research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Amino­silanes derived from 1H-benzimidazole-2(3H)-thione

CROSSMARK_Color_square_no_text.svg

aFacultad de Ciencias Químicas, Universidad de Colima, Carretera Coquimatlán-Colima, Coquimatlán Colima 28400, Mexico, bUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, México DF 07340, Mexico, cDepartamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México DF 07000, Mexico, and dBarrio La Laguna Ticomán, México DF 07340, Mexico
*Correspondence e-mail: aaramos@ucol.mx

Edited by P. Fanwick, Purdue University, USA (Received 23 June 2015; accepted 31 July 2015; online 12 August 2015)

Two new mol­ecular structures, namely 1,3-bis­(tri­methyl­silyl)-1H-benzimidazole-2(3H)-thione, C13H22N2SSi2, (2), and 1-tri­methyl­silyl-1H-benzimidazole-2(3H)-thione, C10H14N2SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π inter­actions between the centroid of the benzmidazole system and the SiMe3 groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R22(8) rings via N—H⋯S inter­actions, along with parallel ππ inter­actions between imidazole and benzene rings.

1. Introduction

1H-Benzimidazole-2(3H)-thione, (1)[link] (see Scheme 1[link]), is a planar mol­ecule with two substitutable acidic H atoms. The N atoms of this mol­ecule have demonstrated the ability to form Lewis acid–base coordination compounds. Under basic conditions, the corresponding salt of (1)[link] has been shown to react with p-block elements (O'Sullivan & Wallis, 1972[O'Sullivan, D. G. & Wallis, A. K. (1972). J. Med. Chem. 15, 103-104.]).

[Scheme 1]

The 1H-benzimidazole-2(3H)-thione heterocycle has been found in compounds with biological activity, such as progesterone agonists (Zhang et al., 2007[Zhang, P., Terefenko, E., Kern, J., Fensome, A., Trybulski, E., Unwalla, R., Wrobel, J., Lockhead, S., Zhu, Y., Cohen, J., LaCava, M., Winneker, R. & Zhang, Z. (2007). Bioorg. Med. Chem. 15, 6556-6564.]). Anti­nematode activity was evaluated for {[(1H-benzimidazol-2-yl)thio]­acetyl}­piperazine (Mavrova et al., 2010[Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856-5861.]), while 2-(alkyl­thio)­benzimidazole with a β-lactam ring pre­sented anti­bacterial and anti­fungal activities (Desai & Desai, 2006[Desai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271-8279.]). Isomeric 2-(methylthio)­benzimidazole compounds were synthesized as acyclic analogues of the HIV-1 RT inhibitor ring system (Gardiner & Loyns, 1995[Gardiner, J. & Loyns, C. (1995). Tetrahedron, 51, 11515-11530.]). More recently, isoxazole–mer­capto­benzimid­azole hybrids have presented analgesic and anti-inflammatory activities (Shravankumar et al., 2013[Shravankumar, K., Ranjith, K., Prasad, G., Niranjan, T., Srinivas, N., Mohan, R., Hanmanthu, G., Mukkanti, K., Ravinder, V. & Chandra, S. (2013). Bioorg. Med. Chem. Lett. 23, 1306-1309.]). Furthermore, a wide range of biological activities have been reported for the benzimid­azole fragment, such as anti­fungal, anti­bacterial, vasodilator, antispasmodic, anti-ulcer (Akkurt et al., 2012[Akkurt, M., Küçükbay, H., Sireci, N. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2718-o2719.]), anti­microbial (De Almeida et al., 2007[De Almeida, M. V., Cardoso, S. H., De Assis, J. V. & De Souza, M. V. N. (2007). J. Sulfur Chem. 28, 17-22.]), anti­histamine (Mor et al., 2004[Mor, M., Bordi, F., Silva, C., Rivara, S., Zuliani, V., Vacondio, F., Rivara, M., Barocelli, E., Bertoni, S., Ballabeni, V., Magnanini, F., Impicciatore, M. & Plazzi, P. V. (2004). Bioorg. Med. Chem. 12, 663-674.]), neutropic (Bakhareva et al., 1996[Bakhareva, E., Voronkov, M., Sorokin, M., Lopyrev, V., Seredenin, S. & Gaidarov, G. M. (1996). Pharm. Chem. J. 30, 89-91.]) and analgesic (Anandarajagopal et al., 2010[Anandarajagopal, K., Tiwari, R. N., Venkateshan, N., Vinotha Pooshan, G. & Promwichit, P. (2010). J. Chem. Pharm. Res. 2(3), 230-236.]). Additionally, alkyl­silyl-substituted benzimidazole has shown in vitro cytotoxicity, for example, 1-[3-(tri­methyl­silyl)propyl]benz­imid­azole inhibits carcinoma S180 tumour (Lukevics et al., 2001[Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507-515.]). In 2012, 1-{[dimethyl(phenyl)silyl]methyl}-3-(2-phenyl­ethyl)-1-benzimidazol-3-ium bromide monohydrate was synthesized and its crystal structure elucidated (Akkurt et al., 2012[Akkurt, M., Küçükbay, H., Sireci, N. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2718-o2719.]). Silylated compounds are stable at low temperatures and, in some cases, under atmospheric conditions. Amino­silanes are soluble in nonpolar solvents, while the presence of tri­methyl­silyl groups increases the volatility of the organic fragments, most of which can be distilled without decomposition and, sometimes, even crystallized (Ghose & Gilchrist, 1991[Ghose, S. & Gilchrist, T. L. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 775-780.]). Alk­oxy­silanes, thio­silanes and amino­silanes are stable at low temperatures, while the last class become unstable under atmospheric conditions (Colvin, 1981[Colvin, E. W. (1981). Silicon in Organic Synthesis, ch. 19. London: Butterworth and Co.]).

We report here the crystal structures of two new tri­methyl­silyl-substituted derivatives of 1H-benzimidazole-2(3H)-thione, namely 1,3-bis­(tri­methyl­silyl)-1H-benzimid­azole-2(3H)-thione, (2)[link], and 1-tri­methyl­silyl-1H-benzimid­azole-2(3H)-thione, (3)[link].

2. Experimental

All reagents were purchased from Aldrich and were used as received. All solvents were dried before use. 1H NMR (300.13185 MHz) and 13C NMR (75.47564 MHz) analyses in CDCl3 were performed on a Bruker 300 MHz spectrometer, using TMS as the inter­nal reference. Chemical shifts (δ) are reported in p.p.m. IR spectra were recorded on a Perkin–Elmer FT–IR 1600 spectrophotometer in the 4000–400 cm−1 range. Elemental analyses were performed in a Thermofinniga Flash 112 instrument under standard conditions.

2.1. Synthesis and crystallization

Compound (2)[link] was obtained by mixing 1H-benzimidazole-2(3H)-thione (0.5 g, 3.3 mmol) and chloro­tri­methyl­silane (0.89 ml, 75.9 mg, 6.9 mmol) in tri­ethyl­amine (15 ml). The reaction was kept under constant stirring and reflux for 6 h. The resulting compound was a yellow liquid (yield 92%, 1.87 g) which solidified after 24 h. Crystals of (2)[link] suitable for X-ray diffraction analysis were collected. MS: m/z (intensity, %): 294 (M+, 100), 206 (25), 150 (11); IR (KBr, νmax, cm−1): 1623 (C=N), 1514 and 1470 (N—C—S), 1181 (Si—N), 714 and 710 (Si—C); 1H NMR (C6D6/THF, 1:1): δ AABB′ 7.26 (m, H4, H7), 7.04 (m, H5, H6), 0.73 (s, HMe); 13C NMR: δ 182.3 (C2), 112.2 (C4, C7), 122.6 (C5, C6), 2.5 (CMe). Elemental analysis calculated for C13H22N2SSi2: C 53.01, H 7.53, N 9.51, S 10.89%; found: C 53.03, H 7.60, N 9.60, S 10.69%.

Compound (3)[link] was obtained from the partial hydrolysis of (2)[link]; both (2)[link] and (3)[link] are readily hydrolysed under atmospheric conditions. This compound was not analysed by spectroscopic techniques. However, crystals of (3)[link] suitable for X-ray diffraction analysis were obtained from a hexane solution and a single crystal immersed in oil was analysed.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were included in geometrically calculated positions, riding on the C or N atoms to which they were bonded. C—H distances were restrained to 0.93 (aromatic) or 0.96 Å (methyl) and the N—H bond length was restrained to 0.86 Å. H-atom displacement parameters were set at Uiso(H) = 1.5Ueq(C) for methyl H atoms and at 1.2Ueq(C,N) otherwise.

Table 1
Experimental details

  (2) (3)
Crystal data
Chemical formula C13H22N2SSi2 C10H14N2SSi
Mr 294.56 222.38
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 10.0302 (3), 10.6172 (3), 16.2428 (6) 9.8057 (2), 15.8032 (4), 15.8658 (5)
α, β, γ (°) 90, 90, 90 90, 93.859 (1), 90
V3) 1729.74 (10) 2453.01 (11)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.31 0.33
Crystal size (mm) 0.25 × 0.20 × 0.10 × 0.15 (radius) 0.20 × 0.20 × 0.15 × 0.15 (radius)
 
Data collection
Diffractometer Nonius KappaCCD area-detector diffrac­tometer Nonius KappaCCD area-detector diffrac­tometer
Absorption correction Spherical (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Spherical (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.])
Tmin, Tmax 0.861, 0.862 0.861, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 15678, 3889, 2472 29355, 5554, 3199
Rint 0.064 0.096
(sin θ/λ)max−1) 0.648 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.104, 1.01 0.049, 0.138, 1.00
No. of reflections 3889 5554
No. of parameters 164 259
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.20 0.21, −0.24
Absolute structure Flack x parameter determined using 838 quotients, [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (7)
Computer programs: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and XPMA in ZORTEP (Zsolnai, 1997[Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.]).

3. Results and discussion

Compound (2)[link] crystallizes in the ortho­rhom­bic space group P212121. The average N1—Si1—Me10,11,12 angle is 109.0 (2)° and the average N1—Si1—Me13,14,15 angle is 109.1 (2)°. The Si—N distances of 1.809 (3) and 1.803 (3) Å are slightly longer than those reported previously for 1,3-bis­(tri­methyl­silyl)imidazolidin-2-one [1.739 (7) Å] and 4-methyl-1,3-bis­(tri­methyl­silyl)imidazolidin-2-one [1.745 (3) Å] (Szalay et al., 2005[Szalay, R., Pongor, G., Harmat, V., Böcskei, Z. & Knausz, D. (2005). J. Organomet. Chem. 690, 1498-1506.]), which might be caused by the difference in electronegativities of the O and S atoms.

Compound (3)[link] crystallizes with two independent mol­ecules, A and B, in the asymmetric unit in the monoclinic space group P21/c. The average N1—Si1—Me20,21,22 angle is 108.49 (12)° and the average N11—Si2—Me23,24,25 angle is 108.66 (12)°. The Si—N distances are 1.817 (2) and 1.804 (2) Å.

Overall, compounds (2)[link] and (3)[link] have very similar structures, which are shown in Figs. 1[link] and 2[link], respectively. Selected bond lengths and angles are listed in Tables 2[link] and 3[link], respectively. The average C—Si bond length for both compounds is 1.847 (3) Å and the average C—Si—C angle is 109.5 (2)°, in agreement with sp3-hybridization of the Si atoms. These values agree with those in similar structures reported previously (Wagler et al., 2010[Wagler, J., Heine, T. & Hill, F. A. (2010). Organometallics, 29, 5607-5613.]).

Table 2
Selected geometric parameters (Å, °) for (2)[link]

Si1—N1 1.809 (3) Si2—C13 1.839 (6)
Si1—C11 1.842 (5) Si2—C15 1.854 (6)
Si1—C12 1.842 (5) Si2—C14 1.861 (5)
Si1—C10 1.847 (5) S1—C2 1.669 (4)
Si2—N3 1.803 (3)    
       
N1—Si1—C11 109.0 (2) N3—Si2—C14 109.3 (2)
N1—Si1—C12 109.53 (19) C13—Si2—C14 113.7 (3)
C11—Si1—C12 113.9 (3) C15—Si2—C14 107.7 (3)
N1—Si1—C10 108.4 (2) C2—N1—Si1 121.7 (3)
C11—Si1—C10 109.4 (3) C8—N1—Si1 130.9 (3)
C12—Si1—C10 106.4 (3) C2—N3—Si2 120.8 (3)
N3—Si2—C13 109.4 (2) C9—N3—Si2 132.3 (2)
N3—Si2—C15 108.5 (2) N1—C2—S1 125.1 (3)
C13—Si2—C15 108.2 (3) N3—C2—S1 124.8 (3)
       
C11—Si1—N1—C2 70.3 (4) C14—Si2—N3—C9 113.9 (4)
C12—Si1—N1—C2 −55.0 (4) Si2—N3—C9—C4 −4.8 (7)
C10—Si1—N1—C2 −170.7 (3) Si2—N3—C9—C8 179.1 (3)
C11—Si1—N1—C8 −113.2 (4) Si1—N1—C8—C7 10.2 (6)
C12—Si1—N1—C8 121.5 (4) Si1—N1—C8—C9 −174.1 (3)
C10—Si1—N1—C8 5.8 (4) Si1—N1—C2—N3 173.6 (2)
C13—Si2—N3—C2 59.4 (4) C8—N1—C2—S1 175.3 (3)
C15—Si2—N3—C2 177.2 (4) Si1—N1—C2—S1 −7.5 (5)
C14—Si2—N3—C2 −65.7 (4) Si2—N3—C2—N1 −177.2 (2)
C13—Si2—N3—C9 −121.0 (4) C9—N3—C2—S1 −175.9 (3)
C15—Si2—N3—C9 −3.2 (4) Si2—N3—C2—S1 3.9 (5)

Table 3
Selected geometric parameters (Å, °) for (3)[link]

S1—C2 1.676 (3) S2—C12 1.675 (2)
Si1—N1 1.817 (2) Si2—N11 1.804 (2)
Si1—C22 1.841 (3) Si2—C24 1.827 (3)
Si1—C20 1.846 (3) Si2—C23 1.830 (4)
Si1—C21 1.850 (3) Si2—C25 1.841 (3)
       
N1—Si1—C22 108.72 (12) N11—Si2—C24 111.21 (15)
N1—Si1—C20 107.62 (12) N11—Si2—C23 105.51 (15)
C22—Si1—C20 109.24 (16) C24—Si2—C23 113.3 (2)
N1—Si1—C21 109.12 (13) N11—Si2—C25 109.27 (13)
C22—Si1—C21 108.81 (18) C24—Si2—C25 106.95 (19)
C20—Si1—C21 113.23 (16) C23—Si2—C25 110.6 (2)
C2—N1—Si1 122.00 (16) C12—N11—Si2 123.12 (16)
C8—N1—Si1 130.56 (17) C18—N11—Si2 128.88 (17)
N3—C2—S1 125.48 (19) N13—C12—S2 125.02 (19)
N1—C2—S1 126.65 (18) N11—C12—S2 127.12 (18)
       
C22—Si1—N1—C2 176.3 (2) C24—Si2—N11—C12 56.7 (3)
C20—Si1—N1—C2 −65.5 (2) C23—Si2—N11—C12 −66.5 (2)
C21—Si1—N1—C2 57.8 (2) C25—Si2—N11—C12 174.5 (2)
C22—Si1—N1—C8 −1.1 (3) C24—Si2—N11—C18 −133.4 (3)
C20—Si1—N1—C8 117.1 (2) C23—Si2—N11—C18 103.4 (3)
C21—Si1—N1—C8 −119.6 (2) C25—Si2—N11—C18 −15.6 (3)
C9—N3—C2—S1 179.14 (18) C19—N13—C12—S2 −179.11 (18)
Si1—N1—C2—N3 −177.32 (16) Si2—N11—C12—N13 171.28 (16)
C8—N1—C2—S1 −178.90 (19) C18—N11—C12—S2 179.38 (19)
Si1—N1—C2—S1 3.2 (3) Si2—N11—C12—S2 −8.8 (3)
Si1—N1—C8—C9 177.06 (17) Si2—N11—C18—C17 8.5 (5)
Si1—N1—C8—C7 −3.0 (4) Si2—N11—C18—C19 −171.09 (18)
[Figure 1]
Figure 1
The mol­ecular structure of compound (2)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structures of the two independent molecules of compound (3)[link], showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level.

The C=S distances for compounds (2)[link] and (3)[link] range from 1.669 (4) to 1.675 (2) Å. The average N1,3—C2=S1 angle is 125.0 (3)° for (2)[link] and the average N1,11—C2,12=S12 angle is 126.9 (18)° for (3)[link]. These angles agree with sp2-hybridization of the C and S atoms which is typical of thio­urea groups (Wagler et al., 2010[Wagler, J., Heine, T. & Hill, F. A. (2010). Organometallics, 29, 5607-5613.]). The S atom of (3)[link] has a slight displacement of 0.007 (1) Å from the benzimidazole mol­ecular plane, whereas in (2)[link], the S atom is out of the plane by 0.155 (2) Å. This displacement could be caused by noncovalent intra­molecular inter­actions between the S-atom nucleus and both Si atoms, or between the methyl H atoms and the S atom. Compound (2)[link] presents four noncovalent C—H⋯S inter­actions (Table 4[link]), with C⋯S distances ranging from 2.77 to 2.96 Å and angles ranging from 122 to 125°, which amount to less than the sum of the van der Waals radii of S and H atoms (3.25 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯S1 0.96 2.96 3.564 (7) 122
C12—H12C⋯S1 0.96 2.77 3.415 (5) 125
C13—H13B⋯S1 0.96 2.79 3.423 (7) 125
C14—H14C⋯S1 0.96 2.86 3.480 (5) 123

Another noncovalent intra­molecular inter­action (Table 5[link]) was observed in (3)[link], viz. C21—H21⋯S1, with a C⋯S distance of 2.83 Å and an angle of 126°, similar to that observed in (2)[link].

Table 5
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S2i 0.86 2.52 3.374 (2) 170
N13—H13⋯S1i 0.86 2.45 3.282 (2) 164
C21—H21B⋯S1 0.96 2.83 3.480 (4) 126
Symmetry code: (i) -x+1, -y+1, -z.

Comparing the structures of (2)[link] and (3)[link], it becomes obvious that the fused rings in (2)[link] are not completely flat. Specifically, the thio­urea unit composed of atoms N1/C2/N3/S1 is offset from the mol­ecular plane defined by the benzene ring. This is a consequence of the intra­molecular noncovalent C—H⋯S inter­actions present in the system.

Fig. 3[link](a) shows the spiral arrangement of (2)[link], which forms a linking inter­action between mol­ecules through the imidazole ring (C10—H10ACg1 = 2.94 Å; Cg1 is the centroid of the imidazole ring) and the benzene ring [C10—H10BCg2 = 2.83 Å; Cg2 is the centroid of the benzene ring at (x − [{1\over 2}], −y + [{3\over 2}], −z)]. These inter­actions form a helicoidal repeat unit of 10.03 Å, which extends along the crystallographic a axis. Fig. 3[link](b) presents the helix overlap of this system. A third inter­action, viz. C13—H13⋯π(x + [{1\over 2}], −y + [{1\over 2}], −z), has a C⋯π distance of 2.77 Å, which further supports the helicoidal arrangement.

[Figure 3]
Figure 3
(a) The spiral arrangement for (2)[link] and (b) the overlap of the helix along the direction of the a axis.

Mol­ecules A and B of (3)[link] are auto-assembled by N—H⋯S inter­actions (N3—H3⋯S2i = 2.52 Å and N13—H13⋯S1i = 2.45 Å; see Table 5[link] for symmetry code). This arrangement forms a cyclic system with an [R_{2}^{2}](8) hydrogen-bonding pattern (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 4[link]). Furthermore, ππ inter­actions between the imidazole and benzene rings are observed in the dimerization of the compound and extend in the ab plane (Fig. 4[link]). The distance between the ring centroids in these inter­actions is 3.64 Å (symmetry code: −x + 1, −y + 1, −z). There is an additional inter­molecular C20—H20Bπ(imidazole ring) inter­action of 3.03 Å (symmetry code: −x + 1, y + [{1\over 2}], −z + [{1\over 2}]) which strengthens the crystalline arrange­ment of (3)[link].

[Figure 4]
Figure 4
(a) The crystal packing diagram of (3)[link] along the direction of the ab plane. (b) A detailed view of the formation of the [R_{2}^{2}](8) hydrogen-bonding motif and the ππ stacking inter­actions. [Where is the origin in part (a)?]

As can be seen, the structures of (2)[link] and (3)[link] have similar parameters around the silyl–amine bond, but while (3)[link] is a dimer formed by classical hydrogen bonding, the structure of (2)[link] is a helix supported by nonclassical interactions.

Supporting information


Introduction top

2-Mercaptobenzimidazole (1) (see Scheme 1) is a planar molecule with two substitutable acidic H atoms. The N atoms of this molecule have demonstrated the ability to form Lewis acid–base coordination compounds. Under basic conditions, the corresponding salt of (1) has been shown to react with p-block elements (O'Sullivan & Wallis, 1972).

The 2-mercaptobenzimidazole heterocycle has been found in compounds with biological activity, such as progesterone agonists (Zhang et al., 2007). Anti­nematode activity was evaluated for (1H-benzimidazol-2-yl)thio­acetyl­piperazine (Mavrova et al., 2010), while 2-alkyl­thio­benzimidazole with a β-la­ctam ring presented anti­bacterial and anti­fungal activities (Desai & Desai, 2006). Isomeric 2-methyl­mercaptobenzimidazole compounds were synthesized as acyclic analogues of the HIV-1 RT inhibitor ring system (Gardiner & Loyns, 1995). More recently, isoxazole–mercaptobenzimidazole hybrids presented analgesic and anti-inflammatory activities (Kankala et al., 2013). Furthermore, the benzimidazole fragment has had a wide range of biological activities reported, such as anti­fungal, anti­bacterial, vasodilator, spasmodic, anti-ulcer (Akkurt et al., 2012), anti­microbial (De Almeida et al., 2007), anti­histamine (Mor et al., 2004), neutropic (Bakhareva et al., 1996) and analgesic (Anandarajagopal et al., 2010). Additionally, alkyl­silyl-substituted benzimidazole has shown in vitro cytotoxicity. 1-[3-(Tri­methyl­silyl)propyl]­benzimidazole inhibits carcinoma S180 tumour (Lukevics et al., 2001). In 2012, 1-{[di­methyl­(phenyl)­silyl]methyl}-3-(2-phenyl­ethyl)-1-benzimidazol-3-ium bromide monohydrate was synthetsized and its crystal structure elucidated (Akkurt et al., 2012). Silylated compounds are stable at low temperatures and, in some cases, under atmospheric conditions. Amino­silanes are soluble in nonpolar solvents, while the presence of tri­methyl­silyl groups increases the volatility of the organic fragments, most of which can be distilled without decomposition and, sometimes, even crystallized (Ghose & Gilchrist, 1991). Alk­oxy­silanes, thio­silanes and amino­silanes are stable at low temperatures, while the latter become unstable under atmospheric conditions (Colvin, 1981).

We report here the crystal structures of two new tri­methyl­silyl-substituted derivatives of 1H-benzimidazole-2(3H)-thione, namely 1,3-bis­(tri­methyl­silyl)-1H-benzimidazole-2(3H)-thione, (2), and 1-tri­methyl­silyl-1H-benzimidazole-2(3H)-thione, (3).

Experimental top

All reagents were purchased from Aldrich and used as received. All solvents were dried before use. 1H NMR (300.13185 MHz) and 13C NMR (75.47564 MHz) analyses in CDCl3 were performed on a Bruker 300 MHz spectrometer, using TMS as the inter­nal reference. Chemical shifts (δ) are reported in p.p.m. IR spectra were recorded on a Perkin–Elmer FT–IR 1600 spectrophotometer in the 4000–400 cm-1 range. Elemental analyses were performed in a Thermofinniga Flash 112 instrument under standard conditions.

Synthesis and crystallization top

Compound (2) was obtained by mixing 1H-benzimidazole-2(3H)-thione (0.5 g, 3.3 mmol) and chloro­tri­methyl­silane (0.89 ml, 75.9 mg, 6.9 mmol) in tri­ethyl­amine (15 ml). The reaction was kept under constant stirring and reflux for 6 h. The resulting compound was a yellow liquid (yield 92%, 1.87 g) which solidified after 24 h. Crystals of (2) suitable for X-ray diffraction were collected. Spectroscopic analysis: m/z (intensity, %): 294 (M+, 100), 206 (25), 150 (11); IR (KBr, νmax, cm-1): 1623 (C N), 1514 and 1470 (N—C—S), 1181 (Si—N), 714 and 710 (Si—C); 1H NMR (C6D6/THF, 1:1, δ, p.p.m.): AA'BB' 7.26 (m, H4, H7), 7.04 (m, H5, H6), 0.73 (s, HMe); 13C NMR (δ, p.p.m.): 182.3, (C2), 112.2 (C4, C7), 122.6 (C5, C6), 2.5 (CMe). Elemental analysis, calculated for C13H22N2SSi2: C 53.01, H 7.53, N 9.51, S 10.89%; found: C 53.03, H 7.60, N 9.60, S 10.69%.

Compound (3) was obtained from the partial hydrolysis of (2); both (2) and (3) are readily hydrolysed under atmospheric conditions. This compound was not analysed by spectroscopic techniques. However, crystals of (3) suitable for X-ray diffraction were obtained from a hexane solution and a single crystal immersed in oil was analysed.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were included in geometrically calculated positions, riding on the C or N atom to which they were bonded. C—H distances were restrained to 0.93 (aromatic) or 0.96 Å (methyl) and the N—H bond length was restrained to 0.86 Å. H-atom displacement parameters were set at Uiso(H) = 1.5Ueq(C) for methyl H atoms and at 1.2Ueq(C,N) otherwise.

Results and discussion top

Compound (2) crystallizes in the orthorhombic space group P212121. The average N1—Si1—Me10,11,12 angle is 109.0 (2)° and the average N1—Si1—Me13,14,15 angle is 109.1 (2)°. The Si—N distances of 1.809 (3) and 1.803 (3) Å are slightly longer than those reported previously for 1,3-bis­(tri­methyl­silyl)imidazolidin-2-one [1.739 (7) Å] and 4-methyl-1,3-bis­(tri­methyl­silyl)imidazolidin-2-one [1.745 (3) Å] (Szalay et al.,2005), which might be caused by the difference in electronegativity between O and S atoms.

Compound (3) crystallizes with two independent molecules in the asymmetric unit in the monoclinic space group P21/c. The average N1—Si1—Me20,21,22 angle is 108.49 (12)° and average N11—Si2—Me23,24,25 angle is 108.66 (12)°. The Si—N distances are 1.817 (2) and 1.804 (2) Å.

Overall, compounds (2) and (3) have very similar structures, which are shown in Figs. 1 and 2, respectively. Selected bond lengths and angles are listed in Tables 2 and 3, respectively. The average C—Si bond length for both compounds is 1.847 (3) Å and the average C—Si—C angle is 109.5 (2)°, in agreement with sp3 hybridization on the Si atoms. These values agree with those in similar structures reported previously (Wagler et al., 2010).

The CS distances for compounds (2) and (3) range from 1.669 (4) to 1.675 (2) Å. The average N1,3—C2S1 angle is 125.0 (3)° for (2) and the average N1,11—C2,12S12 angle is 126.9 (18)° for (3). These angles agree with the sp2-hybridization of the C and S atoms, typical of thio­urea groups (Wagler et al., 2010). The S atom of (3) has a slight displacement from the benzimidazole molecular plane of 0.007 (1) Å, whereas in (2) the S atom is out of the plane by 0.155 (2) Å. This displacement could be caused by noncovalent intra­molecular inter­actions between the S-atom nucleus and both Si atoms or the methyl H atoms and the S atom. Compound (2) presents four noncovalent C—H···S inter­actions (Table 4), with C···S distances ranging from 2.77 to 2.96 Å and angles ranging from 122 to 125°, which amount to less than the sum of the van der Waals radii of S and H atoms (3.25 Å; [Standard reference?]).

Another noncovalent intra­molecular inter­action (Table 5) was observed in (3), viz. C21—H21···S1, with a C···S distance of 2.83 Å and an angle of 125.5°, similar to that observed in (2).

Comparing the structures of (2) and (3), it becomes obvious that the fused rings in (2) are not completely flat. Specifically, the thio­urea unit composed of atoms N1/C2/N3/S1 is offset from the molecular plane defined by the benzene ring. This is a consequence of the intra­molecular C—H···S noncovalent inter­actions present in the system.

Fig. 3(a) shows the spiral arrangement of (2), which forms a linking inter­action between molecules through the imidazole ring (C10—H10A···Cg1 = 2.94 Å; Cg1 is the centroid of the imidazole ring) and the benzene ring [C10—H10B···Cg2 = 2.83 Å; Cg2 is the centroid of the benzene ring at (x - 1/2, -y + 3/2, -z)]. These inter­actions form a helicoidal repeat unit of 10.03 Å, which extends along the crystallographic a axis. Fig. 3(b) presents the helix overlap of this system. A third inter­action, C13—H13···π(x + 1/2, -y + 1/2, -z), has a C···π distance of 2.77 Å, which further supports the helicoidal arrangement.

Molecules A and B of (3) are auto-assembled by N—H···S [N3—H3···S2 = 2.52 Å and N13—H13···S1 = 2.45 Å; symmetry code (1 - x, 1 - y, -z)] inter­actions. This arrangement forms a cyclical system with an R22(8) hydrogen-bonding pattern (Bernstein et al., 1995) (Fig. 4). Furthermore, ππ inter­actions between the imidazole and benzene rings are observed in the dimerization of the compound and extend along [Should this be in?] the ab plane (Fig. 4). The distance between the ring centroids in these inter­actions is 3.64 Å [symmetry code (-x + 1, -y + 1, -z)]. Another similar arrangement propagates in the opposite direction [A plane does not have a direction] of this plane, as shown in Fig. 4. There is an additional inter­molecular C20—H20B···π(imidazole ring) inter­action of 3.03 Å [symmetry code (-x + 1, y + 1/2, -z + 1/2)] which strengthens the crystalline arrangement of (3).

Final sentence to tie the paper together, highlighting the differences between the compounds?

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XPMA (Zsolnai, 1997); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (2), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (3), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level.
[Figure 3] Fig. 3. (a) The spiral arrangement for (2) and (b) the overlap of the helix along the direction of the a axis.
[Figure 4] Fig. 4. (a) The crystal packing diagram of (3), along the direction of the ab plane. (b) A detailed view of the formation of the R22(8) hydrogen-bonding motif and the ππ stacking interactions. [Where is the origin in part (a)?]
(2) 1,3-Bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione top
Crystal data top
C13H22N2SSi2Dx = 1.131 Mg m3
Mr = 294.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 600 reflections
a = 10.0302 (3) Åθ = 20–25°
b = 10.6172 (3) ŵ = 0.31 mm1
c = 16.2428 (6) ÅT = 293 K
V = 1729.74 (10) Å3Prism, colourless
Z = 40.25 × 0.20 × 0.10 × 0.15 (radius) mm
F(000) = 632
Data collection top
Nonius Kappa CCD area-detector
diffractometer
3889 independent reflections
Radiation source: fine-focus sealed tube2472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 3 pixels mm-1θmax = 27.4°, θmin = 3.8°
ω scansh = 1212
Absorption correction: for a sphere
Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol. II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification.
k = 1213
Tmin = 0.861, Tmax = 0.862l = 2020
15678 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0297P)2 + 0.4977P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.048(Δ/σ)max < 0.001
wR(F2) = 0.104Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.20 e Å3
3889 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
164 parametersExtinction coefficient: 0.008 (2)
0 restraintsAbsolute structure: Flack x parameter determined using 838 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.01 (7)
Crystal data top
C13H22N2SSi2V = 1729.74 (10) Å3
Mr = 294.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0302 (3) ŵ = 0.31 mm1
b = 10.6172 (3) ÅT = 293 K
c = 16.2428 (6) Å0.25 × 0.20 × 0.10 × 0.15 (radius) mm
Data collection top
Nonius Kappa CCD area-detector
diffractometer
3889 independent reflections
Absorption correction: for a sphere
Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol. II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification.
2472 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.064
15678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.20 e Å3
3889 reflectionsAbsolute structure: Flack x parameter determined using 838 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
164 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.40978 (12)0.83025 (11)0.87960 (8)0.0615 (3)
Si20.81188 (12)1.15207 (13)0.98310 (9)0.0735 (4)
S10.68527 (14)0.98333 (17)0.83494 (7)0.0965 (6)
N10.5113 (3)0.9147 (3)0.95331 (19)0.0481 (8)
N30.6713 (3)1.0480 (3)0.99562 (19)0.0522 (8)
C90.5940 (4)1.0147 (4)1.0649 (2)0.0514 (9)
C80.4962 (4)0.9315 (3)1.0387 (2)0.0485 (9)
C70.4107 (4)0.8755 (4)1.0949 (3)0.0668 (12)
H70.34660.81781.07800.080*
C20.6206 (4)0.9823 (4)0.9296 (2)0.0525 (9)
C40.6060 (5)1.0450 (5)1.1472 (3)0.0802 (15)
H40.67181.10031.16520.096*
C50.5186 (6)0.9917 (7)1.2017 (3)0.1007 (19)
H50.52371.01281.25720.121*
C60.4237 (6)0.9077 (6)1.1759 (3)0.0923 (17)
H60.36670.87171.21450.111*
C140.9616 (4)1.0580 (6)0.9550 (4)0.0990 (19)
H14A1.03671.11320.94820.148*
H14B0.98020.99820.99780.148*
H14C0.94521.01400.90430.148*
C120.3532 (5)0.9393 (5)0.7986 (3)0.1019 (19)
H12A0.29940.89440.75960.153*
H12B0.30151.00570.82300.153*
H12C0.42920.97470.77110.153*
C130.7699 (6)1.2751 (5)0.9077 (5)0.134 (3)
H13A0.84471.33060.90100.201*
H13B0.74881.23670.85590.201*
H13C0.69451.32220.92700.201*
C110.5048 (7)0.6943 (5)0.8405 (4)0.122 (2)
H11A0.45150.64900.80130.184*
H11B0.58490.72340.81430.184*
H11C0.52740.63970.88550.184*
C100.2582 (5)0.7739 (6)0.9326 (4)0.114 (2)
H10A0.20310.72880.89430.172*
H10B0.28300.71900.97700.172*
H10C0.20970.84460.95400.172*
C150.8462 (6)1.2293 (6)1.0833 (4)0.124 (2)
H15A0.92091.28521.07750.186*
H15B0.76931.27651.10020.186*
H15C0.86621.16641.12390.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0585 (7)0.0565 (7)0.0696 (8)0.0086 (6)0.0095 (6)0.0071 (6)
Si20.0477 (6)0.0730 (8)0.0999 (10)0.0160 (6)0.0084 (7)0.0001 (7)
S10.0760 (8)0.1618 (15)0.0517 (6)0.0372 (10)0.0097 (6)0.0012 (8)
N10.0434 (16)0.0495 (18)0.052 (2)0.0058 (14)0.0010 (15)0.0006 (14)
N30.0455 (16)0.0559 (19)0.055 (2)0.0098 (14)0.0040 (16)0.0011 (15)
C90.045 (2)0.061 (2)0.048 (2)0.008 (2)0.0043 (18)0.0040 (19)
C80.043 (2)0.051 (2)0.052 (2)0.0071 (18)0.0027 (19)0.0041 (18)
C70.055 (2)0.074 (3)0.072 (3)0.004 (2)0.013 (2)0.013 (2)
C20.046 (2)0.062 (2)0.050 (2)0.0074 (18)0.0001 (17)0.003 (2)
C40.065 (3)0.115 (4)0.061 (3)0.004 (3)0.011 (2)0.017 (3)
C50.082 (4)0.175 (6)0.046 (3)0.023 (4)0.002 (3)0.003 (4)
C60.073 (3)0.142 (5)0.061 (3)0.012 (4)0.014 (3)0.021 (3)
C140.050 (3)0.129 (5)0.118 (5)0.004 (3)0.001 (3)0.002 (4)
C120.105 (4)0.103 (4)0.098 (4)0.024 (3)0.045 (3)0.018 (3)
C130.096 (4)0.095 (4)0.212 (8)0.027 (3)0.011 (5)0.063 (5)
C110.139 (5)0.100 (4)0.129 (5)0.029 (4)0.026 (5)0.054 (4)
C100.085 (4)0.126 (5)0.132 (5)0.057 (4)0.011 (4)0.001 (4)
C150.098 (4)0.127 (5)0.148 (6)0.045 (4)0.001 (4)0.057 (4)
Geometric parameters (Å, º) top
Si1—N11.809 (3)C5—H50.9300
Si1—C111.842 (5)C6—H60.9300
Si1—C121.842 (5)C14—H14A0.9600
Si1—C101.847 (5)C14—H14B0.9600
Si2—N31.803 (3)C14—H14C0.9600
Si2—C131.839 (6)C12—H12A0.9600
Si2—C151.854 (6)C12—H12B0.9600
Si2—C141.861 (5)C12—H12C0.9600
S1—C21.669 (4)C13—H13A0.9600
N1—C21.366 (4)C13—H13B0.9600
N1—C81.406 (5)C13—H13C0.9600
N3—C21.376 (5)C11—H11A0.9600
N3—C91.412 (5)C11—H11B0.9600
C9—C41.381 (5)C11—H11C0.9600
C9—C81.387 (5)C10—H10A0.9600
C8—C71.387 (5)C10—H10B0.9600
C7—C61.366 (7)C10—H10C0.9600
C7—H70.9300C15—H15A0.9600
C4—C51.369 (7)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.370 (8)
N1—Si1—C11109.0 (2)C5—C6—H6119.2
N1—Si1—C12109.53 (19)Si2—C14—H14A109.5
C11—Si1—C12113.9 (3)Si2—C14—H14B109.5
N1—Si1—C10108.4 (2)H14A—C14—H14B109.5
C11—Si1—C10109.4 (3)Si2—C14—H14C109.5
C12—Si1—C10106.4 (3)H14A—C14—H14C109.5
N3—Si2—C13109.4 (2)H14B—C14—H14C109.5
N3—Si2—C15108.5 (2)Si1—C12—H12A109.5
C13—Si2—C15108.2 (3)Si1—C12—H12B109.5
N3—Si2—C14109.3 (2)H12A—C12—H12B109.5
C13—Si2—C14113.7 (3)Si1—C12—H12C109.5
C15—Si2—C14107.7 (3)H12A—C12—H12C109.5
C2—N1—C8107.3 (3)H12B—C12—H12C109.5
C2—N1—Si1121.7 (3)Si2—C13—H13A109.5
C8—N1—Si1130.9 (3)Si2—C13—H13B109.5
C2—N3—C9106.9 (3)H13A—C13—H13B109.5
C2—N3—Si2120.8 (3)Si2—C13—H13C109.5
C9—N3—Si2132.3 (2)H13A—C13—H13C109.5
C4—C9—C8120.5 (4)H13B—C13—H13C109.5
C4—C9—N3131.7 (4)Si1—C11—H11A109.5
C8—C9—N3107.7 (3)Si1—C11—H11B109.5
C7—C8—C9120.6 (4)H11A—C11—H11B109.5
C7—C8—N1131.4 (4)Si1—C11—H11C109.5
C9—C8—N1107.9 (3)H11A—C11—H11C109.5
C6—C7—C8117.9 (5)H11B—C11—H11C109.5
C6—C7—H7121.1Si1—C10—H10A109.5
C8—C7—H7121.1Si1—C10—H10B109.5
N1—C2—N3110.1 (3)H10A—C10—H10B109.5
N1—C2—S1125.1 (3)Si1—C10—H10C109.5
N3—C2—S1124.8 (3)H10A—C10—H10C109.5
C5—C4—C9118.3 (5)H10B—C10—H10C109.5
C5—C4—H4120.8Si2—C15—H15A109.5
C9—C4—H4120.8Si2—C15—H15B109.5
C4—C5—C6121.1 (5)H15A—C15—H15B109.5
C4—C5—H5119.5Si2—C15—H15C109.5
C6—C5—H5119.5H15A—C15—H15C109.5
C7—C6—C5121.6 (5)H15B—C15—H15C109.5
C7—C6—H6119.2
C11—Si1—N1—C270.3 (4)C2—N1—C8—C7172.9 (4)
C12—Si1—N1—C255.0 (4)Si1—N1—C8—C710.2 (6)
C10—Si1—N1—C2170.7 (3)C2—N1—C8—C92.8 (4)
C11—Si1—N1—C8113.2 (4)Si1—N1—C8—C9174.1 (3)
C12—Si1—N1—C8121.5 (4)C9—C8—C7—C61.8 (6)
C10—Si1—N1—C85.8 (4)N1—C8—C7—C6177.1 (4)
C13—Si2—N3—C259.4 (4)C8—N1—C2—N33.7 (4)
C15—Si2—N3—C2177.2 (4)Si1—N1—C2—N3173.6 (2)
C14—Si2—N3—C265.7 (4)C8—N1—C2—S1175.3 (3)
C13—Si2—N3—C9121.0 (4)Si1—N1—C2—S17.5 (5)
C15—Si2—N3—C93.2 (4)C9—N3—C2—N13.1 (4)
C14—Si2—N3—C9113.9 (4)Si2—N3—C2—N1177.2 (2)
C2—N3—C9—C4174.9 (5)C9—N3—C2—S1175.9 (3)
Si2—N3—C9—C44.8 (7)Si2—N3—C2—S13.9 (5)
C2—N3—C9—C81.2 (4)C8—C9—C4—C50.5 (7)
Si2—N3—C9—C8179.1 (3)N3—C9—C4—C5176.2 (4)
C4—C9—C8—C71.3 (6)C9—C4—C5—C61.7 (8)
N3—C9—C8—C7175.3 (3)C8—C7—C6—C50.6 (8)
C4—C9—C8—N1177.6 (4)C4—C5—C6—C71.2 (9)
N3—C9—C8—N11.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···S10.962.963.564 (7)122
C12—H12C···S10.962.773.415 (5)125
C13—H13B···S10.962.793.423 (7)125
C14—H14C···S10.962.863.480 (5)123
(3) 1-Trimethylsilyl-1H-benzimidazole-2(3H)-thione top
Crystal data top
C10H14N2SSiF(000) = 944
Mr = 222.38Dx = 1.204 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8057 (2) ÅCell parameters from 60 reflections
b = 15.8032 (4) Åθ = 20–25°
c = 15.8658 (5) ŵ = 0.33 mm1
β = 93.859 (1)°T = 293 K
V = 2453.01 (11) Å3Block, colourless
Z = 80.20 × 0.20 × 0.15 × 0.15 (radius) mm
Data collection top
Nonius Kappa CCD area-detector
diffractometer
5554 independent reflections
Radiation source: fine-focus sealed tube3199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 3 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 1212
Absorption correction: for a sphere
Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol.II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification.
k = 2020
Tmin = 0.861, Tmax = 0.862l = 2019
29355 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2886P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.021
5554 reflectionsΔρmax = 0.21 e Å3
259 parametersΔρmin = 0.24 e Å3
Crystal data top
C10H14N2SSiV = 2453.01 (11) Å3
Mr = 222.38Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.8057 (2) ŵ = 0.33 mm1
b = 15.8032 (4) ÅT = 293 K
c = 15.8658 (5) Å0.20 × 0.20 × 0.15 × 0.15 (radius) mm
β = 93.859 (1)°
Data collection top
Nonius Kappa CCD area-detector
diffractometer
5554 independent reflections
Absorption correction: for a sphere
Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol.II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification.
3199 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.096
29355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
5554 reflectionsΔρmin = 0.24 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82440 (7)0.33390 (5)0.08409 (5)0.0743 (3)
Si10.72585 (7)0.27663 (5)0.10559 (5)0.0593 (2)
N10.62117 (19)0.33350 (12)0.02544 (12)0.0516 (5)
N30.5713 (2)0.40073 (13)0.09430 (13)0.0567 (5)
H30.57880.42200.14370.068*
C20.6702 (3)0.35663 (16)0.05052 (16)0.0540 (6)
C40.3314 (3)0.44625 (17)0.06900 (19)0.0649 (7)
H40.31380.47500.11970.078*
C50.2354 (3)0.44054 (19)0.0107 (2)0.0740 (8)
H50.15010.46520.02220.089*
C60.2631 (3)0.3988 (2)0.0649 (2)0.0743 (8)
H60.19580.39660.10350.089*
C70.3879 (3)0.35996 (18)0.08536 (18)0.0656 (7)
H70.40530.33190.13650.079*
C80.4853 (2)0.36489 (15)0.02638 (16)0.0515 (6)
C90.4568 (2)0.40705 (15)0.04922 (16)0.0518 (6)
C200.7631 (3)0.17130 (18)0.06240 (19)0.0724 (8)
H20A0.69520.13170.07820.109*
H20B0.85170.15290.08460.109*
H20C0.76180.17450.00190.109*
C210.8813 (3)0.3392 (2)0.1347 (2)0.0952 (11)
H21A0.85570.39310.15660.143*
H21B0.93200.34750.08560.143*
H21C0.93710.30940.17700.143*
C220.6279 (4)0.2639 (3)0.19972 (19)0.0971 (12)
H22A0.68460.23780.24410.146*
H22B0.54960.22880.18610.146*
H22C0.59830.31830.21810.146*
S20.41465 (7)0.49235 (5)0.27755 (4)0.0645 (2)
Si20.25642 (8)0.35791 (5)0.40605 (5)0.0638 (2)
N110.17856 (19)0.44585 (13)0.34850 (13)0.0530 (5)
N130.15541 (19)0.54650 (13)0.25194 (13)0.0542 (5)
H130.17440.58240.21370.065*
C120.2474 (2)0.49487 (15)0.29285 (15)0.0498 (6)
C140.0965 (3)0.57291 (19)0.25713 (19)0.0715 (8)
H140.10330.61560.21670.086*
C150.2088 (3)0.5458 (2)0.2971 (2)0.0868 (10)
H150.29320.57110.28410.104*
C160.1981 (3)0.4822 (3)0.3559 (2)0.0965 (11)
H160.27620.46440.38100.116*
C170.0746 (3)0.4436 (2)0.3789 (2)0.0837 (10)
H170.06890.40080.41920.100*
C180.0396 (2)0.47021 (17)0.34055 (16)0.0563 (6)
C190.0272 (2)0.53378 (17)0.27982 (16)0.0549 (6)
C230.2899 (5)0.2784 (2)0.3261 (3)0.1273 (15)
H23A0.36740.29550.29640.191*
H23B0.21130.27320.28700.191*
H23C0.30850.22490.35310.191*
C240.4101 (4)0.3910 (3)0.4689 (3)0.1213 (16)
H24A0.42330.35520.51770.182*
H24B0.39990.44860.48670.182*
H24C0.48780.38650.43550.182*
C250.1363 (3)0.3166 (3)0.4803 (2)0.1084 (13)
H250.18280.27700.51810.163*
H25B0.06170.28870.44940.163*
H25C0.10170.36250.51220.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0615 (4)0.0868 (6)0.0762 (5)0.0191 (4)0.0171 (3)0.0267 (4)
Si10.0585 (4)0.0614 (5)0.0576 (4)0.0110 (3)0.0009 (3)0.0068 (3)
N10.0481 (11)0.0519 (12)0.0544 (12)0.0052 (9)0.0019 (9)0.0042 (10)
N30.0563 (12)0.0593 (13)0.0539 (12)0.0033 (10)0.0012 (10)0.0097 (10)
C20.0541 (14)0.0513 (15)0.0561 (15)0.0025 (11)0.0001 (11)0.0025 (12)
C40.0563 (16)0.0571 (17)0.0787 (19)0.0055 (13)0.0155 (14)0.0023 (14)
C50.0488 (16)0.0658 (18)0.106 (2)0.0088 (13)0.0080 (16)0.0126 (17)
C60.0494 (16)0.081 (2)0.094 (2)0.0030 (14)0.0121 (15)0.0082 (18)
C70.0565 (16)0.0690 (18)0.0720 (18)0.0012 (13)0.0105 (13)0.0003 (14)
C80.0479 (14)0.0443 (13)0.0614 (15)0.0002 (11)0.0029 (11)0.0041 (12)
C90.0470 (14)0.0442 (14)0.0632 (15)0.0010 (10)0.0046 (11)0.0055 (11)
C200.0755 (19)0.0620 (18)0.080 (2)0.0176 (14)0.0106 (15)0.0116 (15)
C210.081 (2)0.101 (3)0.098 (2)0.0015 (19)0.0279 (18)0.003 (2)
C220.103 (2)0.123 (3)0.068 (2)0.044 (2)0.0187 (17)0.0232 (19)
S20.0470 (4)0.0746 (5)0.0727 (5)0.0043 (3)0.0094 (3)0.0152 (4)
Si20.0542 (4)0.0568 (5)0.0798 (5)0.0029 (3)0.0002 (4)0.0199 (4)
N110.0459 (11)0.0509 (12)0.0621 (12)0.0029 (9)0.0030 (9)0.0092 (10)
N130.0502 (12)0.0541 (13)0.0586 (12)0.0003 (10)0.0058 (9)0.0118 (10)
C120.0482 (13)0.0468 (14)0.0540 (14)0.0013 (11)0.0011 (11)0.0000 (11)
C140.0561 (17)0.081 (2)0.0753 (19)0.0097 (14)0.0088 (14)0.0132 (16)
C150.0458 (16)0.115 (3)0.099 (2)0.0122 (17)0.0009 (15)0.012 (2)
C160.0466 (17)0.135 (3)0.109 (3)0.0011 (18)0.0124 (16)0.030 (2)
C170.0556 (17)0.100 (3)0.096 (2)0.0059 (16)0.0103 (15)0.0340 (19)
C180.0456 (14)0.0609 (16)0.0620 (15)0.0030 (12)0.0008 (11)0.0045 (13)
C190.0461 (14)0.0594 (16)0.0587 (15)0.0018 (11)0.0003 (11)0.0020 (12)
C230.173 (4)0.061 (2)0.149 (4)0.020 (2)0.021 (3)0.001 (2)
C240.077 (2)0.158 (4)0.124 (3)0.029 (2)0.032 (2)0.056 (3)
C250.080 (2)0.116 (3)0.129 (3)0.001 (2)0.011 (2)0.069 (3)
Geometric parameters (Å, º) top
S1—C21.676 (3)S2—C121.675 (2)
Si1—N11.817 (2)Si2—N111.804 (2)
Si1—C221.841 (3)Si2—C241.827 (3)
Si1—C201.846 (3)Si2—C231.830 (4)
Si1—C211.850 (3)Si2—C251.841 (3)
N1—C21.377 (3)N11—C121.384 (3)
N1—C81.423 (3)N11—C181.413 (3)
N3—C21.348 (3)N13—C121.350 (3)
N3—C91.374 (3)N13—C191.375 (3)
N3—H30.8600N13—H130.8600
C4—C51.366 (4)C14—C151.375 (4)
C4—C91.394 (3)C14—C191.388 (4)
C4—H40.9300C14—H140.9300
C5—C61.380 (4)C15—C161.371 (5)
C5—H50.9300C15—H150.9300
C6—C71.388 (4)C16—C171.383 (4)
C6—H60.9300C16—H160.9300
C7—C81.384 (4)C17—C181.375 (4)
C7—H70.9300C17—H170.9300
C8—C91.384 (3)C18—C191.392 (3)
C20—H20A0.9600C23—H23A0.9600
C20—H20B0.9600C23—H23B0.9600
C20—H20C0.9600C23—H23C0.9600
C21—H21A0.9600C24—H24A0.9600
C21—H21B0.9600C24—H24B0.9600
C21—H21C0.9600C24—H24C0.9600
C22—H22A0.9600C25—H250.9600
C22—H22B0.9600C25—H25B0.9600
C22—H22C0.9600C25—H25C0.9600
N1—Si1—C22108.72 (12)N11—Si2—C24111.21 (15)
N1—Si1—C20107.62 (12)N11—Si2—C23105.51 (15)
C22—Si1—C20109.24 (16)C24—Si2—C23113.3 (2)
N1—Si1—C21109.12 (13)N11—Si2—C25109.27 (13)
C22—Si1—C21108.81 (18)C24—Si2—C25106.95 (19)
C20—Si1—C21113.23 (16)C23—Si2—C25110.6 (2)
C2—N1—C8107.39 (19)C12—N11—C18107.40 (19)
C2—N1—Si1122.00 (16)C12—N11—Si2123.12 (16)
C8—N1—Si1130.56 (17)C18—N11—Si2128.88 (17)
C2—N3—C9110.7 (2)C12—N13—C19110.6 (2)
C2—N3—H3124.6C12—N13—H13124.7
C9—N3—H3124.6C19—N13—H13124.7
N3—C2—N1107.9 (2)N13—C12—N11107.9 (2)
N3—C2—S1125.48 (19)N13—C12—S2125.02 (19)
N1—C2—S1126.65 (18)N11—C12—S2127.12 (18)
C5—C4—C9117.1 (3)C15—C14—C19117.0 (3)
C5—C4—H4121.4C15—C14—H14121.5
C9—C4—H4121.4C19—C14—H14121.5
C4—C5—C6121.1 (3)C16—C15—C14121.0 (3)
C4—C5—H5119.5C16—C15—H15119.5
C6—C5—H5119.5C14—C15—H15119.5
C5—C6—C7122.2 (3)C15—C16—C17121.9 (3)
C5—C6—H6118.9C15—C16—H16119.1
C7—C6—H6118.9C17—C16—H16119.1
C8—C7—C6117.1 (3)C18—C17—C16118.3 (3)
C8—C7—H7121.5C18—C17—H17120.9
C6—C7—H7121.5C16—C17—H17120.9
C9—C8—C7120.3 (2)C17—C18—C19119.4 (2)
C9—C8—N1107.1 (2)C17—C18—N11133.3 (3)
C7—C8—N1132.6 (2)C19—C18—N11107.3 (2)
N3—C9—C8107.0 (2)N13—C19—C14130.8 (2)
N3—C9—C4130.9 (3)N13—C19—C18106.8 (2)
C8—C9—C4122.2 (3)C14—C19—C18122.4 (2)
Si1—C20—H20A109.5Si2—C23—H23A109.5
Si1—C20—H20B109.5Si2—C23—H23B109.5
H20A—C20—H20B109.5H23A—C23—H23B109.5
Si1—C20—H20C109.5Si2—C23—H23C109.5
H20A—C20—H20C109.5H23A—C23—H23C109.5
H20B—C20—H20C109.5H23B—C23—H23C109.5
Si1—C21—H21A109.5Si2—C24—H24A109.5
Si1—C21—H21B109.5Si2—C24—H24B109.5
H21A—C21—H21B109.5H24A—C24—H24B109.5
Si1—C21—H21C109.5Si2—C24—H24C109.5
H21A—C21—H21C109.5H24A—C24—H24C109.5
H21B—C21—H21C109.5H24B—C24—H24C109.5
Si1—C22—H22A109.5Si2—C25—H25109.5
Si1—C22—H22B109.5Si2—C25—H25B109.5
H22A—C22—H22B109.5H25—C25—H25B109.5
Si1—C22—H22C109.5Si2—C25—H25C109.5
H22A—C22—H22C109.5H25—C25—H25C109.5
H22B—C22—H22C109.5H25B—C25—H25C109.5
C22—Si1—N1—C2176.3 (2)C24—Si2—N11—C1256.7 (3)
C20—Si1—N1—C265.5 (2)C23—Si2—N11—C1266.5 (2)
C21—Si1—N1—C257.8 (2)C25—Si2—N11—C12174.5 (2)
C22—Si1—N1—C81.1 (3)C24—Si2—N11—C18133.4 (3)
C20—Si1—N1—C8117.1 (2)C23—Si2—N11—C18103.4 (3)
C21—Si1—N1—C8119.6 (2)C25—Si2—N11—C1815.6 (3)
C9—N3—C2—N10.4 (3)C19—N13—C12—N110.8 (3)
C9—N3—C2—S1179.14 (18)C19—N13—C12—S2179.11 (18)
C8—N1—C2—N30.6 (3)C18—N11—C12—N130.5 (3)
Si1—N1—C2—N3177.32 (16)Si2—N11—C12—N13171.28 (16)
C8—N1—C2—S1178.90 (19)C18—N11—C12—S2179.38 (19)
Si1—N1—C2—S13.2 (3)Si2—N11—C12—S28.8 (3)
C9—C4—C5—C61.0 (4)C19—C14—C15—C160.8 (5)
C4—C5—C6—C70.7 (5)C14—C15—C16—C171.3 (6)
C5—C6—C7—C80.2 (4)C15—C16—C17—C180.5 (6)
C6—C7—C8—C90.0 (4)C16—C17—C18—C190.7 (5)
C6—C7—C8—N1180.0 (3)C16—C17—C18—N11179.8 (3)
C2—N1—C8—C90.6 (2)C12—N11—C18—C17179.6 (3)
Si1—N1—C8—C9177.06 (17)Si2—N11—C18—C178.5 (5)
C2—N1—C8—C7179.3 (3)C12—N11—C18—C190.1 (3)
Si1—N1—C8—C73.0 (4)Si2—N11—C18—C19171.09 (18)
C2—N3—C9—C80.0 (3)C12—N13—C19—C14178.8 (3)
C2—N3—C9—C4180.0 (3)C12—N13—C19—C180.7 (3)
C7—C8—C9—N3179.6 (2)C15—C14—C19—N13179.9 (3)
N1—C8—C9—N30.4 (2)C15—C14—C19—C180.4 (4)
C7—C8—C9—C40.4 (4)C17—C18—C19—N13179.2 (3)
N1—C8—C9—C4179.7 (2)N11—C18—C19—N130.4 (3)
C5—C4—C9—N3179.1 (3)C17—C18—C19—C141.2 (4)
C5—C4—C9—C80.8 (4)N11—C18—C19—C14179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S2i0.862.523.374 (2)170
N13—H13···S1i0.862.453.282 (2)164
C21—H21B···S10.962.833.480 (4)126
Symmetry code: (i) x+1, y+1, z.

Experimental details

(2)(3)
Crystal data
Chemical formulaC13H22N2SSi2C10H14N2SSi
Mr294.56222.38
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/c
Temperature (K)293293
a, b, c (Å)10.0302 (3), 10.6172 (3), 16.2428 (6)9.8057 (2), 15.8032 (4), 15.8658 (5)
α, β, γ (°)90, 90, 9090, 93.859 (1), 90
V3)1729.74 (10)2453.01 (11)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.310.33
Crystal size (mm)0.25 × 0.20 × 0.10 × 0.15 (radius)0.20 × 0.20 × 0.15 × 0.15 (radius)
Data collection
DiffractometerNonius Kappa CCD area-detector
diffractometer
Nonius Kappa CCD area-detector
diffractometer
Absorption correctionFor a sphere
Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol. II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification.
For a sphere
Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol.II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification.
Tmin, Tmax0.861, 0.8620.861, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
15678, 3889, 2472 29355, 5554, 3199
Rint0.0640.096
(sin θ/λ)max1)0.6480.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.104, 1.01 0.049, 0.138, 1.00
No. of reflections38895554
No. of parameters164259
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.200.21, 0.24
Absolute structureFlack x parameter determined using 838 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)?
Absolute structure parameter0.01 (7)?

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XPMA (Zsolnai, 1997).

Selected geometric parameters (Å, º) for (2) top
Si1—N11.809 (3)Si2—C131.839 (6)
Si1—C111.842 (5)Si2—C151.854 (6)
Si1—C121.842 (5)Si2—C141.861 (5)
Si1—C101.847 (5)S1—C21.669 (4)
Si2—N31.803 (3)
N1—Si1—C11109.0 (2)N3—Si2—C14109.3 (2)
N1—Si1—C12109.53 (19)C13—Si2—C14113.7 (3)
C11—Si1—C12113.9 (3)C15—Si2—C14107.7 (3)
N1—Si1—C10108.4 (2)C2—N1—Si1121.7 (3)
C11—Si1—C10109.4 (3)C8—N1—Si1130.9 (3)
C12—Si1—C10106.4 (3)C2—N3—Si2120.8 (3)
N3—Si2—C13109.4 (2)C9—N3—Si2132.3 (2)
N3—Si2—C15108.5 (2)N1—C2—S1125.1 (3)
C13—Si2—C15108.2 (3)N3—C2—S1124.8 (3)
C11—Si1—N1—C270.3 (4)C14—Si2—N3—C9113.9 (4)
C12—Si1—N1—C255.0 (4)Si2—N3—C9—C44.8 (7)
C10—Si1—N1—C2170.7 (3)Si2—N3—C9—C8179.1 (3)
C11—Si1—N1—C8113.2 (4)Si1—N1—C8—C710.2 (6)
C12—Si1—N1—C8121.5 (4)Si1—N1—C8—C9174.1 (3)
C10—Si1—N1—C85.8 (4)Si1—N1—C2—N3173.6 (2)
C13—Si2—N3—C259.4 (4)C8—N1—C2—S1175.3 (3)
C15—Si2—N3—C2177.2 (4)Si1—N1—C2—S17.5 (5)
C14—Si2—N3—C265.7 (4)Si2—N3—C2—N1177.2 (2)
C13—Si2—N3—C9121.0 (4)C9—N3—C2—S1175.9 (3)
C15—Si2—N3—C93.2 (4)Si2—N3—C2—S13.9 (5)
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···S10.962.963.564 (7)122.4
C12—H12C···S10.962.773.415 (5)125.1
C13—H13B···S10.962.793.423 (7)124.6
C14—H14C···S10.962.863.480 (5)123.3
Selected geometric parameters (Å, º) for (3) top
S1—C21.676 (3)S2—C121.675 (2)
Si1—N11.817 (2)Si2—N111.804 (2)
Si1—C221.841 (3)Si2—C241.827 (3)
Si1—C201.846 (3)Si2—C231.830 (4)
Si1—C211.850 (3)Si2—C251.841 (3)
N1—Si1—C22108.72 (12)N11—Si2—C24111.21 (15)
N1—Si1—C20107.62 (12)N11—Si2—C23105.51 (15)
C22—Si1—C20109.24 (16)C24—Si2—C23113.3 (2)
N1—Si1—C21109.12 (13)N11—Si2—C25109.27 (13)
C22—Si1—C21108.81 (18)C24—Si2—C25106.95 (19)
C20—Si1—C21113.23 (16)C23—Si2—C25110.6 (2)
C2—N1—Si1122.00 (16)C12—N11—Si2123.12 (16)
C8—N1—Si1130.56 (17)C18—N11—Si2128.88 (17)
N3—C2—S1125.48 (19)N13—C12—S2125.02 (19)
N1—C2—S1126.65 (18)N11—C12—S2127.12 (18)
C22—Si1—N1—C2176.3 (2)C24—Si2—N11—C1256.7 (3)
C20—Si1—N1—C265.5 (2)C23—Si2—N11—C1266.5 (2)
C21—Si1—N1—C257.8 (2)C25—Si2—N11—C12174.5 (2)
C22—Si1—N1—C81.1 (3)C24—Si2—N11—C18133.4 (3)
C20—Si1—N1—C8117.1 (2)C23—Si2—N11—C18103.4 (3)
C21—Si1—N1—C8119.6 (2)C25—Si2—N11—C1815.6 (3)
C9—N3—C2—S1179.14 (18)C19—N13—C12—S2179.11 (18)
Si1—N1—C2—N3177.32 (16)Si2—N11—C12—N13171.28 (16)
C8—N1—C2—S1178.90 (19)C18—N11—C12—S2179.38 (19)
Si1—N1—C2—S13.2 (3)Si2—N11—C12—S28.8 (3)
Si1—N1—C8—C9177.06 (17)Si2—N11—C18—C178.5 (5)
Si1—N1—C8—C73.0 (4)Si2—N11—C18—C19171.09 (18)
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S2i0.862.523.374 (2)170.0
N13—H13···S1i0.862.453.282 (2)164.4
C21—H21B···S10.962.833.480 (4)125.5
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

JPM is grateful for Scholarship CVU 269487. Financial support by CONACyT (grant No. 130381) and CINVESTAV, México, is acknowledged.

References

First citationAkkurt, M., Küçükbay, H., Sireci, N. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2718–o2719.  CSD CrossRef IUCr Journals Google Scholar
First citationAnandarajagopal, K., Tiwari, R. N., Venkateshan, N., Vinotha Pooshan, G. & Promwichit, P. (2010). J. Chem. Pharm. Res. 2(3), 230–236.  Google Scholar
First citationBakhareva, E., Voronkov, M., Sorokin, M., Lopyrev, V., Seredenin, S. & Gaidarov, G. M. (1996). Pharm. Chem. J. 30, 89–91.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationColvin, E. W. (1981). Silicon in Organic Synthesis, ch. 19. London: Butterworth and Co.  Google Scholar
First citationDe Almeida, M. V., Cardoso, S. H., De Assis, J. V. & De Souza, M. V. N. (2007). J. Sulfur Chem. 28, 17–22.  CrossRef CAS Google Scholar
First citationDesai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271–8279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationGardiner, J. & Loyns, C. (1995). Tetrahedron, 51, 11515–11530.  CSD CrossRef CAS Web of Science Google Scholar
First citationGhose, S. & Gilchrist, T. L. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 775–780.  CrossRef Web of Science Google Scholar
First citationLukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMor, M., Bordi, F., Silva, C., Rivara, S., Zuliani, V., Vacondio, F., Rivara, M., Barocelli, E., Bertoni, S., Ballabeni, V., Magnanini, F., Impicciatore, M. & Plazzi, P. V. (2004). Bioorg. Med. Chem. 12, 663–674.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationO'Sullivan, D. G. & Wallis, A. K. (1972). J. Med. Chem. 15, 103–104.  CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShravankumar, K., Ranjith, K., Prasad, G., Niranjan, T., Srinivas, N., Mohan, R., Hanmanthu, G., Mukkanti, K., Ravinder, V. & Chandra, S. (2013). Bioorg. Med. Chem. Lett. 23, 1306–1309.  Web of Science PubMed Google Scholar
First citationSzalay, R., Pongor, G., Harmat, V., Böcskei, Z. & Knausz, D. (2005). J. Organomet. Chem. 690, 1498–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationWagler, J., Heine, T. & Hill, F. A. (2010). Organometallics, 29, 5607–5613.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, P., Terefenko, E., Kern, J., Fensome, A., Trybulski, E., Unwalla, R., Wrobel, J., Lockhead, S., Zhu, Y., Cohen, J., LaCava, M., Winneker, R. & Zhang, Z. (2007). Bioorg. Med. Chem. 15, 6556–6564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds