research papers
Polymeric structure of a coproporphyrin I ruthenium(II) complex: a powder diffraction study
aA. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky prospect, 31, 119071 Moscow, Russian Federation, bScientific Research Disinfectology Institute, Nauchnyi proezd 18, 117246 Moscow, Russian Federation, cMoscow Technological University, 78 Vernadsky Avenue, 119454 Moscow, Russian Federation, dV. N. Orekhovich Institute of Biomedical Chemistry, RAMS 10 build. 8, Pogodinskaya Street, 119121 Moscow, Russian Federation, eEuropean Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, and fDepartment of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru
Porphyrin complexes of ruthenium are widely used as models for the heme protein system, for modelling naturally occurring iron–porphyrin systems and as catalysts in epoxidation reactions. The structural diversity of ruthenium complexes offers an opportunity to use them in the design of multifunctional supramolecular assemblies. Coproporphyrins and metallocoproporphyrins are used as sensors in bioassay and the potential use of derivatives as multiparametric sensors for oxygen and H+ is one of the main factors driving a growing interest in the synthesis of new porphyrin derivatives. In the coproporphyrin I RuII complex catena-poly[[carbonylruthenium(II)]-μ-2,7,12,17-tetrakis[2-(ethoxycarbonyl)ethyl]-3,8,13,18-tetramethylporphyrinato-κ5N,N′,N′′,N′′′:O], [Ru(C44H52N4O8)(CO)]n, the RuII centre is coordinated by four N atoms in the basal plane, and by axial C (carbonyl ligand) and O (ethoxycarbonylethyl arm from a neighbouring complex) atoms. The complex adopts a distorted octahedral geometry. Self-assembly of the molecules during crystallization from a methylene chloride–ethanol (1:10 v/v) solution at room temperature gives one-dimensional polymeric chains.
Keywords: coproporphyrin I; ruthenium(II) complex; one-dimensional coordination polymer; synchrotron powder diffraction; computational chemistry; molecular cavity.
CCDC reference: 1520660
1. Introduction
Porphyrin complexes of ruthenium have been studied actively in recent decades because of their many useful applications. They are widely used as models for the heme protein system (Masuda et al., 1982), for modelling naturally occurring iron–porphyrin systems involved in oxidation processes of the mono- and dioxygenase type (James et al., 1988) and as catalysts in epoxidation reactions (Barona-Castano et al., 2016), including aerobic oxidation tandem epoxidation–isomerization (Jiang et al., 2008). Ruthenium in porphyrinates can exist in a variety of oxidation states, viz. RuII (Ariel et al., 1984), RuIII (James et al., 1984), RuIV (Maeda et al., 2015) or RuVI (Katsunori et al., 2012), and it is able to coordinate one or two small axial ligands, such as aqua, hydroxide, dinitrogen, nitrite, nitrosyl, carbonyl, methanol, ethanol, tetrahydrofuran, pyridine and many others, as can be found from a search in the Cambridge Structural Database (ConQuest, Version 1.18 with updates; Groom et al., 2016), which gave 225 hits. The structural diversity of ruthenium complexes, which can also form metal–metal bonds (Collman et al., 1984), offers an opportunity to use them in the design of multifunctional supramolecular assemblies (Mamardashvili et al., 2013).
Due to their unique photophysical and photochemical properties, coproporphyrins and metallocoproporphyrins have also been used as sensors in bioassay (Papkovsky & O'Riordan, 2005; Dmitriev et al., 2012; Burke et al., 2007). The potential use of derivatives of coproporphyrins as multiparametric sensors for oxygen and H+ is one of the main factors driving a growing interest in the synthesis of new porphyrin derivatives (Borchert et al., 2011). Recently, we reported synthetic and crystallographic studies of the coproporphyrin I molecular complexes with PdII (Volov et al., 2014; Tyurin et al., 2015). We report herein the synthesis and structural characterization of the novel ruthenium(II) complex of coproporphyrin I tetraethyl ester, (1), namely catena-poly[[carbonylruthenium(II)]-μ-2,7,12,17-tetrakis[2-(ethoxycarbonyl)ethyl]-3,8,13,18-tetramethylporphyrinato-κ5N,N′,N′′,N′′′:O], (2), which crystallizes with the formation of one-dimensional polymeric chains.
2. Experimental
Commercial reagents were used without purification. Solvents were purified according to standard procedures: CH2Cl2 was distilled over calcium hydride under an argon atmosphere and toluene was dried over magnesium chloride and then distilled over sodium. Coproporphyrin I, (1), was prepared according to a literature procedure (Smith, 1972). Silica gel 40/60 (Merck) was used for column and flash For preparative (TLC), silica gel 60 (Merck) 20 × 20 cm plates with a 1 mm layer thickness were used. A mixture of methylene chloride–ethanol was used as solvent for elution. Electronic absorption, NMR and mass spectra for the final product are presented in the Supporting information.
2.1. Synthesis and crystallization
To a solution of (1) (50 mg, 0.065 mmol) in dry toluene (15 ml) was added Ru3(CO)12 (83.5 mg, 0.13 mmol). The resulting mixture was refluxed for 24 h. After completion of the reaction, the solvent was evaporated. Purification was carried out by preparative using an ethanol–dichloromethane (100:1 v/v) mixture. A powder sample suitable for determination was obtained by crystallization from the methylene chloride–ethanol (1:10 v/v) solvent system at room temperature over a period of 7 d.
2.2. Refinement
X-ray powder diffraction measurements were carried out at room temperature at beamline ID22 of the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The instrument is equipped with a cryogenically cooled double-crystal Si 111 monochromator and Si 111 analyzers. The powder was loaded into a 1 mm diameter borosilicate thin-walled glass capillary which was rotated during measurements at a rate of 1200 rpm to improve the powder averaging. Calibration of the instrument and
of the X-ray wavelength [0.399927 (3) Å] were performed using NIST silicon standard 640c.The monoclinic cell dimensions were determined using three indexing programs: TREOR90 (Werner et al., 1985), ITO (Visser, 1969) and AUTOX (Zlokazov, 1992, 1995). Based on systematic and other considerations, the was determined as C2/c. The unit-cell parameters and were further tested using a Pawley fit (Pawley, 1981) and confirmed by solution. The geometry of the initial molecular model of (2) with the Ru centre coordinated by the four N atoms only, i.e. without the carbonyl ligand, was optimized by density functional theory (DFT) calculations in vacuo using the quantum-chemical program PRIRODA (Laikov, 1997, 2004, 2005; Laikov & Ustynyuk, 2005), employing the generalized gradient approximation (GGA) and the PBE exchange-correlation function (Perdew et al., 1996). This fragment was used in the determination. The was solved using two techniques, viz. simulated annealing (Zhukov et al., 2001) using the program MRIA (Zlokazov & Chernyshev, 1992) and parallel tempering (Favre-Nicolin & Cerný, 2002) using the program FOX (Favre-Nicolin & Cerný, 2002, 2004). The carbonyl group was added to the model after the analysis of a difference Fourier map, where axial positive residual electron density was observed at 1.9 Å from the Ru centre. The final was performed with the program MRIA following the procedure described by us previously (Dorokhov et al., 2007; Logacheva et al., 2009; Chernyshev et al., 2013). In the anisotropic line broadening was taken into account with the use of nine variables (Popa, 1998). All non-H atoms were refined isotropically. One common Uiso parameter was varied for 32 atoms, i.e. 24 atoms of the porphyrin core and eight C atoms attached to the core. The maximum difference peak and hole at the end of had densities of 0.61 and −0.89 e Å−3, respectively. Crystal data, data collection and structure details are summarized in Table 1 and the diffraction profiles after the final bond-restrained are shown in Fig. 1.
3. Results and discussion
In the title compound, the RuII centre is coordinated by four N atoms [Ru—N = 2.025 (17)–2.055 (12) Å] in the basal plane and by an axial carbonyl ligand [Ru—C = 1.871 (19) Å]. A carbonyl O atom (O5) of the ethoxycarbonylethyl arm [Ru—O = 2.194 (12) Å] from a neighbouring completes the distorted octahedral coordination geometry. The metal atom is displaced by 0.11 (1) Å from the mean plane of the porphyrin core, toward the carbonyl ligand. As seen in Fig. 2, just one of four ethyl ester arms serves as a connector between neighbouring molecules via the aforementioned axially coordinating atom O5, mediating the formation of polymeric chains running along [010] (Fig. 3). The porphyrin cores of neighbouring links in the chain are inclined to one another by 74.3 (2)°. Examples of metal–porphyrin complexes in which the carbonyl groups of lateral substituents coordinate neighbouring metal centres have been observed, though they are rare; our search in the Cambridge Structural Database (CSD) resulted in just three hits, namely catena-(bis{μ3-5,10,15,20-tetrakis[3′,5′-bis(ethoxycarbonyl)phenyl]porphyrinato}dizinc(II)) (CSD refcode LUBKOI; Bhyrappa et al., 2002), bis{μ2-diethyl-2,2′-[(porphyrin-5,15-diyl)bis(naphthalene-1,2-diyloxy)]diacetatato}dizinc(II) dichloromethane solvate (MUVQAW; Amaya et al., 2010) and catena-[bis{μ-5-tert-butyl-N,N′-bis[2-(10,15,20-triphenylporphyrin-21,23-diyl-5-yl)phenyl]isophthalamide}tetrazinc unknown solvate] (OGUFIH; Fang et al., 2015).
The most interesting feature of the et al., 2012), and chlorido- and (acetato-κ2O,O′)(tetramethyl-3,8,13,18-tetramethylporphyrin-2,7,12,17-tetrapropionato-κ4N,N′,N′′,N′′′)thallium(III) dichloromethane solvate (WECSIG and WECTAZ, respectively; Senge et al., 1993); none of these structures has a molecular cavity. Surprisingly, to provide the axial coordination of the RuII atom in (2), the flexible ethoxycarbonylethyl branch from the neighbouring segment of the polymer positions its O atom (O5) within the `tulip petals'. This fragment of the neighbouring porphyrin core thus penetrates into the `tulip bowl' of the molecule (Fig. 3).
of (2) is the formation of a molecular cavity, as the four ethoxycarbonylethyl substituents are located on the same side of the porphyrin plane, like the petals of a tulip. The CSD contains no examples of tetramethyl metalloporphyrins with four ethoxycarbonylethyl branches, and a search for metalloporphyrins with similar substituents yielded the following four structures: {2,7,12,17-tetrakis[2-(isopropyloxycarbonyl)ethyl]-3,8,13,18-tetramethylporphyrinato}platinum(II) and -palladium(II) (KILQIH and KILQON, respectively; ZamilatskovThe aforementioned features of the crystal packing of (2) demonstrate its potential for self-assembling in various modes depending on crystallization and environmental conditions, as has been observed for [tetrakis(pyridin-4-yl)porphyrin]zinc, [Zn(tpyp)]. Several coordination polymers were obtained for [Zn(tpyp)], viz. a one-dimensional chain structure (Krupitsky et al., 1994), a one-dimensional ladder structure (Diskin-Posner et al., 2001), a one-dimensional ribbon structure (Ring et al., 2005) and a three-dimensional framework (Krupitsky et al., 1994). For compound (2), we hope to remove the carbonyl fragments either from the solution before crystallization or directly from the solid-state sample to explore other possibilities for self-assembly of the coproporphyrin I tetraethyl ester ruthenium(II) complex.
Supporting information
CCDC reference: 1520660
https://doi.org/10.1107/S2053229616019422/fa3396sup1.cif
contains datablock I. DOI:Rietveld powder data: contains datablock I. DOI: https://doi.org/10.1107/S2053229616019422/fa3396Isup2.rtv
Absorption electronic, NMR and mass spectra for the final product. DOI: https://doi.org/10.1107/S2053229616019422/fa3396sup3.pdf
Cell
MRIA (Zlokazov & Chernyshev, 1992); program(s) used to solve structure: MRIA (Zlokazov & Chernyshev, 1992) and FOX (Favre-Nicolin & Cerný, 2004); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).[Ru(C44H52N4O8)(CO)] | F(000) = 3728 |
Mr = 893.98 | Dx = 1.401 Mg m−3 |
Monoclinic, C2/c | Synchrotron radiation, λ = 0.399927(2) Å |
Hall symbol: -C 2yc | µ = 0.09 mm−1 |
a = 39.3876 (19) Å | T = 295 K |
b = 9.6153 (8) Å | Particle morphology: no specific habit |
c = 29.5299 (16) Å | colorless |
β = 130.719 (7)° | cylinder, 15 × 1.0 mm |
V = 8476.3 (9) Å3 | Specimen preparation: Prepared at 295 K and 101 kPa |
Z = 8 |
ESRF powder diffractometer ID22 | Data collection mode: transmission |
Radiation source: ID22 bending magnet at ESRF, synchrotron radiation | Scan method: continuous |
Si 111 double crystal monochromator | 2θmin = 1.000°, 2θmax = 20.000°, 2θstep = 0.002° |
Specimen mounting: Specimen was sealed in a 1.0 mm diameter borosilicate glass capillary |
Refinement on Inet | 247 parameters |
Least-squares matrix: full with fixed elements per cycle | 193 restraints |
Rp = 0.031 | 21 constraints |
Rwp = 0.040 | H-atom parameters not refined |
Rexp = 0.013 | Weighting scheme based on measured s.u.'s |
RBragg = 0.070 | (Δ/σ)max = 0.003 |
9501 data points | Background function: Chebyshev polynomial up to the 5th order |
Profile function: split-type pseudo-Voigt | Preferred orientation correction: none |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.88520 (4) | 0.5249 (2) | 0.82080 (6) | 0.0170 (12)* | |
N1 | 0.9371 (3) | 0.3887 (14) | 0.8584 (5) | 0.034 (10)* | |
N2 | 0.8917 (3) | 0.5230 (13) | 0.8947 (5) | 0.034 (10)* | |
N3 | 0.8290 (3) | 0.6456 (15) | 0.7803 (5) | 0.034 (10)* | |
N4 | 0.8732 (3) | 0.5119 (13) | 0.7428 (5) | 0.034 (10)* | |
C1 | 0.9549 (4) | 0.3341 (19) | 0.8342 (6) | 0.034 (10)* | |
C2 | 0.9928 (4) | 0.2503 (19) | 0.8768 (6) | 0.034 (10)* | |
C3 | 0.9990 (4) | 0.2549 (18) | 0.9290 (7) | 0.034 (10)* | |
C4 | 0.9652 (4) | 0.3374 (19) | 0.9178 (6) | 0.034 (10)* | |
C5 | 0.9575 (4) | 0.3725 (18) | 0.9559 (5) | 0.034 (10)* | |
H5 | 0.9776 | 0.3334 | 0.9938 | 0.041* | |
C6 | 0.9254 (4) | 0.4549 (18) | 0.9473 (6) | 0.034 (10)* | |
C7 | 0.9209 (4) | 0.4849 (18) | 0.9914 (6) | 0.034 (10)* | |
C8 | 0.8857 (4) | 0.5682 (17) | 0.9663 (6) | 0.034 (10)* | |
C9 | 0.8675 (4) | 0.5963 (19) | 0.9058 (6) | 0.034 (10)* | |
C10 | 0.8307 (4) | 0.6775 (19) | 0.8638 (6) | 0.034 (10)* | |
H10 | 0.8167 | 0.7226 | 0.8756 | 0.041* | |
C11 | 0.8129 (4) | 0.6974 (17) | 0.8053 (6) | 0.034 (10)* | |
C12 | 0.7734 (4) | 0.7848 (19) | 0.7630 (6) | 0.034 (10)* | |
C13 | 0.7672 (4) | 0.7845 (18) | 0.7121 (6) | 0.034 (10)* | |
C14 | 0.8005 (4) | 0.6945 (18) | 0.7212 (6) | 0.034 (10)* | |
C15 | 0.8070 (4) | 0.6615 (19) | 0.6821 (5) | 0.034 (10)* | |
H15 | 0.7866 | 0.7008 | 0.6443 | 0.041* | |
C16 | 0.8397 (4) | 0.5778 (19) | 0.6906 (6) | 0.034 (10)* | |
C17 | 0.8442 (4) | 0.5503 (17) | 0.6468 (6) | 0.034 (10)* | |
C18 | 0.8800 (4) | 0.4628 (17) | 0.6723 (6) | 0.034 (10)* | |
C19 | 0.8980 (4) | 0.4395 (19) | 0.7331 (6) | 0.034 (10)* | |
C20 | 0.9356 (4) | 0.3604 (19) | 0.7753 (6) | 0.034 (10)* | |
H20 | 0.9497 | 0.3198 | 0.7628 | 0.041* | |
C21 | 1.0222 (5) | 0.1708 (18) | 0.8744 (7) | 0.034 (10)* | |
H21A | 1.0297 | 0.0874 | 0.8978 | 0.041* | |
H21B | 1.0497 | 0.2240 | 0.8954 | 0.041* | |
C22 | 1.0099 (4) | 0.126 (2) | 0.8183 (6) | 0.049 (10)* | |
H22A | 1.0048 | 0.2078 | 0.7952 | 0.059* | |
H22B | 0.9821 | 0.0744 | 0.7956 | 0.059* | |
C23 | 1.0462 (4) | 0.0347 (18) | 0.8273 (7) | 0.055 (11)* | |
C24 | 1.0564 (5) | −0.214 (2) | 0.8123 (6) | 0.069 (10)* | |
H24A | 1.0360 | −0.2920 | 0.7966 | 0.083* | |
H24B | 1.0856 | −0.2452 | 0.8478 | 0.083* | |
C25 | 1.0596 (5) | −0.168 (2) | 0.7667 (7) | 0.089 (11)* | |
H25A | 1.0699 | −0.2447 | 0.7575 | 0.134* | |
H25B | 1.0803 | −0.0925 | 0.7823 | 0.134* | |
H25C | 1.0306 | −0.1392 | 0.7311 | 0.134* | |
C26 | 1.0361 (4) | 0.1737 (18) | 0.9841 (6) | 0.034 (10)* | |
H26A | 1.0538 | 0.1275 | 0.9770 | 0.051* | |
H26B | 1.0233 | 0.1058 | 0.9930 | 0.051* | |
H26C | 1.0547 | 0.2362 | 1.0173 | 0.051* | |
C27 | 0.9516 (4) | 0.4256 (18) | 1.0535 (6) | 0.034 (10)* | |
H27A | 0.9472 | 0.4749 | 1.0780 | 0.041* | |
H27B | 0.9825 | 0.4390 | 1.0710 | 0.041* | |
C28 | 0.9429 (4) | 0.2704 (18) | 1.0533 (6) | 0.051 (10)* | |
H28A | 0.9447 | 0.2243 | 1.0257 | 0.061* | |
H28B | 0.9669 | 0.2337 | 1.0928 | 0.061* | |
C29 | 0.8992 (4) | 0.2311 (19) | 1.0369 (6) | 0.059 (11)* | |
C30 | 0.8427 (5) | 0.0444 (18) | 1.0068 (7) | 0.071 (11)* | |
H30A | 0.8262 | 0.1176 | 1.0078 | 0.085* | |
H30B | 0.8528 | −0.0222 | 1.0381 | 0.085* | |
C31 | 0.8128 (4) | −0.0275 (16) | 0.9454 (5) | 0.091 (12)* | |
H31A | 0.7895 | 0.0350 | 0.9158 | 0.136* | |
H31B | 0.7997 | −0.1095 | 0.9470 | 0.136* | |
H31C | 0.8306 | −0.0529 | 0.9350 | 0.136* | |
C32 | 0.8667 (4) | 0.6283 (19) | 0.9920 (6) | 0.034 (10)* | |
H32A | 0.8411 | 0.6845 | 0.9624 | 0.051* | |
H32B | 0.8889 | 0.6848 | 1.0260 | 0.051* | |
H32C | 0.8578 | 0.5545 | 1.0042 | 0.051* | |
C33 | 0.7508 (4) | 0.859 (2) | 0.7794 (6) | 0.034 (10)* | |
H33A | 0.7311 | 0.9267 | 0.7482 | 0.041* | |
H33B | 0.7734 | 0.9112 | 0.8155 | 0.041* | |
C34 | 0.7244 (5) | 0.7836 (17) | 0.7898 (7) | 0.046 (10)* | |
H34A | 0.7200 | 0.8411 | 0.8126 | 0.055* | |
H34B | 0.7402 | 0.7001 | 0.8127 | 0.055* | |
C35 | 0.6781 (4) | 0.7437 (17) | 0.7289 (6) | 0.050 (10)* | |
C36 | 0.6421 (4) | 0.5757 (18) | 0.6487 (7) | 0.058 (10)* | |
H36A | 0.6347 | 0.6607 | 0.6262 | 0.070* | |
H36B | 0.6569 | 0.5129 | 0.6406 | 0.070* | |
C37 | 0.6008 (4) | 0.5101 (18) | 0.6313 (7) | 0.068 (12)* | |
H37A | 0.5807 | 0.4886 | 0.5894 | 0.102* | |
H37B | 0.5865 | 0.5733 | 0.6395 | 0.102* | |
H37C | 0.6086 | 0.4261 | 0.6538 | 0.102* | |
C38 | 0.7278 (4) | 0.8624 (18) | 0.6580 (6) | 0.034 (10)* | |
H38A | 0.7279 | 0.8526 | 0.6258 | 0.051* | |
H38B | 0.7300 | 0.9591 | 0.6677 | 0.051* | |
H38C | 0.7004 | 0.8250 | 0.6462 | 0.051* | |
C39 | 0.8137 (4) | 0.6012 (19) | 0.5812 (6) | 0.034 (10)* | |
H39A | 0.7997 | 0.6887 | 0.5771 | 0.041* | |
H39B | 0.8313 | 0.6155 | 0.5693 | 0.041* | |
C40 | 0.7777 (4) | 0.4897 (18) | 0.5414 (6) | 0.052 (12)* | |
H40A | 0.7921 | 0.3996 | 0.5515 | 0.062* | |
H40B | 0.7576 | 0.4866 | 0.5498 | 0.062* | |
C41 | 0.7509 (5) | 0.5157 (17) | 0.4762 (7) | 0.058 (11)* | |
C42 | 0.6974 (4) | 0.4449 (19) | 0.3694 (7) | 0.071 (11)* | |
H42A | 0.6946 | 0.5437 | 0.3609 | 0.085* | |
H42B | 0.7114 | 0.4020 | 0.3555 | 0.085* | |
C43 | 0.6524 (4) | 0.384 (2) | 0.3371 (6) | 0.094 (11)* | |
H43A | 0.6345 | 0.3992 | 0.2950 | 0.141* | |
H43B | 0.6383 | 0.4276 | 0.3504 | 0.141* | |
H43C | 0.6552 | 0.2860 | 0.3449 | 0.141* | |
C44 | 0.8932 (4) | 0.4175 (19) | 0.6362 (6) | 0.034 (10)* | |
H44A | 0.9187 | 0.3568 | 0.6600 | 0.051* | |
H44B | 0.9006 | 0.4979 | 0.6249 | 0.051* | |
H44C | 0.8686 | 0.3692 | 0.6010 | 0.051* | |
O1 | 1.0781 (3) | 0.0868 (13) | 0.8400 (4) | 0.058 (7)* | |
O2 | 1.0411 (3) | −0.1050 (14) | 0.8286 (4) | 0.063 (7)* | |
O3 | 0.8775 (3) | 0.3143 (12) | 1.0409 (4) | 0.054 (7)* | |
O4 | 0.8818 (3) | 0.1038 (13) | 1.0157 (4) | 0.058 (7)* | |
O5 | 0.6509 (3) | 0.8273 (12) | 0.7038 (4) | 0.042 (6)* | |
O6 | 0.6724 (3) | 0.6071 (13) | 0.7148 (4) | 0.053 (6)* | |
O7 | 0.7559 (3) | 0.6281 (14) | 0.4631 (4) | 0.054 (6)* | |
O8 | 0.7260 (3) | 0.4236 (13) | 0.4346 (4) | 0.060 (7)* | |
O9 | 0.9432 (3) | 0.7812 (12) | 0.8590 (4) | 0.074 (7)* | |
C45 | 0.9192 (5) | 0.6859 (19) | 0.8412 (6) | 0.074 (10)* |
Ru1—C45 | 1.871 (19) | C25—H25C | 0.9600 |
Ru1—N2 | 2.025 (17) | C26—H26A | 0.9601 |
Ru1—N4 | 2.031 (16) | C26—H26B | 0.9599 |
Ru1—N1 | 2.041 (12) | C26—H26C | 0.9600 |
Ru1—N3 | 2.055 (12) | C27—C28 | 1.53 (2) |
Ru1—O5i | 2.194 (12) | C27—H27A | 0.9700 |
N1—C1 | 1.39 (3) | C27—H27B | 0.9700 |
N1—C4 | 1.418 (18) | C28—C29 | 1.50 (3) |
N2—C6 | 1.383 (17) | C28—H28A | 0.9700 |
N2—C9 | 1.39 (3) | C28—H28B | 0.9700 |
N3—C11 | 1.34 (3) | C29—O3 | 1.23 (2) |
N3—C14 | 1.404 (18) | C29—O4 | 1.34 (2) |
N4—C16 | 1.366 (16) | C30—O4 | 1.50 (2) |
N4—C19 | 1.37 (3) | C30—C31 | 1.54 (2) |
C1—C20 | 1.39 (2) | C30—H30A | 0.9701 |
C1—C2 | 1.418 (19) | C30—H30B | 0.9699 |
C2—C3 | 1.40 (3) | C31—H31A | 0.9600 |
C2—C21 | 1.43 (3) | C31—H31B | 0.9600 |
C3—C4 | 1.39 (3) | C31—H31C | 0.9600 |
C3—C26 | 1.513 (18) | C32—H32A | 0.9600 |
C4—C5 | 1.38 (3) | C32—H32B | 0.9600 |
C5—C6 | 1.37 (2) | C32—H32C | 0.9603 |
C5—H5 | 0.9300 | C33—C34 | 1.46 (3) |
C6—C7 | 1.45 (3) | C33—H33A | 0.9699 |
C7—C8 | 1.33 (2) | C33—H33B | 0.9700 |
C7—C27 | 1.50 (2) | C34—C35 | 1.558 (16) |
C8—C9 | 1.45 (2) | C34—H34A | 0.9702 |
C8—C32 | 1.49 (3) | C34—H34B | 0.9700 |
C9—C10 | 1.380 (19) | C35—O5 | 1.143 (17) |
C10—C11 | 1.39 (2) | C35—O6 | 1.35 (2) |
C10—H10 | 0.9299 | C36—C37 | 1.49 (3) |
C11—C12 | 1.467 (19) | C36—O6 | 1.512 (19) |
C12—C13 | 1.36 (3) | C36—H36A | 0.9700 |
C12—C33 | 1.45 (3) | C36—H36B | 0.9701 |
C13—C14 | 1.44 (3) | C37—H37A | 0.9601 |
C13—C38 | 1.512 (17) | C37—H37B | 0.9599 |
C14—C15 | 1.37 (3) | C37—H37C | 0.9602 |
C15—C16 | 1.40 (3) | C38—H38A | 0.9600 |
C15—H15 | 0.9300 | C38—H38B | 0.9599 |
C16—C17 | 1.44 (3) | C38—H38C | 0.9601 |
C17—C18 | 1.37 (2) | C39—C40 | 1.54 (2) |
C17—C39 | 1.55 (2) | C39—H39A | 0.9701 |
C18—C19 | 1.45 (3) | C39—H39B | 0.9699 |
C18—C44 | 1.52 (3) | C40—C41 | 1.49 (2) |
C19—C20 | 1.385 (18) | C40—H40A | 0.9701 |
C20—H20 | 0.9299 | C40—H40B | 0.9699 |
C21—C22 | 1.45 (3) | C41—O7 | 1.21 (2) |
C21—H21A | 0.9699 | C41—O8 | 1.297 (18) |
C21—H21B | 0.9701 | C42—C43 | 1.48 (2) |
C22—C23 | 1.55 (3) | C42—O8 | 1.48 (2) |
C22—H22A | 0.9700 | C42—H42A | 0.9700 |
C22—H22B | 0.9700 | C42—H42B | 0.9699 |
C23—O1 | 1.16 (2) | C43—H43A | 0.9601 |
C23—O2 | 1.36 (2) | C43—H43B | 0.9599 |
C24—O2 | 1.44 (3) | C43—H43C | 0.9600 |
C24—C25 | 1.50 (3) | C44—H44A | 0.9600 |
C24—H24A | 0.9700 | C44—H44B | 0.9600 |
C24—H24B | 0.9700 | C44—H44C | 0.9600 |
C25—H25A | 0.9601 | O5—Ru1ii | 2.194 (11) |
C25—H25B | 0.9599 | O9—C45 | 1.17 (2) |
C45—Ru1—N2 | 95.7 (7) | H25B—C25—H25C | 109.5 |
C45—Ru1—N4 | 90.2 (7) | C3—C26—H26A | 109.5 |
N2—Ru1—N4 | 173.8 (5) | C3—C26—H26B | 109.5 |
C45—Ru1—N1 | 95.9 (7) | H26A—C26—H26B | 109.5 |
N2—Ru1—N1 | 91.7 (6) | C3—C26—H26C | 109.5 |
N4—Ru1—N1 | 89.3 (5) | H26A—C26—H26C | 109.5 |
C45—Ru1—N3 | 89.6 (7) | H26B—C26—H26C | 109.5 |
N2—Ru1—N3 | 87.9 (6) | C7—C27—C28 | 111.4 (12) |
N4—Ru1—N3 | 90.5 (5) | C7—C27—H27A | 109.3 |
N1—Ru1—N3 | 174.5 (5) | C28—C27—H27A | 109.3 |
C45—Ru1—O5i | 175.2 (8) | C7—C27—H27B | 109.3 |
N2—Ru1—O5i | 87.0 (5) | C28—C27—H27B | 109.3 |
N4—Ru1—O5i | 87.1 (5) | H27A—C27—H27B | 108.0 |
N1—Ru1—O5i | 80.0 (5) | C29—C28—C27 | 117.0 (15) |
N3—Ru1—O5i | 94.4 (5) | C29—C28—H28A | 108.1 |
C1—N1—C4 | 104.8 (12) | C27—C28—H28A | 108.0 |
C1—N1—Ru1 | 128.7 (10) | C29—C28—H28B | 108.1 |
C4—N1—Ru1 | 126.3 (13) | C27—C28—H28B | 108.0 |
C6—N2—C9 | 106.2 (15) | H28A—C28—H28B | 107.3 |
C6—N2—Ru1 | 124.7 (14) | O3—C29—O4 | 117.5 (16) |
C9—N2—Ru1 | 128.9 (9) | O3—C29—C28 | 121.8 (16) |
C11—N3—C14 | 106.1 (13) | O4—C29—C28 | 120.6 (17) |
C11—N3—Ru1 | 127.2 (9) | O4—C30—C31 | 106.7 (17) |
C14—N3—Ru1 | 126.6 (13) | O4—C30—H30A | 110.4 |
C16—N4—C19 | 107.1 (15) | C31—C30—H30A | 110.4 |
C16—N4—Ru1 | 126.2 (13) | O4—C30—H30B | 110.4 |
C19—N4—Ru1 | 126.6 (8) | C31—C30—H30B | 110.4 |
N1—C1—C20 | 121.7 (13) | H30A—C30—H30B | 108.6 |
N1—C1—C2 | 110.5 (15) | C30—C31—H31A | 109.5 |
C20—C1—C2 | 127.7 (19) | C30—C31—H31B | 109.5 |
C3—C2—C1 | 106.7 (17) | H31A—C31—H31B | 109.5 |
C3—C2—C21 | 120.6 (13) | C30—C31—H31C | 109.5 |
C1—C2—C21 | 132.8 (18) | H31A—C31—H31C | 109.5 |
C4—C3—C2 | 107.7 (13) | H31B—C31—H31C | 109.5 |
C4—C3—C26 | 130.7 (19) | C8—C32—H32A | 109.5 |
C2—C3—C26 | 121.5 (17) | C8—C32—H32B | 109.5 |
C5—C4—C3 | 128.9 (13) | H32A—C32—H32B | 109.5 |
C5—C4—N1 | 120.8 (14) | C8—C32—H32C | 109.5 |
C3—C4—N1 | 110.2 (17) | H32A—C32—H32C | 109.4 |
C6—C5—C4 | 131.0 (13) | H32B—C32—H32C | 109.4 |
C6—C5—H5 | 114.5 | C12—C33—C34 | 120.2 (18) |
C4—C5—H5 | 114.5 | C12—C33—H33A | 107.3 |
C5—C6—N2 | 125.2 (18) | C34—C33—H33A | 107.3 |
C5—C6—C7 | 125.9 (13) | C12—C33—H33B | 107.3 |
N2—C6—C7 | 108.9 (15) | C34—C33—H33B | 107.3 |
C8—C7—C6 | 108.2 (15) | H33A—C33—H33B | 106.9 |
C8—C7—C27 | 129 (2) | C33—C34—C35 | 109.8 (15) |
C6—C7—C27 | 123.2 (15) | C33—C34—H34A | 109.7 |
C7—C8—C9 | 107.2 (19) | C35—C34—H34A | 109.7 |
C7—C8—C32 | 129.6 (16) | C33—C34—H34B | 109.7 |
C9—C8—C32 | 123.2 (13) | C35—C34—H34B | 109.7 |
C10—C9—N2 | 123.8 (16) | H34A—C34—H34B | 108.2 |
C10—C9—C8 | 126.7 (18) | O5—C35—O6 | 125.9 (11) |
N2—C9—C8 | 109.4 (13) | O5—C35—C34 | 118.1 (14) |
C9—C10—C11 | 125.3 (19) | O6—C35—C34 | 115.4 (11) |
C9—C10—H10 | 117.4 | C37—C36—O6 | 107.1 (17) |
C11—C10—H10 | 117.4 | C37—C36—H36A | 110.3 |
N3—C11—C10 | 126.5 (14) | O6—C36—H36A | 110.3 |
N3—C11—C12 | 111.3 (14) | C37—C36—H36B | 110.3 |
C10—C11—C12 | 122.1 (18) | O6—C36—H36B | 110.3 |
C13—C12—C33 | 131.7 (13) | H36A—C36—H36B | 108.5 |
C13—C12—C11 | 105.5 (16) | C36—C37—H37A | 109.5 |
C33—C12—C11 | 122.6 (15) | C36—C37—H37B | 109.5 |
C12—C13—C14 | 108.1 (13) | H37A—C37—H37B | 109.5 |
C12—C13—C38 | 119.2 (17) | C36—C37—H37C | 109.5 |
C14—C13—C38 | 132.5 (17) | H37A—C37—H37C | 109.5 |
C15—C14—N3 | 122.1 (15) | H37B—C37—H37C | 109.5 |
C15—C14—C13 | 128.9 (13) | C13—C38—H38A | 109.5 |
N3—C14—C13 | 109.0 (17) | C13—C38—H38B | 109.5 |
C14—C15—C16 | 129.7 (13) | H38A—C38—H38B | 109.5 |
C14—C15—H15 | 115.2 | C13—C38—H38C | 109.5 |
C16—C15—H15 | 115.2 | H38A—C38—H38C | 109.5 |
N4—C16—C15 | 124.7 (18) | H38B—C38—H38C | 109.5 |
N4—C16—C17 | 109.5 (15) | C40—C39—C17 | 108.2 (14) |
C15—C16—C17 | 125.7 (13) | C40—C39—H39A | 110.1 |
C18—C17—C16 | 107.7 (14) | C17—C39—H39A | 110.1 |
C18—C17—C39 | 124.2 (19) | C40—C39—H39B | 110.1 |
C16—C17—C39 | 128.0 (15) | C17—C39—H39B | 110.1 |
C17—C18—C19 | 105.7 (18) | H39A—C39—H39B | 108.4 |
C17—C18—C44 | 119.3 (15) | C41—C40—C39 | 113.1 (15) |
C19—C18—C44 | 134.9 (13) | C41—C40—H40A | 109.0 |
N4—C19—C20 | 125.4 (17) | C39—C40—H40A | 109.0 |
N4—C19—C18 | 109.8 (12) | C41—C40—H40B | 109.0 |
C20—C19—C18 | 124.7 (19) | C39—C40—H40B | 109.0 |
C19—C20—C1 | 128.0 (19) | H40A—C40—H40B | 107.8 |
C19—C20—H20 | 116.0 | O7—C41—O8 | 119.2 (16) |
C1—C20—H20 | 116.0 | O7—C41—C40 | 115.9 (13) |
C2—C21—C22 | 122.4 (11) | O8—C41—C40 | 124.6 (16) |
C2—C21—H21A | 106.7 | C43—C42—O8 | 111.1 (17) |
C22—C21—H21A | 106.7 | C43—C42—H42A | 109.4 |
C2—C21—H21B | 106.7 | O8—C42—H42A | 109.4 |
C22—C21—H21B | 106.7 | C43—C42—H42B | 109.4 |
H21A—C21—H21B | 106.6 | O8—C42—H42B | 109.4 |
C21—C22—C23 | 112.8 (11) | H42A—C42—H42B | 108.0 |
C21—C22—H22A | 109.0 | C42—C43—H43A | 109.5 |
C23—C22—H22A | 109.0 | C42—C43—H43B | 109.5 |
C21—C22—H22B | 109.0 | H43A—C43—H43B | 109.5 |
C23—C22—H22B | 109.0 | C42—C43—H43C | 109.5 |
H22A—C22—H22B | 107.8 | H43A—C43—H43C | 109.5 |
O1—C23—O2 | 124.3 (16) | H43B—C43—H43C | 109.5 |
O1—C23—C22 | 119.5 (16) | C18—C44—H44A | 109.5 |
O2—C23—C22 | 115.4 (16) | C18—C44—H44B | 109.5 |
O2—C24—C25 | 112.9 (15) | H44A—C44—H44B | 109.5 |
O2—C24—H24A | 109.0 | C18—C44—H44C | 109.5 |
C25—C24—H24A | 109.0 | H44A—C44—H44C | 109.5 |
O2—C24—H24B | 109.0 | H44B—C44—H44C | 109.5 |
C25—C24—H24B | 109.0 | C23—O2—C24 | 127.3 (17) |
H24A—C24—H24B | 107.8 | C29—O4—C30 | 125.7 (15) |
C24—C25—H25A | 109.5 | C35—O5—Ru1ii | 162.6 (10) |
C24—C25—H25B | 109.5 | C35—O6—C36 | 115.1 (12) |
H25A—C25—H25B | 109.5 | C41—O8—C42 | 127.0 (14) |
C24—C25—H25C | 109.5 | O9—C45—Ru1 | 173.9 (13) |
H25A—C25—H25C | 109.5 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25C···O2iii | 0.96 | 2.17 | 3.08 (2) | 157 |
C37—H37C···O9i | 0.96 | 2.29 | 2.93 (2) | 123 |
C39—H39A···O7iv | 0.97 | 2.43 | 3.37 (2) | 161 |
C39—H39B···O3v | 0.97 | 2.54 | 3.51 (2) | 173 |
C43—H43B···O1vi | 0.96 | 2.19 | 3.00 (2) | 141 |
C44—H44A···O1iii | 0.96 | 2.60 | 3.29 (2) | 129 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (iii) −x+2, y, −z+3/2; (iv) −x+3/2, −y+3/2, −z+1; (v) x, −y+1, z−1/2; (vi) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
This research was supported by the Russian Ministry of Science and Education (grant No. RFMEFI61616X0069). We also thank ESRF for the access to ID22 station, experiment MA-3313.
References
Amaya, T., Ueda, T. & Hirao, T. (2010). Tetrahedron Lett. 51, 3376–3379. CSD CrossRef CAS Google Scholar
Ariel, S., Dolphin, D., Donazetis, G., James, B. R., Leung, T. W., Rettig, S. J., Trotter, J. & Williams, G. M. (1984). Can. J. Chem. 62, 755–762. CSD CrossRef CAS Google Scholar
Barona-Castano, J. C., Carmona-Vargas, C. C., Brocksom, T. J. & de Oliveira, K. T. (2016). Molecules, 21, 310–337. Google Scholar
Bhyrappa, P., Vaijayanthimala, G. & Verghese, B. (2002). Tetrahedron Lett. 43, 6427–6429. CSD CrossRef CAS Google Scholar
Borchert, N. B., Ponomarev, G. V., Kerry, J. P. & Papkovsky, D. B. (2011). Anal. Chem. 83, 18–22. CrossRef CAS Google Scholar
Burke, M., O'Sullivan, P. J., Ponomarev, G. V., Yashunsky, D. V. & Papkovsky, D. B. (2007). Anal. Chim. Acta, 585, 139–146. CrossRef CAS Google Scholar
Chernyshev, V. V., Petkune, S., Actins, A., Auzins, R., Davlyatshin, D. I., Nosyrev, P. V. & Velikodny, Y. A. (2013). Acta Cryst. C69, 299–302. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Collman, J. P., Barnes, C. E., Swepston, P. N. & Ibers, J. A. (1984). J. Am. Chem. Soc. 106, 3500–3510. CSD CrossRef CAS Google Scholar
Diskin-Posner, Y., Patra, G. K. & Goldberg, I. (2001). J. Chem. Soc. Dalton Trans. pp. 2775–2782. Web of Science CSD CrossRef Google Scholar
Dmitriev, R. I., Zhdanov, A. V., Jasionek, G. & Papkovsky, D. B. (2012). Anal. Chem. 84, 2930–2938. CrossRef CAS Google Scholar
Dorokhov, A. V., Chernyshov, D. Y., Burlov, A. S., Garnovskii, A. D., Ivanova, I. S., Pyatova, E. N., Tsivadze, A. Y., Aslanov, L. A. & Chernyshev, V. V. (2007). Acta Cryst. B63, 402–410. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fang, X. S., Han, Z., Xu, C. L., Li, X. H., Wang, Y. & Hu, C. J. (2015). Dalton Trans. 44, 12511–12515. CSD CrossRef CAS Google Scholar
Favre-Nicolin, V. & Cerný, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Favre-Nicolin, V. & Cerný, R. (2004). Z. Kristallogr. 219, 847–856. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
James, B. R., Dolphin, D., Leung, T. W., Einstein, F. W. B. & Willis, A. C. (1984). Can. J. Chem. 62, 1238–1245. CSD CrossRef CAS Google Scholar
James, B. R., Pacheco, A., Rettig, S. J. & Ibers, R. G. (1988). Inorg. Chem. 27, 2414–2421. CSD CrossRef CAS Google Scholar
Jiang, G., Chen, J., Thu, H.-Y., Huang, J.-S., Zhu, N. & Che, C.-M. (2008). Angew. Chem. Int. Ed. 47, 6638–6642. CSD CrossRef CAS Google Scholar
Katsunori, T., Mazumder, K., Siwu, E. R. O., Nozaki, S., Watanabe, Ya. & Fukase, K. (2012). Tetrahedron Lett. 53, 1756–1759. Google Scholar
Krupitsky, H., Stein, Z., Goldberg, I. & Strouse, C. E. (1994). J. Inclusion Phenom. Mol. Recogn. Chem. 18, 177–192. CSD CrossRef CAS Google Scholar
Laikov, D. N. (1997). Chem. Phys. Lett. 281, 151–154. Web of Science CrossRef CAS Google Scholar
Laikov, D. N. (2004). PRIRODA. Moscow State University. Google Scholar
Laikov, D. N. (2005). Chem. Phys. Lett. 416, 116–120. Web of Science CrossRef CAS Google Scholar
Laikov, D. N. & Ustynyuk, Y. A. (2005). Russ. Chem. Bull. 54, 820–826. Web of Science CrossRef CAS Google Scholar
Logacheva, N. M., Baulin, V. E., Tsivadze, A. Y., Pyatova, E. N., Ivanova, I. S., Velikodny, Y. A. & Chernyshev, V. V. (2009). Dalton Trans. pp. 2482–2489. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maeda, K., Terada, T., Iwamoto, T., Kurahashi, T. & Matsubara, S. (2015). Org. Lett. 17, 5284–5287. CSD CrossRef CAS Google Scholar
Mamardashvili, G. M., Mamardashvili, N. Zh. & Koifman, O. I. (2013). Macroheterocycles, 6, 67–73. CrossRef CAS Google Scholar
Masuda, H., Taga, T., Osaki, K., Sugimoto, H., Mori, M. & Ogoshi, H. (1982). Bull. Chem. Soc. Jpn, 55, 3887–3890. CrossRef CAS Google Scholar
Papkovsky, D. B. & O'Riordan, T. C. (2005). J. Fluoresc. 15, 569–584. Web of Science CrossRef CAS Google Scholar
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357–361. CrossRef CAS Web of Science IUCr Journals Google Scholar
Perdew, J. P. S., Burke, S. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868. CrossRef PubMed CAS Web of Science Google Scholar
Popa, N. C. (1998). J. Appl. Cryst. 31, 176–180. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ring, D. J., Aragoni, M. C., Champness, N. R. & Wilson, C. (2005). CrystEngComm, 7, 621–623. Web of Science CSD CrossRef CAS Google Scholar
Senge, M. O., Ruhlandt-Senge, K., Regli, K. J. & Smith, K. M. (1993). J. Chem. Soc. Dalton Trans. pp. 3519–3538. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, K. M. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1471–1475. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tyurin, V. S., Erzina, D. R., Zamilatskov, I. A., Chernyadyev, A. Yu., Ponomarev, G. V., Yashunskiy, D. V., Maksimova, A. V., Krasnovskiy, A. A. & Tsivadze, A. Yu. (2015). Macroheterocycles, 8, 376–383. Web of Science CrossRef Google Scholar
Visser, J. W. (1969). J. Appl. Cryst. 2, 89–95. CrossRef CAS IUCr Journals Web of Science Google Scholar
Volov, A. N., Zamilatskov, I. A., Mikhel, I. S., Erzina, D. R., Ponomarev, G. V., Koifman, O. I. & Tsivadze, A. Yu. (2014). Macroheterocycles, 7, 256–261. Web of Science CrossRef CAS Google Scholar
Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370. CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zamilatskov, I. A., Savinkina, E. V., Volov, A. N., Grigoriev, M. S., Lonin, I. S., Obolenskaya, L. N., Ponomarev, G. V., Koifman, O. I., Kuzovlev, A. S., Kuzmicheva, G. M. & Tsivadze, A. Yu. (2012). Macroheterocycles, 5, 308–314. CrossRef CAS Google Scholar
Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9. Web of Science CrossRef CAS Google Scholar
Zlokazov, V. B. (1992). J. Appl. Cryst. 25, 69–72. CrossRef Web of Science IUCr Journals Google Scholar
Zlokazov, V. B. (1995). Comput. Phys. Commun. 85, 415–422. CrossRef CAS Web of Science Google Scholar
Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451. CrossRef Web of Science IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.