organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

N-(tert-But­­oxy­carbon­yl)-O-allyl-L-seryl-α-amino­isobutyryl-L-valine methyl ester: a protected tripeptide with an allyl­ated serine residue

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway, bDepartment of Medicine–Medical Biochemistry, College of Health Sciences, Mekelle University, PO Box 1871, Mekelle-Tigray, Ethiopia, and cSchool of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

(Received 23 June 2011; accepted 22 July 2011; online 6 August 2011)

The title compound [systematic name (6S,12S)-methyl 6-(allyl­oxymethyl)-12-isopropyl-2,2,9,9-tetramethyl-4,7,10-tri­oxo-3-oxa-5,8,11-triazatridecan-13-oate], C21H37N3O7, con­taining the little studied O-allyl-L-serine residue [Ser(All)], crystallizes in the monoclinic space group C2 with one mol­ecule in the asymmetric unit. The compound is an analogue of the Ser140-Val142 segment of the water channel aqua­porin-4 (AQP4). It forms a distorted type-II β-turn with a PII–310LPII backbone conformation (PII is polyproline II). The overall backbone conformation is markedly different from that of the CO(Pro139)–Val142 stretch of rat AQP4, but is quite similar to the corresponding segment of human AQP4, despite significant differences at the level of the individual residues. The side chain of the Ser(All) residue adopts a gauche conformation relative to the backbone CO—Cα and Cα—N bonds. The H atoms of the two CH2 groups in the Ser(All) side chain are almost eclipsed. The crystal packing of the title compound is divided into one-mol­ecule-thick layers, each layer having a hydro­philic core and distinct hydro­phobic inter­faces on either side.

Comment

The title peptide, (I)[link], was prepared as part of an ongoing effort (Jacobsen et al., 2009[Jacobsen, Ø., Klaveness, J., Ottersen, O. P., Amiry-Moghaddam, M. R. & Rongved, P. (2009). Org. Biomol. Chem. 7, 1599-1611.]) to synthesize analogues of the Pro138-Gly144 segment of the extracellular loop C of the water channel aqua­porin-4 (AQP4) (Hasegawa et al., 1994[Hasegawa, H., Ma, T., Skach, W., Matthay, M. A. & Verkman, A. S. (1994). J. Biol. Chem. 269, 5497-5500.]; Jung et al., 1994[Jung, J. S., Bhat, R. V., Preston, G. M., Guggino, W. B., Baraban, J. M. & Agre, P. (1994). Proc. Natl Acad. Sci. USA, 91, 13052-13056.]; Hiroaki et al., 2006[Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. & Fujiyoshi, Y. (2006). J. Mol. Biol. 355, 628-639.]), which has emerged as an important target for the treatment of brain oedema (Nielsen et al., 1997[Nielsen, S., Nagelhus, E. A., Amiry-Moghaddam, M., Bourque, C., Agre, P. & Ottersen, O. P. (1997). J. Neurosci. 17, 171-180.]; Manley et al., 2000[Manley, G. T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Bollen, A. W., Chan, P. & Verkman, A. S. (2000). Nat. Med. 6, 159-163.]; Amiry-Moghaddam et al., 2003[Amiry-Moghaddam, M., Otsuka, T., Hurn, P. D., Traystman, R. J., Haug, F.-M., Froehner, S. C., Adams, M. E., Neely, J. D., Agre, P., Ottersen, O. P. & Bhardwaj, A. (2003). Proc. Natl Acad. Sci. USA, 100, 2106-2111.]; Amiry-Moghaddam & Ottersen, 2003[Amiry-Moghaddam, M. & Ottersen, O. P. (2003). Nat. Rev. Neurosci. 4, 991-1001.]). The residues Pro139 and Val142 are thought to mediate adhesive inter­actions between AQP4 mol­ecules in contiguous cell membranes (Hiroaki et al., 2006[Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. & Fujiyoshi, Y. (2006). J. Mol. Biol. 355, 628-639.]; Engel et al., 2008[Engel, A., Fujiyoshi, Y., Gonen, T. & Walz, T. (2008). Curr. Opin. Struct. Biol. 18, 229-235.]; Tani et al., 2009[Tani, K., Mitsuma, T., Hiroaki, Y., Kamegawa, A., Nishikawa, K., Tanimura, Y. & Fujiyoshi, Y. (2009). J. Mol. Biol. 389, 694-706.]). The electron diffraction structure of rat AQP4 (rAQP4) revealed that the segment Ser140-Gly144 forms a short 310-helix [Protein Data Bank (PDB) code 2D57 (Hiroaki et al., 2006[Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. & Fujiyoshi, Y. (2006). J. Mol. Biol. 355, 628-639.]) and PDB code 2ZZ9 (Tani et al., 2009[Tani, K., Mitsuma, T., Hiroaki, Y., Kamegawa, A., Nishikawa, K., Tanimura, Y. & Fujiyoshi, Y. (2009). J. Mol. Biol. 389, 694-706.])]. We believe that compounds structurally mimicking a loop C segment con­taining at least one of the residues mediating adhesion can potentially have affinity for AQP4 and serve as lead compounds for the development of selective AQP4 ligands and, eventually, AQP4 inhibitors. (I)[link] may be regarded as an analogue of the Ser140-Val141-Val142 segment of loop C, where the Ser residue has been allyl­ated and Val141 has been (conservatively) substituted with another, structurally related, hydro­phobic residue. The crystal structure of (I)[link] renders a comparison with the backbone conformation of the AQP4 Ser140-Val142 segment possible. We have previously reported the crystal structure of a dipeptide analogue, Boc-Val-Val-OMe (Boc = tert-butoxycarbonyl), of the Val141-Val142 segment of AQP4 (Jacobsen et al., 2011[Jacobsen, Ø., Gebreslasie, H. G., Klaveness, J., Rongved, P. & Görbitz, C. H. (2011). Acta Cryst. C67, o278-o282.]).

[Scheme 1]

Regardless of the relationship between (I)[link] and loop C of AQP4, the presence of two non-proteinogenic residues in (I)[link], i.e. the synthetic residue O-allyl-L-serine [Ser(All)] and the naturally occurring achiral α,α-disubstituted residue α-am­ino­isobutyric acid (Aib), makes the crystal structure of (I)[link] potentially inter­esting per se. The Aib residue is found in a large number of anti­biotic peptides produced by fungi known as peptaibiotics (Degenkolb & Brückner, 2008[Degenkolb, T. & Brückner, H. (2008). Chem. Biodivers. 5, 1817-1843.]). It is a conformationally restricted residue that preferentially adopts a 310- or α-helical conformation (Ramachandran & Chandrasekaran, 1972[Ramachandran, G. N. & Chandrasekaran, R. (1972). Progress in Peptide Research, edited by S. Lande, Vol. II (Proceedings of the Second American Peptide Symposium, Cleveland, 1970), p. 195. New York: Gordon & Breach.]; Marshall & Bosshard, 1972[Marshall, G. R. & Bosshard, H. E. (1972). Circ. Res. 30-31, Suppl. II, 143-150.]; Venkatraman et al., 2001[Venkatraman, J., Shankaramma, S. C. & Balaram, P. (2001). Chem. Rev. 101, 3131-3152.]; Aravinda et al., 2008[Aravinda, S., Shamala, N. & Balaram, P. (2008). Chem. Biodivers. 5, 1238-1262.]). Compared to Aib, the properties of the Ser(All) residue have been less studied. As of 31 July 2011, only 170 compounds (including non-peptidic compounds) containing the O-allyl-L-serine fragment, (II), have been assigned a Chemical Abstracts Service Registry Number (American Chemical Society, 2008[American Chemical Society (2008). Chemical Abstracts Service. American Chemical Society, Columbus, OH, USA]).

In many cases, the purpose of incorporating one or more Ser(All) residues in a peptide sequence has been to synthesize conformationally constrained peptides by ring-closing olefin metathesis (RCM) (Blackwell & Grubbs, 1998[Blackwell, H. E. & Grubbs, R. H. (1998). Angew. Chem. Int. Ed. 37, 3281-3284.]; Blackwell et al., 2001[Blackwell, H. E., Sadowsky, J. D., Howard, R. J., Sampson, J. N., Chao, J. A., Steinmetz, W. E., O'Leary, D. J. & Grubbs, R. H. (2001). J. Org. Chem. 66, 5291-5302.]; Hanessian et al., 2006[Hanessian, S., Yang, G., Rondeau, J.-M., Neumann, U., Betschart, C. & Tintelnot-Blomley, M. (2006). J. Med. Chem. 49, 4544-4567.]; Jacobsen et al., 2009[Jacobsen, Ø., Klaveness, J., Ottersen, O. P., Amiry-Moghaddam, M. R. & Rongved, P. (2009). Org. Biomol. Chem. 7, 1599-1611.]; Yamagata et al., 2011[Yamagata, N., Demizu, Y., Sato, Y., Doi, M., Tanaka, M., Nagasawa, K., Okuda, H. & Kurihara, M. (2011). Tetrahedron Lett. 52, 798-801.]). The structural and pharmacological effects of RCM in peptides have recently been reviewed (Jacobsen et al., 2010[Jacobsen, Ø., Klaveness, J. & Rongved, P. (2010). Molecules, 15, 6638-6677.]). A small number of crystal structures have been obtained of the resulting cyclic peptides or hydrogenated versions thereof (Blackwell & Grubbs, 1998[Blackwell, H. E. & Grubbs, R. H. (1998). Angew. Chem. Int. Ed. 37, 3281-3284.]; Hanessian et al., 2006[Hanessian, S., Yang, G., Rondeau, J.-M., Neumann, U., Betschart, C. & Tintelnot-Blomley, M. (2006). J. Med. Chem. 49, 4544-4567.]; Boal et al., 2007[Boal, A. K., Guryanov, I., Moretto, A., Crisma, M., Lanni, E. L., Toniolo, C., Grubbs, R. H. & O'Leary, D. J. (2007). J. Am. Chem. Soc. 129, 6986-6987.]; Abell et al., 2009[Abell, A. D., Alexander, N. A., Aitken, S. G., Chen, H., Coxon, J. M., Jones, M. A., McNabb, S. B. & Muscroft-Taylor, A. (2009). J. Org. Chem. 74, 4354-4356.]; Yamagata et al., 2011[Yamagata, N., Demizu, Y., Sato, Y., Doi, M., Tanaka, M., Nagasawa, K., Okuda, H. & Kurihara, M. (2011). Tetrahedron Lett. 52, 798-801.]). Perhaps because the properties of the cyclic peptides obtained after RCM have constituted the primary focus of several of the studies for which Ser(All)-containing peptides have been synthesized, only a single crystal structure, as far as we have been able to establish, has been reported of a peptide containing the O-allyl-L-serine residue (Boal et al., 2007[Boal, A. K., Guryanov, I., Moretto, A., Crisma, M., Lanni, E. L., Toniolo, C., Grubbs, R. H. & O'Leary, D. J. (2007). J. Am. Chem. Soc. 129, 6986-6987.]). To determine the structural effect of ii+3 side-chain-to-side-chain RCM in the context of a predominantly 310-helical peptide, Boal et al. (2007[Boal, A. K., Guryanov, I., Moretto, A., Crisma, M., Lanni, E. L., Toniolo, C., Grubbs, R. H. & O'Leary, D. J. (2007). J. Am. Chem. Soc. 129, 6986-6987.]) determined the crystal structure of an Aib-rich octa­peptide, Boc-Aib-Aib-Aib-Ser(All)-Aib-Aib-Ser(All)-Aib-OMe, (III), before and after RCM. Similarly to (I)[link], the O-allyl-L-serine residue in (III) is succeeded by an Aib residue.

So far, no crystal structures of peptides containing the closely related residues O-allyl-L-threonine or S-allyl-L-cys­teine have been reported.

A turn is defined as a segment of a peptide which reverses the direction of the backbone (Venkatachalam, 1968[Venkatachalam, C. M. (1968). Biopolymers, 6, 1425-1436.]; Rose et al., 1985[Rose, G. D., Gierasch, L. M. & Smith, J. A. (1985). Adv. Protein Chem. 37, 1-109.]). A β-turn is a turn comprising four residues which may, or may not, be stabilized by an intra­molecular ii+3 hydrogen bond (Venkatachalam, 1968[Venkatachalam, C. M. (1968). Biopolymers, 6, 1425-1436.]; Lewis et al., 1973[Lewis, P. N., Momany, F. A. & Scheraga, H. A. (1973). Biochim. Biophys. Acta, 303, 211-229.]; Richardson, 1981[Richardson, J. S. (1981). Adv. Protein Chem. 34, 167-339.]; Rose et al., 1985[Rose, G. D., Gierasch, L. M. & Smith, J. A. (1985). Adv. Protein Chem. 37, 1-109.]; Hutchinson & Thornton, 1994[Hutchinson, E. G. & Thornton, J. M. (1994). Protein Sci. 3, 2207-2216.]; Guruprasad & Rajkumar, 2000[Guruprasad, K. & Rajkumar, S. (2000). J. Biosci. 25, 143-156.]). The backbone of (I)[link] changes direction by approximately 180° from the quaternary carbon (C1) of the Boc group to the Cα-atom (C16) of the Val residue, thus constituting a β-turn (Fig. 1[link]a). The distance between the two C atoms is 5.908 (5) Å. In contrast to most β-turn subtypes, which feature an ii+3 intra­molecular hydrogen bond, (I)[link] does not form any intra­molecular hydrogen bonds. The H⋯O distance between the carbonyl O atom of the Boc group and the NH group of the Val residue is, however, relatively short at 3.34 Å [N⋯O = 3.898 (3) Å]. As a result of the turn, the shape of the peptide may be characterized as an (open) disc with a protruding Ser(All) side chain.

It is well established that Aib can promote/stabilize helical conformations when incorporated in peptides (Burgess & Leach, 1973[Burgess, A. W. & Leach, S. J. (1973). Biopolymers, 12, 2599-2605.]; Karle & Balaram, 1990[Karle, I. L. & Balaram, P. (1990). Biochemistry, 29, 6747-6756.]; Marshall et al., 1990[Marshall, G. R., Hodgkin, E. E., Langs, D. A., Smith, G. D., Zabrocki, J. & Leplawy, M. T. (1990). Proc. Natl Acad. Sci. USA, 87, 487-491.]). However, no such effect is evident in the crystal structure of (I)[link]. Instead the two chiral residues adopt polyproline II (PII) conformations, with (φ, ψ) of Ser(All) and Val being [−59.0 (4), 159.2 (3)°] and [−70.3 (3), 143.5 (3)°], respectively. The PII conformation is believed to be an important local conformation of `unfolded' peptides (Shi et al., 2006[Shi, Z., Chen, K., Liu, Z. & Kallenbach, N. R. (2006). Chem. Rev. 106, 1877-1897.]; Makowska et al., 2006[Makowska, J., Rodziewicz-Motowidlo, S., Baginska, K., Vila, J. A., Liwo, A., Chmurzynski, L. & Scheraga, H. A. (2006). Proc. Natl Acad. Sci. USA, 103, 1744-1749.]). Because it lacks a stereogenic centre, the Aib residue can adopt left- or right-handed helical conformations with equal probability when incorporated in achiral peptides. However, when it is involved in intra­molecular hydrogen bonding in a helical peptide containing L-amino acids it preferentially adopts right-handed helical conformations (Aravinda et al., 2008[Aravinda, S., Shamala, N. & Balaram, P. (2008). Chem. Biodivers. 5, 1238-1262.]). The central Aib residue in the non­helical peptide (I)[link] adopts a left-handed 310-helical (310L) conformation, with (φ, ψ) angles of [58.7 (4), 33.1 (4)°]. This conformation allows the formation of favourable intra­molecular hydro­phobic and van der Waals inter­actions between the tert-butyl and isopropyl groups and between the Ser(All) side chain and the Aib side chains. The backbone conformation of (I)[link] closely resembles the conformations of several other fully protected tripeptides with a centrally placed Aib residue, e.g. Boc-L-Phe-Aib-L-Ile-OMe (Das et al., 2005[Das, A. K., Banerjee, A., Drew, M. G. B., Ray, S., Haldar, D. & Banerjee, A. (2005). Tetrahedron, 61, 5027-5036.]), Boc-L-Ile-Aib-L-Val-OMe (Dutt et al., 2007[Dutt, A., Dutta, A., Mondal, R., Spencer, E. C., Howard, J. A. K. & Pramanik, A. (2007). Tetrahedron, 63, 10282-10289.]), Boc-L-Ala-Aib-L-Val-OMe (Maji et al., 2004[Maji, S. K., Haldar, D., Drew, M. G. B., Banerjee, A., Das, A. K. & Banerjee, A. (2004). Tetrahedron, 60, 3251-3259.]), Boc-L-Ala-Aib-L-Ile-OMe (Maji et al., 2004[Maji, S. K., Haldar, D., Drew, M. G. B., Banerjee, A., Das, A. K. & Banerjee, A. (2004). Tetrahedron, 60, 3251-3259.]) and Boc-L-Ala-Aib-L-Ala-OMe, (IV) (Bosch et al., 1984[Bosch, R., Jung, G., Voges, K. P. & Winter, W. (1984). Liebigs Ann. Chem. pp. 1117-1128.]). (IV) crystallizes in the space group P21 and forms a distorted β-turn with a PII–310LPII backbone conformation very similar to that of (I)[link] (Fig. 1[link]b). Recent conformational studies of (IV) by NMR, IR, vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopy, however, suggest that the structure of (IV) is more complex in aqueous solution than in the solid state (Schweitzer-Stenner et al., 2007[Schweitzer-Stenner, R., Gonzales, W., Bourne, G. T., Feng, J. A. & Marshall, G. R. (2007). J. Am. Chem. Soc. 129, 13095-13109.]). In contrast to the crystal structure, the population of Aib residues adopting a right-handed 310-helical conformation appears to be greater than the population of Aibs adopting a left-handed conformation, but it is difficult to predict whether this would also be the case for (I)[link] in aqueous solution.

