organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two hydration products of 3,4,5,6-tetra­chloro-N-(methyl-2-pyrid­yl)phthalmic acids

CROSSMARK_Color_square_no_text.svg

aCavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, England, and bDepartment of Chemistry, University of New Brunswick, Fredericton NB, E3B 5A3, Canada
*Correspondence e-mail: jmc61@cam.ac.uk

(Received 26 April 2011; accepted 9 June 2011; online 23 June 2011)

In 2-amino-6-methyl­pyridin-1-ium 2-carb­oxy-3,4,5,6-tetra­chloro­benzoate, C6H9N2+·C8HCl4O4, there are two perpendicular chains of hydrogen-bonded ions, one arising from the inter­action between 2-carb­oxy-3,4,5,6-tetra­chloro­benzoate ions and the other from the inter­action between the 2-am­ino-6-methyl­pyridin-1-ium and 2-carb­oxy-3,4,5,6-tetra­chloro­ben­zo­ate ions. These chains combine to form a two-dimensional network of hydrogen-bonded ions. Cocrystals of bis­(2-amino-3-methyl­pyridin-1-ium) 3,4,5,6-tetra­chloro­phtha­late–3,4,5,6-tetra­chloro­phthalic acid (1/1), 2C6H9N2+·C8Cl4O42−·C8H2Cl4O4, form finite aggregates of hydrogen-bonded ions. ππ inter­actions are observed between 2-amino-3-methyl­pyridin-1-ium cations. Both structures exhibit the characteristic R22(8) motif as a result of the hydrogen bonding between the 2-amino­pyridinium and carboxyl­ate units.

Comment

N-(3-Methyl-2-pyrid­yl)-3,4,5,6-tetra­chloro­phthalmic acid and N-(6-methyl-2-pyrid­yl)-3,4,5,6-tetra­chloro­phthalmic acid are known to be pharamacologically active having been shown to exhibit a hypertensive effect in biological systems (Dolzhenko et al., 2003[Dolzhenko, A. V., Syropyatov, B. Ya., Koz'minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J. 37, 407-408.]). In the context of this study, these materials are of inter­est for their potential as a UV-active dye for dye-sensitized solar-cell applications. Heating these compounds to 333 K in hydrated methanol produces crystals of two salts, namely 2-amino-6-methyl­pyridin-1-ium 2-carb­oxy-3,4,5,6-tetra­chloro­benzoate, (I)[link] (Fig. 1[link]), and bis­(2-amino-3-methyl­pyridin-1-ium) 3,4,5,6-tetra­chloro­phtha­late–3,4,5,6-tetra­chloro­phthalic acid (1/1), (II)[link] (Fig. 2[link]). These salts are the result of the reaction of the starting material with water present in the methanol solution and the equilibrium that exists between amides and water and the corresponding amines and carb­oxy­lic acids. In (I)[link] and (II)[link], protonation of the pyridyl N atom results in pyridinium salts stabilized by imino resonance. Inter­estingly, as 3,4,5,6-tetra­chloro­phthalic acid cocrystallizes with 2-amino-3-methyl­pyridin-1-ium 3,4,5,6-tetra­chloro­phthal­ate all the pro­ducts of this reaction are represented stoichiometrically in the crystal structure.

[Scheme 1]

The mol­ecular geometry of the 2-amino-6-methyl­pyridin-1-ium cation in the structure of (I)[link] (Table 1[link]) can be compared with that of the nonhalogenated 2-amino-6-methyl­pyridinium 2-formyl­benzoate monohydrate (Büyükgüngör & Odabaşoğlu, 2006[Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o2749-o2750.]). This geometry is similar in both compounds, with the characteristic bond-length alternation within the pyridyl ring, which demonstrates the imino resonance stabilizing the positive charge (Fig. 3[link]) (Zhi et al., 2002[Zhi, M.-J., Yuan, J.-P., Mao, L.-H. & Liang, S. (2002). J. Chem. Crystallogr. 31, 191-195.]). The bond geometry of the aromatic ring in the 2-carb­oxy-3,4,5,6-tetra­chloro­benzoate anion in (I)[link] resembles more closely that of the hemihydrate of 3,4,5,6-tetra­chloro­phthalic acid (Ito et al., 1975[Ito, K., Moriya, K., Kashino, S. & Haisa, M. (1975). Bull. Chem. Soc. Jpn, 48, 3078-3084.]) than that of the 2-carb­oxy-3,4,5,6-tetra­chloro­benzoate in a similar salt, 2-methyl-5-ethyl­pyridinium 3,4,5,6-tetra­chloro­phthalate (Gal­loy et al., 1976[Galloy, J., Putzeys, J.-P., Germain, G. & Van Meerssche, M. (1976). Acta Cryst. B32, 2718-2720.]). This indicates a contribution from the neutral canonical form, which is also observed in the carboxyl­ate group, where O3—C8 is observed to be shorter than O4—C8. The bond distances in the aromatic ring of 2-carb­oxy-3,4,5,6-tetra­chloro­benzoate in (I)[link] range from 1.374 (9) to 1.403 (9) Å.

Compound (I)[link] forms continuous sheets of hydrogen-bonded ions parallel to (010) (Table 2[link]). These sheets contain the characteristic rings having graph set R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 121-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) with the amine and pyridinium N atoms acting as donors and the two carboxyl­ate O atoms acting as acceptors (N1—H1N⋯O4 and N2—H2B⋯O3), as is well documented in this type of compound (Quah et al., 2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932.]; Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2192-o2193.]). These rings are linked by chain motifs to form the sheets. The 2-carb­oxy-3,4,5,6-tetra­chloro­benzoate anions form chains parallel to the [001] direction through O1—H1⋯O4ii interactions to give a graph-set motif of C(7) (symmetry codes as in Table 2). The 2-amino-6-methyl­pyridin-1-ium cations link via the anions forming chains with the graph sets C22(9) (through N2—H2B⋯O3 and N2—H2A⋯O2i) and C22(11) (through N1—H1N⋯O4 and N2—H2A⋯O2i), giving an overall C22(9)C22(11)[R22(8)] chain of rings parallel to the [100] direction (Fig. 5[link]).

The aromatic rings in the 2-amino-3-methyl­pyridin-1-ium cations of compound (II)[link] exhibit similar geometry to those in (I)[link] with regard to the bond distances (Table 3[link]). The distances in the benzene rings of the 3,4,5,6-tetra­chloro­phthalate dianion and the 3,4,5,6-tetra­chloro­phthalic acid mol­ecule are in the ranges 1.387 (3)–1.403 (2) and 1.389 (3)–1.399 (3) Å, respectively, altogether more consistent than the bond distances of the 2-car­b­oxy-3,4,5,6-tetra­chloro­benzoate anion in (I)[link] or the hemihydrate of 3,4,5,6-tetra­chloro­phthalic acid. This similarity in bond geometry between the dianion and the neutral acid in (II)[link] strengthens the argument for the contribution of the neutral canonical forms in these compounds. As is observed in similar structures (Ni et al., 2007[Ni, S.-F., Feng, W.-J., Guo, H. & Jin, Z.-M. (2007). Acta Cryst. E63, o3866.]; Zhi et al., 2002[Zhi, M.-J., Yuan, J.-P., Mao, L.-H. & Liang, S. (2002). J. Chem. Crystallogr. 31, 191-195.]), there are ππ inter­actions between 2-amino-3-methyl­pyridin-1-ium cations; the dihedral angle between the two pyridinium rings in the selected asymmetric unit is only 3.8 (2)° and the corresponding centroid–centroid separation is 3.834 (2) Å.

Unlike the two-dimensional network observed in (I)[link], the hydrogen-bonded system in (II)[link] consists of a finite array of four 2-amino-3-methyl­pyridin-1-ium cations, two 3,4,5,6-tetra­chloro­phthalate dianions and two mol­ecules of 3,4,5,6-tetra­chloro­phthalic acid (Fig. 6[link] and Table 4[link]). The R22(8) ring motifs formed between the pyridinium and phthalate ions are once again present, with each phthalate dianion forming two such rings parallel to each other because of the ππ inter­actions between the pyridinium cations, i.e. through N2—H2A⋯O1 and N1—H1N⋯O2 for one ring, and N4—H4A⋯O3 and N3—H3N⋯O4 for the other. In addition to this, each of these rings is connected to an adjacent R22(8) ring through N2—H2B⋯O3i and N4—H4B⋯O1i forming an [R22(8)R42(8)R22(8)] motif within an outer R44(16) ring (symmetry code is as in Table 4). Further motifs are observed when considering that there are two parallel [R22(8)R42(8)R22(8)] motifs linked by the phthalate dianions; this gives rise to rings with graph sets R44(18) and R44(22).

The 3,4,5,6-tetra­chloro­phthalic acid mol­ecules and 3,4,5,6-tetra­chloro­phthalate dianions are also connected by hydrogen bonds with the acid protons donating to carboxyl­ate O-atom acceptors through O5—H5O⋯O2 and O7—H7O⋯O4 to create R22(14) motifs. Though there is no direct hydrogen bonding between the acid mol­ecules and the pyridinium cations, rings with the graph set R86(34) are formed between acid mol­ecules through the [R22(8)R42(8)R22(8)] motif.

[Figure 1]
Figure 1
The structure of the asymmetric unit of (I)[link], with atomic displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The structure of the asymmetric unit of (II)[link], with atomic displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The resonance exhibited by (I)[link].
[Figure 4]
Figure 4
View of the C(7) hydrogen-bonding motif in the [001] direction in (I)[link]. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
[Figure 5]
Figure 5
View of the C22(9)C22(11)[R22(8)] chain of rings along [100] in (I)[link]. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
[Figure 6]
Figure 6
Stereoview of the finite hydrogen-bonding network in the structure of (II)[link]. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.

Experimental

N-(3-Methyl-2-pyrid­yl)-3,4,5,6-tetra­chloro­phthalmic acid (10 mg, 0.026 mmol) and N-(6-methyl-2-pyrid­yl)-3,4,5,6-tetra­chloro­phthal­mic acid (10 mg, 0.026 mmol) were heated to 333 K in hydrated methanol (5 ml) until a clear solution was obtained. Colourless plate-like crystals of (I)[link] were grown upon cooling to room temperature and colourless prism-like crystals of (II)[link] grew after the solution was allowed to stand for one week.

Compound (I)[link]

Crystal data
  • C6H9N2+·C8HCl4O4

  • Mr = 412.04

  • Orthorhombic, P c a 21

  • a = 9.441 (14) Å

  • b = 12.56 (2) Å

  • c = 13.69 (2) Å

  • V = 1623 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 120 K

  • 0.33 × 0.16 × 0.06 mm

Data collection
  • Rigaku Saturn724+ (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.866, Tmax = 0.956

  • 5083 measured reflections

  • 2495 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.127

  • S = 1.10

  • 2495 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.31 (13)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

C7—O2 1.205 (7)
C7—O1 1.413 (8)
C8—O3 1.248 (8)
C8—O4 1.344 (8)
C9—N1 1.361 (9)
C9—N2 1.402 (10)
C13—N1 1.427 (10)
O2—C7—O1 127.0 (6)
O3—C8—O4 134.0 (5)
N1—C9—N2 124.9 (6)
C9—N1—C13 129.2 (5)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3 0.86 1.81 2.666 (8) 173
N2—H2A⋯O2i 0.86 2.11 2.931 (8) 159
N1—H1N⋯O4 0.86 1.71 2.559 (7) 171
O1—H1O⋯O4ii 0.82 1.83 2.604 (7) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • 2C6H9N2+·C8Cl4O42−·C8H2Cl4O4

  • Mr = 824.08

  • Triclinic, [P \overline 1]

  • a = 8.6972 (17) Å

  • b = 13.762 (3) Å

  • c = 15.381 (3) Å

  • α = 69.388 (9)°

  • β = 75.342 (10)°

  • γ = 72.618 (1)°

  • V = 1621.7 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 120 K

  • 0.41 × 0.14 × 0.12 mm

Data collection
  • Rigaku Saturn724+ (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.881, Tmax = 0.914

  • 9810 measured reflections

  • 5964 independent reflections

  • 5551 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.07

  • 5964 reflections

  • 435 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

C7—O1 1.235 (3)
C7—O2 1.272 (3)
C8—O3 1.245 (3)
C8—O4 1.258 (3)
C15—O6 1.211 (3)
C15—O5 1.303 (3)
C16—O8 1.218 (3)
C16—O7 1.301 (3)
C17—N2 1.330 (3)
C17—N1 1.346 (3)
C21—N1 1.358 (3)
C23—N4 1.333 (3)
C23—N3 1.349 (3)
C27—N3 1.363 (3)
O1—C7—O2 125.39 (19)
O3—C8—O4 124.88 (19)
O6—C15—O5 126.7 (2)
O8—C16—O7 126.1 (2)
N2—C17—N1 118.96 (19)
C17—N1—C21 123.66 (18)
N4—C23—N3 118.35 (18)
C23—N3—C27 122.89 (18)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O2 0.84 1.80 2.558 (2) 149
O7—H7O⋯O4 0.84 1.83 2.593 (2) 151
N1—H1N⋯O2 0.88 1.83 2.708 (2) 173
N2—H2A⋯O1 0.88 2.07 2.943 (2) 171
N3—H3N⋯O4 0.88 2.01 2.891 (2) 175
N4—H4A⋯O3 0.88 1.93 2.805 (2) 175
N2—H2B⋯O3i 0.88 1.99 2.823 (2) 157
N4—H4B⋯O1i 0.88 2.07 2.892 (2) 156
Symmetry code: (i) -x+1, -y+1, -z+1.

H atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), and N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N). Hy­droxy and methyl H atoms were modelled in a similar fashion, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(C), and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(N). The most disagreeable reflections were omitted and those exhibiting a Δ(F2) value greater than 5 s.u. were removed; 5 from (I) and 31 from (II). The refinement was further improved by restricting the reflections considered to those with θ ≤ 25.68°. The Flack parameter for (I) gives the expected values for a correct absolute structure within 3 s.u. Nonetheless since the s.u. is moderate, the inverted structure was tested. This yielded a Flack parameter of x = 1.21 (13) by the `hole-in-one' method and of x = 1.34 (13) using TWIN/BASF, giving us confidence that we have presented the correct absolute structure with respect to the polar-axis direction. These checks were particularly important given that the precision of the Flack x parameter is poor owing to a low Friedel coverage of 60%. Refinement for (II)[link] was limited to those reflections with θ < 25.68° reducing the number of missing data; however, a number of missing data remain (201 reflections between θmin and sinθ/λ = 0.600). Analysis of reciprocal-space plots reveal that these missing portions are fairly randomly dispersed which gives us confidence that this is not a systematic error. Moreover, the missing data were comprised of high-angle reflections that were just outside the reach of the data collection strategy.

For both compounds, data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-(3-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalmic acid and N-(6-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalmic acid are known to be pharamacologically active having been shown to exhibit a hypertensive effect in biological systems (Dolzhenko et al., 2003). In the context of this study, these materials are of interest for their potential as a UV-active dye for dye-sensitized solar cell applications. Heating these compounds to 333 K in hydrated methanol produces crystals of two salts: 2-amino-6-methylpyridin-1-ium 2-carboxy-3,4,5,6-tetrachlorobenzoate, [C6H9N2][C8HO4Cl4], (I) (Fig. 1), and 2-amino-3-methylpyridin-1-ium 3,4,5,6-tetrachlorophthalate co-crystallized with 3,4,5,6-tetrachlorophthalic acid, ([C6H9N2]2[C8O4Cl4].C8H2O4Cl4), (II) (Fig. 2). These salts are the result of the reaction of the starting material with water present in the methanol solution (Figs. 3, 4) and the equilibrium that exists between amides and water and the corresponding amines and carboxylic acids. In (I) and (II) protonation of the pyridyl nitrogen results in pyridinium salts stabilized by imino resonance. Interestingly, as 3,4,5,6-tetrachlorophthalic acid co-crystallizes with 2-amino-3-methylpyridin-1-ium phthalate all the products of this reaction are represented stoichiometrically in the crystal structure.

The molecular geometry of the 2-amino-6-methylpyridin-1-ium cation in the structure of (I) can be compared with that of the non-halogenated 2-amino-6-methylpyridinium 2-formylbenzoate monohydrate (Büyükgüngör & Odabaşoǧlu, 2006). This geometry is similar in both compounds, with the characteristic bond-length alternation within the pyridyl ring, which demonstrates the imino resonance stabilizing the positive charge (Fig. 5) (Zhi et al., 2002). The bond geometry of the aromatic ring in the 2-carboxy-3,4,5,6-tetrachlorobenzoate anion in (I) resembles more closely that of the hemihydrate of 3,4,5,6-tetrachlorophthalic acid (Ito et al., 1975) than that of the 2-carboxy-3,4,5,6-tetrachlorobenzoate in a similar salt, 2-methyl-5-ethylpyridinium 3,4,5,6-tetrachlorophthalate (Galloy et al., 1976). This indicates a contribution from the neutral canonical form, which is also observed in the carboxylate group, where O3—C8 is observed to be shorter than O4—C8. The bond distances in the aromatic ring of 2-carboxy-3,4,5,6-tetrachlorobenzoate in (I) range from 1.374 (9) to 1.403 (9) Å.

Compound (I) forms continuous sheets of hydrogen-bonded ions parallel to (010). These sheets contain the characteristic rings with the graph set R22 (8) (Etter, 1990; Bernstein et al., 1995) with amine and pyridinium N atoms acting as donors and the two carboxylate O atoms acting as acceptors (N1—H1N···O4 and N2—H2A···O3), as is well documented in this type of compound (Quah et al., 2010; Hemamalini & Fun, 2010). These rings are linked by chain motifs to form the sheets. The 2-carboxy-3,4,5,6-tetrachlorobenzoate anions form chains with the graph set C11(7) in the [001] direction through O1—H1···O4 (Fig. 6) and the 2-amino-6-methylpyridin-1-ium cations link via the anions forming chains with the graph set C22(9) (through N2—H2A···O3 and N2—H2B···O2) and C22(11) (through N1—H1N···O4 and N2—H2B···O2), giving overall a C22(9)C22(11)[R22(8)] chain of rings parallel to the [100] direction (Fig. 7).

The aromatic rings in the 2-amino-3-methylpyridin-1-ium cations of compound (II) exhibit similar geometry to those in (I) with regard to the bond distances. The distances in the benzene rings of the 3,4,5,6-tetrachlorophthalate dianion and the 3,4,5,6-tetrachlorophthalic acid molecule range between 1.387 (3) and 1.403 (2) Å and 1.389 (3) and 1.399 (3) Å, respectively, altogether more consistent than the bond distances of the 2-carboxy-3,4,5,6-tetrachlorobenzoate anion in (I) or the hemihydrate of 3,4,5,6-tetrachlorophthalic acid. This similarity in bond geometry between the dianion and the neutral acid in (II) strengthens the argument for the contribution of the neutral canonical forms in these compounds. As is observed in similar structures (Ni et al., 2007; Zhi et al., 2002) there are ππ interactions between 2-amino-3-methylpyridin-1-ium cations; the dihedral angle between the two pyridinium rings in the selected asymmetric unit is only 3.8 (2)°, and the corresponding centroid separation is 3.834 (2) Å.

Unlike the two-dimensional network observed in (I), the hydrogen-bonded system in (II) consists of a finite array of four 2-amino-3-methylpyridin-1-ium cations, two 3,4,5,6-tetrachlorophthalate dianions and two molecules of 3,4,5,6-tetrachlorophthalic acid (Fig. 8). The R22(8) ring motifs formed between the pyridinium and the phthalate are once again present with each phthalate dianion forming two such rings parallel to each other because of the ππ interactions between the pyridinium cations, i.e. through N2—H2A···O1 and N1—H1N···O2 for one ring and N4—H4A···O3 and N3—H3N···O4 for the other. In addition to this, each of these rings is connected to an adjacent R22(8) ring through N2—H2B···O1 and N4—H4B···O3 forming an [R22(8)R42(8)R22(8)] motif within an outer R44(16) ring. Further motifs are observed when considering that there are two parallel [R22(8)R42(8)R22(8)] motifs linked by the phthalate dianions; this gives rise to rings with graph sets R44(18) and R44(22).

The 3,4,5,6-tetrachlorophthalic acid molecules and 3,4,5,6-tetrachlorophthalate dianions are also connected by hydrogen bonds with the acid protons donating to carboxylate oxygen acceptors through O5—H5O···O2 and O7—H7O···O4 to create R22(14) motifs. Though there is no direct hydrogen bonding between the acid molecules and the pyridinium cations, rings with the graph set R86(34) are formed between acid molecules through the [R22(8)R42(8)R22(8)] motif.

Related literature top

For similar structures containing methyl-2-amino-pyridinium cations see Büyükgüngör & Odabaşoǧlu (2006), Quah et al., (2010), Hemamalini & Fun, (2010), Ni et al., (2007) and Zhi et al., (2002). For structures pertaining to 3,4,5,6-tetrachlorophthalmic acid and related ions see Galloy et al., (1976), Hosomi et al., (2000) and Ito et al., (1975). A description of hydrogen bonding in terms of graph sets is given by Etter, (1990) and Bernstein et al., (1995).

Experimental top

N-(3-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalic acid (10 mg, 0.026 mmol) and N-(6-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalmic acid (10 mg, 0.026 mmol) were heated to 333 K in hydrated methanol (5 ml) until a clear solution was afforded. Colourless plate-like crystals of (I) were grown upon cooling to room temperature and colourless prism-like crystals of (II) were grown after the solution was allowed to stand for 1 week.

Refinement top

H atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) and N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N). Hydroxy and methyl hydrogen atoms were modelled in a similar fashion with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(N). The most disagreeable reflections were omitted with those exhibiting a Δ(F2) value greater than 5 s.u. being removed. The refinement was further improved by restricting the reflections considered to 25.68° and below. The Flack parameter gives the expected values for a correct structure within 3 s.u.s. Nonetheless since the s.u. is moderate, the inverted structure was tested. This yielded a Flack parameter, x = 1.21 (13) by the 'hole in one' method and x = 1.34 (13) using TWIN/BASF, giving us confidence that we have presented the correct orientation of the structure with respect to the polar axis direction. These checks were particularly important given that the precision of the Flack x parameter is poor owing to a low Friedel coverage of 60%. Refinement for (II) was reduced to θ = 25.68° to reduce the number of missing data; however, a number of missing data remain (171 reflections between THmin and STh/L = 0.600). Analysis of reciprocal-space plots reveal that these missing portions are fairly randomly dispersed which gives us confidence that this is not a systematic error.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of (I), with atomic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Structure of the asymmetric unit of (II), with atomic displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. The resonance exhibited by (I).
[Figure 4] Fig. 4. View of the C11(7) hydrogen-bonding motif in the [001] direction in (I). H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
[Figure 5] Fig. 5. View of the C22(9)C22(11)[R22(8)] chain of rings along [100] in (I). H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
[Figure 6] Fig. 6. Stereoview of the finite hydrogen-bonding network in the structure of (II). H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
(I) 2-amino-6-methylpyridin-1-ium 2-carboxy-3,4,5,6-tetrachlorobenzoate top
Crystal data top
C6H9N2+·C8HCl4O4F(000) = 832
Mr = 412.04Dx = 1.686 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3604 reflections
a = 9.441 (14) Åθ = 1.6–32.9°
b = 12.56 (2) ŵ = 0.75 mm1
c = 13.69 (2) ÅT = 120 K
V = 1623 (4) Å3Prism, colorless
Z = 40.33 × 0.16 × 0.06 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2495 independent reflections
Radiation source: Sealed Tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 28.5714 pixels mm-1θmax = 25.7°, θmin = 3.0°
profile data from ω–scansh = 119
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1115
Tmin = 0.866, Tmax = 0.956l = 1613
5083 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0307P)2 + 5.8163P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2495 reflectionsΔρmax = 0.44 e Å3
218 parametersΔρmin = 0.50 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.31 (13)
Crystal data top
C6H9N2+·C8HCl4O4V = 1623 (4) Å3
Mr = 412.04Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.441 (14) ŵ = 0.75 mm1
b = 12.56 (2) ÅT = 120 K
c = 13.69 (2) Å0.33 × 0.16 × 0.06 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2495 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2302 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.956Rint = 0.048
5083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.44 e Å3
S = 1.10Δρmin = 0.50 e Å3
2495 reflectionsAbsolute structure: Flack (1983)
218 parametersAbsolute structure parameter: 0.31 (13)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1965 (6)0.8453 (4)0.4565 (5)0.0244 (14)
C20.1106 (7)0.8102 (5)0.3749 (5)0.0257 (14)
C30.0338 (6)0.8757 (4)0.3139 (5)0.0243 (14)
C40.0453 (6)0.9762 (5)0.3322 (5)0.0294 (16)
C50.1356 (6)1.0098 (4)0.4085 (5)0.0208 (13)
C60.2106 (6)0.9452 (5)0.4727 (5)0.0242 (14)
C70.2715 (7)0.7738 (5)0.5294 (5)0.0247 (13)
C80.0983 (7)0.6986 (5)0.3543 (5)0.0259 (14)
Cl30.07756 (17)0.83183 (12)0.21553 (14)0.0323 (4)
Cl40.05791 (15)1.05582 (12)0.25660 (13)0.0297 (4)
Cl50.15292 (18)1.13515 (11)0.42892 (13)0.0324 (4)
Cl60.33018 (16)0.99037 (11)0.56559 (12)0.0279 (4)
O10.2370 (5)0.7841 (3)0.6294 (3)0.0271 (10)
H1O0.28340.74130.66130.041*
O20.3531 (5)0.7112 (3)0.4936 (4)0.0330 (11)
O30.0374 (5)0.6502 (3)0.4219 (4)0.0355 (11)
O40.1554 (5)0.6685 (3)0.2687 (4)0.0300 (11)
C90.0473 (7)0.4127 (5)0.2843 (6)0.0360 (17)
C100.0329 (7)0.3149 (5)0.2538 (6)0.0378 (17)
H100.02330.26710.28820.045*
C110.1047 (8)0.2821 (5)0.1664 (7)0.044 (2)
H110.08830.21270.14560.053*
C120.1965 (8)0.3433 (5)0.1093 (6)0.043 (2)
H120.24030.3180.05310.051*
C130.2140 (7)0.4380 (5)0.1424 (6)0.0345 (17)
C140.3065 (8)0.5108 (5)0.0875 (6)0.042 (2)
H14A0.36290.55150.13240.063*
H14B0.24960.55820.04890.063*
H14C0.36750.47030.04540.063*
N10.1376 (6)0.4701 (4)0.2274 (4)0.0308 (13)
H1N0.15050.53510.24530.037*
N20.0249 (7)0.4523 (4)0.3661 (5)0.0428 (16)
H2A0.08130.41160.39830.051*
H2B0.01270.51730.38410.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (3)0.021 (3)0.032 (4)0.001 (2)0.002 (3)0.002 (3)
C20.027 (3)0.023 (3)0.027 (4)0.004 (2)0.002 (3)0.000 (3)
C30.023 (3)0.017 (3)0.033 (4)0.003 (2)0.003 (3)0.000 (3)
C40.023 (3)0.033 (3)0.032 (4)0.005 (3)0.013 (3)0.007 (3)
C50.026 (3)0.018 (2)0.019 (3)0.000 (2)0.005 (3)0.001 (2)
C60.024 (3)0.024 (3)0.024 (4)0.001 (2)0.003 (3)0.003 (3)
C70.026 (3)0.024 (3)0.024 (4)0.001 (2)0.002 (3)0.003 (3)
C80.029 (3)0.020 (3)0.028 (4)0.002 (2)0.003 (3)0.002 (3)
Cl30.0319 (8)0.0295 (7)0.0355 (10)0.0023 (6)0.0069 (8)0.0030 (7)
Cl40.0288 (7)0.0251 (7)0.0353 (10)0.0041 (6)0.0013 (8)0.0014 (7)
Cl50.0411 (9)0.0179 (6)0.0382 (10)0.0001 (6)0.0025 (8)0.0005 (7)
Cl60.0284 (7)0.0236 (7)0.0316 (9)0.0023 (6)0.0025 (7)0.0018 (6)
O10.033 (2)0.0199 (19)0.029 (3)0.0067 (18)0.003 (2)0.0008 (18)
O20.040 (3)0.021 (2)0.037 (3)0.0079 (19)0.002 (2)0.002 (2)
O30.052 (3)0.020 (2)0.034 (3)0.0048 (19)0.009 (3)0.002 (2)
O40.040 (3)0.0178 (19)0.032 (3)0.0039 (17)0.003 (2)0.0023 (19)
C90.037 (4)0.031 (3)0.041 (5)0.005 (3)0.006 (4)0.003 (3)
C100.039 (4)0.019 (3)0.055 (5)0.004 (3)0.008 (4)0.002 (3)
C110.044 (4)0.022 (3)0.067 (6)0.001 (3)0.000 (4)0.005 (3)
C120.048 (4)0.022 (3)0.058 (6)0.003 (3)0.009 (4)0.003 (3)
C130.036 (4)0.024 (3)0.044 (5)0.000 (3)0.009 (3)0.008 (3)
C140.048 (4)0.026 (3)0.052 (6)0.002 (3)0.005 (4)0.004 (3)
N10.042 (3)0.016 (2)0.034 (4)0.006 (2)0.003 (3)0.001 (2)
N20.051 (4)0.023 (3)0.055 (5)0.016 (3)0.003 (3)0.007 (3)
Geometric parameters (Å, º) top
C1—C61.282 (8)C9—C101.304 (10)
C1—C21.449 (9)C9—N11.361 (9)
C1—C71.518 (9)C9—N21.402 (10)
C2—C31.380 (9)C10—C111.435 (12)
C2—C81.434 (8)C10—H100.93
C3—C41.291 (9)C11—C121.397 (11)
C3—Cl31.795 (7)C11—H110.93
C4—C51.413 (9)C12—C131.284 (9)
C4—Cl41.738 (7)C12—H120.93
C5—C61.390 (8)C13—N11.427 (10)
C5—Cl51.607 (6)C13—C141.471 (9)
C6—Cl61.793 (7)C14—H14A0.96
C7—O21.205 (7)C14—H14B0.96
C7—O11.413 (8)C14—H14C0.96
C8—O31.248 (8)N1—H1N0.86
C8—O41.344 (8)N2—H2A0.86
O1—H1O0.82N2—H2B0.86
C6—C1—C2119.3 (6)C10—C9—N2122.6 (7)
C6—C1—C7114.7 (6)N1—C9—N2124.9 (6)
C2—C1—C7126.0 (5)C9—C10—C11119.2 (7)
C3—C2—C8114.9 (6)C9—C10—H10120.4
C3—C2—C1125.4 (6)C11—C10—H10120.4
C8—C2—C1119.7 (6)C12—C11—C10127.0 (7)
C4—C3—C2114.9 (7)C12—C11—H11116.5
C4—C3—Cl3119.7 (5)C10—C11—H11116.5
C2—C3—Cl3125.4 (5)C13—C12—C11113.1 (8)
C3—C4—C5119.1 (6)C13—C12—H12123.5
C3—C4—Cl4113.5 (6)C11—C12—H12123.5
C5—C4—Cl4127.4 (5)C12—C13—N1119.0 (7)
C6—C5—C4126.9 (5)C12—C13—C14118.2 (8)
C6—C5—Cl5114.2 (5)N1—C13—C14122.8 (6)
C4—C5—Cl5118.9 (5)C13—C14—H14A109.5
C1—C6—C5114.2 (6)C13—C14—H14B109.5
C1—C6—Cl6119.9 (5)H14A—C14—H14B109.5
C5—C6—Cl6125.8 (4)C13—C14—H14C109.5
O2—C7—O1127.0 (6)H14A—C14—H14C109.5
O2—C7—C1114.6 (6)H14B—C14—H14C109.5
O1—C7—C1118.3 (5)C9—N1—C13129.2 (5)
O3—C8—O4134.0 (5)C9—N1—H1N115.4
O3—C8—C2111.5 (6)C13—N1—H1N115.4
O4—C8—C2114.5 (6)C9—N2—H2A120
C7—O1—H1O109.5C9—N2—H2B120
C10—C9—N1112.4 (7)H2A—N2—H2B120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.861.812.666 (8)173
N2—H2A···O2i0.862.112.931 (8)159
N1—H1N···O40.861.712.559 (7)171
O1—H1O···O4ii0.821.832.604 (7)158
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z+1/2.
(II) bis(2-amino-3-methylpyridin-1-ium) 3,4,5,6-tetrachlorophthalate– 3,4,5,6-tetrachlorophthalic acid (1/1) top
Crystal data top
2C6H9N2+·C8Cl4O42·C8H2Cl4O4Z = 2
Mr = 824.08F(000) = 832
Triclinic, P1Dx = 1.688 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6972 (17) ÅCell parameters from 4445 reflections
b = 13.762 (3) Åθ = 1.4–33.2°
c = 15.381 (3) ŵ = 0.75 mm1
α = 69.388 (9)°T = 120 K
β = 75.342 (10)°Prism, colorless
γ = 72.618 (1)°0.41 × 0.14 × 0.12 mm
V = 1621.7 (6) Å3
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
5964 independent reflections
Radiation source: Sealed Tube5551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 25.7°, θmin = 2.8°
profile data from ω–scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1416
Tmin = 0.881, Tmax = 0.914l = 1818
9810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.0334P]
where P = (Fo2 + 2Fc2)/3
5964 reflections(Δ/σ)max = 0.002
435 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
2C6H9N2+·C8Cl4O42·C8H2Cl4O4γ = 72.618 (1)°
Mr = 824.08V = 1621.7 (6) Å3
Triclinic, P1Z = 2
a = 8.6972 (17) ÅMo Kα radiation
b = 13.762 (3) ŵ = 0.75 mm1
c = 15.381 (3) ÅT = 120 K
α = 69.388 (9)°0.41 × 0.14 × 0.12 mm
β = 75.342 (10)°
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
5964 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5551 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.914Rint = 0.033
9810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
5964 reflectionsΔρmin = 0.34 e Å3
435 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8219 (2)0.48117 (15)0.23232 (14)0.0168 (4)
C20.6754 (2)0.50100 (16)0.20006 (14)0.0171 (4)
C30.6594 (2)0.56477 (16)0.10873 (14)0.0177 (4)
C40.7887 (2)0.60750 (16)0.04846 (14)0.0177 (4)
C50.9371 (2)0.58356 (15)0.07930 (14)0.0174 (4)
C60.9521 (2)0.52174 (16)0.17141 (14)0.0175 (4)
C70.8361 (2)0.41522 (16)0.33390 (14)0.0179 (4)
C80.5333 (2)0.45776 (16)0.26918 (14)0.0182 (4)
Cl30.47607 (6)0.59516 (4)0.06984 (4)0.02412 (13)
Cl40.76717 (6)0.68803 (4)0.06430 (3)0.02502 (13)
Cl51.09952 (6)0.63103 (4)0.00283 (3)0.02045 (12)
Cl61.13483 (6)0.49143 (4)0.21082 (3)0.02290 (12)
O10.82904 (19)0.46105 (12)0.39140 (10)0.0237 (3)
O20.84842 (18)0.31577 (11)0.35278 (10)0.0215 (3)
O30.4826 (2)0.49028 (13)0.33959 (11)0.0291 (4)
O40.47819 (17)0.39221 (11)0.25293 (10)0.0198 (3)
C90.9232 (3)0.05523 (16)0.20767 (14)0.0195 (4)
C100.7747 (3)0.08973 (16)0.17426 (14)0.0200 (4)
C110.7426 (3)0.03654 (17)0.12159 (14)0.0212 (4)
C120.8591 (3)0.05110 (17)0.10079 (14)0.0210 (4)
C131.0081 (3)0.08466 (16)0.13277 (14)0.0218 (4)
C141.0403 (3)0.03074 (17)0.18561 (14)0.0206 (4)
C150.9463 (3)0.10950 (17)0.27186 (15)0.0219 (4)
C160.6457 (2)0.17577 (17)0.20869 (15)0.0211 (4)
Cl110.55442 (7)0.07527 (5)0.08695 (4)0.02970 (14)
Cl120.81806 (7)0.11799 (4)0.03655 (4)0.02806 (13)
Cl131.15223 (7)0.19198 (4)0.10737 (4)0.02924 (14)
Cl141.22773 (6)0.06856 (5)0.22118 (4)0.02861 (13)
O50.92425 (19)0.21231 (12)0.23277 (10)0.0247 (3)
H5O0.93770.24040.26990.037*
O60.9736 (2)0.06017 (13)0.35098 (11)0.0332 (4)
O70.62076 (18)0.26954 (12)0.14668 (10)0.0223 (3)
H7O0.54790.31250.17110.033*
O80.5784 (2)0.15309 (13)0.29054 (11)0.0304 (4)
C170.5891 (2)0.26491 (16)0.57298 (14)0.0197 (4)
C180.4778 (3)0.21799 (17)0.65167 (14)0.0207 (4)
C190.4450 (3)0.12603 (17)0.65291 (15)0.0248 (5)
H190.36970.09430.70380.03*
C200.5186 (3)0.07690 (18)0.58151 (16)0.0263 (5)
H200.49480.01280.58410.032*
C210.6247 (3)0.12387 (18)0.50867 (16)0.0261 (5)
H210.67630.09250.45950.031*
C220.4052 (3)0.27119 (18)0.72747 (16)0.0275 (5)
H22A0.34410.3440.70030.041*
H22B0.49270.27370.75560.041*
H22C0.33130.23070.77610.041*
N10.6569 (2)0.21554 (14)0.50616 (12)0.0221 (4)
H1N0.7260.24430.45820.027*
N20.6282 (2)0.35485 (15)0.56363 (13)0.0246 (4)
H2A0.69740.38120.51430.029*
H2B0.58490.3880.60670.029*
C230.1964 (2)0.32552 (16)0.48343 (14)0.0193 (4)
C240.0836 (2)0.27476 (17)0.55759 (14)0.0201 (4)
C250.0513 (3)0.18660 (17)0.55150 (15)0.0226 (4)
H250.02250.15130.60070.027*
C260.1240 (3)0.14623 (17)0.47443 (16)0.0246 (5)
H260.10080.08420.47170.03*
C270.2282 (3)0.19830 (17)0.40407 (16)0.0229 (4)
H270.27640.17390.35050.028*
C280.0050 (3)0.32028 (19)0.63791 (15)0.0268 (5)
H28A0.04640.39610.61320.04*
H28B0.08810.31250.67410.04*
H28C0.07820.2820.67880.04*
N30.2634 (2)0.28547 (14)0.41032 (12)0.0201 (4)
H3N0.33290.3170.36470.024*
N40.2406 (2)0.41012 (15)0.48375 (13)0.0247 (4)
H4A0.31190.43840.4370.03*
H4B0.19860.43770.53070.03*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (9)0.0137 (9)0.0191 (10)0.0038 (7)0.0003 (7)0.0061 (8)
C20.0157 (9)0.0159 (9)0.0197 (10)0.0043 (8)0.0008 (8)0.0074 (8)
C30.0135 (9)0.0190 (10)0.0219 (10)0.0019 (8)0.0025 (7)0.0093 (8)
C40.0188 (10)0.0162 (10)0.0163 (9)0.0027 (8)0.0007 (8)0.0052 (8)
C50.0167 (9)0.0151 (9)0.0201 (10)0.0054 (8)0.0026 (8)0.0073 (8)
C60.0153 (9)0.0180 (10)0.0193 (10)0.0028 (8)0.0025 (8)0.0067 (8)
C70.0133 (9)0.0206 (10)0.0176 (9)0.0039 (8)0.0004 (7)0.0053 (8)
C80.0151 (9)0.0166 (10)0.0214 (10)0.0037 (8)0.0026 (8)0.0041 (8)
Cl30.0170 (2)0.0295 (3)0.0243 (3)0.0051 (2)0.00616 (19)0.0046 (2)
Cl40.0252 (3)0.0278 (3)0.0169 (2)0.0065 (2)0.00372 (19)0.0002 (2)
Cl50.0183 (2)0.0220 (2)0.0195 (2)0.00859 (19)0.00323 (18)0.00555 (19)
Cl60.0160 (2)0.0299 (3)0.0222 (2)0.0078 (2)0.00399 (18)0.0045 (2)
O10.0288 (8)0.0248 (8)0.0191 (7)0.0095 (6)0.0013 (6)0.0074 (6)
O20.0271 (8)0.0172 (7)0.0181 (7)0.0050 (6)0.0015 (6)0.0043 (6)
O30.0304 (8)0.0336 (9)0.0280 (8)0.0179 (7)0.0118 (7)0.0179 (7)
O40.0179 (7)0.0195 (7)0.0226 (7)0.0069 (6)0.0007 (6)0.0067 (6)
C90.0229 (10)0.0165 (10)0.0165 (9)0.0074 (8)0.0002 (8)0.0020 (8)
C100.0226 (10)0.0186 (10)0.0160 (9)0.0074 (8)0.0015 (8)0.0031 (8)
C110.0194 (10)0.0230 (11)0.0196 (10)0.0070 (8)0.0013 (8)0.0043 (8)
C120.0274 (11)0.0220 (11)0.0152 (9)0.0118 (9)0.0012 (8)0.0056 (8)
C130.0259 (11)0.0185 (10)0.0169 (10)0.0047 (8)0.0030 (8)0.0053 (8)
C140.0198 (10)0.0212 (10)0.0174 (10)0.0063 (8)0.0001 (8)0.0025 (8)
C150.0224 (10)0.0218 (11)0.0213 (10)0.0081 (8)0.0006 (8)0.0059 (9)
C160.0188 (10)0.0222 (11)0.0221 (10)0.0073 (8)0.0001 (8)0.0065 (8)
Cl110.0230 (3)0.0352 (3)0.0328 (3)0.0075 (2)0.0077 (2)0.0096 (2)
Cl120.0392 (3)0.0279 (3)0.0221 (3)0.0144 (2)0.0023 (2)0.0100 (2)
Cl130.0328 (3)0.0232 (3)0.0260 (3)0.0001 (2)0.0011 (2)0.0102 (2)
Cl140.0206 (3)0.0322 (3)0.0304 (3)0.0043 (2)0.0056 (2)0.0068 (2)
O50.0352 (9)0.0203 (8)0.0200 (7)0.0102 (6)0.0034 (6)0.0053 (6)
O60.0543 (11)0.0257 (8)0.0235 (8)0.0112 (8)0.0154 (8)0.0041 (7)
O70.0224 (7)0.0196 (7)0.0203 (7)0.0021 (6)0.0008 (6)0.0048 (6)
O80.0328 (9)0.0247 (8)0.0240 (8)0.0054 (7)0.0080 (7)0.0055 (7)
C170.0192 (10)0.0199 (10)0.0185 (10)0.0031 (8)0.0055 (8)0.0036 (8)
C180.0197 (10)0.0204 (10)0.0190 (10)0.0041 (8)0.0033 (8)0.0027 (8)
C190.0259 (11)0.0236 (11)0.0203 (10)0.0089 (9)0.0020 (8)0.0003 (9)
C200.0324 (12)0.0201 (11)0.0281 (11)0.0093 (9)0.0068 (9)0.0051 (9)
C210.0313 (12)0.0240 (11)0.0232 (11)0.0063 (9)0.0036 (9)0.0078 (9)
C220.0294 (12)0.0263 (12)0.0232 (11)0.0102 (9)0.0037 (9)0.0056 (9)
N10.0263 (9)0.0213 (9)0.0178 (8)0.0085 (7)0.0006 (7)0.0052 (7)
N20.0290 (10)0.0240 (9)0.0218 (9)0.0122 (8)0.0042 (7)0.0089 (7)
C230.0177 (10)0.0181 (10)0.0198 (10)0.0032 (8)0.0041 (8)0.0029 (8)
C240.0174 (10)0.0209 (10)0.0186 (10)0.0047 (8)0.0034 (8)0.0013 (8)
C250.0198 (10)0.0214 (10)0.0233 (10)0.0071 (8)0.0053 (8)0.0003 (8)
C260.0249 (11)0.0212 (11)0.0295 (11)0.0079 (9)0.0068 (9)0.0060 (9)
C270.0237 (11)0.0217 (11)0.0247 (11)0.0048 (8)0.0057 (8)0.0076 (9)
C280.0263 (11)0.0300 (12)0.0222 (11)0.0099 (9)0.0011 (9)0.0064 (9)
N30.0177 (8)0.0203 (9)0.0203 (8)0.0053 (7)0.0009 (7)0.0046 (7)
N40.0270 (10)0.0248 (10)0.0230 (9)0.0131 (8)0.0042 (7)0.0079 (8)
Geometric parameters (Å, º) top
C1—C61.394 (3)C17—N21.330 (3)
C1—C21.401 (3)C17—N11.346 (3)
C1—C71.521 (3)C17—C181.431 (3)
C2—C31.386 (3)C18—C191.371 (3)
C2—C81.530 (3)C18—C221.499 (3)
C3—C41.398 (3)C19—C201.408 (3)
C3—Cl31.727 (2)C19—H190.95
C4—C51.395 (3)C20—C211.359 (3)
C4—Cl41.720 (2)C20—H200.95
C5—C61.388 (3)C21—N11.358 (3)
C5—Cl51.725 (2)C21—H210.95
C6—Cl61.727 (2)C22—H22A0.98
C7—O11.235 (3)C22—H22B0.98
C7—O21.272 (3)C22—H22C0.98
C8—O31.245 (3)N1—H1N0.88
C8—O41.258 (3)N2—H2A0.88
C9—C141.393 (3)N2—H2B0.88
C9—C101.398 (3)C23—N41.333 (3)
C9—C151.511 (3)C23—N31.349 (3)
C10—C111.387 (3)C23—C241.426 (3)
C10—C161.513 (3)C24—C251.363 (3)
C11—C121.401 (3)C24—C281.499 (3)
C11—Cl111.722 (2)C25—C261.410 (3)
C12—C131.392 (3)C25—H250.95
C12—Cl121.722 (2)C26—C271.361 (3)
C13—C141.398 (3)C26—H260.95
C13—Cl131.720 (2)C27—N31.363 (3)
C14—Cl141.724 (2)C27—H270.95
C15—O61.211 (3)C28—H28A0.98
C15—O51.303 (3)C28—H28B0.98
C16—O81.218 (3)C28—H28C0.98
C16—O71.301 (3)N3—H3N0.88
O5—H5O0.84N4—H4A0.88
O7—H7O0.84N4—H4B0.88
C6—C1—C2119.90 (18)N1—C17—C18118.42 (19)
C6—C1—C7121.00 (18)C19—C18—C17117.4 (2)
C2—C1—C7119.10 (17)C19—C18—C22124.00 (19)
C3—C2—C1119.32 (18)C17—C18—C22118.63 (19)
C3—C2—C8121.83 (18)C18—C19—C20122.4 (2)
C1—C2—C8118.71 (18)C18—C19—H19118.8
C2—C3—C4120.66 (18)C20—C19—H19118.8
C2—C3—Cl3119.81 (15)C21—C20—C19118.1 (2)
C4—C3—Cl3119.50 (16)C21—C20—H20121
C5—C4—C3119.92 (18)C19—C20—H20121
C5—C4—Cl4119.63 (15)N1—C21—C20120.1 (2)
C3—C4—Cl4120.44 (16)N1—C21—H21120
C6—C5—C4119.44 (18)C20—C21—H21120
C6—C5—Cl5120.81 (16)C18—C22—H22A109.5
C4—C5—Cl5119.76 (15)C18—C22—H22B109.5
C5—C6—C1120.66 (18)H22A—C22—H22B109.5
C5—C6—Cl6120.07 (15)C18—C22—H22C109.5
C1—C6—Cl6119.25 (15)H22A—C22—H22C109.5
O1—C7—O2125.39 (19)H22B—C22—H22C109.5
O1—C7—C1118.96 (18)C17—N1—C21123.66 (18)
O2—C7—C1115.59 (17)C17—N1—H1N118.2
O3—C8—O4124.88 (19)C21—N1—H1N118.2
O3—C8—C2115.69 (18)C17—N2—H2A120
O4—C8—C2119.41 (18)C17—N2—H2B120
C14—C9—C10119.72 (19)H2A—N2—H2B120
C14—C9—C15122.20 (19)N4—C23—N3118.35 (18)
C10—C9—C15117.98 (18)N4—C23—C24122.8 (2)
C11—C10—C9120.03 (19)N3—C23—C24118.80 (19)
C11—C10—C16122.16 (19)C25—C24—C23117.9 (2)
C9—C10—C16117.30 (18)C25—C24—C28122.84 (19)
C10—C11—C12120.3 (2)C23—C24—C28119.27 (19)
C10—C11—Cl11119.35 (17)C24—C25—C26122.0 (2)
C12—C11—Cl11120.33 (16)C24—C25—H25119
C13—C12—C11119.85 (19)C26—C25—H25119
C13—C12—Cl12119.96 (17)C27—C26—C25118.3 (2)
C11—C12—Cl12120.19 (17)C27—C26—H26120.8
C12—C13—C14119.76 (19)C25—C26—H26120.8
C12—C13—Cl13120.22 (16)C26—C27—N3120.1 (2)
C14—C13—Cl13120.02 (17)C26—C27—H27120
C9—C14—C13120.4 (2)N3—C27—H27120
C9—C14—Cl14119.73 (17)C24—C28—H28A109.5
C13—C14—Cl14119.89 (17)C24—C28—H28B109.5
O6—C15—O5126.7 (2)H28A—C28—H28B109.5
O6—C15—C9121.63 (19)C24—C28—H28C109.5
O5—C15—C9111.51 (18)H28A—C28—H28C109.5
O8—C16—O7126.1 (2)H28B—C28—H28C109.5
O8—C16—C10118.59 (19)C23—N3—C27122.89 (18)
O7—C16—C10115.32 (17)C23—N3—H3N118.6
C15—O5—H5O109.5C27—N3—H3N118.6
C16—O7—H7O109.5C23—N4—H4A120
N2—C17—N1118.96 (19)C23—N4—H4B120
N2—C17—C18122.6 (2)H4A—N4—H4B120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O20.841.802.558 (2)149
O7—H7O···O40.841.832.593 (2)151
N1—H1N···O20.881.832.708 (2)173
N2—H2A···O10.882.072.943 (2)171
N3—H3N···O40.882.012.891 (2)175
N4—H4A···O30.881.932.805 (2)175
N2—H2B···O3i0.881.992.823 (2)157
N4—H4B···O1i0.882.072.892 (2)156
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H9N2+·C8HCl4O42C6H9N2+·C8Cl4O42·C8H2Cl4O4
Mr412.04824.08
Crystal system, space groupOrthorhombic, Pca21Triclinic, P1
Temperature (K)120120
a, b, c (Å)9.441 (14), 12.56 (2), 13.69 (2)8.6972 (17), 13.762 (3), 15.381 (3)
α, β, γ (°)90, 90, 9069.388 (9), 75.342 (10), 72.618 (1)
V3)1623 (4)1621.7 (6)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.750.75
Crystal size (mm)0.33 × 0.16 × 0.060.41 × 0.14 × 0.12
Data collection
DiffractometerRigaku Saturn724+ (2x2 bin mode)
diffractometer
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.866, 0.9560.881, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
5083, 2495, 2302 9810, 5964, 5551
Rint0.0480.033
(sin θ/λ)max1)0.6100.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.127, 1.10 0.036, 0.090, 1.07
No. of reflections24955964
No. of parameters218435
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.500.43, 0.34
Absolute structureFlack (1983)?
Absolute structure parameter0.31 (13)?

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
C7—O21.205 (7)C9—N11.361 (9)
C7—O11.413 (8)C9—N21.402 (10)
C8—O31.248 (8)C13—N11.427 (10)
C8—O41.344 (8)
O2—C7—O1127.0 (6)N1—C9—N2124.9 (6)
O3—C8—O4134.0 (5)C9—N1—C13129.2 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.861.812.666 (8)173
N2—H2A···O2i0.862.112.931 (8)159
N1—H1N···O40.861.712.559 (7)171
O1—H1O···O4ii0.821.832.604 (7)158
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z+1/2.
Selected geometric parameters (Å, º) for (II) top
C7—O11.235 (3)C16—O71.301 (3)
C7—O21.272 (3)C17—N21.330 (3)
C8—O31.245 (3)C17—N11.346 (3)
C8—O41.258 (3)C21—N11.358 (3)
C15—O61.211 (3)C23—N41.333 (3)
C15—O51.303 (3)C23—N31.349 (3)
C16—O81.218 (3)C27—N31.363 (3)
O1—C7—O2125.39 (19)N2—C17—N1118.96 (19)
O3—C8—O4124.88 (19)C17—N1—C21123.66 (18)
O6—C15—O5126.7 (2)N4—C23—N3118.35 (18)
O8—C16—O7126.1 (2)C23—N3—C27122.89 (18)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O20.841.802.558 (2)149
O7—H7O···O40.841.832.593 (2)151
N1—H1N···O20.881.832.708 (2)173
N2—H2A···O10.882.072.943 (2)171
N3—H3N···O40.882.012.891 (2)175
N4—H4A···O30.881.932.805 (2)175
N2—H2B···O3i0.881.992.823 (2)157
N4—H4B···O1i0.882.072.892 (2)156
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

JMC thanks the Royal Society for a University Research Fellowship, the University of New Brunswick for the UNB Vice-Chancellor's Research Chair (JMC), and NSERC for Discovery Grant No. 355708 (for PGW).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBüyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o2749–o2750.  CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Syropyatov, B. Ya., Koz'minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J. 37, 407–408.  CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 121–126.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalloy, J., Putzeys, J.-P., Germain, G. & Van Meerssche, M. (1976). Acta Cryst. B32, 2718–2720.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2192–o2193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIto, K., Moriya, K., Kashino, S. & Haisa, M. (1975). Bull. Chem. Soc. Jpn, 48, 3078–3084.  CrossRef CAS Google Scholar
First citationNi, S.-F., Feng, W.-J., Guo, H. & Jin, Z.-M. (2007). Acta Cryst. E63, o3866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, M.-J., Yuan, J.-P., Mao, L.-H. & Liang, S. (2002). J. Chem. Crystallogr. 31, 191–195.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds