metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Poly[aqua­[μ2-1,4-bis­­(imidazol-1-yl­meth­yl)benzene-κ2N3:N3′](μ2-5-hy­dr­oxy­benzene-1,3-di­carboxyl­ato-κ4O1,O1′:O3,O3′)cadmium(II)], a twofold inter­penetrated CdSO4-like metal–organic polymer

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: chemjlsp@yahoo.com.cn

(Received 18 April 2011; accepted 30 May 2011; online 17 June 2011)

In the title cadmium(II) complex, [Cd(C8H4O5)(C14H14N4)(H2O)]n, the 5-hy­droxy­benzene-1,3-dicarboxyl­ate (5-OH-1,3-bdc) and 1,4-bis­(imidazol-1-ylmeth­yl)benzene (1,4,-bix) lig­ands bridge water-coordinated CdII atoms to generate a three-dimensional network. Two carboxyl­ate groups from different ligands function as O,O′-chelates, while two imidazole N atoms from different ligands coordinate in a monodentate fashion, and one water mol­ecule completes the seven-coordinate penta­gonal bipyramid around the CdII atom, in which the N atoms occupy the axial sites and the O atoms occupy the equatorial sites. The overall architecture is a twofold inter­penetrated CdSO4-type framework. The two crystallographically equivalent frameworks are linked by O—H⋯O hydrogen bonds between the water, hy­droxy and carboxyl­ate groups.

Comment

The design and synthesis of metal–organic frameworks (MOFs) has been an area of rapid growth in recent years owing to the potential applications of MOFs in nonlinear optics, luminescence, magnetism, catalysis, gas absorption, ion exchange and as zeolite-like materials for mol­ecular selection (O'Keeffe et al., 2008[O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782-1789.]). Structural diversity in MOFs can occur as a result of various processes, including supra­molecular isomerism, inter­penetration or inter­weaving (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]; Batten, 2001[Batten, S. R. (2001). CrystEngComm, 18, 1-7.]). Ideally, the topologies of MOFs can be controlled and modified by the coordination geometry preferred by the metal ion and the chemical structure of the organic ligand chosen (Abrahams et al., 1999[Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475-1477.]; Yang et al., 2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]). In this regard, rigid N-donor 4,4′-bipyridine (bipy) and its derivatives have been studied in the construction of MOFs (Qiao et al., 2008[Qiao, Q., Zhao, Y.-J. & Tang, T.-D. (2008). Acta Cryst. C64, m336-m338.]). So far, a number of MOFs based on bipy and its derivatives have been reported, including one-dimensional chains, two-dimensional layers and three-dimensional frameworks (Carlucci et al., 2003[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.]). However, reports of MOFs constructed by flexible N-donor ligands are relatively rare (Wang et al., 2006[Wang, X.-L., Qin, C., Wang, E.-B. & Su, Z.-M. (2006). Chem. Eur. J. 12, 2680-2691.]). Among such ligands, bis­(imidazole) derivatives are a good choice (Yang et al., 2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]), leading to some intriguing inter­penetrating architectures and topologies (Wang et al., 2006[Wang, X.-L., Qin, C., Wang, E.-B. & Su, Z.-M. (2006). Chem. Eur. J. 12, 2680-2691.]). In this work, we chose 5-hy­droxy­benzene-1,3-dicarb­oxy­lic acid (5-OH-1,3-H2bdc) as a dicarboxyl­ate ligand and 1,4-bis­(imidazol-1-ylmeth­yl)benzene (1,4-bix) as a flexible N-donor ligand, yielding a new coordination polymer, [Cd(5-OH-1,3-bdc)(1,4-bix)(H2O)], (I)[link], with a fascinating two­fold inter­penetrated three-dimensional CdSO4-like frame­­work. After the acceptance of this paper, we noticed that the structure of (I) has recently been described by Xia et al. (2011[Xia, D.-C., Yao, J.-H., Zhang, W.-C., Huang, R.-Q., Yang, X.-Q. & Jing, J.-J. (2011). Z. Kristallogr. New Cryst. Struct. 226, 17-18.]). However, the interpenetrated topology and hydrogen-bonding interactions were not well discussed in that report.

[Scheme 1]

The asymmetric unit of (I)[link] contains one CdII atom, one 5-OH-1,3-bdc anion, one 1,4-bix ligand and one coordination water mol­ecule (Fig. 1[link]). Each CdII atom is seven-coordinated in a penta­gonal bipyramid by four carboxyl­ate O atoms from two different 5-OH-1,3-bdc anions, one water O atom and two N atoms from two distinct 1,4-bix ligands. The N atoms occupy the axial sites and the O atoms occupy the equatorial sites of the bipyramid. The Cd—Ocarboxyl­ate distances (Table 1[link]) are comparable to those observed in [Cd(1,4-bdc)(bpdo)(H2O)]n (1,4-bdc is benzene-1,4-dicarboxyl­ate and bpdo is 4,4′-bipyri­dine N,N′-dioxide; Xu & Xie, 2010[Xu, G. & Xie, Y. (2010). Acta Cryst. C66, m201-m203.]).

Each crystallographically unique CdII atom is bridged by the 1,4-bix ligands and 5-OH-1,3-bdc anions to generate a novel three-dimensional framework (Fig. 2[link]). The Cd⋯Cd distances bridged by 1,4-bix and 5-OH-1,3-bdc are 14.3668 (12) and 9.8433 (8) Å, respectively. Topologically, the CdII centre is defined as a four-connected node, and 1,4-bix and the 5-OH-1,3-bdc serve as linkers. Therefore, on the basis of the concept of chemical topology, the overall structure of (I)[link] is a four-connected framework with the Schläfli symbol of 658. Topological analysis reveals that this three-dimensional framework is a typical CdSO4 net. Inter­estingly, the large spaces in the single three-dimensional framework allow another identical framework to inter­penetrate it, providing a twofold inter­penetrating CdSO4 framework (Fig. 3[link]). Each CdSO4 net is hydrogen bonded to its neighbour through O—H⋯O hydrogen bonds among the water mol­ecules, hy­droxy group and carboxyl­ate O atoms (Table 2[link]).

So far, some related inter­penetrated CdSO4-like MOFs based on both dicarboxyl­ate and flexible N-donor bridging ligands have been reported. The structure of [Zn2(1,4-bdc)Cl2(bpp)]n [1,4-bdc is benzene-1,4-dicarboxyl­ate and bpp is 1,3-bis­(4-pyrid­yl)propane; Zhang et al., 2006[Zhang, J., Chen, Y.-B., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2006). Inorg. Chem. Commun. 9, 449-451.]] also contains two crystallographically equivalent nets, but differs from (I)[link] in that the four-connected nodes are based on ZnII dimers rather than mononuclear complexes. [Zn(mip)(bpa)]n [mip is 5-methyl­isophthalate and bpa is 1,2-bis­(4-pyrid­yl)ethane; Ma et al., 2009[Ma, L.-F., Wang, L.-Y., Hu, J.-L., Wang, Y.-Y. & Yang, G.-P. (2009). Cryst. Growth Des. 9, 5334-5342.]] shows an unusual threefold inter­penetrated CdSO4 topology. [Ni(oba)(bbi)]2·H2O [oba is 4,4′-oxybis(benzoate) and bbi is 1,1′-(1,4-butanedi­yl)bis­(imidazole); Yang et al., 2009[Yang, J., Ma, J.-F., Liu, Y.-Y. & Batten, S. R. (2009). CrystEngComm, 11, 151-159.]] also shows twofold inter­penetrated nets as in (I)[link]; however, the nets are crystallographically distinct.

[Figure 1]
Figure 1
A view of the local coordination of the CdII atom in (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y + 1, z − 1; (ii) x + [{1\over 2}], −y + 1, z − [{1\over 2}].]
[Figure 2]
Figure 2
A view of a single CdSO4 net of (I)[link], showing bridging by 1,4-bix and 5-OH-1,3-bdc ligands.
[Figure 3]
Figure 3
A view of the twofold inter­penetrating three-dimensional CdSO4 net of (I)[link].

Experimental

A mixture of CdCl2·2.5H2O (0.5 mmol), 1,4-bis­(imidazol-1-ylmeth­yl)benzene (0.5 mmol), 5-hy­droxy­benzene-1,3-dicarb­oxy­lic acid (0.5 mmol) and water (12 ml) was sealed in a 23 ml Teflon-lined stainless steel Parr bomb. The bomb was heated at 413 K for 3 d and then cooled to room temperature. Colourless block-shaped crystals were collected and washed with water; the yield based on Cd was about 40%.

Crystal data
  • [Cd(C8H4O5)(C14H14N4)(H2O)]

  • Mr = 548.82

  • Monoclinic, P n

  • a = 11.5800 (9) Å

  • b = 8.4221 (6) Å

  • c = 11.6393 (9) Å

  • β = 113.354 (1)°

  • V = 1042.16 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.11 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.39, Tmax = 0.57

  • 6155 measured reflections

  • 3693 independent reflections

  • 3404 reflections with I > 2σ(I)

  • Rint = 0.031

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.054

  • S = 1.02

  • 3693 reflections

  • 307 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 984 Friedel pairs

  • Flack parameter: −0.013 (19)

Table 1
Selected geometric parameters (Å, °)

Cd1—N4i 2.244 (3)
Cd1—N1 2.282 (3)
Cd1—O3ii 2.384 (3)
Cd1—O2 2.423 (3)
Cd1—O1W 2.465 (3)
Cd1—O1 2.499 (3)
Cd1—O4ii 2.554 (3)
N4i—Cd1—N1 166.24 (13)
N4i—Cd1—O3ii 110.30 (11)
N1—Cd1—O3ii 82.34 (11)
N4i—Cd1—O2 92.80 (11)
N1—Cd1—O2 82.46 (11)
O3ii—Cd1—O2 130.03 (10)
N4i—Cd1—O1W 83.67 (12)
N1—Cd1—O1W 83.19 (12)
O3ii—Cd1—O1W 137.45 (11)
O2—Cd1—O1W 87.01 (12)
N4i—Cd1—O1 100.22 (10)
N1—Cd1—O1 87.43 (11)
O3ii—Cd1—O1 78.21 (9)
O2—Cd1—O1 53.80 (10)
O1W—Cd1—O1 140.62 (11)
N4i—Cd1—O4ii 86.42 (11)
N1—Cd1—O4ii 97.77 (11)
O3ii—Cd1—O4ii 52.44 (9)
O2—Cd1—O4ii 177.49 (12)
O1W—Cd1—O4ii 90.53 (11)
O1—Cd1—O4ii 128.69 (9)
Symmetry codes: (i) x, y+1, z-1; (ii) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4iii 0.81 (1) 1.89 (2) 2.675 (4) 162 (5)
O1W—HW12⋯O3iv 0.85 (1) 2.00 (2) 2.813 (4) 161 (5)
O1W—HW11⋯O1v 0.85 (1) 2.29 (4) 2.935 (4) 133 (4)
Symmetry codes: (iii) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) x, y, z-1; (v) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Carbon-bound H atoms were positioned geometrically [C—H = 0.93 (aromatic) or 0.97 Å (methyl­ene)] and included as riding atoms, with Uiso(H) values fixed at 1.2Ueq(C). H atoms of water mol­ecules were located in difference Fourier maps and refined isotropically with distance restraints of O—H = 0.85 (1) Å and H⋯H = 1.35 (1) Å, and with Uiso(H) = 1.5Ueq(O). The hy­droxy H atom was located in a difference Fourier map and refined isotropically with a distance restraint of O—H = 0.82 (1) Å and with Uiso(H) = 1.5Ueq(O).

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and synthesis of metal–organic frameworks (MOFs) have been an area of rapid growth in recent years owing to the potential applications of MOFs in nonlinear optics, luminescence, magnetism, catalysis, gas absorption, ion exchange and as zeolite-like materials for molecular selection (O'Keeffe et al., 2008). Structural diversity in MOFs can occur as a result of various processes, including supramolecular isomerism, interpenetration or interweaving (Batten & Robson, 1998; Batten, 2001). Ideally, the topologies of MOFs can be controlled and modified by the coordination geometry preferred by the metal ion and the chemical structure of the organic ligand chosen (Abrahams et al., 1999; Yang et al., 2008). In this regard, rigid N-donor 4,4'-bipyridine (bipy) and its derivatives have been studied in the construction of MOFs (Qiao et al., 2008). So far, a number of MOFs based on bipy and its derivatives have been reported, including one-dimensional chain, two-dimensional layer and three-dimensional frameworks (Carlucci et al., 2003). However, reports of MOFs constructed by flexible N-donor ligands are relatively rare (Wang et al., 2006). Among such ligands, bis(imidazole) derivatives are a good choice (Yang et al., 2008) leading to some intriguing interpenetrating architectures and topologies (Wang et al., 2006). In this work, we chose 5-hydroxybenzene-1,3-dicarboxylic acid (5-OH-1,3-H2bdc) as a dicarboxylate ligand and 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) as a flexible N-donor ligand, yielding a new coordination polymer, [Cd(1,4-bix)(5-OH-1,3-bdc)(H2O)], (I), with a fascinating twofold interpenetrated three-dimensional CdSO4-like framework.

The asymetric unit of (I) contains one CdII atom, one 5-OH-1,3-bdc anion, one 1,4-bix ligand and one coordination water molecule (Fig. 1). Each CdII atom is seven-coordinated in a pentagonal bipyramid by four carboxylate oxygen atoms from two different 5-OH-1,3-bdc anions, one water oxygen atom and two nitrogen atoms from two distinct 1,4-bix ligands. The N atoms occupy the apical sites and the O atoms occupy the equatorial sites of the bipyramid. The Cd—Ocarboxylate distances (Table 1) are comparable to those observed in [Cd(bpdo)(1,4-bdc)(H2O)]n (1,4-bdc = benzene-1,4-dicarboxylate and bpdo = 4,4'-bipyridine N,N'-dioxide) (Xu & Xie, 2010).

Each crystallographically unique CdII atom is bridged by the 1,4-bix ligands and 5-OH-1,3-bdc anions to generate a novel three-dimensional framework (Fig. 2). The Cd···Cd distances bridged by 1,4-bix and 5-OH-1,3-bdc are 14.368 (3) and 9.844 (3) Å, respectively. Topologically, the CdII centre is defined as a four-connected node, and the 1,4-bix and the 5-OH-1,3-bdc serve as linkers. Therefore, on the basis of the concept of chemical topology, the overall structure of (I) is a four-connected framework with the Schläfli symbol of 658. Topological analysis reveals that this three-dimensional framework is a typical CdSO4 net. Interestingly, the large spaces in the single three-dimensional framework allow another identical framework to interpenetrate it, providing a twofold interpenetrating CdSO4 framework (Fig. 3). Each CdSO4 net is hydrogen bonded to its neighbour through O—H···O hydrogen bonds among the water molecules, hydroxy group and carboxylate oxygen atoms (Table 2).

So far, some related interpenetrated CdSO4-like MOFs based on both dicarboxylate and flexible N-donor bridging ligands have been reported. The structure of [Zn2(1,4-bdc)(bpp)Cl2]n (1,4-bdc = 1,4-benzenedicarboxylate and bpp = 1,3-bis(4-pyridyl)propane) (Zhang et al., 2006) also contains two crystallographically equivalent nets, but differs from (I) in that the four-connected nodes are based on ZnII dimers rather than mononuclear complexes. [Zn(mip)(bpa)]n [mip = 5-methylisophthalate and bpa = 1,2-bis(4-pyridyl)ethane] (Ma et al., 2009) shows an unusual threefold interpenetrated CdSO4 topology. [Ni(oba)(bbi)]2.H2O [oba = 4,4'-oxybis(benzoate) and bbi = 1,1'-(1,4-butanediyl)bis(imidazole)] (Yang et al., 2009) also shows twofold interpenetrated nets as in (I); however, the nets are crystallographically distinct. Thus, we believe that (I) represents the first example of this specific type of architecture in a Cd–dicarboxylate–flexible-N-donor system.

Related literature top

For related literature, see: Abrahams et al. (1999); Batten (2001); Batten & Robson (1998); Carlucci et al. (2003); Ma et al. (2009); O'Keeffe et al. (2008); Qiao et al. (2008); Wang et al. (2006); Xu & Xie (2010); Yang et al. (2008, 2009); Zhang et al. (2006).

Experimental top

A mixture of CdCl2.2.5H2O (0.5 mmol), 1,4-bis(imidazol-1-ylmethyl)benzene (0.5 mmol), 5-hydroxybenzene-1,3-dicarboxylic acid (0.5 mmol) and water (12 ml) was sealed in a 23 ml Teflon-lined stainless-steel Parr bomb. The bomb was heated at 413 K for 3 d. It was then cooled to room temperature. Colourless block-shaped crystals were collected and washed with water; the yield based on Cd was about 40%.

Refinement top

Carbon-bound H atoms were positioned geometrically [C—H = 0.93 (aromatic) or 0.97 (methylene) Å] and included as riding atoms with Uiso(H) fixed at 1.2Ueq(C). H atoms bonded to water molecules were located in difference Fourier maps and refined isotropically with distance restraints of O—H = 0.85 (1) and H···H = 1.35 (1) with Uiso = 1.5Ueq(O). The hydroxy H atom was located in a difference Fourier map and refined isotropically with a distance restraint of O—H = 0.82 (1) Å and Uiso = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the CdII atom in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y - 1, z - 1; (ii) x + 1/2, -y + 1, z - 1/2.]
[Figure 2] Fig. 2. View of a single CdSO4 net of (I), showing bridging by 1,4-bix and 5-OH-1,3-bdc ligands.
[Figure 3] Fig. 3. View of the twofold interpenetrating three-dimensional CdSO4 net of (I).
Poly[aqua[µ2-1,4-bis(imidazol-1-ylmethyl)benzene- κ2N3:N3'](µ2-5-hydroxybenzene-1,3-dicarboxylato- κ4O1,O1':O3,O3']cadmium(II)] top
Crystal data top
[Cd(C8H4O5)(C14H14N4)(H2O)]F(000) = 552
Mr = 548.82Dx = 1.749 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 2693 reflections
a = 11.5800 (9) Åθ = 2.1–28.3°
b = 8.4221 (6) ŵ = 1.10 mm1
c = 11.6393 (9) ÅT = 293 K
β = 113.354 (1)°Block, colorless
V = 1042.16 (14) Å30.18 × 0.16 × 0.11 mm
Z = 2
Data collection top
Bruker APEX
diffractometer
3693 independent reflections
Radiation source: fine-focus sealed tube3404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1015
Tmin = 0.39, Tmax = 0.57k = 118
6155 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0136P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3693 reflectionsΔρmax = 0.38 e Å3
307 parametersΔρmin = 0.39 e Å3
6 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (19)
Crystal data top
[Cd(C8H4O5)(C14H14N4)(H2O)]V = 1042.16 (14) Å3
Mr = 548.82Z = 2
Monoclinic, PnMo Kα radiation
a = 11.5800 (9) ŵ = 1.10 mm1
b = 8.4221 (6) ÅT = 293 K
c = 11.6393 (9) Å0.18 × 0.16 × 0.11 mm
β = 113.354 (1)°
Data collection top
Bruker APEX
diffractometer
3693 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3404 reflections with I > 2σ(I)
Tmin = 0.39, Tmax = 0.57Rint = 0.031
6155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.38 e Å3
S = 1.02Δρmin = 0.39 e Å3
3693 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
307 parametersAbsolute structure parameter: 0.013 (19)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.74827 (2)0.59903 (3)0.92168 (2)0.02739 (7)
C10.8351 (4)0.2245 (5)1.0146 (4)0.0371 (9)
H10.90610.22740.99600.044*
C20.8004 (5)0.0995 (5)1.0672 (5)0.0371 (11)
H20.84160.00261.09060.045*
C30.6645 (4)0.2929 (4)1.0332 (4)0.0340 (9)
H30.59490.35051.03020.041*
C40.6212 (4)0.0550 (4)1.1358 (4)0.0359 (9)
H4A0.63080.05721.12300.043*
H4B0.53270.08091.09320.043*
C50.6608 (4)0.0849 (4)1.2738 (4)0.0346 (9)
C60.7597 (5)0.1817 (6)1.3458 (5)0.0395 (12)
H60.80800.23081.30850.047*
C70.5911 (4)0.0142 (5)1.3327 (4)0.0417 (10)
H70.52480.05241.28680.050*
C80.6178 (5)0.0400 (5)1.4583 (4)0.0451 (11)
H80.57010.01021.49570.054*
C90.7152 (5)0.1403 (5)1.5283 (4)0.0348 (11)
C100.7887 (5)0.2071 (5)1.4711 (4)0.0425 (11)
H100.85770.26941.51770.051*
C110.7392 (5)0.1826 (5)1.6620 (4)0.0429 (11)
H11A0.82830.20301.70740.052*
H11B0.69430.27971.66240.052*
C120.5960 (4)0.0628 (5)1.7552 (4)0.0405 (10)
H120.53700.14391.73650.049*
C130.5961 (4)0.0752 (4)1.8158 (4)0.0373 (9)
H130.53650.10411.84690.045*
C140.7585 (4)0.0810 (4)1.7695 (4)0.0363 (9)
H140.83170.11351.76140.044*
C150.4697 (4)0.4802 (4)1.3868 (3)0.0273 (8)
C160.5843 (4)0.5526 (4)1.3806 (3)0.0264 (8)
C170.5929 (4)0.5792 (4)1.2659 (3)0.0269 (8)
H170.52560.55461.19160.032*
C180.7039 (4)0.6434 (4)1.2634 (4)0.0274 (8)
C190.7169 (4)0.6621 (4)1.1412 (4)0.0300 (9)
C200.8022 (4)0.6847 (5)1.3746 (4)0.0282 (8)
H200.87510.72901.37300.034*
C210.7921 (4)0.6600 (4)1.4888 (3)0.0293 (8)
C220.6843 (4)0.5937 (4)1.4904 (4)0.0279 (9)
H220.67830.57611.56670.033*
N10.7499 (3)0.3462 (4)0.9927 (3)0.0334 (8)
N20.6920 (3)0.1456 (3)1.0788 (3)0.0317 (8)
N30.7004 (4)0.0586 (4)1.7272 (3)0.0348 (9)
N40.6982 (3)0.1657 (4)1.8238 (3)0.0334 (8)
O10.8266 (3)0.6877 (3)1.1446 (2)0.0371 (7)
O20.6211 (3)0.6472 (4)1.0407 (3)0.0361 (7)
O30.4686 (3)0.4481 (3)1.4917 (2)0.0396 (7)
O40.3735 (3)0.4533 (4)1.2877 (3)0.0380 (7)
O50.8918 (3)0.7014 (4)1.5949 (3)0.0421 (7)
H50.896 (5)0.670 (6)1.662 (2)0.063*
O1W0.5537 (3)0.5093 (4)0.7498 (3)0.0542 (9)
HW110.486 (3)0.483 (7)0.756 (4)0.081*
HW120.537 (4)0.511 (7)0.6721 (14)0.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03035 (12)0.03188 (12)0.02375 (11)0.00339 (19)0.01479 (9)0.00450 (17)
C10.030 (2)0.038 (2)0.041 (2)0.0026 (19)0.011 (2)0.0045 (18)
C20.036 (3)0.034 (3)0.035 (3)0.011 (2)0.007 (2)0.0015 (19)
C30.038 (2)0.026 (2)0.040 (2)0.0083 (18)0.017 (2)0.0066 (16)
C40.045 (3)0.0257 (19)0.038 (2)0.0018 (18)0.018 (2)0.0030 (16)
C50.039 (2)0.027 (2)0.039 (2)0.0086 (18)0.016 (2)0.0055 (17)
C60.043 (3)0.043 (3)0.037 (3)0.006 (3)0.021 (2)0.008 (2)
C70.044 (3)0.040 (2)0.042 (2)0.009 (2)0.018 (2)0.0049 (19)
C80.054 (3)0.042 (2)0.047 (3)0.011 (2)0.029 (3)0.000 (2)
C90.041 (3)0.030 (2)0.032 (2)0.0031 (19)0.013 (2)0.0083 (17)
C100.047 (3)0.038 (2)0.046 (3)0.008 (2)0.022 (2)0.0024 (18)
C110.063 (3)0.029 (2)0.037 (2)0.004 (2)0.020 (2)0.0042 (18)
C120.034 (3)0.041 (2)0.041 (2)0.007 (2)0.010 (2)0.0008 (18)
C130.030 (2)0.039 (2)0.044 (2)0.0001 (18)0.016 (2)0.0018 (18)
C140.045 (3)0.033 (2)0.035 (2)0.0033 (19)0.021 (2)0.0006 (17)
C150.027 (2)0.031 (2)0.029 (2)0.0020 (16)0.0158 (18)0.0016 (15)
C160.027 (2)0.0323 (19)0.0235 (19)0.0039 (15)0.0146 (17)0.0002 (14)
C170.0237 (19)0.035 (2)0.0221 (18)0.0014 (16)0.0089 (16)0.0007 (15)
C180.035 (2)0.0288 (19)0.025 (2)0.0035 (16)0.0184 (18)0.0014 (14)
C190.050 (3)0.0209 (18)0.029 (2)0.0050 (18)0.026 (2)0.0039 (15)
C200.026 (2)0.032 (2)0.031 (2)0.0019 (18)0.0155 (18)0.0073 (17)
C210.026 (2)0.033 (2)0.025 (2)0.0042 (17)0.0064 (18)0.0023 (15)
C220.029 (2)0.034 (2)0.0222 (19)0.0005 (18)0.0125 (17)0.0026 (16)
N10.037 (2)0.0320 (17)0.0317 (18)0.0050 (15)0.0140 (16)0.0031 (13)
N20.040 (2)0.0265 (17)0.0313 (19)0.0057 (15)0.0169 (17)0.0032 (13)
N30.048 (3)0.0309 (18)0.027 (2)0.0075 (18)0.017 (2)0.0054 (15)
N40.039 (2)0.0335 (17)0.0289 (18)0.0012 (15)0.0146 (16)0.0032 (13)
O10.0397 (17)0.0464 (17)0.0346 (16)0.0003 (14)0.0248 (15)0.0021 (12)
O20.045 (2)0.0384 (16)0.0290 (17)0.0068 (16)0.0191 (16)0.0056 (13)
O30.0350 (17)0.0622 (19)0.0284 (15)0.0083 (14)0.0199 (14)0.0006 (13)
O40.0266 (17)0.0599 (19)0.0260 (16)0.0037 (17)0.0090 (14)0.0046 (15)
O50.0351 (17)0.061 (2)0.0257 (15)0.0080 (15)0.0070 (14)0.0037 (14)
O1W0.047 (2)0.075 (2)0.0317 (16)0.0192 (18)0.0054 (15)0.0046 (16)
Geometric parameters (Å, º) top
Cd1—N4i2.244 (3)C11—H11B0.9700
Cd1—N12.282 (3)C12—C131.359 (5)
Cd1—O3ii2.384 (3)C12—N31.370 (6)
Cd1—O22.423 (3)C12—H120.9300
Cd1—O1W2.465 (3)C13—N41.378 (5)
Cd1—O12.499 (3)C13—H130.9300
Cd1—O4ii2.554 (3)C14—N41.322 (5)
C1—C21.357 (6)C14—N31.347 (5)
C1—N11.375 (5)C14—H140.9300
C1—H10.9300C15—O31.256 (4)
C2—N21.371 (6)C15—O41.267 (5)
C2—H20.9300C15—C161.488 (5)
C3—N11.331 (5)C16—C221.386 (5)
C3—N21.337 (4)C16—C171.396 (5)
C3—H30.9300C17—C181.405 (5)
C4—N21.457 (5)C17—H170.9300
C4—C51.507 (6)C18—C201.387 (6)
C4—H4A0.9700C18—C191.496 (5)
C4—H4B0.9700C19—O21.260 (5)
C5—C71.383 (6)C19—O11.274 (5)
C5—C61.385 (7)C20—C211.395 (5)
C6—C101.377 (7)C20—H200.9300
C6—H60.9300C21—O51.359 (5)
C7—C81.386 (6)C21—C221.375 (5)
C7—H70.9300C22—H220.9300
C8—C91.386 (7)N4—Cd1iii2.244 (3)
C8—H80.9300O3—Cd1iv2.384 (3)
C9—C101.390 (6)O4—Cd1iv2.554 (3)
C9—C111.512 (6)O5—H50.814 (10)
C10—H100.9300O1W—HW110.846 (10)
C11—N31.463 (5)O1W—HW120.847 (10)
C11—H11A0.9700
N4i—Cd1—N1166.24 (13)N3—C11—H11B108.9
N4i—Cd1—O3ii110.30 (11)C9—C11—H11B108.9
N1—Cd1—O3ii82.34 (11)H11A—C11—H11B107.7
N4i—Cd1—O292.80 (11)C13—C12—N3106.4 (4)
N1—Cd1—O282.46 (11)C13—C12—H12126.8
O3ii—Cd1—O2130.03 (10)N3—C12—H12126.8
N4i—Cd1—O1W83.67 (12)C12—C13—N4109.4 (4)
N1—Cd1—O1W83.19 (12)C12—C13—H13125.3
O3ii—Cd1—O1W137.45 (11)N4—C13—H13125.3
O2—Cd1—O1W87.01 (12)N4—C14—N3111.3 (4)
N4i—Cd1—O1100.22 (10)N4—C14—H14124.4
N1—Cd1—O187.43 (11)N3—C14—H14124.4
O3ii—Cd1—O178.21 (9)O3—C15—O4120.2 (4)
O2—Cd1—O153.80 (10)O3—C15—C16119.2 (4)
O1W—Cd1—O1140.62 (11)O4—C15—C16120.6 (3)
N4i—Cd1—O4ii86.42 (11)C22—C16—C17119.4 (3)
N1—Cd1—O4ii97.77 (11)C22—C16—C15119.5 (3)
O3ii—Cd1—O4ii52.44 (9)C17—C16—C15121.0 (3)
O2—Cd1—O4ii177.49 (12)C16—C17—C18119.7 (4)
O1W—Cd1—O4ii90.53 (11)C16—C17—H17120.2
O1—Cd1—O4ii128.69 (9)C18—C17—H17120.2
C2—C1—N1110.0 (4)C20—C18—C17119.7 (3)
C2—C1—H1125.0C20—C18—C19120.4 (4)
N1—C1—H1125.0C17—C18—C19119.9 (4)
C1—C2—N2105.8 (4)O2—C19—O1123.1 (3)
C1—C2—H2127.1O2—C19—C18119.3 (4)
N2—C2—H2127.1O1—C19—C18117.7 (4)
N1—C3—N2111.2 (3)C18—C20—C21120.3 (4)
N1—C3—H3124.4C18—C20—H20119.8
N2—C3—H3124.4C21—C20—H20119.8
N2—C4—C5114.1 (3)O5—C21—C22122.7 (3)
N2—C4—H4A108.7O5—C21—C20117.8 (4)
C5—C4—H4A108.7C22—C21—C20119.5 (4)
N2—C4—H4B108.7C21—C22—C16121.3 (3)
C5—C4—H4B108.7C21—C22—H22119.3
H4A—C4—H4B107.6C16—C22—H22119.3
C7—C5—C6117.3 (4)C3—N1—C1105.2 (3)
C7—C5—C4117.7 (4)C3—N1—Cd1122.9 (3)
C6—C5—C4125.0 (4)C1—N1—Cd1131.7 (3)
C10—C6—C5121.9 (5)C3—N2—C2107.8 (3)
C10—C6—H6119.1C3—N2—C4125.3 (3)
C5—C6—H6119.1C2—N2—C4126.8 (3)
C5—C7—C8121.7 (4)C14—N3—C12107.2 (3)
C5—C7—H7119.2C14—N3—C11126.9 (4)
C8—C7—H7119.2C12—N3—C11125.9 (4)
C7—C8—C9120.3 (4)C14—N4—C13105.7 (3)
C7—C8—H8119.9C14—N4—Cd1iii129.8 (3)
C9—C8—H8119.9C13—N4—Cd1iii124.4 (3)
C8—C9—C10118.4 (4)C19—O1—Cd188.3 (2)
C8—C9—C11121.5 (4)C19—O2—Cd192.1 (2)
C10—C9—C11120.0 (5)C15—O3—Cd1iv97.2 (2)
C6—C10—C9120.4 (5)C15—O4—Cd1iv89.0 (2)
C6—C10—H10119.8C21—O5—H5120 (4)
C9—C10—H10119.8Cd1—O1W—HW11126 (3)
N3—C11—C9113.4 (4)Cd1—O1W—HW12128 (3)
N3—C11—H11A108.9HW11—O1W—HW12106 (4)
C9—C11—H11A108.9
Symmetry codes: (i) x, y+1, z1; (ii) x+1/2, y+1, z1/2; (iii) x, y1, z+1; (iv) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4v0.81 (1)1.89 (2)2.675 (4)162 (5)
O1W—HW12···O3vi0.85 (1)2.00 (2)2.813 (4)161 (5)
O1W—HW11···O1vii0.85 (1)2.29 (4)2.935 (4)133 (4)
Symmetry codes: (v) x+1/2, y+1, z+1/2; (vi) x, y, z1; (vii) x1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O5)(C14H14N4)(H2O)]
Mr548.82
Crystal system, space groupMonoclinic, Pn
Temperature (K)293
a, b, c (Å)11.5800 (9), 8.4221 (6), 11.6393 (9)
β (°) 113.354 (1)
V3)1042.16 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.18 × 0.16 × 0.11
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.39, 0.57
No. of measured, independent and
observed [I > 2σ(I)] reflections
6155, 3693, 3404
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.054, 1.02
No. of reflections3693
No. of parameters307
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.39
Absolute structureFlack (1983), ???? Friedel pairs
Absolute structure parameter0.013 (19)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cd1—N4i2.244 (3)Cd1—O1W2.465 (3)
Cd1—N12.282 (3)Cd1—O12.499 (3)
Cd1—O3ii2.384 (3)Cd1—O4ii2.554 (3)
Cd1—O22.423 (3)
N4i—Cd1—N1166.24 (13)N1—Cd1—O187.43 (11)
N4i—Cd1—O3ii110.30 (11)O3ii—Cd1—O178.21 (9)
N1—Cd1—O3ii82.34 (11)O2—Cd1—O153.80 (10)
N4i—Cd1—O292.80 (11)O1W—Cd1—O1140.62 (11)
N1—Cd1—O282.46 (11)N4i—Cd1—O4ii86.42 (11)
O3ii—Cd1—O2130.03 (10)N1—Cd1—O4ii97.77 (11)
N4i—Cd1—O1W83.67 (12)O3ii—Cd1—O4ii52.44 (9)
N1—Cd1—O1W83.19 (12)O2—Cd1—O4ii177.49 (12)
O3ii—Cd1—O1W137.45 (11)O1W—Cd1—O4ii90.53 (11)
O2—Cd1—O1W87.01 (12)O1—Cd1—O4ii128.69 (9)
N4i—Cd1—O1100.22 (10)
Symmetry codes: (i) x, y+1, z1; (ii) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4iii0.814 (10)1.888 (19)2.675 (4)162 (5)
O1W—HW12···O3iv0.847 (10)2.00 (2)2.813 (4)161 (5)
O1W—HW11···O1v0.846 (10)2.29 (4)2.935 (4)133 (4)
Symmetry codes: (iii) x+1/2, y+1, z+1/2; (iv) x, y, z1; (v) x1/2, y+1, z1/2.
 

Acknowledgements

We thank Jilin Normal University and the University of Malaya for supporting this study.

References

First citationAbrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475–1477.  Web of Science CrossRef CAS Google Scholar
First citationBatten, S. R. (2001). CrystEngComm, 18, 1–7.  Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMa, L.-F., Wang, L.-Y., Hu, J.-L., Wang, Y.-Y. & Yang, G.-P. (2009). Cryst. Growth Des. 9, 5334–5342.  CrossRef CAS Google Scholar
First citationO'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782–1789.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQiao, Q., Zhao, Y.-J. & Tang, T.-D. (2008). Acta Cryst. C64, m336–m338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B. & Su, Z.-M. (2006). Chem. Eur. J. 12, 2680–2691.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-C., Yao, J.-H., Zhang, W.-C., Huang, R.-Q., Yang, X.-Q. & Jing, J.-J. (2011). Z. Kristallogr. New Cryst. Struct. 226, 17–18.  CAS Google Scholar
First citationXu, G. & Xie, Y. (2010). Acta Cryst. C66, m201–m203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar
First citationYang, J., Ma, J.-F., Liu, Y.-Y. & Batten, S. R. (2009). CrystEngComm, 11, 151–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Chen, Y.-B., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2006). Inorg. Chem. Commun. 9, 449–451.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds