metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two W/Cu/S clusters: tetra­ethyl­ammonium bromidodi-μ2-sulfido-sulfido­[tris­­(3,5-di­methyl­pyrazol-1-yl)­borato]copper(I)tungsten(VI) and tetra­ethyl­ammonium di­bromido-μ3-sulfido-di-μ2-sulfido-[tris­­(3,5-di­methyl­pyrazol-1-yl)borato]dicopper(I)­tungsten(VI)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: weizh@ncu.edu.cn

(Received 8 June 2011; accepted 11 August 2011; online 26 August 2011)

The reaction of (Et4N)[Tp*WS3] [Tp* = hydrogen tris­(3,5-dimethyl­pyrazol-1-­yl)borate] with one or two equivalents of CuBr afforded the [1 + 1] and [1 + 2] addition products (Et4N)[Tp*WS(μ-S)2(CuBr)] {or (C8H20N)[CuWBr(C15H22BN6)S3], (I)} and (Et4N)[Tp*W(μ3-S)(μ-S)2(CuBr)2] {or (C8H20N)[Cu2WBr2(C15H22BN6)S3], (II)}. The anion of (I) contains a [W(μ-S)2Cu] core formed by the addition of one CuBr unit to the [Tp*WS3] species. The anion of (II) has a butterfly-shaped [W(μ3-S)(μ-S)2Cu2] core formed by the addition of two CuBr units to the [Tp*WS3] species. The [Tp*WS3] sections of each complex exhibit approximate C3v point symmetry and have closely comparable geometry. In (II), both the anion and cation lie on a crystallographic mirror plane. The structure of (I) is noncentrosymmetric and polar.

Comment

In the past decades, the chemistry of Mo(W)/Cu/S clusters derived from reactions of metal sulfide synthons such as [MOxS4−x]2− or [Cp*MS3] (M = Mo or W, x = 0–3, Cp* = penta­methyl­cyclo­penta­dien­yl) with CuX (X = Cl, Br, I, NCS, CN) has been investigated extensively because of their novel structures (Chisholm et al., 2002[Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2002). Inorg. Chem. 41, 2785-2794.]; Parkin, 2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]; Zulys et al., 2005[Zulys, A., Dochnahl, M., Hollmann, D., Lohnwitz, K., Herrmann, J.-S., Roesky, P. W. & Blechert, S. (2005). Angew. Chem. Int. Ed. 44, 7794-7798.]) and their potential applications in biological systems (Lewinski et al., 2006[Lewinski, J., Sliwinski, W., Dranka, M., Justyyniak, I. & Lipkowski, J. (2006). Angew. Chem. Int. Ed. 45, 4826-4829.]) and opto-electronic materials (Vahrenkamp, 1999[Vahrenkamp, H. (1999). Acc. Chem. Res. 32, 589-596.]). Among these Mo(W)/Cu/S clusters, a complete series of products obtained by the stepwise addition of CuX has not previously been realized in a system involving the same components CuX and [MS4]2− or [EMS3]n (E = O, n = 2 or E = Cp*, n = 1) in different molar ratios (Bunge et al., 2007[Bunge, S. D., Lance, J. M. & Bertke, J. A. (2007). Organometallics, 26, 6320-6328.]; Boomishankar et al., 2006[Boomishankar, R., Richards, P. I. & Steiner, A. (2006). Angew. Chem. Int. Ed. 45, 4632-4634.]; Malik et al., 1997[Malik, M. A., O'Brien, P., Motevalli, M. & Jones, A. C. (1997). Inorg. Chem. 36, 5076-5081.]; Kaupp et al., 1991[Kaupp, M., Stoll, H., Preuss, H., Kaim, W., Stahl, T., Van Koten, G., Wissing, E., Smeets, W. J. J. & Spek, A. L. (1991). J. Am. Chem. Soc. 113, 5606-5618.]). Recently, we have investigated the preparation of Mo(W)/Cu/S clusters from the precursor (Et4N)[Tp*WS3], where Tp* = hydrogen tris­(3,5-dimethyl­pyrazol-1-yl)borate (Seino et al., 2001[Seino, H., Arai, Y., Iwata, N., Nagao, S., Mizobe, Y. & Hidai, M. (2001). Inorg. Chem. 40, 1677-1682.]), and this compound has been found to undergo stepwise addition reactions with one to four equivalents of CuNCS to yield the products [Tp*WS3(CuNCS)n] (n = 1 or 2), [Tp*WS3(CuNCS)3Br]2− and the polymeric {Tp*WS3(CuNCS)4} (Wei, Li, Ren et al., 2009[Wei, Z. H., Li, H. X., Ren, Z. G., Lang, J. P., Zhang, Y. & Sun, Z. R. (2009). Dalton Trans. pp. 3425-3433.]). In a continuation of our work in this area, we treated the precursor (Et4N)[Tp*WS3] with one to three equivalents of CuBr in a stepwise manner (Scheme 1[link] shows the stepwise addition of Cu+ to the WS3 core to construct a cubane-like unit) and

[Scheme 1]
obtained the [1 + 1], [1 + 2] and [1 + 3] products, (Et4N)[Tp*WS(μ-S)2(CuBr)], (Et4N)[Tp*W(μ3-S)(μ-S)2(CuBr)2] and (Et4N)[Tp*W(μ3-S)3­(CuBr)3]. We have reported the crystal structure of the [1 + 3] product previously (Wei, Li, Cheng et al., 2009[Wei, Z. H., Li, H. X., Cheng, M. L., Tang, X. Y., Zhang, Y. & Lang, J. P. (2009). Inorg. Chem. 48, 2808-2817.]). We report herein he crystal structures of the [1 + 1] and [1 + 2] complexes, (I)[link] and (II)[link].
[Scheme 2]

The anion of complex (I)[link] comprises a [Tp*WS3] unit and one CuBr group, with a pair of μ-S atoms forming a WS2Cu ring (Fig. 1[link]). One terminal S atom is retained. The structure closely resembles that of the anion in the related compound (Et4N)[Tp*WS(μ-S)2(CuNCS)] (Wei, Li, Ren et al., 2009[Wei, Z. H., Li, H. X., Ren, Z. G., Lang, J. P., Zhang, Y. & Sun, Z. R. (2009). Dalton Trans. pp. 3425-3433.]). It is noteworthy that the comparable [1 + 1] addition complex is not known among the M/Cu/S clusters based on the related precursor [PPh3][Cp*MS3], while for the (Et4N)[OMS3] precursor, reactions with one equivalent of CuCl and CuCN have been reported to yield the products [Me4N][WOS(μ-S)2(CuCl)] (Shamsur Rahman et al., 2000[Shamsur Rahman, A. B. M., Boller, H. & Klepp, O. K. (2000). Inorg. Chim. Acta, 305, 91-94.]) and (Et4N)[MoOS(μ-S)2(CuCN)] (Zhang et al., 2008[Zhang, W. H., Song, Y. L., Zhang, Y. & Lang, J. P. (2008). Cryst. Growth Des. 8, 253-258.]), respectively. In (I)[link], atom Cu1 adopts a trigonal planar geometry, coordinated by one terminal Br atom and two μ-S atoms. The W1⋯Cu1 distance of 2.5893 (11) Å is slightly shorter than those in other butterfly-shaped or incomplete cubane core clusters. The terminal W1—S3 bond length of 2.141 (3) Å is similar to that in [WS4Cu2(dppm)3] [2.146 (4) Å; dppm = bis­(diphenyl­phosphino)methane; Lang & Tatsumi, 1998[Lang, J. P. & Tatsumi, K. (1998). Inorg. Chem. 37, 6308-6316.]], but slightly shorter than those in the corresponding precursor (Et4N)[Tp*WS3] (mean 2.193 Å; Seino et al., 2001[Seino, H., Arai, Y., Iwata, N., Nagao, S., Mizobe, Y. & Hidai, M. (2001). Inorg. Chem. 40, 1677-1682.]) and in the cluster (Et4N)[Tp*WS(μ-S)2(CuNCS)] [2.154 (3) Å; Wei, Li, Ren et al., 2009[Wei, Z. H., Li, H. X., Ren, Z. G., Lang, J. P., Zhang, Y. & Sun, Z. R. (2009). Dalton Trans. pp. 3425-3433.]]. The mean W—μ-S (2.268 Å), Cu—μ-S (2.193 Å) and Cu—Br [2.2831 (14) Å] bond lengths are slightly longer than the corresponding values in the complex (Et4N)[Tp*WS(μ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009[Wei, Z. H., Li, H. X., Cheng, M. L., Tang, X. Y., Zhang, Y. & Lang, J. P. (2009). Inorg. Chem. 48, 2808-2817.]).

The anion of complex (II)[link] has a butterfly-shaped [WS3Cu2] structure in which one [Tp*WS3] unit and two CuBr groups are linked via one μ3-S and two μ-S atoms (Fig. 2[link]). Atoms W1, S1, B1, N3, N4 and C6–C10 lie on a crystallographic mirror plane. Similar butterfly-shaped [WS3Cu2] cores have been observed in (Et4N)[Tp*WS3(CuNCS)2] (Wei, Li, Ren et al., 2009[Wei, Z. H., Li, H. X., Ren, Z. G., Lang, J. P., Zhang, Y. & Sun, Z. R. (2009). Dalton Trans. pp. 3425-3433.]), (PPh4)[(Cp*WS3(CuCN)2] (Lang et al., 2004[Lang, J. P., Xu, Q. F., Ji, W., Elim, H. I. & Tatsumi, K. (2004). Eur. J. Inorg. Chem. pp. 86-91.]) and [MOS3M2(PPh3)3] (M = W, Mo; M′ = Cu, Ag) (Müller et al., 1983[Müller, A., Schimanski, U. & Schimanski, J. (1983). Inorg. Chim. Acta, 76, 245-246.]). Each Cu atom in (II)[link] adopts a trigonal planar geometry, coordinated by one μ-S atom, one μ3-S atom and one terminal Br atom. The W⋯Cu distance of 2.6239 (10) Å is longer than that in complex (I)[link], but similar to those found in other complexes containing three-coordinated Cu, such as (Et4N)[Tp*WS(μ3-S)3(CuBr)3] [2.6404 (2) Å; Wei, Li, Cheng et al., 2009[Wei, Z. H., Li, H. X., Cheng, M. L., Tang, X. Y., Zhang, Y. & Lang, J. P. (2009). Inorg. Chem. 48, 2808-2817.]] and (PPh4)[Cp*WS3(CuCN)2] [2.666 (3) Å; Lang et al., 2004[Lang, J. P., Xu, Q. F., Ji, W., Elim, H. I. & Tatsumi, K. (2004). Eur. J. Inorg. Chem. pp. 86-91.]]. Because of the coordination of the S atoms to the Cu atoms, the W1—S1 bond length of 2.331 (2) Å is longer than the W1—S2 bond length of 2.2293 (18) Å, and both bonds are elongated relative to the mean W—S bond length (2.193 Å) in the precursor (Et4N)[Tp*WS3] (Seino et al., 2001[Seino, H., Arai, Y., Iwata, N., Nagao, S., Mizobe, Y. & Hidai, M. (2001). Inorg. Chem. 40, 1677-1682.]).

Fig. 3[link] illustrates how the S and CuI centres of (I)[link] and (II)[link] build up sequentially towards the corners of a cubane-like unit. Firstly, one CuI centre is added to the Tp*WS3 unit to construct the [Tp*WS(μ-S)2Cu] core with one terminal S atom remaining. Secondly, the two CuI centres in (II)[link] form the butterfly core [Tp*W(μ-S)2(μ3-S)Cu2]. A third CuI centre can then be added to the butterfly core of (II)[link] to produce an incomplete cubane-like unit, [Tp*W(μ3-S)3Cu3], as in the previously published structure (Et4N)[Tp*W(μ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009[Wei, Z. H., Li, H. X., Cheng, M. L., Tang, X. Y., Zhang, Y. & Lang, J. P. (2009). Inorg. Chem. 48, 2808-2817.]). Throughout this sequence, the geometry of the [Tp*WS3] unit remains essentially unchanged: the r.m.s. deviations for overlay of the 26 non-H atoms in the core onto the precursor [Tp*WS3] are 0.14, 0.10 and 0.30 Å for (I)[link], (II)[link] and (Et4N)[Tp*W(μ3-S)3(CuBr)3], respectively. The [Tp*WS3] unit exhibits approximate C3v point symmetry and one of the mirror planes is retained as a crystallographic symmetry element in (II)[link].

Packing diagrams are shown for (I)[link] and (II)[link] in Figs. 4[link] and 5[link], respectively. The structures contain comparable stacks of alternating complexes and Et4N+ cations running along the b axes. In (I)[link], these stacks are arranged so that the Cu—Br bonds point towards the same direction along the c axis, forming a noncentrosymmetric and polar structure. In (II)[link], the stacks are arranged in a centrosymmetric manner.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary size.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary size. Methyl H atoms on C6, C10, C13 and C15 are disordered over the mirror plane. [Symmetry code: (i) x, −y + [{3\over 2}], z.]
[Figure 3]
Figure 3
A view of the anions in (I)[link] and (II)[link] along the approximate threefold axis of the Tp* group. [Symmetry code: (i) x, −y + [{3\over 2}], z.]
[Figure 4]
Figure 4
A packing diagram of (I)[link], viewed along the b axis, showing the noncentrosymmetric and polar arrangement. H atoms have been omitted.
[Figure 5]
Figure 5
A packing diagram of (II)[link], viewed along the b axis, showing the centrosymmetric arrangement. H atoms have been omitted.

Experimental

All manipulations were performed under an argon atmosphere using standard Schlenk-line techniques. The precursor (Et4N)[Tp*WS3] was prepared as reported previously (Seino et al., 2001[Seino, H., Arai, Y., Iwata, N., Nagao, S., Mizobe, Y. & Hidai, M. (2001). Inorg. Chem. 40, 1677-1682.]). For these reactions, CHCl3 is a better solvent than MeCN because CuBr is poorly soluble in CHCl3 and it can facilitate the stepwise introduction of CuBr into [Tp*WS3]. Compound (I)[link] is air sensitive and easily oxidized in solution to form (Et4N)[Tp*WO(μ-S)2(CuBr)]. Complex (II)[link] is relatively air and moisture stable in the solid state.

For the synthesis of (I)[link], CuBr (14.4 mg, 0.1 mmol) was added to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in CHCl3 (15 ml). After being stirred for half an hour, the resulting red solution was filtered and Et2O (30 ml) was carefully layered onto the surface of the filtrate. After 4 d, red prisms of (I)[link] were collected by filtration, washed with Et2O and dried in vacuo {yield 72.3 mg, 80% based on (Et4N)[Tp*WS3]}. Analysis calculated: C 32.46, H 4.98, N 11.52%; found C 32.32, H 4.55, N 11.95%. IR (KBr disc, cm−1): 2978 (m), 2920 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 691 (w), 651 (w), 459 (m), 416 (w). UV–visible {MeCN, λmax [nm ( M−1 cm−1)]}: 333 (14300), 445 (6400), 524 (3000). 1H NMR (400 MHz, CDCl3): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.95 (s, 9H, CH3 in Tp*), 3.33–3.39 (q, 8H, CH2CH3), 5.94 (s, 3H, CH in Tp*), the B—H proton was not identified.

For the synthesis of (II)[link], CuBr (28.8 mg, 0.2 mmol) was added to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in CHCl3 (15 ml). A procedure identical to that used for (I)[link] afforded dark red blocks of (II)[link] {yield 93 mg, 85% based on (Et4N)[Tp*WS3]}. Analysis calculated: C 27.78, H 4.26, N 9.86%; found: C 27.32; H 4.55; N 9.95%. IR (KBr disc, cm−1): 2979 (m), 2921 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 693 (w), 651 (w), 469 (w), 420 (w). UV–visible {MeCN, λmax [nm ( M−1 cm−1)]}: 323 (16300), 420 (8890), 544 (5800). 1H NMR (400 MHz, DMSO-d6): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.96 (s, 9H, CH3 in Tp*), 3.31–3.38 (q, 8H, CH2CH3), 5.92 (s, 3H, CH in Tp*), the B—H proton was not identified.

Compound (I)[link]

Crystal data
  • (C8H20N)[CuWBr(C15H22BN6)S3]

  • Mr = 850.95

  • Orthorhombic, P n a 21

  • a = 19.058 (4) Å

  • b = 10.276 (2) Å

  • c = 16.323 (3) Å

  • V = 3196.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.73 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.147, Tmax = 0.239

  • 29584 measured reflections

  • 5857 independent reflections

  • 5342 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.10

  • 5710 reflections

  • 344 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2678 Friedel pairs

  • Flack parameter: 0.004 (10)

Compound (II)[link]

Crystal data
  • (C8H20N)[Cu2WBr2(C15H22BN6)S3]

  • Mr = 994.40

  • Orthorhombic, P n m a

  • a = 12.808 (3) Å

  • b = 11.768 (2) Å

  • c = 22.569 (5) Å

  • V = 3401.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.17 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.17 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.087, Tmax = 0.295

  • 32255 measured reflections

  • 3282 independent reflections

  • 2999 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.09

  • 3276 reflections

  • 206 parameters

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.15 e Å−3

H atoms were placed geometrically and constrained to ride on their parent atoms, with B—H = 0.98 Å and C—H = 0.96 (meth­yl), 0.97 (methyl­ene) or 0.93 Å (aromatic), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. In (I), extensive rigid-bond and similarity restraints were applied to the displacement parameters of atoms C4, C5, C9, C10, N7 and C16–C23. In (II), the methyl H atoms on C6 and C10 (in the pyrazole ring) and on C13 and C15 (in the Et4N+ cation) are disordered over the mirror plane.

For both compounds, data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, the chemistry of Mo(W)/Cu/S clusters derived from reactions of metal sulfide synthons such as [MOxS4-x]2- or [Cp*MS3]- (M = Mo or W, x = 0–3, Cp* = pentamethylcyclopentadienyl) with CuX (X = Cl, Br, I, NCS, CN) has been investigated extensively because of their novel structures (Chisholm et al., 2002; Parkin, 2004; Zulys et al., 2005) and their potential applications in biological systems (Lewinski et al., 2006) and opto-electronic materials (Vahrenkamp, 1999). Among these Mo(W)/Cu/S clusters, a complete series of products obtained by the stepwise addition of CuX has not previously been realized in a system involving the same components CuX and [MS4]2- or [EMS3]n- (E = O, n = 2 or E = Cp*, n = 1) in different molar ratios (Bunge et al., 2007; Boomishankar et al., 2006; Malik et al., 1997; Kaupp et al., 1991). Recently, we have investigated the preparation of Mo(W)/Cu/S clusters from the precursor (Et4N)[Tp*WS3], where Tp* = hydrogen tris(3,5-dimethylpyrazolyl)borate (Seino et al., 2001), and this compound has been found to undergo stepwise addition reactions with one to four equivalents of CuNCS to yield the products [Tp*WS3(CuNCS)n]- (n = 1 or 2), [Tp*WS3(CuNCS)3Br]2- and the polymeric {Tp*WS3(CuNCS)4}- (Wei, Li, Ren et al., 2009). In continuation of our work in this area, we treated the precursor (Et4N)[Tp*WS3] with one to three equivalents of CuBr in a stepwise manner (Fig. 1), and obtained the [1+1], [1+2] and [1+3] products, (Et4N)[Tp*WS(µ-S)2(CuBr)], (Et4N)[Tp*W(µ3-S)(µ-S)2(CuBr)2] and (Et4N)[Tp*W(µ3-S)3(CuBr)3]. We have reported the crystal structure of the [1+3] product previously (Wei, Li, Cheng et al., 2009). Herein, we report the crystal structures of the [1+1] and [1+2] complexes, (I) and (II).

The anion of complex (I) comprises a [Tp*WS3]- unit and one CuBr group, with a pair of µ-S atoms forming a WS2Cu ring (Fig. 2). One terminal S atom is retained. The structure closely resembles that of the anion in the related compound (Et4N)[Tp*WS(µ-S)2(CuNCS)] (Wei, Li, Ren et al., 2009). It is noteworthy that the comparable [1+1] addition complex is not known among the M/Cu/S clusters based on the related precursor [PPh3][Cp*MS3], while for the (Et4N)[OMS3] precursor, reactions with one equivalent of CuCl and CuCN have been reported to yield the products [Me4N][WOS(µ-S)2(CuCl)] (Shamsur Rahman et al., 2000) and (Et4N)[MoOS(µ-S)2(CuCN)] (Zhang et al., 2008), respectively. In (I), atom Cu1 adopts a trigonal planar geometry, coordinated by one terminal Br atom and two µ-S atoms. The W1···Cu1 distance of 2.5893 (11) Å is slightly shorter than those in other butterfly-shaped or incomplete cubane core clusters. The terminal W1—S3 bond length of 2.141 (3) Å is similar to that in [WS4Cu2(dppm)3] [2.146 (4) Å] [dppm = bis(diphenylphosphino)methane] (Lang & Tatsumi, 1998), but slightly shorter than those in the corresponding precursor (Et4N)[Tp*WS3] (mean 2.193 Å) (Seino et al., 2001) and in the cluster (Et4N)[Tp*WS(µ-S)2(CuNCS)] [2.154 (3) Å] (Wei, Li, Ren et al., 2009). The mean W—µ-S (2.268 Å), Cu—µ-S (2.193 Å) and Cu—Br [2.2831 (14) Å] bond lengths are slightly longer than the corresponding values in the complex (Et4N)[Tp*WS(µ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009).

The anion of complex (II) has a butterfly-shaped [WS3Cu2] structure in which one [Tp*WS3] unit and two CuBr groups are linked via one µ3-S and two µ-S atoms (Fig. 3). Atoms W1, S1, B1, N3, N4 and C6–C10 lie on a crystallographic mirror plane. Similar butterfly-shaped [WS3Cu2] cores have been observed in (Et4N)[Tp*WS3(CuNCS)2] (Wei, Li, Ren, et al., 2009), [PPh4][(Cp*WS3(CuCN)2] (Lang et al., 2004) and [MOS3M'2(PPh3)3] (M = W, Mo; M' = Cu, Ag) (Müller et al., 1983). Each Cu atom in (II) adopts a trigonal planar geometry, coordinated by one µ-S atom, one µ3-S atom and one terminal Br atom. The W···Cu distance of 2.6239 (10) Å is longer than that in complex (I), but similar to those found in other complexes containing three-coordinated Cu, such as (Et4N)[Tp*WS(µ3-S)3(CuBr)3] [2.6404 (2) Å] (Wei, Li, Cheng et al., 2009) and [PPh4][Cp*WS3(CuCN)2] [2.666 (3) Å] (Lang et al., 2004). Because of the coordination of the S atoms to the Cu atoms, the W1—S1 bond length of 2.331 (2) Å is longer than the W1—S2 bond length of 2.2293 (18) Å, and both bonds are elongated relative to the mean W—S bond length (2.193 Å) in the precursor (Et4N)[Tp*WS3] (Seino et al., 2001).

Fig. 4 illustrates how the S and Cu atoms of (I) and (II) build up sequentially towards the corners of a cubane-like unit. Firstly, one Cu atom is added to the Tp*WS3 unit to construct the [Tp*WS(µ-S)2Cu] core with one terminal S atom remaining. Secondly, the two Cu atoms in (II) form the butterfly core [Tp*W(µ-S)23-S)Cu2]. A third Cu atom can then be added to the butterfly core of (II) to produce an incomplete cubane-like unit, [Tp*W(µ3-S)3Cu3], as in the previously published structure (Et4N)[Tp*W(µ3-S)3(CuBr)3] (Wei, Li, Cheng et al., 2009). Throughout this sequence, the geometry of the [Tp*WS3] unit remains essentially unchanged: the r.m.s. deviations for overlay of the 26 non-H atoms in the core onto the precursor [Tp*WS3] are 0.14, 0.10 and 0.30 Å for (I), (II) and (Et4N)[Tp*W(µ3-S)3(CuBr)3], respectively. The [Tp*WS3] unit exhibits approximate C3v point symmetry and one of the mirror planes is retained as a crystallographic symmetry element in (II).

Packing diagrams are shown for (I) and (II) in Figs. 5 and 6, respectively. The structures contain comparable stacks of alternating complexes and Et4N+ cations running along the b axes. In (I), these stacks are arranged so that the Cu—Br bonds point towards the same direction along the c axis, forming a non-centrosymmetric and polar structure. In (II), the stacks are arranged in a centrosymmetric manner.

Related literature top

For related literature, see: Lang & Tatsumi (1998); Lang et al. (2004); Müller et al. (1983); Seino et al. (2001); Wei, Li, Cheng, Tang, Zhang & Lang (2009); Wei, Li, Ren, Lang, Zhang & Sun (2009); Zhang et al. (2008).

Experimental top

All manipulations were performed under an Ar atmosphere using standard Schlenk-line techniques. The precursor (Et4N)[Tp*WS3] was prepared as reported previously (Seino et al., 2001). For these reactions, CHCl3 is a better solvent than MeCN because CuBr is poorly soluble in CHCl3 and it can facilitate the stepwise introduction of CuBr into [Tp*WS3]-. Compound (I) is air sensitive and easily oxidized in solution to form (Et4N)[Tp*WO(µ-S)2(CuBr)]. Complex (II) is relatively air and moisture stable in the solid state.

For the synthesis of (I), to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in 15 ml of CHCl3, CuBr (14.4 mg, 0.1 mmol) was added. After being stirred for half an hour, the resulting red solution was filtered and Et2O (30 ml) was carefully layered onto the surface of the filtrate. After 4 d, red prisms of (I) were collected by filtration, washed with Et2O and dried in vacuo. Yield: 72.3 mg {80% based on (Et4N)[Tp*WS3]}. Analysis: calculated C 32.46, H 4.98, N 11.52%; found C 32.32, H 4.55, N 11.95%. IR (KBr disc, cm-1): 2978 (m), 2920 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 691 (w), 651 (w), 459 (m), 416 (w). UV–visible {MeCN, λmax [nm (ε M-1 cm-1)]}: 333 (14300), 445 (6400), 524 (3000). 1H NMR (400 MHz, CDCl3): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.95 (s, 9H, CH3 in Tp*), 3.33–3.39 (q, 8H, CH2CH3), 5.94 (s, 3H, CH in Tp*), the B—H proton was not identified.

For the synthesis of (II), to a solution of (Et4N)[Tp*WS3] (75 mg, 0.1 mmol) in 15 ml of CHCl3, CuBr (28.8 mg, 0.2 mmol) was added. A procedure identical to that used for (I) afforded dark red blocks of (II). Yield: 93 mg {85% based on (Et4N)[Tp*WS3]}. Analysis: calculated C 27.78, H 4.26, N 9.86%; found: C 27.32; H 4.55; N 9.95%. IR (KBr disc, cm-1): 2979 (m), 2921 (m), 2554 (w), 1628 (w), 1546 (s), 1440 (s), 1435 (s), 1418 (s), 1035 (m), 860 (w), 806 (w), 693 (w), 651 (w), 469 (w), 420 (w). UV–visible {MeCN, λmax [nm (ε M-1 cm-1)]}: 323 (16300), 420 (8890), 544 (5800). 1H NMR (400 MHz, DMSO-d6): δ 1.36–1.40 (t, 12H, CH2CH3), 2.37 (s, 9H, CH3 in Tp*), 2.96 (s, 9H, CH3 in Tp*), 3.31–3.38 (q, 8H, CH2CH3), 5.92 (s, 3H, CH in Tp*), the B—H proton was not identified.

Refinement top

H atoms were placed geometrically and constrained to ride on their parent atoms, with B—H = 0.98, C—H = 0.96 (methyl), 0.97 (methylene) or 0.93 Å (aromatic), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms, or 1.2Ueq(C) otherwise. In compound (II), the methyl H atoms on C6 and C10 (in the pyrazole ring) and on C13 and C15 (in the Et4N+ cation) are disordered over the mirror plane.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. The molecular structure of (II), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary size. Methyl H on C6, C10, C13 and C15 were disordered over the mirror plane. [Symmetry code: (i) x, -y+3/2, z.]
[Figure 3] Fig. 3. A view of the anions in (I) and (II) along the approximate threefold axis of the Tp* group. [Symmetry code: (i) x, -y+3/2, z.]
[Figure 4] Fig. 4. A packing diagram of (I), viewed along the b axis, showing the non-centrosymmetric and polar arrangement. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.
[Figure 5] Fig. 5. A packing diagram of (II), viewed along the b axis, showing the centrosymmetric arrangement. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.
(I) tetraethylammonium bromidodi-µ2-sulfido-sulfido[tris(3,5- dimethylpyrazol-1-yl)borato]copper(I)tungsten(VI) top
Crystal data top
(C8H20N)[CuWBr(C15H22BN6)S3]F(000) = 1680
Mr = 850.95Dx = 1.768 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 12205 reflections
a = 19.058 (4) Åθ = 3.2–25.4°
b = 10.276 (2) ŵ = 5.73 mm1
c = 16.323 (3) ÅT = 293 K
V = 3196.6 (11) Å3Block, red
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Rigaku Mercury CCD
diffractometer
5857 independent reflections
Radiation source: fine-focus sealed tube5342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω–scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 2220
Tmin = 0.147, Tmax = 0.239k = 1212
29584 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.3297P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.010
5710 reflectionsΔρmax = 1.05 e Å3
344 parametersΔρmin = 0.59 e Å3
81 restraintsAbsolute structure: Flack (1983), 2678 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (10)
Crystal data top
(C8H20N)[CuWBr(C15H22BN6)S3]V = 3196.6 (11) Å3
Mr = 850.95Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.058 (4) ŵ = 5.73 mm1
b = 10.276 (2) ÅT = 293 K
c = 16.323 (3) Å0.35 × 0.30 × 0.25 mm
Data collection top
Rigaku Mercury CCD
diffractometer
5857 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
5342 reflections with I > 2σ(I)
Tmin = 0.147, Tmax = 0.239Rint = 0.044
29584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.084Δρmax = 1.05 e Å3
S = 1.10Δρmin = 0.59 e Å3
5710 reflectionsAbsolute structure: Flack (1983), 2678 Friedel pairs
344 parametersAbsolute structure parameter: 0.004 (10)
81 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.153938 (13)0.40388 (2)0.35724 (2)0.04478 (10)
Cu10.08945 (5)0.25409 (10)0.25427 (7)0.0566 (3)
Br10.03204 (6)0.12163 (11)0.16418 (8)0.0906 (4)
S10.19281 (10)0.2117 (2)0.30688 (13)0.0592 (5)
S20.04087 (12)0.4221 (2)0.31460 (14)0.0618 (5)
S30.20836 (17)0.5397 (3)0.28073 (15)0.0895 (9)
B10.1731 (5)0.4402 (10)0.5659 (6)0.053 (2)
H10.17940.45290.62500.064*
N10.1228 (3)0.3280 (6)0.5503 (4)0.0514 (15)
N20.1101 (3)0.2863 (6)0.4708 (4)0.0472 (16)
N30.1430 (3)0.5650 (6)0.5269 (4)0.0524 (16)
N40.1299 (4)0.5688 (6)0.4443 (4)0.0563 (16)
N50.2441 (3)0.4103 (5)0.5256 (3)0.0459 (14)
N60.2499 (3)0.4000 (6)0.4413 (4)0.0522 (16)
N70.1604 (4)0.4254 (9)0.9915 (6)0.0818 (19)
C10.0953 (6)0.2678 (13)0.6944 (6)0.107 (4)
H1A0.14280.25260.71150.161*
H1B0.06470.20780.72180.161*
H1C0.08200.35530.70800.161*
C20.0897 (4)0.2487 (8)0.6035 (5)0.060 (2)
C30.0558 (4)0.1547 (9)0.5592 (6)0.062 (2)
H30.02910.08650.57990.074*
C40.0687 (4)0.1804 (8)0.4787 (6)0.062 (2)
C50.0418 (4)0.1044 (7)0.4050 (7)0.078 (3)
H5A0.01290.15990.37190.117*
H5B0.01470.03130.42350.117*
H5C0.08080.07410.37310.117*
C60.1381 (6)0.7043 (11)0.6524 (6)0.092 (3)
H6A0.10420.65530.68310.138*
H6B0.13200.79540.66330.138*
H6C0.18450.67830.66810.138*
C70.1277 (5)0.6790 (9)0.5620 (5)0.064 (2)
C80.1040 (6)0.7602 (9)0.5022 (6)0.085 (3)
H80.09060.84660.50880.102*
C90.1035 (6)0.6898 (8)0.4294 (5)0.075 (3)
C100.0818 (7)0.7398 (8)0.3487 (7)0.108 (4)
H10A0.12270.76200.31730.161*
H10B0.05310.81570.35590.161*
H10C0.05550.67410.32030.161*
C110.3184 (5)0.3977 (9)0.6505 (6)0.074 (3)
H11A0.30050.47790.67210.111*
H11B0.36760.39100.66260.111*
H11C0.29400.32590.67500.111*
C120.3082 (4)0.3949 (8)0.5608 (5)0.060 (2)
C130.3535 (4)0.3787 (11)0.4980 (6)0.076 (3)
H130.40180.36870.50310.091*
C140.3173 (4)0.3793 (10)0.4260 (6)0.072 (3)
C150.3480 (4)0.3638 (13)0.3409 (6)0.098 (4)
H15A0.31060.35700.30170.147*
H15B0.37620.28650.33900.147*
H15C0.37650.43810.32820.147*
C160.0788 (9)0.2403 (16)0.9398 (13)0.186 (7)
H16A0.06360.31240.90680.279*
H16B0.04030.20950.97230.279*
H16C0.09510.17150.90480.279*
C170.1370 (7)0.2832 (13)0.9948 (8)0.111 (3)
H17A0.17760.22950.98280.134*
H17B0.12310.26431.05070.134*
C180.2554 (7)0.5569 (13)1.0593 (10)0.124 (4)
H18A0.27660.57471.00720.186*
H18B0.29130.54981.10040.186*
H18C0.22400.62641.07350.186*
C190.2166 (6)0.4354 (11)1.0548 (8)0.093 (3)
H19A0.19540.41991.10790.112*
H19B0.25000.36581.04530.112*
C200.0651 (7)0.5130 (15)1.0846 (8)0.126 (4)
H20A0.02740.45131.08040.189*
H20B0.04640.59731.09760.189*
H20C0.09680.48621.12710.189*
C210.1027 (6)0.5195 (14)1.0068 (8)0.108 (3)
H21A0.12200.60641.00160.129*
H21B0.06850.50910.96320.129*
C220.2450 (9)0.3737 (16)0.8769 (10)0.174 (6)
H22A0.28810.40730.89900.262*
H22B0.24690.37650.81810.262*
H22C0.23870.28540.89460.262*
C230.1864 (7)0.4528 (12)0.9057 (7)0.111 (3)
H23A0.14750.44090.86810.133*
H23B0.20020.54350.90290.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.05559 (16)0.04421 (15)0.03455 (14)0.01008 (11)0.00158 (18)0.00762 (16)
Cu10.0600 (6)0.0520 (6)0.0578 (7)0.0018 (5)0.0133 (5)0.0148 (4)
Br10.0900 (8)0.0753 (6)0.1065 (9)0.0008 (6)0.0431 (7)0.0373 (6)
S10.0479 (10)0.0643 (13)0.0654 (13)0.0060 (9)0.0058 (9)0.0242 (11)
S20.0703 (13)0.0541 (12)0.0610 (12)0.0128 (10)0.0117 (11)0.0094 (10)
S30.133 (2)0.0816 (18)0.0541 (13)0.0418 (17)0.0097 (15)0.0055 (13)
B10.057 (5)0.060 (5)0.043 (5)0.003 (5)0.004 (4)0.005 (4)
N10.040 (3)0.065 (4)0.049 (4)0.006 (3)0.005 (3)0.015 (3)
N20.041 (3)0.048 (4)0.052 (4)0.005 (3)0.001 (3)0.005 (3)
N30.070 (4)0.050 (4)0.037 (4)0.002 (3)0.000 (3)0.009 (3)
N40.101 (5)0.040 (3)0.029 (3)0.000 (3)0.001 (3)0.006 (3)
N50.047 (3)0.056 (4)0.034 (3)0.013 (3)0.003 (3)0.008 (3)
N60.045 (3)0.074 (4)0.037 (3)0.022 (3)0.007 (3)0.014 (3)
N70.082 (4)0.084 (4)0.079 (4)0.004 (3)0.013 (3)0.006 (4)
C10.107 (9)0.162 (12)0.053 (6)0.014 (8)0.027 (5)0.038 (6)
C20.044 (4)0.079 (6)0.056 (5)0.002 (4)0.008 (4)0.019 (4)
C30.053 (5)0.067 (6)0.065 (5)0.001 (4)0.013 (4)0.027 (5)
C40.040 (4)0.046 (4)0.101 (7)0.002 (3)0.001 (4)0.017 (4)
C50.047 (4)0.040 (4)0.148 (8)0.022 (3)0.000 (5)0.014 (4)
C60.116 (8)0.094 (8)0.066 (6)0.027 (6)0.014 (6)0.043 (6)
C70.082 (6)0.066 (5)0.045 (4)0.014 (5)0.006 (4)0.022 (4)
C80.132 (10)0.054 (5)0.068 (6)0.019 (6)0.004 (6)0.015 (5)
C90.137 (8)0.041 (4)0.048 (4)0.004 (5)0.010 (5)0.005 (4)
C100.215 (11)0.054 (5)0.054 (5)0.031 (6)0.018 (8)0.000 (5)
C110.060 (5)0.102 (8)0.059 (6)0.009 (5)0.005 (5)0.010 (5)
C120.048 (5)0.083 (6)0.049 (5)0.024 (4)0.006 (4)0.012 (4)
C130.045 (5)0.121 (8)0.062 (6)0.028 (5)0.003 (4)0.022 (6)
C140.046 (5)0.119 (8)0.051 (5)0.027 (5)0.007 (4)0.023 (5)
C150.056 (5)0.185 (11)0.054 (8)0.042 (6)0.019 (4)0.046 (7)
C160.203 (13)0.182 (13)0.172 (13)0.077 (11)0.034 (11)0.017 (11)
C170.125 (7)0.103 (6)0.106 (7)0.041 (5)0.012 (6)0.005 (6)
C180.102 (8)0.129 (9)0.141 (10)0.032 (7)0.017 (8)0.032 (9)
C190.085 (6)0.095 (6)0.099 (6)0.004 (5)0.008 (5)0.015 (5)
C200.107 (8)0.155 (11)0.117 (9)0.016 (8)0.042 (7)0.009 (8)
C210.101 (6)0.121 (6)0.100 (6)0.016 (5)0.007 (5)0.002 (6)
C220.205 (13)0.189 (13)0.129 (13)0.018 (10)0.084 (10)0.017 (10)
C230.138 (7)0.100 (7)0.094 (6)0.004 (6)0.035 (5)0.001 (6)
Geometric parameters (Å, º) top
W1—S12.264 (2)C7—C81.360 (13)
W1—S22.272 (2)C8—C91.390 (12)
W1—S32.141 (3)C8—H80.9300
W1—N22.365 (7)C9—C101.474 (14)
W1—N42.258 (6)C10—H10A0.9600
W1—N62.287 (6)C10—H10B0.9600
W1—Cu12.5893 (11)C10—H10C0.9600
Cu1—S22.192 (2)C11—C121.476 (12)
Cu1—S12.193 (2)C11—H11A0.9600
Cu1—Br12.2831 (14)C11—H11B0.9600
B1—N11.521 (11)C11—H11C0.9600
B1—N51.535 (11)C12—C131.352 (12)
B1—N31.543 (12)C13—C141.363 (13)
B1—H10.9800C13—H130.9300
N1—C21.348 (10)C14—C151.515 (12)
N1—N21.389 (9)C15—H15A0.9600
N2—C41.350 (10)C15—H15B0.9600
N3—C71.336 (10)C15—H15C0.9600
N3—N41.371 (9)C16—C171.493 (18)
N4—C91.363 (10)C16—H16A0.9600
N5—C121.359 (10)C16—H16B0.9600
N5—N61.385 (8)C16—H16C0.9600
N6—C141.326 (10)C17—H17A0.9700
N7—C211.485 (14)C17—H17B0.9700
N7—C191.492 (14)C18—C191.453 (14)
N7—C231.512 (14)C18—H18A0.9600
N7—C171.529 (15)C18—H18B0.9600
C1—C21.500 (13)C18—H18C0.9600
C1—H1A0.9600C19—H19A0.9700
C1—H1B0.9600C19—H19B0.9700
C1—H1C0.9600C20—C211.461 (15)
C2—C31.370 (13)C20—H20A0.9600
C3—C41.363 (13)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
C4—C51.523 (13)C21—H21A0.9700
C5—H5A0.9600C21—H21B0.9700
C5—H5B0.9600C22—C231.459 (17)
C5—H5C0.9600C22—H22A0.9600
C6—C71.511 (12)C22—H22B0.9600
C6—H6A0.9600C22—H22C0.9600
C6—H6B0.9600C23—H23A0.9700
C6—H6C0.9600C23—H23B0.9700
S3—W1—N488.63 (18)H6B—C6—H6C109.5
S3—W1—S1101.44 (10)N3—C7—C8107.6 (7)
N4—W1—S1161.68 (17)N3—C7—C6122.7 (8)
S3—W1—S2103.14 (11)C8—C7—C6129.6 (8)
N4—W1—S286.5 (2)C7—C8—C9107.2 (7)
S1—W1—S2105.71 (7)C7—C8—H8126.4
S3—W1—N688.51 (17)C9—C8—H8126.4
N4—W1—N678.3 (2)N4—C9—C8108.7 (7)
S1—W1—N686.61 (16)N4—C9—C10125.5 (7)
S2—W1—N6160.69 (16)C8—C9—C10125.8 (8)
S3—W1—N2164.03 (17)C9—C10—H10A109.5
N4—W1—N279.5 (2)C9—C10—H10B109.5
S1—W1—N287.39 (16)H10A—C10—H10B109.5
S2—W1—N286.95 (16)C9—C10—H10C109.5
N6—W1—N278.7 (2)H10A—C10—H10C109.5
S3—W1—Cu1103.82 (7)H10B—C10—H10C109.5
N4—W1—Cu1139.32 (19)C12—C11—H11A109.5
S1—W1—Cu153.20 (6)C12—C11—H11B109.5
S2—W1—Cu153.12 (6)H11A—C11—H11B109.5
N6—W1—Cu1139.35 (16)C12—C11—H11C109.5
N2—W1—Cu192.13 (16)H11A—C11—H11C109.5
S2—Cu1—S1111.10 (9)H11B—C11—H11C109.5
S2—Cu1—Br1123.81 (8)C13—C12—N5105.5 (7)
S1—Cu1—Br1124.35 (8)C13—C12—C11132.0 (8)
S2—Cu1—W156.00 (6)N5—C12—C11122.5 (8)
S1—Cu1—W155.78 (6)C12—C13—C14109.3 (8)
Br1—Cu1—W1179.60 (7)C12—C13—H13125.3
Cu1—S1—W171.02 (7)C14—C13—H13125.3
Cu1—S2—W170.87 (7)N6—C14—C13109.2 (8)
N1—B1—N5109.4 (7)N6—C14—C15124.3 (8)
N1—B1—N3109.0 (7)C13—C14—C15126.5 (8)
N5—B1—N3108.5 (7)C14—C15—H15A109.5
N1—B1—H1110.0C14—C15—H15B109.5
N5—B1—H1110.0H15A—C15—H15B109.5
N3—B1—H1110.0C14—C15—H15C109.5
C2—N1—N2109.4 (7)H15A—C15—H15C109.5
C2—N1—B1130.3 (7)H15B—C15—H15C109.5
N2—N1—B1120.1 (6)C17—C16—H16A109.5
C4—N2—N1105.2 (6)C17—C16—H16B109.5
C4—N2—W1133.9 (6)H16A—C16—H16B109.5
N1—N2—W1120.8 (5)C17—C16—H16C109.5
C7—N3—N4110.9 (7)H16A—C16—H16C109.5
C7—N3—B1129.3 (7)H16B—C16—H16C109.5
N4—N3—B1119.8 (6)C16—C17—N7118.5 (13)
C9—N4—N3105.5 (6)C16—C17—H17A107.7
C9—N4—W1130.3 (5)N7—C17—H17A107.7
N3—N4—W1124.1 (5)C16—C17—H17B107.7
C12—N5—N6109.9 (6)N7—C17—H17B107.7
C12—N5—B1129.3 (6)H17A—C17—H17B107.1
N6—N5—B1120.8 (6)C19—C18—H18A109.5
C14—N6—N5106.1 (6)C19—C18—H18B109.5
C14—N6—W1131.7 (5)H18A—C18—H18B109.5
N5—N6—W1122.1 (4)C19—C18—H18C109.5
C21—N7—C19111.8 (9)H18A—C18—H18C109.5
C21—N7—C23106.0 (9)H18B—C18—H18C109.5
C19—N7—C23113.2 (9)C18—C19—N7117.4 (11)
C21—N7—C17113.6 (10)C18—C19—H19A108.0
C19—N7—C17104.6 (9)N7—C19—H19A108.0
C23—N7—C17107.8 (9)C18—C19—H19B108.0
C2—C1—H1A109.5N7—C19—H19B108.0
C2—C1—H1B109.5H19A—C19—H19B107.2
H1A—C1—H1B109.5C21—C20—H20A109.5
C2—C1—H1C109.5C21—C20—H20B109.5
H1A—C1—H1C109.5H20A—C20—H20B109.5
H1B—C1—H1C109.5C21—C20—H20C109.5
N1—C2—C3107.9 (8)H20A—C20—H20C109.5
N1—C2—C1121.6 (9)H20B—C20—H20C109.5
C3—C2—C1130.4 (8)C20—C21—N7118.6 (11)
C4—C3—C2106.7 (8)C20—C21—H21A107.7
C4—C3—H3126.7N7—C21—H21A107.7
C2—C3—H3126.7C20—C21—H21B107.7
N2—C4—C3110.7 (8)N7—C21—H21B107.7
N2—C4—C5122.3 (8)H21A—C21—H21B107.1
C3—C4—C5126.9 (8)C23—C22—H22A109.5
C4—C5—H5A109.5C23—C22—H22B109.5
C4—C5—H5B109.5H22A—C22—H22B109.5
H5A—C5—H5B109.5C23—C22—H22C109.5
C4—C5—H5C109.5H22A—C22—H22C109.5
H5A—C5—H5C109.5H22B—C22—H22C109.5
H5B—C5—H5C109.5C22—C23—N7116.5 (12)
C7—C6—H6A109.5C22—C23—H23A108.2
C7—C6—H6B109.5N7—C23—H23A108.2
H6A—C6—H6B109.5C22—C23—H23B108.2
C7—C6—H6C109.5N7—C23—H23B108.2
H6A—C6—H6C109.5H23A—C23—H23B107.3
(II) tetraethylammonium dibromido-µ3-sulfido-di-µ2-sulfido-[tris(3,5- dimethylpyrazol-1-yl)borato]dicopper(I)tungsten(VI) top
Crystal data top
(C8H20N)[Cu2WBr2(C15H22BN6)S3]F(000) = 1936
Mr = 994.40Dx = 1.942 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 12018 reflections
a = 12.808 (3) Åθ = 3.1–25.4°
b = 11.768 (2) ŵ = 7.17 mm1
c = 22.569 (5) ÅT = 293 K
V = 3401.7 (12) Å3Block, red
Z = 40.40 × 0.30 × 0.17 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3282 independent reflections
Radiation source: fine-focus sealed tube2999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω–scansθmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1515
Tmin = 0.087, Tmax = 0.295k = 1414
32255 measured reflectionsl = 2327
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.069P)2 + 4.773P]
where P = (Fo2 + 2Fc2)/3
3276 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
(C8H20N)[Cu2WBr2(C15H22BN6)S3]V = 3401.7 (12) Å3
Mr = 994.40Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.808 (3) ŵ = 7.17 mm1
b = 11.768 (2) ÅT = 293 K
c = 22.569 (5) Å0.40 × 0.30 × 0.17 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3282 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2999 reflections with I > 2σ(I)
Tmin = 0.087, Tmax = 0.295Rint = 0.068
32255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.09Δρmax = 1.48 e Å3
3276 reflectionsΔρmin = 1.15 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.70841 (3)0.75000.492626 (16)0.03212 (16)
Cu10.68918 (7)0.86958 (7)0.59014 (4)0.0447 (2)
Br10.66167 (7)0.96764 (7)0.67598 (4)0.0592 (3)
S10.82052 (18)0.75000.57396 (11)0.0402 (5)
S20.60049 (14)0.89595 (16)0.50726 (8)0.0436 (4)
B10.8456 (8)0.75000.3628 (5)0.035 (2)
H10.88340.75000.32500.043*
N10.8731 (4)0.8564 (4)0.3980 (2)0.0348 (12)
N20.8252 (4)0.8774 (4)0.4517 (2)0.0357 (12)
N30.6570 (6)0.75000.3977 (3)0.0388 (18)
N40.7264 (6)0.75000.3511 (3)0.0320 (16)
N50.8552 (6)0.75000.8291 (3)0.0377 (17)
C10.9968 (6)0.9487 (8)0.3277 (4)0.064 (2)
H1A0.95150.94540.29390.096*
H1B1.04360.88500.32700.096*
H1C1.03641.01800.32660.096*
C20.9339 (5)0.9453 (6)0.3823 (3)0.0411 (15)
C30.9257 (5)1.0241 (6)0.4262 (3)0.0461 (17)
H30.95901.09420.42750.055*
C40.8590 (5)0.9809 (6)0.4683 (3)0.0401 (15)
C50.8294 (6)1.0429 (7)0.5240 (3)0.0530 (19)
H5A0.75621.06020.52320.080*
H5B0.86871.11220.52670.080*
H5C0.84450.99600.55770.080*
C60.7280 (8)0.75000.2412 (4)0.048 (2)
H6A0.78790.79890.24310.072*0.50
H6B0.68110.77700.21120.072*0.50
H6C0.74990.67410.23180.072*0.50
C70.6741 (8)0.75000.2994 (4)0.041 (2)
C80.5701 (7)0.75000.3122 (4)0.041 (2)
H80.51570.75000.28490.049*
C90.5601 (7)0.75000.3729 (4)0.042 (2)
C100.4592 (8)0.75000.4055 (5)0.056 (3)
H10A0.40550.78110.38070.083*0.50
H10B0.46570.79530.44070.083*0.50
H10C0.44120.67350.41630.083*0.50
C110.8399 (10)0.9653 (9)0.8306 (6)0.106 (4)
H11A0.86530.97030.87050.159*
H11B0.79191.02640.82320.159*
H11C0.89750.97070.80350.159*
C120.7849 (6)0.8531 (6)0.8219 (4)0.060 (2)
H12A0.75460.85170.78250.072*
H12B0.72820.84770.85020.072*
C130.8380 (13)0.75000.9410 (6)0.110 (6)
H13A0.78360.80490.93500.165*0.50
H13B0.87680.76920.97600.165*0.50
H13C0.80780.67590.94560.165*0.50
C140.9103 (10)0.75000.8881 (6)0.081 (4)
H14A0.95480.81650.89030.098*0.50
H14B0.95480.68350.89030.098*0.50
C150.9067 (11)0.75000.7192 (5)0.074 (4)
H15A0.88670.82560.70780.111*0.50
H15B0.84820.69980.71460.111*0.50
H15C0.96320.72470.69450.111*0.50
C160.9411 (8)0.75000.7829 (5)0.053 (3)
H16A0.98450.81640.78940.064*0.50
H16B0.98450.68360.78940.064*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0332 (2)0.0315 (2)0.0317 (2)0.0000.00064 (13)0.000
Cu10.0523 (5)0.0421 (5)0.0397 (5)0.0000 (4)0.0023 (4)0.0071 (4)
Br10.0733 (6)0.0548 (5)0.0496 (5)0.0005 (4)0.0050 (4)0.0169 (4)
S10.0415 (12)0.0433 (14)0.0357 (13)0.0000.0046 (10)0.000
S20.0407 (9)0.0399 (10)0.0503 (10)0.0096 (8)0.0006 (7)0.0023 (7)
B10.043 (6)0.031 (5)0.033 (6)0.0000.004 (4)0.000
N10.035 (3)0.040 (3)0.030 (3)0.005 (2)0.004 (2)0.001 (2)
N20.043 (3)0.032 (3)0.032 (3)0.007 (2)0.000 (2)0.002 (2)
N30.045 (4)0.044 (5)0.028 (4)0.0000.001 (3)0.000
N40.040 (4)0.026 (4)0.030 (4)0.0000.004 (3)0.000
N50.041 (4)0.030 (4)0.042 (5)0.0000.006 (3)0.000
C10.059 (5)0.065 (5)0.067 (5)0.023 (4)0.019 (4)0.006 (4)
C20.038 (4)0.044 (4)0.041 (4)0.007 (3)0.001 (3)0.005 (3)
C30.046 (4)0.037 (4)0.056 (4)0.014 (3)0.001 (3)0.001 (3)
C40.040 (4)0.040 (4)0.041 (4)0.003 (3)0.002 (3)0.001 (3)
C50.065 (5)0.045 (4)0.050 (4)0.005 (4)0.004 (4)0.015 (4)
C60.061 (6)0.049 (6)0.035 (5)0.0000.000 (4)0.000
C70.058 (6)0.024 (5)0.041 (6)0.0000.008 (4)0.000
C80.043 (5)0.041 (5)0.038 (5)0.0000.010 (4)0.000
C90.038 (5)0.036 (5)0.052 (6)0.0000.008 (4)0.000
C100.039 (5)0.073 (8)0.054 (7)0.0000.001 (5)0.000
C110.128 (10)0.049 (6)0.140 (11)0.007 (6)0.042 (8)0.005 (6)
C120.066 (5)0.038 (4)0.075 (6)0.018 (4)0.000 (4)0.002 (4)
C130.102 (12)0.18 (2)0.047 (8)0.0000.014 (8)0.000
C140.058 (8)0.124 (13)0.062 (8)0.0000.020 (6)0.000
C150.095 (10)0.065 (8)0.061 (8)0.0000.015 (7)0.000
C160.056 (6)0.041 (6)0.063 (7)0.0000.002 (5)0.000
Geometric parameters (Å, º) top
W1—S12.331 (2)C5—H5B0.9600
W1—S22.2293 (18)C5—H5C0.9600
W1—N22.311 (5)C6—C71.483 (14)
W1—N32.242 (7)C6—H6A0.9600
W1—Cu12.6239 (10)C6—H6B0.9600
Cu1—S22.210 (2)C6—H6C0.9600
Cu1—S12.223 (2)C7—C81.363 (13)
Cu1—Br12.2823 (12)C8—C91.376 (13)
Cu1—Cu1i2.8144 (19)C8—H80.9300
S1—Cu1i2.223 (2)C9—C101.487 (13)
B1—N11.524 (8)C10—H10A0.9600
B1—N41.549 (13)C10—H10B0.9600
B1—H10.9800C10—H10C0.9600
N1—C21.351 (8)C11—C121.509 (13)
N1—N21.380 (7)C11—H11A0.9600
N2—C41.345 (8)C11—H11B0.9600
N3—C91.361 (11)C11—H11C0.9600
N3—N41.376 (10)C12—H12A0.9700
N4—C71.347 (12)C12—H12B0.9700
N5—C161.516 (13)C13—C141.510 (19)
N5—C141.508 (14)C13—H13A0.9600
N5—C121.519 (8)C13—H13B0.9600
C1—C21.473 (10)C13—H13C0.9600
C1—H1A0.9600C14—H14A0.9700
C1—H1B0.9600C14—H14B0.9700
C1—H1C0.9600C15—C161.503 (16)
C2—C31.360 (10)C15—H15A0.9600
C3—C41.376 (9)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.501 (10)C16—H16A0.9700
C5—H5A0.9600C16—H16B0.9700
S2—W1—S2i100.79 (10)C3—C2—N1107.0 (6)
S2—W1—N387.67 (13)C3—C2—C1129.3 (6)
S2i—W1—N387.67 (13)N1—C2—C1123.7 (6)
S2—W1—N2i163.86 (14)C2—C3—C4107.4 (6)
S2i—W1—N2i87.75 (14)C2—C3—H3126.3
N3—W1—N2i78.94 (19)C4—C3—H3126.3
S2—W1—N287.75 (14)N2—C4—C3109.9 (6)
S2i—W1—N2163.86 (14)N2—C4—C5126.3 (6)
N3—W1—N278.94 (19)C3—C4—C5123.7 (6)
N2i—W1—N280.9 (3)C4—C5—H5A109.5
S2—W1—S1105.39 (6)C4—C5—H5B109.5
S2i—W1—S1105.39 (6)H5A—C5—H5B109.5
N3—W1—S1159.1 (2)C4—C5—H5C109.5
N2i—W1—S185.18 (14)H5A—C5—H5C109.5
N2—W1—S185.18 (14)H5B—C5—H5C109.5
S2—W1—Cu153.44 (5)C7—C6—H6A109.5
S2i—W1—Cu1103.34 (5)C7—C6—H6B109.5
N3—W1—Cu1140.73 (10)H6A—C6—H6B109.5
N2i—W1—Cu1138.08 (13)C7—C6—H6C109.5
N2—W1—Cu192.76 (13)H6A—C6—H6C109.5
S1—W1—Cu152.93 (5)H6B—C6—H6C109.5
S2—W1—Cu1i103.34 (5)N4—C7—C8107.6 (9)
S2i—W1—Cu1i53.44 (5)N4—C7—C6122.4 (9)
N3—W1—Cu1i140.73 (11)C8—C7—C6130.0 (9)
N2i—W1—Cu1i92.76 (13)C7—C8—C9107.6 (8)
N2—W1—Cu1i138.08 (13)C7—C8—H8126.2
S1—W1—Cu1i52.93 (5)C9—C8—H8126.2
Cu1—W1—Cu1i64.86 (4)N3—C9—C8108.9 (8)
S2—Cu1—S1109.79 (8)N3—C9—C10126.1 (9)
S2—Cu1—Br1124.61 (6)C8—C9—C10125.0 (9)
S1—Cu1—Br1125.19 (7)C9—C10—H10A109.5
S2—Cu1—W154.10 (5)C9—C10—H10B109.5
S1—Cu1—W156.75 (6)H10A—C10—H10B109.5
Br1—Cu1—W1176.07 (5)C9—C10—H10C109.5
S2—Cu1—Cu1i98.07 (5)H10A—C10—H10C109.5
S1—Cu1—Cu1i50.74 (5)H10B—C10—H10C109.5
Br1—Cu1—Cu1i120.37 (3)C12—C11—H11A109.5
W1—Cu1—Cu1i57.57 (2)C12—C11—H11B109.5
Cu1—S1—Cu1i78.53 (9)H11A—C11—H11B109.5
Cu1—S1—W170.32 (7)C12—C11—H11C109.5
Cu1i—S1—W170.32 (7)H11A—C11—H11C109.5
Cu1—S2—W172.46 (6)H11B—C11—H11C109.5
N1—B1—N1i110.5 (7)C11—C12—N5114.1 (7)
N1—B1—N4108.4 (5)C11—C12—H12A108.7
N1i—B1—N4108.4 (5)N5—C12—H12A108.7
N1—B1—H1109.8C11—C12—H12B108.7
N1i—B1—H1109.8N5—C12—H12B108.7
N4—B1—H1109.8H12A—C12—H12B107.6
C2—N1—N2110.3 (5)C14—C13—H13A109.5
C2—N1—B1129.2 (6)C14—C13—H13B109.5
N2—N1—B1120.1 (6)H13A—C13—H13B109.5
C4—N2—N1105.3 (5)C14—C13—H13C109.5
C4—N2—W1133.1 (4)H13A—C13—H13C109.5
N1—N2—W1121.5 (4)H13B—C13—H13C109.5
C9—N3—N4106.1 (7)N5—C14—C13114.3 (10)
C9—N3—W1131.3 (6)N5—C14—H14A108.7
N4—N3—W1122.6 (5)C13—C14—H14A108.7
C7—N4—N3109.8 (7)N5—C14—H14B108.7
C7—N4—B1129.6 (8)C13—C14—H14B108.7
N3—N4—B1120.5 (7)H14A—C14—H14B107.6
C16—N5—C14105.5 (8)C16—C15—H15A109.5
C16—N5—C12i110.9 (5)C16—C15—H15B109.5
C14—N5—C12i111.8 (6)H15A—C15—H15B109.5
C16—N5—C12110.9 (5)C16—C15—H15C109.5
C14—N5—C12111.8 (6)H15A—C15—H15C109.5
C12i—N5—C12106.0 (8)H15B—C15—H15C109.5
C2—C1—H1A109.5C15—C16—N5116.4 (9)
C2—C1—H1B109.5C15—C16—H16A108.2
H1A—C1—H1B109.5N5—C16—H16A108.2
C2—C1—H1C109.5C15—C16—H16B108.2
H1A—C1—H1C109.5N5—C16—H16B108.2
H1B—C1—H1C109.5H16A—C16—H16B107.3
Symmetry code: (i) x, y+3/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula(C8H20N)[CuWBr(C15H22BN6)S3](C8H20N)[Cu2WBr2(C15H22BN6)S3]
Mr850.95994.40
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pnma
Temperature (K)293293
a, b, c (Å)19.058 (4), 10.276 (2), 16.323 (3)12.808 (3), 11.768 (2), 22.569 (5)
V3)3196.6 (11)3401.7 (12)
Z44
Radiation typeMo KαMo Kα
µ (mm1)5.737.17
Crystal size (mm)0.35 × 0.30 × 0.250.40 × 0.30 × 0.17
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Rigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Multi-scan
(Jacobson, 1998)
Tmin, Tmax0.147, 0.2390.087, 0.295
No. of measured, independent and
observed [I > 2σ(I)] reflections
29584, 5857, 5342 32255, 3282, 2999
Rint0.0440.068
(sin θ/λ)max1)0.6020.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 1.10 0.043, 0.120, 1.09
No. of reflections57103276
No. of parameters344206
No. of restraints810
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.591.48, 1.15
Absolute structureFlack (1983), 2678 Friedel pairs?
Absolute structure parameter0.004 (10)?

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the Education Department of Jiangxi Province (grant No. GJJ11033) for financial support.

References

First citationBoomishankar, R., Richards, P. I. & Steiner, A. (2006). Angew. Chem. Int. Ed. 45, 4632–4634.  Web of Science CSD CrossRef CAS Google Scholar
First citationBunge, S. D., Lance, J. M. & Bertke, J. A. (2007). Organometallics, 26, 6320–6328.  Web of Science CSD CrossRef CAS Google Scholar
First citationChisholm, M. H., Gallucci, J. & Phomphrai, K. (2002). Inorg. Chem. 41, 2785–2794.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKaupp, M., Stoll, H., Preuss, H., Kaim, W., Stahl, T., Van Koten, G., Wissing, E., Smeets, W. J. J. & Spek, A. L. (1991). J. Am. Chem. Soc. 113, 5606–5618.  CSD CrossRef CAS Web of Science Google Scholar
First citationLang, J. P. & Tatsumi, K. (1998). Inorg. Chem. 37, 6308–6316.  Web of Science CSD CrossRef CAS Google Scholar
First citationLang, J. P., Xu, Q. F., Ji, W., Elim, H. I. & Tatsumi, K. (2004). Eur. J. Inorg. Chem. pp. 86–91.  Web of Science CSD CrossRef Google Scholar
First citationLewinski, J., Sliwinski, W., Dranka, M., Justyyniak, I. & Lipkowski, J. (2006). Angew. Chem. Int. Ed. 45, 4826–4829.  CAS Google Scholar
First citationMalik, M. A., O'Brien, P., Motevalli, M. & Jones, A. C. (1997). Inorg. Chem. 36, 5076–5081.  CSD CrossRef CAS Web of Science Google Scholar
First citationMüller, A., Schimanski, U. & Schimanski, J. (1983). Inorg. Chim. Acta, 76, 245–246.  Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSeino, H., Arai, Y., Iwata, N., Nagao, S., Mizobe, Y. & Hidai, M. (2001). Inorg. Chem. 40, 1677–1682.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShamsur Rahman, A. B. M., Boller, H. & Klepp, O. K. (2000). Inorg. Chim. Acta, 305, 91–94.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVahrenkamp, H. (1999). Acc. Chem. Res. 32, 589–596.  Web of Science CrossRef CAS Google Scholar
First citationWei, Z. H., Li, H. X., Cheng, M. L., Tang, X. Y., Zhang, Y. & Lang, J. P. (2009). Inorg. Chem. 48, 2808–2817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWei, Z. H., Li, H. X., Ren, Z. G., Lang, J. P., Zhang, Y. & Sun, Z. R. (2009). Dalton Trans. pp. 3425–3433.  Web of Science CSD CrossRef Google Scholar
First citationZhang, W. H., Song, Y. L., Zhang, Y. & Lang, J. P. (2008). Cryst. Growth Des. 8, 253–258.  Web of Science CSD CrossRef Google Scholar
First citationZulys, A., Dochnahl, M., Hollmann, D., Lohnwitz, K., Herrmann, J.-S., Roesky, P. W. & Blechert, S. (2005). Angew. Chem. Int. Ed. 44, 7794–7798.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds