research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Ligand-forced dimerization of copper(I)–olefin complexes bearing a 1,3,4-thia­diazole core

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Ivan Franko National University, Kyryla i Mefodia Str. 6, 79005 L'viv, Ukraine, bInstitute of Low Temperature and Structure Research, Okolna 2, 50-422 Wroclaw, Poland, and cFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
*Correspondence e-mail: myskiv@franko.lviv.ua

Edited by P. Fanwick, Purdue University, USA (Received 7 November 2016; accepted 23 November 2016; online 1 January 2017)

As an important class of heterocyclic compounds, 1,3,4-thia­diazo­les have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4-thia­diazo­les with respect to transition metal ions has been little studied. Five new crystalline copper(I) π-complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single-crystal X-ray diffraction and IR spectroscopy. The compounds are bis­[μ-5-methyl-N-(prop-2-en-1-yl)-1,3,4-thia­diazol-2-amine]­bis­[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis­[μ-5-methyl-N-(prop-2-en-1-yl)-1,3,4-thia­diazol-2-amine]­bis­[(tetra­fluoro­borato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ-aqua-bis­{μ-5-[(prop-2-en-1-yl)sulfan­yl]-1,3,4-thia­diazol-2-amine}­bis­[nitrato­copper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ-aqua-(hexa­fluoro­silicato)bis­{μ-5-[(prop-2-en-1-yl)sulfan­yl]-1,3,4-thia­diazol-2-amine}­di­copper(I)–aceto­nitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ-benzene­sulfonato-bis­{μ-5-[(prop-2-en-1-yl)sulfan­yl]-1,3,4-thia­diazol-2-amine}­dicopper(I) benzene­sulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5-methyl-N-(prop-2-en-1-yl)-1,3,4-thia­diazol-2-amine (Mepeta), C6H9N3S, was also structurally characterized. Both Mepeta and 5-[(prop-2-en-1-yl)sulfan­yl]-1,3,4-thia­diazol-2-amine (Pesta) (denoted L) reveal a strong tendency to form dimeric {Cu2L2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thia­diazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta)2}2+ unit allows the CuI atom site to be split into two positions with different metal-coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O-atom and hexa­fluorosilicate F-atom coordination, resulting in the rare case of a direct CuI⋯FSiF52− inter­action. Extensive three-dimensional hydrogen-bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination com­pound. To determine the hydrogen-bond inter­actions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.

1. Introduction

As an important class of heterocyclic compounds, 1,3,4-thia­diazo­les have a broad range of potential applications in medicine as anti­bacterial, anti­oxidant, anti­depressant, anti­diabetic, anti­fungal, anti-inflammatory and anti­tumor agents (Khan et al., 2010[Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Had, Z., Khan, A., Ali, S. & Choudhar, M. Z. (2010). Eur. J. Med. Chem. 45, 5200-5207.]; Cressier et al., 2009[Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275-5284.]; Li et al., 2014[Li, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677-1680.]; Moshafi et al., 2011[Moshafi, M. H., Sorkhi, M., Emami, S., Nakhjiri, M., Yahya-Meymandi, A., Negahbani, A. S., Siavoshi, F., Omrani, M., Alipour, E., Vosooghi, M., Shafiee, A. & Foroumadi, A. (2011). Arch. Pharm. Chem. Life Sci. 11, 178-183.]; Pattn et al., 2011[Pattn, S. R., Kittur, B. S., Sastry, B. S., Jadav, S. G., Thakur, D. K., Madamwar, S. A. & Shinde, H. V. (2011). Indian J. Chem. Sect. B, 50, 615-618.]; Lee et al., 2010[Lee, J. S., Lee, H., Seo, H. J., Son, E. J., Lee, S. H., Jung, M. E., Lee, M. W., Han, H. K., Kim, J., Kang, J. & Lee, J. (2010). Bioorg. Med. Chem. 18, 2178-2194.]; Xu et al., 2013[Xu, W. M., Li, S. Z., He, M., Yang, S., Li, X. Y. & Li, P. (2013). Bioorg. Med. Chem. Lett. 23, 5821-5824.]; Zhang et al., 2014[Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154-5156.]). In agriculture, these compounds can be used as pesticides, insecticides and plant-growth-regulating agents (Gilden et al., 2010[Gilden, R. C., Huffling, K. & Sattler, B. J. (2010). J. Obstet. Gynecol. Neonatal Nurs. 39, 103-110.]; Alves et al., 2012[Alves, S. A., Ferreira, T. C. R., Sabatini, N. S., Trientini, A. C. A., Migliorini, F. L., Baldan, M. R., Ferreira, N. G. & Lanza, M. R. V. (2012). Chemosphere, 88, 155-160.]). They have applications in materials chemistry because of their inter­esting optical and electronic properties (Tao et al., 2010[Tao, Y. X., Xu, Q. F., Lu, J. M. & Yang, X. B. (2010). Dyes Pigm. 84, 153-158.]; Granadino-Roldán et al., 2011[Granadino-Roldán, J. M., Garzón, A. S., García, G., Moral, M. N., Navarro, A., Fernández-Liencres, M. P., Peña-Ruiz, T. S. & Fernández-Gómez, M. J. (2011). Phys. Chem. C, 115, 2865-2873.]; He et al., 2010[He, J. B., Qi, F., Wang, Y. & Deng, N. (2010). Sens. Actuators B, 145, 480-487.]). Due to their electron-deficient nature and good electron-accepting ability, 1,3,4-thia­diazo­les were found to be excellent precursors for the crystal engineering of organometallic materials, possessing potential catalytic, luminescent, magnetic, nonlinear optic and other properties (Hu et al., 2014[Hu, Y., Li, C.-Y., Wang, X.-M., Yang, Y.-H. & Zhu, H.-L. (2014). Chem. Rev. 114, 5572-5610.]; Trukhina et al., 2010[Trukhina, O. N., Rodriguez-Morgade, M. S., Wolfrum, S., Caballero, E., Snejko, N., Danilova, E. A., Gutierrez-Puebla, E., Islyaikin, M. K., Guldi, D. M. & Torres, T. (2010). J. Am. Chem. Soc. 132, 12991-12999.]; Higashihara et al., 2012[Higashihara, T., Wu, H.-C., Mizobe, T., Lu, C., Ueda, M. & Chen, W.-C. (2012). Macromolecules, 45, 9046-9055.]). Among these, heterometallic coordination polymers based on 1,3,4-thia­diazole-2,5-di­thiol­ates show optical transitions with gaps varying from 1.90 to 2.24 eV, indicating their semiconductor properties (Li et al., 2008[Li, Z.-H., Lin, P. & Du, S.-W. (2008). Polyhedron, 27, 232-240.]). A three-dimensional supra­molecular network compound (via inter­layer ππ stacking inter­actions and strong hydrogen bonding), based on the cadmium complex with 2-amino-5-mercapto-1,3,4-thia­diazole, shows a blue photoluminescence in the solid state at room temperature (Zhang et al., 2007[Zhang, K. L., Qiao, N., Gao, H. Y., Zhou, F. & Zhang, M. (2007). Polyhedron, 26, 2461-2469.]). The aromatic 1,3,4-thia­diazole ring allows good π-electron conjugation and the accompanying (in the case of amino or hy­droxy substituents) proton-transfer and charge-transfer processes provide an excellent ability to promote the synthesis of heavy-metal clusters. For example, the first known tetra­nuclear CuI complex (Cu⋯·Cu = 2.74 Å) of the aza­nide-type forms as a result of metal-induced deprotonation of 2-allyl­amino-5-phenyl-1,3,4-thia­diazole in aceto­nitrile under alternating current (ac) electrochemical conditions (Slyvka et al., 2015[Slyvka, Yu., Goreshnik, E., Ardan, B., Veryasov, G., Morozov, D. & Mys'kiv, M. (2015). J. Mol. Struct. 1086, 125-130.]). Similarly, cobalt-induced reductive nucleo­philic addition of 2-amino-1,3,4-thia­diazole to aceto­nitrile also shows deprotonation of the same amine N atom, resulting in the N-(1,3,4-thia­diazol-2-yl)acetimidamide com­plex (Deng et al., 2008[Deng, Y., Liu, J., Zhang, Q., Li, F., Yang, Y., Li, P. & Ma, J. (2008). Inorg. Chem. Commun. 11, 433-437.]).

In recent years, specific attention have been paid to the investigation of copper(I) π-complexes with allyl derivatives of heterocyclic compounds, since the simultaneous presence of a heterocyclic core and an allylic radical bonded to them plays an important role in the formation of unusual inorganic fragments (Slyvka et al., 2013[Slyvka, Y., Goreshnik, E., Pavlyuk, O. & Mys'kiv, M. (2013). Cent. Eur. J. Chem. 11, 1875-1901.]). The contribution from the π-dative (Cu→C=C) π-component of a CuI–olefin bond to the tetra­hedral ligand field leads to a splitting of the copper-ion d orbitals and brings about a considerable deformation of the initial tetra­hedral copper(I) environment to trigonal pyramidal. Such a distortion of the copper(I) polyhedron is accompanied by an elongation of the Cu—Lap bond (ap is apical) compared to the Cu—(C=C) and Cu—Lbas bonds (where Lbas are heterocyclic donor N, O or S atoms). Therefore, the apical position of the CuI polyhedron becomes a selector of the coordinated inorganic anion, depending on the Lbas atom nature (i.e. the type of heterocyclic core), solvent type and other basal co-ligands. For instance, in the structure of the copper(I) hexa­fluoro­silicate π-complex with 1-allyl­benzotriazole, the first known example representing a direct CuI⋯FSiF52− inter­action was observed {the apical position of the copper(I) polyhedron is occupied by an F atom of the bridging SiF62− anion [Cu—F = 2.439 (2) Å], while the basal positions are occupied by an allylic C=C bond, a triazole N atom and a solvent water mol­ecule} (Goreshnik et al., 2011[Goreshnik, E. A., Slyvka, Yu. I. & Mys'kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177-180.]).

Taking into account the mutual presence of two neighbouring nucleophilic N atoms in the 1,3,4-thia­diazole ring and the electron-deficient nature of the core, the appearance of an allyl substituent on this ring should significantly influence its unusual coordination abilities. This assertion is confirmed by the recently studied structure of [Cu2(Mepeta)2]SiF6·C6H6 [Mepeta is 5-methyl-N-(prop-2-en-1-yl)-1,3,4-thia­diazol-2-amine], in which a CuI⋯FSiF52− inter­action was also observed. Despite the fact that allyl derivatives of 1,3,4-thia­diazo­les were first obtained more than a century ago (Pulvermacher, 1894[Pulvermacher, G. (1894). Chem. Ber. 27, 613.]), their coordinating behaviour with respect to transition metal ions has been little studied. Overall, only a few copper(I) (CuCl, CuCF3SO3 and Cu2SiF6) π-complexes with Mepeta and Phepeta [5-phenyl-N-(prop-2-en-1-yl)-1,3,4-thia­diazol-2-amine] have been synthesized and structurally characterized by X-ray diffraction and Raman spectroscopy (Ardan et al., 2013[Ardan, B., Slyvka, Yu., Goreshnik, E. & Mys'kiv, M. (2013). Acta Chim. Slov. 60, 484-490.]; Slyvka, 2015[Slyvka, Yu. I. (2015). J. Struct. Chem. 56, 1118-1123.]; Goreshnik et al., 2016[Goreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys'kiv, M. G. (2016). J. Organomet. Chem. 810, 1-11.]), and these only recently.

To fill the knowledge gap mentioned above and to explore the coordination behaviour of other allyl derivatives of thia­diazo­les, such as Pesta, with respect to diverse copper(I) salts, we report the synthesis and structures of five new π-complexes, namely [Cu(NO3)(Mepeta)]2, (1), [Cu(BF4)(Mepeta)]2, (2), [Cu2(NO3)2(Pesta)2(H2O)], (3), [Cu2(SiF6)(Pesta)2(H2O)]·0.5CH3CN·2H2O, (4), and [Cu2(C6H5SO3)(Pesta)2](C6H5SO3)·CH3OH·H2O, (5), highlighting the influence of the ligand coordination mode in the rare case of CuI⋯FSiF52− coordination.

2. Experimental

2.1. General considerations

Unless mentioned otherwise, all chemicals were obtained from commercial sources and used without further purification. The 1H NMR spectrum for Mepeta was measured on a Bruker Avance 400 MHz NMR spectrometer and the 1H NMR spectrum of Pesta was measured on a Bruker Avance 500 MHz NMR instrument. The chemical shifts are reported in ppm relative to the residual peak of deuterated CDCl3 or CD3CN for the 1H data. The IR spectra were recorded on Bruker Vertex 70 FT–IR and Bruker IFS-88 spectrometers as KBr pellets. Diffraction data for Mepeta were collected on a Kuma KM-4-CCD diffractometer with Mo Kα radiation (λ = 0.71073 Å).

2.2. Preparation of the ligands Mepeta and Pesta

5-Methyl-N-(prop-2-en-1-yl)-1,3,4-thia­diazol-2-amine (Mepeta) was prepared according to the literature procedure of Ardan et al. (2013[Ardan, B., Slyvka, Yu., Goreshnik, E. & Mys'kiv, M. (2013). Acta Chim. Slov. 60, 484-490.]) (see Scheme 1). Recrystallization of Mepeta from water leads to lamellar crystals suitable for single-crystal X-ray study. The total yield was 63%. 1H NMR (400 MHz, CDCl3): δ 6.36 (s, 1H), 5.97–5.87 (m, 1H), 5.32 (d, J = 17.2 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 3.94 (d, J = 5.6 Hz, 2H), 2.57 (s, 3H). IR (KBr, cm−1): 3179 (vs), 3076 (m), 2978 (vs), 2915 (s), 2855 (m), 2768 (m), 2357 (m), 2334 (w), 1643 (m), 1566 (vs), 1491 (vs), 1456 (s), 1435 (m), 1417 (s), 1336 (m), 1267 (m), 1214 (s), 1187 (m), 1145 (w), 1084 (m), 1008 (w), 992 (m), 960 (m), 925 (s), 814 (w), 756 (m), 650 (m), 617 (w), 522 (w).

[Scheme 1]

5-Amino-1,3,4-thia­diazole-2-thiol (Att) was prepared according to the literature procedure of Guha (1922[Guha, P. C. (1922). J. Am. Chem. Soc. 44, 1510-1517.]) (see Scheme 2). 5-[(Prop-2-en-1-yl)sulfan­yl]-1,3,4-thia­diazol-2-am­ine (Pesta) was synthesized in one step by stirring Att (20 mmol, 3.46 g) with 3-chloro­prop-1-ene (23 mmol, 1.76 g) at 343 K in the presence of KOH (20 mmol, 1.12 g) in an ethanol solution for 8 h. The total yield was 92%. 1H NMR (500 MHz, CD3CN): δ 5.93 (ddt, J = 17.1, 10.0, 7.0 Hz, 1H), 5.80 (s, 2H), 5.21 (dq, J = 17.0, 1.4 Hz, 1H), 5.12 (ddt, J = 10.0, 1.6, 0.9 Hz, 1H), 3.72–3.65 (m, 2H). IR (KBr, cm−1): 3279 (vs), 3093 (vs), 2959 (vs), 2923 (vs), 2785 (m), 2686 (m), 2337 (w), 1845 (w), 1643 (s), 1518 (vs), 1464 (s), 1424 (s), 1398 (m), 1376 (m), 1329 (m), 1233 (m), 1198 (w), 1141 (m), 1098 (m), 1062 (s), 1050 (s), 987 (s), 922 (vs), 867 (m), 779 (w), 729 (m), 686 (m), 617 (m), 580 (m), 545 (w).

[Scheme 2]

2.3. Syntheses of complexes (1)–(5)

Crystals of complexes (1)–(5) were obtained under alternating current electrochemical synthesis conditions (Mykhalichko & Mys'kiv, 1998[Mykhalichko, B. M. & Mys'kiv, M. G. (1998). Ukr. Patent UA 25450A.]), starting with a water–aceto­nitrile or methanol–toluene solution of Mepeta or Pesta and the corresponding copper(II) salt.

2.3.1. Preparation of [Cu(NO3)(Mepeta)]2, (1)

To an ethanol solution (2 ml) of Mepeta (1.1 mmol, 0.17 g), an ethanol solution (2.5 ml) of Cu(NO3)2·3H2O (1.0 mmol, 0.24 g) was added. The resulting dark-green solution was placed in a small 5 ml test tube and a cork was added fitted with copper-wire electrodes. An alternating current (fre­quency 50 Hz) of 0.45 V was applied for 7 d, during which time good-quality colourless crystals of (1) appeared on the electrodes. IR (nujol, cm−1): 3450 (m), 3215 (m), 2996 (m), 2392 (w), 1576 (m), 1509 (w), 1384 (vs), 1220 (m), 1043 (w), 976 (w), 942 (w), 898 (w), 826 (w), 785 (w), 717 (w), 676 (w), 620 (w), 544 (w), 514 (w).

[Scheme 3]
2.3.2. Preparation of [Cu(BF4)(Mepeta)]2, (2)

To an ethanol solution (2 ml) of Mepeta (1.1 mmol, 0.17 g), an ethanol solution (2.5 ml) of Cu(BF4)2·6H2O (1.0 mmol, 0.26 g) was added. The resulting dark-green solution was subjected to an alternating current (frequency 50 Hz) at 0.42 V and, after 1 d, good-quality colourless crystals of (2) appeared on the copper-wire electrodes. IR (KBr, cm−1): 3338 (s), 3094 (w), 3036 (m), 2926 (w), 2367 (m), 2337 (m), 1565 (vs), 1522 (s), 1503 (s), 1445 (s), 1420 (m), 1387 (m), 1333 (s), 1284 (s), 1262 (m), 1246 (w), 1224 (s), 1068 (vs), 1012 (vs), 978 (vs), 946 (s), 903 (m), 786 (m), 703 (w), 683 (w), 599 (w), 546 (m), 519 (m).

[Scheme 4]
2.3.3. Preparation of [Cu2(NO3)2(Pesta)2(H2O)], (3)

Pesta (1.0 mmol, 0.17 g) was dissolved in an aceto­nitrile solution (4.5 ml) of Cu(NO3)2·3H2O (1.0 mmol, 0.24 g). An alternating current (frequency 50 Hz) of 0.50 V was applied for 5 d, during which time good-quality colourless crystals of (3) appeared on the copper-wire electrodes. IR (KBr, cm−1): 2955 (vs), 2922 (vs), 2852 (vs), 1463 (s), 1377 (s), 1342 (m), 1153 (w), 1044 (w), 723 (m), 511 (w).

2.3.4. Preparation of [Cu2(SiF6)(Pesta)2(H2O)]·0.5CH3CN·2H2O, (4)

A solution of Pesta (1.0 mmol, 0.17 g) in aceto­nitrile (3.8 ml) was added to a saturated water solution (0.9 ml) of CuSiF6·4H2O (in a 5 ml test tube). The mixture was stirred carefully. The resulting mixture consisted of an upper dark layer (aceto­nitrile) and a lower light-green layer (water). It was subjected to alternating current reduction (frequency 50 Hz, 0.5 V) (the aceto­nitrile layer became fully colourless and, after 4–5 d, only a few good-quality colourless crystals of (4) had appeared on the copper-wire electrodes.

[Scheme 5]
2.3.5. Preparation of [Cu2(C6H5SO3)(Pesta)2](C6H5SO3)·CH3OH·H2O, (5)

A solution of Pesta (1.0 mmol, 0.17 g) and Cu(C6H5SO3)2·6H2O was prepared in a mixture of methanol (2.3 ml) and toluene (2.2 ml). The resulting green-coloured solution was subjected to alternating current (frequency 50 Hz, 0.45 V). After 1 d the solution became colourless and good-quality colourless crystals of (5) appeared on the copper electrodes. IR (KBr, cm−1): 3498 (m), 3279 (s), 3122 (s), 2956 (vs), 2922 (vs), 2854 (vs), 1626 (s), 1540 (s), 1456 (vs), 1374 (s), 1346 (w), 1247 (w), 1220 (s), 1172 (vs), 1122 (vs), 1065 (m), 1035 (s), 1015 (s), 993 (m), 932 (w), 882 (vw), 753 (m), 727 (s), 692 (m), 609 (s), 563 (m).

[Scheme 6]

2.4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The Mepeta structure was refined as a racemic twin with a ratio of the components of 0.73 (11):0.27 (11). The amine H atom in Mepeta itself and the ligand amine H atoms in complexes (1)–(5) were derived from difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N). The water H atoms in (3)–(5) were derived from difference Fourier maps and refined with Uiso(H) = 1.5Ueq(O). The other H atoms were refined in ideal positions (riding model), with C—H = 0.99 (methyl and methyl­ene) or 0.95 Å (otherwise) and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. Some of the reflections, for which a considerable difference between the observed and calculated intensities were observed, were omitted from the final refinement cycles [4, 5, 1 and 3 reflections for (1)–(3) and (5), respectively]. In the Mepeta structure, the allyl group (atoms C7, C8 and C9) is disordered over two sites, with an occupancy ratio of 0.660 (6):0.340 (6). In (3), the allyl­sulfanyl group (atoms S12, C17, C18 and C19), together with Cu1, as well as the allyl group (atoms C27, C28 and C29), together with Cu2, are disordered over two sites, with occupancy ratios of 0.765 (6):0.235 (6) and 0.794 (7):0.206 (7), respectively. In (4), the allyl group (atoms C17, C18 and C19) is disordered over two sites, with an occupancy ratio of 0.616 (8):0.384 (8); the allyl group (atoms C27, C28 and C29), together with Cu2, is disordered over two sites, with a fixed occupancy ratio of 0.88:0.12 and the hexa­fluoro­silicate F atoms (F3, F4, F5 and F6) are disordered over four sites, with an occupancy ratio of 0.426 (3):0.287 (3):0.172 (3):0.115 (3). In (4), the chemically equivalent bond lengths and angles involving the disordered C27, C28 and C29 atoms (as well as the disordered F3, F4, F5 and F6 atoms) were restrained to obtain similar geometries. In (5), two allyl groups (atoms C17/C18/C19 and C27/C28/C29) are disordered over two sites, with occupancy ratios of 0.80 (1):0.20 (1) and 0.66 (1):0.34 (1), respectively; one benzene­sulfonate anion (atoms S3, O31, O32 and O33) is disordered over two sites, with an occupancy ratio of 0.644 (6):0.356 (6). The measured crystal of (1) appeared to be twinned by reticular merohedry, with two components rotated with respect to each other by ∼180° around the direct-space a axis. 974 reflections were overlapped, whereas 3705 and 3735 reflections were isolated for components (1) and (2), respectively. Data reduction was conducted taking into account both twin domains and an HKLF 5 file was produced. The final refined twin ratio for (1) was 0.4489 (8):0.5511 (8).

Table 1
Experimental details

For all compounds, H atoms were treated by a mixture of independent and constrained refinement. Mepeta was refined as an inversion twin [absolute structure parameter = 0.27 (11)].

  Mepeta (1) (2)
Crystal data
Chemical formula C6H9N3S [Cu2(NO3)2(C6H9N3S)2] [Cu2(BF4)2(C6H9N3S)2]
Mr 155.22 561.54 611.14
Crystal system, space group Orthorhombic, Pna21 Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 120 100 100
a, b, c (Å) 8.843 (3), 17.485 (5), 5.041 (3) 7.235 (3), 7.548 (3), 10.297 (4) 7.754 (3), 7.965 (3), 10.372 (4)
α, β, γ (°) 90, 90, 90 105.42 (3), 98.15 (3), 112.43 (3) 67.57 (3), 89.99 (3), 61.07 (3)
V3) 779.4 (6) 482.0 (4) 504.6 (4)
Z 4 1 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.34 2.47 2.40
Crystal size (mm) 0.98 × 0.42 × 0.11 0.43 × 0.21 × 0.14 0.44 × 0.23 × 0.18
 
Data collection
Diffractometer Kuma KM-4-CCD Rigaku Xcalibur Onyx Rigaku Xcalibur Onyx
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.801, 0.964 0.542, 0.768 0.498, 0.711
No. of measured, independent and observed [I > 2σ(I)] reflections 11519, 3214, 2812 8459, 8459, 6900 8712, 4784, 4163
Rint 0.051 0.020 0.014
(sin θ/λ)max−1) 0.843 0.876 0.876
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.06 0.034, 0.096, 1.06 0.022, 0.061, 1.07
No. of reflections 3214 8459 4784
No. of parameters 124 141 149
No. of restraints 1 0 0
Δρmax, Δρmin (e Å−3) 0.31, −0.31 0.88, −1.03 0.56, −0.51
  (3) (4) (5)
Crystal data
Chemical formula [Cu2(NO3)2(C5H7N3S2)2(H2O)] [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5C2H3N·2H2O [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH4O·H2O
Mr 615.63 688.24 837.97
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 100 260 110
a, b, c (Å) 7.379 (3), 18.780 (5), 14.702 (4) 11.899 (4), 11.442 (4), 17.678 (5) 14.944 (4), 16.587 (5), 14.658 (4)
α, β, γ (°) 90, 94.82 (3), 90 90, 102.04 (3), 90 90, 117.91 (3), 90
V3) 2030.2 (11) 2353.9 (13) 3210.7 (17)
Z 4 4 4
Radiation type Mo Kα Mo Kα Cu Kα
μ (mm−1) 2.56 2.29 5.77
Crystal size (mm) 0.3 × 0.18 × 0.13 0.52 × 0.17 × 0.09 0.45 × 0.32 × 0.17
 
Data collection
Diffractometer Rigaku Xcalibur Ruby Rigaku Xcalibur Sapphire2 (large Be window) Rigaku Xcalibur Onyx
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.577, 0.776 0.452, 0.825 0.248, 0.540
No. of measured, independent and observed [I > 2σ(I)] reflections 11883, 6647, 4618 24572, 5649, 3717 16595, 6741, 6073
Rint 0.037 0.053 0.056
(sin θ/λ)max−1) 0.752 0.661 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.01 0.037, 0.087, 1.02 0.057, 0.166, 1.05
No. of reflections 6647 5649 6741
No. of parameters 346 412 487
No. of restraints 0 245 3
Δρmax, Δρmin (e Å−3) 0.68, −0.70 0.47, −0.38 1.03, −1.49
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]a), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]b) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

2.5. Hirshfeld surface analysis and fingerprint plots

The three-dimensional Hirshfeld surfaces (HSs) and two-dimensional fingerprint plots for (1) and (2) were generated using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

3. Results and discussion

Mepeta crystallizes in the noncentrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit (Fig. 1[link]). The C2—N3 and C2—N1 bond lengths are consistent with delocalization of the electrons between the thia­diazole ring and the N atom of the amino group. The C2—N1 bond length of 1.338 (3) Å is slightly shorter than a nominal Car—N(sp2)H bond length of 1.353 Å, while the C2—N3 bond length of 1.319 (2) Å is slightly longer than the neighbouring C5—N4 bond [1.293 (3) Å] of the same thia­diazole ring. The H atom of the amino group participates in N—H⋯N hydrogen bonding (Table 2[link]) with the thia­diazole N3 atom of the nearest mol­ecule, forming an infinite hydrogen-bonded chain in the [100] direction (Fig. 2[link]). Neighbouring Mepeta mol­ecules within the chain are twisted relative to each other by 89.33 (3)°, thus enabling a larger allyl-group mobility in the space (d ∼ 6 × 9 Å) between the thia­diazole rings of the nearest chains. Therefore, the C atoms of the allyl groups are disordered over two sites [the site-occupation factors are 0.660 (6) for A and 0.340 (6) for B], so that the methene H atom (with a site-occupation factor of 0.340) from one {Mepeta} chain is connected to the thia­diazole N4 atom of the nearest chain by a weak hydrogen bond (C8B—H8B⋯N4iv = 2.38 Å; Table 2[link]). The dihedral angles between the plane of the thia­diazole ring and the N1—C7A and N1—C7B bonds of the allyl­amino group are 4.2 (4) and −10.2 (4)°, respectively. The double-bond distances C8A=C9A and C8B=C9B are 1.325 (10) and 1.412 (19) Å, respectively.

Table 2
Hydrogen-bond geometry (Å, °) for Mepeta[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.88 (3) 2.02 (3) 2.860 (2) 159 (3)
C7A—H7AA⋯S1ii 0.99 2.97 3.462 (4) 112
C7B—H7BA⋯S1iii 0.99 2.96 3.880 (8) 156
C8B—H8B⋯N4iv 0.95 2.38 3.295 (5) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x, y, z-1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1].
[Figure 1]
Figure 1
The independent part in the Mepeta crystal structure. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The hydrogen-bonded chains (dashed lines) in the Mepeta structure.

Crystals of (1) and (2) (see Scheme 3) are similar to the previously studied [Cu(CF3SO3)(Mepeta)]2 π-complex (Goreshnik et al., 2016[Goreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys'kiv, M. G. (2016). J. Organomet. Chem. 810, 1-11.]). The asymmetric unit contains one CuI centre, one Mepeta ligand and one nitrate ligand in (1) or one tetra­fluoro­borate ligand in (2) (donoted An). The Mepeta mol­ecule is coordinated to the metal centre via the two N atoms of the thia­diazole ring and the allylic C=C bond in a chelating–bridging mode. The trigonal–pyramidal CuI environment in the basal plane includes the N3 atom and the C=C bond of one thia­diazole ligand and the N4 atom of another heterocyclic ring. The apical position of the metal coordination polyhedron is occupied by either weakly coordinating O or F atoms of NO3 or BF4 in (1) and (2), respectively. Therefore, two CuI atoms are bridged by two neighbouring Mepeta mol­ecules, connecting them into centrosymmetrical [Cu(NO3)(Mepeta)]2, (1), and [Cu(BF4)(Mepeta)]2, (2), dimers (Fig. 3[link]). The Cu⋯Cu distance of 3.472 (2) Å in (1) and of 3.488 (2) Å in (2) are too long for a cuprophilic inter­action (Lake & Willans, 2013[Lake, B. R. M. & Willans, C. E. (2013). Chem. Eur. J. 19, 16780-16790.]). Two thia­diazole rings from the same dimer are entirely coplanar. It is inter­esting to note that S-allyl derivatives of 1-aryl-­substituted 1H-tetra­zole-5-thiol have the same tridentate–chelate coordination mode, connecting two CuI atoms by means of an allylic C=C bond and two tetra­zole N atoms into centrosymmetric {[Cu(L)(H2O)]+}2 dimers (Slyvka et al., 2009[Slyvka, Yu., Pokhodylo, N., Savka, R., Goreshnik, E. & Mys'kiv, M. (2009). Chem. Met. Alloys, 2, 130-137.], 2010[Slyvka, Yu., Pokhodylo, N., Savka, R., Mazej, Z., Goreshnik, E. & Mys'kiv, M. (2010). Chem. Met. Alloys, 3, 201-207.]).

[Figure 3]
Figure 3
Centrosymmetric [Cu(An)(Mepeta)]2 dimers in the structures of (a) (1) and (b) (2). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The strength of the CuI—(C=C) inter­action is confirmed by the fact that the allylic C=C bonds are slightly elongated to 1.360 (3) Å in (1) and 1.3706 (16) Å (2) [compared with a nominal value of 1.33 Å and a value of 1.340 (7) Å in Mepeta]. The CuI atom deviates from the base of the trigonal pyramid by Δ = 0.132 (3) Å in (1) and 0.062 (2) Å in (2), while the angle τ between the C=C bond and the basal plane is 11.3 (1)° in (1) and 12.5 (1)° in (2). This conclusion is also confirmed by the rather short Cu—m distances (m is the mid-point of C=C bond) and the rather large C—Cu—C angles (Table 3[link]).

Table 3
Selected geometric parameters (Å, °) of (1) and (2)

m is the mid-point of the C=C bond.

Complex (1)      
Cu1—N3 1.9938 (17) Cu1—m 1.940 (1)
Cu1—N4i 1.9693 (19) Cu1—O1 2.473 (3)
Cu1—C8 2.038 (2) C8—C9 1.360 (3)
Cu1—C9 2.073 (2)    
       
N4i—Cu1—N3 114.48 (7) O1—Cu—m 97.76 (5)
C8—Cu1—C9 38.62 (8) C9—C8—C7 122.8 (2)
Complex (2)      
Cu1—N3 2.0036 (15) Cu1—m 1.9454 (9)
Cu1—N4i 1.9646 (11) Cu1 – F1 2.6670 (15)
Cu1—C8 2.0451 (12) C8—C9 1.3706 (16)
Cu1—C9 2.0799 (15)    
       
N4i—Cu1—N3 114.54 (5) F1—Cu—m 95.51 (3)
C8—Cu1—C9 38.80 (5) C9—C8—C7 123.77 (10)
Symmetry code: (i) −x + 1, −y + 1, −z + 1.

Through N—H⋯X [X = O in (1) or F in (2)] (Table 4[link]) hydrogen bonds between the H atom of the ligand amino group and the X atoms of the NO3 ligand in (1) or the BF4 ligand in (2), neighbouring [Cu(Mepeta)(An)]2 fragments are linked into hydrogen-bonded stair-like chains extending in the [010] direction (Fig. 4[link]). These chains are inter­penetrated by a variety of C—H⋯X contacts to produce a three-dimensional framework.

Table 4
Hydrogen-bond geometry (Å, °) for (1)[link] and (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
Complex (1)        
N2—H2⋯O1ii 0.80 (3) 2.32 (3) 3.034 (3) 150 (2)
N2—H2⋯O2ii 0.80 (3) 2.24 (3) 2.970 (3) 153 (2)
         
Complex (2)        
N2—H2⋯F2ii 0.87 (2) 1.95 (2) 2.7874 (14) 160 (1)
N2—H2⋯F3ii 0.87 (2) 2.53 (2) 3.242 (2) 140 (1)
C7—H7B⋯F4iii 0.99 2.53 3.4900 (17) 163
Symmetry codes: (ii) x, y-1, z; (iii) -x+1, -y+1, -z.
[Figure 4]
Figure 4
The hydrogen-bonded array in the structure of the [Cu(BF4)(Mepeta)]2 π-complex, (2).

The organic–inorganic hybrid π-complex (3) (see Scheme 4) crystallizes in the centrosymmetric space group P21/c. The asymmetric unit contains two CuI centres, two Pesta ligands, one bridging aqua ligand and two nitrate ligands. Similar to Mepeta, Pesta is coordinated to copper(I) via the thia­diazole N3 and N4 atoms and the allylic C=C bond in a chelating–bridging mode. In contrast to the {Cu2(Mepeta)2}2+ units in (1) and (2), two CuI atoms in (3) are connected by two Pesta ligands into a noncentrosymmetric {Cu2(Pesta)2}2+ unit (Fig. 5[link]a). The planes of the thia­diazole rings from the same dimer form a dihedral angle of 31.2 (1)°. The conformational flexibility of the dimer allows the CuI atom site to be split over two positions with different coordination environments. The trigonal–pyramidal environments of atoms Cu1A and Cu2A [site-occupation factors = 0.765 (6) and 0.794 (7), respectively] in the basal plane include the C=C bond and two N atoms of neighbouring Pesta ligands, while the apical positions are occupied by weakly coordinated O atoms of NO3 ligands (Table 5[link]). The common apical position of the two trigonal pyramids of the other Cu1B and Cu2B pair [site-occupation factors = 0.235 (7) and 0.206 (7)] is occupied by a bridging aqua mol­ecule. The distances from Cu1A and Cu2A to the water O atom of 2.835 (7) and 2.767 (7) Å, respectively, are significantly longer than the formally limiting distance (2.63 Å; Slyvka et al., 2013[Slyvka, Y., Goreshnik, E., Pavlyuk, O. & Mys'kiv, M. (2013). Cent. Eur. J. Chem. 11, 1875-1901.]) of a Cu—Oap inter­action [in the case of copper(I) π-complexes with allyl derivatives of heterocycles], but at the same time it is slightly shorter than the sum of the van der Waals radii of 2.92 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

Table 5
Selected geometric parameters (Å, °) of (3)

m and m′ are the mid-points of the allylic C18A=C19A and C28A=C29A bonds, respectively.

Cu1A—N13 2.045 (3) Cu2A—C28A 2.062 (4)
Cu1A—N24 1.962 (2) Cu2A—C29A 2.052 (8)
Cu1A—C18A 2.054 (4) Cu2B—O1 2.341 (7)
Cu1A—C19A 2.039 (6) Cu1A—O11 2.4416 (29)
Cu1B—O1 2.363 (7) Cu2A—O21 2.5391 (31)
Cu2A—N14 1.974 (3) C18A—C19A 1.374 (9)
Cu2A—N23 1.998 (3) C28A—C29A 1.369 (11)
Cu1Am 1.928 (2) Cu2Am 1.940 (2)
       
N24—Cu1A—N13 110.12 (11) C19A—C18A—C17A 125.4 (5)
C19A—Cu1A—C18A 39.2 (2) C29A—C28A—C27A 125.9 (5)
N14—Cu2A—N23 111.13 (12) O11—Cu1Am 98.77 (8)
C29A—Cu2A—C28A 38.9 (3) O21—Cu2Am 101.25 (8)
[Figure 5]
Figure 5
(a) The independent part of the structure of (3) and (b) the cationic [Cu2(Mepeta)2(H2O)2]2+ dimer in the [Cu2(Mepeta)2(H2O)2]SiF6·2.5H2O complex (Ardan et al., 2013[Ardan, B., Slyvka, Yu., Goreshnik, E. & Mys'kiv, M. (2013). Acta Chim. Slov. 60, 484-490.]). One of the two disordered positions of the allyl­sulfanyl group and the metal atom in (3), i.e. with the lower site-occupancy factor, are shown in semi-transparent mode. Displacement ellipsoids are drawn at the 20% probability level.

The H atoms of the ligand amino group and the coordinated water mol­ecule participate in X—H⋯Y (X and Y = N or O) hydrogen bonding with NO3 ligands, forming a three-dimensional hydrogen-bonded network (Table 6[link]).

Table 6
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O13i 0.93 (5) 2.01 (5) 2.846 (4) 149 (4)
O1—H1B⋯O22ii 0.99 (5) 2.29 (5) 3.142 (4) 143 (4)
O1—H1B⋯O23ii 0.99 (5) 2.25 (5) 2.946 (3) 126 (3)
N12—H12A⋯O13iii 0.93 (4) 2.16 (4) 3.053 (4) 161 (3)
N12—H12B⋯O22 0.84 (4) 2.09 (4) 2.918 (4) 166 (3)
N22—H22A⋯O12 0.85 (4) 2.07 (4) 2.895 (4) 163 (3)
N22—H22B⋯O23iv 0.82 (3) 2.07 (3) 2.856 (3) 162 (3)
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

A similar {Cu2(Pesta)2}2+ unit was found in the structure of (4) (see Scheme 5). The asymmetric unit contains two CuI centres, two Pesta ligands, one bridging aqua ligand and one anionic SiF62− ligand (Fig. 6[link]a). The planes of the thia­diazole rings from the same dimer form a dihedral angle of 28.3 (1)°. The π-complex [Cu2(SiF6)(Pesta)2(H2O)]·0.5CH3CN·2H2O, (4), may be considered as a rare example of the direct CuI—F(SiF62−) inter­action. This inter­action has been found previously in only two Cu2SiF6 π-complexes with 1-allyl­benzotriazole, Abtr (Goreshnik et al., 2011[Goreshnik, E. A., Slyvka, Yu. I. & Mys'kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177-180.]) and Mepeta (Goreshnik et al., 2016[Goreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys'kiv, M. G. (2016). J. Organomet. Chem. 810, 1-11.]). Despite the fact that the SiF62− anions are not directly coordinated to the CuI atom, but form hydrogen bonds with the coordinated water mol­ecules, the Pesta ligand allows the CuI ion to be divided between two positions with water O-atom or hexafluorosilicate F-atom coordination (Fig. 6[link]a), resulting in the splitting of one CuI position of the {Cu2(Pesta)2}2+ unit into two sites, i.e. Cu2A and Cu2B (0.88:0.12). The Cu2B⋯F1 distance of 2.833 (16) Å in (4) is longer than the CuI⋯F distance of 2.44 Å in [Cu2(SiF6)(Abtr)2(H2O)2]·2H2O (Goreshnik et al., 2011[Goreshnik, E. A., Slyvka, Yu. I. & Mys'kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177-180.]), but is still shorter than the sum of the van der Waals radii (2.87 Å). The above inter­action results in a lower Ueq(F1) value of 0.0531 (5) Å2 compared with the Ueq(F2) value of 0.0641 (6) Å2, while the other F atoms of the SiF62− anion are disordered in a carousel-like mode. Thus, the two CuI atoms have different coordination environments: Cu1 and Cu2A have a trigonal–pyramidal surrounding, with a common apical water mol­ecule, while the apical position of the Cu2B polyhedron is occupied by a weakly coordinated F atom of the SiF62− anion (Fig. 6[link]). For comparison, in a previously studied π-complex of Cu2SiF6 with Mepeta, viz. [Cu2(Mepeta)2(H2O)2]SiF6·2.5H2O, the noncentrosymmetric {Cu2(Mepeta)2}2+ unit was also found (Fig. 5[link]b), but each CuI atom is linked with a different apical water mol­ecule (Ardan et al., 2013[Ardan, B., Slyvka, Yu., Goreshnik, E. & Mys'kiv, M. (2013). Acta Chim. Slov. 60, 484-490.]). Moreover, two coordinated water mol­ecules in the last case are located on the same side of the dimer unit [as was found for the NO3 ligands in (3); Fig. 5[link]a].

[Figure 6]
Figure 6
The structural arrangement in π-complexes (a) (4) and (b) (5). One of the two disordered positions of the Cu, C and F atoms in (4), and of the C, O and S atoms in (5), i.e. with the lower site-occupancy factor, is shown in semi-transparent mode. Displacement ellipsoids are drawn at the 30% probability level.

The H atoms of the ligand amino group in (4) are involved in N—H⋯F hydrogen bonding with the F1 and F2 atoms of two neighbouring SiF62− anions, connecting {Cu2(SiF6)(Pesta)2(H2O)} units into hydrogen-bonded layers. The latter, by means of O—H⋯O- and O—H⋯F-type hydrogen bonds involving atoms of the coordinated and constitutional water mol­ecules, are inter­penetrated into a supra­molecular structure (Table 7[link]).

Table 7
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯F1 0.86 (3) 2.14 (4) 2.973 (4) 163 (3)
N12—H12B⋯F2i 0.86 (4) 2.04 (4) 2.827 (3) 152 (3)
N22—H22A⋯F2ii 0.93 (4) 2.05 (4) 2.903 (4) 153 (3)
N22—H22B⋯F5Aiii 0.83 (4) 1.83 (4) 2.638 (5) 165 (4)
N22—H22B⋯F5Biii 0.83 (4) 1.98 (4) 2.758 (9) 157 (4)
N22—H22B⋯F5Ciii 0.83 (4) 2.50 (4) 3.27 (2) 154 (4)
N22—H22B⋯F4Diii 0.83 (4) 2.00 (4) 2.766 (15) 153 (4)
O1—H1A⋯N1 0.91 1.89 2.789 (10) 175
O1—H1B⋯O2 0.90 1.85 2.698 (4) 156
O2—H2A⋯F5Biv 0.87 1.98 2.819 (11) 163
O2—H2A⋯F5Civ 0.87 1.52 2.385 (12) 169
O2—H2A⋯F5Div 0.87 1.64 2.427 (15) 150
O2—H2B⋯F3Cv 0.87 1.59 2.383 (11) 149
O2—H2B⋯F3Dv 0.87 1.59 2.465 (18) 177
O2—H2B⋯F4Av 0.87 2.09 2.952 (9) 169
Symmetry codes: (i) [-x-{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x-1, -y-1, -z; (iv) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+1, y, z.

The structure most similar to [Cu2(Mepeta)2(H2O)2]SiF6·2.5H2O is the π-complex (5) (see Scheme 6) (Fig. 6[link]b). Two O atoms of the benzene­sulfonate ligand in (5) are bound to the two CuI atoms of the same {Cu2(Pesta)2}2+ unit, while the other benzene­sulfonate anion is involved in N—H⋯O hydrogen bonding with the ligand amine group. The tendency for the O atom to be bound simultaneously to the two metal atoms of the dimer appears to be common for dimeric {Cu2(Pesta)2}2+ cations. Therefore, the sulfonate group of the anion in (5) is disordered over two sites (O31A/O32A/O33A and O31B/O32B/O33B), with an occupancy ratio of 0.644 (6):0.356 (6), and one O atom of the lower-occupancy unit plays the same role as the water mol­ecule in (3), binding two metal centres. The planes of the thia­diazole rings from the same dimer in (5) form a dihedral angle of 34.4 (1)°. By means of a variety of N—H⋯O and O—H⋯O hydrogen bonds (Table 8[link]), the above dimers are connected into a hydrogen-bonded framework (Fig. 7[link]). To the best of our knowledge, complex (5) is the first known example of a CuI(C6H5SO3) coordination compound [for comparison, there are eight entries in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for CuII(C6H5SO3) coordination complexes].

Table 8
Hydrogen-bond geometry (Å, °) for (5)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯O51i 0.91 (5) 1.94 (5) 2.765 (4) 150 (4)
N12—H12B⋯O41 0.87 (5) 2.00 (5) 2.867 (4) 174 (4)
N22—H22A⋯O42ii 0.90 (5) 2.04 (5) 2.896 (4) 158 (4)
N22—H22B⋯O61iii 0.86 (5) 1.96 (5) 2.758 (4) 154 (4)
O61—H61⋯O43iv 0.75 (6) 1.98 (6) 2.726 (4) 174 (6)
O51—H51A⋯O43v 0.82 (6) 2.00 (7) 2.790 (4) 164 (6)
O51—H51B⋯O32B 0.81 (7) 2.20 (7) 3.010 (11) 170 (6)
O51—H51B⋯O33A 0.81 (7) 1.84 (7) 2.641 (7) 168 (6)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+1.
[Figure 7]
Figure 7
The hydrogen-bonded array in [Cu2(SiF6)(Pesta)2(H2O)]·CH3OH·2H2O, (4). Displacement ellipsoids are drawn at the 30% probability level.

3.1. Hirshfeld surface analysis

The Hirshfeld surfaces were built for [Cu(NO3)(Mepeta)]2, (1), and [Cu(BF4)(Mepeta)]2, (2), to analyze the inter­actions between the units. The most prominent inter­actions, between Mepeta H atoms and nitrate O atoms in (1), as well as between Mepeta H atoms and tetrafluoroborate F atoms, can be seen in the Hirshfeld surface plots as the bright and pale-pink areas (Fig. 8[link]a). Fingerprint plots were produced to show the inter­molecular surface bond lengths, with the regions highlighted for H⋯O, H⋯F and H⋯S inter­actions. The contribution to the surface area for H⋯H contacts is 27.7% in (1) and 24.4% in (2).

[Figure 8]
Figure 8
Hirshfeld surface analysis of the [Cu(NO3)(Mepeta)]2, (1), and [Cu(BF4)(Mepeta)]2, (2), dimers. (a) The Hirshfeld surfaces mapped with dnorm, which highlights both the donor and acceptor ability. (b) Fingerprint plots for the dimeric units resolved into (L)H⋯O(NO3) or (L)H⋯F(BF4) contacts. (c) Fingerprint plots for the dimeric units resolved into (L)H⋯S contacts. (d) Fingerprint plots for the dimeric units resolved into H⋯H contacts. The full fingerprint appears beneath each decomposed plot in grey.

4. Summary

The syntheses and crystal structures of 5-methyl-N-(prop-2-en-1-yl)-1,3,4-thia­diazol-2-amine (Mepeta) and five copper(I) π-complexes with Mepeta and 5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine (Pesta) have been described. Mepeta itself crystallizes in the noncentrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit. Both Mepeta and Pesta reveal a strong tendency towards the formation of dimeric {Cu2L2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thia­diazole N atoms and an allylic C=C bond. The symmetry of the {Cu2(Mepeta)2}2+ unit depends on the charge of the anion; centrosymetric units were found in the presence of singly charged anions and a noncentrosymmetric dimer was found in the case of the doubly charged SiF62− ion. The flexibility of the {Cu2(Pesta)2}2+ unit allows the CuI atom site to be split over two positions with different coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. Pesta allows the CuI ion to be divided between two positions with water O-atom or hexafluorosilicate F-atom coordination, resulting in the rare case of a direct CuI⋯FSiF52− inter­action. The tendency of oxygen to be bound simultaneously to two metal atoms in the dimeric {Cu2(Pesta)2}2+ cation is confirmed by the presence of disorder in the benzene­sulfonate anion. By a variety of sufficiently strong hydrogen bonds, the dimeric {Cu2(L)2(An)2} (An = NO3, BF4 and [1 \over 2]SiF62−) units participate in supra­molecular structure formation. Structure (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for mepeta, (1), (3), (5); CrysAlis CCD (Oxford Diffraction, 2010) for (2), (4). Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for mepeta, (1), (3), (5); CrysAlis RED (Oxford Diffraction, 2010) for (2), (4). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for mepeta, (1), (3), (5); CrysAlis RED (Oxford Diffraction, 2010) for (2), (4). For all compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(mepeta) 5-Methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C6H9N3SDx = 1.323 Mg m3
Mr = 155.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 5973 reflections
a = 8.843 (3) Åθ = 3.3–36.3°
b = 17.485 (5) ŵ = 0.34 mm1
c = 5.041 (3) ÅT = 120 K
V = 779.4 (6) Å3Plate, clear light colourless
Z = 40.98 × 0.42 × 0.11 mm
F(000) = 328
Data collection top
Kuma KM-4-CCD
diffractometer
3214 independent reflections
Radiation source: Kuma KM-4-CCD, Kuma KM-4-CCD2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.3359 pixels mm-1θmax = 36.8°, θmin = 3.3°
ω scansh = 1411
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 2726
Tmin = 0.801, Tmax = 0.964l = 78
11519 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.31 e Å3
3214 reflectionsΔρmin = 0.31 e Å3
124 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.27 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.77479 (4)0.83578 (2)0.66791 (14)0.03107 (13)
N10.71891 (16)0.73279 (10)0.2801 (4)0.0345 (3)
H10.814 (3)0.7180 (15)0.295 (6)0.041*
N30.51665 (15)0.80284 (9)0.4639 (4)0.0335 (3)
N40.48989 (16)0.85941 (10)0.6522 (5)0.0387 (3)
C20.66088 (16)0.78417 (9)0.4483 (4)0.0279 (3)
C50.6107 (2)0.88210 (11)0.7732 (4)0.0346 (4)
C60.6120 (3)0.94181 (13)0.9846 (5)0.0469 (5)
H6A0.66340.92181.14220.070*
H6B0.50780.95561.03020.070*
H6C0.66560.98720.92000.070*
C7A0.6390 (4)0.69117 (19)0.0720 (8)0.0276 (6)0.660 (6)
H7AA0.70620.68570.08410.033*0.660 (6)
H7AB0.54920.72090.01640.033*0.660 (6)
C7B0.5939 (6)0.6893 (4)0.1468 (17)0.0275 (12)0.340 (6)
H7BA0.52530.66620.27980.033*0.340 (6)
H7BB0.53430.72340.02980.033*0.340 (6)
C8A0.5898 (3)0.61366 (15)0.1627 (7)0.0326 (6)0.660 (6)
H8A0.53420.60830.32290.039*0.660 (6)
C8B0.6714 (5)0.6288 (3)0.0111 (11)0.0296 (13)0.340 (6)
H8B0.75320.64150.12500.035*0.340 (6)
C9A0.6238 (13)0.5524 (6)0.020 (3)0.061 (4)0.660 (6)
H9AA0.67940.55780.14040.073*0.660 (6)
H9AB0.59260.50320.07740.073*0.660 (6)
C9B0.621 (2)0.5524 (9)0.012 (3)0.042 (6)0.340 (6)
H9BA0.53940.54030.12600.051*0.340 (6)
H9BB0.66940.51320.08770.051*0.340 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02516 (16)0.0356 (2)0.0324 (2)0.00651 (12)0.00796 (18)0.0006 (2)
N10.0290 (6)0.0327 (8)0.0417 (8)0.0004 (5)0.0151 (6)0.0023 (7)
N30.0227 (5)0.0346 (8)0.0430 (9)0.0016 (5)0.0083 (6)0.0042 (7)
N40.0308 (6)0.0407 (8)0.0446 (9)0.0035 (5)0.0044 (8)0.0040 (9)
C20.0228 (5)0.0278 (7)0.0330 (9)0.0057 (5)0.0094 (6)0.0072 (6)
C50.0360 (7)0.0346 (9)0.0332 (9)0.0007 (6)0.0027 (7)0.0042 (7)
C60.0613 (12)0.0426 (11)0.0368 (11)0.0010 (10)0.0021 (10)0.0012 (9)
C7A0.0245 (13)0.0283 (13)0.0302 (16)0.0014 (11)0.0038 (11)0.0017 (12)
C7B0.0136 (17)0.037 (3)0.032 (3)0.0037 (17)0.001 (2)0.012 (3)
C8A0.0305 (10)0.0327 (12)0.0344 (13)0.0051 (8)0.0006 (13)0.0042 (14)
C8B0.0218 (17)0.039 (3)0.027 (3)0.0006 (16)0.0011 (16)0.0031 (19)
C9A0.056 (6)0.035 (5)0.092 (8)0.005 (4)0.003 (5)0.007 (4)
C9B0.054 (10)0.031 (8)0.042 (8)0.004 (6)0.012 (6)0.026 (6)
Geometric parameters (Å, º) top
S1—C21.7478 (18)C7A—H7AB0.9900
S1—C51.744 (2)C7A—C8A1.495 (4)
N1—H10.88 (3)C7B—H7BA0.9900
N1—C21.338 (3)C7B—H7BB0.9900
N1—C7A1.459 (4)C7B—C8B1.490 (9)
N1—C7B1.501 (5)C8A—H8A0.9500
N3—N41.391 (3)C8A—C9A1.325 (10)
N3—C21.319 (2)C8B—H8B0.9500
N4—C51.293 (3)C8B—C9B1.412 (19)
C5—C61.492 (3)C9A—H9AA0.9500
C6—H6A0.9800C9A—H9AB0.9500
C6—H6B0.9800C9B—H9BA0.9500
C6—H6C0.9800C9B—H9BB0.9500
C7A—H7AA0.9900
C5—S1—C287.31 (9)N1—C7A—C8A111.9 (3)
C2—N1—H1120.7 (19)H7AA—C7A—H7AB107.9
C2—N1—C7A127.2 (2)C8A—C7A—H7AA109.2
C2—N1—C7B110.0 (3)C8A—C7A—H7AB109.2
C7A—N1—H1112.0 (19)N1—C7B—H7BA110.7
C7B—N1—H1126.2 (18)N1—C7B—H7BB110.7
C2—N3—N4112.41 (14)H7BA—C7B—H7BB108.8
C5—N4—N3113.55 (15)C8B—C7B—N1105.1 (4)
N1—C2—S1121.81 (11)C8B—C7B—H7BA110.7
N3—C2—S1113.06 (15)C8B—C7B—H7BB110.7
N3—C2—N1125.11 (16)C7A—C8A—H8A120.0
N4—C5—S1113.66 (16)C9A—C8A—C7A120.0 (6)
N4—C5—C6123.92 (19)C9A—C8A—H8A120.0
C6—C5—S1122.42 (15)C7B—C8B—H8B120.5
C5—C6—H6A109.5C9B—C8B—C7B118.9 (8)
C5—C6—H6B109.5C9B—C8B—H8B120.5
C5—C6—H6C109.5C8A—C9A—H9AA120.0
H6A—C6—H6B109.5C8A—C9A—H9AB120.0
H6A—C6—H6C109.5H9AA—C9A—H9AB120.0
H6B—C6—H6C109.5C8B—C9B—H9BA120.0
N1—C7A—H7AA109.2C8B—C9B—H9BB120.0
N1—C7A—H7AB109.2H9BA—C9B—H9BB120.0
N1—C7A—C8A—C9A128.3 (6)C2—N1—C7B—C8B174.0 (4)
N1—C7B—C8B—C9B130.5 (9)C2—N3—N4—C50.1 (2)
N3—N4—C5—S10.0 (2)C5—S1—C2—N1178.47 (17)
N3—N4—C5—C6179.6 (2)C5—S1—C2—N30.01 (15)
N4—N3—C2—S10.0 (2)C7A—N1—C2—S1174.1 (2)
N4—N3—C2—N1178.39 (18)C7A—N1—C2—N34.2 (4)
C2—S1—C5—N40.02 (16)C7B—N1—C2—S1171.5 (4)
C2—S1—C5—C6179.64 (18)C7B—N1—C2—N310.2 (4)
C2—N1—C7A—C8A96.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.88 (3)2.02 (3)2.860 (2)159 (3)
C7A—H7AA···S1ii0.992.973.462 (4)112
C7B—H7BA···S1iii0.992.963.880 (8)156
C8B—H8B···N4iv0.952.383.295 (5)163
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y, z1; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z1.
(1) Bis[µ-5-methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine]bis[nitratocopper(I)] top
Crystal data top
[Cu2(NO3)2(C6H9N3S)2]Z = 1
Mr = 561.54F(000) = 284
Triclinic, P1Dx = 1.934 Mg m3
a = 7.235 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.548 (3) ÅCell parameters from 3143 reflections
c = 10.297 (4) Åθ = 3.1–38.5°
α = 105.42 (3)°µ = 2.47 mm1
β = 98.15 (3)°T = 100 K
γ = 112.43 (3)°Block, clear colourless
V = 482.0 (4) Å30.43 × 0.21 × 0.14 mm
Data collection top
Rigaku Xcalibur Onyx
diffractometer
8459 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source6900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.1956 pixels mm-1θmax = 38.5°, θmin = 3.1°
ω and φ scansh = 712
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1312
Tmin = 0.542, Tmax = 0.768l = 1414
8459 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
8459 reflectionsΔρmax = 0.88 e Å3
141 parametersΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.57775 (3)0.57834 (3)0.68133 (2)0.01261 (7)
S10.18975 (7)0.09982 (7)0.47322 (5)0.01402 (10)
O10.2950 (3)0.6861 (3)0.6800 (2)0.0308 (4)
O20.2567 (3)0.8531 (3)0.8713 (2)0.0348 (4)
O30.1088 (3)0.5240 (3)0.7949 (2)0.0312 (4)
N10.2182 (3)0.6865 (3)0.7824 (2)0.0193 (4)
N20.4533 (3)0.1392 (3)0.72781 (19)0.0161 (3)
H20.411 (4)0.037 (4)0.746 (3)0.019*
N30.4220 (2)0.2864 (2)0.55566 (17)0.0122 (3)
N40.3167 (2)0.2273 (2)0.41582 (17)0.0123 (3)
C20.3733 (3)0.1302 (3)0.6002 (2)0.0127 (3)
C50.1895 (3)0.0338 (3)0.3607 (2)0.0134 (3)
C60.0538 (3)0.0697 (3)0.2141 (2)0.0177 (4)
H6A0.13750.09000.14970.027*
H6B0.01030.01550.19140.027*
H6C0.05510.20260.20480.027*
C70.6182 (3)0.3254 (3)0.8338 (2)0.0161 (4)
H7A0.74810.35910.80430.019*
H7B0.64310.30100.92310.019*
C80.5662 (3)0.5039 (3)0.8573 (2)0.0150 (4)
H80.42460.47860.84470.018*
C90.7131 (3)0.7002 (3)0.8957 (2)0.0177 (4)
H9A0.85560.72890.90890.021*
H9B0.67330.80860.90950.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01666 (12)0.00964 (10)0.00970 (11)0.00374 (9)0.00286 (9)0.00403 (8)
S10.0159 (2)0.00918 (18)0.0168 (2)0.00455 (16)0.00471 (18)0.00559 (17)
O10.0361 (10)0.0419 (10)0.0367 (10)0.0264 (9)0.0210 (8)0.0279 (9)
O20.0434 (11)0.0194 (8)0.0398 (11)0.0152 (7)0.0100 (9)0.0064 (8)
O30.0275 (9)0.0200 (7)0.0523 (12)0.0074 (7)0.0187 (8)0.0224 (8)
N10.0164 (8)0.0178 (8)0.0296 (10)0.0088 (7)0.0069 (7)0.0148 (8)
N20.0208 (8)0.0123 (7)0.0162 (8)0.0057 (6)0.0053 (6)0.0087 (7)
N30.0162 (7)0.0104 (6)0.0098 (7)0.0051 (6)0.0036 (6)0.0045 (6)
N40.0151 (7)0.0098 (6)0.0109 (7)0.0042 (5)0.0039 (6)0.0036 (6)
C20.0136 (8)0.0102 (7)0.0153 (9)0.0050 (6)0.0054 (7)0.0055 (7)
C50.0152 (8)0.0103 (7)0.0153 (9)0.0057 (7)0.0049 (7)0.0050 (7)
C60.0184 (9)0.0112 (7)0.0168 (9)0.0028 (7)0.0007 (7)0.0029 (7)
C70.0198 (9)0.0165 (8)0.0134 (9)0.0082 (7)0.0034 (7)0.0074 (7)
C80.0195 (9)0.0174 (8)0.0099 (8)0.0083 (7)0.0042 (7)0.0070 (7)
C90.0238 (10)0.0164 (8)0.0098 (8)0.0070 (7)0.0009 (7)0.0048 (7)
Geometric parameters (Å, º) top
Cu1—N31.9940 (19)N4—Cu1i1.9690 (18)
Cu1—N4i1.9690 (18)N4—C51.299 (2)
Cu1—C82.038 (2)C5—C61.491 (3)
Cu1—C92.073 (2)C6—H6A0.9800
S1—C21.741 (2)C6—H6B0.9800
S1—C51.727 (2)C6—H6C0.9800
O1—N11.259 (3)C7—H7A0.9900
O2—N11.243 (2)C7—H7B0.9900
O3—N11.233 (2)C7—C81.502 (3)
N2—H20.80 (3)C8—H80.9500
N2—C21.331 (3)C8—C91.360 (3)
N2—C71.458 (3)C9—H9A0.9500
N3—N41.393 (2)C9—H9B0.9500
N3—C21.319 (3)
N3—Cu1—C892.55 (8)C5—C6—H6A109.5
N3—Cu1—C9129.43 (8)C5—C6—H6B109.5
N4i—Cu1—N3114.48 (7)C5—C6—H6C109.5
N4i—Cu1—C8152.33 (8)H6A—C6—H6B109.5
N4i—Cu1—C9113.75 (9)H6A—C6—H6C109.5
C8—Cu1—C938.62 (8)H6B—C6—H6C109.5
C5—S1—C287.58 (10)N2—C7—H7A109.1
O2—N1—O1118.97 (19)N2—C7—H7B109.1
O3—N1—O1120.4 (2)N2—C7—C8112.34 (17)
O3—N1—O2120.6 (2)H7A—C7—H7B107.9
C2—N2—H2118.5 (18)C8—C7—H7A109.1
C2—N2—C7122.94 (18)C8—C7—H7B109.1
C7—N2—H2118.6 (18)Cu1—C8—H892.0
N4—N3—Cu1122.79 (13)C7—C8—Cu1105.91 (14)
C2—N3—Cu1123.96 (14)C7—C8—H8118.6
C2—N3—N4112.03 (15)C9—C8—Cu172.10 (13)
N3—N4—Cu1i117.17 (12)C9—C8—C7122.76 (19)
C5—N4—Cu1i127.96 (15)C9—C8—H8118.6
C5—N4—N3113.16 (17)Cu1—C9—H9A106.6
N2—C2—S1121.22 (15)Cu1—C9—H9B93.9
N3—C2—S1113.25 (15)C8—C9—Cu169.28 (13)
N3—C2—N2125.52 (18)C8—C9—H9A120.0
N4—C5—S1113.95 (16)C8—C9—H9B120.0
N4—C5—C6124.60 (19)H9A—C9—H9B120.0
C6—C5—S1121.45 (14)
Cu1—N3—N4—Cu1i27.76 (18)N4—N3—C2—N2178.15 (18)
Cu1—N3—N4—C5165.92 (13)C2—S1—C5—N40.82 (15)
Cu1—N3—C2—S1166.41 (9)C2—S1—C5—C6179.44 (17)
Cu1—N3—C2—N214.2 (3)C2—N2—C7—C852.9 (3)
Cu1i—N4—C5—S1162.81 (10)C2—N3—N4—Cu1i164.39 (13)
Cu1i—N4—C5—C616.9 (3)C2—N3—N4—C51.9 (2)
N2—C7—C8—Cu170.33 (19)C5—S1—C2—N2179.15 (17)
N2—C7—C8—C9149.0 (2)C5—S1—C2—N30.30 (15)
N3—N4—C5—S11.7 (2)C7—N2—C2—S1175.35 (14)
N3—N4—C5—C6178.57 (17)C7—N2—C2—N34.0 (3)
N4—N3—C2—S11.3 (2)C7—C8—C9—Cu197.74 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1ii0.80 (3)2.32 (3)3.034 (3)150 (2)
N2—H2···O2ii0.80 (3)2.24 (3)2.970 (3)153 (2)
N2—H2···N1ii0.80 (3)2.63 (3)3.426 (3)172 (2)
C6—H6B···O2iii0.982.443.391 (3)164
C6—H6C···O3iv0.982.313.142 (3)143
C7—H7A···O3v0.992.453.415 (3)164
C8—H8···O30.952.443.350 (3)160
C8—H8···N10.952.683.391 (3)133
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+1, y, z.
(2) Bis[µ-5-methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine]bis[(tetrafluoroborato)copper(I)] top
Crystal data top
[Cu2(BF4)2(C6H9N3S)2]Z = 1
Mr = 611.14F(000) = 304
Triclinic, P1Dx = 2.011 Mg m3
a = 7.754 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.965 (3) ÅCell parameters from 6709 reflections
c = 10.372 (4) Åθ = 3.0–38.4°
α = 67.57 (3)°µ = 2.40 mm1
β = 89.99 (3)°T = 100 K
γ = 61.07 (3)°Block, clear colourless
V = 504.6 (4) Å30.44 × 0.23 × 0.18 mm
Data collection top
Rigaku Xcalibur Onyx
diffractometer
4784 independent reflections
Radiation source: Enhance (Mo) X-ray Source4163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8.1956 pixels mm-1θmax = 38.5°, θmin = 3.0°
ω and π scansh = 1210
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1313
Tmin = 0.498, Tmax = 0.711l = 1618
8712 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.037P)2 + 0.007P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4784 reflectionsΔρmax = 0.56 e Å3
149 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40020 (2)0.60430 (2)0.31778 (2)0.01224 (4)
S10.81824 (4)0.10490 (3)0.52116 (2)0.01379 (5)
N20.52780 (14)0.17402 (13)0.27870 (9)0.01616 (15)
H20.574 (2)0.071 (2)0.2533 (17)0.019*
N30.56082 (13)0.29189 (12)0.44914 (8)0.01262 (13)
N40.67773 (12)0.20945 (12)0.58491 (8)0.01243 (13)
C20.61534 (15)0.14328 (14)0.40314 (10)0.01299 (15)
C50.81566 (15)0.00725 (14)0.63542 (10)0.01316 (15)
C60.96188 (16)0.12310 (15)0.77723 (10)0.01759 (18)
H6A1.06530.26150.78250.026*
H6B0.88980.14490.85370.026*
H6C1.02660.04860.78870.026*
C70.35674 (15)0.37956 (15)0.17735 (10)0.01552 (16)
H7A0.23700.41610.22010.019*
H7B0.32340.36960.08940.019*
C80.40423 (15)0.55286 (15)0.13881 (10)0.01463 (16)
H80.54110.51470.14080.018*
C90.26128 (16)0.76235 (15)0.10109 (10)0.01708 (17)
H9A0.12320.80520.09820.020*
H9B0.30030.86470.07790.020*
F10.77274 (12)0.53404 (11)0.31378 (8)0.02589 (15)
F20.58069 (11)0.88916 (10)0.16685 (8)0.02546 (15)
F30.90363 (12)0.74658 (12)0.27778 (8)0.02710 (15)
F40.84274 (12)0.66901 (12)0.09893 (8)0.02720 (15)
B10.77701 (18)0.70789 (18)0.21457 (12)0.01625 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01465 (6)0.01181 (5)0.00981 (5)0.00615 (4)0.00179 (4)0.00534 (4)
S10.01564 (11)0.01145 (9)0.01421 (9)0.00626 (8)0.00329 (8)0.00664 (7)
N20.0183 (4)0.0156 (3)0.0151 (3)0.0070 (3)0.0018 (3)0.0096 (3)
N30.0145 (3)0.0130 (3)0.0110 (3)0.0068 (3)0.0030 (3)0.0064 (2)
N40.0141 (3)0.0123 (3)0.0109 (3)0.0068 (3)0.0027 (3)0.0052 (2)
C20.0140 (4)0.0136 (3)0.0136 (3)0.0077 (3)0.0043 (3)0.0072 (3)
C50.0147 (4)0.0131 (3)0.0124 (3)0.0074 (3)0.0037 (3)0.0060 (3)
C60.0192 (5)0.0134 (4)0.0152 (4)0.0057 (3)0.0005 (3)0.0053 (3)
C70.0170 (4)0.0175 (4)0.0135 (3)0.0095 (3)0.0012 (3)0.0075 (3)
C80.0166 (4)0.0180 (4)0.0111 (3)0.0095 (3)0.0035 (3)0.0075 (3)
C90.0207 (5)0.0170 (4)0.0116 (3)0.0092 (3)0.0004 (3)0.0053 (3)
F10.0294 (4)0.0217 (3)0.0270 (3)0.0169 (3)0.0054 (3)0.0063 (3)
F20.0218 (3)0.0197 (3)0.0337 (4)0.0066 (3)0.0039 (3)0.0163 (3)
F30.0303 (4)0.0363 (4)0.0294 (4)0.0246 (3)0.0069 (3)0.0183 (3)
F40.0300 (4)0.0323 (4)0.0234 (3)0.0140 (3)0.0106 (3)0.0191 (3)
B10.0183 (5)0.0171 (4)0.0183 (4)0.0105 (4)0.0054 (4)0.0106 (4)
Geometric parameters (Å, º) top
Cu1—N32.0036 (15)C6—H6A0.9800
Cu1—N4i1.9646 (11)C6—H6B0.9800
Cu1—C82.0451 (12)C6—H6C0.9800
Cu1—C92.0799 (15)C7—H7A0.9900
S1—C21.7397 (16)C7—H7B0.9900
S1—C51.7301 (11)C7—C81.5072 (15)
N2—H20.869 (15)C8—H80.9500
N2—C21.3361 (13)C8—C91.3706 (16)
N2—C71.4597 (16)C9—H9A0.9500
N3—N41.3983 (13)C9—H9B0.9500
N3—C21.3244 (13)F1—B11.3908 (15)
N4—Cu1i1.9645 (11)F2—B11.4055 (16)
N4—C51.3046 (14)F3—B11.3914 (14)
C5—C61.4910 (16)F4—B11.3873 (14)
N3—Cu1—C892.88 (5)H6A—C6—H6C109.5
N3—Cu1—C9130.27 (5)H6B—C6—H6C109.5
N4i—Cu1—N3114.54 (5)N2—C7—H7A109.4
N4i—Cu1—C8152.58 (4)N2—C7—H7B109.4
N4i—Cu1—C9114.25 (5)N2—C7—C8111.16 (9)
C8—Cu1—C938.80 (5)H7A—C7—H7B108.0
C5—S1—C287.64 (6)C8—C7—H7A109.4
C2—N2—H2120.4 (10)C8—C7—H7B109.4
C2—N2—C7122.90 (9)Cu1—C8—H893.4
C7—N2—H2116.6 (10)C7—C8—Cu1104.65 (7)
N4—N3—Cu1122.78 (7)C7—C8—H8118.1
C2—N3—Cu1122.80 (7)C9—C8—Cu171.97 (7)
C2—N3—N4111.58 (9)C9—C8—C7123.77 (10)
N3—N4—Cu1i117.92 (7)C9—C8—H8118.1
C5—N4—Cu1i128.40 (7)Cu1—C9—H9A105.1
C5—N4—N3113.33 (9)Cu1—C9—H9B95.4
N2—C2—S1121.34 (8)C8—C9—Cu169.23 (7)
N3—C2—S1113.61 (8)C8—C9—H9A120.0
N3—C2—N2125.05 (9)C8—C9—H9B120.0
N4—C5—S1113.80 (8)H9A—C9—H9B120.0
N4—C5—C6125.29 (9)F1—B1—F2108.91 (10)
C6—C5—S1120.91 (8)F1—B1—F3110.33 (10)
C5—C6—H6A109.5F3—B1—F2108.25 (9)
C5—C6—H6B109.5F4—B1—F1109.58 (9)
C5—C6—H6C109.5F4—B1—F2109.39 (10)
H6A—C6—H6B109.5F4—B1—F3110.34 (10)
Cu1—N3—N4—Cu1i25.80 (10)N4—N3—C2—N2178.42 (9)
Cu1—N3—N4—C5160.39 (7)C2—S1—C5—N41.04 (8)
Cu1—N3—C2—S1159.58 (5)C2—S1—C5—C6179.13 (9)
Cu1—N3—C2—N220.20 (14)C2—N2—C7—C854.40 (13)
Cu1i—N4—C5—S1173.28 (5)C2—N3—N4—Cu1i172.82 (7)
Cu1i—N4—C5—C66.89 (15)C2—N3—N4—C51.00 (11)
N2—C7—C8—Cu172.62 (9)C5—S1—C2—N2178.59 (9)
N2—C7—C8—C9150.50 (9)C5—S1—C2—N31.63 (8)
N3—N4—C5—S10.26 (11)C7—N2—C2—S1179.68 (8)
N3—N4—C5—C6179.91 (9)C7—N2—C2—N30.55 (16)
N4—N3—C2—S11.80 (10)C7—C8—C9—Cu195.87 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F2ii0.87 (2)1.95 (2)2.7874 (14)160 (1)
N2—H2···F3ii0.87 (2)2.53 (2)3.242 (2)140 (1)
C6—H6A···F1iii0.982.513.4175 (19)154
C6—H6B···F4iv0.982.543.4628 (19)157
C6—H6C···F3v0.982.563.4824 (18)157
C7—H7B···F4vi0.992.533.4900 (17)163
C8—H8···F10.952.643.2956 (18)127
Symmetry codes: (ii) x, y1, z; (iii) x+2, y, z+1; (iv) x, y1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1, z.
(3) µ-Aqua-bis{µ-5-[(prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine}bis[nitratocopper(I)] top
Crystal data top
[Cu2(NO3)2(C5H7N3S2)2(H2O)]F(000) = 1240
Mr = 615.63Dx = 2.014 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.379 (3) ÅCell parameters from 3740 reflections
b = 18.780 (5) Åθ = 2.8–32.2°
c = 14.702 (4) ŵ = 2.56 mm1
β = 94.82 (3)°T = 100 K
V = 2030.2 (11) Å3Block, clear colourless
Z = 40.3 × 0.18 × 0.13 mm
Data collection top
Rigaku Xcalibur Ruby
diffractometer
6647 independent reflections
Radiation source: Enhance (Mo) X-ray Source4618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.3456 pixels mm-1θmax = 32.3°, θmin = 2.8°
ω scansh = 711
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 2816
Tmin = 0.577, Tmax = 0.776l = 2117
11883 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.046P)2 + 0.307P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6647 reflectionsΔρmax = 0.68 e Å3
346 parametersΔρmin = 0.70 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu1A0.6758 (2)0.54841 (9)0.28897 (8)0.0254 (2)0.765 (6)
Cu1B0.6292 (7)0.5656 (2)0.2979 (3)0.0226 (6)0.235 (6)
Cu2A0.4280 (2)0.67847 (8)0.15853 (14)0.0280 (2)0.794 (7)
Cu2B0.4045 (8)0.6712 (3)0.1832 (4)0.0222 (7)0.206 (7)
S110.88194 (11)0.77496 (4)0.33415 (5)0.03405 (17)
S12A0.9467 (2)0.64460 (14)0.45789 (9)0.0351 (4)0.765 (6)
S12B0.9288 (9)0.6667 (3)0.4581 (4)0.0348 (14)*0.235 (6)
S210.32163 (10)0.45394 (3)0.06167 (5)0.02596 (15)
S220.09397 (10)0.58465 (4)0.02178 (5)0.02980 (16)
O10.3426 (4)0.61593 (15)0.31989 (18)0.0561 (8)
H1A0.262 (7)0.578 (3)0.323 (3)0.084*
H1B0.326 (6)0.647 (2)0.373 (3)0.084*
O210.5703 (3)0.69954 (12)0.00949 (15)0.0405 (5)
O220.4733 (3)0.80878 (11)0.00474 (15)0.0381 (5)
O230.4103 (4)0.73874 (12)0.10980 (15)0.0468 (6)
N20.4863 (4)0.74886 (13)0.03207 (16)0.0321 (6)
N120.6913 (4)0.81795 (15)0.17938 (18)0.0358 (6)
H12A0.750 (5)0.8612 (18)0.189 (2)0.043*
H12B0.624 (5)0.8080 (19)0.132 (2)0.043*
N130.7304 (3)0.65507 (13)0.29752 (15)0.0280 (5)
N140.6605 (3)0.70080 (12)0.22911 (15)0.0264 (5)
N220.6172 (4)0.40718 (13)0.16391 (18)0.0301 (5)
H22A0.717 (5)0.4157 (17)0.196 (2)0.036*
H22B0.585 (5)0.3677 (17)0.146 (2)0.036*
N230.4050 (3)0.57409 (11)0.13393 (15)0.0231 (4)
N240.5332 (3)0.52684 (12)0.17360 (14)0.0238 (4)
C120.8423 (4)0.68604 (17)0.35797 (19)0.0318 (6)
C150.7307 (4)0.76500 (15)0.23714 (19)0.0287 (6)
C17A0.7803 (6)0.5763 (2)0.4787 (3)0.0313 (10)0.765 (6)
H17A0.80430.55880.54210.038*0.765 (6)
H17B0.65750.59790.47320.038*0.765 (6)
C17B0.8942 (19)0.5707 (7)0.4540 (9)0.033 (3)*0.235 (6)
H17C0.97060.55040.40820.040*0.235 (6)
H17D0.93750.55050.51410.040*0.235 (6)
C18A0.7815 (6)0.5150 (2)0.4155 (2)0.0320 (10)0.765 (6)
H18A0.89450.50270.39320.038*0.765 (6)
C18B0.7029 (16)0.5471 (6)0.4311 (7)0.019 (2)*0.235 (6)
H18B0.60540.57720.44470.023*0.235 (6)
C19A0.6328 (11)0.4744 (4)0.3864 (4)0.0318 (13)0.765 (6)
H19A0.51720.48500.40710.038*0.765 (6)
H19B0.64560.43590.34560.038*0.765 (6)
C19B0.669 (4)0.4866 (14)0.3933 (19)0.038 (7)*0.235 (6)
H19C0.76580.45620.37960.045*0.235 (6)
H19D0.54630.47200.37910.045*0.235 (6)
C220.2827 (4)0.54435 (13)0.07774 (17)0.0227 (5)
C250.5102 (4)0.46214 (14)0.14025 (18)0.0247 (5)
C27A0.0483 (5)0.65593 (18)0.1045 (3)0.0288 (9)0.794 (7)
H27A0.07630.67450.08980.035*0.794 (7)
H27B0.05390.63530.16670.035*0.794 (7)
C27B0.0940 (17)0.6732 (6)0.0521 (8)0.020 (3)*0.206 (7)
H27C0.18160.69830.01590.024*0.206 (7)
H27D0.02810.69270.03360.024*0.206 (7)
C28A0.1794 (5)0.71578 (19)0.1038 (3)0.0298 (9)0.794 (7)
H28A0.22560.72690.04710.036*0.794 (7)
C28B0.1379 (17)0.6907 (7)0.1468 (9)0.021 (3)*0.206 (7)
H28B0.10720.65910.19360.025*0.206 (7)
C29A0.2400 (13)0.7564 (4)0.1775 (7)0.0273 (14)0.794 (7)
H29A0.19750.74720.23560.033*0.794 (7)
H29B0.32440.79380.17050.033*0.794 (7)
C29B0.220 (6)0.750 (2)0.167 (3)0.047 (13)*0.206 (7)
H29C0.25030.78170.11970.057*0.206 (7)
H29D0.25010.76290.22910.057*0.206 (7)
O110.9655 (3)0.52030 (11)0.22839 (16)0.0409 (5)
O120.9797 (3)0.40739 (11)0.25601 (18)0.0424 (6)
O131.2039 (3)0.47483 (12)0.30109 (17)0.0440 (6)
N11.0495 (3)0.46788 (13)0.26096 (17)0.0291 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu1A0.0284 (5)0.0246 (5)0.0226 (3)0.0032 (3)0.0014 (3)0.0019 (3)
Cu1B0.0236 (14)0.0197 (12)0.0243 (10)0.0019 (9)0.0010 (9)0.0013 (8)
Cu2A0.0269 (4)0.0242 (4)0.0322 (6)0.0001 (3)0.0019 (4)0.0069 (4)
Cu2B0.0211 (14)0.0241 (13)0.0210 (17)0.0010 (10)0.0004 (11)0.0033 (12)
S110.0330 (4)0.0402 (4)0.0290 (3)0.0121 (3)0.0033 (3)0.0092 (3)
S12A0.0342 (7)0.0434 (10)0.0260 (5)0.0039 (7)0.0083 (4)0.0001 (6)
S210.0265 (3)0.0213 (3)0.0293 (3)0.0002 (3)0.0021 (3)0.0018 (2)
S220.0271 (4)0.0277 (3)0.0331 (4)0.0004 (3)0.0067 (3)0.0001 (3)
O10.0697 (19)0.0507 (15)0.0515 (15)0.0236 (14)0.0268 (14)0.0185 (12)
O210.0516 (15)0.0365 (12)0.0335 (11)0.0071 (11)0.0034 (10)0.0053 (9)
O220.0520 (14)0.0264 (10)0.0363 (11)0.0083 (10)0.0056 (10)0.0030 (9)
O230.0761 (19)0.0342 (12)0.0280 (11)0.0094 (12)0.0078 (11)0.0015 (9)
N20.0456 (16)0.0268 (12)0.0243 (11)0.0089 (11)0.0054 (10)0.0010 (9)
N120.0432 (16)0.0323 (13)0.0317 (13)0.0092 (12)0.0027 (11)0.0041 (11)
N130.0279 (12)0.0348 (12)0.0213 (10)0.0054 (10)0.0026 (9)0.0019 (9)
N140.0284 (12)0.0280 (11)0.0230 (10)0.0042 (10)0.0036 (9)0.0031 (9)
N220.0272 (13)0.0253 (12)0.0369 (13)0.0026 (10)0.0036 (10)0.0005 (10)
N230.0221 (11)0.0249 (11)0.0222 (10)0.0015 (9)0.0009 (8)0.0007 (8)
N240.0241 (11)0.0251 (11)0.0217 (10)0.0017 (9)0.0002 (8)0.0004 (8)
C120.0288 (14)0.0427 (17)0.0242 (13)0.0068 (13)0.0035 (11)0.0044 (12)
C150.0289 (14)0.0322 (14)0.0261 (13)0.0061 (12)0.0075 (11)0.0064 (11)
C17A0.035 (2)0.034 (2)0.0250 (18)0.0057 (17)0.0033 (15)0.0022 (15)
C18A0.037 (2)0.036 (2)0.0227 (17)0.0091 (19)0.0003 (15)0.0018 (15)
C19A0.048 (4)0.024 (2)0.022 (2)0.003 (3)0.001 (2)0.0059 (17)
C220.0237 (13)0.0209 (11)0.0233 (12)0.0004 (10)0.0005 (9)0.0007 (9)
C250.0242 (13)0.0254 (12)0.0249 (12)0.0006 (11)0.0037 (10)0.0017 (10)
C27A0.0245 (17)0.0233 (16)0.039 (2)0.0042 (14)0.0035 (15)0.0003 (14)
C28A0.0298 (19)0.0235 (17)0.037 (2)0.0039 (15)0.0055 (15)0.0001 (15)
C29A0.027 (3)0.019 (2)0.036 (3)0.0021 (18)0.003 (2)0.008 (2)
O110.0340 (12)0.0339 (11)0.0556 (14)0.0059 (10)0.0085 (10)0.0185 (10)
O120.0344 (12)0.0255 (10)0.0654 (16)0.0004 (9)0.0067 (11)0.0016 (10)
O130.0293 (12)0.0375 (12)0.0633 (16)0.0031 (10)0.0071 (11)0.0079 (11)
N10.0244 (12)0.0280 (12)0.0355 (13)0.0025 (10)0.0068 (10)0.0038 (10)
Geometric parameters (Å, º) top
Cu1A—N132.045 (3)N13—C121.299 (4)
Cu1A—N241.962 (2)N14—C151.314 (4)
Cu1A—C18A2.054 (4)N22—H22A0.85 (4)
Cu1A—C19A2.039 (6)N22—H22B0.82 (3)
Cu1B—Cu2B3.009 (7)N22—C251.328 (4)
Cu1B—O12.363 (7)N23—N241.389 (3)
Cu1B—N131.838 (4)N23—C221.297 (3)
Cu1B—N242.038 (4)N24—C251.316 (3)
Cu1B—C18B2.019 (11)C17A—H17A0.9900
Cu1B—C19B2.05 (3)C17A—H17B0.9900
Cu2A—N141.974 (3)C17A—C18A1.480 (6)
Cu2A—N231.998 (3)C17B—H17C0.9900
Cu2A—C28A2.062 (4)C17B—H17D0.9900
Cu2A—C29A2.052 (8)C17B—C18B1.490 (17)
Cu2B—O12.341 (7)C18A—H18A0.9500
Cu2B—N142.029 (6)C18A—C19A1.374 (9)
Cu2B—N231.962 (6)C18B—H18B0.9500
Cu2B—C28B2.028 (13)C18B—C19B1.28 (3)
Cu2B—C29B2.02 (5)C19A—H19A0.9500
S11—C121.736 (3)C19A—H19B0.9500
S11—C151.746 (3)C19B—H19C0.9500
S12A—C121.779 (3)C19B—H19D0.9500
S12A—C17A1.819 (4)C27A—H27A0.9900
S12B—C121.596 (7)C27A—H27B0.9900
S12B—C17B1.823 (14)C27A—C28A1.484 (5)
S21—C221.741 (3)C27B—H27C0.9900
S21—C251.739 (3)C27B—H27D0.9900
S22—C221.731 (3)C27B—C28B1.441 (17)
S22—C27A1.859 (4)C28A—H28A0.9500
S22—C27B1.721 (12)C28A—C29A1.369 (11)
O1—H1A0.93 (5)C28B—H28B0.9500
O1—H1B0.99 (5)C28B—C29B1.30 (4)
O21—N21.246 (3)C29A—H29A0.9500
O22—N21.256 (3)C29A—H29B0.9500
O23—N21.244 (3)C29B—H29C0.9500
N12—H12A0.93 (4)C29B—H29D0.9500
N12—H12B0.84 (4)O11—N11.238 (3)
N12—C151.324 (4)O12—N11.247 (3)
N13—N141.389 (3)O13—N11.245 (3)
N13—Cu1A—C18A100.70 (14)N13—C12—S12A125.1 (2)
N24—Cu1A—N13110.12 (11)N13—C12—S12B135.4 (3)
N24—Cu1A—C18A148.79 (15)N12—C15—S11122.3 (2)
N24—Cu1A—C19A111.3 (2)N14—C15—S11113.1 (2)
C19A—Cu1A—N13131.7 (2)N14—C15—N12124.6 (3)
C19A—Cu1A—C18A39.2 (2)S12A—C17A—H17A108.8
O1—Cu1B—Cu2B49.91 (17)S12A—C17A—H17B108.8
N13—Cu1B—Cu2B66.50 (19)H17A—C17A—H17B107.7
N13—Cu1B—O190.2 (2)C18A—C17A—S12A113.8 (3)
N13—Cu1B—N24115.78 (19)C18A—C17A—H17A108.8
N13—Cu1B—C18B94.8 (3)C18A—C17A—H17B108.8
N13—Cu1B—C19B129.1 (7)S12B—C17B—H17C108.4
N24—Cu1B—Cu2B66.39 (16)S12B—C17B—H17D108.4
N24—Cu1B—O191.02 (19)H17C—C17B—H17D107.5
N24—Cu1B—C19B112.0 (7)C18B—C17B—S12B115.4 (10)
C18B—Cu1B—Cu2B138.4 (4)C18B—C17B—H17C108.4
C18B—Cu1B—O196.1 (4)C18B—C17B—H17D108.4
C18B—Cu1B—N24148.6 (4)Cu1A—C18A—H18A92.3
C18B—Cu1B—C19B36.7 (7)C17A—C18A—Cu1A108.0 (3)
C19B—Cu1B—Cu2B154.4 (8)C17A—C18A—H18A117.3
C19B—Cu1B—O1105.9 (8)C19A—C18A—Cu1A69.8 (3)
N14—Cu2A—N23111.13 (12)C19A—C18A—C17A125.4 (5)
N14—Cu2A—C28A146.92 (15)C19A—C18A—H18A117.3
N14—Cu2A—C29A110.2 (3)Cu1B—C18B—H18B87.4
N23—Cu2A—C28A101.74 (14)C17B—C18B—Cu1B109.9 (8)
N23—Cu2A—C29A132.6 (3)C17B—C18B—H18B119.7
C29A—Cu2A—C28A38.9 (3)C19B—C18B—Cu1B72.8 (14)
O1—Cu2B—Cu1B50.57 (17)C19B—C18B—C17B120.6 (17)
N14—Cu2B—Cu1B62.64 (17)C19B—C18B—H18B119.7
N14—Cu2B—O194.6 (2)Cu1A—C19A—H19A106.2
N23—Cu2B—Cu1B64.95 (19)Cu1A—C19A—H19B92.7
N23—Cu2B—O184.9 (3)C18A—C19A—Cu1A71.0 (3)
N23—Cu2B—N14110.3 (3)C18A—C19A—H19A120.0
N23—Cu2B—C28B95.9 (4)C18A—C19A—H19B120.0
N23—Cu2B—C29B131.6 (13)H19A—C19A—H19B120.0
C28B—Cu2B—Cu1B138.0 (5)Cu1B—C19B—H19C110.8
C28B—Cu2B—O193.0 (4)Cu1B—C19B—H19D88.8
C28B—Cu2B—N14153.3 (5)C18B—C19B—Cu1B70.4 (13)
C29B—Cu2B—Cu1B152.5 (15)C18B—C19B—H19C120.0
C29B—Cu2B—O1104.5 (15)C18B—C19B—H19D120.0
C29B—Cu2B—N14115.9 (13)H19C—C19B—H19D120.0
C29B—Cu2B—C28B37.4 (13)S22—C22—S21119.80 (15)
C12—S11—C1587.41 (14)N23—C22—S21113.1 (2)
C12—S12A—C17A101.29 (17)N23—C22—S22127.1 (2)
C12—S12B—C17B98.6 (5)N22—C25—S21122.0 (2)
C25—S21—C2287.44 (13)N24—C25—S21113.6 (2)
C22—S22—C27A100.77 (15)N24—C25—N22124.4 (3)
C27B—S22—C22108.4 (4)S22—C27A—H27A109.0
Cu1B—O1—H1A107 (3)S22—C27A—H27B109.0
Cu1B—O1—H1B121 (3)H27A—C27A—H27B107.8
Cu2B—O1—Cu1B79.52 (18)C28A—C27A—S22112.7 (3)
Cu2B—O1—H1A124 (3)C28A—C27A—H27A109.0
Cu2B—O1—H1B118 (3)C28A—C27A—H27B109.0
H1A—O1—H1B106 (4)S22—C27B—H27C107.9
O21—N2—O22120.5 (2)S22—C27B—H27D107.9
O23—N2—O21120.3 (2)H27C—C27B—H27D107.2
O23—N2—O22119.2 (3)C28B—C27B—S22117.8 (10)
H12A—N12—H12B124 (3)C28B—C27B—H27C107.9
C15—N12—H12A119 (2)C28B—C27B—H27D107.9
C15—N12—H12B116 (2)Cu2A—C28A—H28A92.5
N14—N13—Cu1A120.13 (17)C27A—C28A—Cu2A107.4 (2)
N14—N13—Cu1B116.2 (2)C27A—C28A—H28A117.0
C12—N13—Cu1A126.3 (2)C29A—C28A—Cu2A70.2 (4)
C12—N13—Cu1B130.0 (2)C29A—C28A—C27A125.9 (5)
C12—N13—N14113.3 (2)C29A—C28A—H28A117.0
N13—N14—Cu2A120.19 (18)Cu2B—C28B—H28B88.9
N13—N14—Cu2B110.5 (2)C27B—C28B—Cu2B110.3 (9)
C15—N14—Cu2A124.1 (2)C27B—C28B—H28B120.6
C15—N14—Cu2B129.1 (3)C29B—C28B—Cu2B71 (2)
C15—N14—N13112.5 (2)C29B—C28B—C27B119 (3)
H22A—N22—H22B124 (3)C29B—C28B—H28B120.6
C25—N22—H22A118 (2)Cu2A—C29A—H29A105.7
C25—N22—H22B118 (2)Cu2A—C29A—H29B93.2
N24—N23—Cu2A120.41 (17)C28A—C29A—Cu2A71.0 (4)
N24—N23—Cu2B117.4 (2)C28A—C29A—H29A120.0
C22—N23—Cu2A125.57 (19)C28A—C29A—H29B120.0
C22—N23—Cu2B127.8 (2)H29A—C29A—H29B120.0
C22—N23—N24113.9 (2)Cu2B—C29B—H29C110.2
N23—N24—Cu1A121.87 (17)Cu2B—C29B—H29D88.2
N23—N24—Cu1B108.7 (2)C28B—C29B—Cu2B72 (2)
C25—N24—Cu1A123.76 (19)C28B—C29B—H29C120.0
C25—N24—Cu1B133.5 (2)C28B—C29B—H29D120.0
C25—N24—N23111.8 (2)H29C—C29B—H29D120.0
S11—C12—S12A121.24 (18)O11—N1—O12120.7 (3)
S12B—C12—S11110.1 (3)O11—N1—O13120.6 (3)
N13—C12—S11113.6 (2)O13—N1—O12118.7 (2)
Cu1A—N13—N14—Cu2A29.4 (3)N23—N24—C25—S213.1 (3)
Cu1A—N13—N14—C15169.9 (2)N23—N24—C25—N22177.7 (3)
Cu1A—N13—C12—S11170.37 (15)N24—Cu1B—N13—N1430.0 (4)
Cu1A—N13—C12—S12A10.5 (4)N24—Cu1B—N13—C12159.7 (3)
Cu1A—N24—C25—S21159.03 (15)N24—N23—C22—S214.0 (3)
Cu1A—N24—C25—N2220.2 (4)N24—N23—C22—S22175.27 (19)
Cu1B—N13—N14—Cu2B23.5 (3)C12—S11—C15—N12179.7 (3)
Cu1B—N13—N14—C15175.6 (3)C12—S11—C15—N141.2 (2)
Cu1B—N13—C12—S11173.2 (3)C12—S12A—C17A—C18A75.0 (3)
Cu1B—N13—C12—S12B5.7 (6)C12—S12B—C17B—C18B55.7 (10)
Cu1B—N24—C25—S21145.9 (3)C12—N13—N14—Cu2A157.0 (2)
Cu1B—N24—C25—N2233.3 (5)C12—N13—N14—Cu2B148.3 (3)
Cu2A—N14—C15—S11156.82 (16)C12—N13—N14—C153.7 (3)
Cu2A—N14—C15—N1222.3 (4)C15—S11—C12—S12A178.2 (2)
Cu2A—N23—N24—Cu1A26.1 (3)C15—S11—C12—S12B169.8 (3)
Cu2A—N23—N24—C25171.39 (19)C15—S11—C12—N130.9 (2)
Cu2A—N23—C22—S21171.75 (15)C17A—S12A—C12—S11151.7 (2)
Cu2A—N23—C22—S229.0 (4)C17A—S12A—C12—N1327.3 (3)
Cu2B—Cu1B—N13—N1416.0 (2)C17A—C18A—C19A—Cu1A98.2 (4)
Cu2B—Cu1B—N13—C12154.3 (3)C17B—S12B—C12—S11172.0 (5)
Cu2B—N14—C15—S11142.6 (3)C17B—S12B—C12—N1320.1 (8)
Cu2B—N14—C15—N1236.5 (5)C17B—C18B—C19B—Cu1B103.3 (13)
Cu2B—N23—N24—Cu1B17.8 (3)C18B—Cu1B—N13—N14157.4 (4)
Cu2B—N23—N24—C25174.6 (3)C18B—Cu1B—N13—C1212.8 (5)
Cu2B—N23—C22—S21172.7 (3)C19B—Cu1B—N13—N14172.0 (11)
Cu2B—N23—C22—S226.5 (4)C19B—Cu1B—N13—C121.8 (12)
S12A—C17A—C18A—Cu1A71.1 (3)C22—S21—C25—N22180.0 (3)
S12A—C17A—C18A—C19A148.7 (4)C22—S21—C25—N240.8 (2)
S12B—C17B—C18B—Cu1B72.2 (11)C22—S22—C27A—C28A74.8 (3)
S12B—C17B—C18B—C19B153.6 (17)C22—S22—C27B—C28B43.0 (11)
S22—C27A—C28A—Cu2A69.4 (3)C22—N23—N24—Cu1A157.90 (19)
S22—C27A—C28A—C29A147.2 (5)C22—N23—N24—Cu1B152.1 (2)
S22—C27B—C28B—Cu2B69.6 (12)C22—N23—N24—C254.6 (3)
S22—C27B—C28B—C29B148 (3)C25—S21—C22—S22177.47 (18)
O1—Cu1B—N13—N1461.2 (2)C25—S21—C22—N231.9 (2)
O1—Cu1B—N13—C12109.0 (3)C27A—S22—C22—S21150.13 (18)
N13—N14—C15—S113.0 (3)C27A—S22—C22—N2329.1 (3)
N13—N14—C15—N12177.9 (3)C27A—C28A—C29A—Cu2A97.5 (4)
N14—N13—C12—S112.8 (3)C27B—S22—C22—S21179.8 (5)
N14—N13—C12—S12A176.3 (2)C27B—S22—C22—N230.5 (5)
N14—N13—C12—S12B164.8 (4)C27B—C28B—C29B—Cu2B103.2 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O13i0.93 (5)2.01 (5)2.846 (4)149 (4)
O1—H1B···O22ii0.99 (5)2.29 (5)3.142 (4)143 (4)
O1—H1B···O23ii0.99 (5)2.25 (5)2.946 (3)126 (3)
O1—H1B···N2ii0.99 (5)2.63 (5)3.453 (4)140 (4)
N12—H12A···O12iii0.93 (4)2.26 (4)3.038 (4)141 (3)
N12—H12A···O13iii0.93 (4)2.16 (4)3.053 (4)161 (3)
N12—H12A···N1iii0.93 (4)2.56 (4)3.475 (4)169 (3)
N12—H12B···O220.84 (4)2.09 (4)2.918 (4)166 (3)
N22—H22A···O120.85 (4)2.07 (4)2.895 (4)163 (3)
N22—H22B···O23iv0.82 (3)2.07 (3)2.856 (3)162 (3)
C17A—H17A···O13v0.992.403.369 (5)167
C17A—H17B···O22ii0.992.293.175 (5)149
C18A—H18A···O110.952.543.170 (5)124
C18A—H18A···N10.952.433.258 (5)146
C18B—H18B···O10.952.663.268 (12)123
C18B—H18B···O22ii0.952.543.417 (12)154
C27A—H27B···O11i0.992.453.219 (4)134
C27B—H27C···N20.992.593.540 (13)160
C27B—H27D···S11vi0.993.013.581 (12)118
C27B—H27D···S12Bvi0.992.873.487 (14)121
C28A—H28A···O220.952.513.226 (5)133
C28A—H28A···N20.952.373.204 (5)147
C28B—H28B···O10.952.573.175 (13)122
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x+2, y+1, z+1; (vi) x1, y+3/2, z1/2.
(4) µ-Aqua-(hexafluorosilicato)bis{µ-5-[(prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine}dicopper(I) acetonitrile hemisolvate dihydrate top
Crystal data top
[Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5C2H3N·2H2OF(000) = 1380
Mr = 688.24Dx = 1.942 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.899 (4) ÅCell parameters from 9071 reflections
b = 11.442 (4) Åθ = 2.9–36.8°
c = 17.678 (5) ŵ = 2.29 mm1
β = 102.04 (3)°T = 260 K
V = 2353.9 (13) Å3Prism, clear colourless
Z = 40.52 × 0.17 × 0.09 mm
Data collection top
Rigaku Xcalibur Sapphire2 (large Be window)
diffractometer
5649 independent reflections
Radiation source: Enhance (Mo) X-ray Source3717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.3359 pixels mm-1θmax = 28.0°, θmin = 2.9°
ω scansh = 1515
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1512
Tmin = 0.452, Tmax = 0.825l = 2323
24572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5649 reflectionsΔρmax = 0.47 e Å3
412 parametersΔρmin = 0.38 e Å3
245 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C120.3873 (2)1.0688 (2)0.07294 (15)0.0321 (6)
C150.4799 (2)0.9721 (2)0.16465 (16)0.0305 (6)
C220.3561 (3)0.5332 (2)0.05978 (17)0.0357 (7)
C250.3182 (3)0.6313 (2)0.05172 (16)0.0353 (7)
Cu10.26289 (3)0.86456 (3)0.02532 (2)0.03965 (12)
N120.5426 (2)0.9414 (3)0.21542 (17)0.0434 (7)
H12A0.562 (3)0.869 (3)0.211 (2)0.052*
H12B0.590 (3)0.987 (3)0.230 (2)0.052*
N130.36247 (19)0.9572 (2)0.08057 (13)0.0312 (5)
N140.4136 (2)0.9013 (2)0.13454 (13)0.0320 (5)
N220.2988 (3)0.6624 (3)0.12019 (16)0.0537 (8)
H22A0.288 (3)0.737 (3)0.139 (2)0.064*
H22B0.288 (3)0.609 (3)0.150 (2)0.064*
N230.3555 (2)0.6453 (2)0.06740 (13)0.0327 (5)
N240.3312 (2)0.7043 (2)0.00340 (12)0.0338 (5)
O10.1575 (2)0.7886 (2)0.14329 (14)0.0535 (6)
H1A0.13170.71550.13710.080*
H1B0.09550.83360.16200.080*
O20.0394 (2)0.9116 (3)0.15841 (17)0.0727 (8)
H2A0.07130.96070.19400.109*
H2B0.08440.85160.15830.109*
S110.47951 (7)1.11532 (6)0.13071 (4)0.03665 (18)
S120.33947 (8)1.16900 (7)0.01339 (5)0.0477 (2)
S210.33098 (8)0.48476 (7)0.02800 (5)0.0456 (2)
C17A0.2451 (6)1.0907 (5)0.0365 (4)0.0449 (17)0.617 (10)
H17A0.19951.14800.05720.054*0.617 (10)
H17B0.29261.05100.08020.054*0.617 (10)
C18A0.1651 (5)1.0035 (4)0.0071 (4)0.0404 (17)0.617 (10)
H18A0.13921.01300.06010.048*0.617 (10)
C19A0.1303 (15)0.9146 (16)0.0265 (11)0.054 (5)0.617 (10)
H19A0.15550.90410.07950.065*0.617 (10)
H19B0.08000.86110.00220.065*0.617 (10)
C27A0.4091 (3)0.5095 (3)0.2051 (2)0.0449 (9)0.88
H27A0.41370.45580.24680.054*0.88
H27B0.48410.54530.18880.054*0.88
C28A0.3229 (4)0.6045 (3)0.2367 (2)0.0415 (9)0.88
H28A0.24850.59990.22820.050*0.88
C29A0.3530 (8)0.6966 (5)0.2773 (4)0.0501 (19)0.88
H29A0.42720.70190.28600.060*0.88
H29B0.29930.75420.29620.060*0.88
Cu2A0.36197 (18)0.7398 (3)0.1618 (2)0.0345 (4)0.88
S22A0.37812 (15)0.42713 (12)0.12585 (9)0.0447 (3)0.88
C17B0.2026 (9)1.1074 (8)0.0012 (7)0.042 (3)*0.383 (10)
H17C0.15551.09320.05210.051*0.383 (10)
H17D0.16351.16570.02370.051*0.383 (10)
C18B0.2086 (7)0.9980 (7)0.0438 (6)0.034 (2)*0.383 (10)
H18B0.26870.99270.08670.041*0.383 (10)
C19B0.135 (2)0.902 (3)0.0297 (15)0.034 (5)*0.383 (10)
H19C0.07380.90210.01240.041*0.383 (10)
H19D0.14820.83750.06250.041*0.383 (10)
C27B0.298 (3)0.510 (3)0.2236 (19)0.065 (9)*0.12
H27C0.22420.54570.22370.078*0.12
H27D0.28660.45360.26550.078*0.12
C28B0.376 (2)0.603 (2)0.2419 (15)0.027 (6)*0.12
H28B0.45330.58380.23530.032*0.12
C29B0.345 (4)0.712 (2)0.267 (3)0.018 (8)*0.12
H29C0.26840.73560.27480.022*0.12
H29D0.40010.76450.27720.022*0.12
Cu2B0.3927 (13)0.736 (2)0.1605 (14)0.033 (3)0.12
S22B0.3398 (9)0.4323 (12)0.1362 (7)0.035 (3)*0.12
F10.62718 (17)0.70348 (17)0.16507 (10)0.0531 (5)
F20.81507 (19)0.63711 (17)0.27744 (12)0.0641 (6)
Si10.72257 (8)0.67000 (7)0.21978 (5)0.0384 (2)
F3A0.7269 (6)0.8125 (4)0.2448 (4)0.0351 (13)*0.428 (3)
F5A0.7214 (8)0.5319 (4)0.1966 (4)0.0492 (14)*0.428 (3)
F6A0.6161 (5)0.6498 (7)0.2977 (3)0.0509 (17)*0.428 (3)
F3B0.7584 (8)0.8120 (5)0.2227 (6)0.0309 (19)*0.288 (3)
F4B0.8174 (7)0.6539 (12)0.1374 (4)0.055 (3)*0.288 (3)
F5B0.6735 (9)0.5315 (5)0.2150 (6)0.0382 (18)*0.288 (3)
F6B0.6144 (7)0.6912 (11)0.2998 (4)0.047 (2)*0.288 (3)
F3C0.7978 (15)0.7868 (13)0.1936 (11)0.069 (4)*0.168 (3)
F4C0.8099 (11)0.5889 (17)0.1521 (8)0.052 (3)*0.168 (3)
F5C0.6468 (12)0.5443 (11)0.2502 (12)0.060 (4)*0.168 (3)
F6C0.6360 (12)0.7418 (14)0.2924 (6)0.038 (3)*0.168 (3)
F3D0.8290 (15)0.7443 (19)0.1626 (12)0.065 (6)*0.116 (3)
F4D0.7765 (17)0.5445 (12)0.1737 (9)0.023 (3)*0.116 (3)
F5D0.6264 (15)0.590 (2)0.2817 (12)0.063 (6)*0.116 (3)
F6D0.6817 (17)0.7901 (13)0.2728 (10)0.026 (3)*0.116 (3)
C20.0535 (7)0.4794 (9)0.0952 (6)0.075 (3)0.5
C30.001 (3)0.379 (2)0.0769 (18)0.100 (11)0.5
H3A0.07220.37020.11110.150*0.5
H3B0.04870.31270.08210.150*0.5
H3C0.00880.38370.02450.150*0.5
N10.0887 (8)0.5623 (9)0.1155 (6)0.089 (3)0.5
F4A0.8329 (5)0.6949 (7)0.1425 (4)0.0542 (16)*0.428 (3)
O40.011 (2)0.3481 (18)0.0721 (15)0.097 (5)0.5
O30.0385 (6)0.6046 (6)0.0816 (4)0.0777 (18)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0349 (16)0.0308 (15)0.0307 (14)0.0005 (13)0.0069 (13)0.0024 (12)
C150.0343 (15)0.0247 (14)0.0316 (14)0.0003 (12)0.0047 (12)0.0031 (11)
C220.0451 (17)0.0271 (15)0.0377 (15)0.0006 (13)0.0149 (14)0.0005 (12)
C250.0465 (18)0.0282 (15)0.0332 (15)0.0027 (13)0.0129 (13)0.0012 (12)
Cu10.0469 (2)0.0295 (2)0.0491 (2)0.00365 (17)0.02508 (18)0.00394 (16)
N120.0483 (17)0.0327 (15)0.0571 (17)0.0018 (13)0.0290 (14)0.0010 (13)
N130.0350 (13)0.0281 (12)0.0327 (12)0.0019 (10)0.0120 (10)0.0006 (10)
N140.0357 (13)0.0273 (12)0.0361 (13)0.0011 (10)0.0148 (11)0.0008 (10)
N220.089 (2)0.0409 (17)0.0393 (15)0.0028 (17)0.0326 (16)0.0034 (13)
N230.0425 (14)0.0260 (12)0.0313 (12)0.0015 (11)0.0114 (11)0.0010 (10)
N240.0448 (15)0.0319 (13)0.0266 (11)0.0006 (11)0.0118 (11)0.0003 (10)
O10.0438 (13)0.0496 (14)0.0677 (15)0.0009 (11)0.0130 (12)0.0152 (12)
O20.0505 (16)0.098 (2)0.0692 (18)0.0040 (15)0.0127 (14)0.0034 (17)
S110.0417 (4)0.0286 (4)0.0427 (4)0.0049 (3)0.0160 (3)0.0023 (3)
S120.0672 (6)0.0310 (4)0.0514 (5)0.0026 (4)0.0274 (4)0.0090 (3)
S210.0727 (6)0.0275 (4)0.0417 (4)0.0013 (4)0.0237 (4)0.0058 (3)
C17A0.047 (4)0.053 (4)0.040 (3)0.004 (3)0.020 (3)0.010 (3)
C18A0.040 (3)0.042 (3)0.045 (4)0.011 (2)0.019 (3)0.004 (2)
C19A0.056 (6)0.055 (8)0.063 (7)0.024 (4)0.041 (4)0.008 (4)
C27A0.066 (3)0.0340 (19)0.0399 (19)0.0042 (18)0.0238 (19)0.0056 (15)
C28A0.044 (3)0.048 (2)0.0343 (19)0.010 (2)0.0116 (19)0.0099 (16)
C29A0.070 (4)0.052 (3)0.031 (3)0.004 (3)0.018 (2)0.009 (2)
Cu2A0.0476 (11)0.0274 (4)0.0305 (4)0.0023 (8)0.0126 (8)0.0006 (3)
S22A0.0631 (11)0.0244 (6)0.0524 (8)0.0018 (7)0.0253 (8)0.0050 (5)
Cu2B0.041 (7)0.032 (3)0.027 (2)0.002 (5)0.007 (5)0.0004 (19)
F10.0664 (13)0.0538 (12)0.0482 (10)0.0033 (10)0.0328 (10)0.0035 (9)
F20.0802 (15)0.0500 (12)0.0762 (14)0.0223 (11)0.0487 (12)0.0078 (10)
Si10.0500 (5)0.0294 (4)0.0402 (4)0.0016 (4)0.0193 (4)0.0037 (3)
C20.048 (5)0.087 (7)0.087 (6)0.002 (5)0.007 (4)0.034 (6)
C30.15 (2)0.070 (16)0.084 (12)0.057 (16)0.034 (12)0.023 (11)
N10.074 (6)0.075 (6)0.119 (8)0.029 (5)0.021 (5)0.012 (6)
O40.115 (10)0.059 (8)0.127 (9)0.003 (7)0.051 (7)0.013 (6)
O30.070 (4)0.067 (4)0.093 (5)0.008 (3)0.011 (4)0.013 (4)
Geometric parameters (Å, º) top
C12—N131.311 (4)C28A—H28A0.9300
C12—S111.731 (3)C28A—C29A1.364 (6)
C12—S121.731 (3)C28A—Cu2A2.027 (5)
C15—N121.328 (4)C29A—H29A0.9300
C15—N141.319 (3)C29A—H29B0.9300
C15—S111.745 (3)C29A—Cu2A2.082 (7)
C22—N231.289 (4)C17B—H17C0.9700
C22—S211.732 (3)C17B—H17D0.9700
C22—S22A1.742 (3)C17B—C18B1.476 (15)
C22—S22B1.757 (13)C18B—H18B0.9300
C25—N221.328 (4)C18B—C19B1.39 (3)
C25—N241.317 (3)C19B—H19C0.9300
C25—S211.742 (3)C19B—H19D0.9300
Cu1—N131.991 (2)C27B—H27C0.9700
Cu1—N242.010 (2)C27B—H27D0.9700
Cu1—O12.364 (3)C27B—C28B1.487 (18)
Cu1—C18A2.035 (5)C27B—S22B1.76 (3)
Cu1—C19A2.064 (18)C28B—H28B0.9300
Cu1—C18B2.138 (8)C28B—C29B1.358 (18)
Cu1—C19B2.01 (3)C28B—Cu2B2.08 (4)
N12—H12A0.86 (3)C29B—H29C0.9300
N12—H12B0.86 (4)C29B—H29D0.9300
N13—N141.389 (3)C29B—Cu2B1.87 (5)
N14—Cu2A1.975 (4)F1—Si11.682 (2)
N14—Cu2B1.95 (3)F2—Si11.691 (2)
N22—H22A0.93 (4)Si1—F3A1.693 (4)
N22—H22B0.83 (4)Si1—F5A1.633 (4)
N23—N241.399 (3)Si1—F6A1.682 (5)
N23—Cu2A2.003 (4)Si1—F3B1.683 (6)
N23—Cu2B2.07 (3)Si1—F4B1.656 (7)
O1—H1A0.9054Si1—F5B1.697 (6)
O1—H1B0.9041Si1—F6B1.719 (7)
O2—H2A0.8695Si1—F3C1.621 (9)
O2—H2B0.8712Si1—F4C1.689 (9)
S12—C17A1.804 (6)Si1—F5C1.723 (9)
S12—C17B1.828 (10)Si1—F6C1.682 (8)
C17A—H17A0.9700Si1—F3D1.678 (11)
C17A—H17B0.9700Si1—F4D1.709 (9)
C17A—C18A1.480 (9)Si1—F5D1.681 (10)
C18A—H18A0.9300Si1—F6D1.677 (9)
C18A—C19A1.29 (2)Si1—F4A1.710 (5)
C19A—H19A0.9300C2—C31.38 (3)
C19A—H19B0.9300C2—N11.126 (12)
C27A—H27A0.9700C3—H3A0.9600
C27A—H27B0.9700C3—H3B0.9600
C27A—C28A1.519 (5)C3—H3C0.9600
C27A—S22A1.790 (4)
N13—C12—S11113.3 (2)H17C—C17B—H17D107.3
N13—C12—S12127.7 (2)C18B—C17B—S12116.5 (8)
S12—C12—S11118.98 (17)C18B—C17B—H17C108.2
N12—C15—S11121.6 (2)C18B—C17B—H17D108.2
N14—C15—N12125.3 (3)Cu1—C18B—H18B98.5
N14—C15—S11113.1 (2)C17B—C18B—Cu1106.5 (6)
N23—C22—S21114.4 (2)C17B—C18B—H18B116.0
N23—C22—S22A128.4 (2)C19B—C18B—Cu165.6 (12)
N23—C22—S22B125.2 (5)C19B—C18B—C17B128.0 (14)
S21—C22—S22A117.13 (17)C19B—C18B—H18B116.0
S21—C22—S22B117.8 (5)Cu1—C19B—H19C99.3
N22—C25—S21121.2 (2)Cu1—C19B—H19D95.2
N24—C25—N22125.0 (3)C18B—C19B—Cu175.4 (13)
N24—C25—S21113.8 (2)C18B—C19B—H19C120.0
N13—Cu1—N24108.81 (10)C18B—C19B—H19D120.0
N13—Cu1—O191.35 (9)H19C—C19B—H19D120.0
N13—Cu1—C18A94.59 (16)H27C—C27B—H27D107.1
N13—Cu1—C19A131.2 (5)C28B—C27B—H27C107.7
N13—Cu1—C18B100.4 (2)C28B—C27B—H27D107.7
N13—Cu1—C19B135.2 (9)C28B—C27B—S22B118 (2)
N24—Cu1—O187.32 (9)S22B—C27B—H27C107.7
N24—Cu1—C18A154.62 (17)S22B—C27B—H27D107.7
N24—Cu1—C19A118.9 (5)C27B—C28B—H28B116.8
N24—Cu1—C18B134.4 (3)C27B—C28B—Cu2B110 (2)
N24—Cu1—C19B114.6 (9)C29B—C28B—C27B126 (3)
C18A—Cu1—O1102.20 (19)C29B—C28B—H28B116.8
C18A—Cu1—C19A36.6 (6)C29B—C28B—Cu2B62 (2)
C19A—Cu1—O1100.4 (5)Cu2B—C28B—H28B97.7
C18B—Cu1—O1126.8 (3)C28B—C29B—H29C120.0
C19B—Cu1—O1101.0 (6)C28B—C29B—H29D120.0
C19B—Cu1—C18B39.1 (8)C28B—C29B—Cu2B78 (2)
C15—N12—H12A112 (2)H29C—C29B—H29D120.0
C15—N12—H12B123 (2)Cu2B—C29B—H29C100.7
H12A—N12—H12B116 (3)Cu2B—C29B—H29D91.1
C12—N13—Cu1127.76 (19)N14—Cu2B—N23109.7 (12)
C12—N13—N14113.4 (2)N14—Cu2B—C28B149.8 (15)
N14—N13—Cu1118.83 (17)N23—Cu2B—C28B100.2 (13)
C15—N14—N13112.3 (2)C29B—Cu2B—N14111.9 (15)
C15—N14—Cu2A131.2 (2)C29B—Cu2B—N23131.2 (17)
C15—N14—Cu2B124.0 (6)C29B—Cu2B—C28B39.8 (9)
N13—N14—Cu2A116.08 (19)C22—S22B—C27B108.0 (13)
N13—N14—Cu2B123.8 (6)F1—Si1—F2178.11 (12)
C25—N22—H22A129 (2)F1—Si1—F3A89.52 (17)
C25—N22—H22B117 (3)F1—Si1—F6A91.1 (2)
H22A—N22—H22B114 (3)F1—Si1—F3B90.2 (2)
C22—N23—N24113.2 (2)F1—Si1—F5B84.4 (2)
C22—N23—Cu2A128.6 (2)F1—Si1—F6B87.8 (3)
C22—N23—Cu2B125.7 (7)F1—Si1—F4C96.1 (5)
N24—N23—Cu2A117.60 (19)F1—Si1—F5C89.9 (5)
N24—N23—Cu2B121.1 (7)F1—Si1—F6C87.0 (4)
C25—N24—Cu1128.1 (2)F1—Si1—F4D98.5 (4)
C25—N24—N23111.6 (2)F1—Si1—F4A90.0 (2)
N23—N24—Cu1115.34 (16)F2—Si1—F3A89.89 (17)
Cu1—O1—H1A111.4F2—Si1—F5B95.5 (2)
Cu1—O1—H1B110.8F2—Si1—F6B90.3 (3)
H1A—O1—H1B107.4F2—Si1—F5C89.4 (5)
H2A—O2—H2B109.5F2—Si1—F4D82.7 (4)
C12—S11—C1587.83 (14)F2—Si1—F4A91.8 (2)
C12—S12—C17A106.6 (2)F3A—Si1—F4A89.3 (3)
C12—S12—C17B103.3 (3)F5A—Si1—F192.0 (2)
C22—S21—C2587.00 (14)F5A—Si1—F288.7 (2)
S12—C17A—H17A107.7F5A—Si1—F3A178.5 (3)
S12—C17A—H17B107.7F5A—Si1—F6A91.6 (3)
H17A—C17A—H17B107.1F5A—Si1—F4A90.3 (3)
C18A—C17A—S12118.6 (5)F6A—Si1—F287.1 (2)
C18A—C17A—H17A107.7F6A—Si1—F3A88.7 (3)
C18A—C17A—H17B107.7F6A—Si1—F4A177.7 (3)
Cu1—C18A—H18A90.7F3B—Si1—F289.7 (2)
C17A—C18A—Cu1106.4 (4)F3B—Si1—F5B174.2 (4)
C17A—C18A—H18A119.1F3B—Si1—F6B89.4 (4)
C19A—C18A—Cu172.9 (7)F4B—Si1—F186.4 (3)
C19A—C18A—C17A121.7 (10)F4B—Si1—F295.5 (3)
C19A—C18A—H18A119.1F4B—Si1—F3B90.2 (4)
Cu1—C19A—H19A107.2F4B—Si1—F5B91.8 (4)
Cu1—C19A—H19B92.2F4B—Si1—F6B174.2 (5)
C18A—C19A—Cu170.5 (9)F5B—Si1—F6B88.1 (4)
C18A—C19A—H19A120.0F3C—Si1—F192.7 (6)
C18A—C19A—H19B120.0F3C—Si1—F288.0 (6)
H19A—C19A—H19B120.0F3C—Si1—F4C91.7 (5)
H27A—C27A—H27B107.5F3C—Si1—F5C177.4 (8)
C28A—C27A—H27A108.4F3C—Si1—F6C91.7 (5)
C28A—C27A—H27B108.4F4C—Si1—F285.6 (5)
C28A—C27A—S22A115.5 (3)F4C—Si1—F5C88.1 (5)
S22A—C27A—H27A108.4F6C—Si1—F291.2 (4)
S22A—C27A—H27B108.4F6C—Si1—F4C175.3 (6)
C27A—C28A—H28A119.5F6C—Si1—F5C88.4 (5)
C27A—C28A—Cu2A105.2 (3)F3D—Si1—F193.0 (8)
C29A—C28A—C27A121.0 (5)F3D—Si1—F288.4 (8)
C29A—C28A—H28A119.5F3D—Si1—F4D88.7 (6)
C29A—C28A—Cu2A72.8 (3)F3D—Si1—F5D174.0 (11)
Cu2A—C28A—H28A92.0F5D—Si1—F192.8 (7)
C28A—C29A—H29A120.0F5D—Si1—F285.8 (7)
C28A—C29A—H29B120.0F5D—Si1—F4D89.3 (6)
C28A—C29A—Cu2A68.4 (3)F6D—Si1—F189.0 (5)
H29A—C29A—H29B120.0F6D—Si1—F289.7 (5)
Cu2A—C29A—H29A106.9F6D—Si1—F3D90.9 (6)
Cu2A—C29A—H29B94.4F6D—Si1—F4D172.4 (6)
N14—Cu2A—N23111.49 (19)F6D—Si1—F5D90.3 (6)
N14—Cu2A—C28A153.0 (2)N1—C2—C3174.2 (17)
N14—Cu2A—C29A114.2 (2)C2—C3—H3A109.5
N23—Cu2A—C28A95.1 (2)C2—C3—H3B109.5
N23—Cu2A—C29A133.3 (2)C2—C3—H3C109.5
C28A—Cu2A—C29A38.75 (19)H3A—C3—H3B109.5
C22—S22A—C27A104.05 (16)H3A—C3—H3C109.5
S12—C17B—H17C108.2H3B—C3—H3C109.5
S12—C17B—H17D108.2
C12—N13—N14—C152.4 (3)S12—C12—S11—C15179.84 (18)
C12—N13—N14—Cu2A170.8 (2)S12—C17A—C18A—Cu172.0 (6)
C12—N13—N14—Cu2B179.3 (7)S12—C17A—C18A—C19A151.8 (9)
C12—S12—C17A—C18A40.2 (6)S12—C17B—C18B—Cu169.4 (9)
C12—S12—C17B—C18B68.3 (8)S12—C17B—C18B—C19B141.0 (17)
C22—N23—N24—C252.2 (3)S21—C22—N23—N241.7 (3)
C22—N23—N24—Cu1154.9 (2)S21—C22—N23—Cu2A172.19 (16)
Cu1—N13—N14—C15177.89 (18)S21—C22—N23—Cu2B175.7 (6)
Cu1—N13—N14—Cu2A9.0 (3)S21—C22—S22A—C27A176.71 (19)
Cu1—N13—N14—Cu2B0.5 (8)S21—C22—S22B—C27B150.7 (11)
N12—C15—N14—N13177.4 (3)S21—C25—N24—Cu1151.74 (16)
N12—C15—N14—Cu2A10.8 (4)S21—C25—N24—N231.7 (3)
N12—C15—N14—Cu2B1.0 (8)C17A—C18A—C19A—Cu199.0 (7)
N12—C15—S11—C12178.4 (3)C27A—C28A—C29A—Cu2A97.7 (4)
N13—C12—S11—C150.0 (2)C28A—C27A—S22A—C2251.8 (3)
N13—C12—S12—C17A0.9 (4)Cu2A—N23—N24—C25173.8 (2)
N13—C12—S12—C17B26.1 (5)Cu2A—N23—N24—Cu116.7 (3)
N14—C15—S11—C121.3 (2)S22A—C22—N23—N24178.0 (2)
N22—C25—N24—Cu129.1 (5)S22A—C22—N23—Cu2A7.5 (4)
N22—C25—N24—N23177.4 (3)S22A—C22—S21—C25179.1 (2)
N22—C25—S21—C22178.5 (3)S22A—C27A—C28A—C29A157.8 (4)
N23—C22—S21—C250.6 (2)S22A—C27A—C28A—Cu2A79.0 (3)
N23—C22—S22A—C27A3.6 (4)C17B—C18B—C19B—Cu192.4 (13)
N23—C22—S22B—C27B10.0 (13)C27B—C28B—C29B—Cu2B96 (3)
N24—C25—S21—C220.7 (2)C28B—C27B—S22B—C2260 (3)
S11—C12—N13—Cu1178.94 (13)C28B—C29B—Cu2B—N14166.5 (17)
S11—C12—N13—N141.3 (3)C28B—C29B—Cu2B—N2347 (3)
S11—C12—S12—C17A179.3 (3)Cu2B—N23—N24—C25175.3 (6)
S11—C12—S12—C17B154.2 (4)Cu2B—N23—N24—Cu127.6 (6)
S11—C15—N14—N132.3 (3)S22B—C22—N23—N24159.6 (5)
S11—C15—N14—Cu2A169.48 (18)S22B—C22—N23—Cu2B23.0 (8)
S11—C15—N14—Cu2B179.3 (7)S22B—C22—S21—C25162.2 (4)
S12—C12—N13—Cu10.8 (4)S22B—C27B—C28B—C29B133 (3)
S12—C12—N13—N14178.9 (2)S22B—C27B—C28B—Cu2B63 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···F10.86 (3)2.14 (4)2.973 (4)163 (3)
N12—H12A···F3A0.86 (3)2.26 (4)2.780 (6)119 (3)
N12—H12A···F3B0.86 (3)2.48 (4)2.990 (9)119 (3)
N12—H12A···F6C0.86 (3)2.35 (4)2.989 (14)132 (3)
N12—H12A···F6D0.86 (3)2.17 (4)2.733 (13)123 (3)
N12—H12B···F2i0.86 (4)2.04 (4)2.827 (3)152 (3)
N22—H22A···F2ii0.93 (4)2.05 (4)2.903 (4)153 (3)
N22—H22A···F6Cii0.93 (4)2.40 (4)2.931 (15)117 (3)
N22—H22B···F5Aiii0.83 (4)1.83 (4)2.638 (5)165 (4)
N22—H22B···F3Bii0.83 (4)2.52 (4)2.931 (9)112 (3)
N22—H22B···F5Biii0.83 (4)1.98 (4)2.758 (9)157 (4)
N22—H22B···F4Ciii0.83 (4)2.55 (4)3.250 (19)142 (3)
N22—H22B···F5Ciii0.83 (4)2.50 (4)3.27 (2)154 (4)
N22—H22B···F4Diii0.83 (4)2.00 (4)2.766 (15)153 (4)
O1—H1A···N10.911.892.789 (10)175
O1—H1A···O30.912.062.875 (7)149
O1—H1B···O20.901.852.698 (4)156
O2—H2A···F5Aiv0.872.483.293 (9)156
O2—H2A···F6Aiv0.872.232.926 (8)138
O2—H2A···F5Biv0.871.982.819 (11)163
O2—H2A···F6Biv0.872.683.361 (13)136
O2—H2A···F5Civ0.871.522.385 (12)169
O2—H2A···F5Div0.871.642.427 (15)150
O2—H2B···F3Av0.872.483.095 (9)128
O2—H2B···F3Bv0.872.032.691 (9)132
O2—H2B···F4Bv0.872.613.464 (13)168
O2—H2B···F3Cv0.871.592.383 (11)149
O2—H2B···F3Dv0.871.592.465 (18)177
O2—H2B···F4Av0.872.092.952 (9)169
C17A—H17A···F4Avi0.972.433.333 (8)155
C27A—H27A···O2vii0.972.523.322 (5)140
C27A—H27B···F10.972.463.376 (4)157
C27B—H27D···O1vii0.972.663.57 (4)157
C28B—H28B···F10.932.573.23 (3)128
Symmetry codes: (i) x3/2, y1/2, z+1/2; (ii) x+1/2, y3/2, z1/2; (iii) x1, y1, z; (iv) x1/2, y1/2, z+1/2; (v) x+1, y, z; (vi) x1, y2, z; (vii) x1/2, y+1/2, z+1/2.
(5) µ-Benzenesulfonato-bis{µ-5-[(prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine}dicopper(I) benzenesulfonate methanol monosolvate monohydrate top
Crystal data top
[Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH4O·H2OF(000) = 1712
Mr = 837.97Dx = 1.734 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.944 (4) ÅCell parameters from 10457 reflections
b = 16.587 (5) Åθ = 3.4–77.6°
c = 14.658 (4) ŵ = 5.77 mm1
β = 117.91 (3)°T = 110 K
V = 3210.7 (17) Å3Block, clear colourless
Z = 40.45 × 0.32 × 0.17 mm
Data collection top
Rigaku Xcalibur Onyx
diffractometer
6741 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source6073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.1956 pixels mm-1θmax = 78.0°, θmin = 3.4°
ω scansh = 1618
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 2017
Tmin = 0.248, Tmax = 0.540l = 1816
16595 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.108P)2 + 2.144P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6741 reflectionsΔρmax = 1.03 e Å3
487 parametersΔρmin = 1.49 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.71463 (4)0.46102 (3)0.25333 (4)0.03132 (15)
Cu20.70615 (4)0.53623 (3)0.46302 (4)0.03199 (15)
S110.74240 (6)0.73187 (5)0.27560 (6)0.03241 (18)
S120.68469 (9)0.63190 (6)0.08869 (7)0.0451 (2)
S210.80874 (6)0.27825 (5)0.50610 (6)0.03168 (18)
S220.73084 (6)0.36872 (5)0.62865 (5)0.03159 (18)
S31A0.4810 (3)0.4424 (3)0.2480 (3)0.0304 (6)0.644 (6)
S31B0.4816 (6)0.4310 (5)0.2230 (5)0.0296 (11)0.356 (6)
O31A0.5331 (3)0.4589 (3)0.1884 (4)0.0449 (11)0.644 (6)
O31B0.5736 (4)0.4754 (4)0.2891 (5)0.0310 (16)0.356 (6)
O32A0.5256 (3)0.4869 (3)0.3451 (3)0.0448 (11)0.644 (6)
O32B0.3953 (7)0.4564 (6)0.2366 (9)0.037 (2)0.356 (6)
O33A0.3728 (4)0.4551 (4)0.1911 (4)0.0383 (12)0.644 (6)
O33B0.4610 (5)0.4282 (5)0.1179 (5)0.0378 (18)0.356 (6)
N120.7894 (2)0.72597 (17)0.4762 (2)0.0345 (6)
H12A0.797 (3)0.781 (3)0.478 (4)0.041*
H12B0.814 (4)0.700 (3)0.535 (4)0.041*
N130.7226 (2)0.57953 (16)0.2809 (2)0.0289 (5)
N140.74612 (19)0.60649 (16)0.37976 (18)0.0262 (5)
N220.8476 (2)0.28718 (18)0.3451 (2)0.0360 (6)
H22A0.871 (4)0.315 (3)0.308 (4)0.043*
H22B0.871 (4)0.239 (3)0.362 (4)0.043*
N230.75070 (18)0.42421 (16)0.46223 (18)0.0257 (5)
N240.7777 (2)0.40025 (16)0.38683 (19)0.0276 (5)
C120.7161 (3)0.63734 (19)0.2188 (3)0.0320 (6)
C150.7616 (2)0.68478 (19)0.3896 (2)0.0295 (6)
C17A0.7197 (3)0.5307 (3)0.0744 (3)0.0357 (11)0.801 (10)
H17A0.70980.52410.00320.043*0.801 (10)
H17B0.79270.52330.12210.043*0.801 (10)
C17B0.6409 (11)0.5277 (9)0.0557 (11)0.027 (4)*0.199 (10)
H17C0.58320.51910.07010.033*0.199 (10)
H17D0.61570.52000.01930.033*0.199 (10)
C18A0.6618 (3)0.4659 (3)0.0951 (3)0.0333 (10)0.801 (10)
H18A0.59460.47720.08210.040*0.801 (10)
C18B0.7173 (13)0.4671 (8)0.1108 (11)0.022 (4)*0.199 (10)
H18B0.78590.48250.13450.026*0.199 (10)
C190.7008 (3)0.3910 (2)0.1317 (2)0.0388 (7)
H19A0.76790.37810.14530.047*0.801 (10)
H19B0.66080.35200.14350.047*0.801 (10)
H19C0.63360.37270.10970.047*0.199 (10)
H19D0.75640.35580.16850.047*0.199 (10)
C220.7610 (2)0.36726 (18)0.5270 (2)0.0274 (6)
C250.8116 (2)0.32546 (19)0.4009 (2)0.0289 (6)
C27A0.7145 (4)0.4774 (3)0.6479 (4)0.0346 (13)0.664 (10)
H27A0.69400.48270.70280.042*0.664 (10)
H27B0.78060.50490.67220.042*0.664 (10)
C28A0.6385 (4)0.5191 (4)0.5539 (4)0.0368 (14)0.664 (10)
H28A0.58410.48910.50250.044*0.664 (10)
C29A0.6456 (12)0.6009 (6)0.5396 (12)0.035 (4)0.664 (10)
H29A0.69990.63130.59050.042*0.664 (10)
H29B0.59630.62660.47890.042*0.664 (10)
C27B0.6490 (6)0.4546 (5)0.6003 (6)0.023 (2)*0.336 (10)
H27C0.59100.44870.53040.027*0.336 (10)
H27D0.62210.45730.65040.027*0.336 (10)
C28B0.7036 (6)0.5298 (5)0.6054 (6)0.022 (2)*0.336 (10)
H28B0.77480.53340.64770.026*0.336 (10)
C29B0.648 (3)0.5963 (14)0.546 (3)0.049 (11)*0.336 (10)
H29C0.57690.59210.50420.058*0.336 (10)
H29D0.68190.64540.54840.058*0.336 (10)
C310.5023 (2)0.3352 (2)0.2756 (3)0.0331 (6)
C320.5006 (3)0.2774 (3)0.2070 (3)0.0487 (9)
H320.48920.29260.13990.058*
C330.5157 (3)0.1973 (3)0.2365 (4)0.0594 (12)
H330.51480.15770.18930.071*
C340.5320 (3)0.1741 (3)0.3333 (4)0.0549 (11)
H340.54250.11900.35310.066*
C350.5329 (3)0.2328 (3)0.4021 (3)0.0480 (9)
H350.54340.21780.46900.058*
C360.5186 (2)0.3121 (2)0.3729 (3)0.0403 (7)
H360.52000.35190.42010.048*
S410.97251 (6)0.62170 (5)0.76431 (6)0.03256 (19)
O410.8831 (2)0.6489 (2)0.6743 (2)0.0575 (8)
O421.0634 (2)0.66597 (18)0.7849 (2)0.0463 (6)
O430.95553 (18)0.61808 (18)0.85462 (19)0.0414 (6)
C410.9942 (2)0.5208 (2)0.7391 (3)0.0338 (6)
C421.0076 (3)0.5059 (3)0.6531 (3)0.0448 (8)
H421.00490.54890.60900.054*
C431.0252 (3)0.4279 (3)0.6323 (4)0.0608 (12)
H431.03480.41710.57390.073*
C441.0287 (3)0.3646 (3)0.6973 (5)0.0641 (14)
H441.04030.31100.68270.077*
C451.0155 (3)0.3804 (3)0.7818 (4)0.0577 (12)
H451.01880.33750.82620.069*
C460.9975 (3)0.4584 (2)0.8035 (3)0.0429 (8)
H460.98740.46880.86180.052*
O610.9016 (2)0.35933 (15)0.9454 (2)0.0377 (5)
H610.944 (4)0.366 (3)0.999 (4)0.057*
C610.8226 (4)0.4136 (3)0.9263 (4)0.0536 (10)
H61A0.76200.39750.86330.080*
H61B0.84300.46800.91760.080*
H61C0.80780.41310.98470.080*
O510.1975 (3)0.38050 (17)0.0872 (3)0.0481 (7)
H51A0.162 (5)0.379 (4)0.116 (5)0.072*
H51B0.248 (5)0.407 (4)0.124 (5)0.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0483 (3)0.0242 (3)0.0271 (2)0.00226 (17)0.0224 (2)0.00268 (16)
Cu20.0501 (3)0.0251 (3)0.0337 (3)0.00360 (18)0.0305 (2)0.00246 (17)
S110.0443 (4)0.0243 (4)0.0373 (4)0.0033 (3)0.0263 (3)0.0055 (3)
S120.0792 (6)0.0346 (4)0.0339 (4)0.0096 (4)0.0367 (4)0.0095 (3)
S210.0415 (4)0.0272 (4)0.0332 (4)0.0057 (3)0.0232 (3)0.0079 (3)
S220.0376 (4)0.0373 (4)0.0247 (3)0.0021 (3)0.0186 (3)0.0059 (3)
S31A0.0278 (7)0.0293 (11)0.0368 (17)0.0016 (6)0.0175 (11)0.0018 (10)
S31B0.0242 (12)0.037 (3)0.026 (2)0.0010 (14)0.0107 (16)0.0011 (17)
O31A0.047 (2)0.045 (2)0.058 (3)0.0005 (17)0.037 (2)0.0055 (19)
O31B0.027 (3)0.031 (3)0.027 (3)0.006 (2)0.006 (2)0.003 (2)
O32A0.0359 (18)0.040 (2)0.048 (2)0.0005 (15)0.0107 (16)0.0140 (18)
O32B0.027 (4)0.044 (4)0.044 (5)0.006 (3)0.021 (4)0.001 (5)
O33A0.029 (2)0.046 (2)0.033 (3)0.0025 (18)0.010 (2)0.005 (3)
O33B0.037 (3)0.050 (4)0.026 (3)0.008 (3)0.014 (3)0.007 (3)
N120.0449 (14)0.0252 (13)0.0334 (13)0.0004 (11)0.0183 (12)0.0012 (11)
N130.0416 (13)0.0260 (12)0.0270 (12)0.0024 (10)0.0226 (10)0.0005 (10)
N140.0341 (11)0.0251 (12)0.0238 (11)0.0009 (9)0.0172 (9)0.0004 (9)
N220.0517 (16)0.0263 (13)0.0432 (15)0.0076 (11)0.0333 (13)0.0047 (11)
N230.0310 (11)0.0282 (12)0.0217 (10)0.0011 (9)0.0155 (9)0.0005 (9)
N240.0382 (12)0.0256 (12)0.0279 (11)0.0031 (9)0.0229 (10)0.0011 (9)
C120.0454 (16)0.0265 (15)0.0326 (15)0.0027 (12)0.0253 (13)0.0030 (12)
C150.0285 (12)0.0292 (15)0.0335 (14)0.0039 (11)0.0170 (11)0.0030 (12)
C17A0.046 (2)0.036 (2)0.036 (2)0.0079 (16)0.0287 (18)0.0045 (16)
C18A0.031 (2)0.041 (2)0.0251 (18)0.0033 (15)0.0113 (15)0.0050 (15)
C190.0546 (19)0.0335 (17)0.0251 (14)0.0007 (14)0.0160 (13)0.0073 (12)
C220.0316 (13)0.0283 (14)0.0259 (13)0.0035 (11)0.0164 (11)0.0049 (11)
C250.0323 (13)0.0265 (14)0.0306 (13)0.0002 (11)0.0171 (11)0.0025 (11)
C27A0.044 (3)0.038 (3)0.026 (2)0.000 (2)0.020 (2)0.0006 (19)
C28A0.034 (3)0.050 (3)0.039 (3)0.005 (2)0.027 (2)0.004 (2)
C29A0.058 (7)0.029 (4)0.043 (6)0.012 (2)0.044 (5)0.002 (2)
C310.0235 (12)0.0339 (16)0.0368 (15)0.0038 (11)0.0099 (11)0.0002 (13)
C320.0465 (19)0.060 (3)0.046 (2)0.0038 (17)0.0271 (16)0.0105 (18)
C330.050 (2)0.054 (3)0.075 (3)0.0051 (18)0.030 (2)0.026 (2)
C340.0360 (16)0.036 (2)0.077 (3)0.0033 (14)0.0136 (18)0.0017 (19)
C350.0403 (17)0.050 (2)0.0416 (18)0.0047 (16)0.0091 (14)0.0146 (16)
C360.0332 (14)0.045 (2)0.0309 (15)0.0037 (13)0.0054 (12)0.0004 (14)
S410.0324 (3)0.0379 (4)0.0270 (3)0.0006 (3)0.0136 (3)0.0044 (3)
O410.0610 (17)0.0601 (19)0.0351 (13)0.0229 (15)0.0089 (12)0.0111 (13)
O420.0559 (15)0.0435 (15)0.0536 (15)0.0159 (12)0.0374 (13)0.0107 (12)
O430.0360 (11)0.0578 (16)0.0362 (12)0.0015 (10)0.0216 (10)0.0022 (11)
C410.0238 (12)0.0399 (17)0.0347 (15)0.0034 (12)0.0113 (11)0.0019 (13)
C420.0428 (17)0.050 (2)0.0473 (19)0.0056 (15)0.0257 (15)0.0039 (17)
C430.050 (2)0.064 (3)0.076 (3)0.009 (2)0.036 (2)0.024 (2)
C440.0369 (18)0.043 (2)0.112 (4)0.0040 (15)0.034 (2)0.013 (2)
C450.0361 (17)0.041 (2)0.088 (3)0.0022 (15)0.023 (2)0.012 (2)
C460.0321 (15)0.044 (2)0.051 (2)0.0039 (13)0.0174 (14)0.0094 (16)
O610.0455 (12)0.0322 (12)0.0347 (12)0.0001 (10)0.0183 (10)0.0046 (10)
C610.067 (3)0.037 (2)0.058 (2)0.0139 (18)0.031 (2)0.0029 (18)
O510.0623 (17)0.0329 (13)0.0722 (19)0.0012 (12)0.0506 (16)0.0025 (13)
Geometric parameters (Å, º) top
Cu1—O31A2.418 (4)C18B—C191.348 (14)
Cu1—O31B2.409 (7)C19—H19A0.9500
Cu1—N131.999 (3)C19—H19B0.9500
Cu1—N242.002 (3)C19—H19C0.9500
Cu1—C18A2.072 (4)C19—H19D0.9500
Cu1—C18B2.111 (14)C27A—H27A0.9900
Cu1—C192.055 (3)C27A—H27B0.9900
Cu2—N141.972 (2)C27A—C28A1.484 (7)
Cu2—N231.976 (3)C28A—H28A0.9500
Cu2—C28A2.033 (4)C28A—C29A1.384 (11)
Cu2—C29A2.044 (11)C29A—H29A0.9500
Cu2—C28B2.107 (8)C29A—H29B0.9500
Cu2—C29B2.06 (4)C27B—H27C0.9900
S11—C121.732 (3)C27B—H27D0.9900
S11—C151.743 (3)C27B—C28B1.473 (10)
S12—C121.740 (3)C28B—H28B0.9500
S12—C17A1.799 (4)C28B—C29B1.408 (17)
S12—C17B1.830 (15)C29B—H29C0.9500
S21—C221.728 (3)C29B—H29D0.9500
S21—C251.748 (3)C31—C321.380 (5)
S22—C221.747 (3)C31—C361.384 (5)
S22—C27A1.858 (6)C32—H320.9500
S22—C27B1.795 (8)C32—C331.383 (7)
S31A—O31A1.444 (5)C33—H330.9500
S31A—O32A1.458 (5)C33—C341.378 (7)
S31A—O33A1.447 (7)C34—H340.9500
S31A—C311.819 (6)C34—C351.398 (7)
S31B—O31B1.458 (9)C35—H350.9500
S31B—O32B1.457 (11)C35—C361.369 (6)
S31B—O33B1.424 (8)C36—H360.9500
S31B—C311.729 (9)S41—O411.442 (3)
N12—H12A0.91 (5)S41—O421.446 (3)
N12—H12B0.87 (5)S41—O431.461 (2)
N12—C151.326 (4)S41—C411.775 (4)
N13—N141.395 (3)C41—C421.389 (5)
N13—C121.294 (4)C41—C461.386 (5)
N14—C151.315 (4)C42—H420.9500
N22—H22A0.90 (5)C42—C431.383 (7)
N22—H22B0.86 (5)C43—H430.9500
N22—C251.331 (4)C43—C441.402 (8)
N23—N241.400 (3)C44—H440.9500
N23—C221.296 (4)C44—C451.367 (8)
N24—C251.319 (4)C45—H450.9500
C17A—H17A0.9900C45—C461.388 (6)
C17A—H17B0.9900C46—H460.9500
C17A—C18A1.498 (6)O61—H610.75 (6)
C17B—H17C0.9900O61—C611.404 (5)
C17B—H17D0.9900C61—H61A0.9800
C17B—C18B1.45 (2)C61—H61B0.9800
C18A—H18A0.9500C61—H61C0.9800
C18A—C191.369 (6)O51—H51A0.82 (6)
C18B—H18B0.9500O51—H51B0.81 (7)
N13—Cu1—O31A92.50 (13)C18A—C19—H19A120.0
N13—Cu1—O31B80.46 (17)C18A—C19—H19B120.0
N13—Cu1—N24109.96 (11)C18B—C19—Cu173.4 (6)
N13—Cu1—C18A98.26 (15)C18B—C19—H19C120.0
N13—Cu1—C18B97.3 (4)C18B—C19—H19D120.0
N13—Cu1—C19134.67 (13)H19A—C19—H19B120.0
N24—Cu1—O31A107.80 (13)H19C—C19—H19D120.0
N24—Cu1—O31B84.07 (16)S21—C22—S22117.10 (17)
N24—Cu1—C18A150.68 (15)N23—C22—S21114.2 (2)
N24—Cu1—C18B140.6 (4)N23—C22—S22128.7 (2)
N24—Cu1—C19111.94 (13)N22—C25—S21120.8 (2)
C18A—Cu1—O31A77.89 (17)N24—C25—S21113.1 (2)
C18B—Cu1—O31B129.4 (5)N24—C25—N22126.1 (3)
C19—Cu1—O31A90.65 (16)S22—C27A—H27A108.7
C19—Cu1—O31B120.10 (19)S22—C27A—H27B108.7
C19—Cu1—C18A38.75 (16)H27A—C27A—H27B107.6
C19—Cu1—C18B37.7 (4)C28A—C27A—S22114.1 (4)
N14—Cu2—N23110.59 (10)C28A—C27A—H27A108.7
N14—Cu2—C28A151.09 (18)C28A—C27A—H27B108.7
N14—Cu2—C29A111.7 (3)Cu2—C28A—H28A93.4
N14—Cu2—C28B142.6 (2)C27A—C28A—Cu2105.9 (3)
N14—Cu2—C29B114.5 (6)C27A—C28A—H28A119.4
N23—Cu2—C28A98.32 (18)C29A—C28A—Cu270.6 (5)
N23—Cu2—C29A137.2 (3)C29A—C28A—C27A121.2 (8)
N23—Cu2—C28B96.9 (2)C29A—C28A—H28A119.4
N23—Cu2—C29B134.1 (5)Cu2—C29A—H29A106.0
C28A—Cu2—C29A39.7 (3)Cu2—C29A—H29B94.0
C29B—Cu2—C28B39.5 (6)C28A—C29A—Cu269.7 (4)
C12—S11—C1587.34 (15)C28A—C29A—H29A120.0
C12—S12—C17A103.40 (18)C28A—C29A—H29B120.0
C12—S12—C17B102.6 (5)H29A—C29A—H29B120.0
C22—S21—C2587.48 (14)S22—C27B—H27C109.4
C22—S22—C27A104.32 (18)S22—C27B—H27D109.4
C22—S22—C27B103.5 (3)H27C—C27B—H27D108.0
O31A—S31A—O32A111.4 (4)C28B—C27B—S22111.1 (6)
O31A—S31A—O33A113.5 (4)C28B—C27B—H27C109.4
O31A—S31A—C31103.4 (3)C28B—C27B—H27D109.4
O32A—S31A—C31109.0 (3)Cu2—C28B—H28B96.3
O33A—S31A—O32A111.4 (4)C27B—C28B—Cu2105.0 (5)
O33A—S31A—C31107.7 (4)C27B—C28B—H28B120.7
O31B—S31B—C31104.6 (5)C29B—C28B—Cu268.2 (15)
O32B—S31B—O31B112.5 (7)C29B—C28B—C27B118.7 (17)
O32B—S31B—C31101.0 (6)C29B—C28B—H28B120.7
O33B—S31B—O31B113.2 (6)Cu2—C29B—H29C103.6
O33B—S31B—O32B113.6 (7)Cu2—C29B—H29D94.0
O33B—S31B—C31110.8 (5)C28B—C29B—Cu272.3 (13)
S31A—O31A—Cu1126.0 (3)C28B—C29B—H29C120.0
S31B—O31B—Cu1117.0 (4)C28B—C29B—H29D120.0
H12A—N12—H12B118 (4)H29C—C29B—H29D120.0
C15—N12—H12A122 (3)C32—C31—S31A125.1 (3)
C15—N12—H12B119 (3)C32—C31—S31B112.0 (3)
N14—N13—Cu1119.16 (19)C32—C31—C36119.6 (4)
C12—N13—Cu1127.5 (2)C36—C31—S31A115.3 (3)
C12—N13—N14113.1 (3)C36—C31—S31B128.4 (3)
N13—N14—Cu2116.85 (19)C31—C32—H32120.2
C15—N14—Cu2127.2 (2)C31—C32—C33119.6 (4)
C15—N14—N13112.1 (2)C33—C32—H32120.2
H22A—N22—H22B116 (4)C32—C33—H33119.5
C25—N22—H22A121 (3)C34—C33—C32121.0 (4)
C25—N22—H22B119 (3)C34—C33—H33119.5
N24—N23—Cu2119.61 (18)C33—C34—H34120.5
C22—N23—Cu2127.3 (2)C33—C34—C35119.1 (4)
C22—N23—N24113.1 (3)C35—C34—H34120.5
N23—N24—Cu1116.81 (18)C34—C35—H35120.1
C25—N24—Cu1126.6 (2)C36—C35—C34119.8 (4)
C25—N24—N23112.0 (2)C36—C35—H35120.1
S11—C12—S12117.25 (18)C31—C36—H36119.5
N13—C12—S11114.0 (2)C35—C36—C31120.9 (4)
N13—C12—S12128.7 (3)C35—C36—H36119.5
N12—C15—S11121.6 (3)O41—S41—O42114.2 (2)
N14—C15—S11113.3 (2)O41—S41—O43111.24 (18)
N14—C15—N12125.1 (3)O41—S41—C41106.60 (18)
S12—C17A—H17A108.6O42—S41—O43112.07 (16)
S12—C17A—H17B108.6O42—S41—C41106.11 (16)
H17A—C17A—H17B107.5O43—S41—C41105.98 (17)
C18A—C17A—S12114.8 (3)C42—C41—S41118.3 (3)
C18A—C17A—H17A108.6C46—C41—S41121.0 (3)
C18A—C17A—H17B108.6C46—C41—C42120.7 (4)
S12—C17B—H17C108.6C41—C42—H42120.3
S12—C17B—H17D108.6C43—C42—C41119.3 (4)
H17C—C17B—H17D107.6C43—C42—H42120.3
C18B—C17B—S12114.6 (11)C42—C43—H43119.9
C18B—C17B—H17C108.6C42—C43—C44120.1 (4)
C18B—C17B—H17D108.6C44—C43—H43119.9
Cu1—C18A—H18A92.6C43—C44—H44120.1
C17A—C18A—Cu1107.5 (3)C45—C44—C43119.8 (4)
C17A—C18A—H18A118.3C45—C44—H44120.1
C19—C18A—Cu169.9 (2)C44—C45—H45119.6
C19—C18A—C17A123.4 (4)C44—C45—C46120.8 (4)
C19—C18A—H18A118.3C46—C45—H45119.6
Cu1—C18B—H18B99.7C41—C46—C45119.3 (4)
C17B—C18B—Cu1102.1 (10)C41—C46—H46120.3
C17B—C18B—H18B116.7C45—C46—H46120.3
C19—C18B—Cu168.9 (6)C61—O61—H61109 (4)
C19—C18B—C17B126.6 (14)O61—C61—H61A109.5
C19—C18B—H18B116.7O61—C61—H61B109.5
Cu1—C19—H19A106.1O61—C61—H61C109.5
Cu1—C19—H19B92.5H61A—C61—H61B109.5
Cu1—C19—H19C97.9H61A—C61—H61C109.5
Cu1—C19—H19D98.6H61B—C61—H61C109.5
C18A—C19—Cu171.3 (2)H51A—O51—H51B107 (6)
Cu1—N13—N14—Cu228.8 (3)C12—S11—C15—N141.4 (2)
Cu1—N13—N14—C15171.7 (2)C12—S12—C17A—C18A63.3 (4)
Cu1—N13—C12—S11172.29 (16)C12—S12—C17B—C18B63.0 (11)
Cu1—N13—C12—S127.9 (5)C12—N13—N14—Cu2156.3 (2)
Cu1—N24—C25—S21153.25 (16)C12—N13—N14—C153.2 (4)
Cu1—N24—C25—N2228.4 (5)C15—S11—C12—S12179.4 (2)
Cu2—N14—C15—S11154.08 (16)C15—S11—C12—N130.5 (3)
Cu2—N14—C15—N1226.2 (4)C17A—S12—C12—S11154.6 (2)
Cu2—N23—N24—Cu126.2 (3)C17A—S12—C12—N1325.5 (4)
Cu2—N23—N24—C25176.0 (2)C17A—C18A—C19—Cu198.2 (4)
Cu2—N23—C22—S21176.45 (14)C17B—S12—C12—S11169.9 (5)
Cu2—N23—C22—S225.0 (4)C17B—S12—C12—N139.9 (6)
S12—C17A—C18A—Cu173.8 (3)C17B—C18B—C19—Cu189.6 (14)
S12—C17A—C18A—C19151.0 (3)C22—S21—C25—N22177.7 (3)
S12—C17B—C18B—Cu181.3 (11)C22—S21—C25—N240.8 (2)
S12—C17B—C18B—C19153.9 (10)C22—S22—C27A—C28A55.9 (4)
S22—C27A—C28A—Cu275.7 (4)C22—S22—C27B—C28B64.8 (6)
S22—C27A—C28A—C29A152.3 (6)C22—N23—N24—Cu1155.4 (2)
S22—C27B—C28B—Cu280.4 (6)C22—N23—N24—C252.4 (4)
S22—C27B—C28B—C29B153.5 (18)C25—S21—C22—S22178.01 (19)
S31A—C31—C32—C33178.5 (3)C25—S21—C22—N230.7 (2)
S31A—C31—C36—C35178.2 (3)C27A—S22—C22—S21166.1 (2)
S31B—C31—C32—C33179.9 (4)C27A—S22—C22—N2315.4 (3)
S31B—C31—C36—C35179.4 (4)C27A—C28A—C29A—Cu297.3 (5)
O31A—S31A—C31—C3239.7 (5)C27B—S22—C22—S21162.1 (3)
O31A—S31A—C31—C36142.0 (3)C27B—S22—C22—N2316.4 (4)
O31B—S31B—C31—C32118.6 (4)C27B—C28B—C29B—Cu295.7 (12)
O31B—S31B—C31—C3661.8 (6)C31—S31A—O31A—Cu170.9 (4)
O32A—S31A—O31A—Cu146.0 (5)C31—S31B—O31B—Cu183.3 (5)
O32A—S31A—C31—C32158.4 (3)C31—C32—C33—C340.3 (6)
O32A—S31A—C31—C3623.3 (4)C32—C31—C36—C350.2 (5)
O32B—S31B—O31B—Cu1168.0 (6)C32—C33—C34—C350.2 (6)
O32B—S31B—C31—C32124.4 (6)C33—C34—C35—C360.6 (6)
O32B—S31B—C31—C3655.2 (7)C34—C35—C36—C310.6 (6)
O33A—S31A—O31A—Cu1172.8 (4)C36—C31—C32—C330.3 (5)
O33A—S31A—C31—C3280.6 (5)S41—C41—C42—C43179.6 (3)
O33A—S31A—C31—C3697.7 (4)S41—C41—C46—C45179.4 (3)
O33B—S31B—O31B—Cu137.5 (8)O41—S41—C41—C4258.2 (3)
O33B—S31B—C31—C323.7 (7)O41—S41—C41—C46121.7 (3)
O33B—S31B—C31—C36175.9 (4)O42—S41—C41—C4263.9 (3)
N13—N14—C15—S112.8 (3)O42—S41—C41—C46116.2 (3)
N13—N14—C15—N12176.9 (3)O43—S41—C41—C42176.8 (3)
N14—N13—C12—S112.1 (3)O43—S41—C41—C463.1 (3)
N14—N13—C12—S12177.7 (2)C41—C42—C43—C440.3 (6)
N23—N24—C25—S211.9 (3)C42—C41—C46—C450.7 (5)
N23—N24—C25—N22176.5 (3)C42—C43—C44—C450.5 (6)
N24—N23—C22—S211.9 (3)C43—C44—C45—C460.7 (6)
N24—N23—C22—S22176.6 (2)C44—C45—C46—C410.9 (6)
C12—S11—C15—N12178.3 (3)C46—C41—C42—C430.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···O51i0.91 (5)1.94 (5)2.765 (4)150 (4)
N12—H12B···O410.87 (5)2.00 (5)2.867 (4)174 (4)
N22—H22A···O42ii0.90 (5)2.04 (5)2.896 (4)158 (4)
N22—H22B···O61iii0.86 (5)1.96 (5)2.758 (4)154 (4)
C17A—H17A···O33Aiv0.992.543.476 (7)157
C17B—H17D···S31Biv0.992.763.676 (16)154
C17B—H17D···O33Biv0.991.612.387 (16)132
C18A—H18A···O31A0.952.172.835 (6)126
C27A—H27A···O33Av0.992.443.377 (8)159
C28A—H28A···O32A0.952.052.769 (7)131
C27B—H27D···O32Bv0.992.293.133 (13)142
C28B—H28B···S410.953.013.891 (8)155
C28B—H28B···O410.952.423.096 (9)128
O61—H61···O43vi0.75 (6)1.98 (6)2.726 (4)174 (6)
C61—H61B···O51v0.982.583.426 (5)145
O51—H51A···O43v0.82 (6)2.00 (7)2.790 (4)164 (6)
O51—H51B···O32B0.81 (7)2.20 (7)3.010 (11)170 (6)
O51—H51B···O33A0.81 (7)1.84 (7)2.641 (7)168 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z+2.
Selected geometric parameters (Å, °) of (1) and (2) top
(1)
Cu1—N31.9938 (17)Cu1—m1.940 (1)
Cu1—N4i1.9693 (19)Cu1—O12.473 (3)
Cu1—C82.038 (2)C8—C91.360 (3)
Cu1—C92.073 (2)
N4i—Cu1—N3114.48 (7)O1—Cu—m97.76 (5)
C8—Cu1—C938.62 (8)C9—C8—C7122.8 (2)
(2)
Cu1—N32.0036 (15)Cu1—m1.9454 (9)
Cu1—N4i1.9646 (11)Cu1 – F12.6670 (15)
Cu1—C82.0451 (12)C8—C91.3706 (16)
Cu1—C92.0799 (15)
N4i—Cu1—N3114.54 (5)F1—Cu—m95.51 (3)
C8—Cu1—C938.80 (5)C9—C8—C7123.77 (10)
Symmetry code: (i) -x+1, -y+1, -z+1. m is the mid-point of CC bond.
Table 5 Selected geometric parameters (Å, °) of 3 top
m — middle of allylic C = C bond.
Cu1A—N132.045 (3)Cu2A—C28A2.062 (4)
Cu1A—N241.962 (2)Cu2A—C29A2.052 (8)
Cu1A—C18A2.054 (4)Cu2B—O12.341 (7)
Cu1A—C19A2.039 (6)Cu1A—O112.4416 (29)
Cu1B—O12.363 (7)Cu2A—O212.5391 (31)
Cu2A—N141.974 (3)C18A—C19A1.374 (9)
Cu2A—N231.998 (3)C28A—C29A1.369 (11)
Cu1A—m1.928 (2)Cu2A—m?1.940 (2)
N24—Cu1A—N13110.12 (11)C19A—C18A—C17A125.4 (5)
C19A—Cu1A—C18A39.2 (2)C29A—C28A—C27A125.9 (5)
N14—Cu2A—N23111.13 (12)O11—Cu1A—m98.77 (8)
C29A—Cu2A—C28A38.9 (3)O21—Cu2A—m?101.25 (8)
 

References

First citationAlves, S. A., Ferreira, T. C. R., Sabatini, N. S., Trientini, A. C. A., Migliorini, F. L., Baldan, M. R., Ferreira, N. G. & Lanza, M. R. V. (2012). Chemosphere, 88, 155–160.  CrossRef CAS Google Scholar
First citationArdan, B., Slyvka, Yu., Goreshnik, E. & Mys'kiv, M. (2013). Acta Chim. Slov. 60, 484–490.  CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275–5284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeng, Y., Liu, J., Zhang, Q., Li, F., Yang, Y., Li, P. & Ma, J. (2008). Inorg. Chem. Commun. 11, 433–437.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilden, R. C., Huffling, K. & Sattler, B. J. (2010). J. Obstet. Gynecol. Neonatal Nurs. 39, 103–110.  CrossRef Google Scholar
First citationGoreshnik, E. A., Slyvka, Yu. I. & Mys'kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177–180.  CSD CrossRef CAS Google Scholar
First citationGoreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys'kiv, M. G. (2016). J. Organomet. Chem. 810, 1–11.  CSD CrossRef CAS Google Scholar
First citationGranadino-Roldán, J. M., Garzón, A. S., García, G., Moral, M. N., Navarro, A., Fernández-Liencres, M. P., Peña-Ruiz, T. S. & Fernández-Gómez, M. J. (2011). Phys. Chem. C, 115, 2865–2873.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuha, P. C. (1922). J. Am. Chem. Soc. 44, 1510–1517.  CrossRef CAS Google Scholar
First citationHe, J. B., Qi, F., Wang, Y. & Deng, N. (2010). Sens. Actuators B, 145, 480–487.  CrossRef CAS Google Scholar
First citationHigashihara, T., Wu, H.-C., Mizobe, T., Lu, C., Ueda, M. & Chen, W.-C. (2012). Macromolecules, 45, 9046–9055.  CrossRef CAS Google Scholar
First citationHu, Y., Li, C.-Y., Wang, X.-M., Yang, Y.-H. & Zhu, H.-L. (2014). Chem. Rev. 114, 5572–5610.  CrossRef CAS Google Scholar
First citationKhan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Had, Z., Khan, A., Ali, S. & Choudhar, M. Z. (2010). Eur. J. Med. Chem. 45, 5200–5207.  CrossRef CAS Google Scholar
First citationLake, B. R. M. & Willans, C. E. (2013). Chem. Eur. J. 19, 16780–16790.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, J. S., Lee, H., Seo, H. J., Son, E. J., Lee, S. H., Jung, M. E., Lee, M. W., Han, H. K., Kim, J., Kang, J. & Lee, J. (2010). Bioorg. Med. Chem. 18, 2178–2194.  CrossRef CAS Google Scholar
First citationLi, Z.-H., Lin, P. & Du, S.-W. (2008). Polyhedron, 27, 232–240.  CSD CrossRef Google Scholar
First citationLi, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680.  CrossRef CAS Google Scholar
First citationMoshafi, M. H., Sorkhi, M., Emami, S., Nakhjiri, M., Yahya-Meymandi, A., Negahbani, A. S., Siavoshi, F., Omrani, M., Alipour, E., Vosooghi, M., Shafiee, A. & Foroumadi, A. (2011). Arch. Pharm. Chem. Life Sci. 11, 178–183.  CrossRef Google Scholar
First citationMykhalichko, B. M. & Mys'kiv, M. G. (1998). Ukr. Patent UA 25450A.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPattn, S. R., Kittur, B. S., Sastry, B. S., Jadav, S. G., Thakur, D. K., Madamwar, S. A. & Shinde, H. V. (2011). Indian J. Chem. Sect. B, 50, 615–618.  Google Scholar
First citationPulvermacher, G. (1894). Chem. Ber. 27, 613.  CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlyvka, Yu. I. (2015). J. Struct. Chem. 56, 1118–1123.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Yu., Goreshnik, E., Ardan, B., Veryasov, G., Morozov, D. & Mys'kiv, M. (2015). J. Mol. Struct. 1086, 125–130.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Y., Goreshnik, E., Pavlyuk, O. & Mys'kiv, M. (2013). Cent. Eur. J. Chem. 11, 1875–1901.  CAS Google Scholar
First citationSlyvka, Yu., Pokhodylo, N., Savka, R., Goreshnik, E. & Mys'kiv, M. (2009). Chem. Met. Alloys, 2, 130–137.  Google Scholar
First citationSlyvka, Yu., Pokhodylo, N., Savka, R., Mazej, Z., Goreshnik, E. & Mys'kiv, M. (2010). Chem. Met. Alloys, 3, 201–207.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTao, Y. X., Xu, Q. F., Lu, J. M. & Yang, X. B. (2010). Dyes Pigm. 84, 153–158.  CrossRef CAS Google Scholar
First citationTrukhina, O. N., Rodriguez-Morgade, M. S., Wolfrum, S., Caballero, E., Snejko, N., Danilova, E. A., Gutierrez-Puebla, E., Islyaikin, M. K., Guldi, D. M. & Torres, T. (2010). J. Am. Chem. Soc. 132, 12991–12999.  CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationXu, W. M., Li, S. Z., He, M., Yang, S., Li, X. Y. & Li, P. (2013). Bioorg. Med. Chem. Lett. 23, 5821–5824.  CrossRef CAS Google Scholar
First citationZhang, K. L., Qiao, N., Gao, H. Y., Zhou, F. & Zhang, M. (2007). Polyhedron, 26, 2461–2469.  CSD CrossRef CAS Google Scholar
First citationZhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156.  Web of Science CrossRef CAS PubMed Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds