organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2,5-Di­aryl-1,3,4-selena­diazo­les prepared from Woollins' reagent

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jdw3@st-andrews.ac.uk

(Received 28 September 2011; accepted 21 November 2011; online 26 November 2011)

Two polymorphs of 2,5-diphenyl-1,3,4-selenadiazole, C14H10N2Se, denoted (Ia) and (Ib), and a new polymorph of 2,5-bis­(thio­phen-2-yl)-1,3,4-selenadiazole, C10H6N2S2Se, (IIb), form on crystallization of the compounds, prepared using Woollins' reagent (2,4-diphenyl-1,3-diselenadiphosphetane 2,4-diselenide). These compounds, along with 2-(4-chloro­phen­yl)-5-phenyl-1,3,4-selenadiazole, C14H9ClN2Se, (III), and 2-(furan-2-yl)-5-(p-tol­yl)-1,3,4-selenadiazole, C13H10N2OSe, (IV), show similar inter­molecular inter­actions, with ππ stacking, C—H⋯π inter­actions and weak hydrogen bonds typically giving rise to mol­ecular chains. However, the combination of inter­actions differs in each case, giving rise to different packing arrangements. In polymorph (Ib), the mol­ecule lies across a crystallographic twofold rotation axis, and (IV) has two independent mol­ecules in the asymmetric unit.

Comment

Inter­est in using organoselenium heterocycles as compounds with novel properties has expanded rapidly during the last three decades. This inter­est has focused on areas as diverse as pharmaceutically inter­esting compounds (Klayman & Gunther, 1973[Klayman, D. L. & Gunther, W. H. H. (1973). Editors. Organic Selenium Compounds: Their Chemistry and Biology. New York: Wiley.]; Mugesh et al., 2001[Mugesh, G., Du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125-2179.]; Nicolaou & Petasis, 1984[Nicolaou, K. C. & Petasis, N. A. (1984). Selenium in Natural Products Synthesis. Philadelphia: CIS.]) and new reagents with unusual reactivity profiles (Back, 2000[Back, T. G. (2000). Organoselenium Chemistry: A Practical Approach. New York: Oxford University Press Inc.]; Wirth, 2000a[Wirth, T. (2000a). Angew. Chem. Int. Ed. 39, 3740-3749.],b[Wirth, T. (2000b). Editor. Topics in Current Chemistry: Organoselenium Chemistry, Modern Developments in Organic Synthesis. Heidelberg: Springer.]). The selenation reagent 2,4-diphenyl-1,3-di­selenadiphosphetane 2,4-diselenide, [PhP(Se)(μ-Se)]2, known as Woollins' reagent, is the selenium counterpart of the well known Lawesson's reagent. It has been shown to insert selenium into a wide range of different compounds, including in the formation of the title 2,5-diaryl-1,3,4-selenadiazo­les (for examples, see Hua et al., 2009[Hua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612-1618.]; Hua, Cordes et al. 2011[Hua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311-3314.]; Hua, Griffin et al., 2011[Hua, G., Griffin, J. M., Ashbrook, S. E., Slawin, A. M. Z. & Woollins, J. D. (2011). Angew. Chem. Int. Ed. 50, 4123-4126.], and references therein). Five crystal structures have been determined for four selenadiazoles, two of which are polymorphs of each other, and another of which is a polymorph of a known structure; these are 2,5-diphenyl-1,3,4-selenadiazole, (Ia)[link] (Fig. 1[link]) and (Ib)[link] (Fig. 2[link]), 2,5-bis(thio­phen-2-yl)-1,3,4-selenadiazole, (IIb)[link] (Fig. 3[link]), 2-(4-chloro­phen­yl)-5-phenyl-1,3,4-selenadiazole, (III)[link] (Fig. 4[link]), and 2-(furan-2-yl)-5-(p-tol­yl)-1,3,4-selenadiazole, (IV)[link] (Fig. 5[link]). All five compounds were prepared according to published methods (Hua et al., 2009[Hua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612-1618.]; Hua, Cordes et al., 2011[Hua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311-3314.]), and crystals were grown in each case by the diffusion of hexane into a dichloro­methane solution of the compound.

[Scheme 1]

Three of the five structures have a single mol­ecule of the compound in the asymmetric unit, the exceptions being polymorph (Ib)[link] and compound (IV)[link]. In (Ib)[link], the asymmetric unit comprises half a mol­ecule of 2,5-diphenyl-1,3,4-selenadiazole, the other half being generated by twofold rotational symmetry, whereas in (IV)[link], two independent mol­ecules of 2-(furan-2-yl)-5-(p-tol­yl)-1,3,4-selenadiazole form the asymmetric unit. The C—Se bond distances in (I)[link]–(IV)[link] vary from 1.861 (7) to 1.890 (4) Å, falling within the range of C—Se bond lengths seen in selenadiazoles (1.86–1.90 Å; Hua et al., 2009[Hua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612-1618.]; Hua, Cordes et al., 2011[Hua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311-3314.]). These distances are shorter than would be expected for a C—Se single bond (ca 1.94 Å), indicating that some degree of delocalization occurs. Four of the five structures [excluding (Ib)[link]] show the same near-planar mol­ecular arrangement seen in previous selenadiazole structures (Hua et al., 2009[Hua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612-1618.]; Hua, Cordes et al., 2011[Hua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311-3314.]). The dihedral angles between peripheral ring planes and the selenadiazole rings range from 1.7 (4) to 13.5 (3)°, with the exception of polymorph (Ib)[link], where the dihedral angle is 22.3 (2)°. Due to its rotational symmetry, this leads to the planes of its phenyl rings being inclined at 43.44 (17)° with respect to each other.

The predominant types of inter­molecular inter­actions in these compounds are those involving their π-systems. All five of the structures show ππ stacking inter­actions, at a variety of centroid–centroid (CgCg) distances. While some of these, with CgCg distances in the range 3.6197 (19)–3.670 (4) Å, fall within the conventional range for ππ inter­actions, some show apparent π-stacking at distances as long as 3.930 (3) Å (Table 3[link]). While π-inter­actions at such distances would conventionally be considered insignificant, in these cases the inter­actions are supported by acting in parallel with other inter­actions, including other ππ inter­actions and also C—H⋯π inter­actions (see below). All of the compounds, except for (IIb)[link], also show C—H⋯π inter­actions, with C—H⋯Cg distances ranging from 2.52 to 2.97 Å (Table 4[link]). While these longer distances would give rise to very weak inter­actions, due to their occurring at the conventional van der Waals limit, C—H⋯π inter­actions have been suggested to be effective at distances beyond this value (Nishio, 2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]). In polymorph (Ib)[link] and in (IV)[link], these inter­actions occur in conjunction with ππ inter­actions, mutually reinforcing each other, as in these two compounds there is either sufficient angularity between the phenyl and selenadiazole rings [in (Ib)[link]] or the presence of the tolyl methyl group [in (IV)[link]] to allow for both C—H⋯π and ππ inter­actions between the same adjacent mol­ecules. Further intra­molecular inter­actions occur in (IIb)[link] and (IV)[link], where weak C—H⋯N hydrogen bonds contribute to the observed packing motif. These occur at H⋯N distances of 2.59 Å in (IIb)[link] and 2.50 and 2.59 Å in (IV)[link], with C⋯N separations of 3.539 (12), 3.422 (7) and 3.457 (8) Å, respectively.

While this similarity of mol­ecular geometries and types of intra­molecular inter­actions might suggest that similar packing modes would be observed, this is not found to be the case. The inter­molecular inter­actions observed, namely ππ inter­actions, C—H⋯π inter­actions and weak C—H⋯N hydrogen bonds, combine in different ways, giving rise to a variety of packing motifs. In (Ia)[link] (Fig. 6[link]), chains formed by C—H⋯π inter­actions run along the b axis. These inter­act with adjacent chains by the formation of π-stacked dimers, giving rise to sheets in the (100) plane. In the cases of (Ib)[link] (Fig. 6[link]) and (IIb)[link] (Fig. 7[link]), both display two-dimensional sheets formed by the inter­action of two different types of chains. Both show π-stacked chains, running along c in (Ib)[link] and along b in (IIb)[link], but the second type of chain is formed by C—H⋯π inter­actions along the c axis in (Ib)[link] and by weak hydrogen bonds along the a axis in (IIb)[link], and the resulting sheets occur in the (100) and (001) planes, respectively. The situation in (III)[link] and (IV)[link] is somewhat different, as each comprises a three-dimensional network formed by the linking together of two-dimensional sheets. In (III)[link], two-dimensional sheets are formed in the (001) plane by C—H⋯π inter­actions (Fig. 8[link]), whereas in (IV)[link], sheets in the (100) plane are formed by a combination of C—H⋯π and ππ inter­actions and C—H⋯N hydrogen bonding (Fig. 9[link]). In both compounds, these sheets are then linked together into a three-dimensional network by the formation of π-stacked dimers between sheets.

For 2,5-diphenyl-1,3,4-selenadiazole, (I), two visually similar types of polymorphic crystals form under the same conditions. Both of these display a monoclinic unit cell, with polymorph (Ia)[link] crystallizing in the space group P21/c and polymorph (Ib)[link] in the space group C2/c. On a mol­ecular level, there is one key structural difference between the two forms, which appears to give rise to many of the differences observed in their packing. This is the difference in the dihedral angles between the phenyl rings and the selenadiazole ring, with polymorph (Ia)[link] showing angles of 3.35 (16) and 4.11 (16)°, whereas polymorph (Ib)[link] shows symmetry-equivalent dihedral angles of 22.3 (2)°. These differences can be seen to lead directly to differences in the packing (Fig. 6[link]), as the twist of the phenyl rings changes both the distance and angle possible for ππ inter­actions, inducing a mol­ecular offset from the chain axis in (Ib)[link], and also makes it possible for both ππ and C—H⋯π inter­actions to occur in the same mol­ecular chain.

In the case of (IIb)[link], the crystals appeared to be slightly visually different to those previously found for (IIa) (Hua, Cordes et al., 2011[Hua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311-3314.]), and structure analysis revealed it to be a polymorphic form. Polymorph (IIb)[link] crystallizes in the ortho­rhom­bic space group Pca21, although with broadly similar unit-cell parameters to the known structure, which crystallizes in the monoclinic space group P21/c. There is little on a gross structural level to indicate why a different polymorphic form occurs, a fit of all non-H atoms of polymorph (IIb)[link] to those of polymorph (IIa) having an r.m.s. deviation of 0.052 Å. Additionally, there are similarities in the packing of the two polymorphs, but the differences between them do become more apparent as the inter­actions which give rise to the packing are considered. Both polymorphs display π-stacked chains running along the b axis, but these are assembled differently. In (IIb)[link], the π-overlaps occur between the selenadiazole ring and both thio­phene rings, whereas in (IIa) two different sets of π-inter­actions give rise to a more zigzag chain. Furthermore, (IIb)[link] also shows chains running along the a axis formed by weak C—H⋯N hydrogen bonding, the combination of these two sets of inter­actions giving rise to sheets in the (001) plane, while (IIa) shows no other inter­molecular inter­actions.

[Figure 1]
Figure 1
The molecular structure of polymorph (Ia)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The molecular structure of polymorph (Ib)[link], with displacement ellipsoids drawn at the 50% probability level. Only the asymmetric unit of the structure is labelled (symmetry code to generate the rest of the mol­ecule: −x, y, −z + [{3\over 2}]).
[Figure 3]
Figure 3
The molecular structure of polymorph (IIb)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
The molecular structure of (III)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 5]
Figure 5
The structure of (IV)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 6]
Figure 6
Views of the different two-dimensional sheets in the (100) plane formed by the two polymorphs of (I). C—H⋯π inter­actions are shown as thin lines and H atoms not involved in these inter­actions have been omitted. (a) In polymorph (Ia)[link], chains running along the b axis, formed by C—H⋯π inter­actions, are linked together by the formation of π-stacked dimers. (b) In polymorph (Ib)[link], two sets of chains, both running along the c axis, one formed by π-stacking and C—H⋯π inter­actions and the other by different C—H⋯π inter­actions, are mutually inter­connected.
[Figure 7]
Figure 7
A view of the two-dimensional sheet in the (001) plane in (IIb)[link], formed by the combination of C—H⋯N hydrogen bonding and π-stacking. C—H⋯N hydrogen bonds are shown as thin lines and H atoms not involved in these inter­actions have been omitted.
[Figure 8]
Figure 8
Views of the three-dimensional network which makes up the structure of (III)[link]. C—H⋯π inter­actions are shown as thin lines and H atoms not involved in these inter­actions have been omitted. (a) The two-dimensional sheet lying in the (001) plane, formed by two sets of C—H⋯π inter­actions. (b) Two adjacent sheets, showing the π-stacking which connects them into a three-dimensional network.
[Figure 9]
Figure 9
Views of the three-dimensional network which makes up the structure of (IV)[link]. C—H⋯π and C—H⋯N inter­actions are shown as thin lines and H atoms not involved in these inter­actions have been omitted. (a) The two-dimensional sheet lying in the (100) plane, formed by the combination of both π-stacking and C—H⋯π inter­actions and C—H⋯N hydrogen bonds. (b) Two adjacent sheets, showing the π-stacking which connects them into a three-dimensional network.

Experimental

All compounds were prepared according to literature methods by the reaction of Woollins' reagent with either the appropriate 1,2-diacyl­hydrazine [for (Ia)[link], (Ib)[link], (III)[link] and (IV)[link]; Hua et al., 2009[Hua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612-1618.]] or acyl­carbohydrazide [for (IIb)[link]; Hua, Cordes et al., 2011[Hua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311-3314.]]. X-ray quality crystals of all compounds were grown by the diffusion of hexane into a dichloro­methane solution of the compound. Crystals of the two polymorphic forms of 2,5-diphenyl-1,3,4-selenadiazole, viz. (Ia)[link] and (Ib)[link], were difficult to differentiate visually, except that the platelets of (Ia)[link] tended to be thicker than those of (Ib)[link]. Crystals of (IIb)[link] were likewise difficult to differentiate from those of the known polymorph (IIa) (Hua, Cordes et al., 2011[Hua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311-3314.]), although those of (IIb)[link] did tend to display a more intense orange colour.

Polymorph (Ia)[link]

Crystal data
  • C14H10N2Se

  • Mr = 285.20

  • Monoclinic, P 21 /c

  • a = 13.036 (4) Å

  • b = 5.4650 (14) Å

  • c = 16.274 (5) Å

  • β = 101.860 (7)°

  • V = 1134.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 93 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Version 2.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.795, Tmax = 1.000

  • 7425 measured reflections

  • 2413 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.081

  • S = 1.09

  • 2413 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.69 e Å−3

Polymorph (Ib)[link]

Crystal data
  • C14H10N2Se

  • Mr = 285.20

  • Monoclinic, C 2/c

  • a = 26.763 (10) Å

  • b = 5.796 (2) Å

  • c = 7.213 (3) Å

  • β = 103.885 (9)°

  • V = 1086.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 93 K

  • 0.25 × 0.20 × 0.01 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Version 2.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.490, Tmax = 1.000

  • 3541 measured reflections

  • 1149 independent reflections

  • 1014 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.167

  • S = 1.11

  • 1149 reflections

  • 78 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.14 e Å−3

Polymorph (IIb)[link]

Crystal data
  • C10H6N2S2Se

  • Mr = 297.25

  • Orthorhombic, P c a 21

  • a = 10.641 (5) Å

  • b = 5.134 (2) Å

  • c = 19.096 (8) Å

  • V = 1043.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.96 mm−1

  • T = 93 K

  • 0.25 × 0.08 × 0.08 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Version 2.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.551, Tmax = 1.000

  • 6487 measured reflections

  • 2060 independent reflections

  • 1704 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.116

  • S = 1.12

  • 2060 reflections

  • 138 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.67 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 874 Friedel pairs

  • Flack parameter: 0.377 (19)

Table 1
Hydrogen-bond geometry (Å, °) for (IIb)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯N4i 0.95 2.59 3.539 (12) 177
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z].

Compound (III)[link]

Crystal data
  • C14H9ClN2Se

  • Mr = 319.64

  • Monoclinic, P 21 /c

  • a = 13.382 (5) Å

  • b = 5.5247 (18) Å

  • c = 16.524 (5) Å

  • β = 94.528 (8)°

  • V = 1217.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 93 K

  • 0.12 × 0.07 × 0.01 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Version 2.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.500, Tmax = 1.000

  • 7679 measured reflections

  • 2513 independent reflections

  • 2050 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.226

  • S = 1.06

  • 2513 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 4.87 e Å−3

  • Δρmin = −1.07 e Å−3

Compound (IV)[link]

Crystal data
  • C13H10N2OSe

  • Mr = 289.19

  • Monoclinic, P 21 /c

  • a = 8.5036 (15) Å

  • b = 25.210 (5) Å

  • c = 11.116 (2) Å

  • β = 96.814 (5)°

  • V = 2366.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 93 K

  • 0.30 × 0.20 × 0.04 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Version 2.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.558, Tmax = 1.000

  • 15690 measured reflections

  • 4865 independent reflections

  • 3778 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.147

  • S = 1.07

  • 4865 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −1.03 e Å−3

Table 2
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N33i 0.95 2.50 3.441 (7) 172
C44—H44⋯N33ii 0.95 2.59 3.457 (7) 151
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 3
Distances of ππ inter­actions (Å)

Cg1 and Cg2 are the centroids of the Se1–C5 and C11–C16 rings, respectively, of polymorph (Ia)[link]. Cg3 is the centroid of the Se1–C5 ring of polymorph (Ib)[link]. Cg4, Cg5 and Cg6 are the centroids of the Se1–C5, S11–C15 and S21–C25 rings, respectively, of (IIb)[link]. Cg7 and Cg8 are the centroids of the Se1–C5 and C11–C16 rings, respectively, of (III)[link]. Cg9, Cg10 and Cg11 are the centroids of the Se1–C5, C21–C26 and C51–C56 rings, respectively, of (IV)[link].

Compound Centroids CgCg
(Ia)[link] Cg1⋯Cg2i 3.6197 (19)
(Ib)[link] Cg3⋯Cg3ii 3.848 (3)
(IIb)[link] Cg4⋯Cg5iii 3.636 (4)
  Cg4⋯Cg6iv 3.861 (4)
(III)[link] Cg7⋯Cg8v 3.670 (4)
(IV)[link] Cg9⋯Cg10vi 3.930 (3)
  Cg11⋯Cg11vii 3.898 (3)
Symmetry codes: (i) −x + 2, −y, −z + 1; (ii) −x, −y + 1, −z + 1; (iii) x, y − 1, z; (iv) x, y + 1, z; (v) −x + 1, −y, −z + 1; (vi) −x + 2, −y + 1, −z + 1; (vii) −x + 1, −y + 1, −z + 1.

Table 4
Geometry of C—H⋯π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively, of polymorph (Ia)[link]. Cg3 is the centroid of the C11–C16 ring of polymorph (Ib)[link]. Cg4 is the centroid of the C21–C26 ring of (III)[link]. Cg5 and Cg6 are the centroids of the C51–C56 and O11–C15 rings, respectively, of (IV)[link].

Compound C—H⋯Cg H⋯Cg C⋯Cg C—H⋯Cg
(Ia)[link] C22—H22⋯Cg1i 2.89 3.660 (3) 139
  C13—H13⋯Cg2i 2.97 3.649 (3) 130
(Ib)[link] C16—H16⋯Cg3ii 2.81 3.416 (6) 122
  C13—H13⋯Cg3iii 2.94 3.621 (7) 130
(III)[link] C13—H13⋯Cg4iv 2.77 3.497 (7) 134
  C25—H25⋯Cg4v 2.93 3.673 (7) 136
(IV)[link] C23—H23⋯Cg5vi 2.52 3.389 (5) 151
  C27—H27CCg6vii 2.89 3.549 (6) 125
Symmetry codes: (i) −x + 2, y + [{1\over 2}], −z + [{1\over 2}]; (ii) x, −y + 1, z − [{1\over 2}]; (iii) x, −y, z − [{1\over 2}]; (iv) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (v) −x + 2, y − [{1\over 2}], −z + [{3\over 2}]; (vi) x + 1, y, z; (vii) −x + 2, −y + 1, −z + 1.

C-bound H atoms were included in calculated positions (C—H = 0.98 Å for methyl H atoms and 0.95 Å for aryl H atoms) and refined as riding, with Uiso(H) = 1.2Ueq(C) for aryl or 1.5Ueq(C) for methyl H atoms. The structure of (IIb)[link] shows signs of racemic twinning, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter being 0.377 (19). This is complicated by the Friedel-pair coverage being lower than ideal, at 68%, which suggests that the Flack parameter in this case may be less meaningful than generally. In (III)[link], a difference electron-density feature of 4.87 e Å−3 was located 1.37 Å from atom Se1, but this has no chemical significance. This feature possibly arises due to a Fourier ripple, and results in the slightly elevated value of R for this structure. Multiple crystals were tried, the majority of which showed much weaker diffraction at higher angles.

For all compounds, data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Version 2.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in using organoselenium heterocycles as compounds with novel properties has expanded rapidly during the last three decades. This interest has focused on areas as diverse as pharmaceutically interesting compounds (Klayman & Gunther 1973; Mugesh et al., 2001; Nicolaou & Petasis, 1984) and new reagents with unusual reactivity profiles (Back, 2000; Wirth, 2000a,b). The selenation reagent 2,4-diphenyl-1,3-diselenadiphosphetane 2,4-diselenide, [PhP(Se)(µ-Se)]2, Woollins' reagent, is the selenium counterpart of the well known Lawesson's reagent. It has been shown to insert selenium into a wide range of different compounds, including in the formation of the title 2,5-diaryl-1,3,4-selenadiazoles (for examples, see Hua et al., 2009; Hua, Cordes et al. 2011; Hua, Griffin et al., 2011, and references therein). Five crystal structures have been determined for four selenadiazoles, two of which are polymorphs of each other, and another of which is a polymorph of a known structure; these are 2,5-diphenyl-1,3,4-selenadiazole, (Ia) (Fig. 1) and (Ib) (Fig. 2), 2,5-bis(thiophen-2-yl)-1,3,4-selenadiazole, (IIb) (Fig. 3), 2-(4-chlorophenyl)-5-phenyl-1,3,4-selenadiazole, (III) (Fig. 4), and 2-(furan-2-yl)-5-(p-tolyl)-1,3,4-selenadiazole, (IV) (Fig. 5). All five compounds were prepared according to published methods (Hua et al., 2009; Hua, Cordes et al., 2011), and crystals were grown in each case by the diffusion of hexane into a dichloromethane solution of the compound.

Three of the five structures have a single molecule of the compound in the asymmetric unit, the exceptions being polymorph (Ib) and compound (IV). In (Ib), the asymmetric unit comprises half a molecule of 2,5-diphenyl-1,3,4-selenadiazole, the other half being generated by twofold rotational symmetry, whereas in (IV), two independent molecules of 2-(furan-2-yl)-5-(p-tolyl)-1,3,4-selenadiazole form the asymmetric unit. The C—Se bond distances in (I)–(IV) vary from 1.861 (7) to 1.890 (4) Å, falling within the range of C—Se bond lengths (1.86–1.90 Å) seen in selenadiazoles (Hua et al., 2009; Hua, Cordes et al., 2011). These distances are shorter than would be expected for a C—Se single bond (ca 1.94 Å), indicating that some degree of delocalization occurs. Four of the five structures [excluding (Ib)] show the same near-planar molecular arrangement seen in previous selenadiazole structures (Hua et al., 2009; Hua, Cordes et al., 2011). The dihedral angles between peripheral ring planes and the selenadiazole rings range from 1.7 (4) to 13.5 (3)°, with the exception of polymorph (Ib), where the dihedral angle is 22.3 (2)°. Due to its rotational symmetry, this leads to the planes of its phenyl rings being inclined at 43.44 (17)° with respect to each other.

The predominant types of intermolecular interactions in these compounds are those involving their π-systems. All five of the structures show ππ stacking interactions, at a variety of centroid–centroid (Cg···Cg) distances. While some of these, with Cg···Cg distances in the range 3.6197 (19)–3.670 (4) Å, fall within the conventional range for ππ interactions, some show apparent π-stacking at distances as long as 3.930 (3) Å (Table 3). While π-interactions at such distances would conventionally be considered insignificant, in these cases the interactions are supported by acting in parallel with other interactions, including other ππ interactions and also C—H···π interactions (see below). All of the compounds, except for (IIb), also show C—H···π interactions, with C—H···Cg distances ranging from 2.52 to 2.97 Å (Table 4). While these longer distances would give rise to very weak interactions, due to their occurring at the conventional van der Waals limit, C—H···π interactions have been suggested to be effective at distances beyond this value (Nishio, 2004). In polymorph (Ib) and in (IV), these interactions occur in conjunction with ππ interactions, mutually reinforcing each other, as in these two compounds there is either sufficient angularity between the phenyl and selenadiazole rings [in (Ib)] or the presence of the tolyl methyl group [in (IV)] to allow for both C—H···π and ππ interactions between the same adjacent molecules. Further intramolecular interactions occur in (IIb) and (IV), where weak C—H···N hydrogen bonds contribute to the observed packing motif. These occur at H···N distances of 2.59 Å in (IIb), and 2.50 and 2.59 Å in (IV), with C···N separations of 3.539 (12), 3.422 (7) and 3.457 (8) Å, respectively.

While this similarity of molecular geometries and types of intramolecular interactions might suggest that similar packing modes would be observed, this is not found to be the case. The intermolecular interactions observed, namely ππ interactions, C—H···π interactions and weak C—H···N hydrogen bonds, combine in different ways, giving rise to a variety of packing motifs. In (Ia) (Fig. 6), chains formed by C—H···π interactions run along the b axis. These interact with adjacent chains by the formation of π-stacked dimers, giving rise to sheets in the (100) plane. In the cases of (Ib) (Fig. 6) and (IIb) (Fig. 7), both display two-dimensional sheets formed by the interaction of two different types of chains. Both show π-stacked chains, running along c in (Ib) and along b in (IIb), but the second type of chain is formed by C—H···π interactions along the c axis in (Ib), and by weak hydrogen bonds along the a axis in (IIb), and the resulting sheets occur in the (100) and (001) planes, respectively. The situation in (III) and (IV) is somewhat different, as each comprises a three-dimensional network formed by the linking together of two-dimensional sheets. In (III), two-dimensional sheets are formed in the (001) plane by C—H···π interactions (Fig. 8), whereas in (IV), sheets in the (100) plane are formed by a combination of C–H···π and ππ interactions, and C—H···N hydrogen bonding (Fig. 9). In both compounds, these sheets are then linked together into a three-dimensional network by the formation of π-stacked dimers between sheets.

For 2,5-diphenyl-1,3,4-selenadiazole, (I), two visually similar types of polymorphic crystals form under the same conditions. Both of these display a monoclinic unit cell, with polymorph (Ia) crystallizing in the space group P21/c and polymorph (Ib) in space group C2/c. On a molecular level, there is one key structural difference between the two forms, which appears to give rise to many of the differences observed in packing. This is the difference in the dihedral angles between the phenyl rings and the selenadiazole ring, with polymorph (Ia) showing angles of 3.35 (16) and 4.11 (16)°, whereas polymorph (Ib) shows a single dihedral angle of 22.3 (2)°. These differences can be seen to lead directly to differences in packing (Fig. 6), as the twist of the phenyl rings changes both the distance and angle possible for ππ interactions, inducing a molecular offset from the chain axis in (Ib), and also makes it possible for both ππ and C—H···π interactions to occur in the same molecular chain.

In the case of (IIb), the crystals appeared to be slightly visually different to those previously found for (IIa) (Hua, Cordes et al., 2011), and structure analysis revealed it to be a polymorphic form. Polymorph (IIb) crystallizes in the orthorhombic space group Pca21, although with broadly similar unit-cell parameters to the known structure, which crystallizes in the monoclinic space group P21/c. There is little on a gross structural level to indicate why a different polymorphic form occurs, a fit of all non-H atoms of polymorph (IIb) to those of polymorph (IIa) having an r.m.s. deviation of 0.052 Å. Additionally, there are similarities in the packing of the two polymorphs, but the differences between them do become more apparent as the interactions which give rise to the packing are considered. Both polymorphs display π-stacked chains running along the b axis, but these are assembled differently. In (IIb), the π-overlaps occur between the selenadiazole ring and both thiophene rings, whereas in (IIa), two different sets of π-interactions give rise to a more zigzag chain. Furthermore, (IIb) also shows chains running along the a axis formed by weak C—H···N? hydrogen bonding, the combination of these two sets of interactions giving rise to sheets in the (001) plane, while (IIa) shows no other intermolecular interactions.

Related literature top

For related literature, see: Back (2000); Flack (1983); Hua et al. (2009); Hua, Cordes, Li, Slawin & Woollins (2011); Hua, Griffin, Ashbrook, Slawin & Woollins (2011); Klayman & Gunther (1973); Mugesh et al. (2001); Nicolaou & Petasis (1984); Nishio (2004); Wirth (2000a, 2000b).

Experimental top

All compounds were prepared according to literature methods by the reaction of Woollins' reagent with either the appropriate 1,2-diacylhydrazine [for (Ia), (Ib), (III) and (IV); Hua et al., 2009] or acylcarbohydrazide [for (IIb); Hua, Cordes et al., 2011]. X-ray quality crystals of all compounds were grown by the diffusion of hexane into a dichloromethane solution of the compound. Crystals of the two polymorphic forms of 2,5-diphenyl-1,3,4-selenadiazole, (Ia) and (Ib), were difficult to differentiate visually, except that the platelets of (Ia) tended to be thicker than those of (Ib). Crystals of (IIb) were likewise difficult to differentiate from those of the known polymorph (IIa) (Hua, Cordes et al., 2011), although those of (IIb) did tend to display a more intense orange colour.

Refinement top

C-bound H atoms were included in calculated positions (C—H = 0.98 Å for methyl H atoms and 0.95 Å for aryl H atoms) and refined as riding, with Uiso(H) = 1.2Ueq(C) for aryl H or 1.5Ueq(C) for methyl H. The structure of (IIb) shows signs of racemic twinning, the Flack (1983) parameter being 0.377 (19). This is complicated by the Friedel-pair coverage being lower than ideal, at 68%, which suggests that the Flack parameter in this case may be less meaningful than generally. In (III), a difference electron-density feature of 4.87 e %A-3 was located 1.37 Å from atom Se1, but this has no chemical significance.

Computing details top

For all compounds, data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX (Dolomanov et al., 2003) for (Ia), (Ib), (IIb); SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2003) for (III), (IV). For all compounds, software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of polymorph (Ia), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The structure of polymorph (Ib), with displacement ellipsoids drawn at the 50% probability level. Only the asymmetric unit of the structure is labelled (symmetry code to generate the rest of the molecule: -x, y, -z + 3/2).
[Figure 3] Fig. 3. The structure of polymorph (IIb), with displacement ellipsoids drawn at the 50% probability level.
[Figure 4] Fig. 4. The structure of (III), with displacement ellipsoids drawn at the 50% probability level.
[Figure 5] Fig. 5. The structure of (IV), with displacement ellipsoids drawn at the 50% probability level.
[Figure 6] Fig. 6. Views of the different two-dimensional sheets in the (100) plane formed by the two polymorphs of (I). C—H···π interactions are shown as thin lines and H atoms not involved in these interactions have been omitted. (a) In polymorph (Ia), chains running along the b axis, formed by C—H···π interactions, are linked together by the formation of π-stacked dimers. (b) In polymorph (Ib), two sets of chains, both running along the c-axis, one formed by π-stacking and C—H···π interactions and the other by different C—H···π interactions, are mutually interconnected.
[Figure 7] Fig. 7. A view of the two-dimensional sheet in the (001) plane, formed by the combination of C—H···N hydrogen bonding and π-stacking, in (IIb). C—H···N hydrogen bonds are shown as thin lines and H atoms not involved in these interactions have been omitted.
[Figure 8] Fig. 8. Views of the three-dimensional network which makes up the structure of (III). C—H···π interactions are shown as thin lines and H atoms not involved in these interactions have been omitted. (a) The two-dimensional sheet lying in the (001) plane, formed by two sets of C—H···π interactions. (b) Two adjacent sheets, showing the π-stacking which connects them into a three-dimensional network.
[Figure 9] Fig. 9. Views of the three-dimensional network which makes up the structure of (IV). C—H···π and C—H···N interactions are shown as thin lines and H atoms not involved in these interactions have been omitted. (a) The two-dimensional sheet lying in the (100) plane, formed by the combination of both π-stacking and C—H···π interactions and C—H···N hydrogen bonds. (b) Two adjacent sheets, showing the π-stacking which connects them into a three-dimensional network.
(Ia) 2,5-diphenyl-1,3,4-selenadiazole top
Crystal data top
C14H10N2SeF(000) = 568
Mr = 285.20Dx = 1.670 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3915 reflections
a = 13.036 (4) Åθ = 1.6–28.4°
b = 5.4650 (14) ŵ = 3.29 mm1
c = 16.274 (5) ÅT = 93 K
β = 101.860 (7)°Platelet, colourless
V = 1134.6 (5) Å30.15 × 0.10 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2413 independent reflections
Radiation source: rotating anode2081 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.037
Detector resolution: 14.7059 pixels mm-1θmax = 28.6°, θmin = 1.6°
ω and ϕ scansh = 1615
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 75
Tmin = 0.795, Tmax = 1.000l = 1621
7425 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0205P)2 + 1.2418P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2413 reflectionsΔρmax = 1.25 e Å3
155 parametersΔρmin = 0.69 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (6)
Crystal data top
C14H10N2SeV = 1134.6 (5) Å3
Mr = 285.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.036 (4) ŵ = 3.29 mm1
b = 5.4650 (14) ÅT = 93 K
c = 16.274 (5) Å0.15 × 0.10 × 0.05 mm
β = 101.860 (7)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2413 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
2081 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 1.000Rint = 0.037
7425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.09Δρmax = 1.25 e Å3
2413 reflectionsΔρmin = 0.69 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.91133 (2)0.13109 (5)0.293061 (16)0.02068 (14)
N40.82019 (19)0.2835 (4)0.33044 (14)0.0249 (6)
N30.91878 (19)0.2871 (4)0.38062 (14)0.0234 (5)
C50.7995 (2)0.0927 (5)0.28210 (17)0.0202 (6)
C210.6975 (2)0.0548 (5)0.22543 (16)0.0205 (6)
C260.6179 (2)0.2262 (5)0.22610 (18)0.0240 (6)
H260.63040.36250.26300.029*
C250.5210 (2)0.1981 (6)0.17321 (18)0.0278 (7)
H250.46720.31460.17440.033*
C240.5015 (2)0.0003 (5)0.11811 (18)0.0268 (7)
H240.43530.01730.08110.032*
C230.5801 (2)0.1705 (5)0.11809 (18)0.0249 (7)
H230.56730.30670.08110.030*
C220.6772 (2)0.1450 (5)0.17125 (18)0.0214 (6)
H220.73010.26410.17080.026*
C20.9772 (2)0.0997 (5)0.37245 (16)0.0190 (6)
C111.0842 (2)0.0686 (5)0.42239 (16)0.0189 (6)
C161.1249 (2)0.2410 (5)0.48439 (17)0.0219 (6)
H161.08390.37900.49290.026*
C151.2240 (2)0.2115 (5)0.53317 (18)0.0256 (7)
H151.25050.32850.57540.031*
C141.2853 (2)0.0119 (5)0.52103 (17)0.0246 (6)
H141.35360.00750.55460.029*
C131.2458 (2)0.1584 (5)0.45956 (18)0.0247 (7)
H131.28730.29530.45100.030*
C121.1461 (2)0.1305 (5)0.41050 (17)0.0212 (7)
H121.11990.24810.36850.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0254 (2)0.0157 (2)0.0217 (2)0.00100 (10)0.00638 (13)0.00346 (10)
N40.0303 (14)0.0191 (13)0.0248 (13)0.0005 (11)0.0045 (10)0.0007 (11)
N30.0283 (14)0.0169 (12)0.0258 (13)0.0009 (11)0.0073 (10)0.0017 (11)
C50.0266 (16)0.0170 (14)0.0198 (14)0.0018 (12)0.0112 (12)0.0033 (12)
C210.0247 (15)0.0188 (14)0.0203 (13)0.0003 (12)0.0101 (11)0.0035 (12)
C260.0304 (17)0.0191 (15)0.0244 (14)0.0018 (13)0.0098 (13)0.0004 (13)
C250.0308 (18)0.0258 (16)0.0291 (16)0.0045 (14)0.0113 (13)0.0037 (14)
C240.0258 (16)0.0292 (17)0.0259 (15)0.0032 (13)0.0061 (12)0.0037 (13)
C230.0278 (17)0.0224 (15)0.0261 (16)0.0065 (13)0.0096 (13)0.0039 (13)
C220.0227 (16)0.0162 (15)0.0278 (16)0.0004 (11)0.0109 (13)0.0000 (12)
C20.0287 (16)0.0146 (13)0.0163 (13)0.0029 (12)0.0105 (12)0.0017 (11)
C110.0268 (15)0.0167 (13)0.0155 (13)0.0037 (12)0.0096 (11)0.0016 (12)
C160.0261 (16)0.0178 (14)0.0242 (14)0.0027 (12)0.0111 (12)0.0033 (12)
C150.0320 (17)0.0219 (16)0.0252 (15)0.0074 (13)0.0111 (13)0.0036 (13)
C140.0251 (16)0.0271 (16)0.0217 (14)0.0002 (12)0.0051 (12)0.0033 (13)
C130.0304 (18)0.0229 (15)0.0217 (15)0.0049 (12)0.0077 (13)0.0014 (12)
C120.0318 (17)0.0180 (15)0.0146 (14)0.0026 (12)0.0066 (12)0.0028 (11)
Geometric parameters (Å, º) top
Se1—C21.882 (3)C23—H230.9500
Se1—C51.883 (3)C22—H220.9500
N4—C51.301 (3)C2—C111.473 (4)
N4—N31.374 (3)C11—C121.391 (4)
N3—C21.300 (3)C11—C161.403 (4)
C5—C211.469 (4)C16—C151.380 (4)
C21—C221.394 (4)C16—H160.9500
C21—C261.400 (4)C15—C141.390 (4)
C26—C251.383 (4)C15—H150.9500
C26—H260.9500C14—C131.386 (4)
C25—C241.394 (4)C14—H140.9500
C25—H250.9500C13—C121.387 (4)
C24—C231.386 (4)C13—H130.9500
C24—H240.9500C12—H120.9500
C23—C221.385 (4)
C2—Se1—C582.25 (12)C21—C22—H22119.9
C5—N4—N3115.1 (2)N3—C2—C11122.9 (2)
C2—N3—N4115.1 (2)N3—C2—Se1113.8 (2)
N4—C5—C21122.8 (3)C11—C2—Se1123.3 (2)
N4—C5—Se1113.8 (2)C12—C11—C16118.8 (3)
C21—C5—Se1123.5 (2)C12—C11—C2121.6 (2)
C22—C21—C26119.0 (3)C16—C11—C2119.6 (3)
C22—C21—C5122.5 (3)C15—C16—C11120.4 (3)
C26—C21—C5118.6 (3)C15—C16—H16119.8
C25—C26—C21120.3 (3)C11—C16—H16119.8
C25—C26—H26119.9C16—C15—C14120.5 (3)
C21—C26—H26119.9C16—C15—H15119.7
C26—C25—C24120.6 (3)C14—C15—H15119.7
C26—C25—H25119.7C13—C14—C15119.4 (3)
C24—C25—H25119.7C13—C14—H14120.3
C23—C24—C25119.0 (3)C15—C14—H14120.3
C23—C24—H24120.5C14—C13—C12120.4 (3)
C25—C24—H24120.5C14—C13—H13119.8
C22—C23—C24120.9 (3)C12—C13—H13119.8
C22—C23—H23119.6C13—C12—C11120.5 (3)
C24—C23—H23119.6C13—C12—H12119.7
C23—C22—C21120.2 (3)C11—C12—H12119.7
C23—C22—H22119.9
C5—N4—N3—C20.1 (3)N4—N3—C2—C11178.5 (2)
N3—N4—C5—C21178.8 (2)N4—N3—C2—Se10.1 (3)
N3—N4—C5—Se10.3 (3)C5—Se1—C2—N30.2 (2)
C2—Se1—C5—N40.2 (2)C5—Se1—C2—C11178.4 (2)
C2—Se1—C5—C21178.8 (2)N3—C2—C11—C12178.1 (2)
N4—C5—C21—C22177.3 (3)Se1—C2—C11—C123.5 (4)
Se1—C5—C21—C223.8 (4)N3—C2—C11—C162.9 (4)
N4—C5—C21—C262.7 (4)Se1—C2—C11—C16175.58 (19)
Se1—C5—C21—C26176.2 (2)C12—C11—C16—C150.7 (4)
C22—C21—C26—C250.5 (4)C2—C11—C16—C15178.4 (2)
C5—C21—C26—C25179.5 (3)C11—C16—C15—C140.6 (4)
C21—C26—C25—C240.5 (4)C16—C15—C14—C130.3 (4)
C26—C25—C24—C231.1 (4)C15—C14—C13—C120.0 (4)
C25—C24—C23—C220.6 (4)C14—C13—C12—C110.1 (4)
C24—C23—C22—C210.5 (4)C16—C11—C12—C130.5 (4)
C26—C21—C22—C231.0 (4)C2—C11—C12—C13178.6 (2)
C5—C21—C22—C23179.0 (3)
(Ib) 2,5-diphenyl-1,3,4-selenadiazole top
Crystal data top
C14H10N2SeF(000) = 568
Mr = 285.20Dx = 1.744 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1743 reflections
a = 26.763 (10) Åθ = 1.6–28.5°
b = 5.796 (2) ŵ = 3.43 mm1
c = 7.213 (3) ÅT = 93 K
β = 103.885 (9)°Platelet, colourless
V = 1086.2 (7) Å30.25 × 0.20 × 0.01 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1149 independent reflections
Radiation source: rotating anode1014 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.053
Detector resolution: 14.7059 pixels mm-1θmax = 28.5°, θmin = 1.6°
ω and ϕ scansh = 2933
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 76
Tmin = 0.490, Tmax = 1.000l = 88
3541 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0732P)2 + 8.2817P]
where P = (Fo2 + 2Fc2)/3
1149 reflections(Δ/σ)max < 0.001
78 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
C14H10N2SeV = 1086.2 (7) Å3
Mr = 285.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.763 (10) ŵ = 3.43 mm1
b = 5.796 (2) ÅT = 93 K
c = 7.213 (3) Å0.25 × 0.20 × 0.01 mm
β = 103.885 (9)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1149 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
1014 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 1.000Rint = 0.053
3541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.11Δρmax = 0.92 e Å3
1149 reflectionsΔρmin = 1.14 e Å3
78 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.00000.10447 (14)0.75000.0302 (4)
N30.02554 (18)0.5566 (9)0.7995 (7)0.0261 (11)
C20.0449 (2)0.3517 (10)0.8391 (8)0.0255 (12)
C110.0984 (2)0.3062 (10)0.9412 (8)0.0251 (12)
C160.1360 (2)0.4744 (11)0.9475 (8)0.0281 (13)
H160.12660.61830.88610.034*
C150.1858 (2)0.4374 (11)1.0392 (9)0.0291 (13)
H150.21090.55361.04110.035*
C140.1994 (2)0.2331 (12)1.1283 (9)0.0352 (15)
H140.23430.20801.19260.042*
C130.1646 (2)0.0640 (11)1.1282 (9)0.0303 (13)
H130.17510.07701.19310.036*
C120.1135 (2)0.0974 (9)1.0329 (9)0.0269 (13)
H120.08900.02171.03020.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0308 (6)0.0250 (5)0.0327 (6)0.0000.0036 (4)0.000
N30.024 (3)0.028 (3)0.025 (3)0.0012 (19)0.0025 (19)0.000 (2)
C20.022 (3)0.032 (3)0.022 (3)0.001 (2)0.004 (2)0.003 (2)
C110.028 (3)0.021 (3)0.029 (3)0.000 (2)0.013 (2)0.001 (2)
C160.032 (3)0.024 (3)0.028 (3)0.003 (2)0.008 (2)0.001 (3)
C150.021 (3)0.032 (3)0.034 (3)0.006 (2)0.005 (2)0.003 (3)
C140.027 (3)0.039 (4)0.039 (4)0.004 (3)0.006 (3)0.001 (3)
C130.036 (4)0.029 (3)0.026 (3)0.007 (3)0.008 (3)0.003 (3)
C120.029 (3)0.023 (3)0.029 (3)0.000 (2)0.009 (2)0.001 (2)
Geometric parameters (Å, º) top
Se1—C21.881 (6)C16—H160.9500
Se1—C2i1.881 (6)C15—C141.355 (9)
N3—C21.300 (7)C15—H150.9500
N3—N3i1.382 (9)C14—C131.352 (9)
C2—C111.470 (8)C14—H140.9500
C11—C121.392 (8)C13—C121.389 (9)
C11—C161.394 (8)C13—H130.9500
C16—C151.354 (8)C12—H120.9500
C2—Se1—C2i80.7 (4)C16—C15—H15120.3
C2—N3—N3i113.9 (3)C14—C15—H15120.3
N3—C2—C11124.2 (5)C13—C14—C15121.8 (6)
N3—C2—Se1115.7 (4)C13—C14—H14119.1
C11—C2—Se1120.0 (4)C15—C14—H14119.1
C12—C11—C16117.9 (5)C14—C13—C12119.7 (6)
C12—C11—C2122.1 (5)C14—C13—H13120.2
C16—C11—C2120.0 (5)C12—C13—H13120.2
C15—C16—C11121.5 (6)C13—C12—C11119.7 (6)
C15—C16—H16119.3C13—C12—H12120.1
C11—C16—H16119.3C11—C12—H12120.1
C16—C15—C14119.4 (6)
N3i—N3—C2—C11179.3 (5)C12—C11—C16—C150.1 (9)
N3i—N3—C2—Se11.1 (8)C2—C11—C16—C15179.5 (5)
C2i—Se1—C2—N30.4 (3)C11—C16—C15—C140.5 (9)
C2i—Se1—C2—C11178.7 (6)C16—C15—C14—C130.1 (10)
N3—C2—C11—C12159.3 (6)C15—C14—C13—C120.8 (10)
Se1—C2—C11—C1222.6 (7)C14—C13—C12—C111.2 (9)
N3—C2—C11—C1621.1 (9)C16—C11—C12—C130.7 (8)
Se1—C2—C11—C16157.0 (5)C2—C11—C12—C13179.7 (5)
Symmetry code: (i) x, y, z+3/2.
(IIb) 2,5-bis(thiophen-2-yl)-1,3,4-selenadiazole top
Crystal data top
C10H6N2S2SeF(000) = 584
Mr = 297.25Dx = 1.892 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3222 reflections
a = 10.641 (5) Åθ = 3.8–28.6°
b = 5.134 (2) ŵ = 3.96 mm1
c = 19.096 (8) ÅT = 93 K
V = 1043.4 (7) Å3Block, orange
Z = 40.25 × 0.08 × 0.08 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2060 independent reflections
Radiation source: rotating anode1704 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.083
Detector resolution: 14.7059 pixels mm-1θmax = 28.6°, θmin = 2.1°
ω and ϕ scansh = 1312
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 56
Tmin = 0.551, Tmax = 1.000l = 2023
6487 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0199P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.12Δρmax = 1.08 e Å3
2060 reflectionsΔρmin = 0.67 e Å3
138 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0092 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 874 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.377 (19)
Crystal data top
C10H6N2S2SeV = 1043.4 (7) Å3
Mr = 297.25Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.641 (5) ŵ = 3.96 mm1
b = 5.134 (2) ÅT = 93 K
c = 19.096 (8) Å0.25 × 0.08 × 0.08 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2060 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
1704 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 1.000Rint = 0.083
6487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.116Δρmax = 1.08 e Å3
S = 1.12Δρmin = 0.67 e Å3
2060 reflectionsAbsolute structure: Flack (1983), with 874 Friedel pairs
138 parametersAbsolute structure parameter: 0.377 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.97218 (6)0.71715 (12)0.90178 (5)0.0303 (3)
S211.2387 (2)0.3484 (4)1.05778 (11)0.0377 (5)
S111.1823 (2)1.3291 (4)0.77777 (11)0.0400 (5)
N41.2154 (7)0.7314 (12)0.9380 (3)0.0343 (16)
N31.2041 (5)0.9148 (12)0.8873 (3)0.0334 (14)
C51.1126 (7)0.6082 (14)0.9529 (3)0.0289 (16)
C221.1073 (7)0.4086 (14)1.0068 (3)0.0296 (17)
C231.0089 (9)0.2461 (13)1.0249 (5)0.034 (2)
H230.92850.25071.00330.041*
C241.0418 (7)0.0731 (16)1.0791 (4)0.036 (2)
H240.98650.05541.09730.043*
C251.1613 (7)0.1097 (15)1.1025 (4)0.0378 (19)
H251.19770.01271.13970.045*
C21.0904 (6)0.9391 (13)0.8619 (3)0.0283 (16)
C121.0652 (7)1.1260 (14)0.8052 (4)0.0312 (16)
C130.9525 (8)1.1754 (16)0.7714 (4)0.0313 (19)
H130.87621.08550.78060.038*
C140.9657 (7)1.3778 (16)0.7213 (4)0.0339 (19)
H140.89881.43870.69270.041*
C151.0837 (7)1.4747 (15)0.7185 (4)0.044 (2)
H151.10911.60850.68720.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0280 (5)0.0308 (4)0.0323 (4)0.0002 (3)0.0015 (4)0.0017 (5)
S210.0356 (12)0.0414 (13)0.0361 (11)0.0013 (10)0.0063 (9)0.0056 (8)
S110.0365 (12)0.0356 (12)0.0478 (13)0.0010 (9)0.0022 (10)0.0072 (9)
N40.030 (4)0.034 (4)0.039 (4)0.003 (3)0.000 (3)0.001 (3)
N30.037 (4)0.031 (4)0.032 (4)0.005 (3)0.007 (3)0.004 (3)
C50.027 (4)0.030 (5)0.030 (4)0.004 (3)0.002 (3)0.004 (3)
C220.029 (4)0.035 (5)0.025 (4)0.004 (3)0.003 (3)0.003 (3)
C230.033 (5)0.031 (5)0.039 (6)0.004 (3)0.016 (5)0.003 (3)
C240.048 (5)0.028 (5)0.033 (5)0.010 (3)0.006 (3)0.003 (3)
C250.040 (5)0.032 (5)0.042 (5)0.003 (4)0.002 (4)0.003 (3)
C20.033 (4)0.028 (4)0.024 (3)0.001 (3)0.005 (3)0.006 (3)
C120.037 (4)0.021 (4)0.036 (4)0.002 (3)0.005 (4)0.002 (3)
C130.039 (5)0.025 (4)0.030 (5)0.004 (3)0.006 (4)0.001 (3)
C140.042 (5)0.038 (5)0.022 (4)0.011 (4)0.007 (3)0.002 (3)
C150.059 (6)0.032 (5)0.040 (5)0.010 (4)0.013 (4)0.003 (3)
Geometric parameters (Å, º) top
Se1—C21.861 (7)C23—H230.9500
Se1—C51.870 (7)C24—C251.361 (10)
S21—C251.706 (8)C24—H240.9500
S21—C221.732 (7)C25—H250.9500
S11—C121.707 (8)C2—C121.471 (9)
S11—C151.714 (8)C12—C131.386 (10)
N4—C51.295 (10)C13—C141.420 (12)
N4—N31.357 (8)C13—H130.9500
N3—C21.309 (8)C14—C151.351 (10)
C5—C221.454 (9)C14—H140.9500
C22—C231.383 (11)C15—H150.9500
C23—C241.408 (12)
C2—Se1—C581.7 (3)C24—C25—H25123.6
C25—S21—C2291.1 (4)S21—C25—H25123.6
C12—S11—C1591.3 (4)N3—C2—C12120.2 (6)
C5—N4—N3114.9 (7)N3—C2—Se1114.5 (5)
C2—N3—N4114.4 (6)C12—C2—Se1125.3 (5)
N4—C5—C22122.1 (6)C13—C12—C2128.3 (7)
N4—C5—Se1114.5 (6)C13—C12—S11112.1 (6)
C22—C5—Se1123.3 (5)C2—C12—S11119.4 (5)
C23—C22—C5129.2 (7)C12—C13—C14111.2 (7)
C23—C22—S21111.3 (6)C12—C13—H13124.4
C5—C22—S21119.5 (5)C14—C13—H13124.4
C22—C23—C24112.1 (8)C15—C14—C13112.8 (7)
C22—C23—H23123.9C15—C14—H14123.6
C24—C23—H23123.9C13—C14—H14123.6
C25—C24—C23112.7 (7)C14—C15—S11112.5 (6)
C25—C24—H24123.6C14—C15—H15123.8
C23—C24—H24123.6S11—C15—H15123.8
C24—C25—S21112.7 (6)
C5—N4—N3—C20.6 (9)N4—N3—C2—C12178.4 (6)
N3—N4—C5—C22178.9 (6)N4—N3—C2—Se10.2 (8)
N3—N4—C5—Se11.1 (8)C5—Se1—C2—N30.6 (5)
C2—Se1—C5—N40.9 (6)C5—Se1—C2—C12177.9 (6)
C2—Se1—C5—C22178.7 (6)N3—C2—C12—C13179.0 (7)
N4—C5—C22—C23174.2 (8)Se1—C2—C12—C130.5 (11)
Se1—C5—C22—C238.2 (11)N3—C2—C12—S115.3 (9)
N4—C5—C22—S215.0 (9)Se1—C2—C12—S11176.3 (4)
Se1—C5—C22—S21172.7 (4)C15—S11—C12—C132.1 (6)
C25—S21—C22—C230.2 (6)C15—S11—C12—C2178.5 (6)
C25—S21—C22—C5179.5 (6)C2—C12—C13—C14177.8 (7)
C5—C22—C23—C24178.4 (7)S11—C12—C13—C141.7 (9)
S21—C22—C23—C240.8 (9)C12—C13—C14—C150.3 (10)
C22—C23—C24—C251.7 (11)C13—C14—C15—S111.3 (9)
C23—C24—C25—S211.8 (9)C12—S11—C15—C141.9 (6)
C22—S21—C25—C241.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N4i0.952.593.539 (12)177
Symmetry code: (i) x1/2, y+1, z.
(III) 2-(4-chlorophenyl)-5-phenyl-1,3,4-selenadiazole top
Crystal data top
C14H9ClN2SeF(000) = 632
Mr = 319.64Dx = 1.743 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4092 reflections
a = 13.382 (5) Åθ = 2.5–28.3°
b = 5.5247 (18) ŵ = 3.28 mm1
c = 16.524 (5) ÅT = 93 K
β = 94.528 (8)°Platelet, colourless
V = 1217.9 (7) Å30.12 × 0.07 × 0.01 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2513 independent reflections
Radiation source: rotating anode2050 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.058
Detector resolution: 14.7059 pixels mm-1θmax = 28.4°, θmin = 2.5°
ω and ϕ scansh = 1615
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 74
Tmin = 0.500, Tmax = 1.000l = 1521
7679 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.226H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1375P)2 + 2.8891P]
where P = (Fo2 + 2Fc2)/3
2513 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 4.87 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
C14H9ClN2SeV = 1217.9 (7) Å3
Mr = 319.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.382 (5) ŵ = 3.28 mm1
b = 5.5247 (18) ÅT = 93 K
c = 16.524 (5) Å0.12 × 0.07 × 0.01 mm
β = 94.528 (8)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2513 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
2050 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 1.000Rint = 0.058
7679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.226H-atom parameters constrained
S = 1.06Δρmax = 4.87 e Å3
2513 reflectionsΔρmin = 1.07 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A q-peak comprising 4.87 e- Å-3 was located 1.37 Å from Se1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.58869 (4)0.11522 (10)0.70232 (4)0.0261 (3)
Cl10.12692 (11)0.0260 (3)0.45025 (10)0.0373 (5)
N30.5849 (4)0.2964 (10)0.6164 (3)0.0257 (11)
N40.6764 (4)0.2978 (10)0.6608 (3)0.0309 (12)
C20.5288 (5)0.1089 (10)0.6283 (4)0.0260 (14)
C50.6941 (5)0.1088 (10)0.7076 (4)0.0242 (13)
C110.4298 (4)0.0772 (11)0.5848 (3)0.0214 (12)
C120.3720 (5)0.1270 (11)0.5985 (4)0.0284 (15)
H120.39690.24510.63680.034*
C130.2787 (5)0.1596 (12)0.5569 (4)0.0278 (14)
H130.23960.29940.56570.033*
C140.2441 (4)0.0182 (12)0.5021 (4)0.0307 (14)
C150.2990 (4)0.2191 (12)0.4869 (4)0.0272 (13)
H150.27450.33500.44770.033*
C160.3917 (5)0.2500 (11)0.5300 (4)0.0288 (13)
H160.42960.39210.52160.035*
C210.7874 (4)0.0788 (11)0.7598 (4)0.0242 (13)
C220.8030 (5)0.1245 (10)0.8100 (4)0.0268 (14)
H220.75390.24870.80960.032*
C230.8912 (5)0.1431 (12)0.8605 (4)0.0306 (15)
H230.90090.28250.89390.037*
C240.9644 (4)0.0303 (11)0.8642 (4)0.0253 (12)
H241.02310.01670.90010.030*
C250.9475 (5)0.2357 (13)0.8104 (4)0.0314 (14)
H250.99710.35830.80930.038*
C260.8609 (5)0.2551 (11)0.7612 (4)0.0265 (13)
H260.85090.39280.72710.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0309 (5)0.0185 (5)0.0290 (5)0.0025 (2)0.0037 (3)0.0032 (2)
Cl10.0318 (8)0.0449 (11)0.0345 (10)0.0007 (7)0.0024 (6)0.0027 (7)
N30.028 (2)0.021 (3)0.028 (3)0.006 (2)0.0023 (19)0.005 (2)
N40.028 (3)0.027 (3)0.038 (3)0.001 (2)0.003 (2)0.003 (2)
C20.035 (3)0.015 (3)0.029 (4)0.003 (2)0.008 (3)0.002 (2)
C50.030 (3)0.017 (3)0.026 (3)0.003 (2)0.008 (2)0.000 (2)
C110.026 (3)0.019 (3)0.020 (3)0.003 (2)0.009 (2)0.003 (2)
C120.035 (3)0.022 (3)0.029 (4)0.002 (2)0.003 (3)0.001 (2)
C130.035 (3)0.021 (3)0.028 (3)0.007 (3)0.008 (3)0.003 (3)
C140.027 (3)0.032 (4)0.034 (4)0.000 (3)0.008 (2)0.007 (3)
C150.028 (3)0.025 (3)0.028 (3)0.005 (2)0.004 (2)0.004 (3)
C160.031 (3)0.020 (3)0.036 (3)0.002 (2)0.008 (2)0.006 (3)
C210.025 (3)0.019 (3)0.029 (3)0.002 (2)0.009 (2)0.004 (2)
C220.032 (3)0.020 (3)0.029 (4)0.000 (2)0.010 (3)0.003 (2)
C230.036 (3)0.025 (3)0.031 (4)0.009 (3)0.005 (3)0.008 (3)
C240.025 (3)0.025 (3)0.027 (3)0.001 (2)0.005 (2)0.005 (3)
C250.033 (3)0.030 (4)0.032 (4)0.005 (3)0.004 (3)0.004 (3)
C260.033 (3)0.020 (3)0.027 (3)0.001 (2)0.007 (2)0.002 (2)
Geometric parameters (Å, º) top
Se1—C51.874 (6)C15—C161.391 (9)
Se1—C21.875 (6)C15—H150.9500
Cl1—C141.744 (7)C16—H160.9500
N3—C21.304 (8)C21—C261.383 (9)
N3—N41.378 (7)C21—C221.402 (8)
N4—C51.309 (8)C22—C231.394 (10)
C2—C111.467 (9)C22—H220.9500
C5—C211.470 (9)C23—C241.368 (9)
C11—C161.386 (8)C23—H230.9500
C11—C121.396 (9)C24—C251.448 (9)
C12—C131.389 (9)C24—H240.9500
C12—H120.9500C25—C261.366 (9)
C13—C141.390 (10)C25—H250.9500
C13—H130.9500C26—H260.9500
C14—C151.366 (9)
C5—Se1—C282.9 (3)C16—C15—H15120.8
C2—N3—N4115.0 (5)C11—C16—C15121.1 (6)
C5—N4—N3115.0 (5)C11—C16—H16119.4
N3—C2—C11122.0 (6)C15—C16—H16119.4
N3—C2—Se1113.7 (5)C26—C21—C22118.8 (6)
C11—C2—Se1124.3 (4)C26—C21—C5120.0 (6)
N4—C5—C21122.8 (5)C22—C21—C5121.2 (5)
N4—C5—Se1113.5 (5)C23—C22—C21119.5 (6)
C21—C5—Se1123.7 (4)C23—C22—H22120.2
C16—C11—C12118.9 (6)C21—C22—H22120.2
C16—C11—C2120.6 (5)C24—C23—C22122.9 (6)
C12—C11—C2120.5 (6)C24—C23—H23118.5
C13—C12—C11120.8 (6)C22—C23—H23118.5
C13—C12—H12119.6C23—C24—C25116.4 (6)
C11—C12—H12119.6C23—C24—H24121.8
C12—C13—C14118.1 (6)C25—C24—H24121.8
C12—C13—H13121.0C26—C25—C24120.7 (6)
C14—C13—H13121.0C26—C25—H25119.6
C15—C14—C13122.6 (6)C24—C25—H25119.6
C15—C14—Cl1119.9 (5)C25—C26—C21121.5 (6)
C13—C14—Cl1117.5 (5)C25—C26—H26119.2
C14—C15—C16118.4 (6)C21—C26—H26119.2
C14—C15—H15120.8
C2—N3—N4—C51.0 (8)C13—C14—C15—C162.2 (10)
N4—N3—C2—C11179.0 (5)Cl1—C14—C15—C16179.3 (5)
N4—N3—C2—Se11.0 (7)C12—C11—C16—C152.1 (9)
C5—Se1—C2—N30.6 (5)C2—C11—C16—C15178.4 (5)
C5—Se1—C2—C11178.5 (5)C14—C15—C16—C112.6 (9)
N3—N4—C5—C21179.7 (5)N4—C5—C21—C260.3 (9)
N3—N4—C5—Se10.5 (7)Se1—C5—C21—C26178.9 (5)
C2—Se1—C5—N40.1 (5)N4—C5—C21—C22179.1 (6)
C2—Se1—C5—C21179.2 (5)Se1—C5—C21—C220.1 (8)
N3—C2—C11—C161.1 (9)C26—C21—C22—C230.7 (9)
Se1—C2—C11—C16178.9 (5)C5—C21—C22—C23178.1 (6)
N3—C2—C11—C12179.4 (6)C21—C22—C23—C240.4 (10)
Se1—C2—C11—C121.6 (8)C22—C23—C24—C251.8 (10)
C16—C11—C12—C131.2 (9)C23—C24—C25—C262.1 (9)
C2—C11—C12—C13179.3 (6)C24—C25—C26—C211.1 (9)
C11—C12—C13—C140.8 (10)C22—C21—C26—C250.4 (9)
C12—C13—C14—C151.3 (10)C5—C21—C26—C25178.4 (6)
C12—C13—C14—Cl1179.8 (5)
(IV) 2-(furan-2-yl)-5-(p-tolyl)-1,3,4-selenadiazole top
Crystal data top
C13H10N2OSeF(000) = 1152
Mr = 289.19Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7011 reflections
a = 8.5036 (15) Åθ = 2.4–28.1°
b = 25.210 (5) ŵ = 3.16 mm1
c = 11.116 (2) ÅT = 93 K
β = 96.814 (5)°Platelet, colourless
V = 2366.2 (8) Å30.30 × 0.20 × 0.04 mm
Z = 8
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4865 independent reflections
Radiation source: rotating anode3778 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.055
Detector resolution: 14.7059 pixels mm-1θmax = 28.4°, θmin = 2.4°
ω and ϕ scansh = 810
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 3030
Tmin = 0.558, Tmax = 1.000l = 813
15690 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0627P)2 + 3.0274P]
where P = (Fo2 + 2Fc2)/3
4865 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
C13H10N2OSeV = 2366.2 (8) Å3
Mr = 289.19Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.5036 (15) ŵ = 3.16 mm1
b = 25.210 (5) ÅT = 93 K
c = 11.116 (2) Å0.30 × 0.20 × 0.04 mm
β = 96.814 (5)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4865 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
3778 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 1.000Rint = 0.055
15690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.07Δρmax = 1.35 e Å3
4865 reflectionsΔρmin = 1.03 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.95776 (5)0.609805 (19)0.54769 (5)0.03479 (17)
Se310.41752 (5)0.571510 (18)0.69908 (4)0.03316 (17)
O110.9742 (4)0.71563 (15)0.3949 (4)0.0497 (10)
O410.4615 (5)0.67205 (18)0.5440 (4)0.0678 (13)
N40.6889 (4)0.56170 (15)0.4536 (4)0.0306 (9)
N30.6937 (4)0.60813 (15)0.3890 (4)0.0324 (9)
N340.2462 (5)0.60326 (16)0.8742 (4)0.0372 (10)
N330.2606 (5)0.64772 (16)0.8048 (4)0.0384 (10)
C50.8087 (5)0.55386 (18)0.5365 (4)0.0286 (10)
C20.8173 (5)0.63757 (19)0.4200 (4)0.0304 (10)
C210.8273 (5)0.50612 (17)0.6113 (4)0.0268 (9)
C260.6987 (5)0.47135 (18)0.6129 (4)0.0310 (10)
H260.60040.47940.56660.037*
C250.7142 (5)0.42556 (18)0.6815 (4)0.0308 (10)
H250.62540.40270.68170.037*
C240.8558 (5)0.4119 (2)0.7503 (4)0.0323 (10)
C230.9839 (5)0.4469 (2)0.7475 (4)0.0331 (10)
H231.08250.43880.79340.040*
C220.9694 (5)0.49260 (19)0.6792 (4)0.0311 (10)
H221.05840.51530.67860.037*
C270.8695 (6)0.36290 (19)0.8269 (5)0.0377 (11)
H27A0.80350.33480.78630.057*
H27B0.83380.37060.90570.057*
H27C0.98020.35120.83870.057*
C120.8435 (6)0.68595 (18)0.3572 (5)0.0356 (11)
C130.7610 (6)0.7077 (2)0.2594 (5)0.0389 (12)
H130.66610.69460.21580.047*
C140.8455 (8)0.7547 (2)0.2340 (6)0.0548 (15)
H140.81670.77920.17010.066*
C150.9705 (8)0.7578 (2)0.3158 (6)0.0567 (16)
H151.04740.78530.31980.068*
C350.3168 (5)0.56102 (18)0.8394 (4)0.0292 (10)
C320.3422 (5)0.64067 (18)0.7134 (4)0.0324 (10)
C510.3128 (5)0.50983 (18)0.9003 (4)0.0297 (10)
C560.2204 (5)0.50328 (19)0.9959 (4)0.0343 (11)
H560.16330.53251.02280.041*
C550.2123 (5)0.4544 (2)1.0509 (4)0.0369 (11)
H550.14890.45051.11520.044*
C540.2948 (5)0.4107 (2)1.0144 (4)0.0330 (11)
C530.3882 (5)0.41835 (19)0.9207 (4)0.0343 (11)
H530.44780.38940.89560.041*
C520.3967 (5)0.46653 (18)0.8636 (4)0.0309 (10)
H520.45990.47020.79910.037*
C570.2820 (6)0.3572 (2)1.0735 (5)0.0440 (13)
H57A0.38430.33901.07830.066*
H57B0.20110.33591.02530.066*
H57C0.25220.36201.15530.066*
C420.3657 (5)0.68200 (19)0.6294 (5)0.0361 (11)
C430.3075 (6)0.73151 (19)0.6209 (5)0.0462 (14)
H430.24100.74790.67290.055*
C440.3665 (7)0.7546 (3)0.5173 (6)0.0624 (18)
H440.34510.78910.48500.075*
C450.4572 (8)0.7176 (3)0.4759 (6)0.071 (2)
H450.51270.72200.40730.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0310 (3)0.0369 (3)0.0357 (3)0.00673 (18)0.0011 (2)0.0054 (2)
Se310.0366 (3)0.0307 (3)0.0337 (3)0.00295 (18)0.0105 (2)0.0041 (2)
O110.046 (2)0.046 (2)0.058 (3)0.0118 (17)0.0119 (18)0.0026 (19)
O410.075 (3)0.058 (3)0.080 (3)0.000 (2)0.043 (3)0.005 (2)
N40.028 (2)0.034 (2)0.030 (2)0.0026 (15)0.0064 (16)0.0003 (18)
N30.031 (2)0.034 (2)0.032 (2)0.0020 (16)0.0049 (16)0.0014 (18)
N340.042 (2)0.036 (2)0.033 (2)0.0092 (17)0.0061 (18)0.0014 (19)
N330.046 (2)0.036 (2)0.033 (2)0.0094 (18)0.0073 (19)0.0045 (19)
C50.023 (2)0.038 (3)0.025 (2)0.0004 (18)0.0060 (17)0.006 (2)
C20.026 (2)0.035 (2)0.031 (3)0.0021 (18)0.0073 (18)0.006 (2)
C210.026 (2)0.033 (2)0.021 (2)0.0016 (17)0.0056 (17)0.007 (2)
C260.026 (2)0.037 (3)0.030 (3)0.0029 (18)0.0059 (18)0.005 (2)
C250.025 (2)0.036 (3)0.033 (3)0.0040 (18)0.0084 (19)0.005 (2)
C240.032 (3)0.040 (3)0.027 (3)0.004 (2)0.0080 (19)0.005 (2)
C230.028 (2)0.043 (3)0.029 (3)0.002 (2)0.0006 (18)0.005 (2)
C220.028 (2)0.039 (3)0.026 (2)0.0021 (19)0.0016 (18)0.006 (2)
C270.042 (3)0.036 (3)0.037 (3)0.001 (2)0.009 (2)0.000 (2)
C120.040 (3)0.028 (2)0.041 (3)0.0066 (19)0.016 (2)0.008 (2)
C130.036 (3)0.041 (3)0.040 (3)0.001 (2)0.004 (2)0.003 (2)
C140.073 (4)0.040 (3)0.055 (4)0.010 (3)0.026 (3)0.009 (3)
C150.077 (4)0.032 (3)0.068 (4)0.009 (3)0.036 (4)0.001 (3)
C350.029 (2)0.031 (2)0.026 (2)0.0024 (18)0.0024 (18)0.008 (2)
C320.030 (2)0.032 (3)0.033 (3)0.0024 (18)0.0024 (19)0.003 (2)
C510.028 (2)0.034 (2)0.027 (2)0.0026 (18)0.0025 (18)0.005 (2)
C560.036 (3)0.039 (3)0.029 (3)0.001 (2)0.006 (2)0.007 (2)
C550.033 (3)0.048 (3)0.029 (3)0.003 (2)0.0031 (19)0.001 (2)
C540.031 (3)0.039 (3)0.028 (3)0.003 (2)0.0013 (19)0.001 (2)
C530.030 (3)0.036 (3)0.036 (3)0.0029 (19)0.002 (2)0.006 (2)
C520.027 (2)0.037 (3)0.030 (3)0.0001 (18)0.0064 (18)0.002 (2)
C570.047 (3)0.046 (3)0.038 (3)0.007 (2)0.002 (2)0.005 (3)
C420.033 (3)0.036 (3)0.040 (3)0.0008 (19)0.004 (2)0.005 (2)
C430.063 (4)0.027 (3)0.054 (4)0.009 (2)0.032 (3)0.012 (3)
C440.056 (4)0.053 (4)0.079 (5)0.000 (3)0.009 (3)0.033 (4)
C450.073 (5)0.092 (6)0.053 (4)0.018 (4)0.031 (3)0.001 (4)
Geometric parameters (Å, º) top
Se1—C21.879 (5)C27—H27C0.9800
Se1—C51.890 (4)C12—C131.339 (7)
Se31—C321.871 (5)C13—C141.432 (7)
Se31—C351.885 (5)C13—H130.9500
O11—C121.363 (6)C14—C151.317 (9)
O11—C151.378 (7)C14—H140.9500
O41—C421.346 (6)C15—H150.9500
O41—C451.372 (8)C35—C511.460 (6)
N4—C51.305 (6)C32—C421.429 (7)
N4—N31.377 (5)C51—C521.392 (6)
N3—C21.299 (6)C51—C561.405 (6)
N34—C351.303 (6)C56—C551.381 (7)
N34—N331.374 (6)C56—H560.9500
N33—C321.309 (6)C55—C541.392 (7)
C5—C211.461 (6)C55—H550.9500
C2—C121.436 (7)C54—C531.396 (7)
C21—C221.389 (6)C54—C571.511 (7)
C21—C261.403 (6)C53—C521.377 (6)
C26—C251.381 (6)C53—H530.9500
C26—H260.9500C52—H520.9500
C25—C241.391 (6)C57—H57A0.9800
C25—H250.9500C57—H57B0.9800
C24—C231.405 (7)C57—H57C0.9800
C24—C271.497 (7)C42—C431.342 (6)
C23—C221.378 (7)C43—C441.433 (8)
C23—H230.9500C43—H430.9500
C22—H220.9500C44—C451.328 (9)
C27—H27A0.9800C44—H440.9500
C27—H27B0.9800C45—H450.9500
C2—Se1—C582.36 (19)C13—C14—H14126.4
C32—Se31—C3582.3 (2)C14—C15—O11110.5 (5)
C12—O11—C15105.8 (4)C14—C15—H15124.8
C42—O41—C45104.7 (5)O11—C15—H15124.8
C5—N4—N3115.4 (4)N34—C35—C51123.2 (4)
C2—N3—N4114.8 (4)N34—C35—Se31113.7 (4)
C35—N34—N33115.2 (4)C51—C35—Se31123.1 (3)
C32—N33—N34114.5 (4)N33—C32—C42122.5 (4)
N4—C5—C21123.3 (4)N33—C32—Se31114.3 (4)
N4—C5—Se1113.2 (3)C42—C32—Se31123.2 (4)
C21—C5—Se1123.4 (3)C52—C51—C56118.8 (4)
N3—C2—C12121.6 (4)C52—C51—C35121.1 (4)
N3—C2—Se1114.2 (4)C56—C51—C35120.1 (4)
C12—C2—Se1124.2 (3)C55—C56—C51120.1 (4)
C22—C21—C26118.0 (4)C55—C56—H56119.9
C22—C21—C5122.7 (4)C51—C56—H56119.9
C26—C21—C5119.3 (4)C56—C55—C54121.5 (5)
C25—C26—C21120.4 (4)C56—C55—H55119.2
C25—C26—H26119.8C54—C55—H55119.2
C21—C26—H26119.8C55—C54—C53117.4 (5)
C26—C25—C24122.0 (4)C55—C54—C57121.0 (4)
C26—C25—H25119.0C53—C54—C57121.6 (5)
C24—C25—H25119.0C52—C53—C54122.1 (4)
C25—C24—C23117.1 (4)C52—C53—H53118.9
C25—C24—C27121.4 (4)C54—C53—H53118.9
C23—C24—C27121.5 (4)C53—C52—C51120.0 (4)
C22—C23—C24121.2 (4)C53—C52—H52120.0
C22—C23—H23119.4C51—C52—H52120.0
C24—C23—H23119.4C54—C57—H57A109.5
C23—C22—C21121.3 (4)C54—C57—H57B109.5
C23—C22—H22119.3H57A—C57—H57B109.5
C21—C22—H22119.3C54—C57—H57C109.5
C24—C27—H27A109.5H57A—C57—H57C109.5
C24—C27—H27B109.5H57B—C57—H57C109.5
H27A—C27—H27B109.5C43—C42—O41111.9 (5)
C24—C27—H27C109.5C43—C42—C32130.1 (5)
H27A—C27—H27C109.5O41—C42—C32117.9 (4)
H27B—C27—H27C109.5C42—C43—C44105.8 (5)
C13—C12—O11110.7 (4)C42—C43—H43127.1
C13—C12—C2130.2 (5)C44—C43—H43127.1
O11—C12—C2119.0 (5)C45—C44—C43105.4 (5)
C12—C13—C14105.8 (5)C45—C44—H44127.3
C12—C13—H13127.1C43—C44—H44127.3
C14—C13—H13127.1C44—C45—O41112.1 (6)
C15—C14—C13107.2 (5)C44—C45—H45124.0
C15—C14—H14126.4O41—C45—H45124.0
C5—N4—N3—C20.0 (6)C12—O11—C15—C140.0 (6)
C35—N34—N33—C320.6 (6)N33—N34—C35—C51179.0 (4)
N3—N4—C5—C21177.8 (4)N33—N34—C35—Se311.4 (5)
N3—N4—C5—Se11.0 (5)C32—Se31—C35—N341.3 (3)
C2—Se1—C5—N41.2 (3)C32—Se31—C35—C51178.9 (4)
C2—Se1—C5—C21177.7 (4)N34—N33—C32—C42178.2 (4)
N4—N3—C2—C12176.9 (4)N34—N33—C32—Se310.5 (5)
N4—N3—C2—Se10.9 (5)C35—Se31—C32—N331.0 (4)
C5—Se1—C2—N31.2 (3)C35—Se31—C32—C42178.6 (4)
C5—Se1—C2—C12176.6 (4)N34—C35—C51—C52176.7 (4)
N4—C5—C21—C22165.2 (4)Se31—C35—C51—C526.0 (6)
Se1—C5—C21—C2213.5 (6)N34—C35—C51—C564.7 (7)
N4—C5—C21—C2612.9 (6)Se31—C35—C51—C56172.6 (3)
Se1—C5—C21—C26168.4 (3)C52—C51—C56—C550.8 (6)
C22—C21—C26—C250.8 (6)C35—C51—C56—C55177.8 (4)
C5—C21—C26—C25179.0 (4)C51—C56—C55—C540.3 (7)
C21—C26—C25—C240.4 (7)C56—C55—C54—C530.9 (7)
C26—C25—C24—C230.0 (7)C56—C55—C54—C57178.6 (4)
C26—C25—C24—C27178.3 (4)C55—C54—C53—C521.6 (7)
C25—C24—C23—C220.0 (7)C57—C54—C53—C52177.9 (4)
C27—C24—C23—C22178.3 (4)C54—C53—C52—C511.2 (7)
C24—C23—C22—C210.4 (7)C56—C51—C52—C530.0 (6)
C26—C21—C22—C230.8 (7)C35—C51—C52—C53178.5 (4)
C5—C21—C22—C23179.0 (4)C45—O41—C42—C432.3 (7)
C15—O11—C12—C130.2 (6)C45—O41—C42—C32178.2 (5)
C15—O11—C12—C2177.8 (4)N33—C32—C42—C434.3 (8)
N3—C2—C12—C133.9 (8)Se31—C32—C42—C43173.1 (5)
Se1—C2—C12—C13173.7 (4)N33—C32—C42—O41175.0 (5)
N3—C2—C12—O11179.1 (4)Se31—C32—C42—O417.6 (6)
Se1—C2—C12—O113.3 (6)O41—C42—C43—C442.6 (7)
O11—C12—C13—C140.4 (6)C32—C42—C43—C44178.1 (5)
C2—C12—C13—C14177.6 (5)C42—C43—C44—C451.7 (7)
C12—C13—C14—C150.4 (6)C43—C44—C45—O410.3 (8)
C13—C14—C15—O110.3 (6)C42—O41—C45—C441.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N33i0.952.503.441 (7)172
C44—H44···N33ii0.952.593.457 (7)151
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x, y+3/2, z1/2.

Experimental details

(Ia)(Ib)(IIb)(III)
Crystal data
Chemical formulaC14H10N2SeC14H10N2SeC10H6N2S2SeC14H9ClN2Se
Mr285.20285.20297.25319.64
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/cOrthorhombic, Pca21Monoclinic, P21/c
Temperature (K)93939393
a, b, c (Å)13.036 (4), 5.4650 (14), 16.274 (5)26.763 (10), 5.796 (2), 7.213 (3)10.641 (5), 5.134 (2), 19.096 (8)13.382 (5), 5.5247 (18), 16.524 (5)
α, β, γ (°)90, 101.860 (7), 9090, 103.885 (9), 9090, 90, 9090, 94.528 (8), 90
V3)1134.6 (5)1086.2 (7)1043.4 (7)1217.9 (7)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)3.293.433.963.28
Crystal size (mm)0.15 × 0.10 × 0.050.25 × 0.20 × 0.010.25 × 0.08 × 0.080.12 × 0.07 × 0.01
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Rigaku Mercury CCD area-detector
diffractometer
Rigaku Mercury CCD area-detector
diffractometer
Rigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2010)
Multi-scan
(CrystalClear; Rigaku, 2010)
Multi-scan
(CrystalClear; Rigaku, 2010)
Multi-scan
(CrystalClear; Rigaku, 2010)
Tmin, Tmax0.795, 1.0000.490, 1.0000.551, 1.0000.500, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7425, 2413, 2081 3541, 1149, 1014 6487, 2060, 1704 7679, 2513, 2050
Rint0.0370.0530.0830.058
(sin θ/λ)max1)0.6720.6710.6730.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.081, 1.09 0.066, 0.167, 1.11 0.054, 0.116, 1.12 0.079, 0.226, 1.06
No. of reflections2413114920602513
No. of parameters15578138163
No. of restraints0010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.690.92, 1.141.08, 0.674.87, 1.07
Absolute structure??Flack (1983), with 874 Friedel pairs?
Absolute structure parameter??0.377 (19)?


(IV)
Crystal data
Chemical formulaC13H10N2OSe
Mr289.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)8.5036 (15), 25.210 (5), 11.116 (2)
α, β, γ (°)90, 96.814 (5), 90
V3)2366.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.30 × 0.20 × 0.04
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2010)
Tmin, Tmax0.558, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15690, 4865, 3778
Rint0.055
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.147, 1.07
No. of reflections4865
No. of parameters309
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 1.03
Absolute structure?
Absolute structure parameter?

Computer programs: CrystalClear (Rigaku, 2010), SHELXTL (Sheldrick, 2008) and OLEX (Dolomanov et al., 2003), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2003), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N4i0.952.593.539 (12)176.9
Symmetry code: (i) x1/2, y+1, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N33i0.952.503.441 (7)172.3
C44—H44···N33ii0.952.593.457 (7)151.3
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x, y+3/2, z1/2.
Distances for ππ interactions (Å) top
Cg1 and Cg2 are the centroids of the Se1–C5 and C11–C16 rings, respectively, of polymorph (Ia). Cg3 is the centroid of the Se1–C5 ring of polymorph (Ib). Cg4, Cg5 and Cg6 are the centroids of the Se1–C5, S11–C15 and S21–C25 rings, respectively, of (IIb). Cg7 and Cg8 are the centroids of the Se1–C5 and C11–C16 rings, respectively, of (III). Cg9, Cg10 and Cg11 are the centroids of the Se1–C5, C21–C26 and C51–C56 rings, respectively, of (IV).
CompoundCentroidsCg···Cg
(Ia)Cg1···Cg2i3.6197 (19)
(Ib)Cg3···Cg3ii3.848 (3)
(IIb)Cg4···Cg5iii3.636 (4)
Cg4···Cg6iv3.861 (4)
(III)Cg7···Cg8v3.670 (4)
(IV)Cg9···Cg10vi3.930 (3)
Cg11···Cg11vii3.898 (3)
Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) x, y + 1, z; (v) -x + 1, -y, -z + 1; (vi) -x + 2, -y + 1, -z + 1; (vii) -x + 1, -y + 1, -z + 1.
Geometry of C—H···π interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively, of polymorph (Ia). Cg3 is the centroid of the C11–C16 ring of polymorph (Ib). Cg4 is the centroid of the C21–C26 ring of (III). Cg5 and Cg6 are the centroids of the C51–C56 and O11–C15 rings, respectively, of (IV).
CompoundC—H···CgH···CgC···CgC—H···Cg
(Ia)C22—H22···Cg1i2.893.660 (3)139
C13—H13···Cg2i2.973.649 (3)130
(Ib)C16—H16···Cg3ii2.813.416 (6)122
C13—H13···Cg3iii2.943.621 (7)130
(III)C13—H13···Cg4iv2.773.497 (7)134
C25—H25···Cg4v2.933.673 (7)136
(IV)C23—H23···Cg5vi2.523.389 (5)151
C27—H27C···Cg6vii2.893.549 (6)125
Symmetry codes: (i) -x + 2, y + 1/2, -z + 1/2; (ii) x, -y + 1, z - 1/2; (iii) x, -y, z - 1/2; (iv) -x + 1, y + 1/2, -z + 3/2; (v) -x + 2, y - 1/2, -z + 3/2; (vi) x + 1, y, z; (vii) -x + 2, -y + 1, -z + 1.
 

Acknowledgements

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

References

First citationBack, T. G. (2000). Organoselenium Chemistry: A Practical Approach. New York: Oxford University Press Inc.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHua, G., Cordes, D. B., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2011). Tetrahedron Lett. 52, 3311–3314.  Web of Science CSD CrossRef CAS Google Scholar
First citationHua, G., Griffin, J. M., Ashbrook, S. E., Slawin, A. M. Z. & Woollins, J. D. (2011). Angew. Chem. Int. Ed. 50, 4123–4126.  Web of Science CSD CrossRef CAS Google Scholar
First citationHua, G., Li, Y., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem. pp. 1612–1618.  Web of Science CrossRef Google Scholar
First citationKlayman, D. L. & Gunther, W. H. H. (1973). Editors. Organic Selenium Compounds: Their Chemistry and Biology. New York: Wiley.  Google Scholar
First citationMugesh, G., Du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125–2179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNicolaou, K. C. & Petasis, N. A. (1984). Selenium in Natural Products Synthesis. Philadelphia: CIS.  Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2010). CrystalClear. Version 2.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWirth, T. (2000a). Angew. Chem. Int. Ed. 39, 3740–3749.  CrossRef CAS Google Scholar
First citationWirth, T. (2000b). Editor. Topics in Current Chemistry: Organoselenium Chemistry, Modern Developments in Organic Synthesis. Heidelberg: Springer.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds