metal-organic compounds
Two W/Cu/S clusters: tetraethylammonium bromidodi-μ2-sulfido-sulfido[tris(3,5-dimethylpyrazol-1-yl)borato]copper(I)tungsten(VI) and tetraethylammonium dibromido-μ3-sulfido-di-μ2-sulfido-[tris(3,5-dimethylpyrazol-1-yl)borato]dicopper(I)tungsten(VI)
aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: weizh@ncu.edu.cn
The reaction of (Et4N)[Tp*WS3] [Tp* = hydrogen tris(3,5-dimethylpyrazol-1-yl)borate] with one or two equivalents of CuBr afforded the [1 + 1] and [1 + 2] addition products (Et4N)[Tp*WS(μ-S)2(CuBr)] {or (C8H20N)[CuWBr(C15H22BN6)S3], (I)} and (Et4N)[Tp*W(μ3-S)(μ-S)2(CuBr)2] {or (C8H20N)[Cu2WBr2(C15H22BN6)S3], (II)}. The anion of (I) contains a [W(μ-S)2Cu] core formed by the addition of one CuBr unit to the [Tp*WS3] species. The anion of (II) has a butterfly-shaped [W(μ3-S)(μ-S)2Cu2] core formed by the addition of two CuBr units to the [Tp*WS3] species. The [Tp*WS3] sections of each complex exhibit approximate C3v and have closely comparable geometry. In (II), both the anion and cation lie on a crystallographic mirror plane. The structure of (I) is noncentrosymmetric and polar.
Comment
In the past decades, the chemistry of Mo(W)/Cu/S clusters derived from reactions of metal sulfide synthons such as [MOxS4−x]2− or [Cp*MS3]− (M = Mo or W, x = 0–3, Cp* = pentamethylcyclopentadienyl) with CuX (X = Cl, Br, I, NCS, CN) has been investigated extensively because of their novel structures (Chisholm et al., 2002; Parkin, 2004; Zulys et al., 2005) and their potential applications in biological systems (Lewinski et al., 2006) and opto-electronic materials (Vahrenkamp, 1999). Among these Mo(W)/Cu/S clusters, a complete series of products obtained by the stepwise addition of CuX has not previously been realized in a system involving the same components CuX and [MS4]2− or [EMS3]n− (E = O, n = 2 or E = Cp*, n = 1) in different molar ratios (Bunge et al., 2007; Boomishankar et al., 2006; Malik et al., 1997; Kaupp et al., 1991). Recently, we have investigated the preparation of Mo(W)/Cu/S clusters from the precursor (Et4N)[Tp*WS3], where Tp* = hydrogen tris(3,5-dimethylpyrazol-1-yl)borate (Seino et al., 2001), and this compound has been found to undergo stepwise addition reactions with one to four equivalents of CuNCS to yield the products [Tp*WS3(CuNCS)n]− (n = 1 or 2), [Tp*WS3(CuNCS)3Br]2− and the polymeric {Tp*WS3(CuNCS)4}− (Wei, Li, Ren et al., 2009). In a continuation of our work in this area, we treated the precursor (Et4N)[Tp*WS3] with one to three equivalents of CuBr in a stepwise manner (Scheme 1 shows the stepwise addition of Cu+ to the WS3 core to construct a cubane-like unit) and
obtained the [1 + 1], [1 + 2] and [1 + 3] products, (Et4N)[Tp*WS(μ-S)2(CuBr)], (Et4N)[Tp*W(μ3-S)(μ-S)2(CuBr)2] and (Et4N)[Tp*W(μ3-S)3(CuBr)3]. We have reported the of the [1 + 3] product previously (Wei, Li, Cheng et al., 2009). We report herein he crystal structures of the [1 + 1] and [1 + 2] complexes, (I) and (II).The anion of complex (I) comprises a [Tp*WS3]− unit and one CuBr group, with a pair of μ-S atoms forming a WS2Cu ring (Fig. 1). One terminal S atom is retained. The structure closely resembles that of the anion in the related compound (Et4N)[Tp*WS(μ-S)2(CuNCS)] (Wei, Li, Ren et al., 2009). It is noteworthy that the comparable [1 + 1] addition complex is not known among the M/Cu/S clusters based on the related precursor [PPh3][Cp*MS3], while for the (Et4N)[OMS3] precursor, reactions with one equivalent of CuCl and CuCN have been reported to yield the products [Me4N][WOS(μ-S)2(CuCl)] (Shamsur Rahman et al., 2000) and (Et4N)[MoOS(μ-S)2(CuCN)] (Zhang et al., 2008), respectively. In (I), atom Cu1 adopts a trigonal planar geometry, coordinated by one terminal Br atom and two μ-S atoms. The W1⋯Cu1 distance of 2.5893 (11) Å is slightly shorter than those in other butterfly-shaped or incomplete cubane core clusters. The terminal W1—S3 bond length of 2.141 (3) Å is similar to that in [WS4Cu2(dppm)3] [2.146 (4) Å; dppm = bis(diphenylphosphino)methane; Lang & Tatsumi, 1998], but slightly shorter than those in the corresponding precursor (Et4N)[Tp*WS3] (mean 2.193 Å; Seino et al., 2001) and in the cluster (Et4N)[Tp*WS(μ-S)2(CuNCS)] [2.154 (3) Å; Wei, Li, Ren et al., 2009]. The mean W—μ-S (2.268 Å), Cu—μ-S (2.193 Å) and Cu—Br [2.2831 (14) Å] bond lengths are slightly longer than the corresponding values in the complex (Et4N)[Tp*WS(μ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009).
The anion of complex (II) has a butterfly-shaped [WS3Cu2] structure in which one [Tp*WS3] unit and two CuBr groups are linked via one μ3-S and two μ-S atoms (Fig. 2). Atoms W1, S1, B1, N3, N4 and C6–C10 lie on a crystallographic mirror plane. Similar butterfly-shaped [WS3Cu2] cores have been observed in (Et4N)[Tp*WS3(CuNCS)2] (Wei, Li, Ren et al., 2009), (PPh4)[(Cp*WS3(CuCN)2] (Lang et al., 2004) and [MOS3M′2(PPh3)3] (M = W, Mo; M′ = Cu, Ag) (Müller et al., 1983). Each Cu atom in (II) adopts a trigonal planar geometry, coordinated by one μ-S atom, one μ3-S atom and one terminal Br atom. The W⋯Cu distance of 2.6239 (10) Å is longer than that in complex (I), but similar to those found in other complexes containing three-coordinated Cu, such as (Et4N)[Tp*WS(μ3-S)3(CuBr)3] [2.6404 (2) Å; Wei, Li, Cheng et al., 2009] and (PPh4)[Cp*WS3(CuCN)2] [2.666 (3) Å; Lang et al., 2004]. Because of the coordination of the S atoms to the Cu atoms, the W1—S1 bond length of 2.331 (2) Å is longer than the W1—S2 bond length of 2.2293 (18) Å, and both bonds are elongated relative to the mean W—S bond length (2.193 Å) in the precursor (Et4N)[Tp*WS3] (Seino et al., 2001).
Fig. 3 illustrates how the S and CuI centres of (I) and (II) build up sequentially towards the corners of a cubane-like unit. Firstly, one CuI centre is added to the Tp*WS3 unit to construct the [Tp*WS(μ-S)2Cu] core with one terminal S atom remaining. Secondly, the two CuI centres in (II) form the butterfly core [Tp*W(μ-S)2(μ3-S)Cu2]. A third CuI centre can then be added to the butterfly core of (II) to produce an incomplete cubane-like unit, [Tp*W(μ3-S)3Cu3], as in the previously published structure (Et4N)[Tp*W(μ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009). Throughout this sequence, the geometry of the [Tp*WS3] unit remains essentially unchanged: the r.m.s. deviations for overlay of the 26 non-H atoms in the core onto the precursor [Tp*WS3] are 0.14, 0.10 and 0.30 Å for (I), (II) and (Et4N)[Tp*W(μ3-S)3(CuBr)3], respectively. The [Tp*WS3] unit exhibits approximate C3v and one of the mirror planes is retained as a element in (II).
Packing diagrams are shown for (I) and (II) in Figs. 4 and 5, respectively. The structures contain comparable stacks of alternating complexes and Et4N+ cations running along the b axes. In (I), these stacks are arranged so that the Cu—Br bonds point towards the same direction along the c axis, forming a noncentrosymmetric and polar structure. In (II), the stacks are arranged in a centrosymmetric manner.
Experimental
All manipulations were performed under an argon atmosphere using standard Schlenk-line techniques. The precursor (Et4N)[Tp*WS3] was prepared as reported previously (Seino et al., 2001). For these reactions, CHCl3 is a better solvent than MeCN because CuBr is poorly soluble in CHCl3 and it can facilitate the stepwise introduction of CuBr into [Tp*WS3]−. Compound (I) is air sensitive and easily oxidized in solution to form (Et4N)[Tp*WO(μ-S)2(CuBr)]. Complex (II) is relatively air and moisture stable in the solid state.
For the synthesis of (I), CuBr (14.4 mg, 0.1 mmol) was added to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in CHCl3 (15 ml). After being stirred for half an hour, the resulting red solution was filtered and Et2O (30 ml) was carefully layered onto the surface of the filtrate. After 4 d, red prisms of (I) were collected by filtration, washed with Et2O and dried in vacuo {yield 72.3 mg, 80% based on (Et4N)[Tp*WS3]}. Analysis calculated: C 32.46, H 4.98, N 11.52%; found C 32.32, H 4.55, N 11.95%. IR (KBr disc, cm−1): 2978 (m), 2920 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 691 (w), 651 (w), 459 (m), 416 (w). UV–visible {MeCN, λmax [nm (∊ M−1 cm−1)]}: 333 (14300), 445 (6400), 524 (3000). 1H NMR (400 MHz, CDCl3): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.95 (s, 9H, CH3 in Tp*), 3.33–3.39 (q, 8H, CH2CH3), 5.94 (s, 3H, CH in Tp*), the B—H proton was not identified.
For the synthesis of (II), CuBr (28.8 mg, 0.2 mmol) was added to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in CHCl3 (15 ml). A procedure identical to that used for (I) afforded dark red blocks of (II) {yield 93 mg, 85% based on (Et4N)[Tp*WS3]}. Analysis calculated: C 27.78, H 4.26, N 9.86%; found: C 27.32; H 4.55; N 9.95%. IR (KBr disc, cm−1): 2979 (m), 2921 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 693 (w), 651 (w), 469 (w), 420 (w). UV–visible {MeCN, λmax [nm (∊ M−1 cm−1)]}: 323 (16300), 420 (8890), 544 (5800). 1H NMR (400 MHz, DMSO-d6): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.96 (s, 9H, CH3 in Tp*), 3.31–3.38 (q, 8H, CH2CH3), 5.92 (s, 3H, CH in Tp*), the B—H proton was not identified.
Compound (I)
Crystal data
|
Compound (II)
Crystal data
|
H atoms were placed geometrically and constrained to ride on their parent atoms, with B—H = 0.98 Å and C—H = 0.96 (methyl), 0.97 (methylene) or 0.93 Å (aromatic), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. In (I), extensive rigid-bond and similarity restraints were applied to the displacement parameters of atoms C4, C5, C9, C10, N7 and C16–C23. In (II), the methyl H atoms on C6 and C10 (in the pyrazole ring) and on C13 and C15 (in the Et4N+ cation) are disordered over the mirror plane.
For both compounds, data collection: CrystalClear (Rigaku, 2001); cell CrystalClear; data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S0108270111032586/bi3020sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270111032586/bi3020Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270111032586/bi3020IIsup3.hkl
All manipulations were performed under an Ar atmosphere using standard Schlenk-line techniques. The precursor (Et4N)[Tp*WS3] was prepared as reported previously (Seino et al., 2001). For these reactions, CHCl3 is a better solvent than MeCN because CuBr is poorly soluble in CHCl3 and it can facilitate the stepwise introduction of CuBr into [Tp*WS3]-. Compound (I) is air sensitive and easily oxidized in solution to form (Et4N)[Tp*WO(µ-S)2(CuBr)]. Complex (II) is relatively air and moisture stable in the solid state.
For the synthesis of (I), to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in 15 ml of CHCl3, CuBr (14.4 mg, 0.1 mmol) was added. After being stirred for half an hour, the resulting red solution was filtered and Et2O (30 ml) was carefully layered onto the surface of the filtrate. After 4 d, red prisms of (I) were collected by filtration, washed with Et2O and dried in vacuo. Yield: 72.3 mg {80% based on (Et4N)[Tp*WS3]}. Analysis: calculated C 32.46, H 4.98, N 11.52%; found C 32.32, H 4.55, N 11.95%. IR (KBr disc, cm-1): 2978 (m), 2920 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 691 (w), 651 (w), 459 (m), 416 (w). UV–visible {MeCN, λmax [nm (ε M-1 cm-1)]}: 333 (14300), 445 (6400), 524 (3000). 1H NMR (400 MHz, CDCl3): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.95 (s, 9H, CH3 in Tp*), 3.33–3.39 (q, 8H, CH2CH3), 5.94 (s, 3H, CH in Tp*), the B—H proton was not identified.
For the synthesis of (II), to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in 15 ml of CHCl3, CuBr (28.8 mg, 0.2 mmol) was added. A procedure identical to that used for (I) afforded dark red blocks of (II). Yield: 93 mg {85% based on (Et4N)[Tp*WS3]}. Analysis: calculated C 27.78, H 4.26, N 9.86%; found: C 27.32; H 4.55; N 9.95%. IR (KBr disc, cm-1): 2979 (m), 2921 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 693 (w), 651 (w), 469 (w), 420 (w). UV–visible {MeCN, λmax [nm (ε M-1 cm-1)]}: 323 (16300), 420 (8890), 544 (5800). 1H NMR (400 MHz, DMSO-d6): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.96 (s, 9H, CH3 in Tp*), 3.31–3.38 (q, 8H, CH2CH3), 5.92 (s, 3H, CH in Tp*), the B—H proton was not identified.
H atoms were placed geometrically and constrained to ride on their parent atoms, with B—H = 0.98, C—H = 0.96 (methyl), 0.97 (methylene) or 0.93 Å (aromatic), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms, or 1.2Ueq(C) otherwise. In compound (II), the methyl H atoms on C6 and C10 (in the pyrazole ring) and on C13 and C15 (in the Et4N+ cation) are disordered over the mirror plane.
For both compounds, data collection: CrystalClear (Rigaku, 2001); cell
CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C8H20N)[CuWBr(C15H22BN6)S3] | F(000) = 1680 |
Mr = 850.95 | Dx = 1.768 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 12205 reflections |
a = 19.058 (4) Å | θ = 3.2–25.4° |
b = 10.276 (2) Å | µ = 5.73 mm−1 |
c = 16.323 (3) Å | T = 293 K |
V = 3196.6 (11) Å3 | Block, red |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
Rigaku Mercury CCD diffractometer | 5857 independent reflections |
Radiation source: fine-focus sealed tube | 5342 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω–scans | θmax = 25.4°, θmin = 3.2° |
Absorption correction: multi-scan (Jacobson, 1998) | h = −22→20 |
Tmin = 0.147, Tmax = 0.239 | k = −12→12 |
29584 measured reflections | l = −19→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0365P)2 + 1.3297P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.010 |
5710 reflections | Δρmax = 1.05 e Å−3 |
344 parameters | Δρmin = −0.59 e Å−3 |
81 restraints | Absolute structure: Flack (1983), 2678 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.004 (10) |
(C8H20N)[CuWBr(C15H22BN6)S3] | V = 3196.6 (11) Å3 |
Mr = 850.95 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 19.058 (4) Å | µ = 5.73 mm−1 |
b = 10.276 (2) Å | T = 293 K |
c = 16.323 (3) Å | 0.35 × 0.30 × 0.25 mm |
Rigaku Mercury CCD diffractometer | 5857 independent reflections |
Absorption correction: multi-scan (Jacobson, 1998) | 5342 reflections with I > 2σ(I) |
Tmin = 0.147, Tmax = 0.239 | Rint = 0.044 |
29584 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.084 | Δρmax = 1.05 e Å−3 |
S = 1.10 | Δρmin = −0.59 e Å−3 |
5710 reflections | Absolute structure: Flack (1983), 2678 Friedel pairs |
344 parameters | Absolute structure parameter: 0.004 (10) |
81 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
W1 | 0.153938 (13) | 0.40388 (2) | 0.35724 (2) | 0.04478 (10) | |
Cu1 | 0.08945 (5) | 0.25409 (10) | 0.25427 (7) | 0.0566 (3) | |
Br1 | 0.03204 (6) | 0.12163 (11) | 0.16418 (8) | 0.0906 (4) | |
S1 | 0.19281 (10) | 0.2117 (2) | 0.30688 (13) | 0.0592 (5) | |
S2 | 0.04087 (12) | 0.4221 (2) | 0.31460 (14) | 0.0618 (5) | |
S3 | 0.20836 (17) | 0.5397 (3) | 0.28073 (15) | 0.0895 (9) | |
B1 | 0.1731 (5) | 0.4402 (10) | 0.5659 (6) | 0.053 (2) | |
H1 | 0.1794 | 0.4529 | 0.6250 | 0.064* | |
N1 | 0.1228 (3) | 0.3280 (6) | 0.5503 (4) | 0.0514 (15) | |
N2 | 0.1101 (3) | 0.2863 (6) | 0.4708 (4) | 0.0472 (16) | |
N3 | 0.1430 (3) | 0.5650 (6) | 0.5269 (4) | 0.0524 (16) | |
N4 | 0.1299 (4) | 0.5688 (6) | 0.4443 (4) | 0.0563 (16) | |
N5 | 0.2441 (3) | 0.4103 (5) | 0.5256 (3) | 0.0459 (14) | |
N6 | 0.2499 (3) | 0.4000 (6) | 0.4413 (4) | 0.0522 (16) | |
N7 | 0.1604 (4) | 0.4254 (9) | 0.9915 (6) | 0.0818 (19) | |
C1 | 0.0953 (6) | 0.2678 (13) | 0.6944 (6) | 0.107 (4) | |
H1A | 0.1428 | 0.2526 | 0.7115 | 0.161* | |
H1B | 0.0647 | 0.2078 | 0.7218 | 0.161* | |
H1C | 0.0820 | 0.3553 | 0.7080 | 0.161* | |
C2 | 0.0897 (4) | 0.2487 (8) | 0.6035 (5) | 0.060 (2) | |
C3 | 0.0558 (4) | 0.1547 (9) | 0.5592 (6) | 0.062 (2) | |
H3 | 0.0291 | 0.0865 | 0.5799 | 0.074* | |
C4 | 0.0687 (4) | 0.1804 (8) | 0.4787 (6) | 0.062 (2) | |
C5 | 0.0418 (4) | 0.1044 (7) | 0.4050 (7) | 0.078 (3) | |
H5A | 0.0129 | 0.1599 | 0.3719 | 0.117* | |
H5B | 0.0147 | 0.0313 | 0.4235 | 0.117* | |
H5C | 0.0808 | 0.0741 | 0.3731 | 0.117* | |
C6 | 0.1381 (6) | 0.7043 (11) | 0.6524 (6) | 0.092 (3) | |
H6A | 0.1042 | 0.6553 | 0.6831 | 0.138* | |
H6B | 0.1320 | 0.7954 | 0.6633 | 0.138* | |
H6C | 0.1845 | 0.6783 | 0.6681 | 0.138* | |
C7 | 0.1277 (5) | 0.6790 (9) | 0.5620 (5) | 0.064 (2) | |
C8 | 0.1040 (6) | 0.7602 (9) | 0.5022 (6) | 0.085 (3) | |
H8 | 0.0906 | 0.8466 | 0.5088 | 0.102* | |
C9 | 0.1035 (6) | 0.6898 (8) | 0.4294 (5) | 0.075 (3) | |
C10 | 0.0818 (7) | 0.7398 (8) | 0.3487 (7) | 0.108 (4) | |
H10A | 0.1227 | 0.7620 | 0.3173 | 0.161* | |
H10B | 0.0531 | 0.8157 | 0.3559 | 0.161* | |
H10C | 0.0555 | 0.6741 | 0.3203 | 0.161* | |
C11 | 0.3184 (5) | 0.3977 (9) | 0.6505 (6) | 0.074 (3) | |
H11A | 0.3005 | 0.4779 | 0.6721 | 0.111* | |
H11B | 0.3676 | 0.3910 | 0.6626 | 0.111* | |
H11C | 0.2940 | 0.3259 | 0.6750 | 0.111* | |
C12 | 0.3082 (4) | 0.3949 (8) | 0.5608 (5) | 0.060 (2) | |
C13 | 0.3535 (4) | 0.3787 (11) | 0.4980 (6) | 0.076 (3) | |
H13 | 0.4018 | 0.3687 | 0.5031 | 0.091* | |
C14 | 0.3173 (4) | 0.3793 (10) | 0.4260 (6) | 0.072 (3) | |
C15 | 0.3480 (4) | 0.3638 (13) | 0.3409 (6) | 0.098 (4) | |
H15A | 0.3106 | 0.3570 | 0.3017 | 0.147* | |
H15B | 0.3762 | 0.2865 | 0.3390 | 0.147* | |
H15C | 0.3765 | 0.4381 | 0.3282 | 0.147* | |
C16 | 0.0788 (9) | 0.2403 (16) | 0.9398 (13) | 0.186 (7) | |
H16A | 0.0636 | 0.3124 | 0.9068 | 0.279* | |
H16B | 0.0403 | 0.2095 | 0.9723 | 0.279* | |
H16C | 0.0951 | 0.1715 | 0.9048 | 0.279* | |
C17 | 0.1370 (7) | 0.2832 (13) | 0.9948 (8) | 0.111 (3) | |
H17A | 0.1776 | 0.2295 | 0.9828 | 0.134* | |
H17B | 0.1231 | 0.2643 | 1.0507 | 0.134* | |
C18 | 0.2554 (7) | 0.5569 (13) | 1.0593 (10) | 0.124 (4) | |
H18A | 0.2766 | 0.5747 | 1.0072 | 0.186* | |
H18B | 0.2913 | 0.5498 | 1.1004 | 0.186* | |
H18C | 0.2240 | 0.6264 | 1.0735 | 0.186* | |
C19 | 0.2166 (6) | 0.4354 (11) | 1.0548 (8) | 0.093 (3) | |
H19A | 0.1954 | 0.4199 | 1.1079 | 0.112* | |
H19B | 0.2500 | 0.3658 | 1.0453 | 0.112* | |
C20 | 0.0651 (7) | 0.5130 (15) | 1.0846 (8) | 0.126 (4) | |
H20A | 0.0274 | 0.4513 | 1.0804 | 0.189* | |
H20B | 0.0464 | 0.5973 | 1.0976 | 0.189* | |
H20C | 0.0968 | 0.4862 | 1.1271 | 0.189* | |
C21 | 0.1027 (6) | 0.5195 (14) | 1.0068 (8) | 0.108 (3) | |
H21A | 0.1220 | 0.6064 | 1.0016 | 0.129* | |
H21B | 0.0685 | 0.5091 | 0.9632 | 0.129* | |
C22 | 0.2450 (9) | 0.3737 (16) | 0.8769 (10) | 0.174 (6) | |
H22A | 0.2881 | 0.4073 | 0.8990 | 0.262* | |
H22B | 0.2469 | 0.3765 | 0.8181 | 0.262* | |
H22C | 0.2387 | 0.2854 | 0.8946 | 0.262* | |
C23 | 0.1864 (7) | 0.4528 (12) | 0.9057 (7) | 0.111 (3) | |
H23A | 0.1475 | 0.4409 | 0.8681 | 0.133* | |
H23B | 0.2002 | 0.5435 | 0.9029 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.05559 (16) | 0.04421 (15) | 0.03455 (14) | −0.01008 (11) | 0.00158 (18) | −0.00762 (16) |
Cu1 | 0.0600 (6) | 0.0520 (6) | 0.0578 (7) | −0.0018 (5) | −0.0133 (5) | −0.0148 (4) |
Br1 | 0.0900 (8) | 0.0753 (6) | 0.1065 (9) | 0.0008 (6) | −0.0431 (7) | −0.0373 (6) |
S1 | 0.0479 (10) | 0.0643 (13) | 0.0654 (13) | 0.0060 (9) | −0.0058 (9) | −0.0242 (11) |
S2 | 0.0703 (13) | 0.0541 (12) | 0.0610 (12) | 0.0128 (10) | −0.0117 (11) | −0.0094 (10) |
S3 | 0.133 (2) | 0.0816 (18) | 0.0541 (13) | −0.0418 (17) | 0.0097 (15) | −0.0055 (13) |
B1 | 0.057 (5) | 0.060 (5) | 0.043 (5) | −0.003 (5) | 0.004 (4) | −0.005 (4) |
N1 | 0.040 (3) | 0.065 (4) | 0.049 (4) | −0.006 (3) | 0.005 (3) | 0.015 (3) |
N2 | 0.041 (3) | 0.048 (4) | 0.052 (4) | 0.005 (3) | −0.001 (3) | 0.005 (3) |
N3 | 0.070 (4) | 0.050 (4) | 0.037 (4) | −0.002 (3) | 0.000 (3) | −0.009 (3) |
N4 | 0.101 (5) | 0.040 (3) | 0.029 (3) | 0.000 (3) | −0.001 (3) | −0.006 (3) |
N5 | 0.047 (3) | 0.056 (4) | 0.034 (3) | −0.013 (3) | 0.003 (3) | −0.008 (3) |
N6 | 0.045 (3) | 0.074 (4) | 0.037 (3) | −0.022 (3) | 0.007 (3) | −0.014 (3) |
N7 | 0.082 (4) | 0.084 (4) | 0.079 (4) | −0.004 (3) | 0.013 (3) | −0.006 (4) |
C1 | 0.107 (9) | 0.162 (12) | 0.053 (6) | −0.014 (8) | 0.027 (5) | 0.038 (6) |
C2 | 0.044 (4) | 0.079 (6) | 0.056 (5) | 0.002 (4) | 0.008 (4) | 0.019 (4) |
C3 | 0.053 (5) | 0.067 (6) | 0.065 (5) | 0.001 (4) | 0.013 (4) | 0.027 (5) |
C4 | 0.040 (4) | 0.046 (4) | 0.101 (7) | −0.002 (3) | 0.001 (4) | 0.017 (4) |
C5 | 0.047 (4) | 0.040 (4) | 0.148 (8) | −0.022 (3) | 0.000 (5) | 0.014 (4) |
C6 | 0.116 (8) | 0.094 (8) | 0.066 (6) | 0.027 (6) | −0.014 (6) | −0.043 (6) |
C7 | 0.082 (6) | 0.066 (5) | 0.045 (4) | 0.014 (5) | −0.006 (4) | −0.022 (4) |
C8 | 0.132 (10) | 0.054 (5) | 0.068 (6) | 0.019 (6) | −0.004 (6) | −0.015 (5) |
C9 | 0.137 (8) | 0.041 (4) | 0.048 (4) | 0.004 (5) | −0.010 (5) | −0.005 (4) |
C10 | 0.215 (11) | 0.054 (5) | 0.054 (5) | 0.031 (6) | −0.018 (8) | 0.000 (5) |
C11 | 0.060 (5) | 0.102 (8) | 0.059 (6) | −0.009 (5) | −0.005 (5) | −0.010 (5) |
C12 | 0.048 (5) | 0.083 (6) | 0.049 (5) | −0.024 (4) | −0.006 (4) | −0.012 (4) |
C13 | 0.045 (5) | 0.121 (8) | 0.062 (6) | −0.028 (5) | 0.003 (4) | −0.022 (6) |
C14 | 0.046 (5) | 0.119 (8) | 0.051 (5) | −0.027 (5) | 0.007 (4) | −0.023 (5) |
C15 | 0.056 (5) | 0.185 (11) | 0.054 (8) | −0.042 (6) | 0.019 (4) | −0.046 (7) |
C16 | 0.203 (13) | 0.182 (13) | 0.172 (13) | −0.077 (11) | −0.034 (11) | −0.017 (11) |
C17 | 0.125 (7) | 0.103 (6) | 0.106 (7) | −0.041 (5) | 0.012 (6) | −0.005 (6) |
C18 | 0.102 (8) | 0.129 (9) | 0.141 (10) | −0.032 (7) | 0.017 (8) | −0.032 (9) |
C19 | 0.085 (6) | 0.095 (6) | 0.099 (6) | −0.004 (5) | 0.008 (5) | −0.015 (5) |
C20 | 0.107 (8) | 0.155 (11) | 0.117 (9) | 0.016 (8) | 0.042 (7) | −0.009 (8) |
C21 | 0.101 (6) | 0.121 (6) | 0.100 (6) | 0.016 (5) | 0.007 (5) | −0.002 (6) |
C22 | 0.205 (13) | 0.189 (13) | 0.129 (13) | 0.018 (10) | 0.084 (10) | −0.017 (10) |
C23 | 0.138 (7) | 0.100 (7) | 0.094 (6) | −0.004 (6) | 0.035 (5) | 0.001 (6) |
W1—S1 | 2.264 (2) | C7—C8 | 1.360 (13) |
W1—S2 | 2.272 (2) | C8—C9 | 1.390 (12) |
W1—S3 | 2.141 (3) | C8—H8 | 0.9300 |
W1—N2 | 2.365 (7) | C9—C10 | 1.474 (14) |
W1—N4 | 2.258 (6) | C10—H10A | 0.9600 |
W1—N6 | 2.287 (6) | C10—H10B | 0.9600 |
W1—Cu1 | 2.5893 (11) | C10—H10C | 0.9600 |
Cu1—S2 | 2.192 (2) | C11—C12 | 1.476 (12) |
Cu1—S1 | 2.193 (2) | C11—H11A | 0.9600 |
Cu1—Br1 | 2.2831 (14) | C11—H11B | 0.9600 |
B1—N1 | 1.521 (11) | C11—H11C | 0.9600 |
B1—N5 | 1.535 (11) | C12—C13 | 1.352 (12) |
B1—N3 | 1.543 (12) | C13—C14 | 1.363 (13) |
B1—H1 | 0.9800 | C13—H13 | 0.9300 |
N1—C2 | 1.348 (10) | C14—C15 | 1.515 (12) |
N1—N2 | 1.389 (9) | C15—H15A | 0.9600 |
N2—C4 | 1.350 (10) | C15—H15B | 0.9600 |
N3—C7 | 1.336 (10) | C15—H15C | 0.9600 |
N3—N4 | 1.371 (9) | C16—C17 | 1.493 (18) |
N4—C9 | 1.363 (10) | C16—H16A | 0.9600 |
N5—C12 | 1.359 (10) | C16—H16B | 0.9600 |
N5—N6 | 1.385 (8) | C16—H16C | 0.9600 |
N6—C14 | 1.326 (10) | C17—H17A | 0.9700 |
N7—C21 | 1.485 (14) | C17—H17B | 0.9700 |
N7—C19 | 1.492 (14) | C18—C19 | 1.453 (14) |
N7—C23 | 1.512 (14) | C18—H18A | 0.9600 |
N7—C17 | 1.529 (15) | C18—H18B | 0.9600 |
C1—C2 | 1.500 (13) | C18—H18C | 0.9600 |
C1—H1A | 0.9600 | C19—H19A | 0.9700 |
C1—H1B | 0.9600 | C19—H19B | 0.9700 |
C1—H1C | 0.9600 | C20—C21 | 1.461 (15) |
C2—C3 | 1.370 (13) | C20—H20A | 0.9600 |
C3—C4 | 1.363 (13) | C20—H20B | 0.9600 |
C3—H3 | 0.9300 | C20—H20C | 0.9600 |
C4—C5 | 1.523 (13) | C21—H21A | 0.9700 |
C5—H5A | 0.9600 | C21—H21B | 0.9700 |
C5—H5B | 0.9600 | C22—C23 | 1.459 (17) |
C5—H5C | 0.9600 | C22—H22A | 0.9600 |
C6—C7 | 1.511 (12) | C22—H22B | 0.9600 |
C6—H6A | 0.9600 | C22—H22C | 0.9600 |
C6—H6B | 0.9600 | C23—H23A | 0.9700 |
C6—H6C | 0.9600 | C23—H23B | 0.9700 |
S3—W1—N4 | 88.63 (18) | H6B—C6—H6C | 109.5 |
S3—W1—S1 | 101.44 (10) | N3—C7—C8 | 107.6 (7) |
N4—W1—S1 | 161.68 (17) | N3—C7—C6 | 122.7 (8) |
S3—W1—S2 | 103.14 (11) | C8—C7—C6 | 129.6 (8) |
N4—W1—S2 | 86.5 (2) | C7—C8—C9 | 107.2 (7) |
S1—W1—S2 | 105.71 (7) | C7—C8—H8 | 126.4 |
S3—W1—N6 | 88.51 (17) | C9—C8—H8 | 126.4 |
N4—W1—N6 | 78.3 (2) | N4—C9—C8 | 108.7 (7) |
S1—W1—N6 | 86.61 (16) | N4—C9—C10 | 125.5 (7) |
S2—W1—N6 | 160.69 (16) | C8—C9—C10 | 125.8 (8) |
S3—W1—N2 | 164.03 (17) | C9—C10—H10A | 109.5 |
N4—W1—N2 | 79.5 (2) | C9—C10—H10B | 109.5 |
S1—W1—N2 | 87.39 (16) | H10A—C10—H10B | 109.5 |
S2—W1—N2 | 86.95 (16) | C9—C10—H10C | 109.5 |
N6—W1—N2 | 78.7 (2) | H10A—C10—H10C | 109.5 |
S3—W1—Cu1 | 103.82 (7) | H10B—C10—H10C | 109.5 |
N4—W1—Cu1 | 139.32 (19) | C12—C11—H11A | 109.5 |
S1—W1—Cu1 | 53.20 (6) | C12—C11—H11B | 109.5 |
S2—W1—Cu1 | 53.12 (6) | H11A—C11—H11B | 109.5 |
N6—W1—Cu1 | 139.35 (16) | C12—C11—H11C | 109.5 |
N2—W1—Cu1 | 92.13 (16) | H11A—C11—H11C | 109.5 |
S2—Cu1—S1 | 111.10 (9) | H11B—C11—H11C | 109.5 |
S2—Cu1—Br1 | 123.81 (8) | C13—C12—N5 | 105.5 (7) |
S1—Cu1—Br1 | 124.35 (8) | C13—C12—C11 | 132.0 (8) |
S2—Cu1—W1 | 56.00 (6) | N5—C12—C11 | 122.5 (8) |
S1—Cu1—W1 | 55.78 (6) | C12—C13—C14 | 109.3 (8) |
Br1—Cu1—W1 | 179.60 (7) | C12—C13—H13 | 125.3 |
Cu1—S1—W1 | 71.02 (7) | C14—C13—H13 | 125.3 |
Cu1—S2—W1 | 70.87 (7) | N6—C14—C13 | 109.2 (8) |
N1—B1—N5 | 109.4 (7) | N6—C14—C15 | 124.3 (8) |
N1—B1—N3 | 109.0 (7) | C13—C14—C15 | 126.5 (8) |
N5—B1—N3 | 108.5 (7) | C14—C15—H15A | 109.5 |
N1—B1—H1 | 110.0 | C14—C15—H15B | 109.5 |
N5—B1—H1 | 110.0 | H15A—C15—H15B | 109.5 |
N3—B1—H1 | 110.0 | C14—C15—H15C | 109.5 |
C2—N1—N2 | 109.4 (7) | H15A—C15—H15C | 109.5 |
C2—N1—B1 | 130.3 (7) | H15B—C15—H15C | 109.5 |
N2—N1—B1 | 120.1 (6) | C17—C16—H16A | 109.5 |
C4—N2—N1 | 105.2 (6) | C17—C16—H16B | 109.5 |
C4—N2—W1 | 133.9 (6) | H16A—C16—H16B | 109.5 |
N1—N2—W1 | 120.8 (5) | C17—C16—H16C | 109.5 |
C7—N3—N4 | 110.9 (7) | H16A—C16—H16C | 109.5 |
C7—N3—B1 | 129.3 (7) | H16B—C16—H16C | 109.5 |
N4—N3—B1 | 119.8 (6) | C16—C17—N7 | 118.5 (13) |
C9—N4—N3 | 105.5 (6) | C16—C17—H17A | 107.7 |
C9—N4—W1 | 130.3 (5) | N7—C17—H17A | 107.7 |
N3—N4—W1 | 124.1 (5) | C16—C17—H17B | 107.7 |
C12—N5—N6 | 109.9 (6) | N7—C17—H17B | 107.7 |
C12—N5—B1 | 129.3 (6) | H17A—C17—H17B | 107.1 |
N6—N5—B1 | 120.8 (6) | C19—C18—H18A | 109.5 |
C14—N6—N5 | 106.1 (6) | C19—C18—H18B | 109.5 |
C14—N6—W1 | 131.7 (5) | H18A—C18—H18B | 109.5 |
N5—N6—W1 | 122.1 (4) | C19—C18—H18C | 109.5 |
C21—N7—C19 | 111.8 (9) | H18A—C18—H18C | 109.5 |
C21—N7—C23 | 106.0 (9) | H18B—C18—H18C | 109.5 |
C19—N7—C23 | 113.2 (9) | C18—C19—N7 | 117.4 (11) |
C21—N7—C17 | 113.6 (10) | C18—C19—H19A | 108.0 |
C19—N7—C17 | 104.6 (9) | N7—C19—H19A | 108.0 |
C23—N7—C17 | 107.8 (9) | C18—C19—H19B | 108.0 |
C2—C1—H1A | 109.5 | N7—C19—H19B | 108.0 |
C2—C1—H1B | 109.5 | H19A—C19—H19B | 107.2 |
H1A—C1—H1B | 109.5 | C21—C20—H20A | 109.5 |
C2—C1—H1C | 109.5 | C21—C20—H20B | 109.5 |
H1A—C1—H1C | 109.5 | H20A—C20—H20B | 109.5 |
H1B—C1—H1C | 109.5 | C21—C20—H20C | 109.5 |
N1—C2—C3 | 107.9 (8) | H20A—C20—H20C | 109.5 |
N1—C2—C1 | 121.6 (9) | H20B—C20—H20C | 109.5 |
C3—C2—C1 | 130.4 (8) | C20—C21—N7 | 118.6 (11) |
C4—C3—C2 | 106.7 (8) | C20—C21—H21A | 107.7 |
C4—C3—H3 | 126.7 | N7—C21—H21A | 107.7 |
C2—C3—H3 | 126.7 | C20—C21—H21B | 107.7 |
N2—C4—C3 | 110.7 (8) | N7—C21—H21B | 107.7 |
N2—C4—C5 | 122.3 (8) | H21A—C21—H21B | 107.1 |
C3—C4—C5 | 126.9 (8) | C23—C22—H22A | 109.5 |
C4—C5—H5A | 109.5 | C23—C22—H22B | 109.5 |
C4—C5—H5B | 109.5 | H22A—C22—H22B | 109.5 |
H5A—C5—H5B | 109.5 | C23—C22—H22C | 109.5 |
C4—C5—H5C | 109.5 | H22A—C22—H22C | 109.5 |
H5A—C5—H5C | 109.5 | H22B—C22—H22C | 109.5 |
H5B—C5—H5C | 109.5 | C22—C23—N7 | 116.5 (12) |
C7—C6—H6A | 109.5 | C22—C23—H23A | 108.2 |
C7—C6—H6B | 109.5 | N7—C23—H23A | 108.2 |
H6A—C6—H6B | 109.5 | C22—C23—H23B | 108.2 |
C7—C6—H6C | 109.5 | N7—C23—H23B | 108.2 |
H6A—C6—H6C | 109.5 | H23A—C23—H23B | 107.3 |
(C8H20N)[Cu2WBr2(C15H22BN6)S3] | F(000) = 1936 |
Mr = 994.40 | Dx = 1.942 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 12018 reflections |
a = 12.808 (3) Å | θ = 3.1–25.4° |
b = 11.768 (2) Å | µ = 7.17 mm−1 |
c = 22.569 (5) Å | T = 293 K |
V = 3401.7 (12) Å3 | Block, red |
Z = 4 | 0.40 × 0.30 × 0.17 mm |
Rigaku Mercury CCD diffractometer | 3282 independent reflections |
Radiation source: fine-focus sealed tube | 2999 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
ω–scans | θmax = 25.4°, θmin = 3.1° |
Absorption correction: multi-scan (Jacobson, 1998) | h = −15→15 |
Tmin = 0.087, Tmax = 0.295 | k = −14→14 |
32255 measured reflections | l = −23→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.069P)2 + 4.773P] where P = (Fo2 + 2Fc2)/3 |
3276 reflections | (Δ/σ)max = 0.001 |
206 parameters | Δρmax = 1.48 e Å−3 |
0 restraints | Δρmin = −1.15 e Å−3 |
(C8H20N)[Cu2WBr2(C15H22BN6)S3] | V = 3401.7 (12) Å3 |
Mr = 994.40 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.808 (3) Å | µ = 7.17 mm−1 |
b = 11.768 (2) Å | T = 293 K |
c = 22.569 (5) Å | 0.40 × 0.30 × 0.17 mm |
Rigaku Mercury CCD diffractometer | 3282 independent reflections |
Absorption correction: multi-scan (Jacobson, 1998) | 2999 reflections with I > 2σ(I) |
Tmin = 0.087, Tmax = 0.295 | Rint = 0.068 |
32255 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.48 e Å−3 |
3276 reflections | Δρmin = −1.15 e Å−3 |
206 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
W1 | 0.70841 (3) | 0.7500 | 0.492626 (16) | 0.03212 (16) | |
Cu1 | 0.68918 (7) | 0.86958 (7) | 0.59014 (4) | 0.0447 (2) | |
Br1 | 0.66167 (7) | 0.96764 (7) | 0.67598 (4) | 0.0592 (3) | |
S1 | 0.82052 (18) | 0.7500 | 0.57396 (11) | 0.0402 (5) | |
S2 | 0.60049 (14) | 0.89595 (16) | 0.50726 (8) | 0.0436 (4) | |
B1 | 0.8456 (8) | 0.7500 | 0.3628 (5) | 0.035 (2) | |
H1 | 0.8834 | 0.7500 | 0.3250 | 0.043* | |
N1 | 0.8731 (4) | 0.8564 (4) | 0.3980 (2) | 0.0348 (12) | |
N2 | 0.8252 (4) | 0.8774 (4) | 0.4517 (2) | 0.0357 (12) | |
N3 | 0.6570 (6) | 0.7500 | 0.3977 (3) | 0.0388 (18) | |
N4 | 0.7264 (6) | 0.7500 | 0.3511 (3) | 0.0320 (16) | |
N5 | 0.8552 (6) | 0.7500 | 0.8291 (3) | 0.0377 (17) | |
C1 | 0.9968 (6) | 0.9487 (8) | 0.3277 (4) | 0.064 (2) | |
H1A | 0.9515 | 0.9454 | 0.2939 | 0.096* | |
H1B | 1.0436 | 0.8850 | 0.3270 | 0.096* | |
H1C | 1.0364 | 1.0180 | 0.3266 | 0.096* | |
C2 | 0.9339 (5) | 0.9453 (6) | 0.3823 (3) | 0.0411 (15) | |
C3 | 0.9257 (5) | 1.0241 (6) | 0.4262 (3) | 0.0461 (17) | |
H3 | 0.9590 | 1.0942 | 0.4275 | 0.055* | |
C4 | 0.8590 (5) | 0.9809 (6) | 0.4683 (3) | 0.0401 (15) | |
C5 | 0.8294 (6) | 1.0429 (7) | 0.5240 (3) | 0.0530 (19) | |
H5A | 0.7562 | 1.0602 | 0.5232 | 0.080* | |
H5B | 0.8687 | 1.1122 | 0.5267 | 0.080* | |
H5C | 0.8445 | 0.9960 | 0.5577 | 0.080* | |
C6 | 0.7280 (8) | 0.7500 | 0.2412 (4) | 0.048 (2) | |
H6A | 0.7879 | 0.7989 | 0.2431 | 0.072* | 0.50 |
H6B | 0.6811 | 0.7770 | 0.2112 | 0.072* | 0.50 |
H6C | 0.7499 | 0.6741 | 0.2318 | 0.072* | 0.50 |
C7 | 0.6741 (8) | 0.7500 | 0.2994 (4) | 0.041 (2) | |
C8 | 0.5701 (7) | 0.7500 | 0.3122 (4) | 0.041 (2) | |
H8 | 0.5157 | 0.7500 | 0.2849 | 0.049* | |
C9 | 0.5601 (7) | 0.7500 | 0.3729 (4) | 0.042 (2) | |
C10 | 0.4592 (8) | 0.7500 | 0.4055 (5) | 0.056 (3) | |
H10A | 0.4055 | 0.7811 | 0.3807 | 0.083* | 0.50 |
H10B | 0.4657 | 0.7953 | 0.4407 | 0.083* | 0.50 |
H10C | 0.4412 | 0.6735 | 0.4163 | 0.083* | 0.50 |
C11 | 0.8399 (10) | 0.9653 (9) | 0.8306 (6) | 0.106 (4) | |
H11A | 0.8653 | 0.9703 | 0.8705 | 0.159* | |
H11B | 0.7919 | 1.0264 | 0.8232 | 0.159* | |
H11C | 0.8975 | 0.9707 | 0.8035 | 0.159* | |
C12 | 0.7849 (6) | 0.8531 (6) | 0.8219 (4) | 0.060 (2) | |
H12A | 0.7546 | 0.8517 | 0.7825 | 0.072* | |
H12B | 0.7282 | 0.8477 | 0.8502 | 0.072* | |
C13 | 0.8380 (13) | 0.7500 | 0.9410 (6) | 0.110 (6) | |
H13A | 0.7836 | 0.8049 | 0.9350 | 0.165* | 0.50 |
H13B | 0.8768 | 0.7692 | 0.9760 | 0.165* | 0.50 |
H13C | 0.8078 | 0.6759 | 0.9456 | 0.165* | 0.50 |
C14 | 0.9103 (10) | 0.7500 | 0.8881 (6) | 0.081 (4) | |
H14A | 0.9548 | 0.8165 | 0.8903 | 0.098* | 0.50 |
H14B | 0.9548 | 0.6835 | 0.8903 | 0.098* | 0.50 |
C15 | 0.9067 (11) | 0.7500 | 0.7192 (5) | 0.074 (4) | |
H15A | 0.8867 | 0.8256 | 0.7078 | 0.111* | 0.50 |
H15B | 0.8482 | 0.6998 | 0.7146 | 0.111* | 0.50 |
H15C | 0.9632 | 0.7247 | 0.6945 | 0.111* | 0.50 |
C16 | 0.9411 (8) | 0.7500 | 0.7829 (5) | 0.053 (3) | |
H16A | 0.9845 | 0.8164 | 0.7894 | 0.064* | 0.50 |
H16B | 0.9845 | 0.6836 | 0.7894 | 0.064* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.0332 (2) | 0.0315 (2) | 0.0317 (2) | 0.000 | −0.00064 (13) | 0.000 |
Cu1 | 0.0523 (5) | 0.0421 (5) | 0.0397 (5) | 0.0000 (4) | 0.0023 (4) | −0.0071 (4) |
Br1 | 0.0733 (6) | 0.0548 (5) | 0.0496 (5) | 0.0005 (4) | 0.0050 (4) | −0.0169 (4) |
S1 | 0.0415 (12) | 0.0433 (14) | 0.0357 (13) | 0.000 | −0.0046 (10) | 0.000 |
S2 | 0.0407 (9) | 0.0399 (10) | 0.0503 (10) | 0.0096 (8) | −0.0006 (7) | −0.0023 (7) |
B1 | 0.043 (6) | 0.031 (5) | 0.033 (6) | 0.000 | 0.004 (4) | 0.000 |
N1 | 0.035 (3) | 0.040 (3) | 0.030 (3) | −0.005 (2) | 0.004 (2) | 0.001 (2) |
N2 | 0.043 (3) | 0.032 (3) | 0.032 (3) | −0.007 (2) | 0.000 (2) | −0.002 (2) |
N3 | 0.045 (4) | 0.044 (5) | 0.028 (4) | 0.000 | −0.001 (3) | 0.000 |
N4 | 0.040 (4) | 0.026 (4) | 0.030 (4) | 0.000 | −0.004 (3) | 0.000 |
N5 | 0.041 (4) | 0.030 (4) | 0.042 (5) | 0.000 | −0.006 (3) | 0.000 |
C1 | 0.059 (5) | 0.065 (5) | 0.067 (5) | −0.023 (4) | 0.019 (4) | 0.006 (4) |
C2 | 0.038 (4) | 0.044 (4) | 0.041 (4) | −0.007 (3) | −0.001 (3) | 0.005 (3) |
C3 | 0.046 (4) | 0.037 (4) | 0.056 (4) | −0.014 (3) | 0.001 (3) | −0.001 (3) |
C4 | 0.040 (4) | 0.040 (4) | 0.041 (4) | −0.003 (3) | −0.002 (3) | 0.001 (3) |
C5 | 0.065 (5) | 0.045 (4) | 0.050 (4) | −0.005 (4) | 0.004 (4) | −0.015 (4) |
C6 | 0.061 (6) | 0.049 (6) | 0.035 (5) | 0.000 | 0.000 (4) | 0.000 |
C7 | 0.058 (6) | 0.024 (5) | 0.041 (6) | 0.000 | −0.008 (4) | 0.000 |
C8 | 0.043 (5) | 0.041 (5) | 0.038 (5) | 0.000 | −0.010 (4) | 0.000 |
C9 | 0.038 (5) | 0.036 (5) | 0.052 (6) | 0.000 | −0.008 (4) | 0.000 |
C10 | 0.039 (5) | 0.073 (8) | 0.054 (7) | 0.000 | 0.001 (5) | 0.000 |
C11 | 0.128 (10) | 0.049 (6) | 0.140 (11) | 0.007 (6) | 0.042 (8) | −0.005 (6) |
C12 | 0.066 (5) | 0.038 (4) | 0.075 (6) | 0.018 (4) | 0.000 (4) | 0.002 (4) |
C13 | 0.102 (12) | 0.18 (2) | 0.047 (8) | 0.000 | −0.014 (8) | 0.000 |
C14 | 0.058 (8) | 0.124 (13) | 0.062 (8) | 0.000 | −0.020 (6) | 0.000 |
C15 | 0.095 (10) | 0.065 (8) | 0.061 (8) | 0.000 | 0.015 (7) | 0.000 |
C16 | 0.056 (6) | 0.041 (6) | 0.063 (7) | 0.000 | 0.002 (5) | 0.000 |
W1—S1 | 2.331 (2) | C5—H5B | 0.9600 |
W1—S2 | 2.2293 (18) | C5—H5C | 0.9600 |
W1—N2 | 2.311 (5) | C6—C7 | 1.483 (14) |
W1—N3 | 2.242 (7) | C6—H6A | 0.9600 |
W1—Cu1 | 2.6239 (10) | C6—H6B | 0.9600 |
Cu1—S2 | 2.210 (2) | C6—H6C | 0.9600 |
Cu1—S1 | 2.223 (2) | C7—C8 | 1.363 (13) |
Cu1—Br1 | 2.2823 (12) | C8—C9 | 1.376 (13) |
Cu1—Cu1i | 2.8144 (19) | C8—H8 | 0.9300 |
S1—Cu1i | 2.223 (2) | C9—C10 | 1.487 (13) |
B1—N1 | 1.524 (8) | C10—H10A | 0.9600 |
B1—N4 | 1.549 (13) | C10—H10B | 0.9600 |
B1—H1 | 0.9800 | C10—H10C | 0.9600 |
N1—C2 | 1.351 (8) | C11—C12 | 1.509 (13) |
N1—N2 | 1.380 (7) | C11—H11A | 0.9600 |
N2—C4 | 1.345 (8) | C11—H11B | 0.9600 |
N3—C9 | 1.361 (11) | C11—H11C | 0.9600 |
N3—N4 | 1.376 (10) | C12—H12A | 0.9700 |
N4—C7 | 1.347 (12) | C12—H12B | 0.9700 |
N5—C16 | 1.516 (13) | C13—C14 | 1.510 (19) |
N5—C14 | 1.508 (14) | C13—H13A | 0.9600 |
N5—C12 | 1.519 (8) | C13—H13B | 0.9600 |
C1—C2 | 1.473 (10) | C13—H13C | 0.9600 |
C1—H1A | 0.9600 | C14—H14A | 0.9700 |
C1—H1B | 0.9600 | C14—H14B | 0.9700 |
C1—H1C | 0.9600 | C15—C16 | 1.503 (16) |
C2—C3 | 1.360 (10) | C15—H15A | 0.9600 |
C3—C4 | 1.376 (9) | C15—H15B | 0.9600 |
C3—H3 | 0.9300 | C15—H15C | 0.9600 |
C4—C5 | 1.501 (10) | C16—H16A | 0.9700 |
C5—H5A | 0.9600 | C16—H16B | 0.9700 |
S2—W1—S2i | 100.79 (10) | C3—C2—N1 | 107.0 (6) |
S2—W1—N3 | 87.67 (13) | C3—C2—C1 | 129.3 (6) |
S2i—W1—N3 | 87.67 (13) | N1—C2—C1 | 123.7 (6) |
S2—W1—N2i | 163.86 (14) | C2—C3—C4 | 107.4 (6) |
S2i—W1—N2i | 87.75 (14) | C2—C3—H3 | 126.3 |
N3—W1—N2i | 78.94 (19) | C4—C3—H3 | 126.3 |
S2—W1—N2 | 87.75 (14) | N2—C4—C3 | 109.9 (6) |
S2i—W1—N2 | 163.86 (14) | N2—C4—C5 | 126.3 (6) |
N3—W1—N2 | 78.94 (19) | C3—C4—C5 | 123.7 (6) |
N2i—W1—N2 | 80.9 (3) | C4—C5—H5A | 109.5 |
S2—W1—S1 | 105.39 (6) | C4—C5—H5B | 109.5 |
S2i—W1—S1 | 105.39 (6) | H5A—C5—H5B | 109.5 |
N3—W1—S1 | 159.1 (2) | C4—C5—H5C | 109.5 |
N2i—W1—S1 | 85.18 (14) | H5A—C5—H5C | 109.5 |
N2—W1—S1 | 85.18 (14) | H5B—C5—H5C | 109.5 |
S2—W1—Cu1 | 53.44 (5) | C7—C6—H6A | 109.5 |
S2i—W1—Cu1 | 103.34 (5) | C7—C6—H6B | 109.5 |
N3—W1—Cu1 | 140.73 (10) | H6A—C6—H6B | 109.5 |
N2i—W1—Cu1 | 138.08 (13) | C7—C6—H6C | 109.5 |
N2—W1—Cu1 | 92.76 (13) | H6A—C6—H6C | 109.5 |
S1—W1—Cu1 | 52.93 (5) | H6B—C6—H6C | 109.5 |
S2—W1—Cu1i | 103.34 (5) | N4—C7—C8 | 107.6 (9) |
S2i—W1—Cu1i | 53.44 (5) | N4—C7—C6 | 122.4 (9) |
N3—W1—Cu1i | 140.73 (11) | C8—C7—C6 | 130.0 (9) |
N2i—W1—Cu1i | 92.76 (13) | C7—C8—C9 | 107.6 (8) |
N2—W1—Cu1i | 138.08 (13) | C7—C8—H8 | 126.2 |
S1—W1—Cu1i | 52.93 (5) | C9—C8—H8 | 126.2 |
Cu1—W1—Cu1i | 64.86 (4) | N3—C9—C8 | 108.9 (8) |
S2—Cu1—S1 | 109.79 (8) | N3—C9—C10 | 126.1 (9) |
S2—Cu1—Br1 | 124.61 (6) | C8—C9—C10 | 125.0 (9) |
S1—Cu1—Br1 | 125.19 (7) | C9—C10—H10A | 109.5 |
S2—Cu1—W1 | 54.10 (5) | C9—C10—H10B | 109.5 |
S1—Cu1—W1 | 56.75 (6) | H10A—C10—H10B | 109.5 |
Br1—Cu1—W1 | 176.07 (5) | C9—C10—H10C | 109.5 |
S2—Cu1—Cu1i | 98.07 (5) | H10A—C10—H10C | 109.5 |
S1—Cu1—Cu1i | 50.74 (5) | H10B—C10—H10C | 109.5 |
Br1—Cu1—Cu1i | 120.37 (3) | C12—C11—H11A | 109.5 |
W1—Cu1—Cu1i | 57.57 (2) | C12—C11—H11B | 109.5 |
Cu1—S1—Cu1i | 78.53 (9) | H11A—C11—H11B | 109.5 |
Cu1—S1—W1 | 70.32 (7) | C12—C11—H11C | 109.5 |
Cu1i—S1—W1 | 70.32 (7) | H11A—C11—H11C | 109.5 |
Cu1—S2—W1 | 72.46 (6) | H11B—C11—H11C | 109.5 |
N1—B1—N1i | 110.5 (7) | C11—C12—N5 | 114.1 (7) |
N1—B1—N4 | 108.4 (5) | C11—C12—H12A | 108.7 |
N1i—B1—N4 | 108.4 (5) | N5—C12—H12A | 108.7 |
N1—B1—H1 | 109.8 | C11—C12—H12B | 108.7 |
N1i—B1—H1 | 109.8 | N5—C12—H12B | 108.7 |
N4—B1—H1 | 109.8 | H12A—C12—H12B | 107.6 |
C2—N1—N2 | 110.3 (5) | C14—C13—H13A | 109.5 |
C2—N1—B1 | 129.2 (6) | C14—C13—H13B | 109.5 |
N2—N1—B1 | 120.1 (6) | H13A—C13—H13B | 109.5 |
C4—N2—N1 | 105.3 (5) | C14—C13—H13C | 109.5 |
C4—N2—W1 | 133.1 (4) | H13A—C13—H13C | 109.5 |
N1—N2—W1 | 121.5 (4) | H13B—C13—H13C | 109.5 |
C9—N3—N4 | 106.1 (7) | N5—C14—C13 | 114.3 (10) |
C9—N3—W1 | 131.3 (6) | N5—C14—H14A | 108.7 |
N4—N3—W1 | 122.6 (5) | C13—C14—H14A | 108.7 |
C7—N4—N3 | 109.8 (7) | N5—C14—H14B | 108.7 |
C7—N4—B1 | 129.6 (8) | C13—C14—H14B | 108.7 |
N3—N4—B1 | 120.5 (7) | H14A—C14—H14B | 107.6 |
C16—N5—C14 | 105.5 (8) | C16—C15—H15A | 109.5 |
C16—N5—C12i | 110.9 (5) | C16—C15—H15B | 109.5 |
C14—N5—C12i | 111.8 (6) | H15A—C15—H15B | 109.5 |
C16—N5—C12 | 110.9 (5) | C16—C15—H15C | 109.5 |
C14—N5—C12 | 111.8 (6) | H15A—C15—H15C | 109.5 |
C12i—N5—C12 | 106.0 (8) | H15B—C15—H15C | 109.5 |
C2—C1—H1A | 109.5 | C15—C16—N5 | 116.4 (9) |
C2—C1—H1B | 109.5 | C15—C16—H16A | 108.2 |
H1A—C1—H1B | 109.5 | N5—C16—H16A | 108.2 |
C2—C1—H1C | 109.5 | C15—C16—H16B | 108.2 |
H1A—C1—H1C | 109.5 | N5—C16—H16B | 108.2 |
H1B—C1—H1C | 109.5 | H16A—C16—H16B | 107.3 |
Symmetry code: (i) x, −y+3/2, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | (C8H20N)[CuWBr(C15H22BN6)S3] | (C8H20N)[Cu2WBr2(C15H22BN6)S3] |
Mr | 850.95 | 994.40 |
Crystal system, space group | Orthorhombic, Pna21 | Orthorhombic, Pnma |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 19.058 (4), 10.276 (2), 16.323 (3) | 12.808 (3), 11.768 (2), 22.569 (5) |
V (Å3) | 3196.6 (11) | 3401.7 (12) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 5.73 | 7.17 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 | 0.40 × 0.30 × 0.17 |
Data collection | ||
Diffractometer | Rigaku Mercury CCD diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (Jacobson, 1998) | Multi-scan (Jacobson, 1998) |
Tmin, Tmax | 0.147, 0.239 | 0.087, 0.295 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29584, 5857, 5342 | 32255, 3282, 2999 |
Rint | 0.044 | 0.068 |
(sin θ/λ)max (Å−1) | 0.602 | 0.602 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.084, 1.10 | 0.043, 0.120, 1.09 |
No. of reflections | 5710 | 3276 |
No. of parameters | 344 | 206 |
No. of restraints | 81 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −0.59 | 1.48, −1.15 |
Absolute structure | Flack (1983), 2678 Friedel pairs | ? |
Absolute structure parameter | 0.004 (10) | ? |
Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors acknowledge the Education Department of Jiangxi Province (grant No. GJJ11033) for financial support.
References
Boomishankar, R., Richards, P. I. & Steiner, A. (2006). Angew. Chem. Int. Ed. 45, 4632–4634. Web of Science CSD CrossRef CAS Google Scholar
Bunge, S. D., Lance, J. M. & Bertke, J. A. (2007). Organometallics, 26, 6320–6328. Web of Science CSD CrossRef CAS Google Scholar
Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2002). Inorg. Chem. 41, 2785–2794. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan. Google Scholar
Kaupp, M., Stoll, H., Preuss, H., Kaim, W., Stahl, T., Van Koten, G., Wissing, E., Smeets, W. J. J. & Spek, A. L. (1991). J. Am. Chem. Soc. 113, 5606–5618. CSD CrossRef CAS Web of Science Google Scholar
Lang, J. P. & Tatsumi, K. (1998). Inorg. Chem. 37, 6308–6316. Web of Science CSD CrossRef CAS Google Scholar
Lang, J. P., Xu, Q. F., Ji, W., Elim, H. I. & Tatsumi, K. (2004). Eur. J. Inorg. Chem. pp. 86–91. Web of Science CSD CrossRef Google Scholar
Lewinski, J., Sliwinski, W., Dranka, M., Justyyniak, I. & Lipkowski, J. (2006). Angew. Chem. Int. Ed. 45, 4826–4829. CAS Google Scholar
Malik, M. A., O'Brien, P., Motevalli, M. & Jones, A. C. (1997). Inorg. Chem. 36, 5076–5081. CSD CrossRef CAS Web of Science Google Scholar
Müller, A., Schimanski, U. & Schimanski, J. (1983). Inorg. Chim. Acta, 76, 245–246. Google Scholar
Parkin, G. (2004). Chem. Rev. 104, 699–767. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Seino, H., Arai, Y., Iwata, N., Nagao, S., Mizobe, Y. & Hidai, M. (2001). Inorg. Chem. 40, 1677–1682. Web of Science CSD CrossRef PubMed CAS Google Scholar
Shamsur Rahman, A. B. M., Boller, H. & Klepp, O. K. (2000). Inorg. Chim. Acta, 305, 91–94. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vahrenkamp, H. (1999). Acc. Chem. Res. 32, 589–596. Web of Science CrossRef CAS Google Scholar
Wei, Z. H., Li, H. X., Cheng, M. L., Tang, X. Y., Zhang, Y. & Lang, J. P. (2009). Inorg. Chem. 48, 2808–2817. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wei, Z. H., Li, H. X., Ren, Z. G., Lang, J. P., Zhang, Y. & Sun, Z. R. (2009). Dalton Trans. pp. 3425–3433. Web of Science CSD CrossRef Google Scholar
Zhang, W. H., Song, Y. L., Zhang, Y. & Lang, J. P. (2008). Cryst. Growth Des. 8, 253–258. Web of Science CSD CrossRef Google Scholar
Zulys, A., Dochnahl, M., Hollmann, D., Lohnwitz, K., Herrmann, J.-S., Roesky, P. W. & Blechert, S. (2005). Angew. Chem. Int. Ed. 44, 7794–7798. Web of Science CSD CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
In the past decades, the chemistry of Mo(W)/Cu/S clusters derived from reactions of metal sulfide synthons such as [MOxS4-x]2- or [Cp*MS3]- (M = Mo or W, x = 0–3, Cp* = pentamethylcyclopentadienyl) with CuX (X = Cl, Br, I, NCS, CN) has been investigated extensively because of their novel structures (Chisholm et al., 2002; Parkin, 2004; Zulys et al., 2005) and their potential applications in biological systems (Lewinski et al., 2006) and opto-electronic materials (Vahrenkamp, 1999). Among these Mo(W)/Cu/S clusters, a complete series of products obtained by the stepwise addition of CuX has not previously been realized in a system involving the same components CuX and [MS4]2- or [EMS3]n- (E = O, n = 2 or E = Cp*, n = 1) in different molar ratios (Bunge et al., 2007; Boomishankar et al., 2006; Malik et al., 1997; Kaupp et al., 1991). Recently, we have investigated the preparation of Mo(W)/Cu/S clusters from the precursor (Et4N)[Tp*WS3], where Tp* = hydrogen tris(3,5-dimethylpyrazolyl)borate (Seino et al., 2001), and this compound has been found to undergo stepwise addition reactions with one to four equivalents of CuNCS to yield the products [Tp*WS3(CuNCS)n]- (n = 1 or 2), [Tp*WS3(CuNCS)3Br]2- and the polymeric {Tp*WS3(CuNCS)4}- (Wei, Li, Ren et al., 2009). In continuation of our work in this area, we treated the precursor (Et4N)[Tp*WS3] with one to three equivalents of CuBr in a stepwise manner (Fig. 1), and obtained the [1+1], [1+2] and [1+3] products, (Et4N)[Tp*WS(µ-S)2(CuBr)], (Et4N)[Tp*W(µ3-S)(µ-S)2(CuBr)2] and (Et4N)[Tp*W(µ3-S)3(CuBr)3]. We have reported the crystal structure of the [1+3] product previously (Wei, Li, Cheng et al., 2009). Herein, we report the crystal structures of the [1+1] and [1+2] complexes, (I) and (II).
The anion of complex (I) comprises a [Tp*WS3]- unit and one CuBr group, with a pair of µ-S atoms forming a WS2Cu ring (Fig. 2). One terminal S atom is retained. The structure closely resembles that of the anion in the related compound (Et4N)[Tp*WS(µ-S)2(CuNCS)] (Wei, Li, Ren et al., 2009). It is noteworthy that the comparable [1+1] addition complex is not known among the M/Cu/S clusters based on the related precursor [PPh3][Cp*MS3], while for the (Et4N)[OMS3] precursor, reactions with one equivalent of CuCl and CuCN have been reported to yield the products [Me4N][WOS(µ-S)2(CuCl)] (Shamsur Rahman et al., 2000) and (Et4N)[MoOS(µ-S)2(CuCN)] (Zhang et al., 2008), respectively. In (I), atom Cu1 adopts a trigonal planar geometry, coordinated by one terminal Br atom and two µ-S atoms. The W1···Cu1 distance of 2.5893 (11) Å is slightly shorter than those in other butterfly-shaped or incomplete cubane core clusters. The terminal W1—S3 bond length of 2.141 (3) Å is similar to that in [WS4Cu2(dppm)3] [2.146 (4) Å] [dppm = bis(diphenylphosphino)methane] (Lang & Tatsumi, 1998), but slightly shorter than those in the corresponding precursor (Et4N)[Tp*WS3] (mean 2.193 Å) (Seino et al., 2001) and in the cluster (Et4N)[Tp*WS(µ-S)2(CuNCS)] [2.154 (3) Å] (Wei, Li, Ren et al., 2009). The mean W—µ-S (2.268 Å), Cu—µ-S (2.193 Å) and Cu—Br [2.2831 (14) Å] bond lengths are slightly longer than the corresponding values in the complex (Et4N)[Tp*WS(µ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009).
The anion of complex (II) has a butterfly-shaped [WS3Cu2] structure in which one [Tp*WS3] unit and two CuBr groups are linked via one µ3-S and two µ-S atoms (Fig. 3). Atoms W1, S1, B1, N3, N4 and C6–C10 lie on a crystallographic mirror plane. Similar butterfly-shaped [WS3Cu2] cores have been observed in (Et4N)[Tp*WS3(CuNCS)2] (Wei, Li, Ren, et al., 2009), [PPh4][(Cp*WS3(CuCN)2] (Lang et al., 2004) and [MOS3M'2(PPh3)3] (M = W, Mo; M' = Cu, Ag) (Müller et al., 1983). Each Cu atom in (II) adopts a trigonal planar geometry, coordinated by one µ-S atom, one µ3-S atom and one terminal Br atom. The W···Cu distance of 2.6239 (10) Å is longer than that in complex (I), but similar to those found in other complexes containing three-coordinated Cu, such as (Et4N)[Tp*WS(µ3-S)3(CuBr)3] [2.6404 (2) Å] (Wei, Li, Cheng et al., 2009) and [PPh4][Cp*WS3(CuCN)2] [2.666 (3) Å] (Lang et al., 2004). Because of the coordination of the S atoms to the Cu atoms, the W1—S1 bond length of 2.331 (2) Å is longer than the W1—S2 bond length of 2.2293 (18) Å, and both bonds are elongated relative to the mean W—S bond length (2.193 Å) in the precursor (Et4N)[Tp*WS3] (Seino et al., 2001).
Fig. 4 illustrates how the S and Cu atoms of (I) and (II) build up sequentially towards the corners of a cubane-like unit. Firstly, one Cu atom is added to the Tp*WS3 unit to construct the [Tp*WS(µ-S)2Cu] core with one terminal S atom remaining. Secondly, the two Cu atoms in (II) form the butterfly core [Tp*W(µ-S)2(µ3-S)Cu2]. A third Cu atom can then be added to the butterfly core of (II) to produce an incomplete cubane-like unit, [Tp*W(µ3-S)3Cu3], as in the previously published structure (Et4N)[Tp*W(µ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009). Throughout this sequence, the geometry of the [Tp*WS3] unit remains essentially unchanged: the r.m.s. deviations for overlay of the 26 non-H atoms in the core onto the precursor [Tp*WS3] are 0.14, 0.10 and 0.30 Å for (I), (II) and (Et4N)[Tp*W(µ3-S)3(CuBr)3], respectively. The [Tp*WS3] unit exhibits approximate C3v point symmetry and one of the mirror planes is retained as a crystallographic symmetry element in (II).
Packing diagrams are shown for (I) and (II) in Figs. 5 and 6, respectively. The structures contain comparable stacks of alternating complexes and Et4N+ cations running along the b axes. In (I), these stacks are arranged so that the Cu—Br bonds point towards the same direction along the c axis, forming a non-centrosymmetric and polar structure. In (II), the stacks are arranged in a centrosymmetric manner.