Based on the observed (φ, ψ) angles of the Ser(All), Ala (residue i+1) and Aib (residue i+2), the structures of (I)[link] and (IV) do not fall naturally into any of the standard β-turn classes (Richardson, 1981[Richardson, J. S. (1981). Adv. Protein Chem. 34, 167-339.]; Rose et al., 1985[Rose, G. D., Gierasch, L. M. & Smith, J. A. (1985). Adv. Protein Chem. 37, 1-109.]; Hutchinson & Thornton, 1994[Hutchinson, E. G. & Thornton, J. M. (1994). Protein Sci. 3, 2207-2216.]; Guruprasad & Rajkumar, 2000[Guruprasad, K. & Rajkumar, S. (2000). J. Biosci. 25, 143-156.]). The most similar type, the type-II β-turn, has dihedral angles (φi+1, ψi+1) = (−60, 120°) and (φi+2, ψi+2) = (80, 0°) (Guruprasad & Raj­kumar, 2000[Guruprasad, K. & Rajkumar, S. (2000). J. Biosci. 25, 143-156.]).

Compared with the CO(Pro139)-Ser140-Val141-Val142 segment of rAQP4, (I)[link] adopts a completely different overall conformation, as well as at the level of the individual residues (Table 1[link]). While the Ser(All) and Aib residues of (I)[link] adopt PII and left-handed 310-helical conformations, respectively, Ser140 of rAQP4 contribute to forming a short right-handed 310-helix. In contrast, despite very different individual torsion angles, the overall backbone conformation of the CO(Pro139)-Ser140-Val141-Val142 segment of human AQP4 (hAQP4) [Protein Data Bank (PDB) code 3GD8; Ho et al., 2009[Ho, J. D., Yeh, R., Sandstrom, A., Chorny, I., Harries, W. E. C., Robbins, R. A., Miercke, L. J. W. & Stroud, R. M. (2009). Proc. Natl Acad. Sci. USA, 106, 7437-7442.]] (Fig. 1[link]c) is quite similar to that of (I)[link]. One notable difference is that the central Ser140-Val141 peptide bond is flipped; (I)[link] may be characterized as a distorted type-II β-turn, while the hAQP4 fragment has a distorted type-I β-turn conformation.

The side chain of the Ser(All) residue adopts a gauche conformation relative to both backbone bonds [N1—C6—C7—O3 = 69.5 (3)° and C11—C6—C7—O3 = −51.9 (3)°]. The same conformation is observed for one of the Ser(All) residues in the crystal structure of the octa­peptide (III) (Boal et al., 2007[Boal, A. K., Guryanov, I., Moretto, A., Crisma, M., Lanni, E. L., Toniolo, C., Grubbs, R. H. & O'Leary, D. J. (2007). J. Am. Chem. Soc. 129, 6986-6987.]), which may be stabilized by favourable σCα—Hσ*C—O and σCβ—Hσ*C—N hyperconjugative inter­actions. On the other hand, the Cβ—O bond in the side chain of the second Ser(All) in (III) is positioned anti relative to the CO—Cα bond and gauche relative to the Cα—N bond, suggesting that the energy difference between the two side-chain conformers could be small. Going further out in the side chain, the H atoms of the two CH2 groups are almost eclipsed in all three cases. At first sight, this would appear to be an unfavourable conformation, but it should be noted that this arrangement reduces the steric repulsion between the C—H groups and the oxygen lone pairs and furthermore allows some overlap between the four σC—H orbitals and the two σ*C—O orbitals. Obviously, it is difficult, based on only three observations in two crystal structures, to draw any firm conclusions about the conformational preferences of the Ser(All) side chain without recourse to ab initio or density functional theory (DFT) calculations, which is beyond the scope of the current study.

The crystal packing of (I)[link] is divided into one-mol­ecule-thick layers along the c axis, each layer having a BAB′ composition, where A represents a hydro­philic core, and B and B′ are two different sets of hydro­phobic groups (Fig. 2[link]). In part A the peptide backbones form two inter­molecular hydrogen bonds that generate one C(11) head-to-tail chain along the ab diagonal and one C(5) chain along the b axis (Fig. 3[link]); for graph-set notation, see Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Notably, the N3—H3 donor, which fails to form an intra­molecular hydrogen bond, is only involved in a very weak inter­action (Table 2[link]). The hydro­phobic part B of each mol­ecular layer comprises the Aib side chains and terminal Ser(All) olefin/vinyl groups, while part B′ has contributions from the isopropyl groups of the Val residues together with the tert-butyl groups. The overall BAB′⋯B′–ABBAB′ stacking thus incorporates two distinct types of hydro­phobic inter­faces BB and B′⋯B′ parallel to the ab plane, an arrangement that allows the vinyl groups to enjoy favourable ππ inter­actions (Hunter & Sanders, 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]) with each other. The inter­nuclear distance between the partially positively charged terminal H atoms and the two C atoms in the π system is on the order of 3.7–4.1 Å.

[Figure 1]
Figure 1
(a) The asymmetric unit of (I)[link], with the atom numbering indicated. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary size. Bond lengths are normal, except that the O3—C8 and C9—C10 bonds in the allyl group are comparatively short at 1.395 (5) and 1.274 (7) Å, respectively. (b) The structure of Boc-L-Ala-Aib-L-Ala-OMe, (IV) [Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode COLSOL; Bosch et al., 1984[Bosch, R., Jung, G., Voges, K. P. & Winter, W. (1984). Liebigs Ann. Chem. pp. 1117-1128.]]. (c) The Pro139-Val142 segment of hAQP4 (PDB code 3GD8; Ho et al., 2009[Ho, J. D., Yeh, R., Sandstrom, A., Chorny, I., Harries, W. E. C., Robbins, R. A., Miercke, L. J. W. & Stroud, R. M. (2009). Proc. Natl Acad. Sci. USA, 106, 7437-7442.]).
[Figure 2]
Figure 2
The unit cell and crystal packing of (I)[link], viewed along the b axis. H atoms bonded to C atoms have been omitted for clarity and hydrogen bonds are shown as dotted lines. The structure is divided into layers, limited by grey dashed lines, where each layer has a B (red in the electronic version of the paper) – A (blue) – B′ (yellow) composition. Hydrogen bonds in the hydro­philic core A are shown as dotted lines.
[Figure 3]
Figure 3
The hydrogen-bonding pattern in the ab plane as viewed along c* with the directions of the a and b axes as well as the ab diagonal (dashed line) indicated. The acceptor atoms are O7i and O5ii [symmetry codes: (i) x − [{1\over 2}], y − [{1\over 2}], z; (ii) x, y − 1, z]. A single long N3—H3⋯O6ii contact (see Table 2[link]; orange in the electronic version of the paper) is indicated with an arrow. [Also in the electronic version of the paper, the tert-butyl group, the Ser(All) side chain and the Val chain are depicted as black, orange and violet spheres, respectively.]

Experimental

The N-(tert-but­oxy­carbonyl)-O-allyl-L-serine building block was synthesized in an analogous manner to N-(tert-but­oxy­carbonyl)-O-benzyl-L-serine (Sugano & Miyoshi, 1976[Sugano, H. & Miyoshi, M. (1976). J. Org. Chem. 41, 2352-2353.]) by double deprotonation of N-(tert-but­oxy­carbonyl)-L-serine with NaH in dimethyl­formamide, followed by alkyl­ation with allyl bromide (Jacobsen et al., 2009[Jacobsen, Ø., Klaveness, J., Ottersen, O. P., Amiry-Moghaddam, M. R. & Rongved, P. (2009). Org. Biomol. Chem. 7, 1599-1611.]). The title compound, (I)[link], was synthesized by standard solution-phase pep­tide coupling of N-(tert-but­oxy­carbonyl)-O-allyl-L-serine and α-amino­isobutyryl-L-valine methyl ester, which was generated in situ from α-amino­isobutyryl-L-valine methyl ester trifluoro­acetate by reaction with N,N-diisopropyl­ethyl­amine. 1-Ethyl-3-(3-dimethyl­amino­prop­yl)­car­bo­di­imide (EDC) hydrochloride was used as coupling reagent and 1.0 equivalent of 1-hy­droxy­benzotriazole (HOBt) was added to catalyse the reaction and suppress epimerization (Jacobsen et al., 2009[Jacobsen, Ø., Klaveness, J., Ottersen, O. P., Amiry-Moghaddam, M. R. & Rongved, P. (2009). Org. Biomol. Chem. 7, 1599-1611.]). The crude product was recrystallized twice from ethyl acetate–hexane (4:1 v/v). About 5 mg of (I)[link] was dissolved in 30 µl of ethyl acetate. Crystals appeared as water vapour diffused into the solution at room temperature.

Crystal data
  • C21H37N3O7

  • Mr = 443.54

  • Monoclinic, C 2

  • a = 19.753 (4) Å

  • b = 5.9369 (12) Å

  • c = 21.343 (5) Å

  • β = 101.271 (3)°

  • V = 2454.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 105 K

  • 0.60 × 0.43 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.979

  • 7153 measured reflections

  • 2431 independent reflections

  • 2078 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.05

  • 2431 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O7i 0.88 2.23 3.060 (3) 157
N2—H2⋯O5ii 0.88 2.04 2.900 (3) 164
N3—H3⋯O6ii 0.88 2.95 3.621 (3) 135
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x, y-1, z.

Table 1
Main torsion angles (°) in the crystal structure of (I)[link] and for the Ser-Val-Val segments of three AQP4 structures from the PDB (identifier code given)

Torsion anglea This work 2D57b 2ZZ9c 3GD8d
φ1 −59.0 (4) −139.4 −117.9 −64.2
ψ1 159.2 (3) −7.8 5.6 −21.4
φ2 58.7 (4) −59.0 −67.9 −118.2
ψ2 33.1 (4) −32.5 −18.8 −1.6
φ3 −70.3 (3) −30.6 −21.7 −50.9
ψ3 143.5 (3) −35.7 −41.7 −44.6
Notes: (a) For (I)[link], with reference to Fig. 1[link], the listed torsion angles are: φ1 = C5—N1—C6—C11, ψ1 = N1—C6—C11—N2, φ2 = C11—N2—C12—C15, ψ2 = N2—C12—C15—N3, φ3 = C15—N3—C16—C20 and ψ3 = N3—C16—C20—O6; (b) Hiroaki et al. (2006[Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. & Fujiyoshi, Y. (2006). J. Mol. Biol. 355, 628-639.]); (c) Tani et al. (2009[Tani, K., Mitsuma, T., Hiroaki, Y., Kamegawa, A., Nishikawa, K., Tanimura, Y. & Fujiyoshi, Y. (2009). J. Mol. Biol. 389, 694-706.]); (d) Ho et al. (2009[Ho, J. D., Yeh, R., Sandstrom, A., Chorny, I., Harries, W. E. C., Robbins, R. A., Miercke, L. J. W. & Stroud, R. M. (2009). Proc. Natl Acad. Sci. USA, 106, 7437-7442.]).

All H atoms were positioned with idealized geometry, with fixed N—H = 0.88 Å and C—H = 0.95 (sp2), 0.98 (meth­yl), 0.99 (methyl­ene) or 1.00 Å (methine), while permitting free rotation for the amino groups. Uiso(H) values were set at 1.2Ueq of the carrier atom or at 1.5Ueq for methyl groups. In the absence of significant anomalous scattering effects, 1774 Friedel pairs were merged.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title peptide, (I), was prepared as part of an ongoing effort (Jacobsen et al., 2009) to synthesize analogues of the Pro138–Gly144 segment of the extracellular loop C of the water channel aquaporin-4 (AQP4) [protein?] (Hasegawa et al., 1994; Jung et al., 1994; Hiroaki et al., 2006), which has emerged as an important target for the treatment of brain oedema (Nielsen et al., 1997; Manley et al., 2000; Amiry-Moghaddam et al., 2003; Amiry-Moghaddam & Ottersen, 2003). The residues Pro139 and Val142 are thought to mediate adhesive interactions between AQP4 molecules in contiguous cell membranes (Hiroaki et al., 2006; Engel et al., 2008; Tani et al., 2009). The electron diffraction structure of rat AQP4 (rAQP4) revealed that the segment Ser140–Gly144 forms a short 310-helix [Protein Data Bank (PDB) code 2D57, Hiroaki et al., 2006; PDB code 2ZZ9, Tani et al., 2009]. We believe that compounds structurally mimicking a loop-C segment containing at least one of the residues mediating adhesion can potentially have affinity for AQP4 and serve as lead compounds for the development of selective AQP4 ligands and, eventually, AQP4 inhibitors. (I) may be regarded as an analogue of the Ser140–Val141–Val142 segment of loop C, where the Ser residue has been allylated and Val141 has been (conservatively) substituted with another, structurally related, hydrophobic residue. The crystal structure of (I) renders a comparison with the backbone conformation of the AQP4 Ser140–Val142 segment possible. We have previously reported the crystal structure of a dipeptide analogue, Boc–Val–Val–OMe, of the Val141–Val142 segment of AQP4 (Jacobsen et al., 2011).

Regardless of the relationship between (I) and loop C of AQP4, the presence of two non-proteinogenic residues in (I), i.e. the synthetic residue O-allyl-L-serine [Ser(All)] and the naturally occurring achiral α,α-disubstituted residue α-aminoisobutyric acid (Aib), makes the crystal structure of (I) potentially interesting per se. The Aib residue is found in a large number of antibiotic peptides produced by fungi known as peptaibiotics (Degenkolb & Brückner, 2008). It is a conformationally restricted residue that preferentially adopts a 310– or α-helical conformation (Ramachandran & Chandrasekaran, 1972; Marshall & Bosshard, 1972; Venkatraman et al., 2001; Aravinda et al., 2008). Compared to Aib, the properties of the Ser(All) residue have been less studied. As of 27 May 2011 only 162 compounds (including non-peptidic compounds) containing the O-allyl-L-serine fragment, (II), have been indexed in the Chemical Abstracts database.

In many cases, the purpose of incorporating one or more Ser(All) residues in a peptide sequence has been to synthesize conformationally constrained peptides by ring-closing olefin metathesis (RCM) (Blackwell & Grubbs, 1998; Blackwell et al., 2001; Hanessian et al., 2006; Jacobsen et al., 2009; Yamagata et al., 2011). The structural and pharmacological effects of RCM in peptides have recently been reviewed (Jacobsen et al., 2010). A small number of crystal structures have been obtained of the resulting cyclic peptides or hydrogenated versions thereof (Blackwell & Grubbs, 1998; Hanessian et al., 2006; Boal et al., 2007; Abell et al., 2009; Yamagata et al., 2011). Perhaps because the properties of the cyclic peptides obtained after RCM have constituted the primary focus of several of the studies for which Ser(All)-containing peptides have been synthesized, only a single crystal structure, as far as we have been able to establish, has been reported of a peptide containing the O-allyl-L-serine residue (Boal et al., 2007). To determine the structural effect of i i+3 side-chain-to-side-chain RCM in the context of a predominantly 310-helical peptide, Boal et al. (2007) determined the crystal structure of an Aib-rich octapeptide, Boc–Aib–Aib–Aib–Ser(All)–Aib–Aib–Ser(All)–Aib–OMe, (II), before and after RCM. Similarly to (I), the O-allyl-L-serine residue in (II) is succeeded by an Aib residue.

So far, no crystal structures of peptides containing the closely related residues O-allyl-L-threonine or S-allyl-L-cysteine have been reported.

A turn is defined as a segment of a peptide which reverses the direction of the backbone (Venkatachalam, 1968; Rose et al., 1985). A β-turn is a turn comprising four residues which may, or may not, be stabilized by an intramolecular i i+3 hydrogen bond (Venkatachalam, 1968; Lewis et al., 1973; Richardson, 1981; Rose et al., 1985; Hutchinson & Thornton, 1994; Guruprasad & Rajkumar, 2000). The backbone of (I) changes direction by approximately 180° from the quaternary carbon of the tert-butoxycarbonyl (Boc) group to the Cα-atom of the Val residue, thus constituting a β-turn (Fig. 1a). The distance between the two carbon atoms is 5.908 (5) Å. In contrast to most β-turn subtypes, which feature an i i+3 intramolecular hydrogen bond, (I) does not form any intramolecular hdyrogen bonds. The H···O distance between the carbonyl oxygen of the Boc group and the NH of the Val residue is, however, relatively short at 3.34 Å [N···O is 3.898 (3) Å]. As a result of the turn, the shape of the peptide may be characterized as an (open) disc with a protruding Ser(All) side chain.

It is well established that Aib can promote/stabilize helical conformations when incorporated in peptides (Burgess & Leach, 1973; Karle & Balaram, 1990; Marshall et al., 1990). However, no such effect is evident in the crystal structure of (I). Instead the two chiral residues adopt polyproline II (PII) conformations, with (ϕ, ψ) of Ser(All) and Val being [-59.0 (4)°, 159.2 (3)°] and [-70.3 (3)°, 143.5 (3)°], respectively. The PII conformation is believed to be an important local conformation of `unfolded' peptides (Shi et al., 2006; Makowska et al., 2006). Because it lacks a stereogenic centre the Aib residue can adopt left-handed or right-handed helical conformations with equal probability when incorporated in achiral peptides. However, when it is involved in intramolecular hydrogen bonding in a helical peptide containing L-amino acids it preferentially adopts right-handed helical conformations (Aravinda et al., 2008). The central Aib residue in the non-helical peptide (I) adopts a left-handed 310-helical (310L) conformation, with (ϕ, ψ) angles [58.7 (4)°, 33.1 (4)°]. This conformation allows the formation of favourable intramolecular hydrophobic and van der Waals interactions between the tert-butyl and isopropyl groups and between the Ser(All) side chain and the Aib side chains. The backbone conformation of (I) closely resembles the conformations of several other fully protected tripeptides with a centrally placed Aib residue, e.g. Boc–L-Phe–Aib–L-Ile–OMe (Das et al., 2005), Boc–L-Ile–Aib–L-Val–OMe (Dutt et al., 2007), Boc–L-Ala–Aib–L-Val–OMe (Maji et al., 2004), Boc–L-Ala–Aib–L-Ile–OMe (Maji et al., 2004) and Boc–L-Ala–Aib–L-Ala–OMe, (III) (Bosch et al., 1984). (III) crystallizes in space group P21 and forms a distorted β-turn with a PII-310L-PII backbone conformation very similar to (I) (Fig. 1b). Recent conformational studies of (III) by NMR, IR, VCD [vibrational circular dichroism?] and ECD [pls define] spectroscopy, however, suggest that the structure of (III) is more complex in aqueous solution than in the solid state (Schweitzer-Stenner et al., 2007). In contrast to the crystal structure, the population of Aib residues adopting a right-handed 310-helical conformation appears to be greater than the population of Aibs adopting a left-handed conformation, but it is difficult to predict whether this would also be the case for (I) in aqueous solution.

Based on the observed (ϕ, ψ) angles of the Ser(All)/Ala (residue i+1) and Aib (residue i+2) the structures of (I) and (III) do not fall naturally into any of the standard β-turn classes (Richardson, 1981; Rose et al., 1985; Hutchinson & Thornton, 1994; Guruprasad & Rajkumar, 2000). The most similar type, the type-II β-turn, has dihedral angles (ϕi+1,ψi+1) = (-60°, 120°) and (ϕi+2,ψi+2) = (80°, 0°) (Guruprasad & Rajkumar, 2000).

Compared with the CO(Pro139)–Ser140–Val141–Val142 segment of rAQP4 (I) adopts a completely different overall conformation, as well as at the level of the individual residues (Table 1). While the Ser(All) and Aib residues of (I) adopt PII and left-handed 310-helical conformations, respectively, Ser140 of rAQP4 adopts a distorted right-handed 310-/α- helical conformation and the central Val residue a right-handed 310-helical conformation. In contrast, despite very different individual torsion angles, the overall backbone conformation of the CO(Pro139)–Ser140–Val141–Val142 segment of human AQP4 (hAQP4) (PDB code 3GD8, Ho et al., 2009) (Fig. 1c) is quite similar to that of (I). One notable difference is that the central Ser140–Val141 peptide bond is flipped; (I) may be characterized as a distorted type-II β-turn, while the hAQP4 fragment has a distorted type-I β-turn conformation.

The side chain of the Ser(All) residue adopts a gauche conformation relative to both backbone bonds [N1—C6—C7—O3 = 69.5 (3)°, C11—C6—C7—O3 = -51.9 (3)°]. The same conformation is observed for one of the Ser(All) residues in the crystal structure of the octapeptide (II) (Boal et al., 2007), which may be stabilized by favourable σCα-Hσ*C—O and σCβ-Hσ*C—N hyperconjugative interactions. On the other hand, the Cβ—O bond in the side chain of the second Ser(All) in (II) is positioned anti relative to the CO—Cα bond and gauche relative to the Cα—N bond, suggesting that the energy difference between the two side-chain conformers could be small. Going further out in the side chain, the H atoms of the two CH2 groups are almost eclipsed in all three cases. At first sight, this would appear to be an unfavourable conformation, but it should be noted that this arrangement reduces the steric repulsion between the C—H groups and the oxygen lone pairs as well as allowing some overlap between the four σC—H orbitals and the two σ*C—O orbitals. Obviously, it is difficult, based on only three observations in two crystal structures, to draw any firm conclusions about the conformational preferences of the Ser(All) side chain without recourse to ab initio or DFT calculations, which is beyond the scope of the current study.

The crystal packing of (I) is divided into one-molecule-thick layers along the c axis, each layer having a BAB' construction where A represents a hydrophilic core, and B and B' are two different sets of hydrophobic groups (Fig. 2). In part A the peptide backbones form two intermolecular hydrogen bonds that generate one C(11) head-to-tail chain along the ab diagonal and one C(5) chain along the b axis (Fig. 3). Notably, the N3—H3 donor, which fails to form an intramolecular hydrogen bond (see above), is only involved in a very weak interaction (Table 2). The hydrophobic part B of each molecular layer comprises the Aib side chains and terminal Ser(All) olefin/vinyl groups, while part B' has contributions from the isopropyl groups of the Val residues together with the tert-butyl groups. The overall BAB'···B'–AB···BAB' stacking thus incorporates two distinct types of hydrophobic interfaces B···B and B'···B' parallel to the ab plane, an arrangement that allows the vinyl groups to enjoy favourable ππ interactions (Hunter & Sanders, 1990) with each other. The internuclear distance between the partially positively charged terminal protons and the two carbon atoms in the π system is on the order of 3.7–4.1 Å.

Related literature top

For related literature, see: Abell et al. (2009); Amiry-Moghaddam & Ottersen (2003); Amiry-Moghaddam, Otsuka, Hurn, Traystman, Haug, Froehner, Adams, Neely, Agre, Ottersen & Bhardwaj (2003); Aravinda et al. (2008); Blackwell & Grubbs (1998); Blackwell et al. (2001); Boal et al. (2007); Bosch et al. (1984); Burgess & Leach (1973); Das et al. (2005); Degenkolb & Brückner (2008); Dutt et al. (2007); Engel et al. (2008); Guruprasad & Rajkumar (2000); Hanessian et al. (2006); Hasegawa et al. (1994); Hiroaki et al. (2006); Ho et al. (2009); Hunter & Sanders (1990); Hutchinson & Thornton (1994); Jacobsen et al. (2009, 2010, 2011); Jung et al. (1994); Karle & Balaram (1990); Lewis et al. (1973); Maji et al. (2004); Makowska et al. (2006); Manley et al. (2000); Marshall & Bosshard (1972); Marshall et al. (1990); Nielsen et al. (1997); Ramachandran & Chandrasekaran (1972); Richardson (1981); Rose et al. (1985); Schweitzer-Stenner, Gonzales, Bourne, Feng & Marshall (2007); Shi et al. (2006); Sugano & Miyoshi (1976); Tani et al. (2009); Venkatachalam (1968); Venkatraman et al. (2001); Yamagata et al. (2011).

Experimental top

The N-tert-butoxycarbonyl-O-allyl-L-serine building block was synthesized in an analagous manner to N-tert-O-benzyl-L-serine (Sugano & Miyoshi, 1976) by double deprotonation of N-tert-butoxycarbonyl-L-serine with NaH in dimethylformamide, followed by alkylation with allyl bromide (Jacobsen et al., 2009). The title compound, (I), was synthesized by standard solution phase peptide coupling of N-tert-butoxycarbonyl-O-allyl-L-serine and α-aminoisobutyryl-L-valine methyl ester, which was generated in situ from α-aminoisobutyryl-L-valine methyl ester trifluoroacetate by reaction with N,N-diisopropylethylamine. 3-(3-Dimethylaminopropyl)-1-ethylcarbodiimide (EDC) was used as coupling reagent and 1.0 equivalent of 1-hydroxybenzotriazole (HOBt) was added to catalyse the reaction and suppress epimerization (Jacobsen et al., 2009). The crude product was recrystallized twice from ethyl acetate–hexane (4:1 v/v). About 5 mg of (I) was dissolved in 30 µl of ethyl acetate. Crystals appeared as water vapour diffused into the solution at room temperature.

Refinement top

All H atoms were positioned with idealized geometry with fixed N—H = 0.88 Å and C—H = 0.95 Å (sp2), 0.98 (methyl), 0.99 (methylene) or 1.00 Å (methine), while permitting free rotation for the amino groups. Uiso values were set at 1.2UUeq of the carrier atom or at 1.5Ueq for methyl groups. In the absence of significant anomalous scattering effects, 1774 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (a) The asymmetric unit of (I), with the atom numbering indicated. Displacement ellipsoids are drawn at the 50% probability level and H atoms are spheres of arbitrary size. Bond lengths are normal, except that the O3—C8 and C9—10 bonds in the allyl group are comparatively short at 1.395 (5) and 1.274 (7) Å, respectively. (b) The structure of Boc–L-Ala–Aib–L-Ala–OMe, (III) (CSD refcode COLSOL; Bosch et al., 1984). (c) The Pro139–Val142 segment of hAQP4 (PDB code 3GD8; Ho et al.., 2009).
[Figure 2] Fig. 2. The unit cell and crystal packing of (I), viewed along the b axis. H atoms bonded to C atoms have been omitted for clarity and hydrogen bonds are shown as dotted lines. The structure is divided into layers, limited by grey dashed lines, where each layer has a B (red in the electronic version of the paper) – A (blue) – B' (yellow) composition. Hydrogen bonds in the hydrophiliic core A are shown as dotted lines.
[Figure 3] Fig. 3. The hydrogen-bonding pattern in the ab plane as viewed along c* (axis directions are given top left), the acceptors are O7'(x - 1/2, y - 1/2, z) and O5''(x, y - 1, z). A single long N3—H3···O6''(x, y - 1, z) contact (see Table 2) is shown with an arrow (orange in the electronic version of the paper). [The tert-butyl group, the Ser(All) side chain and the Val chain are depicted as black, orange and violet spheres, respectively.]
(6S,12S)-methyl 6-(allyloxymethyl)-12-isopropyl-2,2,9,9-tetramethyl-4,7,10-trioxo-3-oxa- 5,8,11-triazatridecan-13-oate top
Crystal data top
C21H37N3O7F(000) = 960
Mr = 443.54Dx = 1.200 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4112 reflections
a = 19.753 (4) Åθ = 2.0–25.2°
b = 5.9369 (12) ŵ = 0.09 mm1
c = 21.343 (5) ÅT = 105 K
β = 101.271 (3)°Block, colourless
V = 2454.7 (9) Å30.60 × 0.43 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2431 independent reflections
Radiation source: fine-focus sealed tube2078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.3 pixels mm-1θmax = 25.2°, θmin = 2.0°
Sets of exposures each taken over 0.5° ω rotation scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 76
Tmin = 0.839, Tmax = 0.979l = 2525
7153 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.5885P]
where P = (Fo2 + 2Fc2)/3
2431 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C21H37N3O7V = 2454.7 (9) Å3
Mr = 443.54Z = 4
Monoclinic, C2Mo Kα radiation
a = 19.753 (4) ŵ = 0.09 mm1
b = 5.9369 (12) ÅT = 105 K
c = 21.343 (5) Å0.60 × 0.43 × 0.24 mm
β = 101.271 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2078 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.979Rint = 0.034
7153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2431 reflectionsΔρmin = 0.18 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33517 (11)0.5968 (4)0.85725 (10)0.0333 (6)
O20.44157 (11)0.4979 (4)0.83790 (11)0.0394 (6)
O30.28565 (12)0.4215 (5)0.63407 (12)0.0442 (6)
O40.39446 (11)0.7423 (4)0.70273 (11)0.0337 (6)
O50.52379 (12)1.0591 (4)0.64884 (11)0.0350 (6)
O60.65077 (11)1.3159 (4)0.76237 (11)0.0304 (5)
O70.68519 (11)0.9710 (4)0.73897 (11)0.0327 (5)
N10.34194 (13)0.4083 (5)0.76931 (13)0.0306 (6)
H10.29720.38630.76500.037*
N20.46616 (12)0.4990 (4)0.66585 (11)0.0262 (6)
H20.48320.36160.66860.031*
N30.54918 (13)0.8264 (5)0.73300 (12)0.0292 (6)
H30.55000.68810.74790.035*
C10.36277 (18)0.7222 (7)0.91624 (16)0.0366 (8)
C20.4062 (2)0.9196 (8)0.9025 (2)0.0647 (13)
H2A0.37881.01550.86970.097*
H2B0.44680.86370.88730.097*
H2C0.42111.00720.94170.097*
C30.4008 (2)0.5632 (9)0.96604 (18)0.0591 (12)
H3A0.37000.44000.97280.089*
H3B0.41610.64471.00620.089*
H3C0.44100.50140.95140.089*
C40.29719 (19)0.8059 (7)0.93627 (17)0.0439 (9)
H4A0.27250.90810.90360.066*
H4B0.30940.88610.97710.066*
H4C0.26760.67720.94110.066*
C50.37883 (17)0.5026 (6)0.82265 (15)0.0330 (8)
C60.37840 (17)0.3440 (5)0.71910 (15)0.0297 (7)
H60.41440.22970.73640.036*
C70.32881 (18)0.2429 (6)0.66324 (16)0.0367 (8)
H7A0.35440.17590.63230.044*
H7B0.30070.12360.67820.044*
C80.2247 (2)0.3497 (8)0.5945 (2)0.0550 (11)
H8A0.19490.27530.62060.066*
H8B0.23560.23830.56350.066*
C90.1870 (2)0.5445 (9)0.5594 (2)0.0644 (12)
H90.14090.51820.53760.077*
C100.2109 (3)0.7425 (10)0.5560 (2)0.0691 (13)
H10A0.25670.77680.57710.083*
H10B0.18290.85590.53250.083*
C110.41346 (16)0.5494 (6)0.69608 (15)0.0283 (7)
C120.49492 (16)0.6677 (6)0.62899 (14)0.0272 (7)
C130.44078 (17)0.7463 (7)0.57211 (15)0.0352 (8)
H13A0.42340.61640.54540.053*
H13B0.46170.85450.54690.053*
H13C0.40250.81840.58750.053*
C140.55604 (16)0.5609 (6)0.60572 (15)0.0310 (7)
H14A0.54000.43100.57850.047*
H14B0.59060.51130.64260.047*
H14C0.57680.67200.58120.047*
C150.52233 (16)0.8679 (5)0.67126 (15)0.0277 (7)
C160.57700 (16)1.0118 (6)0.77521 (15)0.0304 (7)
H160.54291.13810.76860.036*
C170.58824 (17)0.9380 (6)0.84580 (15)0.0307 (7)
H170.54630.85140.85100.037*
C180.59266 (18)1.1425 (6)0.88992 (16)0.0368 (8)
H18A0.55231.23920.87600.055*
H18B0.63481.22750.88820.055*
H18C0.59371.09200.93380.055*
C190.64998 (19)0.7809 (6)0.86562 (16)0.0381 (8)
H19A0.64550.65170.83650.057*
H19B0.65140.72770.90930.057*
H19C0.69270.86250.86370.057*
C200.64360 (16)1.0935 (6)0.75654 (14)0.0273 (7)
C210.71266 (17)1.4073 (6)0.74431 (17)0.0361 (8)
H21A0.71371.57100.75030.054*
H21B0.71231.37220.69940.054*
H21C0.75361.34010.77120.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0292 (12)0.0418 (14)0.0290 (12)0.0025 (11)0.0061 (10)0.0031 (11)
O20.0287 (12)0.0455 (16)0.0432 (13)0.0027 (12)0.0053 (11)0.0063 (12)
O30.0347 (13)0.0480 (16)0.0472 (15)0.0057 (13)0.0016 (11)0.0096 (13)
O40.0330 (12)0.0306 (14)0.0392 (13)0.0011 (11)0.0113 (10)0.0019 (11)
O50.0428 (13)0.0268 (12)0.0369 (13)0.0024 (11)0.0115 (11)0.0034 (11)
O60.0300 (11)0.0227 (12)0.0405 (13)0.0028 (9)0.0117 (10)0.0006 (10)
O70.0321 (12)0.0258 (12)0.0414 (13)0.0014 (10)0.0098 (10)0.0012 (11)
N10.0244 (13)0.0370 (16)0.0324 (15)0.0044 (13)0.0103 (12)0.0016 (13)
N20.0291 (13)0.0203 (14)0.0302 (13)0.0007 (12)0.0081 (11)0.0001 (12)
N30.0311 (14)0.0221 (14)0.0324 (14)0.0051 (12)0.0012 (12)0.0030 (12)
C10.0342 (18)0.041 (2)0.0342 (18)0.0001 (16)0.0053 (15)0.0050 (17)
C20.063 (3)0.057 (3)0.084 (3)0.019 (2)0.038 (2)0.031 (3)
C30.061 (3)0.074 (3)0.036 (2)0.025 (3)0.0056 (19)0.007 (2)
C40.040 (2)0.055 (2)0.0363 (19)0.0088 (18)0.0070 (16)0.0050 (19)
C50.0346 (18)0.0303 (19)0.0357 (18)0.0015 (16)0.0111 (16)0.0044 (16)
C60.0299 (16)0.0260 (17)0.0349 (18)0.0016 (14)0.0108 (14)0.0030 (15)
C70.0355 (18)0.036 (2)0.0419 (19)0.0033 (17)0.0150 (16)0.0055 (17)
C80.059 (3)0.051 (3)0.051 (2)0.015 (2)0.000 (2)0.001 (2)
C90.058 (3)0.060 (3)0.066 (3)0.019 (2)0.009 (2)0.003 (3)
C100.059 (3)0.064 (3)0.080 (3)0.006 (3)0.005 (3)0.010 (3)
C110.0276 (16)0.0277 (18)0.0288 (16)0.0012 (15)0.0036 (14)0.0040 (15)
C120.0272 (16)0.0291 (17)0.0254 (15)0.0018 (14)0.0052 (13)0.0017 (14)
C130.0358 (18)0.038 (2)0.0299 (17)0.0023 (16)0.0028 (15)0.0024 (16)
C140.0333 (17)0.0301 (17)0.0315 (16)0.0013 (15)0.0107 (14)0.0017 (15)
C150.0275 (16)0.0258 (18)0.0306 (17)0.0003 (14)0.0081 (14)0.0032 (14)
C160.0279 (16)0.0276 (18)0.0353 (17)0.0001 (14)0.0052 (14)0.0009 (15)
C170.0304 (16)0.0305 (18)0.0317 (17)0.0044 (14)0.0071 (14)0.0007 (15)
C180.039 (2)0.0350 (19)0.0355 (18)0.0013 (16)0.0058 (16)0.0026 (16)
C190.050 (2)0.034 (2)0.0298 (17)0.0049 (17)0.0041 (16)0.0029 (16)
C200.0307 (17)0.0230 (18)0.0263 (16)0.0014 (14)0.0010 (14)0.0003 (14)
C210.0361 (18)0.0290 (18)0.045 (2)0.0041 (16)0.0121 (16)0.0013 (16)
Geometric parameters (Å, º) top
O1—C51.360 (4)C7—H7A0.9900
O1—C11.473 (4)C7—H7B0.9900
O2—C51.219 (4)C8—C91.495 (7)
O3—C81.395 (5)C8—H8A0.9900
O3—C71.425 (5)C8—H8B0.9900
O4—C111.222 (4)C9—C101.274 (7)
O5—C151.234 (4)C9—H90.9500
O6—C201.332 (4)C10—H10A0.9500
O6—C211.456 (4)C10—H10B0.9500
O7—C201.210 (4)C12—C131.526 (5)
N1—C51.348 (4)C12—C151.526 (5)
N1—C61.454 (4)C12—C141.530 (4)
N1—H10.8800C13—H13A0.9800
N2—C111.361 (4)C13—H13B0.9800
N2—C121.456 (4)C13—H13C0.9800
N2—H20.8800C14—H14A0.9800
N3—C151.344 (4)C14—H14B0.9800
N3—C161.460 (4)C14—H14C0.9800
N3—H30.8800C16—C201.526 (4)
C1—C31.508 (5)C16—C171.543 (4)
C1—C21.514 (6)C16—H161.0000
C1—C41.524 (5)C17—C191.528 (5)
C2—H2A0.9800C17—C181.528 (5)
C2—H2B0.9800C17—H171.0000
C2—H2C0.9800C18—H18A0.9800
C3—H3A0.9800C18—H18B0.9800
C3—H3B0.9800C18—H18C0.9800
C3—H3C0.9800C19—H19A0.9800
C4—H4A0.9800C19—H19B0.9800
C4—H4B0.9800C19—H19C0.9800
C4—H4C0.9800C21—H21A0.9800
C6—C71.512 (5)C21—H21B0.9800
C6—C111.530 (5)C21—H21C0.9800
C6—H61.0000
C5—O1—C1120.3 (2)C9—C10—H10A120.0
C8—O3—C7114.1 (3)C9—C10—H10B120.0
C20—O6—C21115.1 (3)H10A—C10—H10B120.0
C5—N1—C6117.9 (3)O4—C11—N2122.8 (3)
C5—N1—H1121.1O4—C11—C6122.8 (3)
C6—N1—H1121.1N2—C11—C6114.4 (3)
C11—N2—C12121.4 (3)N2—C12—C13110.7 (3)
C11—N2—H2119.3N2—C12—C15110.3 (2)
C12—N2—H2119.3C13—C12—C15110.2 (3)
C15—N3—C16119.7 (3)N2—C12—C14107.8 (3)
C15—N3—H3120.1C13—C12—C14110.1 (2)
C16—N3—H3120.1C15—C12—C14107.7 (3)
O1—C1—C3109.6 (3)C12—C13—H13A109.5
O1—C1—C2110.8 (3)C12—C13—H13B109.5
C3—C1—C2113.5 (4)H13A—C13—H13B109.5
O1—C1—C4102.2 (3)C12—C13—H13C109.5
C3—C1—C4109.9 (3)H13A—C13—H13C109.5
C2—C1—C4110.3 (3)H13B—C13—H13C109.5
C1—C2—H2A109.5C12—C14—H14A109.5
C1—C2—H2B109.5C12—C14—H14B109.5
H2A—C2—H2B109.5H14A—C14—H14B109.5
C1—C2—H2C109.5C12—C14—H14C109.5
H2A—C2—H2C109.5H14A—C14—H14C109.5
H2B—C2—H2C109.5H14B—C14—H14C109.5
C1—C3—H3A109.5O5—C15—N3120.9 (3)
C1—C3—H3B109.5O5—C15—C12121.3 (3)
H3A—C3—H3B109.5N3—C15—C12117.6 (3)
C1—C3—H3C109.5N3—C16—C20108.5 (3)
H3A—C3—H3C109.5N3—C16—C17110.7 (3)
H3B—C3—H3C109.5C20—C16—C17112.2 (3)
C1—C4—H4A109.5N3—C16—H16108.4
C1—C4—H4B109.5C20—C16—H16108.4
H4A—C4—H4B109.5C17—C16—H16108.4
C1—C4—H4C109.5C19—C17—C18111.6 (3)
H4A—C4—H4C109.5C19—C17—C16113.5 (3)
H4B—C4—H4C109.5C18—C17—C16110.9 (3)
O2—C5—N1124.7 (3)C19—C17—H17106.8
O2—C5—O1125.7 (3)C18—C17—H17106.8
N1—C5—O1109.5 (3)C16—C17—H17106.8
N1—C6—C7110.3 (3)C17—C18—H18A109.5
N1—C6—C11110.4 (3)C17—C18—H18B109.5
C7—C6—C11109.1 (3)H18A—C18—H18B109.5
N1—C6—H6109.0C17—C18—H18C109.5
C7—C6—H6109.0H18A—C18—H18C109.5
C11—C6—H6109.0H18B—C18—H18C109.5
O3—C7—C6106.8 (3)C17—C19—H19A109.5
O3—C7—H7A110.4C17—C19—H19B109.5
C6—C7—H7A110.4H19A—C19—H19B109.5
O3—C7—H7B110.4C17—C19—H19C109.5
C6—C7—H7B110.4H19A—C19—H19C109.5
H7A—C7—H7B108.6H19B—C19—H19C109.5
O3—C8—C9110.7 (3)O7—C20—O6124.0 (3)
O3—C8—H8A109.5O7—C20—C16124.2 (3)
C9—C8—H8A109.5O6—C20—C16111.8 (3)
O3—C8—H8B109.5O6—C21—H21A109.5
C9—C8—H8B109.5O6—C21—H21B109.5
H8A—C8—H8B108.1H21A—C21—H21B109.5
C10—C9—C8126.0 (4)O6—C21—H21C109.5
C10—C9—H9117.0H21A—C21—H21C109.5
C8—C9—H9117.0H21B—C21—H21C109.5
C5—O1—C1—C366.4 (4)C11—N2—C12—C14176.0 (3)
C5—O1—C1—C259.6 (4)C16—N3—C15—O53.5 (4)
C5—O1—C1—C4177.1 (3)C16—N3—C15—C12179.1 (3)
C6—N1—C5—O215.5 (5)N2—C12—C15—O5151.3 (3)
C6—N1—C5—O1166.4 (3)C13—C12—C15—O528.8 (4)
C1—O1—C5—O25.3 (5)C14—C12—C15—O591.3 (3)
C1—O1—C5—N1176.6 (3)N2—C12—C15—N333.1 (4)
C5—N1—C6—C7179.7 (3)C13—C12—C15—N3155.6 (3)
C5—N1—C6—C1159.0 (4)C14—C12—C15—N384.3 (3)
C8—O3—C7—C6161.8 (3)C15—N3—C16—C2070.3 (3)
N1—C6—C7—O369.5 (3)C15—N3—C16—C17166.1 (3)
C11—C6—C7—O351.9 (3)N3—C16—C17—C1973.3 (4)
C7—O3—C8—C9172.7 (3)C20—C16—C17—C1948.2 (4)
O3—C8—C9—C1011.7 (7)N3—C16—C17—C18160.2 (3)
C12—N2—C11—O411.7 (5)C20—C16—C17—C1878.4 (3)
C12—N2—C11—C6166.4 (3)C21—O6—C20—O71.5 (5)
N1—C6—C11—O422.7 (4)C21—O6—C20—C16179.0 (3)
C7—C6—C11—O498.7 (4)N3—C16—C20—O737.0 (4)
N1—C6—C11—N2159.2 (3)C17—C16—C20—O785.7 (4)
C7—C6—C11—N279.4 (3)N3—C16—C20—O6143.5 (3)
C11—N2—C12—C1363.5 (4)C17—C16—C20—O693.8 (3)
C11—N2—C12—C1558.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.882.233.060 (3)157
N2—H2···O5ii0.882.042.900 (3)164
N3—H3···O6ii0.882.953.621 (3)135
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H37N3O7
Mr443.54
Crystal system, space groupMonoclinic, C2
Temperature (K)105
a, b, c (Å)19.753 (4), 5.9369 (12), 21.343 (5)
β (°) 101.271 (3)
V3)2454.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.43 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.839, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7153, 2431, 2078
Rint0.034
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.05
No. of reflections2431
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.882.233.060 (3)156.8
N2—H2···O5ii0.882.042.900 (3)163.9
N3—H3···O6ii0.882.953.621 (3)134.5
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1, z.
Main torsion angles (°) in the crystal structures of (I) and for the Ser-Val-Val segments of three AQP4 structures from the PDB (identifier code given). top
Torsion angleaThis work2D57b2ZZ9c3GD8d
ϕ1-59.0 (4)-139.4-117.9-64.2
ψ1159.2 (3)-7.85.6-21.4
ϕ258.7 (4)-59.0-67.9-118.2
ψ233.1 (4)-32.5-18.8-1.6
ϕ3-70.3 (3)-30.6-21.7-50.9
ψ3143.5 (3)-35.7-41.7-44.6
Notes: (a) For (I), with reference to Fig. 1, the listed torsion angles are: ϕ1 = C5—N1—C6—C11, ψ1 = N1—C6—C11—N2, ϕ2 = C11—N2—C12—C15, ψ2 = N2—C12—C15—N3, ϕ3 = C15—N3—C16—C20 and ψ3 = N3—C16—C20—O6; (b) Hiroaki et al. (2006); (c) Tani et al. (2009); (d) Ho et al. (2009).
 

Footnotes

These authors contributed equally to this work.

References

First citationAbell, A. D., Alexander, N. A., Aitken, S. G., Chen, H., Coxon, J. M., Jones, M. A., McNabb, S. B. & Muscroft-Taylor, A. (2009). J. Org. Chem. 74, 4354–4356.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmerican Chemical Society (2008). Chemical Abstracts Service. American Chemical Society, Columbus, OH, USA  Google Scholar
First citationAmiry-Moghaddam, M., Otsuka, T., Hurn, P. D., Traystman, R. J., Haug, F.-M., Froehner, S. C., Adams, M. E., Neely, J. D., Agre, P., Ottersen, O. P. & Bhardwaj, A. (2003). Proc. Natl Acad. Sci. USA, 100, 2106–2111.  PubMed CAS Google Scholar
First citationAmiry-Moghaddam, M. & Ottersen, O. P. (2003). Nat. Rev. Neurosci. 4, 991–1001.  Web of Science PubMed CAS Google Scholar
First citationAravinda, S., Shamala, N. & Balaram, P. (2008). Chem. Biodivers. 5, 1238–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlackwell, H. E. & Grubbs, R. H. (1998). Angew. Chem. Int. Ed. 37, 3281–3284.  Web of Science CrossRef CAS Google Scholar
First citationBlackwell, H. E., Sadowsky, J. D., Howard, R. J., Sampson, J. N., Chao, J. A., Steinmetz, W. E., O'Leary, D. J. & Grubbs, R. H. (2001). J. Org. Chem. 66, 5291–5302.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBoal, A. K., Guryanov, I., Moretto, A., Crisma, M., Lanni, E. L., Toniolo, C., Grubbs, R. H. & O'Leary, D. J. (2007). J. Am. Chem. Soc. 129, 6986–6987.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBosch, R., Jung, G., Voges, K. P. & Winter, W. (1984). Liebigs Ann. Chem. pp. 1117–1128.  CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgess, A. W. & Leach, S. J. (1973). Biopolymers, 12, 2599–2605.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDas, A. K., Banerjee, A., Drew, M. G. B., Ray, S., Haldar, D. & Banerjee, A. (2005). Tetrahedron, 61, 5027–5036.  Web of Science CSD CrossRef CAS Google Scholar
First citationDegenkolb, T. & Brückner, H. (2008). Chem. Biodivers. 5, 1817–1843.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDutt, A., Dutta, A., Mondal, R., Spencer, E. C., Howard, J. A. K. & Pramanik, A. (2007). Tetrahedron, 63, 10282–10289.  Web of Science CSD CrossRef CAS Google Scholar
First citationEngel, A., Fujiyoshi, Y., Gonen, T. & Walz, T. (2008). Curr. Opin. Struct. Biol. 18, 229–235.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuruprasad, K. & Rajkumar, S. (2000). J. Biosci. 25, 143–156.  PubMed CAS Google Scholar
First citationHanessian, S., Yang, G., Rondeau, J.-M., Neumann, U., Betschart, C. & Tintelnot-Blomley, M. (2006). J. Med. Chem. 49, 4544–4567.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHasegawa, H., Ma, T., Skach, W., Matthay, M. A. & Verkman, A. S. (1994). J. Biol. Chem. 269, 5497–5500.  CAS PubMed Google Scholar
First citationHiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. & Fujiyoshi, Y. (2006). J. Mol. Biol. 355, 628–639.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHo, J. D., Yeh, R., Sandstrom, A., Chorny, I., Harries, W. E. C., Robbins, R. A., Miercke, L. J. W. & Stroud, R. M. (2009). Proc. Natl Acad. Sci. USA, 106, 7437–7442.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationHutchinson, E. G. & Thornton, J. M. (1994). Protein Sci. 3, 2207–2216.  CrossRef CAS PubMed Google Scholar
First citationJacobsen, Ø., Gebreslasie, H. G., Klaveness, J., Rongved, P. & Görbitz, C. H. (2011). Acta Cryst. C67, o278–o282.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJacobsen, Ø., Klaveness, J., Ottersen, O. P., Amiry-Moghaddam, M. R. & Rongved, P. (2009). Org. Biomol. Chem. 7, 1599–1611.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobsen, Ø., Klaveness, J. & Rongved, P. (2010). Molecules, 15, 6638-6677.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJung, J. S., Bhat, R. V., Preston, G. M., Guggino, W. B., Baraban, J. M. & Agre, P. (1994). Proc. Natl Acad. Sci. USA, 91, 13052–13056.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKarle, I. L. & Balaram, P. (1990). Biochemistry, 29, 6747–6756.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLewis, P. N., Momany, F. A. & Scheraga, H. A. (1973). Biochim. Biophys. Acta, 303, 211–229.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMaji, S. K., Haldar, D., Drew, M. G. B., Banerjee, A., Das, A. K. & Banerjee, A. (2004). Tetrahedron, 60, 3251–3259.  Web of Science CSD CrossRef CAS Google Scholar
First citationMakowska, J., Rodziewicz-Motowidlo, S., Baginska, K., Vila, J. A., Liwo, A., Chmurzynski, L. & Scheraga, H. A. (2006). Proc. Natl Acad. Sci. USA, 103, 1744–1749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManley, G. T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Bollen, A. W., Chan, P. & Verkman, A. S. (2000). Nat. Med. 6, 159–163.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarshall, G. R. & Bosshard, H. E. (1972). Circ. Res. 30–31, Suppl. II, 143–150.  Google Scholar
First citationMarshall, G. R., Hodgkin, E. E., Langs, D. A., Smith, G. D., Zabrocki, J. & Leplawy, M. T. (1990). Proc. Natl Acad. Sci. USA, 87, 487–491.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNielsen, S., Nagelhus, E. A., Amiry-Moghaddam, M., Bourque, C., Agre, P. & Ottersen, O. P. (1997). J. Neurosci. 17, 171–180.  CAS PubMed Google Scholar
First citationRamachandran, G. N. & Chandrasekaran, R. (1972). Progress in Peptide Research, edited by S. Lande, Vol. II (Proceedings of the Second American Peptide Symposium, Cleveland, 1970), p. 195. New York: Gordon & Breach.  Google Scholar
First citationRichardson, J. S. (1981). Adv. Protein Chem. 34, 167–339.  CrossRef CAS PubMed Google Scholar
First citationRose, G. D., Gierasch, L. M. & Smith, J. A. (1985). Adv. Protein Chem. 37, 1–109.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSchweitzer-Stenner, R., Gonzales, W., Bourne, G. T., Feng, J. A. & Marshall, G. R. (2007). J. Am. Chem. Soc. 129, 13095–13109.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z., Chen, K., Liu, Z. & Kallenbach, N. R. (2006). Chem. Rev. 106, 1877–1897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSugano, H. & Miyoshi, M. (1976). J. Org. Chem. 41, 2352–2353.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTani, K., Mitsuma, T., Hiroaki, Y., Kamegawa, A., Nishikawa, K., Tanimura, Y. & Fujiyoshi, Y. (2009). J. Mol. Biol. 389, 694–706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVenkatachalam, C. M. (1968). Biopolymers, 6, 1425–1436.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVenkatraman, J., Shankaramma, S. C. & Balaram, P. (2001). Chem. Rev. 101, 3131–3152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamagata, N., Demizu, Y., Sato, Y., Doi, M., Tanaka, M., Nagasawa, K., Okuda, H. & Kurihara, M. (2011). Tetrahedron Lett. 52, 798–801.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds