metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

catena-Poly[[[μ-1,3-bis­­(di­phenyl­phosphan­yl)propane-κ2P:P′][O-ethyl (4-meth­­oxy­phen­yl)phosphono­di­thio­ato-κ2S,S′]silver(I)] chloro­form monosolvate]

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: dsun@sdu.edu.cn

(Received 13 July 2011; accepted 22 August 2011; online 31 August 2011)

Reaction of a mixture of AgOAc, Lawesson's reagent [2,4-bis­(4-meth­oxy­phen­yl)-1,3-dithia­diphosphetane-2,4-disulfide] and 1,3-bis­(diphenyl­phosphan­yl)propane (dppp) under ultrasonic treatment gave the title compound, {[Ag(C9H12O2PS2)(C27H26P2)]·CHCl3}n, a novel one-dimensional chain based on the in situ-generated bipodal ligand [ArP(OEt)S2] (Ar = 4-meth­oxy­phen­yl). The compound consists of bidentate bridging 1,3-bis­(diphenyl­phosphan­yl)propane (dppp) and in situ-generated bidentate chelating [ArP(OEt)S2] ligands. The dppp ligand links the [Ag{ArP(OEt)S2}] subunit to form an achiral one-dimensional infinite chain. These achiral chains are packed into chiral crystals by virtue of van der Waals inter­actions. No ππ inter­actions are observed in the crystal structure.

Comment

The design and construction of coordination structures is one of the most attractive areas of crystal engineering, due to their intriguing structural motifs and functional properties (Chen et al., 2010[Chen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115-1124.]; Blake, Brooks et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W. S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.]; Blake, Champness et al., 1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]; Evans & Lin, 2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]; Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Yaghi et al., 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]; Sun et al., 2011[Sun, D., Wang, D.-F., Zhang, N., Liu, F.-J., Hao, H.-J., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 5677-5679.]). Organo­phospho­rus sulfide reagents like P4S10, Lawesson's reagent [2,4-bis­(4-meth­oxy­phen­yl)-1,3-di­thia­diphosphetane-2,4-disulfide, LR], and modified LRs such as Davy's reagent, Japanese reagent and Belleau's reagent, have been successfully employed as thio­nation agents for organic substrates to give thio­lactones and thio­carbonyls (Scheibye et al., 1981[Scheibye, S., Lawesson, S. O. & Romming, C. (1981). Acta Chem. Scand. Ser. B, 35, 239-246.]; Jesberger et al., 2003[Jesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929-1958.]; Foreman & Woollins, 2000[Foreman, M. St J. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 1533-1543.]; Ozturk et al., 2007[Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210-5278.]). The LR containing a four-membered P2S2 ring with alternating P and S atoms can be in equilibrium with a highly reactive dithio­phosphine ylide [ArPS2] (Ar = 4-meth­oxy­phen­yl), which reacts with car­bonyl-containing compounds to form P/S-containing anionic ligands. Subsequent assembly of anionic ligands into large CuI or AgI aggregates has been reported as an efficient synthetic route to a broader variety of coordination polymers or clusters (Shi, Ahlrichs et al., 2005[Shi, W., Ahlrichs, R., Anson, C. E., Rothenberger, A., Schrodt, C. & Shafaei-Fallah, M. (2005). Chem. Commun. pp. 5893-5895.]). Recently, we used this versatile precursor to construct an Ag20 cluster based on in situ-generated bipodal [ArP(OEt)S2] and tripodal [ArPOS2]2− ligands incorporating the auxiliary Ph3P (triphenyl­phosphane) ligand (Sun et al., 2010[Sun, D., Wei, Z.-H., Yang, C.-F., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Inorg. Chem. Commun. 13, 1191-1194.]). As an extension of our work, we replaced the auxiliary Ph3P ligand by the 1,3-bis­(diphenyl­phosphan­yl)propane (dppp) ligand and intended to exploit the influence of an auxiliary P-donor on the structures of the AgOAc–LR system. The title compound, (I)[link], was obtained as an infinite chain.

[Scheme 1]
[Scheme 2]

The asymmetric unit of (I)[link] contains one AgI cation, one dppp ligand, one anionic [ArP(OEt)S2] ligand and one chloro­form solvent mol­ecule. As shown in Fig. 1[link], the AgI cation is in a tetra­hedral environment, completed by two P atoms from two dppp ligands and two S atoms from one [ArP(OEt)S2] ligand, with average Ag—P and Ag—S bond lengths of 2.4500 (11) and 2.6477 (12) Å, respectively. The distortion of the tetra­hedron can be indicated by the calculated value of the τ4 parameter (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) to describe the geometry of a four-coordinate metal system, which is 0.80 for Ag1 (for perfect tetra­hedral geometry, τ4 = 1). The Ag—P and Ag—S bond lengths (Table 1[link]) are comparable with reported values (Shi et al., 2007[Shi, W., Shafaei-Fallah, M., Zhang, L., Anson, C. E., Matern, E. & Rothenberger, A. (2007). Chem. Eur. J. 13, 598-603.]).

In (I)[link], the [ArP(OEt)S2] anion is a bidentate chelating ligand which coordinates one AgI centre to form the [Ag{ArP(OEt)S2}] subunit. The bidentate bridging dppp ligands link the [Ag{ArP(OEt)S2}] subunits to form an achiral one-dimensional infinite chain along the a axis (Fig. 2[link]). There are no obvious hydrogen-bonding or π-stacking inter­actions between adjacent chains. Therefore, these achiral chains are packed into chiral crystals by virtue of van der Waals inter­actions. The chloro­form mol­ecules minimize the voids in the crystal structure.

The most fascinating feature of (I)[link] is the in situ-generated anionic [ArP(OEt)S2] ligand. In spite of the disassociation of LRs into S2−, [ArP(O)S2]2−, [ArS2P–O–PS2Ar]2−, [ArPS3]2− and [ArP(O)(OAc)S] ligands that has been observed (Shi, Shafaei-Fallah et al., 2005[Shi, W., Shafaei-Fallah, M. C. E., Matern, E. & Rothenberger, A. (2005). Dalton Trans. pp. 3909-3912.]), it is noteworthy that the generation of the bipodal [ArP(OEt)S2] ligand in the course of the reaction between AgOAc and LR is rarely observed. The formation of the bipodal [ArP(OEt)S2] anion involves P—S and C—O bond cleavages of LR and acetate, respectively. To the best of our knowledge, the P—O bond is much stronger than the P—S bond, which makes LRs vulnerable to attack by potential nucleophiles, electrophiles and radicals, as demonstrated by Rauchfuss & Zank (1986[Rauchfuss, T. B. & Zank, G. A. (1986). Tetrahedron Lett. 27, 3445-3448.]), whereby the LR underwent reversible cleavage to give ArPS2. radicals. This could be concluded to be one of the important thermodynamic driving forces behind the formation of the P/S ligand.

[Figure 1]
Figure 1
The structure of (I)[link], showing the atom-numbering scheme and the coordination environment around the AgI centre. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the chloro­form solvent mol­ecule have been omitted for clarity. [Symmetry code: (i) x + 1, y, z.]
[Figure 2]
Figure 2
A ball-stick perspective view of the one-dimensional chain in (I)[link]. H atoms and chloro­form solvent mol­ecules have been omitted for clarity.

Experimental

All reagents and solvents were obtained commercially and used without further purification. A mixture of Lawesson's reagent (202 mg, 0.50 mmol), AgOAc (334 mg, 2.00 mmol) and dppp (412 mg, 1.00 mmol) was dissolved in chloro­form (10 ml). The mixture was treated under ultrasonic conditions (323 K, 160 W, 40 kHz, 20 min), during which time the solution changed from colourless to yellow. The mixture was filtered and diffusion of diethyl ether into the reaction mixture produced colourless crystals of (I)[link] after two weeks (yield ca 45%, based on AgOAc). Elemental analysis calculated for C37H39AgCl3O2P3S2: C 50.10, H 4.43%; found: C 49.88, H 4.59%. Selected IR peaks (ν, cm−1): 3064 (w), 2960 (w), 2936 (w), 1588 (s), 1494 (m), 1481 (m), 1436 (s), 1381 (s), 1244 (w), 1177 (m), 1107 (m), 1030 (s), 933 (m), 747 (m), 695 (s), 625 (s), 545 (m).

Crystal data
  • [Ag(C9H12O2PS2)(C27H26P2)]·CHCl3

  • Mr = 886.93

  • Monoclinic, P 21

  • a = 7.1493 (14) Å

  • b = 16.137 (3) Å

  • c = 17.010 (3) Å

  • β = 92.95 (3)°

  • V = 1959.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 173 K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Oxford Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.908, Tmax = 0.926

  • 26211 measured reflections

  • 7381 independent reflections

  • 6876 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.074

  • S = 1.01

  • 7381 reflections

  • 433 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.78 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 3390 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Selected geometric parameters (Å, °)

Ag1—P2i 2.4424 (11)
Ag1—P1 2.4575 (12)
Ag1—S1 2.6343 (12)
Ag1—S2 2.6610 (12)
P2i—Ag1—P1 104.67 (4)
P2i—Ag1—S1 128.23 (4)
P1—Ag1—S1 109.36 (4)
P2i—Ag1—S2 116.14 (4)
P1—Ag1—S2 119.67 (4)
S1—Ag1—S2 78.33 (4)
Symmetry code: (i) x+1, y, z.

All H atoms were generated geometrically and allowed to ride on their parent atoms in the riding-model approximation, with aromatic C—H = 0.95 Å, methine C—H = 1.00 Å, methyl­ene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl groups].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Version 3.1f. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and construction of coordination structures is one of the most attractive areas of crystal engineering, due to their intriguing structural motifs and functional properties (Chen et al., 2010; Blake, Brooks et al., 1999; Blake, Champness et al., 1999; Evans & Lin, 2002; Kitagawa et al., 2004; Yaghi et al., 2003; Sun et al., 2011). Organophosphorus sulfide reagents like P4S10, Lawesson's reagent [2,4-bis(4-methoxyphenyl)-1,3-dithiadiphosphetane-2,4-disulfide, LR; see first scheme], and modified LRs such as Davy's reagent, Japanese reagent and Belleau's reagent have been successfully employed as thionation agents for organic substrates to give thiolactones and thiocarbonyls (Scheibye et al., 1981; Jesberger et al., 2003; Foreman & Woollins, 2000; Ozturk et al., 2007). The LR containing a four-membered P2S2 ring with alternating P and S atoms can be in equilibrium with a highly reactive dithiophosphine ylide [ArPS2]- (Ar = 4-methoxyphenyl), which reacts with carbonyl-containing compounds to form P/S-containing anionic ligands. Subsequent assembly of anionic ligands into large CuI or AgI aggregates has been reported as an efficient synthetic route to a broader variety of coordination polymers or clusters (Shi, Shafaei-Fallah et al., 2005 or Shi, Ahlrichs et al., 2005 ?). Recently, we used this versatile precursor to construct an Ag20 cluster based on in situ-generated bipodal [ArP(OEt)S2]- and tripodal [ArPOS2]2- ligands incorporating the auxiliary Ph3P (triphenylphosphane) ligand (Sun et al., 2010). As an extension of our work, we replaced the auxiliary Ph3P by the 1,3-bis(diphenylphosphanyl)propane (dppp) ligand and intended to exploit the influence of an auxiliary P-donor on the structures of the AgOAc–LR system, and the title compound, (I) (see second scheme), was obtained as an infinite chain.

The asymmetric unit of (I) contains one AgI cation, one dppp ligand, one anionic [ArP(OEt)S2]- ligand and one solvent chloroform molecule. As shown in Fig. 1, the AgI cation is in a tetrahedral environment, completed by two P atoms from two dppp ligands and two S atoms from one [ArP(OEt)S2]- ligand, with average Ag—P and Ag—S bond lengths of 2.4500 (11) and 2.6477 (12) Å, respectively. The distortion of the tetrahedron can be indicated by the calculated value of the τ4 parameter (Yang et al., 2007) to describe the geometry of a four-coordinate metal system, which is 0.80 for Ag1 (for perfect tetrahedral geometry, τ4 = 1). The Ag—P and Ag—S bond lengths (Table 1) are comparable with reported values (Shi et al., 2007).

In (I), the [ArP(OEt)S2]- anion is a bidentate chelating ligand which coordinates one AgI centre to form the [Ag(ArP(OEt)S2)] subunit. The bidentate bridging dppp ligands link the [Ag(ArP(OEt)S2)] subunits to form an achiral one-diemsnional infinite chain along the a axis (Fig. 2). There are no obvious hydrogen-bonding or π-stacking interactions between adjacent chains. Therefore, these achiral chains are packed into chiral crystals by virtue of van der Waals interactions. The chloroform molecules minimize the voids in the crystal structure.

The most fascinating feature of (I) is the in situ-generated anionic [ArP(OEt)S2]- ligand. In spite of the disassociation of LRs into S2-, [ArP(O)S2]2-, [ArS2P-O-PS2Ar]2-, [ArPS3]2- and [ArP(O)(OAc)S]- ligands that has been observed (Shi, Shafaei-Fallah et al., 2005), it is noteworthy that the generation of the bipodal [ArP(OEt)S2]- ligand in the course of the reaction between AgOAc and LR is rarely observed. The formation of the bipodal [ArP(OEt)S2]- anion involves P—S and C—O bond cleavages of LR and OAc-, respectively. To the best of our knowledge, the P—O bond is much stronger than the P—S bond, which makes LRs vulnerable to attack by potential nucleophiles, electrophiles and radicals, as demonstrated by Rauchfuss & Zank (1986), whereby the LR underwent reversible cleavage to give ArPS2. radicals. This could be concluded to be one of the important thermodynamic driving forces behind the formation of the P/S ligand.

Related literature top

For related literature, see: Blake, Brooks, Champness, Cooke, Deveson, Fenske, Hubberstey, Li & Schröder (1999); Blake, Champness, Hubberstey, Li, Withersby & Schröder (1999); Chen et al. (2010); Evans & Lin (2002); Foreman & Woollins (2000); Jesberger et al. (2003); Kitagawa et al. (2004); Ozturk et al. (2007); Rauchfuss & Zank (1986); Scheibye et al. (1981); Shi et al. (2007); Shi, Ahlrichs, Anson, Rothenberger, Schrodt & Shafaei-Fallah (2005); Shi, Shafaei-Fallah, Matern & Rothenberger (2005); Sun et al. (2010, 2011); Yaghi et al. (2003); Yang et al. (2007).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. A mixture of Lawesson's reagent (202 mg, 0.50 mmol), AgOAc (334 mg, 2.00 mmol) and dppp (412 mg, 1.00 mmol) was dissolved in chloroform (10 ml). The mixture was treated under ultrasonic conditions (323 K, 160 W, 40 KHz, 20 min), during which time the solution changed from colourless to yellow. The mixture was filtered and diffusion of diethyl ether into the reaction mixture produced colourless crystals of (I) after two weeks (yield ca 45% based on AgOAc). Elemental analysis: anal. calc. for AgP3S2C37H39O2Cl3: C 50.10, H 4.43; found: C 49.88, H 4.59 %. Selected IR peaks (ν, cm-1): 3064 (w), 2960 (w), 2936 (w), 1588 (s), 1494 (m), 1481 (m), 1436 (s), 1381 (s), 1244 (w), 1177 (m), 1107 (m), 1030 (s), 933 (m), 747 (m), 695 (s), 625 (s), 545 (m).

Refinement top

All H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding-model approximation, with aromatic C—H = 0.95 Å, methyne C—H = 1.00 Å, methylene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and the coordination environment around the AgI centre. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the chloroform solvent molecule have been omitted for clarity. [Symmetry code: (i) x + 1, y, z.]
[Figure 2] Fig. 2. A ball-stick perspective view of the one-dimensional chain in (I). H atoms and chloroform solvent molecules have been omitted for clarity.
catena-Poly[[[µ-1,3-bis(diphenylphosphanyl)propane- κ2P:P'][O-ethyl (4-methoxyphenyl)phosphonodithioato- κ2S,S']silver(I)] chloroform monosolvate] top
Crystal data top
[Ag(C27H26P2)(C9H12O2PS2)]·CHCl3F(000) = 904
Mr = 886.93Dx = 1.503 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 28055 reflections
a = 7.1493 (14) Åθ = 6.1–55.0°
b = 16.137 (3) ŵ = 0.98 mm1
c = 17.010 (3) ÅT = 173 K
β = 92.95 (3)°Block, colourless
V = 1959.8 (7) Å30.10 × 0.08 × 0.08 mm
Z = 2
Data collection top
Oxford Gemini S Ultra
diffractometer
7381 independent reflections
Radiation source: sealed tube6876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 16.1903 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1919
Tmin = 0.908, Tmax = 0.926l = 2020
26211 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0103P)2 + 2.4402P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7381 reflectionsΔρmax = 0.64 e Å3
433 parametersΔρmin = 0.78 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Ag(C27H26P2)(C9H12O2PS2)]·CHCl3V = 1959.8 (7) Å3
Mr = 886.93Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1493 (14) ŵ = 0.98 mm1
b = 16.137 (3) ÅT = 173 K
c = 17.010 (3) Å0.10 × 0.08 × 0.08 mm
β = 92.95 (3)°
Data collection top
Oxford Gemini S Ultra
diffractometer
7381 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
6876 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.926Rint = 0.053
26211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.64 e Å3
S = 1.01Δρmin = 0.78 e Å3
7381 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
433 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.93558 (4)0.267458 (16)0.277491 (16)0.03018 (7)
Cl10.1357 (2)0.19776 (9)0.03697 (11)0.0711 (5)
Cl20.3657 (2)0.33509 (9)0.08913 (8)0.0602 (4)
Cl30.0353 (2)0.34327 (9)0.09900 (8)0.0585 (3)
S11.06916 (17)0.41944 (7)0.28743 (6)0.0378 (3)
S20.74536 (17)0.34191 (7)0.15887 (6)0.0373 (3)
P10.77758 (15)0.23400 (6)0.39844 (6)0.0252 (2)
P20.10029 (15)0.14039 (6)0.24491 (6)0.0251 (2)
P30.89644 (17)0.44060 (6)0.19358 (6)0.0324 (2)
C10.6657 (6)0.3153 (2)0.4529 (2)0.0291 (9)
C20.5576 (7)0.3740 (3)0.4110 (3)0.0393 (11)
H2A0.55130.37290.35500.047*
C30.4599 (8)0.4336 (3)0.4498 (3)0.0495 (13)
H3A0.38310.47210.42070.059*
C40.4735 (8)0.4375 (3)0.5301 (3)0.0508 (13)
H4A0.40450.47820.55670.061*
C50.5867 (8)0.3827 (3)0.5729 (3)0.0505 (13)
H5A0.60060.38750.62860.061*
C60.6790 (7)0.3214 (3)0.5347 (2)0.0408 (11)
H6A0.75310.28260.56450.049*
C110.9449 (6)0.1878 (3)0.4702 (2)0.0291 (8)
C120.9285 (7)0.1090 (3)0.4999 (3)0.0499 (13)
H12A0.82080.07690.48550.060*
C131.0680 (8)0.0754 (4)0.5510 (3)0.0633 (16)
H13A1.05670.02030.56970.076*
C141.2194 (8)0.1217 (4)0.5739 (3)0.0555 (14)
H14A1.31280.09940.60960.067*
C151.2378 (7)0.2005 (4)0.5454 (3)0.0571 (15)
H15A1.34400.23270.56180.069*
C161.1040 (6)0.2336 (3)0.4934 (3)0.0411 (11)
H16A1.12010.28780.47310.049*
C210.2016 (6)0.1364 (2)0.1496 (2)0.0277 (8)
C220.2914 (6)0.2072 (3)0.1246 (2)0.0369 (10)
H22A0.29560.25490.15740.044*
C230.3751 (7)0.2099 (3)0.0527 (3)0.0427 (11)
H23A0.43880.25820.03690.051*
C240.3638 (6)0.1407 (3)0.0048 (3)0.0422 (11)
H24A0.42010.14180.04450.051*
C260.1931 (6)0.0673 (3)0.1003 (2)0.0349 (10)
H26A0.13320.01800.11630.042*
C270.2730 (7)0.0709 (3)0.0274 (3)0.0426 (12)
H27A0.26430.02440.00690.051*
C310.0589 (5)0.0526 (2)0.2446 (2)0.0265 (8)
C320.2186 (6)0.0556 (3)0.1934 (2)0.0328 (9)
H32A0.23700.10170.15910.039*
C330.3494 (7)0.0070 (3)0.1918 (3)0.0396 (11)
H33A0.45600.00410.15620.047*
C340.3262 (7)0.0743 (3)0.2420 (3)0.0409 (11)
H34A0.41620.11760.24080.049*
C350.1717 (7)0.0778 (3)0.2935 (3)0.0417 (11)
H35A0.15600.12360.32840.050*
C360.0380 (6)0.0148 (3)0.2950 (3)0.0347 (10)
H36A0.06810.01810.33090.042*
C411.1751 (7)0.4315 (3)0.0975 (3)0.0404 (11)
H41A1.13440.37940.07110.048*
H41B1.25970.41740.14350.048*
C421.2751 (8)0.4856 (4)0.0414 (3)0.0530 (14)
H42A1.38460.45610.02310.079*
H42B1.31590.53670.06830.079*
H42C1.19020.49930.00380.079*
C510.7469 (6)0.5282 (3)0.2090 (2)0.0325 (9)
C520.5653 (7)0.5178 (3)0.2302 (2)0.0358 (10)
H52A0.51600.46330.23300.043*
C530.4509 (7)0.5847 (3)0.2476 (2)0.0372 (10)
H53A0.32510.57600.26100.045*
C540.5245 (6)0.6645 (3)0.2449 (2)0.0362 (10)
C550.7067 (7)0.6760 (3)0.2225 (3)0.0420 (11)
H55A0.75640.73040.21960.050*
C560.8154 (7)0.6092 (3)0.2046 (3)0.0417 (11)
H56A0.93940.61810.18890.050*
C1000.5942 (6)0.1550 (3)0.3855 (2)0.0280 (9)
H10A0.65160.10250.36870.034*
H10B0.53880.14490.43680.034*
C1010.4398 (6)0.1793 (2)0.3256 (2)0.0289 (9)
H10C0.49480.19120.27460.035*
H10D0.37800.23040.34330.035*
C1020.2939 (5)0.1103 (2)0.3145 (2)0.0277 (8)
H10E0.24310.09680.36610.033*
H10F0.35510.05990.29480.033*
C2000.2363 (7)0.7284 (3)0.2725 (3)0.0508 (13)
H20A0.18660.78260.28670.076*
H20D0.21070.68810.31370.076*
H20B0.17610.71020.22240.076*
C2010.1503 (8)0.3042 (3)0.0446 (3)0.0482 (13)
H20C0.13900.32830.00960.058*
O11.0128 (4)0.47708 (19)0.12311 (17)0.0389 (7)
O20.4314 (5)0.73445 (19)0.26493 (19)0.0460 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03697 (17)0.02438 (14)0.02935 (14)0.00030 (15)0.00336 (10)0.00300 (13)
Cl10.0694 (11)0.0505 (9)0.0944 (12)0.0067 (7)0.0130 (8)0.0195 (8)
Cl20.0545 (9)0.0716 (9)0.0544 (8)0.0093 (7)0.0008 (6)0.0141 (6)
Cl30.0596 (9)0.0586 (8)0.0587 (8)0.0128 (6)0.0159 (6)0.0031 (6)
S10.0480 (7)0.0292 (6)0.0345 (6)0.0116 (5)0.0139 (5)0.0056 (4)
S20.0486 (7)0.0309 (6)0.0308 (5)0.0058 (5)0.0131 (5)0.0010 (4)
P10.0286 (6)0.0237 (5)0.0232 (5)0.0026 (4)0.0003 (4)0.0017 (4)
P20.0255 (6)0.0231 (5)0.0266 (5)0.0001 (4)0.0002 (4)0.0012 (4)
P30.0407 (7)0.0269 (6)0.0290 (5)0.0062 (5)0.0058 (4)0.0056 (4)
C10.031 (2)0.028 (2)0.028 (2)0.0052 (17)0.0009 (16)0.0004 (15)
C20.057 (3)0.026 (2)0.034 (2)0.003 (2)0.004 (2)0.0016 (17)
C30.064 (4)0.031 (3)0.052 (3)0.010 (2)0.005 (2)0.001 (2)
C40.062 (4)0.035 (3)0.055 (3)0.013 (2)0.005 (2)0.014 (2)
C50.066 (4)0.051 (3)0.035 (3)0.011 (2)0.004 (2)0.009 (2)
C60.053 (3)0.038 (3)0.031 (2)0.013 (2)0.0005 (19)0.0012 (18)
C110.026 (2)0.036 (2)0.025 (2)0.0024 (17)0.0008 (15)0.0031 (16)
C120.049 (3)0.042 (3)0.056 (3)0.010 (2)0.018 (2)0.022 (2)
C130.068 (4)0.057 (4)0.063 (4)0.004 (3)0.021 (3)0.021 (3)
C140.054 (4)0.075 (4)0.035 (3)0.019 (3)0.015 (2)0.001 (2)
C150.035 (3)0.082 (4)0.053 (3)0.000 (3)0.014 (2)0.019 (3)
C160.031 (3)0.045 (3)0.047 (3)0.0074 (19)0.005 (2)0.0025 (19)
C210.029 (2)0.030 (2)0.0235 (19)0.0007 (16)0.0025 (15)0.0043 (15)
C220.045 (3)0.034 (2)0.032 (2)0.0060 (19)0.0013 (19)0.0003 (17)
C230.044 (3)0.049 (3)0.035 (2)0.008 (2)0.004 (2)0.0069 (19)
C240.034 (3)0.061 (3)0.031 (2)0.005 (2)0.0053 (18)0.005 (2)
C260.040 (3)0.036 (3)0.029 (2)0.0003 (19)0.0003 (18)0.0038 (17)
C270.044 (3)0.050 (3)0.034 (2)0.006 (2)0.004 (2)0.012 (2)
C310.024 (2)0.025 (2)0.030 (2)0.0009 (15)0.0017 (15)0.0046 (15)
C320.029 (2)0.036 (2)0.033 (2)0.0020 (18)0.0014 (17)0.0018 (17)
C330.028 (3)0.045 (3)0.046 (3)0.005 (2)0.001 (2)0.010 (2)
C340.035 (3)0.041 (3)0.047 (3)0.014 (2)0.011 (2)0.012 (2)
C350.050 (3)0.031 (2)0.045 (3)0.010 (2)0.009 (2)0.0033 (18)
C360.033 (3)0.032 (2)0.039 (2)0.0022 (18)0.0016 (18)0.0014 (17)
C410.035 (3)0.040 (3)0.046 (3)0.001 (2)0.001 (2)0.000 (2)
C420.043 (3)0.057 (3)0.059 (3)0.001 (3)0.012 (3)0.004 (3)
C510.035 (3)0.032 (2)0.030 (2)0.0042 (18)0.0051 (17)0.0071 (17)
C520.044 (3)0.029 (2)0.033 (2)0.0117 (19)0.0086 (19)0.0064 (16)
C530.038 (3)0.040 (3)0.033 (2)0.0078 (19)0.0054 (18)0.0033 (18)
C540.039 (3)0.035 (2)0.033 (2)0.0021 (19)0.0069 (18)0.0019 (17)
C550.048 (3)0.028 (2)0.049 (3)0.008 (2)0.003 (2)0.0045 (19)
C560.042 (3)0.034 (2)0.050 (3)0.010 (2)0.004 (2)0.0049 (19)
C1000.028 (2)0.028 (2)0.028 (2)0.0046 (16)0.0020 (16)0.0027 (15)
C1010.030 (2)0.027 (2)0.030 (2)0.0026 (16)0.0002 (16)0.0004 (15)
C1020.025 (2)0.030 (2)0.028 (2)0.0042 (16)0.0005 (15)0.0028 (15)
C2000.043 (3)0.055 (3)0.054 (3)0.002 (2)0.000 (2)0.005 (2)
C2010.055 (3)0.055 (3)0.035 (3)0.001 (2)0.007 (2)0.006 (2)
O10.042 (2)0.0379 (17)0.0370 (17)0.0015 (14)0.0019 (13)0.0153 (13)
O20.047 (2)0.0360 (17)0.055 (2)0.0019 (14)0.0026 (15)0.0072 (14)
Geometric parameters (Å, º) top
Ag1—P2i2.4424 (11)C24—H24A0.9500
Ag1—P12.4575 (12)C26—C271.393 (6)
Ag1—S12.6343 (12)C26—H26A0.9500
Ag1—S22.6610 (12)C27—H27A0.9500
Cl1—C2011.725 (5)C31—C361.389 (6)
Cl2—C2011.753 (6)C31—C321.401 (5)
Cl3—C2011.773 (5)C32—C331.375 (6)
S1—P31.9968 (16)C32—H32A0.9500
S2—P31.9964 (15)C33—C341.385 (7)
P1—C11.815 (4)C33—H33A0.9500
P1—C111.824 (4)C34—C351.375 (6)
P1—C1001.834 (4)C34—H34A0.9500
P2—C211.811 (4)C35—C361.395 (6)
P2—C311.818 (4)C35—H35A0.9500
P2—C1021.840 (4)C36—H36A0.9500
P2—Ag1ii2.4424 (11)C41—O11.459 (6)
P3—O11.605 (3)C41—C421.502 (7)
P3—C511.800 (5)C41—H41A0.9900
C1—C61.393 (6)C41—H41B0.9900
C1—C21.396 (6)C42—H42A0.9800
C2—C31.377 (7)C42—H42B0.9800
C2—H2A0.9500C42—H42C0.9800
C3—C41.366 (7)C51—C521.376 (6)
C3—H3A0.9500C51—C561.399 (6)
C4—C51.380 (7)C52—C531.395 (6)
C4—H4A0.9500C52—H52A0.9500
C5—C61.372 (6)C53—C541.392 (6)
C5—H5A0.9500C53—H53A0.9500
C6—H6A0.9500C54—O21.363 (5)
C11—C121.376 (6)C54—C551.388 (6)
C11—C161.396 (6)C55—C561.372 (6)
C12—C131.398 (6)C55—H55A0.9500
C12—H12A0.9500C56—H56A0.9500
C13—C141.355 (8)C100—C1011.515 (5)
C13—H13A0.9500C100—H10A0.9900
C14—C151.370 (8)C100—H10B0.9900
C14—H14A0.9500C101—C1021.531 (5)
C15—C161.377 (7)C101—H10C0.9900
C15—H15A0.9500C101—H10D0.9900
C16—H16A0.9500C102—H10E0.9900
C21—C221.389 (6)C102—H10F0.9900
C21—C261.394 (5)C200—O21.410 (6)
C22—C231.389 (6)C200—H20A0.9800
C22—H22A0.9500C200—H20D0.9800
C23—C241.381 (7)C200—H20B0.9800
C23—H23A0.9500C201—H20C1.0000
C24—C271.366 (7)
P2i—Ag1—P1104.67 (4)C36—C31—C32118.0 (4)
P2i—Ag1—S1128.23 (4)C36—C31—P2124.2 (3)
P1—Ag1—S1109.36 (4)C32—C31—P2117.7 (3)
P2i—Ag1—S2116.14 (4)C33—C32—C31121.2 (4)
P1—Ag1—S2119.67 (4)C33—C32—H32A119.4
S1—Ag1—S278.33 (4)C31—C32—H32A119.4
P3—S1—Ag184.30 (5)C32—C33—C34120.2 (4)
P3—S2—Ag183.59 (5)C32—C33—H33A119.9
C1—P1—C11104.17 (18)C34—C33—H33A119.9
C1—P1—C100103.43 (19)C35—C34—C33119.5 (4)
C11—P1—C100103.66 (18)C35—C34—H34A120.3
C1—P1—Ag1120.16 (13)C33—C34—H34A120.3
C11—P1—Ag1109.63 (14)C34—C35—C36120.6 (4)
C100—P1—Ag1114.16 (13)C34—C35—H35A119.7
C21—P2—C31104.37 (18)C36—C35—H35A119.7
C21—P2—C102104.16 (19)C31—C36—C35120.5 (4)
C31—P2—C102104.26 (18)C31—C36—H36A119.7
C21—P2—Ag1ii116.94 (13)C35—C36—H36A119.7
C31—P2—Ag1ii110.26 (13)O1—C41—C42108.0 (4)
C102—P2—Ag1ii115.54 (13)O1—C41—H41A110.1
O1—P3—C5198.94 (18)C42—C41—H41A110.1
O1—P3—S2111.41 (13)O1—C41—H41B110.1
C51—P3—S2110.69 (15)C42—C41—H41B110.1
O1—P3—S1109.68 (13)H41A—C41—H41B108.4
C51—P3—S1111.41 (14)C41—C42—H42A109.5
S2—P3—S1113.76 (7)C41—C42—H42B109.5
C6—C1—C2118.0 (4)H42A—C42—H42B109.5
C6—C1—P1123.5 (3)C41—C42—H42C109.5
C2—C1—P1118.4 (3)H42A—C42—H42C109.5
C3—C2—C1120.7 (4)H42B—C42—H42C109.5
C3—C2—H2A119.7C52—C51—C56117.8 (4)
C1—C2—H2A119.7C52—C51—P3121.2 (3)
C4—C3—C2120.0 (5)C56—C51—P3120.9 (4)
C4—C3—H3A120.0C51—C52—C53122.2 (4)
C2—C3—H3A120.0C51—C52—H52A118.9
C3—C4—C5120.5 (4)C53—C52—H52A118.9
C3—C4—H4A119.8C52—C53—C54118.8 (4)
C5—C4—H4A119.8C52—C53—H53A120.6
C6—C5—C4119.7 (4)C54—C53—H53A120.6
C6—C5—H5A120.2O2—C54—C55115.8 (4)
C4—C5—H5A120.2O2—C54—C53124.6 (4)
C5—C6—C1121.0 (4)C55—C54—C53119.6 (4)
C5—C6—H6A119.5C56—C55—C54120.4 (4)
C1—C6—H6A119.5C56—C55—H55A119.8
C12—C11—C16118.0 (4)C54—C55—H55A119.8
C12—C11—P1123.9 (3)C55—C56—C51121.2 (5)
C16—C11—P1118.0 (3)C55—C56—H56A119.4
C11—C12—C13121.0 (5)C51—C56—H56A119.4
C11—C12—H12A119.5C101—C100—P1113.1 (3)
C13—C12—H12A119.5C101—C100—H10A109.0
C14—C13—C12119.9 (5)P1—C100—H10A109.0
C14—C13—H13A120.0C101—C100—H10B109.0
C12—C13—H13A120.0P1—C100—H10B109.0
C13—C14—C15120.0 (5)H10A—C100—H10B107.8
C13—C14—H14A120.0C100—C101—C102111.2 (3)
C15—C14—H14A120.0C100—C101—H10C109.4
C14—C15—C16120.7 (5)C102—C101—H10C109.4
C14—C15—H15A119.6C100—C101—H10D109.4
C16—C15—H15A119.6C102—C101—H10D109.4
C15—C16—C11120.4 (5)H10C—C101—H10D108.0
C15—C16—H16A119.8C101—C102—P2111.8 (3)
C11—C16—H16A119.8C101—C102—H10E109.2
C22—C21—C26118.7 (4)P2—C102—H10E109.2
C22—C21—P2117.2 (3)C101—C102—H10F109.2
C26—C21—P2124.1 (3)P2—C102—H10F109.2
C21—C22—C23121.4 (4)H10E—C102—H10F107.9
C21—C22—H22A119.3O2—C200—H20A109.5
C23—C22—H22A119.3O2—C200—H20D109.5
C24—C23—C22118.7 (4)H20A—C200—H20D109.5
C24—C23—H23A120.7O2—C200—H20B109.5
C22—C23—H23A120.7H20A—C200—H20B109.5
C27—C24—C23121.0 (4)H20D—C200—H20B109.5
C27—C24—H24A119.5Cl1—C201—Cl2111.4 (3)
C23—C24—H24A119.5Cl1—C201—Cl3110.4 (3)
C27—C26—C21119.7 (4)Cl2—C201—Cl3109.7 (3)
C27—C26—H26A120.1Cl1—C201—H20C108.4
C21—C26—H26A120.1Cl2—C201—H20C108.4
C24—C27—C26120.4 (4)Cl3—C201—H20C108.4
C24—C27—H27A119.8C41—O1—P3119.2 (3)
C26—C27—H27A119.8C54—O2—C200117.6 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C27H26P2)(C9H12O2PS2)]·CHCl3
Mr886.93
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)7.1493 (14), 16.137 (3), 17.010 (3)
β (°) 92.95 (3)
V3)1959.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.10 × 0.08 × 0.08
Data collection
DiffractometerOxford Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.908, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
26211, 7381, 6876
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.074, 1.01
No. of reflections7381
No. of parameters433
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.78
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.01 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008) and SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ag1—P2i2.4424 (11)Ag1—S12.6343 (12)
Ag1—P12.4575 (12)Ag1—S22.6610 (12)
P2i—Ag1—P1104.67 (4)P2i—Ag1—S2116.14 (4)
P2i—Ag1—S1128.23 (4)P1—Ag1—S2119.67 (4)
P1—Ag1—S1109.36 (4)S1—Ag1—S278.33 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 21021061 and 21071118) and Shandong University.

References

First citationBlake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W. S. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103–2110.  Web of Science CSD CrossRef Google Scholar
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Version 3.1f. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115–1124.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForeman, M. St J. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 1533–1543.  Google Scholar
First citationJesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929–1958.  Web of Science CrossRef Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationOzturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210–5278.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRauchfuss, T. B. & Zank, G. A. (1986). Tetrahedron Lett. 27, 3445–3448.  CrossRef CAS Web of Science Google Scholar
First citationScheibye, S., Lawesson, S. O. & Romming, C. (1981). Acta Chem. Scand. Ser. B, 35, 239–246.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W., Ahlrichs, R., Anson, C. E., Rothenberger, A., Schrodt, C. & Shafaei-Fallah, M. (2005). Chem. Commun. pp. 5893–5895.  Web of Science CSD CrossRef Google Scholar
First citationShi, W., Shafaei-Fallah, M. C. E., Matern, E. & Rothenberger, A. (2005). Dalton Trans. pp. 3909–3912.  Web of Science CSD CrossRef Google Scholar
First citationShi, W., Shafaei-Fallah, M., Zhang, L., Anson, C. E., Matern, E. & Rothenberger, A. (2007). Chem. Eur. J. 13, 598–603.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSun, D., Wang, D.-F., Zhang, N., Liu, F.-J., Hao, H.-J., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 5677–5679.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSun, D., Wei, Z.-H., Yang, C.-F., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Inorg. Chem. Commun. 13, 1191–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds