res. 341, 507-524.]], and in the unphospho­rylated species (MeO)2DHA [(3); Ślepokura & Lis, 2004a[Ślepokura, K. & Lis, T. (2004a). Carbohydr. Res. 339, 1995-2007.]] seems to be very rigid, and its conformation is independent of phospho­rylation, the ionization state of the inserted phosphate group, or additional substitution. It is likely that such a conformation is determined and stabilized by the generalized anomeric effect. The acetal group in the cyclic compounds (5i)[link]–(5k)[link], as in (4) and (5a)–(5h), reveals some common features with linear (3) and (6a)–(6e) (see scheme above): the relevant C4—O21—C2—O22 and C5—O22—C2—O21 torsion angles show a synclinal orientation of the methyl groups (C4 and C5) in relation to the acetal atoms O22 and O21. Similarly, as was observed in the structures of (3), (4), (5a)–(5h) and (6a)–(6e), two of the angles with their vertex on acetal atom C2 are much smaller than the others (Table 2[link]).

The cations and anions in (5i)[link] and (5j)[link] are arranged in a way that leads to the aggregation of their hydro­philic and hydro­phobic groups into distinct regions in the crystals. The packing schemes of (5i)[link] and (5j)[link] are dominated by N+—H⋯O hydrogen bonds, but in the hydrated salt (5i)[link], as in (5a) and (5b) (Ślepokura, 2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]), an additional important role is played by contacts of the N+—H⋯OW and OW—H⋯O type (OW is the water O atom). Geometric parameters of hydrogen bonds and close contacts are given in Table 3[link].

The crystal structure of the monohydrated salt (5i)[link] has a layered architecture (Fig. 2[link]), similar to that observed in the other hydrated cha salts, (5a) and (5b). Each cha cation is directly linked by two charge–assisted N—H⋯O hydrogen bonds to two adjacent (MeO)2cDHAP anions, resulting in centrosymmetric R42(8) motifs (Fig. 3[link]) [see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) for graph-set notation]. The same cation is linked to two additional anions via water-mediated hydrogen bonds. Thus, another type of ring is formed, R66(16), this time also involving water mol­ecules in addition to cha cations and (MeO)2cDHAP anions. Another R42(8) ring results from the centrosymmetric OW—H⋯O bonds between two water mol­ecules and two anions. The sequence of these three rings generates double layers parallel to the (001) plane, as shown in Figs. 2[link] and 3[link]. The same types of inter­action, namely cation⋯anion, cation⋯H2O⋯anion and anion⋯H2O⋯anion, were also observed in the polymorphous salt (5b). However, as shown in Fig. 3[link], the construction of the layers observed in (5b) is different: three unique rings generate the layer, R44(12) involving two cations and two anions, R54(12) involving one cation, two anions and two water mol­ecules, and R64(12) involving two cations, two anions and two water mol­ecules.

The arrangement of organic ions in the crystal structure of the anhydrous salt (5j)[link] is different. Each cha cation is linked directly by three N+—H⋯O hydrogen bonds to three adjacent (MeO)2cDHAP anions. These inter­actions generate R43(10) rings forming ribbons with ladder-type hydrogen bonding along the a axis, as shown in Fig. 4[link].

The crystal packing of (5k)[link] is determined by the strong centrosymmetric almost linear O—H⋯O hydrogen bonds formed by the phosphate groups of two adjacent (MeO)2cDHAP mol­ecules. In this way, centrosymmetric mol­ecular dimers are formed (Fig. 5[link]), giving rise to R22(8) rings. Adjacent dimers inter­act with each other via weak C—H⋯O contacts, as shown in Fig. 5[link], resulting in ribbons along [10[\overline{1}]].

In conclusion, we have shown that protonation of the cyclic phosphate group influences the conformation of the 1,3,2-dioxaphospho­rinane ring, causing its flattening, i.e. deformation from the ideal chair towards an envelope. In other words, the ring is more evenly puckered in compounds with an ionized phosphate group than in the acid mol­ecule. We have also demonstrated that differences in the ring conformation correlate with different deformations observed in the ionized and protonated phosphate groups. Some common features for analogous protonated and esterified compounds have been revealed. In addition, we have shown that the arrangement of the ions in the crystal structures of four different (cha)[(MeO)2cDHAP] salts results in different crystal architectures, depending on water content, and gives rise to layers in hydrated (5a), (5b) and (5i)[link] and to ribbons in anhydrous (5j)[link].

[Figure 1]
Figure 1
Views of (5i)[link] (top), (5j)[link] (middle) and (5k)[link] (bottom), showing the atom-numbering schemes and the symmetry-independent N+—H⋯O and O—H⋯O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The double layer parallel to the (001) plane in (5i)[link], built up from (MeO)2cDHAP anions (solid lines), cha cations (thin lines) and water mol­ecules joined by N—H⋯O and O—H⋯O hydrogen bonds and C—H⋯O contacts (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) −x, −y, −z + 1; (iii) −x + 1, −y + 1, −z + 1.]
[Figure 3]
Figure 3
A comparison of the layer constructions observed in two polymorphous forms of (cha)[(MeO)2cDHAP]·H2O, viz. monoclinic (5b) (top; Ślepokura, 2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]) and triclinic (5i)[link] (bottom; this work). Phosphate and ammonium groups represent the anions and cations, respectively. N+—H⋯O/OW and OW—H⋯O hydrogen bonds are shown as dashed lines (blue and red, respectively, in the electronic version of the paper).
[Figure 4]
Figure 4
The polymeric ribbons with ladder-type hydrogen bonding formed in (5j)[link] by the (MeO)2cDHAP anions (solid lines) and cha cations (open lines) along the a axis. N+—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) x − 1, y, z; (v) x − [{1\over 2}], −y + [{1\over 2}], −z + 1.]
[Figure 5]
Figure 5
The ribbons in (5k)[link] resulting from centrosymmetric mol­ecular dimers [with R22(8) rings formed by the (MeO)2cDHAP mol­ecules joined via strong O—H⋯O hydrogen bonds; dashed lines (red in the electronic version of the paper)] linked through C—H⋯O contacts (black dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (x) −x + 2, −y + 1, −z.]

Experimental

The cyclo­hexyl­ammonium salt of (MeO)2cDHAP was obtained by isolation of an inter­mediate in the basic hydrolysis of the cyclic triester derivative, using a method described previously (Ślepokura, 2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]). Excess cyclo­hexyl­amine was removed by washing the crude product with diethyl ether. Concentration of the resulting mixture under vacuum and then under a nitro­gen stream at room temperature gave two kinds of crystals, viz. small plates of (5j)[link] and needles of the monohydrated monoclinic form described previously, (5b). Recrystallization of (5b) from water at room temperature resulted in large plates of its triclinic form, (5i)[link].

Crystals of (MeO)2cDHAP, (5k)[link], were grown from an acidic solution prepared as follows. The cyclo­hexyl­ammonium salt of (MeO)2cDHAP (250 mg dissolved in a minimum quantity of water) was passed through an ion-exchange column (Dowex 50-H+). The acidic solution was stirred at 313 K for 3.5 h. Subsequent evaporation of the solvent under a nitro­gen stream yielded large blocks of (5k)[link].

Compound (5i)[link]

Crystal data
  • C6H14N+·C5H10O6P·H2O

  • Mr = 315.30

  • Triclinic, [P \overline 1]

  • a = 7.064 (2) Å

  • b = 8.475 (4) Å

  • c = 13.966 (6) Å

  • α = 102.48 (3)°

  • β = 92.58 (3)°

  • γ = 99.96 (3)°

  • V = 801.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.37 × 0.23 × 0.04 mm

Data collection
  • Kuma KM-4 CCD κ-geometry diffractometer with a Sapphire CCD camera

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED, in Xcalibur PX and Kuma KM-4 CCD software. Versions 1.171.33.42. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.913, Tmax = 1.000

  • 13552 measured reflections

  • 4519 independent reflections

  • 3579 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.03

  • 4519 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.18 e Å−3

Compound (5j)[link]

Crystal data
  • C6H14N+·C5H10O6P

  • Mr = 297.28

  • Orthorhombic, P 21 21 21

  • a = 6.678 (2) Å

  • b = 8.877 (2) Å

  • c = 24.930 (6) Å

  • V = 1477.9 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.86 mm−1

  • T = 120 K

  • 0.13 × 0.08 × 0.01 mm

Data collection
  • Oxford Diffraction Xcalibur PX κ-geometry diffractometer with an Onyx CCD camera

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED, in Xcalibur PX and Kuma KM-4 CCD software. Versions 1.171.33.42. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.832, Tmax = 0.978

  • 11210 measured reflections

  • 2803 independent reflections

  • 1876 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.060

  • S = 1.02

  • 2803 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 988 Friedel pairs

  • Flack parameter: −0.03 (3)

Compound (5k)[link]

Crystal data
  • C5H11O6P

  • Mr = 198.11

  • Triclinic, [P \overline 1]

  • a = 6.859 (2) Å

  • b = 7.114 (3) Å

  • c = 8.939 (3) Å

  • α = 89.13 (3)°

  • β = 76.00 (3)°

  • γ = 81.18 (3)°

  • V = 418.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.41 × 0.22 × 0.06 mm

Data collection
  • Kuma KM-4 CCD κ-geometry diffractometer with a Sapphire CCD camera

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED, in Xcalibur PX and Kuma KM-4 CCD software. Versions 1.171.33.42. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.970, Tmax = 1.000

  • 5919 measured reflections

  • 2274 independent reflections

  • 1985 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.086

  • S = 1.08

  • 2274 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Values of φ1 and φ2, and the Cremer–Pople puckering parameters Q, θ and φ for the P/O1/C1/C2/C3/O3 rings in the (MeO)2cDHAP anions in (5i)[link] and (5j)[link] and in the mol­ecule of (5k)[link], along with the relevant values for the previously reported compounds (4), (5a) and (5b)

Compound φ1 (°) φ2 (°) |φ2φ1| (°) Q (Å) θ (°) φ (°)
(5i)[link] 46.9 (1) 52.4 (1) 5.5 0.580 (1) 176.4 (1) 280 (2)
(5j)[link] 47.4 (2) 48.0 (3) 0.6 0.558 (2) 176.0 (2) 189 (4)
(5k)[link] 40.4 (1) 53.0 (1) 12.6 0.541 (1) 171.1 (1) 342 (1)
(5a)a 47.3 (1) 50.8 (1) 3.6 0.573 (1) 178.4 (1) 234 (4)
(5b)a 48.2 (1) 50.3 (1) 2.1 0.577 (1) 177.5 (1) 199 (2)
(4)b 35.9 (1) 51.8 (2) 15.9 0.514 (2) 167.5 (2) 349 (1)
References: (a) Ślepokura (2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]) {(5a) is (cha)[(MeO)2cDHAP]·3H2O and (5b) is monoclinic (cha)[(MeO)2cDHAP]·H2O}; (b) Ślepokura & Lis (2004b[Ślepokura, K. & Lis, T. (2004b). Acta Cryst. C60, o315-o317.]) [(4) is (MeO)2cDHAP(Ph)].

Table 2
Selected geometric parameters (Å, °) for (5i)[link]–(5k)[link]

  (5i)[link] (5j)[link] (5k)[link]
P1—O1 1.6061 (10) 1.5929 (18) 1.5721 (10)
P1—O3 1.6004 (10) 1.6013 (18) 1.5614 (11)
P1—O4 1.4866 (10) 1.4846 (18) 1.5453 (11)
P1—O5 1.4784 (11) 1.4753 (18) 1.4727 (10)
O1—C1 1.4343 (14) 1.445 (3) 1.4488 (14)
O21—C2 1.4118 (13) 1.415 (3) 1.4071 (14)
O21—C4 1.4328 (15) 1.436 (4) 1.4304 (16)
O22—C2 1.4080 (13) 1.417 (3) 1.3999 (13)
O22—C5 1.4229 (15) 1.431 (3) 1.4319 (14)
O3—C3 1.4304 (14) 1.425 (3) 1.4543 (15)
C1—C2 1.5270 (15) 1.510 (4) 1.5253 (16)
C2—C3 1.5297 (16) 1.515 (4) 1.5267 (16)
       
O1—P1—O3 102.13 (5) 101.74 (10) 105.77 (5)
O1—P1—O4 109.24 (5) 109.49 (9) 107.67 (6)
O1—P1—O5 107.69 (5) 109.15 (10) 110.23 (6)
O3—P1—O4 109.74 (5) 109.33 (10) 105.76 (6)
O3—P1—O5 106.58 (6) 108.30 (11) 111.75 (6)
O4—P1—O5 119.97 (5) 117.64 (11) 115.13 (6)
P1—O1—C1 114.57 (7) 115.64 (17) 116.69 (7)
C2—O21—C4 114.41 (9) 114.8 (3) 116.04 (9)
C2—O22—C5 115.66 (9) 115.2 (2) 115.71 (9)
P1—O3—C3 116.69 (7) 115.64 (17) 118.21 (7)
O1—C1—C2 109.64 (9) 111.5 (2) 109.72 (9)
O21—C2—O22 111.81 (9) 111.8 (2) 113.39 (9)
O21—C2—C1 104.21 (9) 111.8 (2) 102.94 (9)
O22—C2—C1 113.65 (9) 105.7 (3) 113.94 (9)
O21—C2—C3 112.14 (9) 103.7 (2) 111.50 (9)
O22—C2—C3 105.01 (9) 112.7 (2) 104.92 (9)
C1—C2—C3 110.21 (9) 111.3 (2) 110.33 (10)
O3—C3—C2 110.72 (9) 112.2 (2) 110.28 (9)
       
O3—P1—O1—C1 55.31 (8) 54.88 (18) 47.93 (9)
O4—P1—O1—C1 −60.85 (8) −60.73 (19) −64.78 (9)
O5—P1—O1—C1 167.33 (7) 169.19 (17) 168.89 (7)
O1—P1—O3—C3 −52.80 (8) −54.61 (19) −45.92 (9)
O4—P1—O3—C3 63.00 (9) 61.1 (2) 68.13 (9)
O5—P1—O3—C3 −165.65 (7) −169.55 (18) −165.89 (7)
P1—O1—C1—C2 −62.20 (9) −58.2 (3) −57.28 (11)
P1—O3—C3—C2 56.68 (10) 57.6 (3) 53.06 (11)
C4—O21—C2—O22 60.27 (12) −63.4 (3) 50.07 (12)
C4—O21—C2—C1 −176.57 (8) 54.9 (4) 173.64 (9)
C4—O21—C2—C3 −57.38 (12) 174.9 (3) −68.09 (13)
C5—O22—C2—O21 67.92 (11) −60.9 (3) 65.74 (12)
C5—O22—C2—C1 −49.72 (12) 177.2 (2) −51.58 (13)
C5—O22—C2—C3 −170.24 (9) 55.4 (3) −172.36 (9)
O1—C1—C2—O21 179.58 (7) 168.6 (2) 178.45 (8)
O1—C1—C2—O22 −58.46 (11) −69.6 (3) −58.34 (12)
O1—C1—C2—C3 59.08 (11) 53.1 (3) 59.37 (11)
O21—C2—C3—O3 −171.66 (8) −173.6 (2) −170.68 (8)
O22—C2—C3—O3 66.71 (11) 65.3 (3) 66.19 (11)
C1—C2—C3—O3 −56.06 (11) −53.2 (3) −56.94 (12)

Table 3
Hydrogen-bond geometry (Å, °) for (5i)[link]–(5k)[link]

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(5i)[link] N1—H1N⋯O5 0.91 1.87 2.758 (2) 166
  N1—H2N⋯O5i 0.91 1.96 2.817 (2) 157
  N1—H3N⋯O1Wii 0.91 1.87 2.719 (2) 154
  O1W—H1W⋯O4 0.83 (2) 1.92 (2) 2.749 (2) 176 (2)
  O1W—H2W⋯O4iii 0.83 (2) 1.93 (2) 2.758 (2) 176 (2)
  C4—H4A⋯O1iv 0.98 2.60 3.534 (2) 159
  C11—H11⋯O1Wiii 1.00 2.52 3.416 (2) 149
(5j)[link] N1—H1N⋯O5 0.91 1.81 2.718 (3) 172
  N1—H2N⋯O4ii 0.91 1.90 2.809 (3) 174
  N1—H3N⋯O4v 0.91 1.90 2.799 (3) 169
  C3—H3B⋯O22vi 0.99 2.60 3.495 (3) 150
  C14—H14A⋯O5vii 0.99 2.50 3.396 (3) 150
(5k)[link] O4—H4⋯O5iii 0.84 1.70 2.533 (2) 175
  C1—H1A⋯O21viii 0.99 2.57 3.544 (2) 169
  C3—H3B⋯O22ix 0.99 2.61 3.560 (2) 161
  C5—H5B⋯O5x 0.98 2.49 3.423 (2) 159
Symmetry codes: (i) −x, −y, −z + 1; (ii) x − 1, y, z; (iii) −x + 1, −y + 1, −z + 1; (iv) x + 1, y, z; (v) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (vi) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (vii) x, y + 1, z. (viii) −x + 2, −y + 2, −z + 1; (ix) −x + 2, −y + 2, −z; (x) −x + 2, −y + 1, −z.

All H atoms were found in difference Fourier maps. In the final refinement cycles, water H atoms in (5i)[link] were refined with Uiso(H) = 1.5Ueq(O). All remaining H atoms were treated as riding atoms in geometrically optimized positions, with C—H = 0.98–1.00 Å, N—H = 0.91 Å and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C) for CH and CH2, or 1.5Ueq(C,N,O) for CH3, NH3 and OH.

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED, in Xcalibur PX and Kuma KM-4 CCD software. Versions 1.171.33.42. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED, in Xcalibur PX and Kuma KM-4 CCD software. Versions 1.171.33.42. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Six-membered cyclic phosphate esters are constituents of a number of biologically important molecules such as 3':5'-cyclic nucleotides, e.g. cAMP. Dihydroxyacetone phosphate (DHAP), the linear form of cDHAP, is one of the most important biochemical intermediates and of high importance for all living cells [for a review, see Ślepokura & Lis (2010)]. The cyclic form, cDHAP, became interesting recently as a new molecule of biological importance (Goswami & Adak, 2002). Occurring in living organisms, small cyclic phosphates of cDHAP-like structure began to attract attention when their biological activity as signalling molecules had been suggested (Shinitzky et al., 2000). Cyclic glycerophosphates can be formed by enzymatic degradation of phospholipids, e.g. 1,3-cyclic glycerophosphate is naturally formed by the action of phospholipase C on phosphatidyl glycerol.

Only five of over 160 hits for cyclic phosphates with six-membered rings deposited with the Cambridge Structural Database (CSD, Version 5.32; Allen, 2002) bear the H atom at the exocyclic O atom. We will discuss just three of the reported protonated cyclic phosphates [CSD refcodes ETPHOS (Gerlt et al., 1980), KADPUA (Johnson et al., 1989) and SEZRUL (Samas et al., 2007)], because the remaining two have high R factors and low bond precision, and the positions of the H atoms were not determined. The present paper concerns the synthesis and crystal structure of 5,5-dimethoxy-2-oxo-1,3,2-dioxaphosphorinane-2-ol, the dimethyl acetal of cyclic dihydroxyacetone phosphate, (MeO)2cDHAP, in the form of two crystalline cyclohexylammonium (cha) salts, (cha)[(MeO)2cDHAP].H2O, (5i) [polymorphous form of (5b)], and anhydrous (cha)[(MeO)2cDHAP], (5j), as well as in the form of the acid, (MeO)2cDHAP, (5k).

Previously, we have reported the synthesis and structural investigations of nine different salts of (MeO)2cDHAP with both organic and inorganic cations [(5a)–(5e) and (5e')–(5h); Ślepokura, 2008], along with its phenyl derivative, (MeO)2cDHAP(Ph) [(4); Ślepokura & Lis, 2004b]. Among these, the structures of two cha salts and the acid in the form of an oxonium salt were presented: (cha)[(MeO)2cDHAP].3H2O, (5a), (cha)[(MeO)2cDHAP].H2O, (5b), and (H5O2)[(MeO)2cDHAP], (5c). Here, the conformation of the P/O/C/C/C/O 1,3,2-dioxaphosphorinane ring in (5i)–(5k) will be compared with that in the previously reported (MeO)2cDHAP salts (5a)–(5h), as well as with that of the phenyl derivative, (4). In addition, the arrangements in the crystal structures will be presented, with an emphasis on the comparison of the crystal packing diagrams of two polymorphous forms of (cha)[(MeO)2cDHAP].H2O, monoclinic (5b) (Ślepokura, 2008) and triclinic (5i) (this work).

The overall structures of the (MeO)2cDHAP anions in compounds (5i) and (5j) bear great similarities with each other and with the previously reported anions in (5a)–(5h) (Ślepokura, 2008). The six-membered 1,3,2-dioxaphosphorinane ring adopts a chair (C) conformation only slightly distorted towards an envelope (E), which is reflected in the values of the dihedral angles between the least-squares plane through the four central atoms of the ring (O1/O3/C1/C3) and the O1/P/O3 and C1/C2/C3 planes (ϕ1 and ϕ2), as well as in the Cremer–Pople puckering parameters (Cremer & Pople, 1975; see Table 1). The values of |ϕ2 - ϕ1| for (5a)–(5j) clearly show that the flattening of the dioxaphosphorinane ring at the P atom is negligible in the (MeO)2cDHAP anions and that the conformation of the rings is close to an ideal chair.

Selected geometric parameters for (5i)–(5k) are given in Table 2. The deformation of the phosphate group from the ideal tetrahedral shape, which was been observed previously in (5a)–(5h), is also observed in (5i) and (5j). The deformation of the ionized cyclic phosphate is especially seen in the endocyclic O1—P1—O3 and exocyclic O4—P1—O5 bond angles, which are, respectively, the smallest (about 102° on average [Vague. Please give either arithmetic mean, with s.u., or actual smallest value]) and the largest [119.97 (5)°]. The values of the endo- and exocyclic O—P—O angles correlate with the respective P—O bond lengths. In all the known (MeO)2cDHAP anions, the P—Oendo bonds are about 1.6 Å, more than 0.1 Å longer than the P—Oexo bonds.

A completely different deformation reveals the protonated phosphate group of the (MeO)2cDHAP molecule in (5k). The hydroxyl group in (5k) adopts an axial position similar to the previously reported structures ETPHOS, KADPUA and SEZRUL. As can be seen by the P—Oendo, P—O(H) and PO distances, the protonation of the phosphate group affects to a larger extent the length of the P—Oendo bonds (becoming on average 0.03 Å shorter than in the anion) than that of the exocyclic equatorially oriented P1O5 bond [becoming formally double, but only slightly shortened compared with the P—Oexo bonds in the (MeO)2cDHAP anions]. Within the O—P—O angles in (5k), the exocyclic O4—P1—O5 angle is the largest [115.13 (6)°], although none of them is distinctly smaller than the others. Instead, in the protonated phosphate group, three lower values for the angles involving endocyclic O atoms and three higher values for the angles involving PO bonds are observed. It may be noted that the geometry of the phosphate group in (5k) is similar to that observed in the phenyl derivative, (4). These differences in the deformations observed in the ionized and protonated phosphate groups are accompanied by different distortions of the P/O/C/C/C/O rings. In contrast with the almost ideal chair conformation in the (MeO)2cDHAP anions of (5a)–(5j), the ring in acidic (5k) is significantly flattened at the P atom (see Table 1), which is comparable with the conformations observed in phenyl derivative (4) and the two acidic cyclic phosphates, ETPHOS and SEZRUL.

It has been shown that the acetal group in the analogous linear compounds, (MeO)2DHAP and (MeO)2DHAP(Ph) [(6a)–(6e) [Two structures given but five compounds implied - please clarify]; Ślepokura & Lis, 2006], and in the unphosphorylated species (MeO)2DHA [(3); Ślepokura & Lis, 2004a], seems to be very rigid, and its conformation is independent of phosphorylation, the ionization state of the inserted phosphate group, or additional substitution. It is likely that such a conformation is determined and stabilized by the generalized anomeric effect. The acetal group in the cyclic compounds (5i)–(5k), as in (4) and (5a)–(5h), reveals some common features with linear (3) and (6a)–(6e): the relevant C4—O21—C2—O22 and C5—O22—C2—O21 torsion angles show a synclinal orientation of the methyl groups (C4 and C5) in relation to the acetal atoms O22 and O21. Similarly, as was observed in the structures of (3), (4), (5a)–(5h) and (6a)–(6e), two of the angles with their vertex on acetal atom C2 are much smaller than the others (Table 2).

The cations and anions in (5i) and (5j) are arranged in a way that leads to the aggregation of their hydrophilic and hydrophobic groups into distinct regions in the crystals. The packing schemes of (5i) and (5j) are dominated by N+—H···O- hydrogen bonds, but in the hydrated salt (5i), as in (5a) and (5b) (Ślepokura, 2008), an additional important role is played by contacts of N+—H···Ow and Ow—H···O- type (Ow is the water O atom). Geometric parameters of hydrogen bonds and close contacts are given in Table 3.

The crystal structure of the monohydrated salt (5i) has a layered architecture (Fig. 2), similar to that observed in the other hydrated cha salts, (5a) and (5b). Each cha cation is directly linked by two charge–assisted N—H···O hydrogen bonds to two adjacent (MeO)2cDHAP anions, resulting in centrosymmetric R42(8) motifs (Fig. 3) [see Bernstein et al. (1995) for graph-set notation]. The same cation is linked to two additional anions via water-mediated hydrogen bonds. Thus, another type of ring is formed, R66(16), this time also involving water molecules in addition to cha cations and (MeO)2cDHAP anions. Another R42(8) ring results from the centrosymmetric Ow—H···O- bonds between two water molecules and two anions. The sequence of these three rings generates double layers parallel to the (001) plane, as shown in Figs. 2 and 3. The same types of interaction, namely cation···anion, cation···H2O···anion and anion···H2O···anion, were also observed in the polymorphous salt (5b). However, as shown in Fig. 3, the construction of the layers observed in (5b) is different: three unique rings generate the layer, R44(12) involving two cations and two anions, R54(12) involving one cation, two anions and two water molecules, and R64(12) involving two cations, two anions and two water molecules.

The arrangement of organic ions in the crystal structuree of the anhydrous salt (5j) is different. Each cha cation is linked directly by three N+—H···O- hydrogen bonds to three adjacent (MeO)2cDHAP anions. These interactions generate R43(10) rings forming ribbons with ladder-type hydrogen bonding along the a axis, as shown in Fig. 4.

The crystal packing of (5k) is determined by the strong centrosymmetric almost linear O—H···O hydrogen bonds formed by the phosphate groups of two adjacent (MeO)2cDHAP molecules. In this way, centrosymmetric molecular dimers are formed (Fig. 5), giving rise to R22(8) rings. Adjacent dimers interact with each other via weak C—H···O contacts, as shown in Fig. 5, resulting in ribbons along [101].

In conclusion, we have shown that protonation of the cyclic phosphate group influences the conformation of the 1,3,2-dioxaphosphorinane ring, causing its flattening, i.e. deformation from the ideal chair towards an envelope. In other words, the ring is more evenly puckered in compounds with an ionized phosphate group than in the acid molecule. We have also demonstrated that differences in the ring conformation correlate with different deformations observed in the ionized and protonated phosphate groups. Some common features for analogous protonated and esterified compounds have been revealed. In addition, we have shown that the arrangement of the ions in the crystal structures of four different (cha)[(MeO)2cDHAP] salts results in different crystal architectures, depending on water content, and gives rise to layers in hydrated (5a), (5b) and (5i) and to ribbons in anhydrous (5j). Furthermore, a comparison of the layer constructions observed in monoclinic and triclinic (cha)[(MeO)2cDHAP].H2O has been reported.

[As so many compounds are cited for comparison, it would be helpful for the reader if a second scheme were provided illustrating these. Please consider providing such an additional scheme]

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Cremer & Pople (1975); Gerlt et al. (1980); Goswami & Adak (2002); Johnson et al. (1989); Samas et al. (2007); Shinitzky et al. (2000); Ślepokura (2008); Ślepokura & Lis (2004a, 2004b, 2006, 2010).

Experimental top

The cyclohexylammonium salt of (MeO)2cDHAP was obtained by isolation of an intermediate in the basic hydrolysis of the cyclic triester derivative, using a method described previously (Ślepokura, 2008). Excess cyclohexylamine was removed by washing the crude product with diethyl ether. Concentration of the resulting mixture under vacuum and then under a nitrogen stream at room temperature gave two kinds of crystals: small plates of (5j) and needles of the monohydrated monoclinic form described previously, (5b). Recrystallization of (5b) from water at room temperature resulted in large plates of its triclinic form, (5i).

Crystals of (MeO)2cDHAP, (5k), were grown from an acidic solution prepared as follows. The cyclohexylammonium salt of (MeO)2cDHAP (250 mg dissolved in a minimal quantity of water) was passed through an ion-exchange column (Dowex 50-H+). The acidic solution was stirred at 313 K for 3.5 h. Subsequent evaporation of the solvent under a nitrogen stream yielded large blocks of (5k).

Refinement top

All H atoms were found in difference Fourier maps. In the final refinement cycles, water H atoms in (5i) were refined with Uiso(H) = 1.5Ueq(O). All remaining H atoms were treated as riding atoms, with C—H = 0.98–1.00 Å, N—H = 0.91 Å and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C) for CH or CH2, or 1.5Ueq(C,N,O) for CH3, NH3 or OH.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Views of (5i) (top), (5j) (middle) and (5k) (bottom), showing the atom numbering schemes and the symmetry–independent N+—H···O- and O—H···O- hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A double layer parallel to the (001) plane in (5i), built up from (MeO)2cDHAP anions (solid lines), cha cations (thin lines) and water molecules joined by N—H···O and O—H···O hydrogen bonds and C—H···O contacts (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1.]
[Figure 3] Fig. 3. A comparison of the layer constructions observed in two polymorphous forms of (cha)[(MeO)2cDHAP].H2O, monoclinic (5b) (top; Ślepokura, 2008) and triclinic (5i) (bottom; this work). Phosphate and ammonium groups represent the anions and cations, respectively. N+—H···O-/Ow and Ow—H···O- hydrogen bonds are shown as dashed lines (blue and red, respectively, in the electronic version of the journal).
[Figure 4] Fig. 4. The polymeric ribbons with ladder-type hydrogen bonding formed in (5j) by the (MeO)2cDHAP anions (solid lines) and cha cations (open lines) along the a axis. N+—H···O- hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) x - 1, y, z; (v) x - 1/2, -y + 1/2, -z + 1.]
[Figure 5] Fig. 5. The ribbons in (5k) resulting from centrosymmetric molecular dimers [with R22(8) rings formed by the (MeO)2cDHAP molecules joined via strong O—H···O bonds; dashed lines (red in the electronic version of the journal)] linked through C—H···O contacts; black dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (x) -x + 2, -y + 1, -z.]
(5i) cyclohexylammonium 5,5-dimethoxy-2-oxo-1,3,2-dioxaphosphinane-2-olate monohydrate top
Crystal data top
C6H14N+·C5H10O6P·H2OZ = 2
Mr = 315.30F(000) = 340
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.064 (2) ÅCell parameters from 8262 reflections
b = 8.475 (4) Åθ = 2.9–36.9°
c = 13.966 (6) ŵ = 0.20 mm1
α = 102.48 (3)°T = 100 K
β = 92.58 (3)°Plate, colourless
γ = 99.96 (3)°0.37 × 0.23 × 0.04 mm
V = 801.1 (6) Å3
Data collection top
Kuma KM4CCD κ-geometry
diffractometer with a Sapphire CCD camera
4519 independent reflections
Radiation source: Enhance (Mo) X-ray Source3579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.913, Tmax = 1.000k = 1111
13552 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0606P)2]
where P = (Fo2 + 2Fc2)/3
4519 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H14N+·C5H10O6P·H2Oγ = 99.96 (3)°
Mr = 315.30V = 801.1 (6) Å3
Triclinic, P1Z = 2
a = 7.064 (2) ÅMo Kα radiation
b = 8.475 (4) ŵ = 0.20 mm1
c = 13.966 (6) ÅT = 100 K
α = 102.48 (3)°0.37 × 0.23 × 0.04 mm
β = 92.58 (3)°
Data collection top
Kuma KM4CCD κ-geometry
diffractometer with a Sapphire CCD camera
4519 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3579 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 1.000Rint = 0.025
13552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.49 e Å3
4519 reflectionsΔρmin = 0.18 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31711 (4)0.28342 (3)0.66395 (2)0.01842 (8)
O10.26362 (10)0.33074 (9)0.77583 (5)0.01893 (16)
O210.71792 (11)0.38258 (10)0.91694 (6)0.02296 (17)
O220.48544 (11)0.14207 (9)0.86906 (6)0.02146 (17)
O30.47730 (11)0.17337 (9)0.67189 (6)0.02163 (17)
O40.40440 (11)0.43564 (9)0.63354 (6)0.02284 (17)
O50.14713 (12)0.17229 (10)0.60536 (6)0.02596 (18)
C10.42506 (14)0.40898 (13)0.84599 (8)0.0189 (2)
H1A0.37980.43920.91240.023*
H1B0.49010.51090.82860.023*
C20.56685 (14)0.29200 (12)0.84642 (8)0.0178 (2)
C30.63690 (15)0.24372 (14)0.74398 (8)0.0217 (2)
H3A0.71180.34230.72680.026*
H3B0.72300.16320.74420.026*
C40.87607 (16)0.29994 (16)0.92631 (9)0.0291 (3)
H4A0.82630.18470.92660.044*
H4B0.95500.35360.98800.044*
H4C0.95510.30500.87080.044*
C50.38159 (17)0.15534 (15)0.95452 (9)0.0275 (2)
H5A0.46070.23371.00980.041*
H5B0.35050.04740.97070.041*
H5C0.26200.19410.94200.041*
N10.10007 (13)0.17323 (11)0.44695 (7)0.02130 (19)
H1N0.00660.18840.49680.032*
H2N0.14970.06400.42570.032*
H3N0.19560.22780.46890.032*
C110.01544 (15)0.23810 (13)0.36398 (8)0.0201 (2)
H110.03840.35810.38830.024*
C120.14708 (16)0.15079 (15)0.32848 (9)0.0254 (2)
H12A0.09730.03100.30710.030*
H12B0.24840.16930.38310.030*
C130.23337 (17)0.21488 (16)0.24288 (10)0.0299 (3)
H13A0.29680.33160.26660.036*
H13B0.33300.15140.21760.036*
C140.08025 (18)0.20070 (17)0.15982 (9)0.0311 (3)
H14A0.03020.08300.12960.037*
H14B0.13910.25260.10850.037*
C150.08662 (18)0.28347 (16)0.19673 (9)0.0294 (3)
H15A0.03990.40360.21890.035*
H15B0.18810.26420.14210.035*
C160.17213 (16)0.21707 (14)0.28154 (8)0.0224 (2)
H16A0.27490.27700.30650.027*
H16B0.23030.09910.25810.027*
O1W0.70098 (13)0.41696 (11)0.51321 (7)0.02652 (19)
H1W0.608 (2)0.419 (2)0.5482 (13)0.040*
H2W0.674 (2)0.460 (2)0.4674 (13)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02331 (14)0.01617 (14)0.01635 (14)0.00346 (10)0.00116 (10)0.00522 (9)
O10.0186 (3)0.0210 (4)0.0179 (4)0.0041 (3)0.0022 (3)0.0057 (3)
O210.0208 (4)0.0236 (4)0.0225 (4)0.0017 (3)0.0031 (3)0.0039 (3)
O220.0250 (4)0.0182 (4)0.0220 (4)0.0031 (3)0.0028 (3)0.0070 (3)
O30.0283 (4)0.0197 (4)0.0170 (4)0.0085 (3)0.0001 (3)0.0018 (3)
O40.0294 (4)0.0194 (4)0.0220 (4)0.0046 (3)0.0058 (3)0.0089 (3)
O50.0304 (4)0.0223 (4)0.0234 (4)0.0005 (3)0.0064 (3)0.0066 (3)
C10.0215 (5)0.0184 (5)0.0166 (5)0.0043 (4)0.0020 (4)0.0027 (4)
C20.0187 (4)0.0174 (5)0.0171 (5)0.0027 (4)0.0007 (4)0.0041 (4)
C30.0223 (5)0.0246 (5)0.0200 (5)0.0089 (4)0.0036 (4)0.0053 (4)
C40.0215 (5)0.0382 (7)0.0294 (6)0.0063 (5)0.0018 (5)0.0117 (5)
C50.0295 (6)0.0298 (6)0.0259 (6)0.0036 (5)0.0060 (5)0.0132 (5)
N10.0241 (4)0.0205 (4)0.0200 (4)0.0058 (3)0.0006 (4)0.0053 (3)
C110.0221 (5)0.0174 (5)0.0205 (5)0.0030 (4)0.0000 (4)0.0048 (4)
C120.0230 (5)0.0268 (6)0.0289 (6)0.0081 (4)0.0020 (4)0.0090 (5)
C130.0254 (6)0.0312 (6)0.0346 (7)0.0049 (5)0.0076 (5)0.0102 (5)
C140.0334 (6)0.0374 (7)0.0255 (6)0.0104 (5)0.0080 (5)0.0095 (5)
C150.0352 (6)0.0343 (6)0.0236 (6)0.0131 (5)0.0041 (5)0.0114 (5)
C160.0235 (5)0.0238 (5)0.0205 (5)0.0069 (4)0.0005 (4)0.0048 (4)
O1W0.0280 (4)0.0311 (5)0.0267 (4)0.0128 (3)0.0079 (4)0.0134 (4)
Geometric parameters (Å, º) top
P1—O51.4784 (11)N1—H1N0.91
P1—O41.4866 (10)N1—H2N0.91
P1—O31.6004 (10)N1—H3N0.91
P1—O11.6061 (10)C11—C121.5158 (16)
O1—C11.4343 (14)C11—C161.5201 (16)
O21—C21.4118 (13)C11—H111.00
O21—C41.4328 (15)C12—C131.5255 (18)
O22—C21.4080 (13)C12—H12A0.99
O22—C51.4229 (15)C12—H12B0.99
O3—C31.4304 (14)C13—C141.5205 (18)
C1—C21.5270 (15)C13—H13A0.99
C1—H1A0.99C13—H13B0.99
C1—H1B0.99C14—C151.5270 (18)
C2—C31.5297 (16)C14—H14A0.99
C3—H3A0.99C14—H14B0.99
C3—H3B0.99C15—C161.5230 (17)
C4—H4A0.98C15—H15A0.99
C4—H4B0.98C15—H15B0.99
C4—H4C0.98C16—H16A0.99
C5—H5A0.98C16—H16B0.99
C5—H5B0.98O1W—H1W0.83 (2)
C5—H5C0.98O1W—H2W0.83 (2)
N1—C111.4921 (15)
O5—P1—O4119.97 (5)H1N—N1—H2N109.5
O5—P1—O3106.58 (6)C11—N1—H3N109.5
O4—P1—O3109.74 (5)H1N—N1—H3N109.5
O5—P1—O1107.69 (5)H2N—N1—H3N109.5
O4—P1—O1109.24 (5)N1—C11—C12109.86 (9)
O3—P1—O1102.13 (5)N1—C11—C16109.67 (9)
C1—O1—P1114.57 (7)C12—C11—C16111.46 (10)
C2—O21—C4114.41 (9)N1—C11—H11108.6
C2—O22—C5115.66 (9)C12—C11—H11108.6
C3—O3—P1116.69 (7)C16—C11—H11108.6
O1—C1—C2109.64 (9)C11—C12—C13110.32 (10)
O1—C1—H1A109.7C11—C12—H12A109.6
C2—C1—H1A109.7C13—C12—H12A109.6
O1—C1—H1B109.7C11—C12—H12B109.6
C2—C1—H1B109.7C13—C12—H12B109.6
H1A—C1—H1B108.2H12A—C12—H12B108.1
O22—C2—O21111.81 (9)C14—C13—C12111.64 (10)
O22—C2—C1113.65 (9)C14—C13—H13A109.3
O21—C2—C1104.21 (9)C12—C13—H13A109.3
O22—C2—C3105.01 (9)C14—C13—H13B109.3
O21—C2—C3112.14 (9)C12—C13—H13B109.3
C1—C2—C3110.21 (9)H13A—C13—H13B108.0
O3—C3—C2110.72 (9)C13—C14—C15111.53 (11)
O3—C3—H3A109.5C13—C14—H14A109.3
C2—C3—H3A109.5C15—C14—H14A109.3
O3—C3—H3B109.5C13—C14—H14B109.3
C2—C3—H3B109.5C15—C14—H14B109.3
H3A—C3—H3B108.1H14A—C14—H14B108.0
O21—C4—H4A109.5C16—C15—C14111.35 (10)
O21—C4—H4B109.5C16—C15—H15A109.4
H4A—C4—H4B109.5C14—C15—H15A109.4
O21—C4—H4C109.5C16—C15—H15B109.4
H4A—C4—H4C109.5C14—C15—H15B109.4
H4B—C4—H4C109.5H15A—C15—H15B108.0
O22—C5—H5A109.5C11—C16—C15109.89 (10)
O22—C5—H5B109.5C11—C16—H16A109.7
H5A—C5—H5B109.5C15—C16—H16A109.7
O22—C5—H5C109.5C11—C16—H16B109.7
H5A—C5—H5C109.5C15—C16—H16B109.7
H5B—C5—H5C109.5H16A—C16—H16B108.2
C11—N1—H1N109.5H1W—O1W—H2W106.0 (15)
C11—N1—H2N109.5
O5—P1—O1—C1167.33 (7)O1—C1—C2—O21179.58 (7)
O4—P1—O1—C160.85 (8)O1—C1—C2—C359.08 (11)
O3—P1—O1—C155.31 (8)P1—O3—C3—C256.68 (10)
O5—P1—O3—C3165.65 (7)O22—C2—C3—O366.71 (11)
O4—P1—O3—C363.00 (9)O21—C2—C3—O3171.66 (8)
O1—P1—O3—C352.80 (8)C1—C2—C3—O356.06 (11)
P1—O1—C1—C262.20 (9)N1—C11—C12—C13179.41 (9)
C5—O22—C2—O2167.92 (11)C16—C11—C12—C1357.64 (13)
C5—O22—C2—C149.72 (12)C11—C12—C13—C1455.09 (14)
C5—O22—C2—C3170.24 (9)C12—C13—C14—C1553.82 (15)
C4—O21—C2—O2260.27 (12)C13—C14—C15—C1654.52 (14)
C4—O21—C2—C1176.57 (8)N1—C11—C16—C15179.87 (9)
C4—O21—C2—C357.38 (12)C12—C11—C16—C1558.26 (13)
O1—C1—C2—O2258.46 (11)C14—C15—C16—C1156.21 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O50.911.872.758 (2)166
N1—H2N···O5i0.911.962.817 (2)157
N1—H3N···O1Wii0.911.872.719 (2)154
O1W—H1W···O40.83 (2)1.92 (2)2.749 (2)176 (2)
O1W—H2W···O4iii0.83 (2)1.93 (2)2.758 (2)176 (2)
C4—H4C···O1iv0.982.603.534 (2)159
C11—H11···O1Wiii1.002.523.416 (2)149
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
(5j) cyclohexylammonium 5,5-dimethoxy-2-oxo-1,3,2-dioxaphosphinane-2-olate top
Crystal data top
C6H14N+·C5H10O6PF(000) = 640
Mr = 297.28Dx = 1.336 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 5357 reflections
a = 6.678 (2) Åθ = 3.5–76.4°
b = 8.877 (2) ŵ = 1.86 mm1
c = 24.930 (6) ÅT = 120 K
V = 1477.9 (7) Å3Plate, colourless
Z = 40.13 × 0.08 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur PX κ-geometry
diffractometer with an Onyx CCD camera
2803 independent reflections
Radiation source: Enhance (Cu) X-ray Source1876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω and ϕ scansθmax = 76.2°, θmin = 3.6°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
h = 74
Tmin = 0.832, Tmax = 0.978k = 109
11210 measured reflectionsl = 2730
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.012P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2803 reflectionsΔρmax = 0.21 e Å3
175 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
C6H14N+·C5H10O6PV = 1477.9 (7) Å3
Mr = 297.28Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.678 (2) ŵ = 1.86 mm1
b = 8.877 (2) ÅT = 120 K
c = 24.930 (6) Å0.13 × 0.08 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur PX κ-geometry
diffractometer with an Onyx CCD camera
2803 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
1876 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.978Rint = 0.062
11210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.21 e Å3
2803 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
175 parametersAbsolute structure parameter: 0.03 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.42727 (10)0.14314 (8)0.39119 (3)0.03661 (17)
O10.5282 (2)0.00090 (19)0.36315 (7)0.0389 (5)
O210.9026 (3)0.1971 (2)0.28006 (8)0.0582 (6)
O220.5991 (3)0.0871 (2)0.25368 (8)0.0491 (5)
O30.4266 (3)0.26355 (19)0.34337 (7)0.0423 (5)
O40.5587 (2)0.19807 (18)0.43506 (7)0.0395 (5)
O50.2177 (2)0.1067 (2)0.40475 (8)0.0434 (5)
C10.7213 (4)0.0277 (4)0.33878 (12)0.0443 (8)
H1A0.77010.06660.32210.053*
H1B0.81830.05770.36690.053*
C20.7101 (4)0.1497 (4)0.29668 (12)0.0436 (7)
C30.6159 (4)0.2918 (3)0.31896 (12)0.0453 (8)
H3A0.70720.33680.34580.054*
H3B0.59840.36560.28950.054*
C41.0310 (5)0.0786 (4)0.26128 (16)0.0854 (13)
H4A1.08230.02150.29200.128*
H4B1.14330.12220.24130.128*
H4C0.95490.01120.23770.128*
C50.5618 (5)0.1872 (4)0.20980 (12)0.0677 (10)
H5A0.44830.25280.21850.102*
H5B0.53050.12840.17760.102*
H5C0.68100.24890.20320.102*
N10.0464 (3)0.2891 (2)0.45634 (8)0.0373 (6)
H1N0.04760.22650.44210.056*
H2N0.17070.25230.44910.056*
H3N0.02900.29520.49250.056*
C110.0251 (3)0.4432 (3)0.43204 (11)0.0375 (7)
H110.01910.43190.39220.045*
C120.1692 (4)0.5161 (3)0.45073 (12)0.0446 (8)
H12A0.16890.52520.49030.054*
H12B0.28440.45250.44020.054*
C130.1893 (4)0.6714 (3)0.42545 (13)0.0556 (9)
H13A0.31340.72000.43860.067*
H13B0.20020.66080.38600.067*
C140.0112 (4)0.7704 (3)0.43882 (14)0.0564 (9)
H14A0.02530.86880.42050.068*
H14B0.00700.78900.47800.068*
C150.1834 (4)0.6941 (3)0.42093 (12)0.0520 (9)
H15A0.29890.75730.43160.062*
H15B0.18440.68500.38140.062*
C160.2043 (4)0.5397 (3)0.44568 (12)0.0415 (8)
H16A0.32770.49090.43210.050*
H16B0.21600.54930.48510.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0279 (4)0.0353 (4)0.0466 (4)0.0009 (3)0.0027 (4)0.0012 (4)
O10.0306 (10)0.0353 (10)0.0510 (12)0.0012 (9)0.0049 (9)0.0003 (9)
O210.0333 (11)0.0741 (16)0.0670 (15)0.0049 (11)0.0104 (11)0.0037 (12)
O220.0445 (11)0.0573 (14)0.0455 (13)0.0017 (11)0.0038 (10)0.0023 (10)
O30.0337 (11)0.0397 (12)0.0536 (13)0.0036 (10)0.0055 (10)0.0057 (9)
O40.0282 (10)0.0442 (11)0.0461 (11)0.0005 (10)0.0043 (10)0.0025 (9)
O50.0232 (11)0.0499 (13)0.0571 (14)0.0063 (8)0.0060 (9)0.0037 (10)
C10.0330 (18)0.051 (2)0.049 (2)0.0075 (14)0.0047 (14)0.0031 (15)
C20.0328 (17)0.053 (2)0.0445 (19)0.0048 (16)0.0050 (14)0.0006 (17)
C30.047 (2)0.0434 (18)0.0458 (18)0.0053 (15)0.0004 (15)0.0054 (15)
C40.047 (2)0.110 (3)0.100 (3)0.014 (2)0.033 (2)0.002 (2)
C50.068 (2)0.088 (3)0.0474 (19)0.008 (2)0.010 (2)0.0130 (18)
N10.0227 (12)0.0419 (13)0.0474 (14)0.0011 (11)0.0004 (11)0.0027 (11)
C110.0236 (16)0.0429 (18)0.0459 (18)0.0046 (13)0.0014 (13)0.0022 (14)
C120.0269 (15)0.048 (2)0.059 (2)0.0053 (15)0.0025 (15)0.0003 (16)
C130.0323 (18)0.064 (2)0.070 (2)0.0168 (17)0.0000 (16)0.0104 (19)
C140.0440 (19)0.0425 (19)0.083 (2)0.0116 (15)0.0130 (17)0.0146 (17)
C150.0382 (18)0.0432 (19)0.074 (3)0.0035 (16)0.0101 (17)0.0094 (17)
C160.0259 (16)0.0391 (18)0.060 (2)0.0027 (14)0.0004 (15)0.0011 (16)
Geometric parameters (Å, º) top
P1—O51.4753 (18)N1—C111.503 (3)
P1—O41.4846 (18)N1—H1N0.9100
P1—O11.5929 (18)N1—H2N0.9100
P1—O31.6013 (18)N1—H3N0.9100
O1—C11.445 (3)C11—C161.510 (3)
O21—C21.415 (3)C11—C121.523 (3)
O21—C41.436 (4)C11—H111.0000
O22—C21.417 (3)C12—C131.522 (4)
O22—C51.431 (3)C12—H12A0.9900
O3—C31.425 (3)C12—H12B0.9900
C1—C21.510 (4)C13—C141.516 (4)
C1—H1A0.9900C13—H13A0.9900
C1—H1B0.9900C13—H13B0.9900
C2—C31.515 (4)C14—C151.532 (4)
C3—H3A0.9900C14—H14A0.9900
C3—H3B0.9900C14—H14B0.9900
C4—H4A0.9800C15—C161.510 (3)
C4—H4B0.9800C15—H15A0.9900
C4—H4C0.9800C15—H15B0.9900
C5—H5A0.9800C16—H16A0.9900
C5—H5B0.9800C16—H16B0.9900
C5—H5C0.9800
O5—P1—O4117.64 (11)C11—N1—H2N109.5
O5—P1—O1109.15 (10)H1N—N1—H2N109.5
O4—P1—O1109.49 (9)C11—N1—H3N109.5
O5—P1—O3108.30 (11)H1N—N1—H3N109.5
O4—P1—O3109.33 (10)H2N—N1—H3N109.5
O1—P1—O3101.74 (10)N1—C11—C16110.5 (2)
C1—O1—P1115.56 (17)N1—C11—C12110.1 (2)
C2—O21—C4114.8 (3)C16—C11—C12111.4 (2)
C2—O22—C5115.2 (2)N1—C11—H11108.2
C3—O3—P1115.64 (17)C16—C11—H11108.2
O1—C1—C2111.5 (2)C12—C11—H11108.2
O1—C1—H1A109.3C13—C12—C11109.5 (2)
C2—C1—H1A109.3C13—C12—H12A109.8
O1—C1—H1B109.3C11—C12—H12A109.8
C2—C1—H1B109.3C13—C12—H12B109.8
H1A—C1—H1B108.0C11—C12—H12B109.8
O21—C2—O22111.8 (2)H12A—C12—H12B108.2
O21—C2—C1111.8 (2)C14—C13—C12111.4 (2)
O22—C2—C1105.7 (3)C14—C13—H13A109.3
O21—C2—C3103.7 (2)C12—C13—H13A109.3
O22—C2—C3112.7 (2)C14—C13—H13B109.3
C1—C2—C3111.3 (2)C12—C13—H13B109.3
O3—C3—C2112.2 (2)H13A—C13—H13B108.0
O3—C3—H3A109.2C13—C14—C15110.2 (2)
C2—C3—H3A109.2C13—C14—H14A109.6
O3—C3—H3B109.2C15—C14—H14A109.6
C2—C3—H3B109.2C13—C14—H14B109.6
H3A—C3—H3B107.9C15—C14—H14B109.6
O21—C4—H4A109.5H14A—C14—H14B108.1
O21—C4—H4B109.5C16—C15—C14111.2 (2)
H4A—C4—H4B109.5C16—C15—H15A109.4
O21—C4—H4C109.5C14—C15—H15A109.4
H4A—C4—H4C109.5C16—C15—H15B109.4
H4B—C4—H4C109.5C14—C15—H15B109.4
O22—C5—H5A109.5H15A—C15—H15B108.0
O22—C5—H5B109.5C15—C16—C11110.5 (2)
H5A—C5—H5B109.5C15—C16—H16A109.6
O22—C5—H5C109.5C11—C16—H16A109.6
H5A—C5—H5C109.5C15—C16—H16B109.6
H5B—C5—H5C109.5C11—C16—H16B109.6
C11—N1—H1N109.5H16A—C16—H16B108.1
O5—P1—O1—C1169.19 (17)O1—C1—C2—O2269.6 (3)
O4—P1—O1—C160.73 (19)O1—C1—C2—C353.1 (3)
O3—P1—O1—C154.88 (18)P1—O3—C3—C257.6 (3)
O5—P1—O3—C3169.55 (18)O21—C2—C3—O3173.6 (2)
O4—P1—O3—C361.1 (2)O22—C2—C3—O365.3 (3)
O1—P1—O3—C354.61 (19)C1—C2—C3—O353.2 (3)
P1—O1—C1—C258.2 (3)N1—C11—C12—C13179.6 (2)
C4—O21—C2—O2263.4 (3)C16—C11—C12—C1357.4 (3)
C4—O21—C2—C154.9 (4)C11—C12—C13—C1457.1 (3)
C4—O21—C2—C3174.9 (3)C12—C13—C14—C1556.6 (3)
C5—O22—C2—O2160.9 (3)C13—C14—C15—C1656.1 (3)
C5—O22—C2—C1177.2 (2)C14—C15—C16—C1156.5 (3)
C5—O22—C2—C355.4 (3)N1—C11—C16—C15179.6 (2)
O1—C1—C2—O21168.6 (2)C12—C11—C16—C1557.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O50.911.812.718 (3)172
N1—H3N···O4i0.911.902.799 (3)169
N1—H2N···O4ii0.911.902.809 (3)174
C3—H3B···O22iii0.992.603.495 (3)150
C14—H14A···O5iv0.992.503.396 (3)150
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.
(5k) 5,5-dimethoxy-2-oxo-1,3,2-dioxaphosphorinane-2-ol top
Crystal data top
C5H11O6PZ = 2
Mr = 198.11F(000) = 208
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.859 (2) ÅCell parameters from 4920 reflections
b = 7.114 (3) Åθ = 2.9–36.8°
c = 8.939 (3) ŵ = 0.32 mm1
α = 89.13 (3)°T = 100 K
β = 76.00 (3)°Block, colourless
γ = 81.18 (3)°0.41 × 0.22 × 0.06 mm
V = 418.1 (3) Å3
Data collection top
Kuma MK4CCD κ-geometry
diffractometer with a Sapphire CCD camera
2274 independent reflections
Radiation source: Enhance (Mo) X-ray Source1985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 79
Tmin = 0.970, Tmax = 1.000k = 99
5919 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.086H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.0903P]
where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C5H11O6Pγ = 81.18 (3)°
Mr = 198.11V = 418.1 (3) Å3
Triclinic, P1Z = 2
a = 6.859 (2) ÅMo Kα radiation
b = 7.114 (3) ŵ = 0.32 mm1
c = 8.939 (3) ÅT = 100 K
α = 89.13 (3)°0.41 × 0.22 × 0.06 mm
β = 76.00 (3)°
Data collection top
Kuma MK4CCD κ-geometry
diffractometer with a Sapphire CCD camera
2274 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1985 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.016
5919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.08Δρmax = 0.55 e Å3
2274 reflectionsΔρmin = 0.25 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.68955 (4)0.65217 (4)0.35648 (3)0.01657 (10)
O10.91860 (12)0.57824 (11)0.35335 (9)0.01739 (17)
O211.15704 (13)0.99762 (12)0.28521 (9)0.01941 (18)
O221.10726 (12)0.79471 (11)0.09794 (9)0.01591 (17)
O30.69174 (13)0.82447 (12)0.24609 (10)0.01971 (18)
O40.58453 (14)0.73620 (12)0.51957 (10)0.02240 (19)
H40.52620.65370.57330.034*
O50.59591 (14)0.49970 (13)0.30533 (10)0.02284 (19)
C11.04158 (17)0.72019 (16)0.37282 (13)0.0166 (2)
H1A1.18340.65860.36510.020*
H1B0.98810.78200.47620.020*
C21.03745 (16)0.86932 (15)0.24875 (12)0.0144 (2)
C30.81960 (17)0.96562 (15)0.25925 (14)0.0185 (2)
H3A0.76541.03580.35910.022*
H3B0.81821.05820.17560.022*
C41.1996 (2)1.14556 (19)0.17759 (15)0.0277 (3)
H4A1.26761.08910.07540.042*
H4B1.28831.22300.21120.042*
H4C1.07201.22600.17240.042*
C51.30135 (18)0.67544 (17)0.06463 (14)0.0221 (2)
H5A1.39850.73790.10240.033*
H5B1.35000.65320.04700.033*
H5C1.28840.55350.11570.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01801 (16)0.01863 (16)0.01301 (15)0.00527 (11)0.00219 (10)0.00104 (10)
O10.0194 (4)0.0150 (4)0.0177 (4)0.0031 (3)0.0040 (3)0.0027 (3)
O210.0243 (4)0.0206 (4)0.0151 (4)0.0103 (3)0.0040 (3)0.0009 (3)
O220.0170 (4)0.0180 (4)0.0112 (3)0.0001 (3)0.0023 (3)0.0008 (3)
O30.0170 (4)0.0218 (4)0.0212 (4)0.0046 (3)0.0055 (3)0.0064 (3)
O40.0255 (4)0.0221 (4)0.0176 (4)0.0091 (3)0.0021 (3)0.0025 (3)
O50.0284 (5)0.0280 (4)0.0143 (4)0.0135 (4)0.0036 (3)0.0001 (3)
C10.0174 (5)0.0184 (5)0.0150 (5)0.0041 (4)0.0048 (4)0.0025 (4)
C20.0160 (5)0.0147 (5)0.0118 (4)0.0029 (4)0.0018 (4)0.0003 (4)
C30.0180 (5)0.0150 (5)0.0204 (5)0.0007 (4)0.0019 (4)0.0027 (4)
C40.0390 (7)0.0237 (6)0.0231 (6)0.0167 (5)0.0055 (5)0.0044 (5)
C50.0203 (5)0.0235 (5)0.0181 (5)0.0036 (4)0.0005 (4)0.0016 (4)
Geometric parameters (Å, º) top
P1—O51.4727 (10)C1—H1A0.99
P1—O41.5453 (11)C1—H1B0.99
P1—O31.5614 (11)C2—C31.5267 (16)
P1—O11.5721 (10)C3—H3A0.99
O1—C11.4488 (14)C3—H3B0.99
O21—C21.4071 (14)C4—H4A0.98
O21—C41.4304 (16)C4—H4B0.98
O22—C21.3999 (13)C4—H4C0.98
O22—C51.4319 (14)C5—H5A0.98
O3—C31.4543 (15)C5—H5B0.98
O4—H40.84C5—H5C0.98
C1—C21.5253 (16)
O5—P1—O4115.13 (6)O21—C2—C3111.50 (9)
O5—P1—O3111.75 (6)C1—C2—C3110.33 (10)
O4—P1—O3105.76 (6)O3—C3—C2110.28 (9)
O5—P1—O1110.23 (6)O3—C3—H3A109.6
O4—P1—O1107.67 (6)C2—C3—H3A109.6
O3—P1—O1105.77 (5)O3—C3—H3B109.6
C1—O1—P1116.69 (7)C2—C3—H3B109.6
C2—O21—C4116.04 (9)H3A—C3—H3B108.1
C2—O22—C5115.71 (9)O21—C4—H4A109.5
C3—O3—P1118.21 (7)O21—C4—H4B109.5
P1—O4—H4109.5H4A—C4—H4B109.5
O1—C1—C2109.72 (9)O21—C4—H4C109.5
O1—C1—H1A109.7H4A—C4—H4C109.5
C2—C1—H1A109.7H4B—C4—H4C109.5
O1—C1—H1B109.7O22—C5—H5A109.5
C2—C1—H1B109.7O22—C5—H5B109.5
H1A—C1—H1B108.2H5A—C5—H5B109.5
O22—C2—O21113.39 (9)O22—C5—H5C109.5
O22—C2—C1113.94 (9)H5A—C5—H5C109.5
O21—C2—C1102.94 (9)H5B—C5—H5C109.5
O22—C2—C3104.92 (9)
O5—P1—O1—C1168.89 (7)C4—O21—C2—O2250.07 (12)
O4—P1—O1—C164.78 (9)C4—O21—C2—C1173.64 (9)
O3—P1—O1—C147.93 (9)C4—O21—C2—C368.09 (13)
O5—P1—O3—C3165.89 (7)O1—C1—C2—O2258.34 (12)
O4—P1—O3—C368.13 (9)O1—C1—C2—O21178.45 (8)
O1—P1—O3—C345.92 (9)O1—C1—C2—C359.37 (11)
P1—O1—C1—C257.28 (11)P1—O3—C3—C253.06 (11)
C5—O22—C2—O2165.74 (12)O22—C2—C3—O366.19 (11)
C5—O22—C2—C151.58 (13)O21—C2—C3—O3170.68 (8)
C5—O22—C2—C3172.36 (9)C1—C2—C3—O356.94 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.841.702.533 (2)175
C1—H1B···O21ii0.992.573.544 (2)169
C3—H3B···O22iii0.992.613.560 (2)161
C5—H5B···O5iv0.982.493.423 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x+2, y+2, z; (iv) x+2, y+1, z.

Experimental details

(5i)(5j)(5k)
Crystal data
Chemical formulaC6H14N+·C5H10O6P·H2OC6H14N+·C5H10O6PC5H11O6P
Mr315.30297.28198.11
Crystal system, space groupTriclinic, P1Orthorhombic, P212121Triclinic, P1
Temperature (K)100120100
a, b, c (Å)7.064 (2), 8.475 (4), 13.966 (6)6.678 (2), 8.877 (2), 24.930 (6)6.859 (2), 7.114 (3), 8.939 (3)
α, β, γ (°)102.48 (3), 92.58 (3), 99.96 (3)90, 90, 9089.13 (3), 76.00 (3), 81.18 (3)
V3)801.1 (6)1477.9 (7)418.1 (3)
Z242
Radiation typeMo KαCu KαMo Kα
µ (mm1)0.201.860.32
Crystal size (mm)0.37 × 0.23 × 0.040.13 × 0.08 × 0.010.41 × 0.22 × 0.06
Data collection
DiffractometerKuma KM4CCD κ-geometry
diffractometer with a Sapphire CCD camera
Oxford Diffraction Xcalibur PX κ-geometry
diffractometer with an Onyx CCD camera
Kuma MK4CCD κ-geometry
diffractometer with a Sapphire CCD camera
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Analytical
(CrysAlis RED; Oxford Diffraction, 2009)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.913, 1.0000.832, 0.9780.970, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13552, 4519, 3579 11210, 2803, 1876 5919, 2274, 1985
Rint0.0250.0620.016
(sin θ/λ)max1)0.7030.6300.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.03 0.037, 0.060, 1.02 0.030, 0.086, 1.08
No. of reflections451928032274
No. of parameters190175112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.180.21, 0.210.55, 0.25
Absolute structure?Flack (1983), with how many Friedel pairs??
Absolute structure parameter?0.03 (3)?

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), XP (Bruker, 1998), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Values of ϕ1, ϕ2 and the Cremer–Pople puckering parameters Q, θ and ϕ for the P/O1/C1/C2/C3/O3 rings in the (MeO)2cDHAP anions in (5i) and (5j) and in the molecule of (5k), along with the relevant values for the previously reported compounds (4), (5a) and (5b) top
Compoundϕ1 (°)ϕ2 (°)|ϕ2 - ϕ1| (°)Q (Å)θ (°)ϕ (°)
(5i)46.9 (1)52.4 (1)5.50.580 (1)176.4 (1)280 (2)
(5j)47.4 (2)48.0 (3)0.60.558 (2)176.0 (2)189 (4)
(5k)40.4 (1)53.0 (1)12.60.541 (1)171.1 (1)342 (1)
(5a)a47.3 (1)50.8 (1)3.60.573 (1)178.4 (1)234 (4)
(5b)a48.2 (1)50.3 (1)2.10.577 (1)177.5 (1)199 (2)
(4)b35.9 (1)51.8 (2)15.90.514 (2)167.5 (2)349 (1)
References: (a) Ślepokura (2008) {(5a) is (cha)[(MeO)2cDHAP].3H2O and (5b) is monoclinic (cha)[(MeO)2cDHAP].H2O}; (b) Ślepokura & Lis (2004b) [(4) is (MeO)2cDHAP(Ph)].
Selected geometric parameters (Å, °) for (5i)–(5k). top
Bond/angle(5i)(5j)(5k)
P1—O11.6061 (10)1.59329 (18)1.5721 (10)
P1—O31.6004 (10)1.6013 (18)1.5614 (11)
P1—O41.4866 (10)1.4846 (18)1.5453 (11)
P1—O51.4784 (11)1.4753 (18)1.4727 (10)
O1—C11.4343 (14)1.445 (3)1.4488 (14)
O21—C21.4118 (13)1.415 (3)1.4071 (14)
O21—C41.4328 (15)1.436 (4)1.4304 (16)
O22—C21.4080 (13)1.417 (3)1.3999 (13)
O22—C51.4229 (15)1.431 (3)1.4319 (14)
O3—C31.4304 (14)1.425 (3)1.4543 (15)
C1—C21.5270 (15)1.510 (4)1.5253 (16)
C2—C31.5297 (16)1.515 (4)1.5267 (16)
O1—P1—O3102.13 (5)101.74 (10)105.77 (5)
O1—P1—O4109.24 (5)109.49 (9)107.67 (6)
O1—P1—O5107.69 (5)109.15 (10)110.23 (6)
O3—P1—O4109.74 (5)109.33 (10)105.76 (6)
O3—P1—O5106.58 (6)108.30 (11)111.75 (6)
O4—P1—O5119.97 (5)117.64 (11)115.13 (6)
P1—O1—C1114.57 (7)115.64 (17)116.69 (7)
C2—O21—C4114.41 (9)114.8 (3)116.04 (9)
C2—O22—C5115.66 (9)115.2 (2)115.71 (9)
P1—O3—C3116.69 (7)115.64 (17)118.21 (7)
O1—C1—C2109.64 (9)111.5 (2)109.72 (9)
O21—C2—O22111.81 (9)111.8 (2)113.39 (9)
O21—C2—C1104.21 (9)111.8 (2)102.94 (9)
O22—C2—C1113.65 (9)105.7 (3)113.94 (9)
O21—C2—C3112.14 (9)103.7 (2)111.50 (9)
O22—C2—C3105.01 (9)112.7 (2)104.92 (9)
C1—C2—C3110.21 (9)111.3 (2)110.33 (10)
O3—C3—C2110.72 (9)112.2 (2)110.28 (9)
O3—P1—O1—C155.31 (8)54.88 (18)47.93 (9)
O4—P1—O1—C1-60.85 (8)-60.73 (19)-64.78 (9)
O5—P1—O1—C1167.33 (7)169.19 (17)168.89 (7)
O1—P1—O3—C3-52.80 (8)-54.61 (19)-45.92 (9)
O4—P1—O3—C363.00 (9)61.1 (2)68.13 (9)
O5—P1—O3—C3-165.65 (7)-169.55 (18)-165.89 (7)
P1—O1—C1—C2-62.20 (9)-58.2 (3)-57.28 (11)
P1—O3—C3—C256.68 (10)57.6 (3)53.06 (11)
C4—O21—C2—O2260.27 (12)-63.4 (3)50.07 (12)
C4—O21—C2—C1-176.57 (8)54.9 (4)173.64 (9)
C4—O21—C2—C3-57.38 (12)174.9 (3)-68.09 (13)
C5—O22—C2—O2167.92 (11)-60.9 (3)65.74 (12)
C5—O22—C2—C1-49.72 (12)177.2 (2)-51.58 (13)
C5—O22—C2—C3-170.24 (9)55.4 (3)-172.36 (9)
O1—C1—C2—O21179.58 (7)168.6 (2)178.45 (8)
O1—C1—C2—O22-58.46 (11)-69.6 (3)-58.34 (12)
O1—C1—C2—C359.08 (11)53.1 (3)59.37 (11)
O21—C2—C3—O3-171.66 (8)-173.6 (2)-170.68 (8)
O22—C2—C3—O366.71 (11)65.3 (3)66.19 (11)
C1—C2—C3—O3-56.06 (11)-53.2 (3)-56.94 (12)
Hydrogen-bond geometry (Å, °) for (5i)–(5k) top
CompoundD—H···AD—HH···AD···AD—H···A
(5i)N1—H1N···O50.911.872.758 (2)166
N1—H2N···O5i0.911.962.817 (2)157
N1—H3N···O1Wii0.911.872.719 (2)154
O1W—H1W···O40.83 (2)1.92 (2)2.749 (2)176 (2)
O1W—H2W···O4iii0.83 (2)1.93 (2)2.758 (2)176 (2)
C4—H4A···O1iv0.982.603.534 (2)159
C11—H11···O1Wiii1.002.523.416 (2)149
(5j)N1—H1N···O50.911.812.718 (3)172
N1—H2N···O4ii0.911.902.809 (3)174
N1—H3N···O4v0.911.902.799 (3)169
C3—H3B···O22vi0.992.603.495 (3)150
C14—H14A···O5vii0.992.503.396 (3)150
(5k)O4—H4···O5iii0.841.702.533 (2)175
C1—H1A···O21viii0.992.573.544 (2)169
C3—H3b···O22ix0.992.613.560 (2)161
C5—H5B···O5x0.982.493.423 (2)159
Symmetry codes: (i) -x, -y, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z; (v) x - 1/2, -y + 1/2, -z + 1; (vi) -x + 1, y + 1/2, -z + 1/2; (vii) x, y + 1, z. (viii) -x + 2, -y + 2, -z + 1; (ix) -x + 2, -y + 2, -z; (x) -x + 2, -y + 1, -z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). XP. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGerlt, J. A., Chodosh, D. F., Drews, R. E. & Adams, R. D. (1980). J. Org. Chem. 45, 1282–1286.  CrossRef CAS Google Scholar
First citationGoswami, S. & Adak, A. K. (2002). Tetrahedron Lett. 43, 503–505.  CrossRef CAS Google Scholar
First citationJohnson, O., Jones, D. W. & Edmundson, R. S. (1989). Acta Cryst. C45, 142–145.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED, in Xcalibur PX and Kuma KM-4 CCD software. Versions 1.171.33.42. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSamas, B., Groendyke, T., Blackburn, A. C. & Godrej, D. B. (2007). Acta Cryst. E63, o1276–o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinitzky, M., Haimovitz, R., Nemas, M., Cahana, N., Mamillapalli, R. & Seger, R. (2000). Eur. J. Biochem. 267, 2547–2554.  Web of Science CrossRef PubMed CAS Google Scholar
First citationŚlepokura, K. (2008). Carbohydr. Res. 343, 113–131.  Web of Science PubMed Google Scholar
First citationŚlepokura, K. & Lis, T. (2004a). Carbohydr. Res. 339, 1995–2007.  Web of Science PubMed Google Scholar
First citationŚlepokura, K. & Lis, T. (2004b). Acta Cryst. C60, o315–o317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŚlepokura, K. & Lis, T. (2006). Carbohydr. Res. 341, 507–524.  Web of Science PubMed Google Scholar
First citationŚlepokura, K. & Lis, T. (2010). Carbohydr. Res. 345, 512–529.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds