research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two closely related {4-[(N-substituted amino)(di­ethoxyphosphoryl)methyl]phenyl}boronic acids

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Liaoning University, Chongshanzhonglu 66, Shenyang, Liaoning 110036, People's Republic of China
*Correspondence e-mail: chhge@lnu.edu.cn, xd623@sina.com

Edited by U. Englert, RWTH Aachen, Germany (Received 14 September 2016; accepted 9 December 2016; online 1 January 2017)

Organic phospho­nic acids and organic phospho­nic acid esters have been of much inter­est due to their applications in the fields of medicine, agriculture and industrial chemistry. Boronic acids can act as synthetic inter­mediates and building blocks and are used in sensing, protein manipulation, therapeutics, biological labelling and separation. The additional introduction of an amino­phospho­nic acid group into a boronic acid may give new opportunities for application. To study the structure of such multifunctional compounds, we pre­pared two new derivatives which can be easily converted to the corresponding phospho­nic acids. In the title compounds, {4-[(butylamino)(diethoxy­phosphoryl)methyl]phenyl}boronic acid monohydrate, C15H27BNO5P·H2O, (I), and {4-[(diethoxyphosphoryl)(4-nitroanilino)methyl]phenyl}boronic acid, C17H22BN2O7P, (II), three different substituents are attached to a central C—H group, namely 4-boronophenyl, di­eth­oxy­phosphoryl and amine. Compound (I) crystallizes as a monohydrate and OB—H⋯N hydrogen bonds link neighbouring mol­ecules into chains along the [001] direction. The solvent water mol­ecule connects two such chains running in opposite directions. Compound (II) crystallizes as an ansolvate and classical hydrogen bonds result in a layer structure in the (001) plane.

1. Introduction

In recent decades, organic phospho­nic acids and organic phospho­nic acid esters have been of much inter­est due to their applications in the fields of medicine, agriculture and industrial chemistry (Bandekar & Dhadke, 1998[Bandekar, S. V. & Dhadke, P. M. (1998). Talanta, 46, 1181-1186.]; Jia et al., 1988[Jia, D. F., Qiu, L., Yuan, J. B., Yang, J. H., Qian, T. B. & Wang, Z. Y. (1988). Acta Chim. Sin. 46, 433-438.]; Kao et al., 2006[Kao, H. C., Yen, P. S. & Juang, R. S. (2006). Chem. Eng. J. 119, 167-174.]; Stallmach et al., 1994[Stallmach, F., Dietrich, U. & Klose, G. (1994). Chem. Phys. Lipids, 74, 17-23.]; Stock et al., 2005[Stock, N., Guillou, N., Senker, J., Férey, G. & Bein, T. (2005). Z. Anorg. Allg. Chem. 631, 575-581.]; Wu et al., 2013[Wu, D., Sun, Y. & Wang, Q. (2013). J. Hazard. Mater. 260, 409-419.]).

[Scheme 1]

The formation of C—P bonds and the structural characterization of the resulting compounds has also attracted attention (Gaikwad et al., 2011[Gaikwad, D. S., Undale, K. A., Shaikh, T. S. & Pore, D. M. (2011). C. R. Chim. 14, 865-868.]; Angelova et al., 1992[Angelova, O., Macicek, J., Vassilev, N. G., Momchilova, S. & Petrova, J. (1992). J. Crystallogr. Spectrosc. Res. 22, 253-258.]; Oleksyszyn & Subotkowska, 1980[Oleksyszyn, J. & Subotkowska, L. (1980). Synthesis, p. 906.]; Zhang et al., 2005[Zhang, X.-D., Yu, Z., Ma, Y.-C., Zhao, Z. & Zhu, M.-L. (2005). Acta Cryst. E61, o2952-o2954.]). Phospho­nic acid esters are also used in the rapidly developing area of biochemistry. The synthesis of oligonucleotide analogues with an achiral phospho­nic acid ester backbone has been carried out (Peyman et al., 1996[Peyman, A., Uhlmann, E., Wagner, K., Augustin, S., Breipohl, G., Will, D. W., Schäfer, A. & Wallmeier, H. (1996). Angew. Chem. Int. Ed. 35, 2636-2638.]). Amino­phospho­nic acid and its derivatives are commonly known as potential enzyme inhibitors (Beers et al., 1996[Beers, S. A., Schwender, C. F., Loughney, D. A., Malloy, E., Demarest, K. & Jordan, J. (1996). Bioorg. Med. Chem. 4, 1693-1701.]; Pawełczak et al., 1998[Pawełczak, M., Nowak, K. & Kafarski, P. (1998). Phosphorus Sulfur Silicon Relat. Elem. 132, 65-71.]; Vovk et al., 2008[Vovk, A. I., Mischenko, I. M., Tanchuk, V. Y., Kachkovskii, G. A., Sheiko, S. Y., Kolodyazhnyi, O. I. & Kukhar, V. P. (2008). Bioorg. Med. Chem. Lett. 18, 4620-4623.]).

Boronic acids can act as synthetic inter­mediates and building blocks and are used in sensing, protein manipulation, therapeutics, biological labelling and separation (Kubo et al., 2015[Kubo, Y., Nishiyabu, R. & James, T. D. (2015). Chem. Commun. 51, 2005-2020.]; Lacina et al., 2014[Lacina, K., Skládal, P. & James, T. D. (2014). Chem. Cent. J. 8:60.]; Li et al., 2014[Li, X., Liu, H., Qing, G., Wang, S. & Liang, X. (2014). J. Mater. Chem. B, 2, 2276-2281.]; Ma et al., 2013[Ma, H., Ren, H., Meng, S., Yan, Z., Zhao, H., Sun, F. & Zhu, G. (2013). Chem. Commun. 49, 9773-9775.]; Pan et al., 2013[Pan, M., Sun, Y., Zheng, J. & Yang, W. (2013). ACS Appl. Mater. Interfaces, 5, 8351-8358.]; Sun et al., 2016[Sun, X., Zhai, W., Fossey, J. S. & James, T. D. (2016). Chem. Commun. 52, 3456-3469.]; Zhang et al., 2015[Zhang, X., Wang, J., He, X., Chen, L. & Zhang, Y. (2015). ACS Appl. Mater. Interfaces, 7, 24576-24584.]). Boronic acid-modified lipid nanocapsules can be used as a platform for highly efficient inhibitors for the hepatitis C virus (Khanal et al., 2015[Khanal, M., Barras, A., Vausselin, T., Fénéant, L., Boukherroub, R., Siriwardena, A., Dubuisson, J. & Szunerits, S. (2015). Nanoscale, 7, 1392-1402.]).

It has been recognized that the additional introduction of an amino­phospho­nic acid group into a boronic acid may give new opportunities for application. Synthetic (Młynarz et al., 2011[Młynarz, P., Rydzewska, A. & Pokładek, Z. (2011). J. Organomet. Chem. 696, 457-460.]) and property studies (Piergies et al., 2012[Piergies, N., Proniewicz, E., Kudelski, A., Rydzewska, A., Kim, Y., Andrzejak, M. & Proniewicz, L. M. (2012). J. Phys. Chem. A, 116, 10004-10014.]; Proniewicz et al., 2013[Proniewicz, E., Piergies, N., Ozaki, Y., Kim, Y. & Proniewicz, L. M. (2013). Spectrochim. Acta A Mol. Biomol. Spectrosc. 103, 167-172.]) have been performed. Work in this area is in its infancy.

To study the structure of such multifunctional compounds, we prepared two new derivatives which can be easily converted to the corresponding phospho­nic acids, namely {4-[(butylamino)(diethoxyphosphoryl)methyl]phenyl}boronic acid monohydrate, (I), and {4-[(diethoxyphosphoryl)(4-nitroanilino)methyl]phenyl}boronic acid, (II).

2. Experimental

2.1. Synthesis and crystallization

2.1.1. Preparation and spectroscopic data for (I)

A mixture of 4-boronobenzaldehyde (3.0 g, 20 mmol), n-butyl­amine (1.5 g, 20 mmol) and absolute ethanol (30 ml) was refluxed for 12 h. Diethyl phosphate (2.8 g, 20 mmol) was then added dropwise. The resulting solution was refluxed for another 24 h. The volatiles were removed under reduced pressure, resulting in a yellow residue. This crude product was recrystallized from a 1:1 (v/v) water–ethanol mixture to give (I) (yield: 89.3%; m.p. 322–326 K). IR (KBr, cm−1): 3325, 2959, 1610, 1563, 1441, 1409, 1369, 1228, 1056, and 1020. 1H NMR (300 MHz, DMSO-d6): δ 8.010 (1H, s, OH), 7.748, 7.722 (2H, d, J = 7.7 Hz, ArH), 7.357 (2H, d, J = 6.2 Hz, ArH), 4.025 (1H, m, CH), 3.805 (4H, m, CH2), 2.356 (2H, m, CH2), 2.175 (1H, s, NH), 1.282 (7H, m, CH2CH3), 1.044–0.817 (6H, t, J = 7.1 Hz, CH3).

2.1.2. Preparation and spectroscopic data for (II)

Compound (II) was synthesized in a similar manner to (I), except that 4-nitro­aniline was used instead of n-butyl­amine (yield: 76.5%; m.p. 461–463 K). IR (KBr, cm−1): 3415, 3304, 2981, 1842, 1599, 1505, 1414, 1369, 1279, 1047 and 1012. 1H NMR (300 MHz, DMSO-d6): δ 8.068 (2H, s, OH), 7.973 (2H, d, J = 8.9 Hz, ArH), 7.782 (2H, d, J = 7.6 Hz, ArH), 7.536 (2H, d, J = 7.5 Hz, ArH), 6.975 (2H, d, J = 8.9 Hz, ArH), 5.324 (1H, dd, J = 23.9 Hz, J = 9.4 Hz), 4.171–3.686 (4H, m, CH2), 3.424 (1H, d, J = 1.7 Hz, NH), 1.186–1.082 (6H, t, J = 7.0 Hz, CH3).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In (I), carbon-bound H atoms were placed in calculated positions and refined using a riding model, with methyl C—H = 0.96 Å, secondary C—H = 0.97 Å, tertiary C—H = 0.98 Å and aromatic C—H = 0.93 Å, and with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for secondary, tertiary and aromatic H atoms. In (II), carbon-bound H atoms were placed in calculated positions and refined using a riding model, with methyl C—H = 0.98 Å, secondary C—H = 0.99 Å, tertiary C—H = 1.00 Å and aromatic C—H = 0.95 Å, and with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for secondary, tertiary and aromatic H atoms. H atoms bonded to O or N atoms were located in difference Fourier maps and were refined isotropically, with the isotropic displacement parameters coupled to the anisotropic displacement parameters of the parent N atoms or O atoms, i.e. Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Tentative free refinements of their positional coordinates resulted in an unsatisfactory wide range of D—H distances; the bond lengths were therefore restrained to 0.89 (2) Å for N—H and to 0.82 (2) Å for O—H.

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H27BNO5P·H2O C17H22BN2O7P
Mr 361.17 408.14
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbcn
Temperature (K) 295 173
a, b, c (Å) 8.4370 (2), 23.5403 (4), 10.3281 (2) 10.2590 (8), 14.5721 (14), 27.577 (3)
α, β, γ (°) 90, 98.1871 (7), 90 90, 90, 90
V3) 2030.35 (7) 4122.6 (6)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.16 0.17
Crystal size (mm) 0.20 × 0.10 × 0.10 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 73764, 3569, 3198 15530, 3726, 2312
Rint 0.036 0.056
(sin θ/λ)max−1) 0.596 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.172, 1.09 0.060, 0.197, 1.09
No. of reflections 3569 3726
No. of parameters 235 265
No. of restraints 15 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.38 0.61, −0.33
Computer programs: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Bruker, 2010[Bruker (2010). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

For (I), distance restraints of 1.50 (2) Å were employed for the C—C bonds in the phospho­nic ester moiety and for the terminal C—C bond in the butyl group, because unresolved disorder was causing shorter than normal apparent distances between the average positions for these atoms.. For the latter bond, restraints for similar displacement parameters and rigid-bond restraints were imposed to ensure physically reasonable displacement parameters.

3. Results and discussion

3.1. Structure analysis

The asymmetric unit of (I) comprises a single target mol­ecule (Fig. 1[link]) and a cocrystallized water mol­ecule. Hydrogen bonds between the borate group and the amine N atom link the mol­ecules into a one-dimensional chain parallel to the crystallographic c axis. O—H⋯O contacts between two water mol­ecules and two of these chains about a centre of inversion give rise to a ladder-shaped polymer (Fig. 2[link]) based on an R44(8) graph set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Details of the hydrogen-bond inter­actions are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1i 0.82 (2) 2.07 (2) 2.872 (3) 165 (4)
O5—H5⋯O6i 0.80 (2) 2.00 (2) 2.787 (3) 170 (5)
N1—H1A⋯O6 0.89 (2) 2.36 (2) 3.159 (4) 149 (3)
O6—H6A⋯O1 0.83 (2) 1.95 (2) 2.754 (4) 164 (5)
O6—H6B⋯O5ii 0.81 (2) 1.98 (2) 2.775 (4) 168 (5)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+2.
[Figure 1]
Figure 1
The asymmetric unit of (I), with the cocrystallized water mol­ecule omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The double-stranded one-dimensional supra­molecular ribbon in (I). Only H atoms involved in short contacts are shown. Symmetry codes are as given in Table 2[link].

In contrast to (I), compound (II) is an ansolvate in which the asymmetric unit corresponds to a single mol­ecule (Fig. 3[link]). An R22(8) hydrogen-bond motif links mol­ecules into dimers (Fig. 4[link]). Taking into account all hydrogen bonds, a layer structure is generated in the (001) plane. Weaker C—H⋯O inter­actions further connect these sheets into a three-dimensional network. Details of the hydrogen-bond inter­actions are given in Table 3[link].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1i 0.82 (2) 1.85 (2) 2.657 (4) 166 (5)
O4—H4A⋯O5ii 0.83 (2) 1.88 (2) 2.702 (4) 176 (5)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) -x+2, -y+1, -z.
[Figure 3]
Figure 3
A view of the mol­ecule of (II), shown with 30% probability displacement ellipsoids.
[Figure 4]
Figure 4
The hydrogen bonding in (II). Only H atoms involved in short contacts are shown. Symmetry codes are as given in Table 3[link].

In both (I) and (II), the central C—H group is bonded to a 4-boronophenyl group and a di­eth­oxy­phosphoryl group; the third substituent is a butyl­amino group in the case of (I) and a 4-nitro­anilino group in the case of (II). Geometric parameters in these compounds are comparable to those of the previously reported ethyl [(n-butyl­ammonio)(2-hy­droxy­phen­yl)meth­yl]phospho­nate (Zhang et al., 2007[Zhang, X., Ge, C., Zhang, X. & Liu, Q. (2007). Acta Cryst. E63, o4778.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker, 2010). Software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) for (1); SHELXTL (Bruker, 2010) for (2).

(1) {4-[(Butylamino)(diethoxyphosphoryl)methyl]phenyl}boronic acid monohydrate top
Crystal data top
C15H27BNO5P·H2OF(000) = 776
Mr = 361.17Dx = 1.182 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4370 (2) ÅCell parameters from 1321 reflections
b = 23.5403 (4) Åθ = 2.2–25.0°
c = 10.3281 (2) ŵ = 0.16 mm1
β = 98.1871 (7)°T = 295 K
V = 2030.35 (7) Å3Sheet, white
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.036
φ and ω scansθmax = 25.1°, θmin = 3.0°
73764 measured reflectionsh = 109
3569 independent reflectionsk = 2828
3198 reflections with I > 2σ(I)l = 1212
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0593P)2 + 2.5299P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3569 reflectionsΔρmax = 0.45 e Å3
235 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.05753 (10)0.40870 (3)0.71854 (7)0.0481 (3)
O10.1336 (3)0.46466 (10)0.7185 (2)0.0611 (6)
O20.0129 (3)0.38463 (11)0.5818 (2)0.0665 (7)
O30.0862 (3)0.40558 (11)0.7994 (2)0.0670 (7)
O40.2651 (3)0.34135 (10)1.42919 (19)0.0626 (7)
H40.277 (5)0.3502 (18)1.507 (2)0.094*
O50.4082 (4)0.42696 (12)1.4122 (2)0.0715 (7)
H50.410 (6)0.438 (2)1.485 (2)0.107*
B10.3262 (4)0.38153 (15)1.3577 (3)0.0459 (8)
N10.3284 (3)0.35052 (10)0.7090 (2)0.0436 (6)
H1A0.383 (3)0.3827 (10)0.725 (3)0.052*
C10.1922 (3)0.35215 (12)0.7835 (2)0.0419 (6)
H10.1340860.3162270.7672980.050*
C20.2342 (3)0.35877 (12)0.9314 (2)0.0406 (6)
C50.2975 (3)0.37367 (12)1.2048 (2)0.0418 (6)
C30.3349 (4)0.40162 (13)0.9851 (3)0.0486 (7)
H30.3822820.4257290.9304490.058*
C40.3660 (4)0.40905 (13)1.1197 (3)0.0492 (7)
H4A0.4338180.4381981.1537170.059*
C60.1986 (4)0.33071 (13)1.1486 (3)0.0510 (7)
H60.1518480.3061811.2027780.061*
C70.1671 (4)0.32304 (13)1.0147 (3)0.0497 (7)
H70.1002970.2936290.9805500.060*
C80.4360 (5)0.30250 (15)0.7458 (3)0.0662 (9)
H8A0.3761310.2673510.7308370.079*
H8B0.4761260.3048610.8384100.079*
C90.5732 (6)0.3013 (2)0.6707 (4)0.0936 (15)
H9A0.6355290.3356760.6895490.112*
H9B0.5321840.3014110.5780580.112*
C100.6810 (9)0.2514 (3)0.6992 (6)0.151 (3)
H10A0.7460840.2582440.7830240.181*
H10B0.6140970.2187790.7102770.181*
C110.7818 (11)0.2363 (3)0.6134 (7)0.182 (4)
H11A0.7204010.2234690.5333430.273*
H11B0.8508530.2063070.6504180.273*
H11C0.8451950.2685350.5958910.273*
C120.1070 (7)0.4194 (2)0.4847 (4)0.1016 (17)
H12A0.1980920.4346970.5206820.122*
H12B0.0425650.4510070.4619690.122*
C130.1621 (7)0.3875 (2)0.3701 (4)0.1058 (17)
H13A0.0721580.3714010.3357120.159*
H13B0.2202080.4119590.3056960.159*
H13C0.2311690.3575330.3914410.159*
C140.1265 (9)0.4492 (2)0.8822 (7)0.139 (3)
H14A0.0281790.4660110.9258460.167*
H14B0.1836830.4785410.8284090.167*
C150.2186 (9)0.4332 (3)0.9763 (6)0.140 (3)
H15A0.3129220.4139410.9353020.210*
H15B0.2490240.4662681.0211310.210*
H15C0.1578150.4081221.0378120.210*
O60.4407 (3)0.47579 (13)0.6604 (3)0.0710 (7)
H6A0.348 (3)0.479 (2)0.675 (5)0.106*
H6B0.475 (6)0.5065 (12)0.644 (5)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0524 (5)0.0569 (5)0.0339 (4)0.0004 (4)0.0020 (3)0.0014 (3)
O10.0670 (14)0.0561 (13)0.0593 (14)0.0023 (11)0.0060 (11)0.0070 (10)
O20.0814 (16)0.0733 (15)0.0381 (11)0.0075 (13)0.0150 (11)0.0008 (10)
O30.0584 (14)0.0775 (16)0.0677 (15)0.0042 (12)0.0177 (12)0.0089 (12)
O40.0901 (17)0.0735 (15)0.0245 (10)0.0178 (13)0.0091 (11)0.0012 (10)
O50.0982 (19)0.0794 (17)0.0393 (12)0.0287 (14)0.0180 (13)0.0160 (11)
B10.0512 (19)0.059 (2)0.0276 (15)0.0022 (15)0.0075 (13)0.0005 (14)
N10.0575 (15)0.0476 (13)0.0259 (11)0.0006 (11)0.0069 (10)0.0005 (9)
C10.0546 (16)0.0478 (15)0.0229 (12)0.0047 (12)0.0035 (11)0.0003 (11)
C20.0498 (15)0.0467 (15)0.0249 (12)0.0004 (12)0.0042 (11)0.0007 (11)
C50.0490 (15)0.0507 (16)0.0259 (13)0.0035 (12)0.0060 (11)0.0011 (11)
C30.0625 (18)0.0567 (17)0.0274 (13)0.0145 (14)0.0087 (12)0.0027 (12)
C40.0615 (18)0.0577 (18)0.0281 (13)0.0118 (14)0.0053 (12)0.0026 (12)
C60.0667 (19)0.0574 (18)0.0299 (14)0.0109 (15)0.0102 (13)0.0075 (12)
C70.0641 (19)0.0531 (17)0.0312 (14)0.0148 (14)0.0043 (13)0.0014 (12)
C80.086 (3)0.060 (2)0.0538 (19)0.0168 (18)0.0159 (18)0.0056 (16)
C90.101 (3)0.110 (3)0.074 (3)0.047 (3)0.026 (2)0.011 (2)
C100.160 (6)0.180 (6)0.122 (5)0.114 (5)0.054 (4)0.041 (4)
C110.232 (9)0.186 (7)0.137 (6)0.130 (7)0.060 (6)0.014 (5)
C120.140 (4)0.093 (3)0.057 (2)0.027 (3)0.040 (3)0.003 (2)
C130.127 (4)0.115 (4)0.062 (2)0.021 (3)0.037 (3)0.011 (2)
C140.181 (6)0.100 (4)0.163 (6)0.010 (4)0.115 (5)0.041 (4)
C150.189 (7)0.114 (4)0.140 (5)0.003 (4)0.106 (5)0.013 (4)
O60.0797 (18)0.0816 (18)0.0535 (14)0.0191 (15)0.0156 (13)0.0030 (13)
Geometric parameters (Å, º) top
P1—O11.465 (2)C8—C91.483 (5)
P1—O21.559 (2)C8—H8A0.9700
P1—O31.569 (2)C8—H8B0.9700
P1—C11.816 (3)C9—C101.488 (6)
O2—C121.441 (4)C9—H9A0.9700
O3—C141.409 (5)C9—H9B0.9700
O4—B11.347 (4)C10—C111.360 (7)
O4—H40.818 (19)C10—H10A0.9700
O5—B11.352 (4)C10—H10B0.9700
O5—H50.795 (19)C11—H11A0.9600
B1—C51.574 (4)C11—H11B0.9600
N1—C81.466 (4)C11—H11C0.9600
N1—C11.471 (4)C12—C131.423 (5)
N1—H1A0.890 (18)C12—H12A0.9700
C1—C21.526 (3)C12—H12B0.9700
C1—H10.9800C13—H13A0.9600
C2—C71.381 (4)C13—H13B0.9600
C2—C31.383 (4)C13—H13C0.9600
C5—C61.385 (4)C14—C151.380 (7)
C5—C41.395 (4)C14—H14A0.9700
C3—C41.388 (4)C14—H14B0.9700
C3—H30.9300C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C6—C71.382 (4)C15—H15C0.9600
C6—H60.9300O6—H6A0.825 (19)
C7—H70.9300O6—H6B0.807 (19)
O1—P1—O2115.92 (14)H8A—C8—H8B107.9
O1—P1—O3114.45 (14)C8—C9—C10114.4 (4)
O2—P1—O3103.97 (14)C8—C9—H9A108.7
O1—P1—C1114.09 (14)C10—C9—H9A108.7
O2—P1—C1101.88 (13)C8—C9—H9B108.7
O3—P1—C1105.05 (13)C10—C9—H9B108.7
C12—O2—P1121.7 (2)H9A—C9—H9B107.6
C14—O3—P1124.1 (3)C11—C10—C9119.9 (6)
B1—O4—H4111 (3)C11—C10—H10A107.4
B1—O5—H5126 (4)C9—C10—H10A107.4
O4—B1—O5122.7 (3)C11—C10—H10B107.4
O4—B1—C5116.8 (3)C9—C10—H10B107.4
O5—B1—C5120.5 (3)H10A—C10—H10B106.9
C8—N1—C1112.7 (2)C10—C11—H11A109.5
C8—N1—H1A109 (2)C10—C11—H11B109.5
C1—N1—H1A108 (2)H11A—C11—H11B109.5
N1—C1—C2116.0 (2)C10—C11—H11C109.5
N1—C1—P1108.69 (18)H11A—C11—H11C109.5
C2—C1—P1109.78 (19)H11B—C11—H11C109.5
N1—C1—H1107.3C13—C12—O2111.2 (4)
C2—C1—H1107.3C13—C12—H12A109.4
P1—C1—H1107.3O2—C12—H12A109.4
C7—C2—C3118.5 (2)C13—C12—H12B109.4
C7—C2—C1120.3 (2)O2—C12—H12B109.4
C3—C2—C1121.2 (2)H12A—C12—H12B108.0
C6—C5—C4116.8 (2)C12—C13—H13A109.5
C6—C5—B1120.2 (3)C12—C13—H13B109.5
C4—C5—B1123.0 (3)H13A—C13—H13B109.5
C2—C3—C4120.8 (3)C12—C13—H13C109.5
C2—C3—H3119.6H13A—C13—H13C109.5
C4—C3—H3119.6H13B—C13—H13C109.5
C3—C4—C5121.3 (3)C15—C14—O3115.8 (5)
C3—C4—H4A119.3C15—C14—H14A108.3
C5—C4—H4A119.3O3—C14—H14A108.3
C7—C6—C5122.2 (3)C15—C14—H14B108.3
C7—C6—H6118.9O3—C14—H14B108.3
C5—C6—H6118.9H14A—C14—H14B107.4
C2—C7—C6120.4 (3)C14—C15—H15A109.5
C2—C7—H7119.8C14—C15—H15B109.5
C6—C7—H7119.8H15A—C15—H15B109.5
N1—C8—C9112.4 (3)C14—C15—H15C109.5
N1—C8—H8A109.1H15A—C15—H15C109.5
C9—C8—H8A109.1H15B—C15—H15C109.5
N1—C8—H8B109.1H6A—O6—H6B109 (5)
C9—C8—H8B109.1
O1—P1—O2—C1244.9 (4)O5—B1—C5—C6172.8 (3)
O3—P1—O2—C1281.6 (4)O4—B1—C5—C4174.0 (3)
C1—P1—O2—C12169.4 (4)O5—B1—C5—C46.2 (5)
O1—P1—O3—C149.3 (5)C7—C2—C3—C40.9 (5)
O2—P1—O3—C14136.8 (5)C1—C2—C3—C4176.8 (3)
C1—P1—O3—C14116.6 (5)C2—C3—C4—C50.2 (5)
C8—N1—C1—C261.4 (3)C6—C5—C4—C30.5 (5)
C8—N1—C1—P1174.3 (2)B1—C5—C4—C3178.4 (3)
O1—P1—C1—N156.1 (2)C4—C5—C6—C70.5 (5)
O2—P1—C1—N169.6 (2)B1—C5—C6—C7178.5 (3)
O3—P1—C1—N1177.75 (18)C3—C2—C7—C60.9 (5)
O1—P1—C1—C271.8 (2)C1—C2—C7—C6176.8 (3)
O2—P1—C1—C2162.6 (2)C5—C6—C7—C20.2 (5)
O3—P1—C1—C254.4 (2)C1—N1—C8—C9179.8 (3)
N1—C1—C2—C7130.9 (3)N1—C8—C9—C10176.7 (5)
P1—C1—C2—C7105.4 (3)C8—C9—C10—C11161.2 (8)
N1—C1—C2—C351.4 (4)P1—O2—C12—C13178.0 (4)
P1—C1—C2—C372.2 (3)P1—O3—C14—C15159.5 (6)
O4—B1—C5—C67.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N1i0.82 (2)2.07 (2)2.872 (3)165 (4)
O5—H5···O6i0.80 (2)2.00 (2)2.787 (3)170 (5)
N1—H1A···O60.89 (2)2.36 (2)3.159 (4)149 (3)
O6—H6A···O10.83 (2)1.95 (2)2.754 (4)164 (5)
O6—H6B···O5ii0.81 (2)1.98 (2)2.775 (4)168 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2.
(2) {4-[(Diethoxyphosphoryl)(4-nitroanilino)methyl]phenyl}boronic acid top
Crystal data top
C17H22BN2O7PDx = 1.315 Mg m3
Mr = 408.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3802 reflections
a = 10.2590 (8) Åθ = 3.2–25.3°
b = 14.5721 (14) ŵ = 0.17 mm1
c = 27.577 (3) ÅT = 173 K
V = 4122.6 (6) Å3Sheet, white
Z = 80.20 × 0.20 × 0.10 mm
F(000) = 1712
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.056
φ and ω scansθmax = 25.4°, θmin = 3.2°
15530 measured reflectionsh = 1211
3726 independent reflectionsk = 1716
2312 reflections with I > 2σ(I)l = 3333
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0813P)2 + 5.3769P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.197(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.61 e Å3
3726 reflectionsΔρmin = 0.33 e Å3
265 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0023 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.29978 (9)0.26468 (7)0.11014 (4)0.0374 (3)
O10.2977 (3)0.2135 (2)0.06424 (9)0.0493 (8)
O20.2926 (3)0.37114 (19)0.10325 (10)0.0499 (7)
O30.1866 (2)0.2417 (2)0.14604 (10)0.0464 (7)
O40.9308 (3)0.4994 (2)0.06307 (10)0.0504 (8)
H4A0.980 (4)0.528 (3)0.0449 (16)0.076*
O50.9167 (3)0.40026 (19)0.00333 (10)0.0465 (7)
H50.877 (4)0.360 (3)0.0180 (16)0.070*
O60.9018 (4)0.0213 (3)0.29736 (15)0.0873 (12)
O70.8391 (4)0.1102 (3)0.26851 (14)0.0847 (12)
N10.4546 (3)0.1441 (2)0.15380 (11)0.0367 (7)
H1A0.425 (4)0.106 (2)0.1318 (12)0.044*
N20.8307 (4)0.0258 (3)0.27132 (15)0.0630 (11)
B10.8743 (4)0.4260 (3)0.04156 (15)0.0388 (10)
C10.4439 (3)0.2426 (2)0.14655 (13)0.0342 (8)
H10.4328200.2728420.1788380.041*
C20.5610 (3)0.2859 (3)0.12075 (12)0.0335 (8)
C30.5982 (4)0.3751 (3)0.13295 (13)0.0376 (9)
H30.5549180.4064020.1584920.045*
C40.6987 (4)0.4182 (3)0.10778 (13)0.0362 (8)
H40.7236020.4787390.1165920.043*
C50.7636 (4)0.3740 (2)0.06975 (13)0.0362 (9)
C60.7260 (4)0.2845 (3)0.05856 (14)0.0414 (9)
H60.7692760.2528730.0330960.050*
C70.6264 (4)0.2402 (3)0.08377 (13)0.0387 (9)
H70.6032980.1789850.0757170.046*
C80.5481 (3)0.1044 (3)0.18368 (13)0.0366 (9)
C90.6302 (4)0.1570 (3)0.21332 (13)0.0400 (9)
H90.6232340.2220270.2133200.048*
C100.7215 (4)0.1140 (3)0.24265 (14)0.0437 (10)
H100.7764780.1494090.2631150.052*
C110.7320 (4)0.0200 (3)0.24194 (14)0.0449 (10)
C120.6501 (4)0.0334 (3)0.21345 (15)0.0509 (11)
H120.6574070.0983560.2138490.061*
C130.5581 (4)0.0087 (3)0.18455 (14)0.0434 (10)
H130.5012410.0274000.1651720.052*
C140.3223 (8)0.4153 (4)0.0563 (2)0.108 (3)
H14A0.3922590.3806740.0396500.130*
H14B0.2438550.4140370.0353960.130*
C150.3628 (8)0.5076 (5)0.0632 (3)0.134 (3)
H15A0.4354220.5093290.0862790.201*
H15B0.2898390.5436910.0760420.201*
H15C0.3908940.5335760.0321570.201*
C160.0515 (4)0.2502 (4)0.12892 (19)0.0640 (14)
H16A0.0346460.3139340.1181330.077*
H16B0.0367760.2086190.1010740.077*
C170.0359 (5)0.2264 (5)0.1685 (2)0.099 (2)
H17A0.0154900.2642180.1968470.149*
H17B0.0249200.1614550.1766800.149*
H17C0.1262150.2375380.1584770.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0325 (5)0.0438 (6)0.0358 (6)0.0042 (4)0.0008 (4)0.0015 (4)
O10.0459 (17)0.0640 (19)0.0380 (15)0.0097 (14)0.0052 (13)0.0144 (13)
O20.0522 (17)0.0427 (17)0.0547 (17)0.0116 (13)0.0008 (14)0.0035 (14)
O30.0302 (14)0.0646 (19)0.0445 (16)0.0011 (13)0.0044 (12)0.0017 (14)
O40.063 (2)0.0469 (17)0.0413 (16)0.0219 (15)0.0120 (14)0.0077 (13)
O50.0535 (18)0.0457 (17)0.0401 (16)0.0159 (13)0.0113 (13)0.0071 (13)
O60.076 (3)0.098 (3)0.088 (3)0.012 (2)0.037 (2)0.012 (2)
O70.106 (3)0.070 (3)0.078 (3)0.031 (2)0.015 (2)0.024 (2)
N10.0347 (17)0.0366 (19)0.0387 (18)0.0018 (14)0.0031 (14)0.0014 (14)
N20.062 (3)0.072 (3)0.055 (2)0.019 (2)0.000 (2)0.024 (2)
B10.049 (3)0.034 (2)0.033 (2)0.002 (2)0.005 (2)0.0002 (18)
C10.036 (2)0.035 (2)0.0312 (18)0.0030 (16)0.0026 (15)0.0017 (15)
C20.0305 (19)0.039 (2)0.0311 (19)0.0014 (15)0.0003 (15)0.0027 (15)
C30.038 (2)0.038 (2)0.036 (2)0.0011 (17)0.0034 (16)0.0028 (16)
C40.040 (2)0.035 (2)0.0330 (19)0.0021 (16)0.0021 (16)0.0033 (16)
C50.039 (2)0.035 (2)0.0341 (19)0.0011 (16)0.0029 (16)0.0015 (16)
C60.047 (2)0.039 (2)0.038 (2)0.0028 (17)0.0114 (18)0.0047 (17)
C70.043 (2)0.032 (2)0.040 (2)0.0046 (17)0.0074 (17)0.0054 (17)
C80.032 (2)0.045 (2)0.0328 (19)0.0022 (16)0.0060 (16)0.0045 (16)
C90.036 (2)0.045 (2)0.040 (2)0.0009 (17)0.0012 (17)0.0050 (17)
C100.037 (2)0.056 (3)0.038 (2)0.0014 (18)0.0050 (17)0.0101 (19)
C110.041 (2)0.057 (3)0.037 (2)0.0106 (19)0.0039 (17)0.0120 (19)
C120.064 (3)0.044 (2)0.046 (2)0.010 (2)0.010 (2)0.0083 (19)
C130.052 (2)0.042 (2)0.037 (2)0.0011 (19)0.0039 (18)0.0042 (18)
C140.194 (8)0.056 (4)0.074 (4)0.007 (4)0.028 (5)0.020 (3)
C150.126 (6)0.103 (6)0.172 (8)0.006 (5)0.027 (6)0.066 (6)
C160.030 (2)0.089 (4)0.073 (3)0.005 (2)0.003 (2)0.004 (3)
C170.036 (3)0.140 (6)0.121 (5)0.017 (3)0.018 (3)0.046 (5)
Geometric parameters (Å, º) top
P1—O11.469 (3)C6—C71.394 (5)
P1—O31.563 (3)C6—H60.9500
P1—O21.565 (3)C7—H70.9500
P1—C11.816 (4)C8—C131.397 (5)
O2—C141.478 (6)C8—C91.402 (5)
O3—C161.469 (5)C9—C101.387 (5)
O4—B11.354 (5)C9—H90.9500
O4—H4A0.825 (19)C10—C111.375 (6)
O5—B11.365 (5)C10—H100.9500
O5—H50.823 (19)C11—C121.389 (6)
O6—N21.232 (5)C12—C131.380 (6)
O7—N21.236 (5)C12—H120.9500
N1—C81.391 (5)C13—H130.9500
N1—C11.453 (5)C14—C151.421 (9)
N1—H1A0.880 (19)C14—H14A0.9900
N2—C111.458 (5)C14—H14B0.9900
B1—C51.571 (6)C15—H15A0.9800
C1—C21.532 (5)C15—H15B0.9800
C1—H11.0000C15—H15C0.9800
C2—C71.390 (5)C16—C171.454 (7)
C2—C31.395 (5)C16—H16A0.9900
C3—C41.393 (5)C16—H16B0.9900
C3—H30.9500C17—H17A0.9800
C4—C51.400 (5)C17—H17B0.9800
C4—H40.9500C17—H17C0.9800
C5—C61.395 (5)
O1—P1—O3115.22 (17)N1—C8—C13118.4 (3)
O1—P1—O2113.46 (17)N1—C8—C9122.1 (3)
O3—P1—O2104.75 (16)C13—C8—C9119.5 (3)
O1—P1—C1113.45 (16)C10—C9—C8119.9 (4)
O3—P1—C1102.52 (15)C10—C9—H9120.1
O2—P1—C1106.34 (16)C8—C9—H9120.1
C14—O2—P1121.9 (3)C11—C10—C9119.7 (4)
C16—O3—P1118.6 (3)C11—C10—H10120.2
B1—O4—H4A113 (4)C9—C10—H10120.2
B1—O5—H5119 (3)C10—C11—C12121.3 (4)
C8—N1—C1123.0 (3)C10—C11—N2120.2 (4)
C8—N1—H1A113 (3)C12—C11—N2118.6 (4)
C1—N1—H1A120 (3)C13—C12—C11119.5 (4)
O6—N2—O7123.3 (4)C13—C12—H12120.3
O6—N2—C11118.7 (4)C11—C12—H12120.3
O7—N2—C11118.0 (5)C12—C13—C8120.2 (4)
O4—B1—O5118.6 (4)C12—C13—H13119.9
O4—B1—C5118.3 (3)C8—C13—H13119.9
O5—B1—C5123.1 (4)C15—C14—O2110.8 (6)
N1—C1—C2114.3 (3)C15—C14—H14A109.5
N1—C1—P1108.2 (2)O2—C14—H14A109.5
C2—C1—P1108.0 (2)C15—C14—H14B109.5
N1—C1—H1108.7O2—C14—H14B109.5
C2—C1—H1108.7H14A—C14—H14B108.1
P1—C1—H1108.7C14—C15—H15A109.5
C7—C2—C3119.4 (3)C14—C15—H15B109.5
C7—C2—C1121.4 (3)H15A—C15—H15B109.5
C3—C2—C1119.1 (3)C14—C15—H15C109.5
C4—C3—C2120.2 (3)H15A—C15—H15C109.5
C4—C3—H3119.9H15B—C15—H15C109.5
C2—C3—H3119.9C17—C16—O3108.7 (4)
C3—C4—C5121.2 (3)C17—C16—H16A110.0
C3—C4—H4119.4O3—C16—H16A110.0
C5—C4—H4119.4C17—C16—H16B110.0
C6—C5—C4117.7 (3)O3—C16—H16B110.0
C6—C5—B1122.8 (3)H16A—C16—H16B108.3
C4—C5—B1119.5 (3)C16—C17—H17A109.5
C7—C6—C5121.7 (3)C16—C17—H17B109.5
C7—C6—H6119.2H17A—C17—H17B109.5
C5—C6—H6119.2C16—C17—H17C109.5
C2—C7—C6119.9 (4)H17A—C17—H17C109.5
C2—C7—H7120.1H17B—C17—H17C109.5
C6—C7—H7120.1
O1—P1—O2—C1417.9 (5)O4—B1—C5—C419.6 (6)
O3—P1—O2—C14144.4 (4)O5—B1—C5—C4160.9 (4)
C1—P1—O2—C14107.5 (4)C4—C5—C6—C70.6 (6)
O1—P1—O3—C1655.4 (4)B1—C5—C6—C7179.2 (4)
O2—P1—O3—C1670.0 (3)C3—C2—C7—C61.6 (6)
C1—P1—O3—C16179.1 (3)C1—C2—C7—C6175.0 (3)
C8—N1—C1—C265.4 (4)C5—C6—C7—C20.8 (6)
C8—N1—C1—P1174.3 (3)C1—N1—C8—C13174.0 (3)
O1—P1—C1—N154.5 (3)C1—N1—C8—C97.2 (5)
O3—P1—C1—N170.4 (3)N1—C8—C9—C10179.7 (3)
O2—P1—C1—N1179.9 (2)C13—C8—C9—C100.9 (5)
O1—P1—C1—C269.7 (3)C8—C9—C10—C110.8 (6)
O3—P1—C1—C2165.4 (2)C9—C10—C11—C122.0 (6)
O2—P1—C1—C255.7 (3)C9—C10—C11—N2177.8 (3)
N1—C1—C2—C736.7 (5)O6—N2—C11—C101.6 (6)
P1—C1—C2—C783.7 (4)O7—N2—C11—C10178.0 (4)
N1—C1—C2—C3146.7 (3)O6—N2—C11—C12178.6 (4)
P1—C1—C2—C392.8 (3)O7—N2—C11—C121.8 (6)
C7—C2—C3—C41.0 (6)C10—C11—C12—C131.3 (6)
C1—C2—C3—C4175.7 (3)N2—C11—C12—C13178.5 (4)
C2—C3—C4—C50.5 (6)C11—C12—C13—C80.5 (6)
C3—C4—C5—C61.3 (5)N1—C8—C13—C12179.6 (3)
C3—C4—C5—B1178.6 (4)C9—C8—C13—C121.6 (6)
O4—B1—C5—C6160.5 (4)P1—O2—C14—C15155.3 (5)
O5—B1—C5—C618.9 (6)P1—O3—C16—C17179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.82 (2)1.85 (2)2.657 (4)166 (5)
O4—H4A···O5ii0.83 (2)1.88 (2)2.702 (4)176 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+2, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21171081/B0103), Liaoning Provincial Department of Education Innovation Team Projects (grant No. LT2015012), Natural Science Foundation of Liaoning Province (grant No. 2013020085), Shenyang Science and Technology Plan Project (Nos. F13-289-1-00 and F14-231-1-10) and the Foundation for Young Scholars of Liaoning University (grant No. 2013LDQN12).

References

First citationAngelova, O., Macicek, J., Vassilev, N. G., Momchilova, S. & Petrova, J. (1992). J. Crystallogr. Spectrosc. Res. 22, 253–258.  CSD CrossRef CAS Google Scholar
First citationBandekar, S. V. & Dhadke, P. M. (1998). Talanta, 46, 1181–1186.  CrossRef CAS Google Scholar
First citationBeers, S. A., Schwender, C. F., Loughney, D. A., Malloy, E., Demarest, K. & Jordan, J. (1996). Bioorg. Med. Chem. 4, 1693–1701.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaikwad, D. S., Undale, K. A., Shaikh, T. S. & Pore, D. M. (2011). C. R. Chim. 14, 865–868.  CrossRef CAS Google Scholar
First citationJia, D. F., Qiu, L., Yuan, J. B., Yang, J. H., Qian, T. B. & Wang, Z. Y. (1988). Acta Chim. Sin. 46, 433–438.  CAS Google Scholar
First citationKao, H. C., Yen, P. S. & Juang, R. S. (2006). Chem. Eng. J. 119, 167–174.  CrossRef CAS Google Scholar
First citationKhanal, M., Barras, A., Vausselin, T., Fénéant, L., Boukherroub, R., Siriwardena, A., Dubuisson, J. & Szunerits, S. (2015). Nanoscale, 7, 1392–1402.  CrossRef CAS Google Scholar
First citationKubo, Y., Nishiyabu, R. & James, T. D. (2015). Chem. Commun. 51, 2005–2020.  CrossRef CAS Google Scholar
First citationLacina, K., Skládal, P. & James, T. D. (2014). Chem. Cent. J. 8:60.  Google Scholar
First citationLi, X., Liu, H., Qing, G., Wang, S. & Liang, X. (2014). J. Mater. Chem. B, 2, 2276–2281.  CrossRef CAS Google Scholar
First citationMa, H., Ren, H., Meng, S., Yan, Z., Zhao, H., Sun, F. & Zhu, G. (2013). Chem. Commun. 49, 9773–9775.  CrossRef CAS Google Scholar
First citationMłynarz, P., Rydzewska, A. & Pokładek, Z. (2011). J. Organomet. Chem. 696, 457–460.  Google Scholar
First citationOleksyszyn, J. & Subotkowska, L. (1980). Synthesis, p. 906.  CrossRef Google Scholar
First citationPan, M., Sun, Y., Zheng, J. & Yang, W. (2013). ACS Appl. Mater. Interfaces, 5, 8351–8358.  CrossRef CAS Google Scholar
First citationPawełczak, M., Nowak, K. & Kafarski, P. (1998). Phosphorus Sulfur Silicon Relat. Elem. 132, 65–71.  Google Scholar
First citationPeyman, A., Uhlmann, E., Wagner, K., Augustin, S., Breipohl, G., Will, D. W., Schäfer, A. & Wallmeier, H. (1996). Angew. Chem. Int. Ed. 35, 2636–2638.  CrossRef CAS Google Scholar
First citationPiergies, N., Proniewicz, E., Kudelski, A., Rydzewska, A., Kim, Y., Andrzejak, M. & Proniewicz, L. M. (2012). J. Phys. Chem. A, 116, 10004–10014.  CrossRef CAS Google Scholar
First citationProniewicz, E., Piergies, N., Ozaki, Y., Kim, Y. & Proniewicz, L. M. (2013). Spectrochim. Acta A Mol. Biomol. Spectrosc. 103, 167–172.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStallmach, F., Dietrich, U. & Klose, G. (1994). Chem. Phys. Lipids, 74, 17–23.  CrossRef CAS Google Scholar
First citationStock, N., Guillou, N., Senker, J., Férey, G. & Bein, T. (2005). Z. Anorg. Allg. Chem. 631, 575–581.  CSD CrossRef CAS Google Scholar
First citationSun, X., Zhai, W., Fossey, J. S. & James, T. D. (2016). Chem. Commun. 52, 3456–3469.  CrossRef CAS Google Scholar
First citationVovk, A. I., Mischenko, I. M., Tanchuk, V. Y., Kachkovskii, G. A., Sheiko, S. Y., Kolodyazhnyi, O. I. & Kukhar, V. P. (2008). Bioorg. Med. Chem. Lett. 18, 4620–4623.  CrossRef CAS Google Scholar
First citationWu, D., Sun, Y. & Wang, Q. (2013). J. Hazard. Mater. 260, 409–419.  CrossRef CAS Google Scholar
First citationZhang, X., Ge, C., Zhang, X. & Liu, Q. (2007). Acta Cryst. E63, o4778.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Wang, J., He, X., Chen, L. & Zhang, Y. (2015). ACS Appl. Mater. Interfaces, 7, 24576–24584.  CrossRef CAS Google Scholar
First citationZhang, X.-D., Yu, Z., Ma, Y.-C., Zhao, Z. & Zhu, M.-L. (2005). Acta Cryst. E61, o2952–o2954.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds