research papers
Aminosilanes derived from 1H-benzimidazole-2(3H)-thione
aFacultad de Ciencias Químicas, Universidad de Colima, Carretera Coquimatlán-Colima, Coquimatlán Colima 28400, Mexico, bUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, México DF 07340, Mexico, cDepartamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México DF 07000, Mexico, and dBarrio La Laguna Ticomán, México DF 07340, Mexico
*Correspondence e-mail: aaramos@ucol.mx
Two new molecular structures, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, C13H22N2SSi2, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, C10H14N2SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π interactions between the centroid of the benzmidazole system and the SiMe3 groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R22(8) rings via N—H⋯S interactions, along with parallel π–π interactions between imidazole and benzene rings.
1. Introduction
1H-Benzimidazole-2(3H)-thione, (1) (see Scheme 1), is a planar molecule with two substitutable acidic H atoms. The N atoms of this molecule have demonstrated the ability to form Lewis acid–base coordination compounds. Under basic conditions, the corresponding salt of (1) has been shown to react with p-block elements (O'Sullivan & Wallis, 1972).
The 1H-benzimidazole-2(3H)-thione heterocycle has been found in compounds with biological activity, such as progesterone agonists (Zhang et al., 2007). Antinematode activity was evaluated for {[(1H-benzimidazol-2-yl)thio]acetyl}piperazine (Mavrova et al., 2010), while 2-(alkylthio)benzimidazole with a β-lactam ring presented antibacterial and antifungal activities (Desai & Desai, 2006). Isomeric 2-(methylthio)benzimidazole compounds were synthesized as acyclic analogues of the HIV-1 RT inhibitor ring system (Gardiner & Loyns, 1995). More recently, isoxazole–mercaptobenzimidazole hybrids have presented analgesic and anti-inflammatory activities (Shravankumar et al., 2013). Furthermore, a wide range of biological activities have been reported for the benzimidazole fragment, such as antifungal, antibacterial, vasodilator, antispasmodic, anti-ulcer (Akkurt et al., 2012), antimicrobial (De Almeida et al., 2007), antihistamine (Mor et al., 2004), neutropic (Bakhareva et al., 1996) and analgesic (Anandarajagopal et al., 2010). Additionally, alkylsilyl-substituted benzimidazole has shown in vitro cytotoxicity, for example, 1-[3-(trimethylsilyl)propyl]benzimidazole inhibits carcinoma S180 tumour (Lukevics et al., 2001). In 2012, 1-{[dimethyl(phenyl)silyl]methyl}-3-(2-phenylethyl)-1-benzimidazol-3-ium bromide monohydrate was synthesized and its elucidated (Akkurt et al., 2012). Silylated compounds are stable at low temperatures and, in some cases, under atmospheric conditions. Aminosilanes are soluble in nonpolar solvents, while the presence of trimethylsilyl groups increases the volatility of the organic fragments, most of which can be distilled without decomposition and, sometimes, even crystallized (Ghose & Gilchrist, 1991). Alkoxysilanes, thiosilanes and aminosilanes are stable at low temperatures, while the last class become unstable under atmospheric conditions (Colvin, 1981).
We report here the crystal structures of two new trimethylsilyl-substituted derivatives of 1H-benzimidazole-2(3H)-thione, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, (3).
2. Experimental
All reagents were purchased from Aldrich and were used as received. All solvents were dried before use. 1H NMR (300.13185 MHz) and 13C NMR (75.47564 MHz) analyses in CDCl3 were performed on a Bruker 300 MHz spectrometer, using TMS as the internal reference. Chemical shifts (δ) are reported in p.p.m. IR spectra were recorded on a Perkin–Elmer FT–IR 1600 spectrophotometer in the 4000–400 cm−1 range. Elemental analyses were performed in a Thermofinniga Flash 112 instrument under standard conditions.
2.1. Synthesis and crystallization
Compound (2) was obtained by mixing 1H-benzimidazole-2(3H)-thione (0.5 g, 3.3 mmol) and chlorotrimethylsilane (0.89 ml, 75.9 mg, 6.9 mmol) in triethylamine (15 ml). The reaction was kept under constant stirring and reflux for 6 h. The resulting compound was a yellow liquid (yield 92%, 1.87 g) which solidified after 24 h. Crystals of (2) suitable for X-ray were collected. MS: m/z (intensity, %): 294 (M+, 100), 206 (25), 150 (11); IR (KBr, νmax, cm−1): 1623 (C=N), 1514 and 1470 (N—C—S), 1181 (Si—N), 714 and 710 (Si—C); 1H NMR (C6D6/THF, 1:1): δ AA′BB′ 7.26 (m, H4, H7), 7.04 (m, H5, H6), 0.73 (s, HMe); 13C NMR: δ 182.3 (C2), 112.2 (C4, C7), 122.6 (C5, C6), 2.5 (CMe). Elemental analysis calculated for C13H22N2SSi2: C 53.01, H 7.53, N 9.51, S 10.89%; found: C 53.03, H 7.60, N 9.60, S 10.69%.
Compound (3) was obtained from the partial hydrolysis of (2); both (2) and (3) are readily hydrolysed under atmospheric conditions. This compound was not analysed by spectroscopic techniques. However, crystals of (3) suitable for X-ray were obtained from a hexane solution and a single crystal immersed in oil was analysed.
2.2. Refinement
Crystal data, data collection and structure . H atoms were included in geometrically calculated positions, riding on the C or N atoms to which they were bonded. C—H distances were restrained to 0.93 (aromatic) or 0.96 Å (methyl) and the N—H bond length was restrained to 0.86 Å. H-atom displacement parameters were set at Uiso(H) = 1.5Ueq(C) for methyl H atoms and at 1.2Ueq(C,N) otherwise.
details are summarized in Table 13. Results and discussion
Compound (2) crystallizes in the orthorhombic P212121. The average N1—Si1—Me10,11,12 angle is 109.0 (2)° and the average N1—Si1—Me13,14,15 angle is 109.1 (2)°. The Si—N distances of 1.809 (3) and 1.803 (3) Å are slightly longer than those reported previously for 1,3-bis(trimethylsilyl)imidazolidin-2-one [1.739 (7) Å] and 4-methyl-1,3-bis(trimethylsilyl)imidazolidin-2-one [1.745 (3) Å] (Szalay et al., 2005), which might be caused by the difference in electronegativities of the O and S atoms.
Compound (3) crystallizes with two independent molecules, A and B, in the in the monoclinic P21/c. The average N1—Si1—Me20,21,22 angle is 108.49 (12)° and the average N11—Si2—Me23,24,25 angle is 108.66 (12)°. The Si—N distances are 1.817 (2) and 1.804 (2) Å.
Overall, compounds (2) and (3) have very similar structures, which are shown in Figs. 1 and 2, respectively. Selected bond lengths and angles are listed in Tables 2 and 3, respectively. The average C—Si bond length for both compounds is 1.847 (3) Å and the average C—Si—C angle is 109.5 (2)°, in agreement with sp3-hybridization of the Si atoms. These values agree with those in similar structures reported previously (Wagler et al., 2010).
|
|
The C=S distances for compounds (2) and (3) range from 1.669 (4) to 1.675 (2) Å. The average N1,3—C2=S1 angle is 125.0 (3)° for (2) and the average N1,11—C2,12=S12 angle is 126.9 (18)° for (3). These angles agree with sp2-hybridization of the C and S atoms which is typical of thiourea groups (Wagler et al., 2010). The S atom of (3) has a slight displacement of 0.007 (1) Å from the benzimidazole molecular plane, whereas in (2), the S atom is out of the plane by 0.155 (2) Å. This displacement could be caused by noncovalent intramolecular interactions between the S-atom nucleus and both Si atoms, or between the methyl H atoms and the S atom. Compound (2) presents four noncovalent C—H⋯S interactions (Table 4), with C⋯S distances ranging from 2.77 to 2.96 Å and angles ranging from 122 to 125°, which amount to less than the sum of the van der Waals radii of S and H atoms (3.25 Å; Bondi, 1964).
|
Another noncovalent intramolecular interaction (Table 5) was observed in (3), viz. C21—H21⋯S1, with a C⋯S distance of 2.83 Å and an angle of 126°, similar to that observed in (2).
|
Comparing the structures of (2) and (3), it becomes obvious that the fused rings in (2) are not completely flat. Specifically, the thiourea unit composed of atoms N1/C2/N3/S1 is offset from the molecular plane defined by the benzene ring. This is a consequence of the intramolecular noncovalent C—H⋯S interactions present in the system.
Fig. 3(a) shows the spiral arrangement of (2), which forms a linking interaction between molecules through the imidazole ring (C10—H10A⋯Cg1 = 2.94 Å; Cg1 is the centroid of the imidazole ring) and the benzene ring [C10—H10B⋯Cg2 = 2.83 Å; Cg2 is the centroid of the benzene ring at (x − , −y + , −z)]. These interactions form a helicoidal repeat unit of 10.03 Å, which extends along the crystallographic a axis. Fig. 3(b) presents the helix overlap of this system. A third interaction, viz. C13—H13⋯π(x + , −y + , −z), has a C⋯π distance of 2.77 Å, which further supports the helicoidal arrangement.
Molecules A and B of (3) are auto-assembled by N—H⋯S interactions (N3—H3⋯S2i = 2.52 Å and N13—H13⋯S1i = 2.45 Å; see Table 5 for symmetry code). This arrangement forms a cyclic system with an (8) hydrogen-bonding pattern (Bernstein et al., 1995) (Fig. 4). Furthermore, π–π interactions between the imidazole and benzene rings are observed in the dimerization of the compound and extend in the ab plane (Fig. 4). The distance between the ring centroids in these interactions is 3.64 Å (symmetry code: −x + 1, −y + 1, −z). There is an additional intermolecular C20—H20B⋯π(imidazole ring) interaction of 3.03 Å (symmetry code: −x + 1, y + , −z + ) which strengthens the crystalline arrangement of (3).
As can be seen, the structures of (2) and (3) have similar parameters around the silyl–amine bond, but while (3) is a dimer formed by classical hydrogen bonding, the structure of (2) is a helix supported by nonclassical interactions.
Supporting information
10.1107/S2053229615014503/fn3201sup1.cif
contains datablocks 2, 3, global. DOI:Structure factors: contains datablock 2. DOI: 10.1107/S2053229615014503/fn32012sup2.hkl
Structure factors: contains datablock 3. DOI: 10.1107/S2053229615014503/fn32013sup3.hkl
Supporting information file. DOI: 10.1107/S2053229615014503/fn32012sup4.cml
Supporting information file. DOI: 10.1107/S2053229615014503/fn32013sup5.cml
2-Mercaptobenzimidazole (1) (see Scheme 1) is a planar molecule with two substitutable acidic H atoms. The N atoms of this molecule have demonstrated the ability to form Lewis acid–base coordination compounds. Under basic conditions, the corresponding salt of (1) has been shown to react with p-block elements (O'Sullivan & Wallis, 1972).
The 2-mercaptobenzimidazole heterocycle has been found in compounds with biological activity, such as progesterone agonists (Zhang et al., 2007). Antinematode activity was evaluated for (1H-benzimidazol-2-yl)thioacetylpiperazine (Mavrova et al., 2010), while 2-alkylthiobenzimidazole with a β-lactam ring presented antibacterial and antifungal activities (Desai & Desai, 2006). Isomeric 2-methylmercaptobenzimidazole compounds were synthesized as acyclic analogues of the HIV-1 RT inhibitor ring system (Gardiner & Loyns, 1995). More recently, isoxazole–mercaptobenzimidazole hybrids presented analgesic and anti-inflammatory activities (Kankala et al., 2013). Furthermore, the benzimidazole fragment has had a wide range of biological activities reported, such as antifungal, antibacterial, vasodilator, spasmodic, anti-ulcer (Akkurt et al., 2012), antimicrobial (De Almeida et al., 2007), antihistamine (Mor et al., 2004), neutropic (Bakhareva et al., 1996) and analgesic (Anandarajagopal et al., 2010). Additionally, alkylsilyl-substituted benzimidazole has shown in vitro cytotoxicity. 1-[3-(Trimethylsilyl)propyl]benzimidazole inhibits carcinoma S180 tumour (Lukevics et al., 2001). In 2012, 1-{[dimethyl(phenyl)silyl]methyl}-3-(2-phenylethyl)-1-benzimidazol-3-ium bromide monohydrate was synthetsized and its elucidated (Akkurt et al., 2012). Silylated compounds are stable at low temperatures and, in some cases, under atmospheric conditions. Aminosilanes are soluble in nonpolar solvents, while the presence of trimethylsilyl groups increases the volatility of the organic fragments, most of which can be distilled without decomposition and, sometimes, even crystallized (Ghose & Gilchrist, 1991). Alkoxysilanes, thiosilanes and aminosilanes are stable at low temperatures, while the latter become unstable under atmospheric conditions (Colvin, 1981).
We report here the crystal structures of two new trimethylsilyl-substituted derivatives of 1H-benzimidazole-2(3H)-thione, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, (3).
All reagents were purchased from Aldrich and used as received. All solvents were dried before use. 1H NMR (300.13185 MHz) and 13C NMR (75.47564 MHz) analyses in CDCl3 were performed on a Bruker 300 MHz spectrometer, using TMS as the internal reference. Chemical shifts (δ) are reported in p.p.m. IR spectra were recorded on a Perkin–Elmer FT–IR 1600 spectrophotometer in the 4000–400 cm-1 range. Elemental analyses were performed in a Thermofinniga Flash 112 instrument under standard conditions.
Compound (2) was obtained by mixing 1H-benzimidazole-2(3H)-thione (0.5 g, 3.3 mmol) and chlorotrimethylsilane (0.89 ml, 75.9 mg, 6.9 mmol) in triethylamine (15 ml). The reaction was kept under constant stirring and reflux for 6 h. The resulting compound was a yellow liquid (yield 92%, 1.87 g) which solidified after 24 h. Crystals of (2) suitable for X-ray diffraction were collected. Spectroscopic analysis: m/z (intensity, %): 294 (M+, 100), 206 (25), 150 (11); IR (KBr, νmax, cm-1): 1623 (C═ N), 1514 and 1470 (N—C—S), 1181 (Si—N), 714 and 710 (Si—C); 1H NMR (C6D6/THF, 1:1, δ, p.p.m.): AA'BB' 7.26 (m, H4, H7), 7.04 (m, H5, H6), 0.73 (s, HMe); 13C NMR (δ, p.p.m.): 182.3, (C2), 112.2 (C4, C7), 122.6 (C5, C6), 2.5 (CMe). Elemental analysis, calculated for C13H22N2SSi2: C 53.01, H 7.53, N 9.51, S 10.89%; found: C 53.03, H 7.60, N 9.60, S 10.69%.
Compound (3) was obtained from the partial hydrolysis of (2); both (2) and (3) are readily hydrolysed under atmospheric conditions. This compound was not analysed by spectroscopic techniques. However, crystals of (3) suitable for X-ray diffraction were obtained from a hexane solution and a single crystal immersed in oil was analysed.
Crystal data, data collection and structure
details are summarized in Table 1. H atoms were included in geometrically calculated positions, riding on the C or N atom to which they were bonded. C—H distances were restrained to 0.93 (aromatic) or 0.96 Å (methyl) and the N—H bond length was restrained to 0.86 Å. H-atom displacement parameters were set at Uiso(H) = 1.5Ueq(C) for methyl H atoms and at 1.2Ueq(C,N) otherwise.Compound (2) crystallizes in the orthorhombic
P212121. The average N1—Si1—Me10,11,12 angle is 109.0 (2)° and the average N1—Si1—Me13,14,15 angle is 109.1 (2)°. The Si—N distances of 1.809 (3) and 1.803 (3) Å are slightly longer than those reported previously for 1,3-bis(trimethylsilyl)imidazolidin-2-one [1.739 (7) Å] and 4-methyl-1,3-bis(trimethylsilyl)imidazolidin-2-one [1.745 (3) Å] (Szalay et al.,2005), which might be caused by the difference in between O and S atoms.Compound (3) crystallizes with two independent molecules in the
in the monoclinic P21/c. The average N1—Si1—Me20,21,22 angle is 108.49 (12)° and average N11—Si2—Me23,24,25 angle is 108.66 (12)°. The Si—N distances are 1.817 (2) and 1.804 (2) Å.Overall, compounds (2) and (3) have very similar structures, which are shown in Figs. 1 and 2, respectively. Selected bond lengths and angles are listed in Tables 2 and 3, respectively. The average C—Si bond length for both compounds is 1.847 (3) Å and the average C—Si—C angle is 109.5 (2)°, in agreement with sp3
on the Si atoms. These values agree with those in similar structures reported previously (Wagler et al., 2010).The C═S distances for compounds (2) and (3) range from 1.669 (4) to 1.675 (2) Å. The average N1,3—C2═S1 angle is 125.0 (3)° for (2) and the average N1,11—C2,12═S12 angle is 126.9 (18)° for (3). These angles agree with the sp2-hybridization of the C and S atoms, typical of thiourea groups (Wagler et al., 2010). The S atom of (3) has a slight displacement from the benzimidazole molecular plane of 0.007 (1) Å, whereas in (2) the S atom is out of the plane by 0.155 (2) Å. This displacement could be caused by noncovalent intramolecular interactions between the S-atom nucleus and both Si atoms or the methyl H atoms and the S atom. Compound (2) presents four noncovalent C—H···S interactions (Table 4), with C···S distances ranging from 2.77 to 2.96 Å and angles ranging from 122 to 125°, which amount to less than the sum of the van der Waals radii of S and H atoms (3.25 Å; [Standard reference?]).
Another noncovalent intramolecular interaction (Table 5) was observed in (3), viz. C21—H21···S1, with a C···S distance of 2.83 Å and an angle of 125.5°, similar to that observed in (2).
Comparing the structures of (2) and (3), it becomes obvious that the fused rings in (2) are not completely flat. Specifically, the thiourea unit composed of atoms N1/C2/N3/S1 is offset from the molecular plane defined by the benzene ring. This is a consequence of the intramolecular C—H···S noncovalent interactions present in the system.
Fig. 3(a) shows the spiral arrangement of (2), which forms a linking interaction between molecules through the imidazole ring (C10—H10A···Cg1 = 2.94 Å; Cg1 is the centroid of the imidazole ring) and the benzene ring [C10—H10B···Cg2 = 2.83 Å; Cg2 is the centroid of the benzene ring at (x - 1/2, -y + 3/2, -z)]. These interactions form a helicoidal repeat unit of 10.03 Å, which extends along the crystallographic a axis. Fig. 3(b) presents the helix overlap of this system. A third interaction, C13—H13···π(x + 1/2, -y + 1/2, -z), has a C···π distance of 2.77 Å, which further supports the helicoidal arrangement.
Molecules A and B of (3) are auto-assembled by N—H···S [N3—H3···S2 = 2.52 Å and N13—H13···S1 = 2.45 Å; symmetry code (1 - x, 1 - y, -z)] interactions. This arrangement forms a cyclical system with an R22(8) hydrogen-bonding pattern (Bernstein et al., 1995) (Fig. 4). Furthermore, π–π interactions between the imidazole and benzene rings are observed in the dimerization of the compound and extend along [Should this be in?] the ab plane (Fig. 4). The distance between the ring centroids in these interactions is 3.64 Å [symmetry code (-x + 1, -y + 1, -z)]. Another similar arrangement propagates in the opposite direction [A plane does not have a direction] of this plane, as shown in Fig. 4. There is an additional intermolecular C20—H20B···π(imidazole ring) interaction of 3.03 Å [symmetry code (-x + 1, y + 1/2, -z + 1/2)] which strengthens the crystalline arrangement of (3).
Final sentence to tie the paper together, highlighting the differences between the compounds?
For both compounds, data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XPMA (Zsolnai, 1997); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The molecular structure of compound (2), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. | |
Fig. 2. The molecular structure of compound (3), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. | |
Fig. 3. (a) The spiral arrangement for (2) and (b) the overlap of the helix along the direction of the a axis. | |
Fig. 4. (a) The crystal packing diagram of (3), along the direction of the ab plane. (b) A detailed view of the formation of the R22(8) hydrogen-bonding motif and the π–π stacking interactions. [Where is the origin in part (a)?] |
C13H22N2SSi2 | Dx = 1.131 Mg m−3 |
Mr = 294.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 600 reflections |
a = 10.0302 (3) Å | θ = 20–25° |
b = 10.6172 (3) Å | µ = 0.31 mm−1 |
c = 16.2428 (6) Å | T = 293 K |
V = 1729.74 (10) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.20 × 0.10 × 0.15 (radius) mm |
F(000) = 632 |
Nonius Kappa CCD area-detector diffractometer | 3889 independent reflections |
Radiation source: fine-focus sealed tube | 2472 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
Detector resolution: 3 pixels mm-1 | θmax = 27.4°, θmin = 3.8° |
ω scans | h = −12→12 |
Absorption correction: for a sphere Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol. II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification. | k = −12→13 |
Tmin = 0.861, Tmax = 0.862 | l = −20→20 |
15678 measured reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0297P)2 + 0.4977P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.048 | (Δ/σ)max < 0.001 |
wR(F2) = 0.104 | Δρmax = 0.17 e Å−3 |
S = 1.01 | Δρmin = −0.20 e Å−3 |
3889 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
164 parameters | Extinction coefficient: 0.008 (2) |
0 restraints | Absolute structure: Flack x parameter determined using 838 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.01 (7) |
C13H22N2SSi2 | V = 1729.74 (10) Å3 |
Mr = 294.56 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 10.0302 (3) Å | µ = 0.31 mm−1 |
b = 10.6172 (3) Å | T = 293 K |
c = 16.2428 (6) Å | 0.25 × 0.20 × 0.10 × 0.15 (radius) mm |
Nonius Kappa CCD area-detector diffractometer | 3889 independent reflections |
Absorption correction: for a sphere Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol. II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification. | 2472 reflections with I > 2σ(I) |
Tmin = 0.861, Tmax = 0.862 | Rint = 0.064 |
15678 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.104 | Δρmax = 0.17 e Å−3 |
S = 1.01 | Δρmin = −0.20 e Å−3 |
3889 reflections | Absolute structure: Flack x parameter determined using 838 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
164 parameters | Absolute structure parameter: 0.01 (7) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.40978 (12) | 0.83025 (11) | 0.87960 (8) | 0.0615 (3) | |
Si2 | 0.81188 (12) | 1.15207 (13) | 0.98310 (9) | 0.0735 (4) | |
S1 | 0.68527 (14) | 0.98333 (17) | 0.83494 (7) | 0.0965 (6) | |
N1 | 0.5113 (3) | 0.9147 (3) | 0.95331 (19) | 0.0481 (8) | |
N3 | 0.6713 (3) | 1.0480 (3) | 0.99562 (19) | 0.0522 (8) | |
C9 | 0.5940 (4) | 1.0147 (4) | 1.0649 (2) | 0.0514 (9) | |
C8 | 0.4962 (4) | 0.9315 (3) | 1.0387 (2) | 0.0485 (9) | |
C7 | 0.4107 (4) | 0.8755 (4) | 1.0949 (3) | 0.0668 (12) | |
H7 | 0.3466 | 0.8178 | 1.0780 | 0.080* | |
C2 | 0.6206 (4) | 0.9823 (4) | 0.9296 (2) | 0.0525 (9) | |
C4 | 0.6060 (5) | 1.0450 (5) | 1.1472 (3) | 0.0802 (15) | |
H4 | 0.6718 | 1.1003 | 1.1652 | 0.096* | |
C5 | 0.5186 (6) | 0.9917 (7) | 1.2017 (3) | 0.1007 (19) | |
H5 | 0.5237 | 1.0128 | 1.2572 | 0.121* | |
C6 | 0.4237 (6) | 0.9077 (6) | 1.1759 (3) | 0.0923 (17) | |
H6 | 0.3667 | 0.8717 | 1.2145 | 0.111* | |
C14 | 0.9616 (4) | 1.0580 (6) | 0.9550 (4) | 0.0990 (19) | |
H14A | 1.0367 | 1.1132 | 0.9482 | 0.148* | |
H14B | 0.9802 | 0.9982 | 0.9978 | 0.148* | |
H14C | 0.9452 | 1.0140 | 0.9043 | 0.148* | |
C12 | 0.3532 (5) | 0.9393 (5) | 0.7986 (3) | 0.1019 (19) | |
H12A | 0.2994 | 0.8944 | 0.7596 | 0.153* | |
H12B | 0.3015 | 1.0057 | 0.8230 | 0.153* | |
H12C | 0.4292 | 0.9747 | 0.7711 | 0.153* | |
C13 | 0.7699 (6) | 1.2751 (5) | 0.9077 (5) | 0.134 (3) | |
H13A | 0.8447 | 1.3306 | 0.9010 | 0.201* | |
H13B | 0.7488 | 1.2367 | 0.8559 | 0.201* | |
H13C | 0.6945 | 1.3222 | 0.9270 | 0.201* | |
C11 | 0.5048 (7) | 0.6943 (5) | 0.8405 (4) | 0.122 (2) | |
H11A | 0.4515 | 0.6490 | 0.8013 | 0.184* | |
H11B | 0.5849 | 0.7234 | 0.8143 | 0.184* | |
H11C | 0.5274 | 0.6397 | 0.8855 | 0.184* | |
C10 | 0.2582 (5) | 0.7739 (6) | 0.9326 (4) | 0.114 (2) | |
H10A | 0.2031 | 0.7288 | 0.8943 | 0.172* | |
H10B | 0.2830 | 0.7190 | 0.9770 | 0.172* | |
H10C | 0.2097 | 0.8446 | 0.9540 | 0.172* | |
C15 | 0.8462 (6) | 1.2293 (6) | 1.0833 (4) | 0.124 (2) | |
H15A | 0.9209 | 1.2852 | 1.0775 | 0.186* | |
H15B | 0.7693 | 1.2765 | 1.1002 | 0.186* | |
H15C | 0.8662 | 1.1664 | 1.1239 | 0.186* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0585 (7) | 0.0565 (7) | 0.0696 (8) | −0.0086 (6) | −0.0095 (6) | −0.0071 (6) |
Si2 | 0.0477 (6) | 0.0730 (8) | 0.0999 (10) | −0.0160 (6) | −0.0084 (7) | 0.0001 (7) |
S1 | 0.0760 (8) | 0.1618 (15) | 0.0517 (6) | −0.0372 (10) | 0.0097 (6) | 0.0012 (8) |
N1 | 0.0434 (16) | 0.0495 (18) | 0.052 (2) | −0.0058 (14) | 0.0010 (15) | 0.0006 (14) |
N3 | 0.0455 (16) | 0.0559 (19) | 0.055 (2) | −0.0098 (14) | −0.0040 (16) | −0.0011 (15) |
C9 | 0.045 (2) | 0.061 (2) | 0.048 (2) | 0.008 (2) | −0.0043 (18) | −0.0040 (19) |
C8 | 0.043 (2) | 0.051 (2) | 0.052 (2) | 0.0071 (18) | 0.0027 (19) | 0.0041 (18) |
C7 | 0.055 (2) | 0.074 (3) | 0.072 (3) | 0.004 (2) | 0.013 (2) | 0.013 (2) |
C2 | 0.046 (2) | 0.062 (2) | 0.050 (2) | −0.0074 (18) | −0.0001 (17) | 0.003 (2) |
C4 | 0.065 (3) | 0.115 (4) | 0.061 (3) | 0.004 (3) | −0.011 (2) | −0.017 (3) |
C5 | 0.082 (4) | 0.175 (6) | 0.046 (3) | 0.023 (4) | 0.002 (3) | −0.003 (4) |
C6 | 0.073 (3) | 0.142 (5) | 0.061 (3) | 0.012 (4) | 0.014 (3) | 0.021 (3) |
C14 | 0.050 (3) | 0.129 (5) | 0.118 (5) | −0.004 (3) | −0.001 (3) | 0.002 (4) |
C12 | 0.105 (4) | 0.103 (4) | 0.098 (4) | −0.024 (3) | −0.045 (3) | 0.018 (3) |
C13 | 0.096 (4) | 0.095 (4) | 0.212 (8) | −0.027 (3) | −0.011 (5) | 0.063 (5) |
C11 | 0.139 (5) | 0.100 (4) | 0.129 (5) | 0.029 (4) | −0.026 (5) | −0.054 (4) |
C10 | 0.085 (4) | 0.126 (5) | 0.132 (5) | −0.057 (4) | −0.011 (4) | 0.001 (4) |
C15 | 0.098 (4) | 0.127 (5) | 0.148 (6) | −0.045 (4) | −0.001 (4) | −0.057 (4) |
Si1—N1 | 1.809 (3) | C5—H5 | 0.9300 |
Si1—C11 | 1.842 (5) | C6—H6 | 0.9300 |
Si1—C12 | 1.842 (5) | C14—H14A | 0.9600 |
Si1—C10 | 1.847 (5) | C14—H14B | 0.9600 |
Si2—N3 | 1.803 (3) | C14—H14C | 0.9600 |
Si2—C13 | 1.839 (6) | C12—H12A | 0.9600 |
Si2—C15 | 1.854 (6) | C12—H12B | 0.9600 |
Si2—C14 | 1.861 (5) | C12—H12C | 0.9600 |
S1—C2 | 1.669 (4) | C13—H13A | 0.9600 |
N1—C2 | 1.366 (4) | C13—H13B | 0.9600 |
N1—C8 | 1.406 (5) | C13—H13C | 0.9600 |
N3—C2 | 1.376 (5) | C11—H11A | 0.9600 |
N3—C9 | 1.412 (5) | C11—H11B | 0.9600 |
C9—C4 | 1.381 (5) | C11—H11C | 0.9600 |
C9—C8 | 1.387 (5) | C10—H10A | 0.9600 |
C8—C7 | 1.387 (5) | C10—H10B | 0.9600 |
C7—C6 | 1.366 (7) | C10—H10C | 0.9600 |
C7—H7 | 0.9300 | C15—H15A | 0.9600 |
C4—C5 | 1.369 (7) | C15—H15B | 0.9600 |
C4—H4 | 0.9300 | C15—H15C | 0.9600 |
C5—C6 | 1.370 (8) | ||
N1—Si1—C11 | 109.0 (2) | C5—C6—H6 | 119.2 |
N1—Si1—C12 | 109.53 (19) | Si2—C14—H14A | 109.5 |
C11—Si1—C12 | 113.9 (3) | Si2—C14—H14B | 109.5 |
N1—Si1—C10 | 108.4 (2) | H14A—C14—H14B | 109.5 |
C11—Si1—C10 | 109.4 (3) | Si2—C14—H14C | 109.5 |
C12—Si1—C10 | 106.4 (3) | H14A—C14—H14C | 109.5 |
N3—Si2—C13 | 109.4 (2) | H14B—C14—H14C | 109.5 |
N3—Si2—C15 | 108.5 (2) | Si1—C12—H12A | 109.5 |
C13—Si2—C15 | 108.2 (3) | Si1—C12—H12B | 109.5 |
N3—Si2—C14 | 109.3 (2) | H12A—C12—H12B | 109.5 |
C13—Si2—C14 | 113.7 (3) | Si1—C12—H12C | 109.5 |
C15—Si2—C14 | 107.7 (3) | H12A—C12—H12C | 109.5 |
C2—N1—C8 | 107.3 (3) | H12B—C12—H12C | 109.5 |
C2—N1—Si1 | 121.7 (3) | Si2—C13—H13A | 109.5 |
C8—N1—Si1 | 130.9 (3) | Si2—C13—H13B | 109.5 |
C2—N3—C9 | 106.9 (3) | H13A—C13—H13B | 109.5 |
C2—N3—Si2 | 120.8 (3) | Si2—C13—H13C | 109.5 |
C9—N3—Si2 | 132.3 (2) | H13A—C13—H13C | 109.5 |
C4—C9—C8 | 120.5 (4) | H13B—C13—H13C | 109.5 |
C4—C9—N3 | 131.7 (4) | Si1—C11—H11A | 109.5 |
C8—C9—N3 | 107.7 (3) | Si1—C11—H11B | 109.5 |
C7—C8—C9 | 120.6 (4) | H11A—C11—H11B | 109.5 |
C7—C8—N1 | 131.4 (4) | Si1—C11—H11C | 109.5 |
C9—C8—N1 | 107.9 (3) | H11A—C11—H11C | 109.5 |
C6—C7—C8 | 117.9 (5) | H11B—C11—H11C | 109.5 |
C6—C7—H7 | 121.1 | Si1—C10—H10A | 109.5 |
C8—C7—H7 | 121.1 | Si1—C10—H10B | 109.5 |
N1—C2—N3 | 110.1 (3) | H10A—C10—H10B | 109.5 |
N1—C2—S1 | 125.1 (3) | Si1—C10—H10C | 109.5 |
N3—C2—S1 | 124.8 (3) | H10A—C10—H10C | 109.5 |
C5—C4—C9 | 118.3 (5) | H10B—C10—H10C | 109.5 |
C5—C4—H4 | 120.8 | Si2—C15—H15A | 109.5 |
C9—C4—H4 | 120.8 | Si2—C15—H15B | 109.5 |
C4—C5—C6 | 121.1 (5) | H15A—C15—H15B | 109.5 |
C4—C5—H5 | 119.5 | Si2—C15—H15C | 109.5 |
C6—C5—H5 | 119.5 | H15A—C15—H15C | 109.5 |
C7—C6—C5 | 121.6 (5) | H15B—C15—H15C | 109.5 |
C7—C6—H6 | 119.2 | ||
C11—Si1—N1—C2 | 70.3 (4) | C2—N1—C8—C7 | −172.9 (4) |
C12—Si1—N1—C2 | −55.0 (4) | Si1—N1—C8—C7 | 10.2 (6) |
C10—Si1—N1—C2 | −170.7 (3) | C2—N1—C8—C9 | 2.8 (4) |
C11—Si1—N1—C8 | −113.2 (4) | Si1—N1—C8—C9 | −174.1 (3) |
C12—Si1—N1—C8 | 121.5 (4) | C9—C8—C7—C6 | 1.8 (6) |
C10—Si1—N1—C8 | 5.8 (4) | N1—C8—C7—C6 | 177.1 (4) |
C13—Si2—N3—C2 | 59.4 (4) | C8—N1—C2—N3 | −3.7 (4) |
C15—Si2—N3—C2 | 177.2 (4) | Si1—N1—C2—N3 | 173.6 (2) |
C14—Si2—N3—C2 | −65.7 (4) | C8—N1—C2—S1 | 175.3 (3) |
C13—Si2—N3—C9 | −121.0 (4) | Si1—N1—C2—S1 | −7.5 (5) |
C15—Si2—N3—C9 | −3.2 (4) | C9—N3—C2—N1 | 3.1 (4) |
C14—Si2—N3—C9 | 113.9 (4) | Si2—N3—C2—N1 | −177.2 (2) |
C2—N3—C9—C4 | 174.9 (5) | C9—N3—C2—S1 | −175.9 (3) |
Si2—N3—C9—C4 | −4.8 (7) | Si2—N3—C2—S1 | 3.9 (5) |
C2—N3—C9—C8 | −1.2 (4) | C8—C9—C4—C5 | −0.5 (7) |
Si2—N3—C9—C8 | 179.1 (3) | N3—C9—C4—C5 | −176.2 (4) |
C4—C9—C8—C7 | −1.3 (6) | C9—C4—C5—C6 | 1.7 (8) |
N3—C9—C8—C7 | 175.3 (3) | C8—C7—C6—C5 | −0.6 (8) |
C4—C9—C8—N1 | −177.6 (4) | C4—C5—C6—C7 | −1.2 (9) |
N3—C9—C8—N1 | −1.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···S1 | 0.96 | 2.96 | 3.564 (7) | 122 |
C12—H12C···S1 | 0.96 | 2.77 | 3.415 (5) | 125 |
C13—H13B···S1 | 0.96 | 2.79 | 3.423 (7) | 125 |
C14—H14C···S1 | 0.96 | 2.86 | 3.480 (5) | 123 |
C10H14N2SSi | F(000) = 944 |
Mr = 222.38 | Dx = 1.204 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8057 (2) Å | Cell parameters from 60 reflections |
b = 15.8032 (4) Å | θ = 20–25° |
c = 15.8658 (5) Å | µ = 0.33 mm−1 |
β = 93.859 (1)° | T = 293 K |
V = 2453.01 (11) Å3 | Block, colourless |
Z = 8 | 0.20 × 0.20 × 0.15 × 0.15 (radius) mm |
Nonius Kappa CCD area-detector diffractometer | 5554 independent reflections |
Radiation source: fine-focus sealed tube | 3199 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
Detector resolution: 3 pixels mm-1 | θmax = 27.5°, θmin = 2.1° |
ω scans | h = −12→12 |
Absorption correction: for a sphere Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol.II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification. | k = −20→20 |
Tmin = 0.861, Tmax = 0.862 | l = −20→19 |
29355 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2886P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.021 |
5554 reflections | Δρmax = 0.21 e Å−3 |
259 parameters | Δρmin = −0.24 e Å−3 |
C10H14N2SSi | V = 2453.01 (11) Å3 |
Mr = 222.38 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.8057 (2) Å | µ = 0.33 mm−1 |
b = 15.8032 (4) Å | T = 293 K |
c = 15.8658 (5) Å | 0.20 × 0.20 × 0.15 × 0.15 (radius) mm |
β = 93.859 (1)° |
Nonius Kappa CCD area-detector diffractometer | 5554 independent reflections |
Absorption correction: for a sphere Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol.II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification. | 3199 reflections with I > 2σ(I) |
Tmin = 0.861, Tmax = 0.862 | Rint = 0.096 |
29355 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.21 e Å−3 |
5554 reflections | Δρmin = −0.24 e Å−3 |
259 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.82440 (7) | 0.33390 (5) | −0.08409 (5) | 0.0743 (3) | |
Si1 | 0.72585 (7) | 0.27663 (5) | 0.10559 (5) | 0.0593 (2) | |
N1 | 0.62117 (19) | 0.33350 (12) | 0.02544 (12) | 0.0516 (5) | |
N3 | 0.5713 (2) | 0.40073 (13) | −0.09430 (13) | 0.0567 (5) | |
H3 | 0.5788 | 0.4220 | −0.1437 | 0.068* | |
C2 | 0.6702 (3) | 0.35663 (16) | −0.05052 (16) | 0.0540 (6) | |
C4 | 0.3314 (3) | 0.44625 (17) | −0.06900 (19) | 0.0649 (7) | |
H4 | 0.3138 | 0.4750 | −0.1197 | 0.078* | |
C5 | 0.2354 (3) | 0.44054 (19) | −0.0107 (2) | 0.0740 (8) | |
H5 | 0.1501 | 0.4652 | −0.0222 | 0.089* | |
C6 | 0.2631 (3) | 0.3988 (2) | 0.0649 (2) | 0.0743 (8) | |
H6 | 0.1958 | 0.3966 | 0.1035 | 0.089* | |
C7 | 0.3879 (3) | 0.35996 (18) | 0.08536 (18) | 0.0656 (7) | |
H7 | 0.4053 | 0.3319 | 0.1365 | 0.079* | |
C8 | 0.4853 (2) | 0.36489 (15) | 0.02638 (16) | 0.0515 (6) | |
C9 | 0.4568 (2) | 0.40705 (15) | −0.04922 (16) | 0.0518 (6) | |
C20 | 0.7631 (3) | 0.17130 (18) | 0.06240 (19) | 0.0724 (8) | |
H20A | 0.6952 | 0.1317 | 0.0782 | 0.109* | |
H20B | 0.8517 | 0.1529 | 0.0846 | 0.109* | |
H20C | 0.7618 | 0.1745 | 0.0019 | 0.109* | |
C21 | 0.8813 (3) | 0.3392 (2) | 0.1347 (2) | 0.0952 (11) | |
H21A | 0.8557 | 0.3931 | 0.1566 | 0.143* | |
H21B | 0.9320 | 0.3475 | 0.0856 | 0.143* | |
H21C | 0.9371 | 0.3094 | 0.1770 | 0.143* | |
C22 | 0.6279 (4) | 0.2639 (3) | 0.19972 (19) | 0.0971 (12) | |
H22A | 0.6846 | 0.2378 | 0.2441 | 0.146* | |
H22B | 0.5496 | 0.2288 | 0.1861 | 0.146* | |
H22C | 0.5983 | 0.3183 | 0.2181 | 0.146* | |
S2 | 0.41465 (7) | 0.49235 (5) | 0.27755 (4) | 0.0645 (2) | |
Si2 | 0.25642 (8) | 0.35791 (5) | 0.40605 (5) | 0.0638 (2) | |
N11 | 0.17856 (19) | 0.44585 (13) | 0.34850 (13) | 0.0530 (5) | |
N13 | 0.15541 (19) | 0.54650 (13) | 0.25194 (13) | 0.0542 (5) | |
H13 | 0.1744 | 0.5824 | 0.2137 | 0.065* | |
C12 | 0.2474 (2) | 0.49487 (15) | 0.29285 (15) | 0.0498 (6) | |
C14 | −0.0965 (3) | 0.57291 (19) | 0.25713 (19) | 0.0715 (8) | |
H14 | −0.1033 | 0.6156 | 0.2167 | 0.086* | |
C15 | −0.2088 (3) | 0.5458 (2) | 0.2971 (2) | 0.0868 (10) | |
H15 | −0.2932 | 0.5711 | 0.2841 | 0.104* | |
C16 | −0.1981 (3) | 0.4822 (3) | 0.3559 (2) | 0.0965 (11) | |
H16 | −0.2762 | 0.4644 | 0.3810 | 0.116* | |
C17 | −0.0746 (3) | 0.4436 (2) | 0.3789 (2) | 0.0837 (10) | |
H17 | −0.0689 | 0.4008 | 0.4192 | 0.100* | |
C18 | 0.0396 (2) | 0.47021 (17) | 0.34055 (16) | 0.0563 (6) | |
C19 | 0.0272 (2) | 0.53378 (17) | 0.27982 (16) | 0.0549 (6) | |
C23 | 0.2899 (5) | 0.2784 (2) | 0.3261 (3) | 0.1273 (15) | |
H23A | 0.3674 | 0.2955 | 0.2964 | 0.191* | |
H23B | 0.2113 | 0.2732 | 0.2870 | 0.191* | |
H23C | 0.3085 | 0.2249 | 0.3531 | 0.191* | |
C24 | 0.4101 (4) | 0.3910 (3) | 0.4689 (3) | 0.1213 (16) | |
H24A | 0.4233 | 0.3552 | 0.5177 | 0.182* | |
H24B | 0.3999 | 0.4486 | 0.4867 | 0.182* | |
H24C | 0.4878 | 0.3865 | 0.4355 | 0.182* | |
C25 | 0.1363 (3) | 0.3166 (3) | 0.4803 (2) | 0.1084 (13) | |
H25 | 0.1828 | 0.2770 | 0.5181 | 0.163* | |
H25B | 0.0617 | 0.2887 | 0.4494 | 0.163* | |
H25C | 0.1017 | 0.3625 | 0.5122 | 0.163* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0615 (4) | 0.0868 (6) | 0.0762 (5) | 0.0191 (4) | 0.0171 (3) | 0.0267 (4) |
Si1 | 0.0585 (4) | 0.0614 (5) | 0.0576 (4) | 0.0110 (3) | 0.0009 (3) | 0.0068 (3) |
N1 | 0.0481 (11) | 0.0519 (12) | 0.0544 (12) | 0.0052 (9) | 0.0019 (9) | 0.0042 (10) |
N3 | 0.0563 (12) | 0.0593 (13) | 0.0539 (12) | 0.0033 (10) | −0.0012 (10) | 0.0097 (10) |
C2 | 0.0541 (14) | 0.0513 (15) | 0.0561 (15) | 0.0025 (11) | 0.0001 (11) | 0.0025 (12) |
C4 | 0.0563 (16) | 0.0571 (17) | 0.0787 (19) | 0.0055 (13) | −0.0155 (14) | −0.0023 (14) |
C5 | 0.0488 (16) | 0.0658 (18) | 0.106 (2) | 0.0088 (13) | −0.0080 (16) | −0.0126 (17) |
C6 | 0.0494 (16) | 0.081 (2) | 0.094 (2) | 0.0030 (14) | 0.0121 (15) | −0.0082 (18) |
C7 | 0.0565 (16) | 0.0690 (18) | 0.0720 (18) | 0.0012 (13) | 0.0105 (13) | −0.0003 (14) |
C8 | 0.0479 (14) | 0.0443 (13) | 0.0614 (15) | −0.0002 (11) | −0.0029 (11) | −0.0041 (12) |
C9 | 0.0470 (14) | 0.0442 (14) | 0.0632 (15) | −0.0010 (10) | −0.0046 (11) | −0.0055 (11) |
C20 | 0.0755 (19) | 0.0620 (18) | 0.080 (2) | 0.0176 (14) | 0.0106 (15) | 0.0116 (15) |
C21 | 0.081 (2) | 0.101 (3) | 0.098 (2) | 0.0015 (19) | −0.0279 (18) | −0.003 (2) |
C22 | 0.103 (2) | 0.123 (3) | 0.068 (2) | 0.044 (2) | 0.0187 (17) | 0.0232 (19) |
S2 | 0.0470 (4) | 0.0746 (5) | 0.0727 (5) | 0.0043 (3) | 0.0094 (3) | 0.0152 (4) |
Si2 | 0.0542 (4) | 0.0568 (5) | 0.0798 (5) | −0.0029 (3) | −0.0002 (4) | 0.0199 (4) |
N11 | 0.0459 (11) | 0.0509 (12) | 0.0621 (12) | −0.0029 (9) | 0.0030 (9) | 0.0092 (10) |
N13 | 0.0502 (12) | 0.0541 (13) | 0.0586 (12) | −0.0003 (10) | 0.0058 (9) | 0.0118 (10) |
C12 | 0.0482 (13) | 0.0468 (14) | 0.0540 (14) | −0.0013 (11) | 0.0011 (11) | 0.0000 (11) |
C14 | 0.0561 (17) | 0.081 (2) | 0.0753 (19) | 0.0097 (14) | −0.0088 (14) | 0.0132 (16) |
C15 | 0.0458 (16) | 0.115 (3) | 0.099 (2) | 0.0122 (17) | 0.0009 (15) | 0.012 (2) |
C16 | 0.0466 (17) | 0.135 (3) | 0.109 (3) | 0.0011 (18) | 0.0124 (16) | 0.030 (2) |
C17 | 0.0556 (17) | 0.100 (3) | 0.096 (2) | −0.0059 (16) | 0.0103 (15) | 0.0340 (19) |
C18 | 0.0456 (14) | 0.0609 (16) | 0.0620 (15) | −0.0030 (12) | 0.0008 (11) | 0.0045 (13) |
C19 | 0.0461 (14) | 0.0594 (16) | 0.0587 (15) | −0.0018 (11) | −0.0003 (11) | 0.0020 (12) |
C23 | 0.173 (4) | 0.061 (2) | 0.149 (4) | 0.020 (2) | 0.021 (3) | 0.001 (2) |
C24 | 0.077 (2) | 0.158 (4) | 0.124 (3) | −0.029 (2) | −0.032 (2) | 0.056 (3) |
C25 | 0.080 (2) | 0.116 (3) | 0.129 (3) | −0.001 (2) | 0.011 (2) | 0.069 (3) |
S1—C2 | 1.676 (3) | S2—C12 | 1.675 (2) |
Si1—N1 | 1.817 (2) | Si2—N11 | 1.804 (2) |
Si1—C22 | 1.841 (3) | Si2—C24 | 1.827 (3) |
Si1—C20 | 1.846 (3) | Si2—C23 | 1.830 (4) |
Si1—C21 | 1.850 (3) | Si2—C25 | 1.841 (3) |
N1—C2 | 1.377 (3) | N11—C12 | 1.384 (3) |
N1—C8 | 1.423 (3) | N11—C18 | 1.413 (3) |
N3—C2 | 1.348 (3) | N13—C12 | 1.350 (3) |
N3—C9 | 1.374 (3) | N13—C19 | 1.375 (3) |
N3—H3 | 0.8600 | N13—H13 | 0.8600 |
C4—C5 | 1.366 (4) | C14—C15 | 1.375 (4) |
C4—C9 | 1.394 (3) | C14—C19 | 1.388 (4) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C5—C6 | 1.380 (4) | C15—C16 | 1.371 (5) |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C6—C7 | 1.388 (4) | C16—C17 | 1.383 (4) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—C8 | 1.384 (4) | C17—C18 | 1.375 (4) |
C7—H7 | 0.9300 | C17—H17 | 0.9300 |
C8—C9 | 1.384 (3) | C18—C19 | 1.392 (3) |
C20—H20A | 0.9600 | C23—H23A | 0.9600 |
C20—H20B | 0.9600 | C23—H23B | 0.9600 |
C20—H20C | 0.9600 | C23—H23C | 0.9600 |
C21—H21A | 0.9600 | C24—H24A | 0.9600 |
C21—H21B | 0.9600 | C24—H24B | 0.9600 |
C21—H21C | 0.9600 | C24—H24C | 0.9600 |
C22—H22A | 0.9600 | C25—H25 | 0.9600 |
C22—H22B | 0.9600 | C25—H25B | 0.9600 |
C22—H22C | 0.9600 | C25—H25C | 0.9600 |
N1—Si1—C22 | 108.72 (12) | N11—Si2—C24 | 111.21 (15) |
N1—Si1—C20 | 107.62 (12) | N11—Si2—C23 | 105.51 (15) |
C22—Si1—C20 | 109.24 (16) | C24—Si2—C23 | 113.3 (2) |
N1—Si1—C21 | 109.12 (13) | N11—Si2—C25 | 109.27 (13) |
C22—Si1—C21 | 108.81 (18) | C24—Si2—C25 | 106.95 (19) |
C20—Si1—C21 | 113.23 (16) | C23—Si2—C25 | 110.6 (2) |
C2—N1—C8 | 107.39 (19) | C12—N11—C18 | 107.40 (19) |
C2—N1—Si1 | 122.00 (16) | C12—N11—Si2 | 123.12 (16) |
C8—N1—Si1 | 130.56 (17) | C18—N11—Si2 | 128.88 (17) |
C2—N3—C9 | 110.7 (2) | C12—N13—C19 | 110.6 (2) |
C2—N3—H3 | 124.6 | C12—N13—H13 | 124.7 |
C9—N3—H3 | 124.6 | C19—N13—H13 | 124.7 |
N3—C2—N1 | 107.9 (2) | N13—C12—N11 | 107.9 (2) |
N3—C2—S1 | 125.48 (19) | N13—C12—S2 | 125.02 (19) |
N1—C2—S1 | 126.65 (18) | N11—C12—S2 | 127.12 (18) |
C5—C4—C9 | 117.1 (3) | C15—C14—C19 | 117.0 (3) |
C5—C4—H4 | 121.4 | C15—C14—H14 | 121.5 |
C9—C4—H4 | 121.4 | C19—C14—H14 | 121.5 |
C4—C5—C6 | 121.1 (3) | C16—C15—C14 | 121.0 (3) |
C4—C5—H5 | 119.5 | C16—C15—H15 | 119.5 |
C6—C5—H5 | 119.5 | C14—C15—H15 | 119.5 |
C5—C6—C7 | 122.2 (3) | C15—C16—C17 | 121.9 (3) |
C5—C6—H6 | 118.9 | C15—C16—H16 | 119.1 |
C7—C6—H6 | 118.9 | C17—C16—H16 | 119.1 |
C8—C7—C6 | 117.1 (3) | C18—C17—C16 | 118.3 (3) |
C8—C7—H7 | 121.5 | C18—C17—H17 | 120.9 |
C6—C7—H7 | 121.5 | C16—C17—H17 | 120.9 |
C9—C8—C7 | 120.3 (2) | C17—C18—C19 | 119.4 (2) |
C9—C8—N1 | 107.1 (2) | C17—C18—N11 | 133.3 (3) |
C7—C8—N1 | 132.6 (2) | C19—C18—N11 | 107.3 (2) |
N3—C9—C8 | 107.0 (2) | N13—C19—C14 | 130.8 (2) |
N3—C9—C4 | 130.9 (3) | N13—C19—C18 | 106.8 (2) |
C8—C9—C4 | 122.2 (3) | C14—C19—C18 | 122.4 (2) |
Si1—C20—H20A | 109.5 | Si2—C23—H23A | 109.5 |
Si1—C20—H20B | 109.5 | Si2—C23—H23B | 109.5 |
H20A—C20—H20B | 109.5 | H23A—C23—H23B | 109.5 |
Si1—C20—H20C | 109.5 | Si2—C23—H23C | 109.5 |
H20A—C20—H20C | 109.5 | H23A—C23—H23C | 109.5 |
H20B—C20—H20C | 109.5 | H23B—C23—H23C | 109.5 |
Si1—C21—H21A | 109.5 | Si2—C24—H24A | 109.5 |
Si1—C21—H21B | 109.5 | Si2—C24—H24B | 109.5 |
H21A—C21—H21B | 109.5 | H24A—C24—H24B | 109.5 |
Si1—C21—H21C | 109.5 | Si2—C24—H24C | 109.5 |
H21A—C21—H21C | 109.5 | H24A—C24—H24C | 109.5 |
H21B—C21—H21C | 109.5 | H24B—C24—H24C | 109.5 |
Si1—C22—H22A | 109.5 | Si2—C25—H25 | 109.5 |
Si1—C22—H22B | 109.5 | Si2—C25—H25B | 109.5 |
H22A—C22—H22B | 109.5 | H25—C25—H25B | 109.5 |
Si1—C22—H22C | 109.5 | Si2—C25—H25C | 109.5 |
H22A—C22—H22C | 109.5 | H25—C25—H25C | 109.5 |
H22B—C22—H22C | 109.5 | H25B—C25—H25C | 109.5 |
C22—Si1—N1—C2 | 176.3 (2) | C24—Si2—N11—C12 | 56.7 (3) |
C20—Si1—N1—C2 | −65.5 (2) | C23—Si2—N11—C12 | −66.5 (2) |
C21—Si1—N1—C2 | 57.8 (2) | C25—Si2—N11—C12 | 174.5 (2) |
C22—Si1—N1—C8 | −1.1 (3) | C24—Si2—N11—C18 | −133.4 (3) |
C20—Si1—N1—C8 | 117.1 (2) | C23—Si2—N11—C18 | 103.4 (3) |
C21—Si1—N1—C8 | −119.6 (2) | C25—Si2—N11—C18 | −15.6 (3) |
C9—N3—C2—N1 | −0.4 (3) | C19—N13—C12—N11 | 0.8 (3) |
C9—N3—C2—S1 | 179.14 (18) | C19—N13—C12—S2 | −179.11 (18) |
C8—N1—C2—N3 | 0.6 (3) | C18—N11—C12—N13 | −0.5 (3) |
Si1—N1—C2—N3 | −177.32 (16) | Si2—N11—C12—N13 | 171.28 (16) |
C8—N1—C2—S1 | −178.90 (19) | C18—N11—C12—S2 | 179.38 (19) |
Si1—N1—C2—S1 | 3.2 (3) | Si2—N11—C12—S2 | −8.8 (3) |
C9—C4—C5—C6 | 1.0 (4) | C19—C14—C15—C16 | −0.8 (5) |
C4—C5—C6—C7 | −0.7 (5) | C14—C15—C16—C17 | 1.3 (6) |
C5—C6—C7—C8 | 0.2 (4) | C15—C16—C17—C18 | −0.5 (6) |
C6—C7—C8—C9 | 0.0 (4) | C16—C17—C18—C19 | −0.7 (5) |
C6—C7—C8—N1 | −180.0 (3) | C16—C17—C18—N11 | 179.8 (3) |
C2—N1—C8—C9 | −0.6 (2) | C12—N11—C18—C17 | 179.6 (3) |
Si1—N1—C8—C9 | 177.06 (17) | Si2—N11—C18—C17 | 8.5 (5) |
C2—N1—C8—C7 | 179.3 (3) | C12—N11—C18—C19 | 0.1 (3) |
Si1—N1—C8—C7 | −3.0 (4) | Si2—N11—C18—C19 | −171.09 (18) |
C2—N3—C9—C8 | 0.0 (3) | C12—N13—C19—C14 | 178.8 (3) |
C2—N3—C9—C4 | −180.0 (3) | C12—N13—C19—C18 | −0.7 (3) |
C7—C8—C9—N3 | −179.6 (2) | C15—C14—C19—N13 | −179.9 (3) |
N1—C8—C9—N3 | 0.4 (2) | C15—C14—C19—C18 | −0.4 (4) |
C7—C8—C9—C4 | 0.4 (4) | C17—C18—C19—N13 | −179.2 (3) |
N1—C8—C9—C4 | −179.7 (2) | N11—C18—C19—N13 | 0.4 (3) |
C5—C4—C9—N3 | 179.1 (3) | C17—C18—C19—C14 | 1.2 (4) |
C5—C4—C9—C8 | −0.8 (4) | N11—C18—C19—C14 | −179.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···S2i | 0.86 | 2.52 | 3.374 (2) | 170 |
N13—H13···S1i | 0.86 | 2.45 | 3.282 (2) | 164 |
C21—H21B···S1 | 0.96 | 2.83 | 3.480 (4) | 126 |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
(2) | (3) | |
Crystal data | ||
Chemical formula | C13H22N2SSi2 | C10H14N2SSi |
Mr | 294.56 | 222.38 |
Crystal system, space group | Orthorhombic, P212121 | Monoclinic, P21/c |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 10.0302 (3), 10.6172 (3), 16.2428 (6) | 9.8057 (2), 15.8032 (4), 15.8658 (5) |
α, β, γ (°) | 90, 90, 90 | 90, 93.859 (1), 90 |
V (Å3) | 1729.74 (10) | 2453.01 (11) |
Z | 4 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.31 | 0.33 |
Crystal size (mm) | 0.25 × 0.20 × 0.10 × 0.15 (radius) | 0.20 × 0.20 × 0.15 × 0.15 (radius) |
Data collection | ||
Diffractometer | Nonius Kappa CCD area-detector diffractometer | Nonius Kappa CCD area-detector diffractometer |
Absorption correction | For a sphere Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol. II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification. | For a sphere Interpolation using Int. Tables Vol. C (1992) p. 523, Table 6.3.3.3, for values of muR in the range 0–2.5, and Int. Tables Vol.II (1959) p. 302, Table 5.3.6 B, for muR in the range 2.6–10.0. The interpolation procedure of Dwiggins (1975) is used with some modification. |
Tmin, Tmax | 0.861, 0.862 | 0.861, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15678, 3889, 2472 | 29355, 5554, 3199 |
Rint | 0.064 | 0.096 |
(sin θ/λ)max (Å−1) | 0.648 | 0.649 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.104, 1.01 | 0.049, 0.138, 1.00 |
No. of reflections | 3889 | 5554 |
No. of parameters | 164 | 259 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.20 | 0.21, −0.24 |
Absolute structure | Flack x parameter determined using 838 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) | ? |
Absolute structure parameter | 0.01 (7) | ? |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XPMA (Zsolnai, 1997).
Si1—N1 | 1.809 (3) | Si2—C13 | 1.839 (6) |
Si1—C11 | 1.842 (5) | Si2—C15 | 1.854 (6) |
Si1—C12 | 1.842 (5) | Si2—C14 | 1.861 (5) |
Si1—C10 | 1.847 (5) | S1—C2 | 1.669 (4) |
Si2—N3 | 1.803 (3) | ||
N1—Si1—C11 | 109.0 (2) | N3—Si2—C14 | 109.3 (2) |
N1—Si1—C12 | 109.53 (19) | C13—Si2—C14 | 113.7 (3) |
C11—Si1—C12 | 113.9 (3) | C15—Si2—C14 | 107.7 (3) |
N1—Si1—C10 | 108.4 (2) | C2—N1—Si1 | 121.7 (3) |
C11—Si1—C10 | 109.4 (3) | C8—N1—Si1 | 130.9 (3) |
C12—Si1—C10 | 106.4 (3) | C2—N3—Si2 | 120.8 (3) |
N3—Si2—C13 | 109.4 (2) | C9—N3—Si2 | 132.3 (2) |
N3—Si2—C15 | 108.5 (2) | N1—C2—S1 | 125.1 (3) |
C13—Si2—C15 | 108.2 (3) | N3—C2—S1 | 124.8 (3) |
C11—Si1—N1—C2 | 70.3 (4) | C14—Si2—N3—C9 | 113.9 (4) |
C12—Si1—N1—C2 | −55.0 (4) | Si2—N3—C9—C4 | −4.8 (7) |
C10—Si1—N1—C2 | −170.7 (3) | Si2—N3—C9—C8 | 179.1 (3) |
C11—Si1—N1—C8 | −113.2 (4) | Si1—N1—C8—C7 | 10.2 (6) |
C12—Si1—N1—C8 | 121.5 (4) | Si1—N1—C8—C9 | −174.1 (3) |
C10—Si1—N1—C8 | 5.8 (4) | Si1—N1—C2—N3 | 173.6 (2) |
C13—Si2—N3—C2 | 59.4 (4) | C8—N1—C2—S1 | 175.3 (3) |
C15—Si2—N3—C2 | 177.2 (4) | Si1—N1—C2—S1 | −7.5 (5) |
C14—Si2—N3—C2 | −65.7 (4) | Si2—N3—C2—N1 | −177.2 (2) |
C13—Si2—N3—C9 | −121.0 (4) | C9—N3—C2—S1 | −175.9 (3) |
C15—Si2—N3—C9 | −3.2 (4) | Si2—N3—C2—S1 | 3.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···S1 | 0.96 | 2.96 | 3.564 (7) | 122.4 |
C12—H12C···S1 | 0.96 | 2.77 | 3.415 (5) | 125.1 |
C13—H13B···S1 | 0.96 | 2.79 | 3.423 (7) | 124.6 |
C14—H14C···S1 | 0.96 | 2.86 | 3.480 (5) | 123.3 |
S1—C2 | 1.676 (3) | S2—C12 | 1.675 (2) |
Si1—N1 | 1.817 (2) | Si2—N11 | 1.804 (2) |
Si1—C22 | 1.841 (3) | Si2—C24 | 1.827 (3) |
Si1—C20 | 1.846 (3) | Si2—C23 | 1.830 (4) |
Si1—C21 | 1.850 (3) | Si2—C25 | 1.841 (3) |
N1—Si1—C22 | 108.72 (12) | N11—Si2—C24 | 111.21 (15) |
N1—Si1—C20 | 107.62 (12) | N11—Si2—C23 | 105.51 (15) |
C22—Si1—C20 | 109.24 (16) | C24—Si2—C23 | 113.3 (2) |
N1—Si1—C21 | 109.12 (13) | N11—Si2—C25 | 109.27 (13) |
C22—Si1—C21 | 108.81 (18) | C24—Si2—C25 | 106.95 (19) |
C20—Si1—C21 | 113.23 (16) | C23—Si2—C25 | 110.6 (2) |
C2—N1—Si1 | 122.00 (16) | C12—N11—Si2 | 123.12 (16) |
C8—N1—Si1 | 130.56 (17) | C18—N11—Si2 | 128.88 (17) |
N3—C2—S1 | 125.48 (19) | N13—C12—S2 | 125.02 (19) |
N1—C2—S1 | 126.65 (18) | N11—C12—S2 | 127.12 (18) |
C22—Si1—N1—C2 | 176.3 (2) | C24—Si2—N11—C12 | 56.7 (3) |
C20—Si1—N1—C2 | −65.5 (2) | C23—Si2—N11—C12 | −66.5 (2) |
C21—Si1—N1—C2 | 57.8 (2) | C25—Si2—N11—C12 | 174.5 (2) |
C22—Si1—N1—C8 | −1.1 (3) | C24—Si2—N11—C18 | −133.4 (3) |
C20—Si1—N1—C8 | 117.1 (2) | C23—Si2—N11—C18 | 103.4 (3) |
C21—Si1—N1—C8 | −119.6 (2) | C25—Si2—N11—C18 | −15.6 (3) |
C9—N3—C2—S1 | 179.14 (18) | C19—N13—C12—S2 | −179.11 (18) |
Si1—N1—C2—N3 | −177.32 (16) | Si2—N11—C12—N13 | 171.28 (16) |
C8—N1—C2—S1 | −178.90 (19) | C18—N11—C12—S2 | 179.38 (19) |
Si1—N1—C2—S1 | 3.2 (3) | Si2—N11—C12—S2 | −8.8 (3) |
Si1—N1—C8—C9 | 177.06 (17) | Si2—N11—C18—C17 | 8.5 (5) |
Si1—N1—C8—C7 | −3.0 (4) | Si2—N11—C18—C19 | −171.09 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···S2i | 0.86 | 2.52 | 3.374 (2) | 170.0 |
N13—H13···S1i | 0.86 | 2.45 | 3.282 (2) | 164.4 |
C21—H21B···S1 | 0.96 | 2.83 | 3.480 (4) | 125.5 |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
JPM is grateful for Scholarship CVU 269487. Financial support by CONACyT (grant No. 130381) and CINVESTAV, México, is acknowledged.
References
Akkurt, M., Küçükbay, H., Sireci, N. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2718–o2719. CSD CrossRef IUCr Journals Google Scholar
Anandarajagopal, K., Tiwari, R. N., Venkateshan, N., Vinotha Pooshan, G. & Promwichit, P. (2010). J. Chem. Pharm. Res. 2(3), 230–236. Google Scholar
Bakhareva, E., Voronkov, M., Sorokin, M., Lopyrev, V., Seredenin, S. & Gaidarov, G. M. (1996). Pharm. Chem. J. 30, 89–91. CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Colvin, E. W. (1981). Silicon in Organic Synthesis, ch. 19. London: Butterworth and Co. Google Scholar
De Almeida, M. V., Cardoso, S. H., De Assis, J. V. & De Souza, M. V. N. (2007). J. Sulfur Chem. 28, 17–22. CrossRef CAS Google Scholar
Desai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271–8279. Web of Science CrossRef PubMed CAS Google Scholar
Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148. CrossRef IUCr Journals Web of Science Google Scholar
Gardiner, J. & Loyns, C. (1995). Tetrahedron, 51, 11515–11530. CSD CrossRef CAS Web of Science Google Scholar
Ghose, S. & Gilchrist, T. L. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 775–780. CrossRef Web of Science Google Scholar
Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515. Web of Science CrossRef PubMed CAS Google Scholar
Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861. Web of Science CrossRef CAS PubMed Google Scholar
Mor, M., Bordi, F., Silva, C., Rivara, S., Zuliani, V., Vacondio, F., Rivara, M., Barocelli, E., Bertoni, S., Ballabeni, V., Magnanini, F., Impicciatore, M. & Plazzi, P. V. (2004). Bioorg. Med. Chem. 12, 663–674. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
O'Sullivan, D. G. & Wallis, A. K. (1972). J. Med. Chem. 15, 103–104. CAS PubMed Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shravankumar, K., Ranjith, K., Prasad, G., Niranjan, T., Srinivas, N., Mohan, R., Hanmanthu, G., Mukkanti, K., Ravinder, V. & Chandra, S. (2013). Bioorg. Med. Chem. Lett. 23, 1306–1309. Web of Science PubMed Google Scholar
Szalay, R., Pongor, G., Harmat, V., Böcskei, Z. & Knausz, D. (2005). J. Organomet. Chem. 690, 1498–1506. Web of Science CSD CrossRef CAS Google Scholar
Wagler, J., Heine, T. & Hill, F. A. (2010). Organometallics, 29, 5607–5613. Web of Science CSD CrossRef CAS Google Scholar
Zhang, P., Terefenko, E., Kern, J., Fensome, A., Trybulski, E., Unwalla, R., Wrobel, J., Lockhead, S., Zhu, Y., Cohen, J., LaCava, M., Winneker, R. & Zhang, Z. (2007). Bioorg. Med. Chem. 15, 6556–6564. Web of Science CrossRef PubMed CAS Google Scholar
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.