research papers
Ligand-forced dimerization of copper(I)–olefin complexes bearing a 1,3,4-thiadiazole core
aFaculty of Chemistry, Ivan Franko National University, Kyryla i Mefodia Str. 6, 79005 L'viv, Ukraine, bInstitute of Low Temperature and Structure Research, Okolna 2, 50-422 Wroclaw, Poland, and cFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
*Correspondence e-mail: myskiv@franko.lviv.ua
As an important class of π-complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single-crystal X-ray diffraction and IR spectroscopy. The compounds are bis[μ-5-methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ-5-methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ-aqua-bis{μ-5-[(prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ-aqua-(hexafluorosilicato)bis{μ-5-[(prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ-benzenesulfonato-bis{μ-5-[(prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5-methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine (Mepeta), C6H9N3S, was also structurally characterized. Both Mepeta and 5-[(prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine (Pesta) (denoted L) reveal a strong tendency to form dimeric {Cu2L2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta)2}2+ unit allows the CuI atom site to be split into two positions with different metal-coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O-atom and hexafluorosilicate F-atom coordination, resulting in the rare case of a direct CuI⋯FSiF52− interaction. Extensive three-dimensional hydrogen-bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen-bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.
1,3,4-thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4-thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I)1. Introduction
As an important class of et al., 2010; Cressier et al., 2009; Li et al., 2014; Moshafi et al., 2011; Pattn et al., 2011; Lee et al., 2010; Xu et al., 2013; Zhang et al., 2014). In agriculture, these compounds can be used as pesticides, insecticides and plant-growth-regulating agents (Gilden et al., 2010; Alves et al., 2012). They have applications in materials chemistry because of their interesting optical and electronic properties (Tao et al., 2010; Granadino-Roldán et al., 2011; He et al., 2010). Due to their electron-deficient nature and good electron-accepting ability, 1,3,4-thiadiazoles were found to be excellent precursors for the crystal engineering of organometallic materials, possessing potential catalytic, luminescent, magnetic, nonlinear optic and other properties (Hu et al., 2014; Trukhina et al., 2010; Higashihara et al., 2012). Among these, heterometallic coordination polymers based on 1,3,4-thiadiazole-2,5-dithiolates show optical transitions with gaps varying from 1.90 to 2.24 eV, indicating their semiconductor properties (Li et al., 2008). A three-dimensional supramolecular network compound (via interlayer π–π stacking interactions and strong hydrogen bonding), based on the cadmium complex with 2-amino-5-mercapto-1,3,4-thiadiazole, shows a blue in the solid state at room temperature (Zhang et al., 2007). The aromatic 1,3,4-thiadiazole ring allows good π-electron conjugation and the accompanying (in the case of amino or hydroxy substituents) proton-transfer and charge-transfer processes provide an excellent ability to promote the synthesis of heavy-metal clusters. For example, the first known tetranuclear CuI complex (Cu⋯·Cu = 2.74 Å) of the azanide-type forms as a result of metal-induced deprotonation of 2-allylamino-5-phenyl-1,3,4-thiadiazole in acetonitrile under alternating current (ac) electrochemical conditions (Slyvka et al., 2015). Similarly, cobalt-induced reductive nucleophilic addition of 2-amino-1,3,4-thiadiazole to acetonitrile also shows deprotonation of the same amine N atom, resulting in the N-(1,3,4-thiadiazol-2-yl)acetimidamide complex (Deng et al., 2008).
1,3,4-thiadiazoles have a broad range of potential applications in medicine as antibacterial, antioxidant, antidepressant, antidiabetic, antifungal, anti-inflammatory and antitumor agents (KhanIn recent years, specific attention have been paid to the investigation of copper(I) π-complexes with allyl derivatives of since the simultaneous presence of a heterocyclic core and an allylic radical bonded to them plays an important role in the formation of unusual inorganic fragments (Slyvka et al., 2013). The contribution from the π-dative (Cu→C=C) π-component of a CuI–olefin bond to the tetrahedral leads to a splitting of the copper-ion d orbitals and brings about a considerable deformation of the initial tetrahedral copper(I) environment to trigonal pyramidal. Such a distortion of the copper(I) polyhedron is accompanied by an elongation of the Cu—Lap bond (ap is apical) compared to the Cu—(C=C) and Cu—Lbas bonds (where Lbas are heterocyclic donor N, O or S atoms). Therefore, the apical position of the CuI polyhedron becomes a selector of the coordinated inorganic anion, depending on the Lbas atom nature (i.e. the type of heterocyclic core), solvent type and other basal co-ligands. For instance, in the structure of the copper(I) hexafluorosilicate π-complex with 1-allylbenzotriazole, the first known example representing a direct CuI⋯FSiF52− interaction was observed {the apical position of the copper(I) polyhedron is occupied by an F atom of the bridging SiF62− anion [Cu—F = 2.439 (2) Å], while the basal positions are occupied by an allylic C=C bond, a triazole N atom and a solvent water molecule} (Goreshnik et al., 2011).
Taking into account the mutual presence of two neighbouring nucleophilic N atoms in the 1,3,4-thiadiazole ring and the electron-deficient nature of the core, the appearance of an allyl substituent on this ring should significantly influence its unusual coordination abilities. This assertion is confirmed by the recently studied structure of [Cu2(Mepeta)2]SiF6·C6H6 [Mepeta is 5-methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine], in which a CuI⋯FSiF52− interaction was also observed. Despite the fact that allyl derivatives of 1,3,4-thiadiazoles were first obtained more than a century ago (Pulvermacher, 1894), their coordinating behaviour with respect to transition metal ions has been little studied. Overall, only a few copper(I) (CuCl, CuCF3SO3 and Cu2SiF6) π-complexes with Mepeta and Phepeta [5-phenyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine] have been synthesized and structurally characterized by X-ray diffraction and Raman spectroscopy (Ardan et al., 2013; Slyvka, 2015; Goreshnik et al., 2016), and these only recently.
To fill the knowledge gap mentioned above and to explore the coordination behaviour of other allyl derivatives of thiadiazoles, such as Pesta, with respect to diverse copper(I) salts, we report the synthesis and structures of five new π-complexes, namely [Cu(NO3)(Mepeta)]2, (1), [Cu(BF4)(Mepeta)]2, (2), [Cu2(NO3)2(Pesta)2(H2O)], (3), [Cu2(SiF6)(Pesta)2(H2O)]·0.5CH3CN·2H2O, (4), and [Cu2(C6H5SO3)(Pesta)2](C6H5SO3)·CH3OH·H2O, (5), highlighting the influence of the ligand coordination mode in the rare case of CuI⋯FSiF52− coordination.
2. Experimental
2.1. General considerations
Unless mentioned otherwise, all chemicals were obtained from commercial sources and used without further purification. The 1H NMR spectrum for Mepeta was measured on a Bruker Avance 400 MHz NMR spectrometer and the 1H NMR spectrum of Pesta was measured on a Bruker Avance 500 MHz NMR instrument. The chemical shifts are reported in ppm relative to the residual peak of deuterated CDCl3 or CD3CN for the 1H data. The IR spectra were recorded on Bruker Vertex 70 FT–IR and Bruker IFS-88 spectrometers as KBr pellets. Diffraction data for Mepeta were collected on a Kuma KM-4-CCD diffractometer with Mo Kα radiation (λ = 0.71073 Å).
2.2. Preparation of the ligands Mepeta and Pesta
5-Methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine (Mepeta) was prepared according to the literature procedure of Ardan et al. (2013) (see Scheme 1). Recrystallization of Mepeta from water leads to lamellar crystals suitable for single-crystal X-ray study. The total yield was 63%. 1H NMR (400 MHz, CDCl3): δ 6.36 (s, 1H), 5.97–5.87 (m, 1H), 5.32 (d, J = 17.2 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 3.94 (d, J = 5.6 Hz, 2H), 2.57 (s, 3H). IR (KBr, cm−1): 3179 (vs), 3076 (m), 2978 (vs), 2915 (s), 2855 (m), 2768 (m), 2357 (m), 2334 (w), 1643 (m), 1566 (vs), 1491 (vs), 1456 (s), 1435 (m), 1417 (s), 1336 (m), 1267 (m), 1214 (s), 1187 (m), 1145 (w), 1084 (m), 1008 (w), 992 (m), 960 (m), 925 (s), 814 (w), 756 (m), 650 (m), 617 (w), 522 (w).
5-Amino-1,3,4-thiadiazole-2-thiol (Att) was prepared according to the literature procedure of Guha (1922) (see Scheme 2). 5-[(Prop-2-en-1-yl)sulfanyl]-1,3,4-thiadiazol-2-amine (Pesta) was synthesized in one step by stirring Att (20 mmol, 3.46 g) with 3-chloroprop-1-ene (23 mmol, 1.76 g) at 343 K in the presence of KOH (20 mmol, 1.12 g) in an ethanol solution for 8 h. The total yield was 92%. 1H NMR (500 MHz, CD3CN): δ 5.93 (ddt, J = 17.1, 10.0, 7.0 Hz, 1H), 5.80 (s, 2H), 5.21 (dq, J = 17.0, 1.4 Hz, 1H), 5.12 (ddt, J = 10.0, 1.6, 0.9 Hz, 1H), 3.72–3.65 (m, 2H). IR (KBr, cm−1): 3279 (vs), 3093 (vs), 2959 (vs), 2923 (vs), 2785 (m), 2686 (m), 2337 (w), 1845 (w), 1643 (s), 1518 (vs), 1464 (s), 1424 (s), 1398 (m), 1376 (m), 1329 (m), 1233 (m), 1198 (w), 1141 (m), 1098 (m), 1062 (s), 1050 (s), 987 (s), 922 (vs), 867 (m), 779 (w), 729 (m), 686 (m), 617 (m), 580 (m), 545 (w).
2.3. Syntheses of complexes (1)–(5)
Crystals of complexes (1)–(5) were obtained under alternating current electrochemical synthesis conditions (Mykhalichko & Mys'kiv, 1998), starting with a water–acetonitrile or methanol–toluene solution of Mepeta or Pesta and the corresponding copper(II) salt.
2.3.1. Preparation of [Cu(NO3)(Mepeta)]2, (1)
To an ethanol solution (2 ml) of Mepeta (1.1 mmol, 0.17 g), an ethanol solution (2.5 ml) of Cu(NO3)2·3H2O (1.0 mmol, 0.24 g) was added. The resulting dark-green solution was placed in a small 5 ml test tube and a cork was added fitted with copper-wire electrodes. An alternating current (frequency 50 Hz) of 0.45 V was applied for 7 d, during which time good-quality colourless crystals of (1) appeared on the electrodes. IR (nujol, cm−1): 3450 (m), 3215 (m), 2996 (m), 2392 (w), 1576 (m), 1509 (w), 1384 (vs), 1220 (m), 1043 (w), 976 (w), 942 (w), 898 (w), 826 (w), 785 (w), 717 (w), 676 (w), 620 (w), 544 (w), 514 (w).
2.3.2. Preparation of [Cu(BF4)(Mepeta)]2, (2)
To an ethanol solution (2 ml) of Mepeta (1.1 mmol, 0.17 g), an ethanol solution (2.5 ml) of Cu(BF4)2·6H2O (1.0 mmol, 0.26 g) was added. The resulting dark-green solution was subjected to an alternating current (frequency 50 Hz) at 0.42 V and, after 1 d, good-quality colourless crystals of (2) appeared on the copper-wire electrodes. IR (KBr, cm−1): 3338 (s), 3094 (w), 3036 (m), 2926 (w), 2367 (m), 2337 (m), 1565 (vs), 1522 (s), 1503 (s), 1445 (s), 1420 (m), 1387 (m), 1333 (s), 1284 (s), 1262 (m), 1246 (w), 1224 (s), 1068 (vs), 1012 (vs), 978 (vs), 946 (s), 903 (m), 786 (m), 703 (w), 683 (w), 599 (w), 546 (m), 519 (m).
2.3.3. Preparation of [Cu2(NO3)2(Pesta)2(H2O)], (3)
Pesta (1.0 mmol, 0.17 g) was dissolved in an acetonitrile solution (4.5 ml) of Cu(NO3)2·3H2O (1.0 mmol, 0.24 g). An alternating current (frequency 50 Hz) of 0.50 V was applied for 5 d, during which time good-quality colourless crystals of (3) appeared on the copper-wire electrodes. IR (KBr, cm−1): 2955 (vs), 2922 (vs), 2852 (vs), 1463 (s), 1377 (s), 1342 (m), 1153 (w), 1044 (w), 723 (m), 511 (w).
2.3.4. Preparation of [Cu2(SiF6)(Pesta)2(H2O)]·0.5CH3CN·2H2O, (4)
A solution of Pesta (1.0 mmol, 0.17 g) in acetonitrile (3.8 ml) was added to a saturated water solution (0.9 ml) of CuSiF6·4H2O (in a 5 ml test tube). The mixture was stirred carefully. The resulting mixture consisted of an upper dark layer (acetonitrile) and a lower light-green layer (water). It was subjected to alternating current reduction (frequency 50 Hz, 0.5 V) (the acetonitrile layer became fully colourless and, after 4–5 d, only a few good-quality colourless crystals of (4) had appeared on the copper-wire electrodes.
2.3.5. Preparation of [Cu2(C6H5SO3)(Pesta)2](C6H5SO3)·CH3OH·H2O, (5)
A solution of Pesta (1.0 mmol, 0.17 g) and Cu(C6H5SO3)2·6H2O was prepared in a mixture of methanol (2.3 ml) and toluene (2.2 ml). The resulting green-coloured solution was subjected to alternating current (frequency 50 Hz, 0.45 V). After 1 d the solution became colourless and good-quality colourless crystals of (5) appeared on the copper electrodes. IR (KBr, cm−1): 3498 (m), 3279 (s), 3122 (s), 2956 (vs), 2922 (vs), 2854 (vs), 1626 (s), 1540 (s), 1456 (vs), 1374 (s), 1346 (w), 1247 (w), 1220 (s), 1172 (vs), 1122 (vs), 1065 (m), 1035 (s), 1015 (s), 993 (m), 932 (w), 882 (vw), 753 (m), 727 (s), 692 (m), 609 (s), 563 (m).
2.4. Refinement
Crystal data, data collection and structure . The Mepeta structure was refined as a racemic twin with a ratio of the components of 0.73 (11):0.27 (11). The amine H atom in Mepeta itself and the ligand amine H atoms in complexes (1)–(5) were derived from difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N). The water H atoms in (3)–(5) were derived from difference Fourier maps and refined with Uiso(H) = 1.5Ueq(O). The other H atoms were refined in ideal positions (riding model), with C—H = 0.99 (methyl and methylene) or 0.95 Å (otherwise) and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. Some of the reflections, for which a considerable difference between the observed and calculated intensities were observed, were omitted from the final cycles [4, 5, 1 and 3 reflections for (1)–(3) and (5), respectively]. In the Mepeta structure, the allyl group (atoms C7, C8 and C9) is disordered over two sites, with an occupancy ratio of 0.660 (6):0.340 (6). In (3), the allylsulfanyl group (atoms S12, C17, C18 and C19), together with Cu1, as well as the allyl group (atoms C27, C28 and C29), together with Cu2, are disordered over two sites, with occupancy ratios of 0.765 (6):0.235 (6) and 0.794 (7):0.206 (7), respectively. In (4), the allyl group (atoms C17, C18 and C19) is disordered over two sites, with an occupancy ratio of 0.616 (8):0.384 (8); the allyl group (atoms C27, C28 and C29), together with Cu2, is disordered over two sites, with a fixed occupancy ratio of 0.88:0.12 and the hexafluorosilicate F atoms (F3, F4, F5 and F6) are disordered over four sites, with an occupancy ratio of 0.426 (3):0.287 (3):0.172 (3):0.115 (3). In (4), the chemically equivalent bond lengths and angles involving the disordered C27, C28 and C29 atoms (as well as the disordered F3, F4, F5 and F6 atoms) were restrained to obtain similar geometries. In (5), two allyl groups (atoms C17/C18/C19 and C27/C28/C29) are disordered over two sites, with occupancy ratios of 0.80 (1):0.20 (1) and 0.66 (1):0.34 (1), respectively; one benzenesulfonate anion (atoms S3, O31, O32 and O33) is disordered over two sites, with an occupancy ratio of 0.644 (6):0.356 (6). The measured crystal of (1) appeared to be twinned by reticular with two components rotated with respect to each other by ∼180° around the direct-space a axis. 974 reflections were overlapped, whereas 3705 and 3735 reflections were isolated for components (1) and (2), respectively. Data reduction was conducted taking into account both twin domains and an HKLF 5 file was produced. The final refined twin ratio for (1) was 0.4489 (8):0.5511 (8).
details are summarized in Table 13. Results and discussion
Mepeta crystallizes in the noncentrosymmetric Pna21, with one molecule in the (Fig. 1). The C2—N3 and C2—N1 bond lengths are consistent with delocalization of the electrons between the thiadiazole ring and the N atom of the amino group. The C2—N1 bond length of 1.338 (3) Å is slightly shorter than a nominal Car—N(sp2)H bond length of 1.353 Å, while the C2—N3 bond length of 1.319 (2) Å is slightly longer than the neighbouring C5—N4 bond [1.293 (3) Å] of the same thiadiazole ring. The H atom of the amino group participates in N—H⋯N hydrogen bonding (Table 2) with the thiadiazole N3 atom of the nearest molecule, forming an infinite hydrogen-bonded chain in the [100] direction (Fig. 2). Neighbouring Mepeta molecules within the chain are twisted relative to each other by 89.33 (3)°, thus enabling a larger allyl-group mobility in the space (d ∼ 6 × 9 Å) between the thiadiazole rings of the nearest chains. Therefore, the C atoms of the allyl groups are disordered over two sites [the site-occupation factors are 0.660 (6) for A and 0.340 (6) for B], so that the methene H atom (with a site-occupation factor of 0.340) from one {Mepeta}∞ chain is connected to the thiadiazole N4 atom of the nearest chain by a weak hydrogen bond (C8B—H8B⋯N4iv = 2.38 Å; Table 2). The dihedral angles between the plane of the thiadiazole ring and the N1—C7A and N1—C7B bonds of the allylamino group are 4.2 (4) and −10.2 (4)°, respectively. The double-bond distances C8A=C9A and C8B=C9B are 1.325 (10) and 1.412 (19) Å, respectively.
|
Crystals of (1) and (2) (see Scheme 3) are similar to the previously studied [Cu(CF3SO3)(Mepeta)]2 π-complex (Goreshnik et al., 2016). The contains one CuI centre, one Mepeta ligand and one nitrate ligand in (1) or one tetrafluoroborate ligand in (2) (donoted An). The Mepeta molecule is coordinated to the metal centre via the two N atoms of the thiadiazole ring and the allylic C=C bond in a chelating–bridging mode. The trigonal–pyramidal CuI environment in the basal plane includes the N3 atom and the C=C bond of one thiadiazole ligand and the N4 atom of another heterocyclic ring. The apical position of the metal is occupied by either weakly coordinating O or F atoms of NO3− or BF4− in (1) and (2), respectively. Therefore, two CuI atoms are bridged by two neighbouring Mepeta molecules, connecting them into centrosymmetrical [Cu(NO3)(Mepeta)]2, (1), and [Cu(BF4)(Mepeta)]2, (2), dimers (Fig. 3). The Cu⋯Cu distance of 3.472 (2) Å in (1) and of 3.488 (2) Å in (2) are too long for a cuprophilic interaction (Lake & Willans, 2013). Two thiadiazole rings from the same dimer are entirely coplanar. It is interesting to note that S-allyl derivatives of 1-aryl-substituted 1H-tetrazole-5-thiol have the same tridentate–chelate coordination mode, connecting two CuI atoms by means of an allylic C=C bond and two tetrazole N atoms into centrosymmetric {[Cu(L)(H2O)]+}2 dimers (Slyvka et al., 2009, 2010).
The strength of the CuI—(C=C) interaction is confirmed by the fact that the allylic C=C bonds are slightly elongated to 1.360 (3) Å in (1) and 1.3706 (16) Å (2) [compared with a nominal value of 1.33 Å and a value of 1.340 (7) Å in Mepeta]. The CuI atom deviates from the base of the trigonal pyramid by Δ = 0.132 (3) Å in (1) and 0.062 (2) Å in (2), while the angle τ between the C=C bond and the basal plane is 11.3 (1)° in (1) and 12.5 (1)° in (2). This conclusion is also confirmed by the rather short Cu—m distances (m is the mid-point of C=C bond) and the rather large C—Cu—C angles (Table 3).
|
Through N—H⋯X [X = O in (1) or F in (2)] (Table 4) hydrogen bonds between the H atom of the ligand amino group and the X atoms of the NO3− ligand in (1) or the BF4− ligand in (2), neighbouring [Cu(Mepeta)(An)]2 fragments are linked into hydrogen-bonded stair-like chains extending in the [010] direction (Fig. 4). These chains are interpenetrated by a variety of C—H⋯X contacts to produce a three-dimensional framework.
|
The organic–inorganic hybrid π-complex (3) (see Scheme 4) crystallizes in the centrosymmetric P21/c. The contains two CuI centres, two Pesta ligands, one bridging aqua ligand and two nitrate ligands. Similar to Mepeta, Pesta is coordinated to copper(I) via the thiadiazole N3 and N4 atoms and the allylic C=C bond in a chelating–bridging mode. In contrast to the {Cu2(Mepeta)2}2+ units in (1) and (2), two CuI atoms in (3) are connected by two Pesta ligands into a noncentrosymmetric {Cu2(Pesta)2}2+ unit (Fig. 5a). The planes of the thiadiazole rings from the same dimer form a dihedral angle of 31.2 (1)°. The conformational flexibility of the dimer allows the CuI atom site to be split over two positions with different coordination environments. The trigonal–pyramidal environments of atoms Cu1A and Cu2A [site-occupation factors = 0.765 (6) and 0.794 (7), respectively] in the basal plane include the C=C bond and two N atoms of neighbouring Pesta ligands, while the apical positions are occupied by weakly coordinated O atoms of NO3− ligands (Table 5). The common apical position of the two trigonal pyramids of the other Cu1B and Cu2B pair [site-occupation factors = 0.235 (7) and 0.206 (7)] is occupied by a bridging aqua molecule. The distances from Cu1A and Cu2A to the water O atom of 2.835 (7) and 2.767 (7) Å, respectively, are significantly longer than the formally limiting distance (2.63 Å; Slyvka et al., 2013) of a Cu—Oap interaction [in the case of copper(I) π-complexes with allyl derivatives of heterocycles], but at the same time it is slightly shorter than the sum of the van der Waals radii of 2.92 Å (Bondi, 1964).
|
The H atoms of the ligand amino group and the coordinated water molecule participate in X—H⋯Y (X and Y = N or O) hydrogen bonding with NO3− ligands, forming a three-dimensional hydrogen-bonded network (Table 6).
|
A similar {Cu2(Pesta)2}2+ unit was found in the structure of (4) (see Scheme 5). The contains two CuI centres, two Pesta ligands, one bridging aqua ligand and one anionic SiF62− ligand (Fig. 6a). The planes of the thiadiazole rings from the same dimer form a dihedral angle of 28.3 (1)°. The π-complex [Cu2(SiF6)(Pesta)2(H2O)]·0.5CH3CN·2H2O, (4), may be considered as a rare example of the direct CuI—F(SiF62−) interaction. This interaction has been found previously in only two Cu2SiF6 π-complexes with 1-allylbenzotriazole, Abtr (Goreshnik et al., 2011) and Mepeta (Goreshnik et al., 2016). Despite the fact that the SiF62− anions are not directly coordinated to the CuI atom, but form hydrogen bonds with the coordinated water molecules, the Pesta ligand allows the CuI ion to be divided between two positions with water O-atom or hexafluorosilicate F-atom coordination (Fig. 6a), resulting in the splitting of one CuI position of the {Cu2(Pesta)2}2+ unit into two sites, i.e. Cu2A and Cu2B (0.88:0.12). The Cu2B⋯F1 distance of 2.833 (16) Å in (4) is longer than the CuI⋯F distance of 2.44 Å in [Cu2(SiF6)(Abtr)2(H2O)2]·2H2O (Goreshnik et al., 2011), but is still shorter than the sum of the van der Waals radii (2.87 Å). The above interaction results in a lower Ueq(F1) value of 0.0531 (5) Å2 compared with the Ueq(F2) value of 0.0641 (6) Å2, while the other F atoms of the SiF62− anion are disordered in a carousel-like mode. Thus, the two CuI atoms have different coordination environments: Cu1 and Cu2A have a trigonal–pyramidal surrounding, with a common apical water molecule, while the apical position of the Cu2B polyhedron is occupied by a weakly coordinated F atom of the SiF62− anion (Fig. 6). For comparison, in a previously studied π-complex of Cu2SiF6 with Mepeta, viz. [Cu2(Mepeta)2(H2O)2]SiF6·2.5H2O, the noncentrosymmetric {Cu2(Mepeta)2}2+ unit was also found (Fig. 5b), but each CuI atom is linked with a different apical water molecule (Ardan et al., 2013). Moreover, two coordinated water molecules in the last case are located on the same side of the dimer unit [as was found for the NO3− ligands in (3); Fig. 5a].
The H atoms of the ligand amino group in (4) are involved in N—H⋯F hydrogen bonding with the F1 and F2 atoms of two neighbouring SiF62− anions, connecting {Cu2(SiF6)(Pesta)2(H2O)} units into hydrogen-bonded layers. The latter, by means of O—H⋯O- and O—H⋯F-type hydrogen bonds involving atoms of the coordinated and constitutional water molecules, are interpenetrated into a supramolecular structure (Table 7).
|
The structure most similar to [Cu2(Mepeta)2(H2O)2]SiF6·2.5H2O is the π-complex (5) (see Scheme 6) (Fig. 6b). Two O atoms of the benzenesulfonate ligand in (5) are bound to the two CuI atoms of the same {Cu2(Pesta)2}2+ unit, while the other benzenesulfonate anion is involved in N—H⋯O hydrogen bonding with the ligand amine group. The tendency for the O atom to be bound simultaneously to the two metal atoms of the dimer appears to be common for dimeric {Cu2(Pesta)2}2+ cations. Therefore, the sulfonate group of the anion in (5) is disordered over two sites (O31A/O32A/O33A and O31B/O32B/O33B), with an occupancy ratio of 0.644 (6):0.356 (6), and one O atom of the lower-occupancy unit plays the same role as the water molecule in (3), binding two metal centres. The planes of the thiadiazole rings from the same dimer in (5) form a dihedral angle of 34.4 (1)°. By means of a variety of N—H⋯O and O—H⋯O hydrogen bonds (Table 8), the above dimers are connected into a hydrogen-bonded framework (Fig. 7). To the best of our knowledge, complex (5) is the first known example of a CuI(C6H5SO3) coordination compound [for comparison, there are eight entries in the Cambridge Structural Database (Groom et al., 2016) for CuII(C6H5SO3) coordination complexes].
|
3.1. Hirshfeld surface analysis
The Hirshfeld surfaces were built for [Cu(NO3)(Mepeta)]2, (1), and [Cu(BF4)(Mepeta)]2, (2), to analyze the interactions between the units. The most prominent interactions, between Mepeta H atoms and nitrate O atoms in (1), as well as between Mepeta H atoms and tetrafluoroborate F atoms, can be seen in the Hirshfeld surface plots as the bright and pale-pink areas (Fig. 8a). Fingerprint plots were produced to show the intermolecular surface bond lengths, with the regions highlighted for H⋯O, H⋯F and H⋯S interactions. The contribution to the surface area for H⋯H contacts is 27.7% in (1) and 24.4% in (2).
4. Summary
The syntheses and crystal structures of 5-methyl-N-(prop-2-en-1-yl)-1,3,4-thiadiazol-2-amine (Mepeta) and five copper(I) π-complexes with Mepeta and 5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine (Pesta) have been described. Mepeta itself crystallizes in the noncentrosymmetric Pna21, with one molecule in the Both Mepeta and Pesta reveal a strong tendency towards the formation of dimeric {Cu2L2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. The symmetry of the {Cu2(Mepeta)2}2+ unit depends on the charge of the anion; centrosymetric units were found in the presence of singly charged anions and a noncentrosymmetric dimer was found in the case of the doubly charged SiF62− ion. The flexibility of the {Cu2(Pesta)2}2+ unit allows the CuI atom site to be split over two positions with different coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. Pesta allows the CuI ion to be divided between two positions with water O-atom or hexafluorosilicate F-atom coordination, resulting in the rare case of a direct CuI⋯FSiF52− interaction. The tendency of oxygen to be bound simultaneously to two metal atoms in the dimeric {Cu2(Pesta)2}2+ cation is confirmed by the presence of disorder in the benzenesulfonate anion. By a variety of sufficiently strong hydrogen bonds, the dimeric {Cu2(L)2(An)2} (An = NO3−, BF4− and SiF62−) units participate in supramolecular structure formation. Structure (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound.
Supporting information
https://doi.org/10.1107/S2053229616018751/fn3225sup1.cif
contains datablocks mepeta, 1, 2, 3, 4, 5, publication_text. DOI:Structure factors: contains datablock mepeta. DOI: https://doi.org/10.1107/S2053229616018751/fn3225mepetasup2.hkl
Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2053229616018751/fn32251sup3.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2053229616018751/fn32252sup4.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2053229616018751/fn32253sup5.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2053229616018751/fn32254sup7.hkl
Structure factors: contains datablock 5. DOI: https://doi.org/10.1107/S2053229616018751/fn32255sup14.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229616018751/fn3225mepetasup8.mol
Supporting information file. DOI: https://doi.org/10.1107/S2053229616018751/fn32251sup9.mol
Supporting information file. DOI: https://doi.org/10.1107/S2053229616018751/fn32252sup10.mol
Supporting information file. DOI: https://doi.org/10.1107/S2053229616018751/fn32253sup11.mol
Supporting information file. DOI: https://doi.org/10.1107/S2053229616018751/fn32254sup12.mol
Supporting information file. DOI: https://doi.org/10.1107/S2053229616018751/fn32255sup13.mol
Data collection: CrysAlis PRO (Rigaku OD, 2015) for mepeta, (1), (3), (5); CrysAlis CCD (Oxford Diffraction, 2010) for (2), (4). Cell
CrysAlis PRO (Rigaku OD, 2015) for mepeta, (1), (3), (5); CrysAlis RED (Oxford Diffraction, 2010) for (2), (4). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for mepeta, (1), (3), (5); CrysAlis RED (Oxford Diffraction, 2010) for (2), (4). For all compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C6H9N3S | Dx = 1.323 Mg m−3 |
Mr = 155.22 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 5973 reflections |
a = 8.843 (3) Å | θ = 3.3–36.3° |
b = 17.485 (5) Å | µ = 0.34 mm−1 |
c = 5.041 (3) Å | T = 120 K |
V = 779.4 (6) Å3 | Plate, clear light colourless |
Z = 4 | 0.98 × 0.42 × 0.11 mm |
F(000) = 328 |
Kuma KM-4-CCD diffractometer | 3214 independent reflections |
Radiation source: Kuma KM-4-CCD, Kuma KM-4-CCD | 2812 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 8.3359 pixels mm-1 | θmax = 36.8°, θmin = 3.3° |
ω scans | h = −14→11 |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] | k = −27→26 |
Tmin = 0.801, Tmax = 0.964 | l = −7→8 |
11519 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.061P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.31 e Å−3 |
3214 reflections | Δρmin = −0.31 e Å−3 |
124 parameters | Absolute structure: Refined as an inversion twin |
1 restraint | Absolute structure parameter: 0.27 (11) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.77479 (4) | 0.83578 (2) | 0.66791 (14) | 0.03107 (13) | |
N1 | 0.71891 (16) | 0.73279 (10) | 0.2801 (4) | 0.0345 (3) | |
H1 | 0.814 (3) | 0.7180 (15) | 0.295 (6) | 0.041* | |
N3 | 0.51665 (15) | 0.80284 (9) | 0.4639 (4) | 0.0335 (3) | |
N4 | 0.48989 (16) | 0.85941 (10) | 0.6522 (5) | 0.0387 (3) | |
C2 | 0.66088 (16) | 0.78417 (9) | 0.4483 (4) | 0.0279 (3) | |
C5 | 0.6107 (2) | 0.88210 (11) | 0.7732 (4) | 0.0346 (4) | |
C6 | 0.6120 (3) | 0.94181 (13) | 0.9846 (5) | 0.0469 (5) | |
H6A | 0.6634 | 0.9218 | 1.1422 | 0.070* | |
H6B | 0.5078 | 0.9556 | 1.0302 | 0.070* | |
H6C | 0.6656 | 0.9872 | 0.9200 | 0.070* | |
C7A | 0.6390 (4) | 0.69117 (19) | 0.0720 (8) | 0.0276 (6) | 0.660 (6) |
H7AA | 0.7062 | 0.6857 | −0.0841 | 0.033* | 0.660 (6) |
H7AB | 0.5492 | 0.7209 | 0.0164 | 0.033* | 0.660 (6) |
C7B | 0.5939 (6) | 0.6893 (4) | 0.1468 (17) | 0.0275 (12) | 0.340 (6) |
H7BA | 0.5253 | 0.6662 | 0.2798 | 0.033* | 0.340 (6) |
H7BB | 0.5343 | 0.7234 | 0.0298 | 0.033* | 0.340 (6) |
C8A | 0.5898 (3) | 0.61366 (15) | 0.1627 (7) | 0.0326 (6) | 0.660 (6) |
H8A | 0.5342 | 0.6083 | 0.3229 | 0.039* | 0.660 (6) |
C8B | 0.6714 (5) | 0.6288 (3) | −0.0111 (11) | 0.0296 (13) | 0.340 (6) |
H8B | 0.7532 | 0.6415 | −0.1250 | 0.035* | 0.340 (6) |
C9A | 0.6238 (13) | 0.5524 (6) | 0.020 (3) | 0.061 (4) | 0.660 (6) |
H9AA | 0.6794 | 0.5578 | −0.1404 | 0.073* | 0.660 (6) |
H9AB | 0.5926 | 0.5032 | 0.0774 | 0.073* | 0.660 (6) |
C9B | 0.621 (2) | 0.5524 (9) | 0.012 (3) | 0.042 (6) | 0.340 (6) |
H9BA | 0.5394 | 0.5403 | 0.1260 | 0.051* | 0.340 (6) |
H9BB | 0.6694 | 0.5132 | −0.0877 | 0.051* | 0.340 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02516 (16) | 0.0356 (2) | 0.0324 (2) | −0.00651 (12) | −0.00796 (18) | 0.0006 (2) |
N1 | 0.0290 (6) | 0.0327 (8) | 0.0417 (8) | 0.0004 (5) | −0.0151 (6) | −0.0023 (7) |
N3 | 0.0227 (5) | 0.0346 (8) | 0.0430 (9) | −0.0016 (5) | −0.0083 (6) | 0.0042 (7) |
N4 | 0.0308 (6) | 0.0407 (8) | 0.0446 (9) | 0.0035 (5) | −0.0044 (8) | 0.0040 (9) |
C2 | 0.0228 (5) | 0.0278 (7) | 0.0330 (9) | −0.0057 (5) | −0.0094 (6) | 0.0072 (6) |
C5 | 0.0360 (7) | 0.0346 (9) | 0.0332 (9) | 0.0007 (6) | −0.0027 (7) | 0.0042 (7) |
C6 | 0.0613 (12) | 0.0426 (11) | 0.0368 (11) | 0.0010 (10) | −0.0021 (10) | −0.0012 (9) |
C7A | 0.0245 (13) | 0.0283 (13) | 0.0302 (16) | −0.0014 (11) | −0.0038 (11) | 0.0017 (12) |
C7B | 0.0136 (17) | 0.037 (3) | 0.032 (3) | −0.0037 (17) | −0.001 (2) | −0.012 (3) |
C8A | 0.0305 (10) | 0.0327 (12) | 0.0344 (13) | −0.0051 (8) | −0.0006 (13) | 0.0042 (14) |
C8B | 0.0218 (17) | 0.039 (3) | 0.027 (3) | −0.0006 (16) | 0.0011 (16) | −0.0031 (19) |
C9A | 0.056 (6) | 0.035 (5) | 0.092 (8) | 0.005 (4) | −0.003 (5) | 0.007 (4) |
C9B | 0.054 (10) | 0.031 (8) | 0.042 (8) | 0.004 (6) | −0.012 (6) | −0.026 (6) |
S1—C2 | 1.7478 (18) | C7A—H7AB | 0.9900 |
S1—C5 | 1.744 (2) | C7A—C8A | 1.495 (4) |
N1—H1 | 0.88 (3) | C7B—H7BA | 0.9900 |
N1—C2 | 1.338 (3) | C7B—H7BB | 0.9900 |
N1—C7A | 1.459 (4) | C7B—C8B | 1.490 (9) |
N1—C7B | 1.501 (5) | C8A—H8A | 0.9500 |
N3—N4 | 1.391 (3) | C8A—C9A | 1.325 (10) |
N3—C2 | 1.319 (2) | C8B—H8B | 0.9500 |
N4—C5 | 1.293 (3) | C8B—C9B | 1.412 (19) |
C5—C6 | 1.492 (3) | C9A—H9AA | 0.9500 |
C6—H6A | 0.9800 | C9A—H9AB | 0.9500 |
C6—H6B | 0.9800 | C9B—H9BA | 0.9500 |
C6—H6C | 0.9800 | C9B—H9BB | 0.9500 |
C7A—H7AA | 0.9900 | ||
C5—S1—C2 | 87.31 (9) | N1—C7A—C8A | 111.9 (3) |
C2—N1—H1 | 120.7 (19) | H7AA—C7A—H7AB | 107.9 |
C2—N1—C7A | 127.2 (2) | C8A—C7A—H7AA | 109.2 |
C2—N1—C7B | 110.0 (3) | C8A—C7A—H7AB | 109.2 |
C7A—N1—H1 | 112.0 (19) | N1—C7B—H7BA | 110.7 |
C7B—N1—H1 | 126.2 (18) | N1—C7B—H7BB | 110.7 |
C2—N3—N4 | 112.41 (14) | H7BA—C7B—H7BB | 108.8 |
C5—N4—N3 | 113.55 (15) | C8B—C7B—N1 | 105.1 (4) |
N1—C2—S1 | 121.81 (11) | C8B—C7B—H7BA | 110.7 |
N3—C2—S1 | 113.06 (15) | C8B—C7B—H7BB | 110.7 |
N3—C2—N1 | 125.11 (16) | C7A—C8A—H8A | 120.0 |
N4—C5—S1 | 113.66 (16) | C9A—C8A—C7A | 120.0 (6) |
N4—C5—C6 | 123.92 (19) | C9A—C8A—H8A | 120.0 |
C6—C5—S1 | 122.42 (15) | C7B—C8B—H8B | 120.5 |
C5—C6—H6A | 109.5 | C9B—C8B—C7B | 118.9 (8) |
C5—C6—H6B | 109.5 | C9B—C8B—H8B | 120.5 |
C5—C6—H6C | 109.5 | C8A—C9A—H9AA | 120.0 |
H6A—C6—H6B | 109.5 | C8A—C9A—H9AB | 120.0 |
H6A—C6—H6C | 109.5 | H9AA—C9A—H9AB | 120.0 |
H6B—C6—H6C | 109.5 | C8B—C9B—H9BA | 120.0 |
N1—C7A—H7AA | 109.2 | C8B—C9B—H9BB | 120.0 |
N1—C7A—H7AB | 109.2 | H9BA—C9B—H9BB | 120.0 |
N1—C7A—C8A—C9A | −128.3 (6) | C2—N1—C7B—C8B | −174.0 (4) |
N1—C7B—C8B—C9B | 130.5 (9) | C2—N3—N4—C5 | −0.1 (2) |
N3—N4—C5—S1 | 0.0 (2) | C5—S1—C2—N1 | 178.47 (17) |
N3—N4—C5—C6 | −179.6 (2) | C5—S1—C2—N3 | −0.01 (15) |
N4—N3—C2—S1 | 0.0 (2) | C7A—N1—C2—S1 | −174.1 (2) |
N4—N3—C2—N1 | −178.39 (18) | C7A—N1—C2—N3 | 4.2 (4) |
C2—S1—C5—N4 | −0.02 (16) | C7B—N1—C2—S1 | 171.5 (4) |
C2—S1—C5—C6 | 179.64 (18) | C7B—N1—C2—N3 | −10.2 (4) |
C2—N1—C7A—C8A | −96.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N3i | 0.88 (3) | 2.02 (3) | 2.860 (2) | 159 (3) |
C7A—H7AA···S1ii | 0.99 | 2.97 | 3.462 (4) | 112 |
C7B—H7BA···S1iii | 0.99 | 2.96 | 3.880 (8) | 156 |
C8B—H8B···N4iv | 0.95 | 2.38 | 3.295 (5) | 163 |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x, y, z−1; (iii) x−1/2, −y+3/2, z; (iv) x+1/2, −y+3/2, z−1. |
[Cu2(NO3)2(C6H9N3S)2] | Z = 1 |
Mr = 561.54 | F(000) = 284 |
Triclinic, P1 | Dx = 1.934 Mg m−3 |
a = 7.235 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.548 (3) Å | Cell parameters from 3143 reflections |
c = 10.297 (4) Å | θ = 3.1–38.5° |
α = 105.42 (3)° | µ = 2.47 mm−1 |
β = 98.15 (3)° | T = 100 K |
γ = 112.43 (3)° | Block, clear colourless |
V = 482.0 (4) Å3 | 0.43 × 0.21 × 0.14 mm |
Rigaku Xcalibur Onyx diffractometer | 8459 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 6900 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 8.1956 pixels mm-1 | θmax = 38.5°, θmin = 3.1° |
ω and φ scans | h = −7→12 |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] | k = −13→12 |
Tmin = 0.542, Tmax = 0.768 | l = −14→14 |
8459 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.061P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
8459 reflections | Δρmax = 0.88 e Å−3 |
141 parameters | Δρmin = −1.03 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.57775 (3) | 0.57834 (3) | 0.68133 (2) | 0.01261 (7) | |
S1 | 0.18975 (7) | −0.09982 (7) | 0.47322 (5) | 0.01402 (10) | |
O1 | 0.2950 (3) | 0.6861 (3) | 0.6800 (2) | 0.0308 (4) | |
O2 | 0.2567 (3) | 0.8531 (3) | 0.8713 (2) | 0.0348 (4) | |
O3 | 0.1088 (3) | 0.5240 (3) | 0.7949 (2) | 0.0312 (4) | |
N1 | 0.2182 (3) | 0.6865 (3) | 0.7824 (2) | 0.0193 (4) | |
N2 | 0.4533 (3) | 0.1392 (3) | 0.72781 (19) | 0.0161 (3) | |
H2 | 0.411 (4) | 0.037 (4) | 0.746 (3) | 0.019* | |
N3 | 0.4220 (2) | 0.2864 (2) | 0.55566 (17) | 0.0122 (3) | |
N4 | 0.3167 (2) | 0.2273 (2) | 0.41582 (17) | 0.0123 (3) | |
C2 | 0.3733 (3) | 0.1302 (3) | 0.6002 (2) | 0.0127 (3) | |
C5 | 0.1895 (3) | 0.0338 (3) | 0.3607 (2) | 0.0134 (3) | |
C6 | 0.0538 (3) | −0.0697 (3) | 0.2141 (2) | 0.0177 (4) | |
H6A | 0.1375 | −0.0900 | 0.1497 | 0.027* | |
H6B | −0.0103 | 0.0155 | 0.1914 | 0.027* | |
H6C | −0.0551 | −0.2026 | 0.2048 | 0.027* | |
C7 | 0.6182 (3) | 0.3254 (3) | 0.8338 (2) | 0.0161 (4) | |
H7A | 0.7481 | 0.3591 | 0.8043 | 0.019* | |
H7B | 0.6431 | 0.3010 | 0.9231 | 0.019* | |
C8 | 0.5662 (3) | 0.5039 (3) | 0.8573 (2) | 0.0150 (4) | |
H8 | 0.4246 | 0.4786 | 0.8447 | 0.018* | |
C9 | 0.7131 (3) | 0.7002 (3) | 0.8957 (2) | 0.0177 (4) | |
H9A | 0.8556 | 0.7289 | 0.9089 | 0.021* | |
H9B | 0.6733 | 0.8086 | 0.9095 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01666 (12) | 0.00964 (10) | 0.00970 (11) | 0.00374 (9) | 0.00286 (9) | 0.00403 (8) |
S1 | 0.0159 (2) | 0.00918 (18) | 0.0168 (2) | 0.00455 (16) | 0.00471 (18) | 0.00559 (17) |
O1 | 0.0361 (10) | 0.0419 (10) | 0.0367 (10) | 0.0264 (9) | 0.0210 (8) | 0.0279 (9) |
O2 | 0.0434 (11) | 0.0194 (8) | 0.0398 (11) | 0.0152 (7) | 0.0100 (9) | 0.0064 (8) |
O3 | 0.0275 (9) | 0.0200 (7) | 0.0523 (12) | 0.0074 (7) | 0.0187 (8) | 0.0224 (8) |
N1 | 0.0164 (8) | 0.0178 (8) | 0.0296 (10) | 0.0088 (7) | 0.0069 (7) | 0.0148 (8) |
N2 | 0.0208 (8) | 0.0123 (7) | 0.0162 (8) | 0.0057 (6) | 0.0053 (6) | 0.0087 (7) |
N3 | 0.0162 (7) | 0.0104 (6) | 0.0098 (7) | 0.0051 (6) | 0.0036 (6) | 0.0045 (6) |
N4 | 0.0151 (7) | 0.0098 (6) | 0.0109 (7) | 0.0042 (5) | 0.0039 (6) | 0.0036 (6) |
C2 | 0.0136 (8) | 0.0102 (7) | 0.0153 (9) | 0.0050 (6) | 0.0054 (7) | 0.0055 (7) |
C5 | 0.0152 (8) | 0.0103 (7) | 0.0153 (9) | 0.0057 (7) | 0.0049 (7) | 0.0050 (7) |
C6 | 0.0184 (9) | 0.0112 (7) | 0.0168 (9) | 0.0028 (7) | −0.0007 (7) | 0.0029 (7) |
C7 | 0.0198 (9) | 0.0165 (8) | 0.0134 (9) | 0.0082 (7) | 0.0034 (7) | 0.0074 (7) |
C8 | 0.0195 (9) | 0.0174 (8) | 0.0099 (8) | 0.0083 (7) | 0.0042 (7) | 0.0070 (7) |
C9 | 0.0238 (10) | 0.0164 (8) | 0.0098 (8) | 0.0070 (7) | 0.0009 (7) | 0.0048 (7) |
Cu1—N3 | 1.9940 (19) | N4—Cu1i | 1.9690 (18) |
Cu1—N4i | 1.9690 (18) | N4—C5 | 1.299 (2) |
Cu1—C8 | 2.038 (2) | C5—C6 | 1.491 (3) |
Cu1—C9 | 2.073 (2) | C6—H6A | 0.9800 |
S1—C2 | 1.741 (2) | C6—H6B | 0.9800 |
S1—C5 | 1.727 (2) | C6—H6C | 0.9800 |
O1—N1 | 1.259 (3) | C7—H7A | 0.9900 |
O2—N1 | 1.243 (2) | C7—H7B | 0.9900 |
O3—N1 | 1.233 (2) | C7—C8 | 1.502 (3) |
N2—H2 | 0.80 (3) | C8—H8 | 0.9500 |
N2—C2 | 1.331 (3) | C8—C9 | 1.360 (3) |
N2—C7 | 1.458 (3) | C9—H9A | 0.9500 |
N3—N4 | 1.393 (2) | C9—H9B | 0.9500 |
N3—C2 | 1.319 (3) | ||
N3—Cu1—C8 | 92.55 (8) | C5—C6—H6A | 109.5 |
N3—Cu1—C9 | 129.43 (8) | C5—C6—H6B | 109.5 |
N4i—Cu1—N3 | 114.48 (7) | C5—C6—H6C | 109.5 |
N4i—Cu1—C8 | 152.33 (8) | H6A—C6—H6B | 109.5 |
N4i—Cu1—C9 | 113.75 (9) | H6A—C6—H6C | 109.5 |
C8—Cu1—C9 | 38.62 (8) | H6B—C6—H6C | 109.5 |
C5—S1—C2 | 87.58 (10) | N2—C7—H7A | 109.1 |
O2—N1—O1 | 118.97 (19) | N2—C7—H7B | 109.1 |
O3—N1—O1 | 120.4 (2) | N2—C7—C8 | 112.34 (17) |
O3—N1—O2 | 120.6 (2) | H7A—C7—H7B | 107.9 |
C2—N2—H2 | 118.5 (18) | C8—C7—H7A | 109.1 |
C2—N2—C7 | 122.94 (18) | C8—C7—H7B | 109.1 |
C7—N2—H2 | 118.6 (18) | Cu1—C8—H8 | 92.0 |
N4—N3—Cu1 | 122.79 (13) | C7—C8—Cu1 | 105.91 (14) |
C2—N3—Cu1 | 123.96 (14) | C7—C8—H8 | 118.6 |
C2—N3—N4 | 112.03 (15) | C9—C8—Cu1 | 72.10 (13) |
N3—N4—Cu1i | 117.17 (12) | C9—C8—C7 | 122.76 (19) |
C5—N4—Cu1i | 127.96 (15) | C9—C8—H8 | 118.6 |
C5—N4—N3 | 113.16 (17) | Cu1—C9—H9A | 106.6 |
N2—C2—S1 | 121.22 (15) | Cu1—C9—H9B | 93.9 |
N3—C2—S1 | 113.25 (15) | C8—C9—Cu1 | 69.28 (13) |
N3—C2—N2 | 125.52 (18) | C8—C9—H9A | 120.0 |
N4—C5—S1 | 113.95 (16) | C8—C9—H9B | 120.0 |
N4—C5—C6 | 124.60 (19) | H9A—C9—H9B | 120.0 |
C6—C5—S1 | 121.45 (14) | ||
Cu1—N3—N4—Cu1i | 27.76 (18) | N4—N3—C2—N2 | 178.15 (18) |
Cu1—N3—N4—C5 | −165.92 (13) | C2—S1—C5—N4 | 0.82 (15) |
Cu1—N3—C2—S1 | 166.41 (9) | C2—S1—C5—C6 | −179.44 (17) |
Cu1—N3—C2—N2 | −14.2 (3) | C2—N2—C7—C8 | 52.9 (3) |
Cu1i—N4—C5—S1 | 162.81 (10) | C2—N3—N4—Cu1i | −164.39 (13) |
Cu1i—N4—C5—C6 | −16.9 (3) | C2—N3—N4—C5 | 1.9 (2) |
N2—C7—C8—Cu1 | −70.33 (19) | C5—S1—C2—N2 | −179.15 (17) |
N2—C7—C8—C9 | −149.0 (2) | C5—S1—C2—N3 | 0.30 (15) |
N3—N4—C5—S1 | −1.7 (2) | C7—N2—C2—S1 | 175.35 (14) |
N3—N4—C5—C6 | 178.57 (17) | C7—N2—C2—N3 | −4.0 (3) |
N4—N3—C2—S1 | −1.3 (2) | C7—C8—C9—Cu1 | 97.74 (19) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1ii | 0.80 (3) | 2.32 (3) | 3.034 (3) | 150 (2) |
N2—H2···O2ii | 0.80 (3) | 2.24 (3) | 2.970 (3) | 153 (2) |
N2—H2···N1ii | 0.80 (3) | 2.63 (3) | 3.426 (3) | 172 (2) |
C6—H6B···O2iii | 0.98 | 2.44 | 3.391 (3) | 164 |
C6—H6C···O3iv | 0.98 | 2.31 | 3.142 (3) | 143 |
C7—H7A···O3v | 0.99 | 2.45 | 3.415 (3) | 164 |
C8—H8···O3 | 0.95 | 2.44 | 3.350 (3) | 160 |
C8—H8···N1 | 0.95 | 2.68 | 3.391 (3) | 133 |
Symmetry codes: (ii) x, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z+1; (v) x+1, y, z. |
[Cu2(BF4)2(C6H9N3S)2] | Z = 1 |
Mr = 611.14 | F(000) = 304 |
Triclinic, P1 | Dx = 2.011 Mg m−3 |
a = 7.754 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.965 (3) Å | Cell parameters from 6709 reflections |
c = 10.372 (4) Å | θ = 3.0–38.4° |
α = 67.57 (3)° | µ = 2.40 mm−1 |
β = 89.99 (3)° | T = 100 K |
γ = 61.07 (3)° | Block, clear colourless |
V = 504.6 (4) Å3 | 0.44 × 0.23 × 0.18 mm |
Rigaku Xcalibur Onyx diffractometer | 4784 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4163 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
Detector resolution: 8.1956 pixels mm-1 | θmax = 38.5°, θmin = 3.0° |
ω and π scans | h = −12→10 |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] | k = −13→13 |
Tmin = 0.498, Tmax = 0.711 | l = −16→18 |
8712 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.037P)2 + 0.007P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4784 reflections | Δρmax = 0.56 e Å−3 |
149 parameters | Δρmin = −0.51 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.40020 (2) | 0.60430 (2) | 0.31778 (2) | 0.01224 (4) | |
S1 | 0.81824 (4) | −0.10490 (3) | 0.52116 (2) | 0.01379 (5) | |
N2 | 0.52780 (14) | 0.17402 (13) | 0.27870 (9) | 0.01616 (15) | |
H2 | 0.574 (2) | 0.071 (2) | 0.2533 (17) | 0.019* | |
N3 | 0.56082 (13) | 0.29189 (12) | 0.44914 (8) | 0.01262 (13) | |
N4 | 0.67773 (12) | 0.20945 (12) | 0.58491 (8) | 0.01243 (13) | |
C2 | 0.61534 (15) | 0.14328 (14) | 0.40314 (10) | 0.01299 (15) | |
C5 | 0.81566 (15) | 0.00725 (14) | 0.63542 (10) | 0.01316 (15) | |
C6 | 0.96188 (16) | −0.12310 (15) | 0.77723 (10) | 0.01759 (18) | |
H6A | 1.0653 | −0.2615 | 0.7825 | 0.026* | |
H6B | 0.8898 | −0.1449 | 0.8537 | 0.026* | |
H6C | 1.0266 | −0.0486 | 0.7887 | 0.026* | |
C7 | 0.35674 (15) | 0.37956 (15) | 0.17735 (10) | 0.01552 (16) | |
H7A | 0.2370 | 0.4161 | 0.2201 | 0.019* | |
H7B | 0.3234 | 0.3696 | 0.0894 | 0.019* | |
C8 | 0.40423 (15) | 0.55286 (15) | 0.13881 (10) | 0.01463 (16) | |
H8 | 0.5411 | 0.5147 | 0.1408 | 0.018* | |
C9 | 0.26128 (16) | 0.76235 (15) | 0.10109 (10) | 0.01708 (17) | |
H9A | 0.1232 | 0.8052 | 0.0982 | 0.020* | |
H9B | 0.3003 | 0.8647 | 0.0779 | 0.020* | |
F1 | 0.77274 (12) | 0.53404 (11) | 0.31378 (8) | 0.02589 (15) | |
F2 | 0.58069 (11) | 0.88916 (10) | 0.16685 (8) | 0.02546 (15) | |
F3 | 0.90363 (12) | 0.74658 (12) | 0.27778 (8) | 0.02710 (15) | |
F4 | 0.84274 (12) | 0.66901 (12) | 0.09893 (8) | 0.02720 (15) | |
B1 | 0.77701 (18) | 0.70789 (18) | 0.21457 (12) | 0.01625 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01465 (6) | 0.01181 (5) | 0.00981 (5) | −0.00615 (4) | 0.00179 (4) | −0.00534 (4) |
S1 | 0.01564 (11) | 0.01145 (9) | 0.01421 (9) | −0.00626 (8) | 0.00329 (8) | −0.00664 (7) |
N2 | 0.0183 (4) | 0.0156 (3) | 0.0151 (3) | −0.0070 (3) | 0.0018 (3) | −0.0096 (3) |
N3 | 0.0145 (3) | 0.0130 (3) | 0.0110 (3) | −0.0068 (3) | 0.0030 (3) | −0.0064 (2) |
N4 | 0.0141 (3) | 0.0123 (3) | 0.0109 (3) | −0.0068 (3) | 0.0027 (3) | −0.0052 (2) |
C2 | 0.0140 (4) | 0.0136 (3) | 0.0136 (3) | −0.0077 (3) | 0.0043 (3) | −0.0072 (3) |
C5 | 0.0147 (4) | 0.0131 (3) | 0.0124 (3) | −0.0074 (3) | 0.0037 (3) | −0.0060 (3) |
C6 | 0.0192 (5) | 0.0134 (4) | 0.0152 (4) | −0.0057 (3) | −0.0005 (3) | −0.0053 (3) |
C7 | 0.0170 (4) | 0.0175 (4) | 0.0135 (3) | −0.0095 (3) | 0.0012 (3) | −0.0075 (3) |
C8 | 0.0166 (4) | 0.0180 (4) | 0.0111 (3) | −0.0095 (3) | 0.0035 (3) | −0.0075 (3) |
C9 | 0.0207 (5) | 0.0170 (4) | 0.0116 (3) | −0.0092 (3) | 0.0004 (3) | −0.0053 (3) |
F1 | 0.0294 (4) | 0.0217 (3) | 0.0270 (3) | −0.0169 (3) | 0.0054 (3) | −0.0063 (3) |
F2 | 0.0218 (3) | 0.0197 (3) | 0.0337 (4) | −0.0066 (3) | 0.0039 (3) | −0.0163 (3) |
F3 | 0.0303 (4) | 0.0363 (4) | 0.0294 (4) | −0.0246 (3) | 0.0069 (3) | −0.0183 (3) |
F4 | 0.0300 (4) | 0.0323 (4) | 0.0234 (3) | −0.0140 (3) | 0.0106 (3) | −0.0191 (3) |
B1 | 0.0183 (5) | 0.0171 (4) | 0.0183 (4) | −0.0105 (4) | 0.0054 (4) | −0.0106 (4) |
Cu1—N3 | 2.0036 (15) | C6—H6A | 0.9800 |
Cu1—N4i | 1.9646 (11) | C6—H6B | 0.9800 |
Cu1—C8 | 2.0451 (12) | C6—H6C | 0.9800 |
Cu1—C9 | 2.0799 (15) | C7—H7A | 0.9900 |
S1—C2 | 1.7397 (16) | C7—H7B | 0.9900 |
S1—C5 | 1.7301 (11) | C7—C8 | 1.5072 (15) |
N2—H2 | 0.869 (15) | C8—H8 | 0.9500 |
N2—C2 | 1.3361 (13) | C8—C9 | 1.3706 (16) |
N2—C7 | 1.4597 (16) | C9—H9A | 0.9500 |
N3—N4 | 1.3983 (13) | C9—H9B | 0.9500 |
N3—C2 | 1.3244 (13) | F1—B1 | 1.3908 (15) |
N4—Cu1i | 1.9645 (11) | F2—B1 | 1.4055 (16) |
N4—C5 | 1.3046 (14) | F3—B1 | 1.3914 (14) |
C5—C6 | 1.4910 (16) | F4—B1 | 1.3873 (14) |
N3—Cu1—C8 | 92.88 (5) | H6A—C6—H6C | 109.5 |
N3—Cu1—C9 | 130.27 (5) | H6B—C6—H6C | 109.5 |
N4i—Cu1—N3 | 114.54 (5) | N2—C7—H7A | 109.4 |
N4i—Cu1—C8 | 152.58 (4) | N2—C7—H7B | 109.4 |
N4i—Cu1—C9 | 114.25 (5) | N2—C7—C8 | 111.16 (9) |
C8—Cu1—C9 | 38.80 (5) | H7A—C7—H7B | 108.0 |
C5—S1—C2 | 87.64 (6) | C8—C7—H7A | 109.4 |
C2—N2—H2 | 120.4 (10) | C8—C7—H7B | 109.4 |
C2—N2—C7 | 122.90 (9) | Cu1—C8—H8 | 93.4 |
C7—N2—H2 | 116.6 (10) | C7—C8—Cu1 | 104.65 (7) |
N4—N3—Cu1 | 122.78 (7) | C7—C8—H8 | 118.1 |
C2—N3—Cu1 | 122.80 (7) | C9—C8—Cu1 | 71.97 (7) |
C2—N3—N4 | 111.58 (9) | C9—C8—C7 | 123.77 (10) |
N3—N4—Cu1i | 117.92 (7) | C9—C8—H8 | 118.1 |
C5—N4—Cu1i | 128.40 (7) | Cu1—C9—H9A | 105.1 |
C5—N4—N3 | 113.33 (9) | Cu1—C9—H9B | 95.4 |
N2—C2—S1 | 121.34 (8) | C8—C9—Cu1 | 69.23 (7) |
N3—C2—S1 | 113.61 (8) | C8—C9—H9A | 120.0 |
N3—C2—N2 | 125.05 (9) | C8—C9—H9B | 120.0 |
N4—C5—S1 | 113.80 (8) | H9A—C9—H9B | 120.0 |
N4—C5—C6 | 125.29 (9) | F1—B1—F2 | 108.91 (10) |
C6—C5—S1 | 120.91 (8) | F1—B1—F3 | 110.33 (10) |
C5—C6—H6A | 109.5 | F3—B1—F2 | 108.25 (9) |
C5—C6—H6B | 109.5 | F4—B1—F1 | 109.58 (9) |
C5—C6—H6C | 109.5 | F4—B1—F2 | 109.39 (10) |
H6A—C6—H6B | 109.5 | F4—B1—F3 | 110.34 (10) |
Cu1—N3—N4—Cu1i | 25.80 (10) | N4—N3—C2—N2 | 178.42 (9) |
Cu1—N3—N4—C5 | −160.39 (7) | C2—S1—C5—N4 | −1.04 (8) |
Cu1—N3—C2—S1 | 159.58 (5) | C2—S1—C5—C6 | 179.13 (9) |
Cu1—N3—C2—N2 | −20.20 (14) | C2—N2—C7—C8 | 54.40 (13) |
Cu1i—N4—C5—S1 | 173.28 (5) | C2—N3—N4—Cu1i | −172.82 (7) |
Cu1i—N4—C5—C6 | −6.89 (15) | C2—N3—N4—C5 | 1.00 (11) |
N2—C7—C8—Cu1 | −72.62 (9) | C5—S1—C2—N2 | −178.59 (9) |
N2—C7—C8—C9 | −150.50 (9) | C5—S1—C2—N3 | 1.63 (8) |
N3—N4—C5—S1 | 0.26 (11) | C7—N2—C2—S1 | 179.68 (8) |
N3—N4—C5—C6 | −179.91 (9) | C7—N2—C2—N3 | −0.55 (16) |
N4—N3—C2—S1 | −1.80 (10) | C7—C8—C9—Cu1 | 95.87 (9) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···F2ii | 0.87 (2) | 1.95 (2) | 2.7874 (14) | 160 (1) |
N2—H2···F3ii | 0.87 (2) | 2.53 (2) | 3.242 (2) | 140 (1) |
C6—H6A···F1iii | 0.98 | 2.51 | 3.4175 (19) | 154 |
C6—H6B···F4iv | 0.98 | 2.54 | 3.4628 (19) | 157 |
C6—H6C···F3v | 0.98 | 2.56 | 3.4824 (18) | 157 |
C7—H7B···F4vi | 0.99 | 2.53 | 3.4900 (17) | 163 |
C8—H8···F1 | 0.95 | 2.64 | 3.2956 (18) | 127 |
Symmetry codes: (ii) x, y−1, z; (iii) −x+2, −y, −z+1; (iv) x, y−1, z+1; (v) −x+2, −y+1, −z+1; (vi) −x+1, −y+1, −z. |
[Cu2(NO3)2(C5H7N3S2)2(H2O)] | F(000) = 1240 |
Mr = 615.63 | Dx = 2.014 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.379 (3) Å | Cell parameters from 3740 reflections |
b = 18.780 (5) Å | θ = 2.8–32.2° |
c = 14.702 (4) Å | µ = 2.56 mm−1 |
β = 94.82 (3)° | T = 100 K |
V = 2030.2 (11) Å3 | Block, clear colourless |
Z = 4 | 0.3 × 0.18 × 0.13 mm |
Rigaku Xcalibur Ruby diffractometer | 6647 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4618 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 10.3456 pixels mm-1 | θmax = 32.3°, θmin = 2.8° |
ω scans | h = −7→11 |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] | k = −28→16 |
Tmin = 0.577, Tmax = 0.776 | l = −21→17 |
11883 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.046P)2 + 0.307P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
6647 reflections | Δρmax = 0.68 e Å−3 |
346 parameters | Δρmin = −0.70 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1A | 0.6758 (2) | 0.54841 (9) | 0.28897 (8) | 0.0254 (2) | 0.765 (6) |
Cu1B | 0.6292 (7) | 0.5656 (2) | 0.2979 (3) | 0.0226 (6) | 0.235 (6) |
Cu2A | 0.4280 (2) | 0.67847 (8) | 0.15853 (14) | 0.0280 (2) | 0.794 (7) |
Cu2B | 0.4045 (8) | 0.6712 (3) | 0.1832 (4) | 0.0222 (7) | 0.206 (7) |
S11 | 0.88194 (11) | 0.77496 (4) | 0.33415 (5) | 0.03405 (17) | |
S12A | 0.9467 (2) | 0.64460 (14) | 0.45789 (9) | 0.0351 (4) | 0.765 (6) |
S12B | 0.9288 (9) | 0.6667 (3) | 0.4581 (4) | 0.0348 (14)* | 0.235 (6) |
S21 | 0.32163 (10) | 0.45394 (3) | 0.06167 (5) | 0.02596 (15) | |
S22 | 0.09397 (10) | 0.58465 (4) | 0.02178 (5) | 0.02980 (16) | |
O1 | 0.3426 (4) | 0.61593 (15) | 0.31989 (18) | 0.0561 (8) | |
H1A | 0.262 (7) | 0.578 (3) | 0.323 (3) | 0.084* | |
H1B | 0.326 (6) | 0.647 (2) | 0.373 (3) | 0.084* | |
O21 | 0.5703 (3) | 0.69954 (12) | 0.00949 (15) | 0.0405 (5) | |
O22 | 0.4733 (3) | 0.80878 (11) | 0.00474 (15) | 0.0381 (5) | |
O23 | 0.4103 (4) | 0.73874 (12) | −0.10980 (15) | 0.0468 (6) | |
N2 | 0.4863 (4) | 0.74886 (13) | −0.03207 (16) | 0.0321 (6) | |
N12 | 0.6913 (4) | 0.81795 (15) | 0.17938 (18) | 0.0358 (6) | |
H12A | 0.750 (5) | 0.8612 (18) | 0.189 (2) | 0.043* | |
H12B | 0.624 (5) | 0.8080 (19) | 0.132 (2) | 0.043* | |
N13 | 0.7304 (3) | 0.65507 (13) | 0.29752 (15) | 0.0280 (5) | |
N14 | 0.6605 (3) | 0.70080 (12) | 0.22911 (15) | 0.0264 (5) | |
N22 | 0.6172 (4) | 0.40718 (13) | 0.16391 (18) | 0.0301 (5) | |
H22A | 0.717 (5) | 0.4157 (17) | 0.196 (2) | 0.036* | |
H22B | 0.585 (5) | 0.3677 (17) | 0.146 (2) | 0.036* | |
N23 | 0.4050 (3) | 0.57409 (11) | 0.13393 (15) | 0.0231 (4) | |
N24 | 0.5332 (3) | 0.52684 (12) | 0.17360 (14) | 0.0238 (4) | |
C12 | 0.8423 (4) | 0.68604 (17) | 0.35797 (19) | 0.0318 (6) | |
C15 | 0.7307 (4) | 0.76500 (15) | 0.23714 (19) | 0.0287 (6) | |
C17A | 0.7803 (6) | 0.5763 (2) | 0.4787 (3) | 0.0313 (10) | 0.765 (6) |
H17A | 0.8043 | 0.5588 | 0.5421 | 0.038* | 0.765 (6) |
H17B | 0.6575 | 0.5979 | 0.4732 | 0.038* | 0.765 (6) |
C17B | 0.8942 (19) | 0.5707 (7) | 0.4540 (9) | 0.033 (3)* | 0.235 (6) |
H17C | 0.9706 | 0.5504 | 0.4082 | 0.040* | 0.235 (6) |
H17D | 0.9375 | 0.5505 | 0.5141 | 0.040* | 0.235 (6) |
C18A | 0.7815 (6) | 0.5150 (2) | 0.4155 (2) | 0.0320 (10) | 0.765 (6) |
H18A | 0.8945 | 0.5027 | 0.3932 | 0.038* | 0.765 (6) |
C18B | 0.7029 (16) | 0.5471 (6) | 0.4311 (7) | 0.019 (2)* | 0.235 (6) |
H18B | 0.6054 | 0.5772 | 0.4447 | 0.023* | 0.235 (6) |
C19A | 0.6328 (11) | 0.4744 (4) | 0.3864 (4) | 0.0318 (13) | 0.765 (6) |
H19A | 0.5172 | 0.4850 | 0.4071 | 0.038* | 0.765 (6) |
H19B | 0.6456 | 0.4359 | 0.3456 | 0.038* | 0.765 (6) |
C19B | 0.669 (4) | 0.4866 (14) | 0.3933 (19) | 0.038 (7)* | 0.235 (6) |
H19C | 0.7658 | 0.4562 | 0.3796 | 0.045* | 0.235 (6) |
H19D | 0.5463 | 0.4720 | 0.3791 | 0.045* | 0.235 (6) |
C22 | 0.2827 (4) | 0.54435 (13) | 0.07774 (17) | 0.0227 (5) | |
C25 | 0.5102 (4) | 0.46214 (14) | 0.14025 (18) | 0.0247 (5) | |
C27A | 0.0483 (5) | 0.65593 (18) | 0.1045 (3) | 0.0288 (9) | 0.794 (7) |
H27A | −0.0763 | 0.6745 | 0.0898 | 0.035* | 0.794 (7) |
H27B | 0.0539 | 0.6353 | 0.1667 | 0.035* | 0.794 (7) |
C27B | 0.0940 (17) | 0.6732 (6) | 0.0521 (8) | 0.020 (3)* | 0.206 (7) |
H27C | 0.1816 | 0.6983 | 0.0159 | 0.024* | 0.206 (7) |
H27D | −0.0281 | 0.6927 | 0.0336 | 0.024* | 0.206 (7) |
C28A | 0.1794 (5) | 0.71578 (19) | 0.1038 (3) | 0.0298 (9) | 0.794 (7) |
H28A | 0.2256 | 0.7269 | 0.0471 | 0.036* | 0.794 (7) |
C28B | 0.1379 (17) | 0.6907 (7) | 0.1468 (9) | 0.021 (3)* | 0.206 (7) |
H28B | 0.1072 | 0.6591 | 0.1936 | 0.025* | 0.206 (7) |
C29A | 0.2400 (13) | 0.7564 (4) | 0.1775 (7) | 0.0273 (14) | 0.794 (7) |
H29A | 0.1975 | 0.7472 | 0.2356 | 0.033* | 0.794 (7) |
H29B | 0.3244 | 0.7938 | 0.1705 | 0.033* | 0.794 (7) |
C29B | 0.220 (6) | 0.750 (2) | 0.167 (3) | 0.047 (13)* | 0.206 (7) |
H29C | 0.2503 | 0.7817 | 0.1197 | 0.057* | 0.206 (7) |
H29D | 0.2501 | 0.7629 | 0.2291 | 0.057* | 0.206 (7) |
O11 | 0.9655 (3) | 0.52030 (11) | 0.22839 (16) | 0.0409 (5) | |
O12 | 0.9797 (3) | 0.40739 (11) | 0.25601 (18) | 0.0424 (6) | |
O13 | 1.2039 (3) | 0.47483 (12) | 0.30109 (17) | 0.0440 (6) | |
N1 | 1.0495 (3) | 0.46788 (13) | 0.26096 (17) | 0.0291 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1A | 0.0284 (5) | 0.0246 (5) | 0.0226 (3) | −0.0032 (3) | −0.0014 (3) | 0.0019 (3) |
Cu1B | 0.0236 (14) | 0.0197 (12) | 0.0243 (10) | 0.0019 (9) | 0.0010 (9) | 0.0013 (8) |
Cu2A | 0.0269 (4) | 0.0242 (4) | 0.0322 (6) | −0.0001 (3) | −0.0019 (4) | −0.0069 (4) |
Cu2B | 0.0211 (14) | 0.0241 (13) | 0.0210 (17) | 0.0010 (10) | 0.0004 (11) | −0.0033 (12) |
S11 | 0.0330 (4) | 0.0402 (4) | 0.0290 (3) | −0.0121 (3) | 0.0033 (3) | −0.0092 (3) |
S12A | 0.0342 (7) | 0.0434 (10) | 0.0260 (5) | −0.0039 (7) | −0.0083 (4) | 0.0001 (6) |
S21 | 0.0265 (3) | 0.0213 (3) | 0.0293 (3) | 0.0002 (3) | −0.0021 (3) | −0.0018 (2) |
S22 | 0.0271 (4) | 0.0277 (3) | 0.0331 (4) | 0.0004 (3) | −0.0067 (3) | −0.0001 (3) |
O1 | 0.0697 (19) | 0.0507 (15) | 0.0515 (15) | −0.0236 (14) | 0.0268 (14) | −0.0185 (12) |
O21 | 0.0516 (15) | 0.0365 (12) | 0.0335 (11) | 0.0071 (11) | 0.0034 (10) | 0.0053 (9) |
O22 | 0.0520 (14) | 0.0264 (10) | 0.0363 (11) | −0.0083 (10) | 0.0056 (10) | −0.0030 (9) |
O23 | 0.0761 (19) | 0.0342 (12) | 0.0280 (11) | −0.0094 (12) | −0.0078 (11) | 0.0015 (9) |
N2 | 0.0456 (16) | 0.0268 (12) | 0.0243 (11) | −0.0089 (11) | 0.0054 (10) | 0.0010 (9) |
N12 | 0.0432 (16) | 0.0323 (13) | 0.0317 (13) | −0.0092 (12) | 0.0027 (11) | −0.0041 (11) |
N13 | 0.0279 (12) | 0.0348 (12) | 0.0213 (10) | −0.0054 (10) | 0.0026 (9) | −0.0019 (9) |
N14 | 0.0284 (12) | 0.0280 (11) | 0.0230 (10) | −0.0042 (10) | 0.0036 (9) | −0.0031 (9) |
N22 | 0.0272 (13) | 0.0253 (12) | 0.0369 (13) | 0.0026 (10) | −0.0036 (10) | −0.0005 (10) |
N23 | 0.0221 (11) | 0.0249 (11) | 0.0222 (10) | 0.0015 (9) | 0.0009 (8) | −0.0007 (8) |
N24 | 0.0241 (11) | 0.0251 (11) | 0.0217 (10) | 0.0017 (9) | −0.0002 (8) | −0.0004 (8) |
C12 | 0.0288 (14) | 0.0427 (17) | 0.0242 (13) | −0.0068 (13) | 0.0035 (11) | −0.0044 (12) |
C15 | 0.0289 (14) | 0.0322 (14) | 0.0261 (13) | −0.0061 (12) | 0.0075 (11) | −0.0064 (11) |
C17A | 0.035 (2) | 0.034 (2) | 0.0250 (18) | 0.0057 (17) | 0.0033 (15) | 0.0022 (15) |
C18A | 0.037 (2) | 0.036 (2) | 0.0227 (17) | 0.0091 (19) | 0.0003 (15) | 0.0018 (15) |
C19A | 0.048 (4) | 0.024 (2) | 0.022 (2) | −0.003 (3) | −0.001 (2) | 0.0059 (17) |
C22 | 0.0237 (13) | 0.0209 (11) | 0.0233 (12) | −0.0004 (10) | 0.0005 (9) | −0.0007 (9) |
C25 | 0.0242 (13) | 0.0254 (12) | 0.0249 (12) | 0.0006 (11) | 0.0037 (10) | 0.0017 (10) |
C27A | 0.0245 (17) | 0.0233 (16) | 0.039 (2) | 0.0042 (14) | 0.0035 (15) | 0.0003 (14) |
C28A | 0.0298 (19) | 0.0235 (17) | 0.037 (2) | 0.0039 (15) | 0.0055 (15) | 0.0001 (15) |
C29A | 0.027 (3) | 0.019 (2) | 0.036 (3) | 0.0021 (18) | 0.003 (2) | −0.008 (2) |
O11 | 0.0340 (12) | 0.0339 (11) | 0.0556 (14) | 0.0059 (10) | 0.0085 (10) | 0.0185 (10) |
O12 | 0.0344 (12) | 0.0255 (10) | 0.0654 (16) | 0.0004 (9) | −0.0067 (11) | 0.0016 (10) |
O13 | 0.0293 (12) | 0.0375 (12) | 0.0633 (16) | −0.0031 (10) | −0.0071 (11) | 0.0079 (11) |
N1 | 0.0244 (12) | 0.0280 (12) | 0.0355 (13) | 0.0025 (10) | 0.0068 (10) | 0.0038 (10) |
Cu1A—N13 | 2.045 (3) | N13—C12 | 1.299 (4) |
Cu1A—N24 | 1.962 (2) | N14—C15 | 1.314 (4) |
Cu1A—C18A | 2.054 (4) | N22—H22A | 0.85 (4) |
Cu1A—C19A | 2.039 (6) | N22—H22B | 0.82 (3) |
Cu1B—Cu2B | 3.009 (7) | N22—C25 | 1.328 (4) |
Cu1B—O1 | 2.363 (7) | N23—N24 | 1.389 (3) |
Cu1B—N13 | 1.838 (4) | N23—C22 | 1.297 (3) |
Cu1B—N24 | 2.038 (4) | N24—C25 | 1.316 (3) |
Cu1B—C18B | 2.019 (11) | C17A—H17A | 0.9900 |
Cu1B—C19B | 2.05 (3) | C17A—H17B | 0.9900 |
Cu2A—N14 | 1.974 (3) | C17A—C18A | 1.480 (6) |
Cu2A—N23 | 1.998 (3) | C17B—H17C | 0.9900 |
Cu2A—C28A | 2.062 (4) | C17B—H17D | 0.9900 |
Cu2A—C29A | 2.052 (8) | C17B—C18B | 1.490 (17) |
Cu2B—O1 | 2.341 (7) | C18A—H18A | 0.9500 |
Cu2B—N14 | 2.029 (6) | C18A—C19A | 1.374 (9) |
Cu2B—N23 | 1.962 (6) | C18B—H18B | 0.9500 |
Cu2B—C28B | 2.028 (13) | C18B—C19B | 1.28 (3) |
Cu2B—C29B | 2.02 (5) | C19A—H19A | 0.9500 |
S11—C12 | 1.736 (3) | C19A—H19B | 0.9500 |
S11—C15 | 1.746 (3) | C19B—H19C | 0.9500 |
S12A—C12 | 1.779 (3) | C19B—H19D | 0.9500 |
S12A—C17A | 1.819 (4) | C27A—H27A | 0.9900 |
S12B—C12 | 1.596 (7) | C27A—H27B | 0.9900 |
S12B—C17B | 1.823 (14) | C27A—C28A | 1.484 (5) |
S21—C22 | 1.741 (3) | C27B—H27C | 0.9900 |
S21—C25 | 1.739 (3) | C27B—H27D | 0.9900 |
S22—C22 | 1.731 (3) | C27B—C28B | 1.441 (17) |
S22—C27A | 1.859 (4) | C28A—H28A | 0.9500 |
S22—C27B | 1.721 (12) | C28A—C29A | 1.369 (11) |
O1—H1A | 0.93 (5) | C28B—H28B | 0.9500 |
O1—H1B | 0.99 (5) | C28B—C29B | 1.30 (4) |
O21—N2 | 1.246 (3) | C29A—H29A | 0.9500 |
O22—N2 | 1.256 (3) | C29A—H29B | 0.9500 |
O23—N2 | 1.244 (3) | C29B—H29C | 0.9500 |
N12—H12A | 0.93 (4) | C29B—H29D | 0.9500 |
N12—H12B | 0.84 (4) | O11—N1 | 1.238 (3) |
N12—C15 | 1.324 (4) | O12—N1 | 1.247 (3) |
N13—N14 | 1.389 (3) | O13—N1 | 1.245 (3) |
N13—Cu1A—C18A | 100.70 (14) | N13—C12—S12A | 125.1 (2) |
N24—Cu1A—N13 | 110.12 (11) | N13—C12—S12B | 135.4 (3) |
N24—Cu1A—C18A | 148.79 (15) | N12—C15—S11 | 122.3 (2) |
N24—Cu1A—C19A | 111.3 (2) | N14—C15—S11 | 113.1 (2) |
C19A—Cu1A—N13 | 131.7 (2) | N14—C15—N12 | 124.6 (3) |
C19A—Cu1A—C18A | 39.2 (2) | S12A—C17A—H17A | 108.8 |
O1—Cu1B—Cu2B | 49.91 (17) | S12A—C17A—H17B | 108.8 |
N13—Cu1B—Cu2B | 66.50 (19) | H17A—C17A—H17B | 107.7 |
N13—Cu1B—O1 | 90.2 (2) | C18A—C17A—S12A | 113.8 (3) |
N13—Cu1B—N24 | 115.78 (19) | C18A—C17A—H17A | 108.8 |
N13—Cu1B—C18B | 94.8 (3) | C18A—C17A—H17B | 108.8 |
N13—Cu1B—C19B | 129.1 (7) | S12B—C17B—H17C | 108.4 |
N24—Cu1B—Cu2B | 66.39 (16) | S12B—C17B—H17D | 108.4 |
N24—Cu1B—O1 | 91.02 (19) | H17C—C17B—H17D | 107.5 |
N24—Cu1B—C19B | 112.0 (7) | C18B—C17B—S12B | 115.4 (10) |
C18B—Cu1B—Cu2B | 138.4 (4) | C18B—C17B—H17C | 108.4 |
C18B—Cu1B—O1 | 96.1 (4) | C18B—C17B—H17D | 108.4 |
C18B—Cu1B—N24 | 148.6 (4) | Cu1A—C18A—H18A | 92.3 |
C18B—Cu1B—C19B | 36.7 (7) | C17A—C18A—Cu1A | 108.0 (3) |
C19B—Cu1B—Cu2B | 154.4 (8) | C17A—C18A—H18A | 117.3 |
C19B—Cu1B—O1 | 105.9 (8) | C19A—C18A—Cu1A | 69.8 (3) |
N14—Cu2A—N23 | 111.13 (12) | C19A—C18A—C17A | 125.4 (5) |
N14—Cu2A—C28A | 146.92 (15) | C19A—C18A—H18A | 117.3 |
N14—Cu2A—C29A | 110.2 (3) | Cu1B—C18B—H18B | 87.4 |
N23—Cu2A—C28A | 101.74 (14) | C17B—C18B—Cu1B | 109.9 (8) |
N23—Cu2A—C29A | 132.6 (3) | C17B—C18B—H18B | 119.7 |
C29A—Cu2A—C28A | 38.9 (3) | C19B—C18B—Cu1B | 72.8 (14) |
O1—Cu2B—Cu1B | 50.57 (17) | C19B—C18B—C17B | 120.6 (17) |
N14—Cu2B—Cu1B | 62.64 (17) | C19B—C18B—H18B | 119.7 |
N14—Cu2B—O1 | 94.6 (2) | Cu1A—C19A—H19A | 106.2 |
N23—Cu2B—Cu1B | 64.95 (19) | Cu1A—C19A—H19B | 92.7 |
N23—Cu2B—O1 | 84.9 (3) | C18A—C19A—Cu1A | 71.0 (3) |
N23—Cu2B—N14 | 110.3 (3) | C18A—C19A—H19A | 120.0 |
N23—Cu2B—C28B | 95.9 (4) | C18A—C19A—H19B | 120.0 |
N23—Cu2B—C29B | 131.6 (13) | H19A—C19A—H19B | 120.0 |
C28B—Cu2B—Cu1B | 138.0 (5) | Cu1B—C19B—H19C | 110.8 |
C28B—Cu2B—O1 | 93.0 (4) | Cu1B—C19B—H19D | 88.8 |
C28B—Cu2B—N14 | 153.3 (5) | C18B—C19B—Cu1B | 70.4 (13) |
C29B—Cu2B—Cu1B | 152.5 (15) | C18B—C19B—H19C | 120.0 |
C29B—Cu2B—O1 | 104.5 (15) | C18B—C19B—H19D | 120.0 |
C29B—Cu2B—N14 | 115.9 (13) | H19C—C19B—H19D | 120.0 |
C29B—Cu2B—C28B | 37.4 (13) | S22—C22—S21 | 119.80 (15) |
C12—S11—C15 | 87.41 (14) | N23—C22—S21 | 113.1 (2) |
C12—S12A—C17A | 101.29 (17) | N23—C22—S22 | 127.1 (2) |
C12—S12B—C17B | 98.6 (5) | N22—C25—S21 | 122.0 (2) |
C25—S21—C22 | 87.44 (13) | N24—C25—S21 | 113.6 (2) |
C22—S22—C27A | 100.77 (15) | N24—C25—N22 | 124.4 (3) |
C27B—S22—C22 | 108.4 (4) | S22—C27A—H27A | 109.0 |
Cu1B—O1—H1A | 107 (3) | S22—C27A—H27B | 109.0 |
Cu1B—O1—H1B | 121 (3) | H27A—C27A—H27B | 107.8 |
Cu2B—O1—Cu1B | 79.52 (18) | C28A—C27A—S22 | 112.7 (3) |
Cu2B—O1—H1A | 124 (3) | C28A—C27A—H27A | 109.0 |
Cu2B—O1—H1B | 118 (3) | C28A—C27A—H27B | 109.0 |
H1A—O1—H1B | 106 (4) | S22—C27B—H27C | 107.9 |
O21—N2—O22 | 120.5 (2) | S22—C27B—H27D | 107.9 |
O23—N2—O21 | 120.3 (2) | H27C—C27B—H27D | 107.2 |
O23—N2—O22 | 119.2 (3) | C28B—C27B—S22 | 117.8 (10) |
H12A—N12—H12B | 124 (3) | C28B—C27B—H27C | 107.9 |
C15—N12—H12A | 119 (2) | C28B—C27B—H27D | 107.9 |
C15—N12—H12B | 116 (2) | Cu2A—C28A—H28A | 92.5 |
N14—N13—Cu1A | 120.13 (17) | C27A—C28A—Cu2A | 107.4 (2) |
N14—N13—Cu1B | 116.2 (2) | C27A—C28A—H28A | 117.0 |
C12—N13—Cu1A | 126.3 (2) | C29A—C28A—Cu2A | 70.2 (4) |
C12—N13—Cu1B | 130.0 (2) | C29A—C28A—C27A | 125.9 (5) |
C12—N13—N14 | 113.3 (2) | C29A—C28A—H28A | 117.0 |
N13—N14—Cu2A | 120.19 (18) | Cu2B—C28B—H28B | 88.9 |
N13—N14—Cu2B | 110.5 (2) | C27B—C28B—Cu2B | 110.3 (9) |
C15—N14—Cu2A | 124.1 (2) | C27B—C28B—H28B | 120.6 |
C15—N14—Cu2B | 129.1 (3) | C29B—C28B—Cu2B | 71 (2) |
C15—N14—N13 | 112.5 (2) | C29B—C28B—C27B | 119 (3) |
H22A—N22—H22B | 124 (3) | C29B—C28B—H28B | 120.6 |
C25—N22—H22A | 118 (2) | Cu2A—C29A—H29A | 105.7 |
C25—N22—H22B | 118 (2) | Cu2A—C29A—H29B | 93.2 |
N24—N23—Cu2A | 120.41 (17) | C28A—C29A—Cu2A | 71.0 (4) |
N24—N23—Cu2B | 117.4 (2) | C28A—C29A—H29A | 120.0 |
C22—N23—Cu2A | 125.57 (19) | C28A—C29A—H29B | 120.0 |
C22—N23—Cu2B | 127.8 (2) | H29A—C29A—H29B | 120.0 |
C22—N23—N24 | 113.9 (2) | Cu2B—C29B—H29C | 110.2 |
N23—N24—Cu1A | 121.87 (17) | Cu2B—C29B—H29D | 88.2 |
N23—N24—Cu1B | 108.7 (2) | C28B—C29B—Cu2B | 72 (2) |
C25—N24—Cu1A | 123.76 (19) | C28B—C29B—H29C | 120.0 |
C25—N24—Cu1B | 133.5 (2) | C28B—C29B—H29D | 120.0 |
C25—N24—N23 | 111.8 (2) | H29C—C29B—H29D | 120.0 |
S11—C12—S12A | 121.24 (18) | O11—N1—O12 | 120.7 (3) |
S12B—C12—S11 | 110.1 (3) | O11—N1—O13 | 120.6 (3) |
N13—C12—S11 | 113.6 (2) | O13—N1—O12 | 118.7 (2) |
Cu1A—N13—N14—Cu2A | 29.4 (3) | N23—N24—C25—S21 | −3.1 (3) |
Cu1A—N13—N14—C15 | −169.9 (2) | N23—N24—C25—N22 | 177.7 (3) |
Cu1A—N13—C12—S11 | 170.37 (15) | N24—Cu1B—N13—N14 | 30.0 (4) |
Cu1A—N13—C12—S12A | −10.5 (4) | N24—Cu1B—N13—C12 | −159.7 (3) |
Cu1A—N24—C25—S21 | 159.03 (15) | N24—N23—C22—S21 | −4.0 (3) |
Cu1A—N24—C25—N22 | −20.2 (4) | N24—N23—C22—S22 | 175.27 (19) |
Cu1B—N13—N14—Cu2B | 23.5 (3) | C12—S11—C15—N12 | −179.7 (3) |
Cu1B—N13—N14—C15 | 175.6 (3) | C12—S11—C15—N14 | 1.2 (2) |
Cu1B—N13—C12—S11 | −173.2 (3) | C12—S12A—C17A—C18A | 75.0 (3) |
Cu1B—N13—C12—S12B | −5.7 (6) | C12—S12B—C17B—C18B | −55.7 (10) |
Cu1B—N24—C25—S21 | 145.9 (3) | C12—N13—N14—Cu2A | −157.0 (2) |
Cu1B—N24—C25—N22 | −33.3 (5) | C12—N13—N14—Cu2B | −148.3 (3) |
Cu2A—N14—C15—S11 | 156.82 (16) | C12—N13—N14—C15 | 3.7 (3) |
Cu2A—N14—C15—N12 | −22.3 (4) | C15—S11—C12—S12A | −178.2 (2) |
Cu2A—N23—N24—Cu1A | 26.1 (3) | C15—S11—C12—S12B | −169.8 (3) |
Cu2A—N23—N24—C25 | −171.39 (19) | C15—S11—C12—N13 | 0.9 (2) |
Cu2A—N23—C22—S21 | 171.75 (15) | C17A—S12A—C12—S11 | 151.7 (2) |
Cu2A—N23—C22—S22 | −9.0 (4) | C17A—S12A—C12—N13 | −27.3 (3) |
Cu2B—Cu1B—N13—N14 | −16.0 (2) | C17A—C18A—C19A—Cu1A | 98.2 (4) |
Cu2B—Cu1B—N13—C12 | 154.3 (3) | C17B—S12B—C12—S11 | −172.0 (5) |
Cu2B—N14—C15—S11 | 142.6 (3) | C17B—S12B—C12—N13 | 20.1 (8) |
Cu2B—N14—C15—N12 | −36.5 (5) | C17B—C18B—C19B—Cu1B | −103.3 (13) |
Cu2B—N23—N24—Cu1B | 17.8 (3) | C18B—Cu1B—N13—N14 | −157.4 (4) |
Cu2B—N23—N24—C25 | 174.6 (3) | C18B—Cu1B—N13—C12 | 12.8 (5) |
Cu2B—N23—C22—S21 | −172.7 (3) | C19B—Cu1B—N13—N14 | −172.0 (11) |
Cu2B—N23—C22—S22 | 6.5 (4) | C19B—Cu1B—N13—C12 | −1.8 (12) |
S12A—C17A—C18A—Cu1A | −71.1 (3) | C22—S21—C25—N22 | −180.0 (3) |
S12A—C17A—C18A—C19A | −148.7 (4) | C22—S21—C25—N24 | 0.8 (2) |
S12B—C17B—C18B—Cu1B | 72.2 (11) | C22—S22—C27A—C28A | 74.8 (3) |
S12B—C17B—C18B—C19B | 153.6 (17) | C22—S22—C27B—C28B | −43.0 (11) |
S22—C27A—C28A—Cu2A | −69.4 (3) | C22—N23—N24—Cu1A | −157.90 (19) |
S22—C27A—C28A—C29A | −147.2 (5) | C22—N23—N24—Cu1B | −152.1 (2) |
S22—C27B—C28B—Cu2B | 69.6 (12) | C22—N23—N24—C25 | 4.6 (3) |
S22—C27B—C28B—C29B | 148 (3) | C25—S21—C22—S22 | −177.47 (18) |
O1—Cu1B—N13—N14 | −61.2 (2) | C25—S21—C22—N23 | 1.9 (2) |
O1—Cu1B—N13—C12 | 109.0 (3) | C27A—S22—C22—S21 | 150.13 (18) |
N13—N14—C15—S11 | −3.0 (3) | C27A—S22—C22—N23 | −29.1 (3) |
N13—N14—C15—N12 | 177.9 (3) | C27A—C28A—C29A—Cu2A | 97.5 (4) |
N14—N13—C12—S11 | −2.8 (3) | C27B—S22—C22—S21 | 179.8 (5) |
N14—N13—C12—S12A | 176.3 (2) | C27B—S22—C22—N23 | 0.5 (5) |
N14—N13—C12—S12B | 164.8 (4) | C27B—C28B—C29B—Cu2B | −103.2 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O13i | 0.93 (5) | 2.01 (5) | 2.846 (4) | 149 (4) |
O1—H1B···O22ii | 0.99 (5) | 2.29 (5) | 3.142 (4) | 143 (4) |
O1—H1B···O23ii | 0.99 (5) | 2.25 (5) | 2.946 (3) | 126 (3) |
O1—H1B···N2ii | 0.99 (5) | 2.63 (5) | 3.453 (4) | 140 (4) |
N12—H12A···O12iii | 0.93 (4) | 2.26 (4) | 3.038 (4) | 141 (3) |
N12—H12A···O13iii | 0.93 (4) | 2.16 (4) | 3.053 (4) | 161 (3) |
N12—H12A···N1iii | 0.93 (4) | 2.56 (4) | 3.475 (4) | 169 (3) |
N12—H12B···O22 | 0.84 (4) | 2.09 (4) | 2.918 (4) | 166 (3) |
N22—H22A···O12 | 0.85 (4) | 2.07 (4) | 2.895 (4) | 163 (3) |
N22—H22B···O23iv | 0.82 (3) | 2.07 (3) | 2.856 (3) | 162 (3) |
C17A—H17A···O13v | 0.99 | 2.40 | 3.369 (5) | 167 |
C17A—H17B···O22ii | 0.99 | 2.29 | 3.175 (5) | 149 |
C18A—H18A···O11 | 0.95 | 2.54 | 3.170 (5) | 124 |
C18A—H18A···N1 | 0.95 | 2.43 | 3.258 (5) | 146 |
C18B—H18B···O1 | 0.95 | 2.66 | 3.268 (12) | 123 |
C18B—H18B···O22ii | 0.95 | 2.54 | 3.417 (12) | 154 |
C27A—H27B···O11i | 0.99 | 2.45 | 3.219 (4) | 134 |
C27B—H27C···N2 | 0.99 | 2.59 | 3.540 (13) | 160 |
C27B—H27D···S11vi | 0.99 | 3.01 | 3.581 (12) | 118 |
C27B—H27D···S12Bvi | 0.99 | 2.87 | 3.487 (14) | 121 |
C28A—H28A···O22 | 0.95 | 2.51 | 3.226 (5) | 133 |
C28A—H28A···N2 | 0.95 | 2.37 | 3.204 (5) | 147 |
C28B—H28B···O1 | 0.95 | 2.57 | 3.175 (13) | 122 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+3/2, z+1/2; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) −x+2, −y+1, −z+1; (vi) x−1, −y+3/2, z−1/2. |
[Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5C2H3N·2H2O | F(000) = 1380 |
Mr = 688.24 | Dx = 1.942 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.899 (4) Å | Cell parameters from 9071 reflections |
b = 11.442 (4) Å | θ = 2.9–36.8° |
c = 17.678 (5) Å | µ = 2.29 mm−1 |
β = 102.04 (3)° | T = 260 K |
V = 2353.9 (13) Å3 | Prism, clear colourless |
Z = 4 | 0.52 × 0.17 × 0.09 mm |
Rigaku Xcalibur Sapphire2 (large Be window) diffractometer | 5649 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3717 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 8.3359 pixels mm-1 | θmax = 28.0°, θmin = 2.9° |
ω scans | h = −15→15 |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] | k = −15→12 |
Tmin = 0.452, Tmax = 0.825 | l = −23→23 |
24572 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5649 reflections | Δρmax = 0.47 e Å−3 |
412 parameters | Δρmin = −0.38 e Å−3 |
245 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C12 | −0.3873 (2) | −1.0688 (2) | 0.07294 (15) | 0.0321 (6) | |
C15 | −0.4799 (2) | −0.9721 (2) | 0.16465 (16) | 0.0305 (6) | |
C22 | −0.3561 (3) | −0.5332 (2) | 0.05978 (17) | 0.0357 (7) | |
C25 | −0.3182 (3) | −0.6313 (2) | −0.05172 (16) | 0.0353 (7) | |
Cu1 | −0.26289 (3) | −0.86456 (3) | 0.02532 (2) | 0.03965 (12) | |
N12 | −0.5426 (2) | −0.9414 (3) | 0.21542 (17) | 0.0434 (7) | |
H12A | −0.562 (3) | −0.869 (3) | 0.211 (2) | 0.052* | |
H12B | −0.590 (3) | −0.987 (3) | 0.230 (2) | 0.052* | |
N13 | −0.36247 (19) | −0.9572 (2) | 0.08057 (13) | 0.0312 (5) | |
N14 | −0.4136 (2) | −0.9013 (2) | 0.13454 (13) | 0.0320 (5) | |
N22 | −0.2988 (3) | −0.6624 (3) | −0.12019 (16) | 0.0537 (8) | |
H22A | −0.288 (3) | −0.737 (3) | −0.139 (2) | 0.064* | |
H22B | −0.288 (3) | −0.609 (3) | −0.150 (2) | 0.064* | |
N23 | −0.3555 (2) | −0.6453 (2) | 0.06740 (13) | 0.0327 (5) | |
N24 | −0.3312 (2) | −0.7043 (2) | 0.00340 (12) | 0.0338 (5) | |
O1 | −0.1575 (2) | −0.7886 (2) | 0.14329 (14) | 0.0535 (6) | |
H1A | −0.1317 | −0.7155 | 0.1371 | 0.080* | |
H1B | −0.0955 | −0.8336 | 0.1620 | 0.080* | |
O2 | 0.0394 (2) | −0.9116 (3) | 0.15841 (17) | 0.0727 (8) | |
H2A | 0.0713 | −0.9607 | 0.1940 | 0.109* | |
H2B | 0.0844 | −0.8516 | 0.1583 | 0.109* | |
S11 | −0.47951 (7) | −1.11532 (6) | 0.13071 (4) | 0.03665 (18) | |
S12 | −0.33947 (8) | −1.16900 (7) | 0.01339 (5) | 0.0477 (2) | |
S21 | −0.33098 (8) | −0.48476 (7) | −0.02800 (5) | 0.0456 (2) | |
C17A | −0.2451 (6) | −1.0907 (5) | −0.0365 (4) | 0.0449 (17) | 0.617 (10) |
H17A | −0.1995 | −1.1480 | −0.0572 | 0.054* | 0.617 (10) |
H17B | −0.2926 | −1.0510 | −0.0802 | 0.054* | 0.617 (10) |
C18A | −0.1651 (5) | −1.0035 (4) | 0.0071 (4) | 0.0404 (17) | 0.617 (10) |
H18A | −0.1392 | −1.0130 | 0.0601 | 0.048* | 0.617 (10) |
C19A | −0.1303 (15) | −0.9146 (16) | −0.0265 (11) | 0.054 (5) | 0.617 (10) |
H19A | −0.1555 | −0.9041 | −0.0795 | 0.065* | 0.617 (10) |
H19B | −0.0800 | −0.8611 | 0.0022 | 0.065* | 0.617 (10) |
C27A | −0.4091 (3) | −0.5095 (3) | 0.2051 (2) | 0.0449 (9) | 0.88 |
H27A | −0.4137 | −0.4558 | 0.2468 | 0.054* | 0.88 |
H27B | −0.4841 | −0.5453 | 0.1888 | 0.054* | 0.88 |
C28A | −0.3229 (4) | −0.6045 (3) | 0.2367 (2) | 0.0415 (9) | 0.88 |
H28A | −0.2485 | −0.5999 | 0.2282 | 0.050* | 0.88 |
C29A | −0.3530 (8) | −0.6966 (5) | 0.2773 (4) | 0.0501 (19) | 0.88 |
H29A | −0.4272 | −0.7019 | 0.2860 | 0.060* | 0.88 |
H29B | −0.2993 | −0.7542 | 0.2962 | 0.060* | 0.88 |
Cu2A | −0.36197 (18) | −0.7398 (3) | 0.1618 (2) | 0.0345 (4) | 0.88 |
S22A | −0.37812 (15) | −0.42713 (12) | 0.12585 (9) | 0.0447 (3) | 0.88 |
C17B | −0.2026 (9) | −1.1074 (8) | 0.0012 (7) | 0.042 (3)* | 0.383 (10) |
H17C | −0.1555 | −1.0932 | 0.0521 | 0.051* | 0.383 (10) |
H17D | −0.1635 | −1.1657 | −0.0237 | 0.051* | 0.383 (10) |
C18B | −0.2086 (7) | −0.9980 (7) | −0.0438 (6) | 0.034 (2)* | 0.383 (10) |
H18B | −0.2687 | −0.9927 | −0.0867 | 0.041* | 0.383 (10) |
C19B | −0.135 (2) | −0.902 (3) | −0.0297 (15) | 0.034 (5)* | 0.383 (10) |
H19C | −0.0738 | −0.9021 | 0.0124 | 0.041* | 0.383 (10) |
H19D | −0.1482 | −0.8375 | −0.0625 | 0.041* | 0.383 (10) |
C27B | −0.298 (3) | −0.510 (3) | 0.2236 (19) | 0.065 (9)* | 0.12 |
H27C | −0.2242 | −0.5457 | 0.2237 | 0.078* | 0.12 |
H27D | −0.2866 | −0.4536 | 0.2655 | 0.078* | 0.12 |
C28B | −0.376 (2) | −0.603 (2) | 0.2419 (15) | 0.027 (6)* | 0.12 |
H28B | −0.4533 | −0.5838 | 0.2353 | 0.032* | 0.12 |
C29B | −0.345 (4) | −0.712 (2) | 0.267 (3) | 0.018 (8)* | 0.12 |
H29C | −0.2684 | −0.7356 | 0.2748 | 0.022* | 0.12 |
H29D | −0.4001 | −0.7645 | 0.2772 | 0.022* | 0.12 |
Cu2B | −0.3927 (13) | −0.736 (2) | 0.1605 (14) | 0.033 (3) | 0.12 |
S22B | −0.3398 (9) | −0.4323 (12) | 0.1362 (7) | 0.035 (3)* | 0.12 |
F1 | −0.62718 (17) | −0.70348 (17) | 0.16507 (10) | 0.0531 (5) | |
F2 | −0.81507 (19) | −0.63711 (17) | 0.27744 (12) | 0.0641 (6) | |
Si1 | −0.72257 (8) | −0.67000 (7) | 0.21978 (5) | 0.0384 (2) | |
F3A | −0.7269 (6) | −0.8125 (4) | 0.2448 (4) | 0.0351 (13)* | 0.428 (3) |
F5A | −0.7214 (8) | −0.5319 (4) | 0.1966 (4) | 0.0492 (14)* | 0.428 (3) |
F6A | −0.6161 (5) | −0.6498 (7) | 0.2977 (3) | 0.0509 (17)* | 0.428 (3) |
F3B | −0.7584 (8) | −0.8120 (5) | 0.2227 (6) | 0.0309 (19)* | 0.288 (3) |
F4B | −0.8174 (7) | −0.6539 (12) | 0.1374 (4) | 0.055 (3)* | 0.288 (3) |
F5B | −0.6735 (9) | −0.5315 (5) | 0.2150 (6) | 0.0382 (18)* | 0.288 (3) |
F6B | −0.6144 (7) | −0.6912 (11) | 0.2998 (4) | 0.047 (2)* | 0.288 (3) |
F3C | −0.7978 (15) | −0.7868 (13) | 0.1936 (11) | 0.069 (4)* | 0.168 (3) |
F4C | −0.8099 (11) | −0.5889 (17) | 0.1521 (8) | 0.052 (3)* | 0.168 (3) |
F5C | −0.6468 (12) | −0.5443 (11) | 0.2502 (12) | 0.060 (4)* | 0.168 (3) |
F6C | −0.6360 (12) | −0.7418 (14) | 0.2924 (6) | 0.038 (3)* | 0.168 (3) |
F3D | −0.8290 (15) | −0.7443 (19) | 0.1626 (12) | 0.065 (6)* | 0.116 (3) |
F4D | −0.7765 (17) | −0.5445 (12) | 0.1737 (9) | 0.023 (3)* | 0.116 (3) |
F5D | −0.6264 (15) | −0.590 (2) | 0.2817 (12) | 0.063 (6)* | 0.116 (3) |
F6D | −0.6817 (17) | −0.7901 (13) | 0.2728 (10) | 0.026 (3)* | 0.116 (3) |
C2 | −0.0535 (7) | −0.4794 (9) | 0.0952 (6) | 0.075 (3) | 0.5 |
C3 | −0.001 (3) | −0.379 (2) | 0.0769 (18) | 0.100 (11) | 0.5 |
H3A | 0.0722 | −0.3702 | 0.1111 | 0.150* | 0.5 |
H3B | −0.0487 | −0.3127 | 0.0821 | 0.150* | 0.5 |
H3C | 0.0088 | −0.3837 | 0.0245 | 0.150* | 0.5 |
N1 | −0.0887 (8) | −0.5623 (9) | 0.1155 (6) | 0.089 (3) | 0.5 |
F4A | −0.8329 (5) | −0.6949 (7) | 0.1425 (4) | 0.0542 (16)* | 0.428 (3) |
O4 | −0.011 (2) | −0.3481 (18) | 0.0721 (15) | 0.097 (5) | 0.5 |
O3 | −0.0385 (6) | −0.6046 (6) | 0.0816 (4) | 0.0777 (18) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C12 | 0.0349 (16) | 0.0308 (15) | 0.0307 (14) | 0.0005 (13) | 0.0069 (13) | 0.0024 (12) |
C15 | 0.0343 (15) | 0.0247 (14) | 0.0316 (14) | −0.0003 (12) | 0.0047 (12) | 0.0031 (11) |
C22 | 0.0451 (17) | 0.0271 (15) | 0.0377 (15) | −0.0006 (13) | 0.0149 (14) | 0.0005 (12) |
C25 | 0.0465 (18) | 0.0282 (15) | 0.0332 (15) | 0.0027 (13) | 0.0129 (13) | 0.0012 (12) |
Cu1 | 0.0469 (2) | 0.0295 (2) | 0.0491 (2) | 0.00365 (17) | 0.02508 (18) | 0.00394 (16) |
N12 | 0.0483 (17) | 0.0327 (15) | 0.0571 (17) | −0.0018 (13) | 0.0290 (14) | −0.0010 (13) |
N13 | 0.0350 (13) | 0.0281 (12) | 0.0327 (12) | 0.0019 (10) | 0.0120 (10) | 0.0006 (10) |
N14 | 0.0357 (13) | 0.0273 (12) | 0.0361 (13) | 0.0011 (10) | 0.0148 (11) | −0.0008 (10) |
N22 | 0.089 (2) | 0.0409 (17) | 0.0393 (15) | 0.0028 (17) | 0.0326 (16) | 0.0034 (13) |
N23 | 0.0425 (14) | 0.0260 (12) | 0.0313 (12) | −0.0015 (11) | 0.0114 (11) | −0.0010 (10) |
N24 | 0.0448 (15) | 0.0319 (13) | 0.0266 (11) | 0.0006 (11) | 0.0118 (11) | 0.0003 (10) |
O1 | 0.0438 (13) | 0.0496 (14) | 0.0677 (15) | 0.0009 (11) | 0.0130 (12) | 0.0152 (12) |
O2 | 0.0505 (16) | 0.098 (2) | 0.0692 (18) | 0.0040 (15) | 0.0127 (14) | 0.0034 (17) |
S11 | 0.0417 (4) | 0.0286 (4) | 0.0427 (4) | −0.0049 (3) | 0.0160 (3) | −0.0023 (3) |
S12 | 0.0672 (6) | 0.0310 (4) | 0.0514 (5) | −0.0026 (4) | 0.0274 (4) | −0.0090 (3) |
S21 | 0.0727 (6) | 0.0275 (4) | 0.0417 (4) | 0.0013 (4) | 0.0237 (4) | 0.0058 (3) |
C17A | 0.047 (4) | 0.053 (4) | 0.040 (3) | 0.004 (3) | 0.020 (3) | −0.010 (3) |
C18A | 0.040 (3) | 0.042 (3) | 0.045 (4) | 0.011 (2) | 0.019 (3) | 0.004 (2) |
C19A | 0.056 (6) | 0.055 (8) | 0.063 (7) | 0.024 (4) | 0.041 (4) | 0.008 (4) |
C27A | 0.066 (3) | 0.0340 (19) | 0.0399 (19) | −0.0042 (18) | 0.0238 (19) | −0.0056 (15) |
C28A | 0.044 (3) | 0.048 (2) | 0.0343 (19) | −0.010 (2) | 0.0116 (19) | −0.0099 (16) |
C29A | 0.070 (4) | 0.052 (3) | 0.031 (3) | −0.004 (3) | 0.018 (2) | −0.009 (2) |
Cu2A | 0.0476 (11) | 0.0274 (4) | 0.0305 (4) | −0.0023 (8) | 0.0126 (8) | 0.0006 (3) |
S22A | 0.0631 (11) | 0.0244 (6) | 0.0524 (8) | −0.0018 (7) | 0.0253 (8) | −0.0050 (5) |
Cu2B | 0.041 (7) | 0.032 (3) | 0.027 (2) | −0.002 (5) | 0.007 (5) | −0.0004 (19) |
F1 | 0.0664 (13) | 0.0538 (12) | 0.0482 (10) | −0.0033 (10) | 0.0328 (10) | 0.0035 (9) |
F2 | 0.0802 (15) | 0.0500 (12) | 0.0762 (14) | 0.0223 (11) | 0.0487 (12) | 0.0078 (10) |
Si1 | 0.0500 (5) | 0.0294 (4) | 0.0402 (4) | 0.0016 (4) | 0.0193 (4) | 0.0037 (3) |
C2 | 0.048 (5) | 0.087 (7) | 0.087 (6) | −0.002 (5) | 0.007 (4) | −0.034 (6) |
C3 | 0.15 (2) | 0.070 (16) | 0.084 (12) | −0.057 (16) | 0.034 (12) | −0.023 (11) |
N1 | 0.074 (6) | 0.075 (6) | 0.119 (8) | −0.029 (5) | 0.021 (5) | −0.012 (6) |
O4 | 0.115 (10) | 0.059 (8) | 0.127 (9) | 0.003 (7) | 0.051 (7) | 0.013 (6) |
O3 | 0.070 (4) | 0.067 (4) | 0.093 (5) | −0.008 (3) | 0.011 (4) | 0.013 (4) |
C12—N13 | 1.311 (4) | C28A—H28A | 0.9300 |
C12—S11 | 1.731 (3) | C28A—C29A | 1.364 (6) |
C12—S12 | 1.731 (3) | C28A—Cu2A | 2.027 (5) |
C15—N12 | 1.328 (4) | C29A—H29A | 0.9300 |
C15—N14 | 1.319 (3) | C29A—H29B | 0.9300 |
C15—S11 | 1.745 (3) | C29A—Cu2A | 2.082 (7) |
C22—N23 | 1.289 (4) | C17B—H17C | 0.9700 |
C22—S21 | 1.732 (3) | C17B—H17D | 0.9700 |
C22—S22A | 1.742 (3) | C17B—C18B | 1.476 (15) |
C22—S22B | 1.757 (13) | C18B—H18B | 0.9300 |
C25—N22 | 1.328 (4) | C18B—C19B | 1.39 (3) |
C25—N24 | 1.317 (3) | C19B—H19C | 0.9300 |
C25—S21 | 1.742 (3) | C19B—H19D | 0.9300 |
Cu1—N13 | 1.991 (2) | C27B—H27C | 0.9700 |
Cu1—N24 | 2.010 (2) | C27B—H27D | 0.9700 |
Cu1—O1 | 2.364 (3) | C27B—C28B | 1.487 (18) |
Cu1—C18A | 2.035 (5) | C27B—S22B | 1.76 (3) |
Cu1—C19A | 2.064 (18) | C28B—H28B | 0.9300 |
Cu1—C18B | 2.138 (8) | C28B—C29B | 1.358 (18) |
Cu1—C19B | 2.01 (3) | C28B—Cu2B | 2.08 (4) |
N12—H12A | 0.86 (3) | C29B—H29C | 0.9300 |
N12—H12B | 0.86 (4) | C29B—H29D | 0.9300 |
N13—N14 | 1.389 (3) | C29B—Cu2B | 1.87 (5) |
N14—Cu2A | 1.975 (4) | F1—Si1 | 1.682 (2) |
N14—Cu2B | 1.95 (3) | F2—Si1 | 1.691 (2) |
N22—H22A | 0.93 (4) | Si1—F3A | 1.693 (4) |
N22—H22B | 0.83 (4) | Si1—F5A | 1.633 (4) |
N23—N24 | 1.399 (3) | Si1—F6A | 1.682 (5) |
N23—Cu2A | 2.003 (4) | Si1—F3B | 1.683 (6) |
N23—Cu2B | 2.07 (3) | Si1—F4B | 1.656 (7) |
O1—H1A | 0.9054 | Si1—F5B | 1.697 (6) |
O1—H1B | 0.9041 | Si1—F6B | 1.719 (7) |
O2—H2A | 0.8695 | Si1—F3C | 1.621 (9) |
O2—H2B | 0.8712 | Si1—F4C | 1.689 (9) |
S12—C17A | 1.804 (6) | Si1—F5C | 1.723 (9) |
S12—C17B | 1.828 (10) | Si1—F6C | 1.682 (8) |
C17A—H17A | 0.9700 | Si1—F3D | 1.678 (11) |
C17A—H17B | 0.9700 | Si1—F4D | 1.709 (9) |
C17A—C18A | 1.480 (9) | Si1—F5D | 1.681 (10) |
C18A—H18A | 0.9300 | Si1—F6D | 1.677 (9) |
C18A—C19A | 1.29 (2) | Si1—F4A | 1.710 (5) |
C19A—H19A | 0.9300 | C2—C3 | 1.38 (3) |
C19A—H19B | 0.9300 | C2—N1 | 1.126 (12) |
C27A—H27A | 0.9700 | C3—H3A | 0.9600 |
C27A—H27B | 0.9700 | C3—H3B | 0.9600 |
C27A—C28A | 1.519 (5) | C3—H3C | 0.9600 |
C27A—S22A | 1.790 (4) | ||
N13—C12—S11 | 113.3 (2) | H17C—C17B—H17D | 107.3 |
N13—C12—S12 | 127.7 (2) | C18B—C17B—S12 | 116.5 (8) |
S12—C12—S11 | 118.98 (17) | C18B—C17B—H17C | 108.2 |
N12—C15—S11 | 121.6 (2) | C18B—C17B—H17D | 108.2 |
N14—C15—N12 | 125.3 (3) | Cu1—C18B—H18B | 98.5 |
N14—C15—S11 | 113.1 (2) | C17B—C18B—Cu1 | 106.5 (6) |
N23—C22—S21 | 114.4 (2) | C17B—C18B—H18B | 116.0 |
N23—C22—S22A | 128.4 (2) | C19B—C18B—Cu1 | 65.6 (12) |
N23—C22—S22B | 125.2 (5) | C19B—C18B—C17B | 128.0 (14) |
S21—C22—S22A | 117.13 (17) | C19B—C18B—H18B | 116.0 |
S21—C22—S22B | 117.8 (5) | Cu1—C19B—H19C | 99.3 |
N22—C25—S21 | 121.2 (2) | Cu1—C19B—H19D | 95.2 |
N24—C25—N22 | 125.0 (3) | C18B—C19B—Cu1 | 75.4 (13) |
N24—C25—S21 | 113.8 (2) | C18B—C19B—H19C | 120.0 |
N13—Cu1—N24 | 108.81 (10) | C18B—C19B—H19D | 120.0 |
N13—Cu1—O1 | 91.35 (9) | H19C—C19B—H19D | 120.0 |
N13—Cu1—C18A | 94.59 (16) | H27C—C27B—H27D | 107.1 |
N13—Cu1—C19A | 131.2 (5) | C28B—C27B—H27C | 107.7 |
N13—Cu1—C18B | 100.4 (2) | C28B—C27B—H27D | 107.7 |
N13—Cu1—C19B | 135.2 (9) | C28B—C27B—S22B | 118 (2) |
N24—Cu1—O1 | 87.32 (9) | S22B—C27B—H27C | 107.7 |
N24—Cu1—C18A | 154.62 (17) | S22B—C27B—H27D | 107.7 |
N24—Cu1—C19A | 118.9 (5) | C27B—C28B—H28B | 116.8 |
N24—Cu1—C18B | 134.4 (3) | C27B—C28B—Cu2B | 110 (2) |
N24—Cu1—C19B | 114.6 (9) | C29B—C28B—C27B | 126 (3) |
C18A—Cu1—O1 | 102.20 (19) | C29B—C28B—H28B | 116.8 |
C18A—Cu1—C19A | 36.6 (6) | C29B—C28B—Cu2B | 62 (2) |
C19A—Cu1—O1 | 100.4 (5) | Cu2B—C28B—H28B | 97.7 |
C18B—Cu1—O1 | 126.8 (3) | C28B—C29B—H29C | 120.0 |
C19B—Cu1—O1 | 101.0 (6) | C28B—C29B—H29D | 120.0 |
C19B—Cu1—C18B | 39.1 (8) | C28B—C29B—Cu2B | 78 (2) |
C15—N12—H12A | 112 (2) | H29C—C29B—H29D | 120.0 |
C15—N12—H12B | 123 (2) | Cu2B—C29B—H29C | 100.7 |
H12A—N12—H12B | 116 (3) | Cu2B—C29B—H29D | 91.1 |
C12—N13—Cu1 | 127.76 (19) | N14—Cu2B—N23 | 109.7 (12) |
C12—N13—N14 | 113.4 (2) | N14—Cu2B—C28B | 149.8 (15) |
N14—N13—Cu1 | 118.83 (17) | N23—Cu2B—C28B | 100.2 (13) |
C15—N14—N13 | 112.3 (2) | C29B—Cu2B—N14 | 111.9 (15) |
C15—N14—Cu2A | 131.2 (2) | C29B—Cu2B—N23 | 131.2 (17) |
C15—N14—Cu2B | 124.0 (6) | C29B—Cu2B—C28B | 39.8 (9) |
N13—N14—Cu2A | 116.08 (19) | C22—S22B—C27B | 108.0 (13) |
N13—N14—Cu2B | 123.8 (6) | F1—Si1—F2 | 178.11 (12) |
C25—N22—H22A | 129 (2) | F1—Si1—F3A | 89.52 (17) |
C25—N22—H22B | 117 (3) | F1—Si1—F6A | 91.1 (2) |
H22A—N22—H22B | 114 (3) | F1—Si1—F3B | 90.2 (2) |
C22—N23—N24 | 113.2 (2) | F1—Si1—F5B | 84.4 (2) |
C22—N23—Cu2A | 128.6 (2) | F1—Si1—F6B | 87.8 (3) |
C22—N23—Cu2B | 125.7 (7) | F1—Si1—F4C | 96.1 (5) |
N24—N23—Cu2A | 117.60 (19) | F1—Si1—F5C | 89.9 (5) |
N24—N23—Cu2B | 121.1 (7) | F1—Si1—F6C | 87.0 (4) |
C25—N24—Cu1 | 128.1 (2) | F1—Si1—F4D | 98.5 (4) |
C25—N24—N23 | 111.6 (2) | F1—Si1—F4A | 90.0 (2) |
N23—N24—Cu1 | 115.34 (16) | F2—Si1—F3A | 89.89 (17) |
Cu1—O1—H1A | 111.4 | F2—Si1—F5B | 95.5 (2) |
Cu1—O1—H1B | 110.8 | F2—Si1—F6B | 90.3 (3) |
H1A—O1—H1B | 107.4 | F2—Si1—F5C | 89.4 (5) |
H2A—O2—H2B | 109.5 | F2—Si1—F4D | 82.7 (4) |
C12—S11—C15 | 87.83 (14) | F2—Si1—F4A | 91.8 (2) |
C12—S12—C17A | 106.6 (2) | F3A—Si1—F4A | 89.3 (3) |
C12—S12—C17B | 103.3 (3) | F5A—Si1—F1 | 92.0 (2) |
C22—S21—C25 | 87.00 (14) | F5A—Si1—F2 | 88.7 (2) |
S12—C17A—H17A | 107.7 | F5A—Si1—F3A | 178.5 (3) |
S12—C17A—H17B | 107.7 | F5A—Si1—F6A | 91.6 (3) |
H17A—C17A—H17B | 107.1 | F5A—Si1—F4A | 90.3 (3) |
C18A—C17A—S12 | 118.6 (5) | F6A—Si1—F2 | 87.1 (2) |
C18A—C17A—H17A | 107.7 | F6A—Si1—F3A | 88.7 (3) |
C18A—C17A—H17B | 107.7 | F6A—Si1—F4A | 177.7 (3) |
Cu1—C18A—H18A | 90.7 | F3B—Si1—F2 | 89.7 (2) |
C17A—C18A—Cu1 | 106.4 (4) | F3B—Si1—F5B | 174.2 (4) |
C17A—C18A—H18A | 119.1 | F3B—Si1—F6B | 89.4 (4) |
C19A—C18A—Cu1 | 72.9 (7) | F4B—Si1—F1 | 86.4 (3) |
C19A—C18A—C17A | 121.7 (10) | F4B—Si1—F2 | 95.5 (3) |
C19A—C18A—H18A | 119.1 | F4B—Si1—F3B | 90.2 (4) |
Cu1—C19A—H19A | 107.2 | F4B—Si1—F5B | 91.8 (4) |
Cu1—C19A—H19B | 92.2 | F4B—Si1—F6B | 174.2 (5) |
C18A—C19A—Cu1 | 70.5 (9) | F5B—Si1—F6B | 88.1 (4) |
C18A—C19A—H19A | 120.0 | F3C—Si1—F1 | 92.7 (6) |
C18A—C19A—H19B | 120.0 | F3C—Si1—F2 | 88.0 (6) |
H19A—C19A—H19B | 120.0 | F3C—Si1—F4C | 91.7 (5) |
H27A—C27A—H27B | 107.5 | F3C—Si1—F5C | 177.4 (8) |
C28A—C27A—H27A | 108.4 | F3C—Si1—F6C | 91.7 (5) |
C28A—C27A—H27B | 108.4 | F4C—Si1—F2 | 85.6 (5) |
C28A—C27A—S22A | 115.5 (3) | F4C—Si1—F5C | 88.1 (5) |
S22A—C27A—H27A | 108.4 | F6C—Si1—F2 | 91.2 (4) |
S22A—C27A—H27B | 108.4 | F6C—Si1—F4C | 175.3 (6) |
C27A—C28A—H28A | 119.5 | F6C—Si1—F5C | 88.4 (5) |
C27A—C28A—Cu2A | 105.2 (3) | F3D—Si1—F1 | 93.0 (8) |
C29A—C28A—C27A | 121.0 (5) | F3D—Si1—F2 | 88.4 (8) |
C29A—C28A—H28A | 119.5 | F3D—Si1—F4D | 88.7 (6) |
C29A—C28A—Cu2A | 72.8 (3) | F3D—Si1—F5D | 174.0 (11) |
Cu2A—C28A—H28A | 92.0 | F5D—Si1—F1 | 92.8 (7) |
C28A—C29A—H29A | 120.0 | F5D—Si1—F2 | 85.8 (7) |
C28A—C29A—H29B | 120.0 | F5D—Si1—F4D | 89.3 (6) |
C28A—C29A—Cu2A | 68.4 (3) | F6D—Si1—F1 | 89.0 (5) |
H29A—C29A—H29B | 120.0 | F6D—Si1—F2 | 89.7 (5) |
Cu2A—C29A—H29A | 106.9 | F6D—Si1—F3D | 90.9 (6) |
Cu2A—C29A—H29B | 94.4 | F6D—Si1—F4D | 172.4 (6) |
N14—Cu2A—N23 | 111.49 (19) | F6D—Si1—F5D | 90.3 (6) |
N14—Cu2A—C28A | 153.0 (2) | N1—C2—C3 | 174.2 (17) |
N14—Cu2A—C29A | 114.2 (2) | C2—C3—H3A | 109.5 |
N23—Cu2A—C28A | 95.1 (2) | C2—C3—H3B | 109.5 |
N23—Cu2A—C29A | 133.3 (2) | C2—C3—H3C | 109.5 |
C28A—Cu2A—C29A | 38.75 (19) | H3A—C3—H3B | 109.5 |
C22—S22A—C27A | 104.05 (16) | H3A—C3—H3C | 109.5 |
S12—C17B—H17C | 108.2 | H3B—C3—H3C | 109.5 |
S12—C17B—H17D | 108.2 | ||
C12—N13—N14—C15 | −2.4 (3) | S12—C12—S11—C15 | −179.84 (18) |
C12—N13—N14—Cu2A | 170.8 (2) | S12—C17A—C18A—Cu1 | −72.0 (6) |
C12—N13—N14—Cu2B | 179.3 (7) | S12—C17A—C18A—C19A | −151.8 (9) |
C12—S12—C17A—C18A | 40.2 (6) | S12—C17B—C18B—Cu1 | 69.4 (9) |
C12—S12—C17B—C18B | −68.3 (8) | S12—C17B—C18B—C19B | 141.0 (17) |
C22—N23—N24—C25 | −2.2 (3) | S21—C22—N23—N24 | 1.7 (3) |
C22—N23—N24—Cu1 | 154.9 (2) | S21—C22—N23—Cu2A | 172.19 (16) |
Cu1—N13—N14—C15 | 177.89 (18) | S21—C22—N23—Cu2B | −175.7 (6) |
Cu1—N13—N14—Cu2A | −9.0 (3) | S21—C22—S22A—C27A | 176.71 (19) |
Cu1—N13—N14—Cu2B | −0.5 (8) | S21—C22—S22B—C27B | −150.7 (11) |
N12—C15—N14—N13 | −177.4 (3) | S21—C25—N24—Cu1 | −151.74 (16) |
N12—C15—N14—Cu2A | 10.8 (4) | S21—C25—N24—N23 | 1.7 (3) |
N12—C15—N14—Cu2B | 1.0 (8) | C17A—C18A—C19A—Cu1 | 99.0 (7) |
N12—C15—S11—C12 | 178.4 (3) | C27A—C28A—C29A—Cu2A | 97.7 (4) |
N13—C12—S11—C15 | 0.0 (2) | C28A—C27A—S22A—C22 | 51.8 (3) |
N13—C12—S12—C17A | 0.9 (4) | Cu2A—N23—N24—C25 | −173.8 (2) |
N13—C12—S12—C17B | 26.1 (5) | Cu2A—N23—N24—Cu1 | −16.7 (3) |
N14—C15—S11—C12 | −1.3 (2) | S22A—C22—N23—N24 | −178.0 (2) |
N22—C25—N24—Cu1 | 29.1 (5) | S22A—C22—N23—Cu2A | −7.5 (4) |
N22—C25—N24—N23 | −177.4 (3) | S22A—C22—S21—C25 | 179.1 (2) |
N22—C25—S21—C22 | 178.5 (3) | S22A—C27A—C28A—C29A | −157.8 (4) |
N23—C22—S21—C25 | −0.6 (2) | S22A—C27A—C28A—Cu2A | −79.0 (3) |
N23—C22—S22A—C27A | −3.6 (4) | C17B—C18B—C19B—Cu1 | −92.4 (13) |
N23—C22—S22B—C27B | 10.0 (13) | C27B—C28B—C29B—Cu2B | −96 (3) |
N24—C25—S21—C22 | −0.7 (2) | C28B—C27B—S22B—C22 | −60 (3) |
S11—C12—N13—Cu1 | −178.94 (13) | C28B—C29B—Cu2B—N14 | −166.5 (17) |
S11—C12—N13—N14 | 1.3 (3) | C28B—C29B—Cu2B—N23 | 47 (3) |
S11—C12—S12—C17A | −179.3 (3) | Cu2B—N23—N24—C25 | 175.3 (6) |
S11—C12—S12—C17B | −154.2 (4) | Cu2B—N23—N24—Cu1 | −27.6 (6) |
S11—C15—N14—N13 | 2.3 (3) | S22B—C22—N23—N24 | −159.6 (5) |
S11—C15—N14—Cu2A | −169.48 (18) | S22B—C22—N23—Cu2B | 23.0 (8) |
S11—C15—N14—Cu2B | −179.3 (7) | S22B—C22—S21—C25 | 162.2 (4) |
S12—C12—N13—Cu1 | 0.8 (4) | S22B—C27B—C28B—C29B | 133 (3) |
S12—C12—N13—N14 | −178.9 (2) | S22B—C27B—C28B—Cu2B | 63 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12A···F1 | 0.86 (3) | 2.14 (4) | 2.973 (4) | 163 (3) |
N12—H12A···F3A | 0.86 (3) | 2.26 (4) | 2.780 (6) | 119 (3) |
N12—H12A···F3B | 0.86 (3) | 2.48 (4) | 2.990 (9) | 119 (3) |
N12—H12A···F6C | 0.86 (3) | 2.35 (4) | 2.989 (14) | 132 (3) |
N12—H12A···F6D | 0.86 (3) | 2.17 (4) | 2.733 (13) | 123 (3) |
N12—H12B···F2i | 0.86 (4) | 2.04 (4) | 2.827 (3) | 152 (3) |
N22—H22A···F2ii | 0.93 (4) | 2.05 (4) | 2.903 (4) | 153 (3) |
N22—H22A···F6Cii | 0.93 (4) | 2.40 (4) | 2.931 (15) | 117 (3) |
N22—H22B···F5Aiii | 0.83 (4) | 1.83 (4) | 2.638 (5) | 165 (4) |
N22—H22B···F3Bii | 0.83 (4) | 2.52 (4) | 2.931 (9) | 112 (3) |
N22—H22B···F5Biii | 0.83 (4) | 1.98 (4) | 2.758 (9) | 157 (4) |
N22—H22B···F4Ciii | 0.83 (4) | 2.55 (4) | 3.250 (19) | 142 (3) |
N22—H22B···F5Ciii | 0.83 (4) | 2.50 (4) | 3.27 (2) | 154 (4) |
N22—H22B···F4Diii | 0.83 (4) | 2.00 (4) | 2.766 (15) | 153 (4) |
O1—H1A···N1 | 0.91 | 1.89 | 2.789 (10) | 175 |
O1—H1A···O3 | 0.91 | 2.06 | 2.875 (7) | 149 |
O1—H1B···O2 | 0.90 | 1.85 | 2.698 (4) | 156 |
O2—H2A···F5Aiv | 0.87 | 2.48 | 3.293 (9) | 156 |
O2—H2A···F6Aiv | 0.87 | 2.23 | 2.926 (8) | 138 |
O2—H2A···F5Biv | 0.87 | 1.98 | 2.819 (11) | 163 |
O2—H2A···F6Biv | 0.87 | 2.68 | 3.361 (13) | 136 |
O2—H2A···F5Civ | 0.87 | 1.52 | 2.385 (12) | 169 |
O2—H2A···F5Div | 0.87 | 1.64 | 2.427 (15) | 150 |
O2—H2B···F3Av | 0.87 | 2.48 | 3.095 (9) | 128 |
O2—H2B···F3Bv | 0.87 | 2.03 | 2.691 (9) | 132 |
O2—H2B···F4Bv | 0.87 | 2.61 | 3.464 (13) | 168 |
O2—H2B···F3Cv | 0.87 | 1.59 | 2.383 (11) | 149 |
O2—H2B···F3Dv | 0.87 | 1.59 | 2.465 (18) | 177 |
O2—H2B···F4Av | 0.87 | 2.09 | 2.952 (9) | 169 |
C17A—H17A···F4Avi | 0.97 | 2.43 | 3.333 (8) | 155 |
C27A—H27A···O2vii | 0.97 | 2.52 | 3.322 (5) | 140 |
C27A—H27B···F1 | 0.97 | 2.46 | 3.376 (4) | 157 |
C27B—H27D···O1vii | 0.97 | 2.66 | 3.57 (4) | 157 |
C28B—H28B···F1 | 0.93 | 2.57 | 3.23 (3) | 128 |
Symmetry codes: (i) −x−3/2, y−1/2, −z+1/2; (ii) x+1/2, −y−3/2, z−1/2; (iii) −x−1, −y−1, −z; (iv) −x−1/2, y−1/2, −z+1/2; (v) x+1, y, z; (vi) −x−1, −y−2, −z; (vii) −x−1/2, y+1/2, −z+1/2. |
[Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH4O·H2O | F(000) = 1712 |
Mr = 837.97 | Dx = 1.734 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 14.944 (4) Å | Cell parameters from 10457 reflections |
b = 16.587 (5) Å | θ = 3.4–77.6° |
c = 14.658 (4) Å | µ = 5.77 mm−1 |
β = 117.91 (3)° | T = 110 K |
V = 3210.7 (17) Å3 | Block, clear colourless |
Z = 4 | 0.45 × 0.32 × 0.17 mm |
Rigaku Xcalibur Onyx diffractometer | 6741 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 6073 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
Detector resolution: 8.1956 pixels mm-1 | θmax = 78.0°, θmin = 3.4° |
ω scans | h = −16→18 |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] | k = −20→17 |
Tmin = 0.248, Tmax = 0.540 | l = −18→16 |
16595 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.166 | w = 1/[σ2(Fo2) + (0.108P)2 + 2.144P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
6741 reflections | Δρmax = 1.03 e Å−3 |
487 parameters | Δρmin = −1.49 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.71463 (4) | 0.46102 (3) | 0.25333 (4) | 0.03132 (15) | |
Cu2 | 0.70615 (4) | 0.53623 (3) | 0.46302 (4) | 0.03199 (15) | |
S11 | 0.74240 (6) | 0.73187 (5) | 0.27560 (6) | 0.03241 (18) | |
S12 | 0.68469 (9) | 0.63190 (6) | 0.08869 (7) | 0.0451 (2) | |
S21 | 0.80874 (6) | 0.27825 (5) | 0.50610 (6) | 0.03168 (18) | |
S22 | 0.73084 (6) | 0.36872 (5) | 0.62865 (5) | 0.03159 (18) | |
S31A | 0.4810 (3) | 0.4424 (3) | 0.2480 (3) | 0.0304 (6) | 0.644 (6) |
S31B | 0.4816 (6) | 0.4310 (5) | 0.2230 (5) | 0.0296 (11) | 0.356 (6) |
O31A | 0.5331 (3) | 0.4589 (3) | 0.1884 (4) | 0.0449 (11) | 0.644 (6) |
O31B | 0.5736 (4) | 0.4754 (4) | 0.2891 (5) | 0.0310 (16) | 0.356 (6) |
O32A | 0.5256 (3) | 0.4869 (3) | 0.3451 (3) | 0.0448 (11) | 0.644 (6) |
O32B | 0.3953 (7) | 0.4564 (6) | 0.2366 (9) | 0.037 (2) | 0.356 (6) |
O33A | 0.3728 (4) | 0.4551 (4) | 0.1911 (4) | 0.0383 (12) | 0.644 (6) |
O33B | 0.4610 (5) | 0.4282 (5) | 0.1179 (5) | 0.0378 (18) | 0.356 (6) |
N12 | 0.7894 (2) | 0.72597 (17) | 0.4762 (2) | 0.0345 (6) | |
H12A | 0.797 (3) | 0.781 (3) | 0.478 (4) | 0.041* | |
H12B | 0.814 (4) | 0.700 (3) | 0.535 (4) | 0.041* | |
N13 | 0.7226 (2) | 0.57953 (16) | 0.2809 (2) | 0.0289 (5) | |
N14 | 0.74612 (19) | 0.60649 (16) | 0.37976 (18) | 0.0262 (5) | |
N22 | 0.8476 (2) | 0.28718 (18) | 0.3451 (2) | 0.0360 (6) | |
H22A | 0.871 (4) | 0.315 (3) | 0.308 (4) | 0.043* | |
H22B | 0.871 (4) | 0.239 (3) | 0.362 (4) | 0.043* | |
N23 | 0.75070 (18) | 0.42421 (16) | 0.46223 (18) | 0.0257 (5) | |
N24 | 0.7777 (2) | 0.40025 (16) | 0.38683 (19) | 0.0276 (5) | |
C12 | 0.7161 (3) | 0.63734 (19) | 0.2188 (3) | 0.0320 (6) | |
C15 | 0.7616 (2) | 0.68478 (19) | 0.3896 (2) | 0.0295 (6) | |
C17A | 0.7197 (3) | 0.5307 (3) | 0.0744 (3) | 0.0357 (11) | 0.801 (10) |
H17A | 0.7098 | 0.5241 | 0.0032 | 0.043* | 0.801 (10) |
H17B | 0.7927 | 0.5233 | 0.1221 | 0.043* | 0.801 (10) |
C17B | 0.6409 (11) | 0.5277 (9) | 0.0557 (11) | 0.027 (4)* | 0.199 (10) |
H17C | 0.5832 | 0.5191 | 0.0701 | 0.033* | 0.199 (10) |
H17D | 0.6157 | 0.5200 | −0.0193 | 0.033* | 0.199 (10) |
C18A | 0.6618 (3) | 0.4659 (3) | 0.0951 (3) | 0.0333 (10) | 0.801 (10) |
H18A | 0.5946 | 0.4772 | 0.0821 | 0.040* | 0.801 (10) |
C18B | 0.7173 (13) | 0.4671 (8) | 0.1108 (11) | 0.022 (4)* | 0.199 (10) |
H18B | 0.7859 | 0.4825 | 0.1345 | 0.026* | 0.199 (10) |
C19 | 0.7008 (3) | 0.3910 (2) | 0.1317 (2) | 0.0388 (7) | |
H19A | 0.7679 | 0.3781 | 0.1453 | 0.047* | 0.801 (10) |
H19B | 0.6608 | 0.3520 | 0.1435 | 0.047* | 0.801 (10) |
H19C | 0.6336 | 0.3727 | 0.1097 | 0.047* | 0.199 (10) |
H19D | 0.7564 | 0.3558 | 0.1685 | 0.047* | 0.199 (10) |
C22 | 0.7610 (2) | 0.36726 (18) | 0.5270 (2) | 0.0274 (6) | |
C25 | 0.8116 (2) | 0.32546 (19) | 0.4009 (2) | 0.0289 (6) | |
C27A | 0.7145 (4) | 0.4774 (3) | 0.6479 (4) | 0.0346 (13) | 0.664 (10) |
H27A | 0.6940 | 0.4827 | 0.7028 | 0.042* | 0.664 (10) |
H27B | 0.7806 | 0.5049 | 0.6722 | 0.042* | 0.664 (10) |
C28A | 0.6385 (4) | 0.5191 (4) | 0.5539 (4) | 0.0368 (14) | 0.664 (10) |
H28A | 0.5841 | 0.4891 | 0.5025 | 0.044* | 0.664 (10) |
C29A | 0.6456 (12) | 0.6009 (6) | 0.5396 (12) | 0.035 (4) | 0.664 (10) |
H29A | 0.6999 | 0.6313 | 0.5905 | 0.042* | 0.664 (10) |
H29B | 0.5963 | 0.6266 | 0.4789 | 0.042* | 0.664 (10) |
C27B | 0.6490 (6) | 0.4546 (5) | 0.6003 (6) | 0.023 (2)* | 0.336 (10) |
H27C | 0.5910 | 0.4487 | 0.5304 | 0.027* | 0.336 (10) |
H27D | 0.6221 | 0.4573 | 0.6504 | 0.027* | 0.336 (10) |
C28B | 0.7036 (6) | 0.5298 (5) | 0.6054 (6) | 0.022 (2)* | 0.336 (10) |
H28B | 0.7748 | 0.5334 | 0.6477 | 0.026* | 0.336 (10) |
C29B | 0.648 (3) | 0.5963 (14) | 0.546 (3) | 0.049 (11)* | 0.336 (10) |
H29C | 0.5769 | 0.5921 | 0.5042 | 0.058* | 0.336 (10) |
H29D | 0.6819 | 0.6454 | 0.5484 | 0.058* | 0.336 (10) |
C31 | 0.5023 (2) | 0.3352 (2) | 0.2756 (3) | 0.0331 (6) | |
C32 | 0.5006 (3) | 0.2774 (3) | 0.2070 (3) | 0.0487 (9) | |
H32 | 0.4892 | 0.2926 | 0.1399 | 0.058* | |
C33 | 0.5157 (3) | 0.1973 (3) | 0.2365 (4) | 0.0594 (12) | |
H33 | 0.5148 | 0.1577 | 0.1893 | 0.071* | |
C34 | 0.5320 (3) | 0.1741 (3) | 0.3333 (4) | 0.0549 (11) | |
H34 | 0.5425 | 0.1190 | 0.3531 | 0.066* | |
C35 | 0.5329 (3) | 0.2328 (3) | 0.4021 (3) | 0.0480 (9) | |
H35 | 0.5434 | 0.2178 | 0.4690 | 0.058* | |
C36 | 0.5186 (2) | 0.3121 (2) | 0.3729 (3) | 0.0403 (7) | |
H36 | 0.5200 | 0.3519 | 0.4201 | 0.048* | |
S41 | 0.97251 (6) | 0.62170 (5) | 0.76431 (6) | 0.03256 (19) | |
O41 | 0.8831 (2) | 0.6489 (2) | 0.6743 (2) | 0.0575 (8) | |
O42 | 1.0634 (2) | 0.66597 (18) | 0.7849 (2) | 0.0463 (6) | |
O43 | 0.95553 (18) | 0.61808 (18) | 0.85462 (19) | 0.0414 (6) | |
C41 | 0.9942 (2) | 0.5208 (2) | 0.7391 (3) | 0.0338 (6) | |
C42 | 1.0076 (3) | 0.5059 (3) | 0.6531 (3) | 0.0448 (8) | |
H42 | 1.0049 | 0.5489 | 0.6090 | 0.054* | |
C43 | 1.0252 (3) | 0.4279 (3) | 0.6323 (4) | 0.0608 (12) | |
H43 | 1.0348 | 0.4171 | 0.5739 | 0.073* | |
C44 | 1.0287 (3) | 0.3646 (3) | 0.6973 (5) | 0.0641 (14) | |
H44 | 1.0403 | 0.3110 | 0.6827 | 0.077* | |
C45 | 1.0155 (3) | 0.3804 (3) | 0.7818 (4) | 0.0577 (12) | |
H45 | 1.0188 | 0.3375 | 0.8262 | 0.069* | |
C46 | 0.9975 (3) | 0.4584 (2) | 0.8035 (3) | 0.0429 (8) | |
H46 | 0.9874 | 0.4688 | 0.8618 | 0.052* | |
O61 | 0.9016 (2) | 0.35933 (15) | 0.9454 (2) | 0.0377 (5) | |
H61 | 0.944 (4) | 0.366 (3) | 0.999 (4) | 0.057* | |
C61 | 0.8226 (4) | 0.4136 (3) | 0.9263 (4) | 0.0536 (10) | |
H61A | 0.7620 | 0.3975 | 0.8633 | 0.080* | |
H61B | 0.8430 | 0.4680 | 0.9176 | 0.080* | |
H61C | 0.8078 | 0.4131 | 0.9847 | 0.080* | |
O51 | 0.1975 (3) | 0.38050 (17) | 0.0872 (3) | 0.0481 (7) | |
H51A | 0.162 (5) | 0.379 (4) | 0.116 (5) | 0.072* | |
H51B | 0.248 (5) | 0.407 (4) | 0.124 (5) | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0483 (3) | 0.0242 (3) | 0.0271 (2) | 0.00226 (17) | 0.0224 (2) | 0.00268 (16) |
Cu2 | 0.0501 (3) | 0.0251 (3) | 0.0337 (3) | 0.00360 (18) | 0.0305 (2) | 0.00246 (17) |
S11 | 0.0443 (4) | 0.0243 (4) | 0.0373 (4) | 0.0033 (3) | 0.0263 (3) | 0.0055 (3) |
S12 | 0.0792 (6) | 0.0346 (4) | 0.0339 (4) | 0.0096 (4) | 0.0367 (4) | 0.0095 (3) |
S21 | 0.0415 (4) | 0.0272 (4) | 0.0332 (4) | 0.0057 (3) | 0.0232 (3) | 0.0079 (3) |
S22 | 0.0376 (4) | 0.0373 (4) | 0.0247 (3) | 0.0021 (3) | 0.0186 (3) | 0.0059 (3) |
S31A | 0.0278 (7) | 0.0293 (11) | 0.0368 (17) | −0.0016 (6) | 0.0175 (11) | −0.0018 (10) |
S31B | 0.0242 (12) | 0.037 (3) | 0.026 (2) | 0.0010 (14) | 0.0107 (16) | 0.0011 (17) |
O31A | 0.047 (2) | 0.045 (2) | 0.058 (3) | −0.0005 (17) | 0.037 (2) | 0.0055 (19) |
O31B | 0.027 (3) | 0.031 (3) | 0.027 (3) | −0.006 (2) | 0.006 (2) | 0.003 (2) |
O32A | 0.0359 (18) | 0.040 (2) | 0.048 (2) | 0.0005 (15) | 0.0107 (16) | −0.0140 (18) |
O32B | 0.027 (4) | 0.044 (4) | 0.044 (5) | 0.006 (3) | 0.021 (4) | 0.001 (5) |
O33A | 0.029 (2) | 0.046 (2) | 0.033 (3) | 0.0025 (18) | 0.010 (2) | 0.005 (3) |
O33B | 0.037 (3) | 0.050 (4) | 0.026 (3) | 0.008 (3) | 0.014 (3) | 0.007 (3) |
N12 | 0.0449 (14) | 0.0252 (13) | 0.0334 (13) | −0.0004 (11) | 0.0183 (12) | −0.0012 (11) |
N13 | 0.0416 (13) | 0.0260 (12) | 0.0270 (12) | 0.0024 (10) | 0.0226 (10) | 0.0005 (10) |
N14 | 0.0341 (11) | 0.0251 (12) | 0.0238 (11) | 0.0009 (9) | 0.0172 (9) | 0.0004 (9) |
N22 | 0.0517 (16) | 0.0263 (13) | 0.0432 (15) | 0.0076 (11) | 0.0333 (13) | 0.0047 (11) |
N23 | 0.0310 (11) | 0.0282 (12) | 0.0217 (10) | 0.0011 (9) | 0.0155 (9) | 0.0005 (9) |
N24 | 0.0382 (12) | 0.0256 (12) | 0.0279 (11) | 0.0031 (9) | 0.0229 (10) | 0.0011 (9) |
C12 | 0.0454 (16) | 0.0265 (15) | 0.0326 (15) | 0.0027 (12) | 0.0253 (13) | 0.0030 (12) |
C15 | 0.0285 (12) | 0.0292 (15) | 0.0335 (14) | 0.0039 (11) | 0.0170 (11) | 0.0030 (12) |
C17A | 0.046 (2) | 0.036 (2) | 0.036 (2) | 0.0079 (16) | 0.0287 (18) | 0.0045 (16) |
C18A | 0.031 (2) | 0.041 (2) | 0.0251 (18) | 0.0033 (15) | 0.0113 (15) | 0.0050 (15) |
C19 | 0.0546 (19) | 0.0335 (17) | 0.0251 (14) | 0.0007 (14) | 0.0160 (13) | −0.0073 (12) |
C22 | 0.0316 (13) | 0.0283 (14) | 0.0259 (13) | 0.0035 (11) | 0.0164 (11) | 0.0049 (11) |
C25 | 0.0323 (13) | 0.0265 (14) | 0.0306 (13) | −0.0002 (11) | 0.0171 (11) | 0.0025 (11) |
C27A | 0.044 (3) | 0.038 (3) | 0.026 (2) | 0.000 (2) | 0.020 (2) | 0.0006 (19) |
C28A | 0.034 (3) | 0.050 (3) | 0.039 (3) | 0.005 (2) | 0.027 (2) | 0.004 (2) |
C29A | 0.058 (7) | 0.029 (4) | 0.043 (6) | 0.012 (2) | 0.044 (5) | 0.002 (2) |
C31 | 0.0235 (12) | 0.0339 (16) | 0.0368 (15) | −0.0038 (11) | 0.0099 (11) | 0.0002 (13) |
C32 | 0.0465 (19) | 0.060 (3) | 0.046 (2) | −0.0038 (17) | 0.0271 (16) | −0.0105 (18) |
C33 | 0.050 (2) | 0.054 (3) | 0.075 (3) | −0.0051 (18) | 0.030 (2) | −0.026 (2) |
C34 | 0.0360 (16) | 0.036 (2) | 0.077 (3) | −0.0033 (14) | 0.0136 (18) | 0.0017 (19) |
C35 | 0.0403 (17) | 0.050 (2) | 0.0416 (18) | 0.0047 (16) | 0.0091 (14) | 0.0146 (16) |
C36 | 0.0332 (14) | 0.045 (2) | 0.0309 (15) | 0.0037 (13) | 0.0054 (12) | 0.0004 (14) |
S41 | 0.0324 (3) | 0.0379 (4) | 0.0270 (3) | 0.0006 (3) | 0.0136 (3) | 0.0044 (3) |
O41 | 0.0610 (17) | 0.0601 (19) | 0.0351 (13) | 0.0229 (15) | 0.0089 (12) | 0.0111 (13) |
O42 | 0.0559 (15) | 0.0435 (15) | 0.0536 (15) | −0.0159 (12) | 0.0374 (13) | −0.0107 (12) |
O43 | 0.0360 (11) | 0.0578 (16) | 0.0362 (12) | 0.0015 (10) | 0.0216 (10) | 0.0022 (11) |
C41 | 0.0238 (12) | 0.0399 (17) | 0.0347 (15) | −0.0034 (12) | 0.0113 (11) | 0.0019 (13) |
C42 | 0.0428 (17) | 0.050 (2) | 0.0473 (19) | −0.0056 (15) | 0.0257 (15) | −0.0039 (17) |
C43 | 0.050 (2) | 0.064 (3) | 0.076 (3) | −0.009 (2) | 0.036 (2) | −0.024 (2) |
C44 | 0.0369 (18) | 0.043 (2) | 0.112 (4) | −0.0040 (15) | 0.034 (2) | −0.013 (2) |
C45 | 0.0361 (17) | 0.041 (2) | 0.088 (3) | −0.0022 (15) | 0.023 (2) | 0.012 (2) |
C46 | 0.0321 (15) | 0.044 (2) | 0.051 (2) | −0.0039 (13) | 0.0174 (14) | 0.0094 (16) |
O61 | 0.0455 (12) | 0.0322 (12) | 0.0347 (12) | −0.0001 (10) | 0.0183 (10) | −0.0046 (10) |
C61 | 0.067 (3) | 0.037 (2) | 0.058 (2) | 0.0139 (18) | 0.031 (2) | 0.0029 (18) |
O51 | 0.0623 (17) | 0.0329 (13) | 0.0722 (19) | 0.0012 (12) | 0.0506 (16) | −0.0025 (13) |
Cu1—O31A | 2.418 (4) | C18B—C19 | 1.348 (14) |
Cu1—O31B | 2.409 (7) | C19—H19A | 0.9500 |
Cu1—N13 | 1.999 (3) | C19—H19B | 0.9500 |
Cu1—N24 | 2.002 (3) | C19—H19C | 0.9500 |
Cu1—C18A | 2.072 (4) | C19—H19D | 0.9500 |
Cu1—C18B | 2.111 (14) | C27A—H27A | 0.9900 |
Cu1—C19 | 2.055 (3) | C27A—H27B | 0.9900 |
Cu2—N14 | 1.972 (2) | C27A—C28A | 1.484 (7) |
Cu2—N23 | 1.976 (3) | C28A—H28A | 0.9500 |
Cu2—C28A | 2.033 (4) | C28A—C29A | 1.384 (11) |
Cu2—C29A | 2.044 (11) | C29A—H29A | 0.9500 |
Cu2—C28B | 2.107 (8) | C29A—H29B | 0.9500 |
Cu2—C29B | 2.06 (4) | C27B—H27C | 0.9900 |
S11—C12 | 1.732 (3) | C27B—H27D | 0.9900 |
S11—C15 | 1.743 (3) | C27B—C28B | 1.473 (10) |
S12—C12 | 1.740 (3) | C28B—H28B | 0.9500 |
S12—C17A | 1.799 (4) | C28B—C29B | 1.408 (17) |
S12—C17B | 1.830 (15) | C29B—H29C | 0.9500 |
S21—C22 | 1.728 (3) | C29B—H29D | 0.9500 |
S21—C25 | 1.748 (3) | C31—C32 | 1.380 (5) |
S22—C22 | 1.747 (3) | C31—C36 | 1.384 (5) |
S22—C27A | 1.858 (6) | C32—H32 | 0.9500 |
S22—C27B | 1.795 (8) | C32—C33 | 1.383 (7) |
S31A—O31A | 1.444 (5) | C33—H33 | 0.9500 |
S31A—O32A | 1.458 (5) | C33—C34 | 1.378 (7) |
S31A—O33A | 1.447 (7) | C34—H34 | 0.9500 |
S31A—C31 | 1.819 (6) | C34—C35 | 1.398 (7) |
S31B—O31B | 1.458 (9) | C35—H35 | 0.9500 |
S31B—O32B | 1.457 (11) | C35—C36 | 1.369 (6) |
S31B—O33B | 1.424 (8) | C36—H36 | 0.9500 |
S31B—C31 | 1.729 (9) | S41—O41 | 1.442 (3) |
N12—H12A | 0.91 (5) | S41—O42 | 1.446 (3) |
N12—H12B | 0.87 (5) | S41—O43 | 1.461 (2) |
N12—C15 | 1.326 (4) | S41—C41 | 1.775 (4) |
N13—N14 | 1.395 (3) | C41—C42 | 1.389 (5) |
N13—C12 | 1.294 (4) | C41—C46 | 1.386 (5) |
N14—C15 | 1.315 (4) | C42—H42 | 0.9500 |
N22—H22A | 0.90 (5) | C42—C43 | 1.383 (7) |
N22—H22B | 0.86 (5) | C43—H43 | 0.9500 |
N22—C25 | 1.331 (4) | C43—C44 | 1.402 (8) |
N23—N24 | 1.400 (3) | C44—H44 | 0.9500 |
N23—C22 | 1.296 (4) | C44—C45 | 1.367 (8) |
N24—C25 | 1.319 (4) | C45—H45 | 0.9500 |
C17A—H17A | 0.9900 | C45—C46 | 1.388 (6) |
C17A—H17B | 0.9900 | C46—H46 | 0.9500 |
C17A—C18A | 1.498 (6) | O61—H61 | 0.75 (6) |
C17B—H17C | 0.9900 | O61—C61 | 1.404 (5) |
C17B—H17D | 0.9900 | C61—H61A | 0.9800 |
C17B—C18B | 1.45 (2) | C61—H61B | 0.9800 |
C18A—H18A | 0.9500 | C61—H61C | 0.9800 |
C18A—C19 | 1.369 (6) | O51—H51A | 0.82 (6) |
C18B—H18B | 0.9500 | O51—H51B | 0.81 (7) |
N13—Cu1—O31A | 92.50 (13) | C18A—C19—H19A | 120.0 |
N13—Cu1—O31B | 80.46 (17) | C18A—C19—H19B | 120.0 |
N13—Cu1—N24 | 109.96 (11) | C18B—C19—Cu1 | 73.4 (6) |
N13—Cu1—C18A | 98.26 (15) | C18B—C19—H19C | 120.0 |
N13—Cu1—C18B | 97.3 (4) | C18B—C19—H19D | 120.0 |
N13—Cu1—C19 | 134.67 (13) | H19A—C19—H19B | 120.0 |
N24—Cu1—O31A | 107.80 (13) | H19C—C19—H19D | 120.0 |
N24—Cu1—O31B | 84.07 (16) | S21—C22—S22 | 117.10 (17) |
N24—Cu1—C18A | 150.68 (15) | N23—C22—S21 | 114.2 (2) |
N24—Cu1—C18B | 140.6 (4) | N23—C22—S22 | 128.7 (2) |
N24—Cu1—C19 | 111.94 (13) | N22—C25—S21 | 120.8 (2) |
C18A—Cu1—O31A | 77.89 (17) | N24—C25—S21 | 113.1 (2) |
C18B—Cu1—O31B | 129.4 (5) | N24—C25—N22 | 126.1 (3) |
C19—Cu1—O31A | 90.65 (16) | S22—C27A—H27A | 108.7 |
C19—Cu1—O31B | 120.10 (19) | S22—C27A—H27B | 108.7 |
C19—Cu1—C18A | 38.75 (16) | H27A—C27A—H27B | 107.6 |
C19—Cu1—C18B | 37.7 (4) | C28A—C27A—S22 | 114.1 (4) |
N14—Cu2—N23 | 110.59 (10) | C28A—C27A—H27A | 108.7 |
N14—Cu2—C28A | 151.09 (18) | C28A—C27A—H27B | 108.7 |
N14—Cu2—C29A | 111.7 (3) | Cu2—C28A—H28A | 93.4 |
N14—Cu2—C28B | 142.6 (2) | C27A—C28A—Cu2 | 105.9 (3) |
N14—Cu2—C29B | 114.5 (6) | C27A—C28A—H28A | 119.4 |
N23—Cu2—C28A | 98.32 (18) | C29A—C28A—Cu2 | 70.6 (5) |
N23—Cu2—C29A | 137.2 (3) | C29A—C28A—C27A | 121.2 (8) |
N23—Cu2—C28B | 96.9 (2) | C29A—C28A—H28A | 119.4 |
N23—Cu2—C29B | 134.1 (5) | Cu2—C29A—H29A | 106.0 |
C28A—Cu2—C29A | 39.7 (3) | Cu2—C29A—H29B | 94.0 |
C29B—Cu2—C28B | 39.5 (6) | C28A—C29A—Cu2 | 69.7 (4) |
C12—S11—C15 | 87.34 (15) | C28A—C29A—H29A | 120.0 |
C12—S12—C17A | 103.40 (18) | C28A—C29A—H29B | 120.0 |
C12—S12—C17B | 102.6 (5) | H29A—C29A—H29B | 120.0 |
C22—S21—C25 | 87.48 (14) | S22—C27B—H27C | 109.4 |
C22—S22—C27A | 104.32 (18) | S22—C27B—H27D | 109.4 |
C22—S22—C27B | 103.5 (3) | H27C—C27B—H27D | 108.0 |
O31A—S31A—O32A | 111.4 (4) | C28B—C27B—S22 | 111.1 (6) |
O31A—S31A—O33A | 113.5 (4) | C28B—C27B—H27C | 109.4 |
O31A—S31A—C31 | 103.4 (3) | C28B—C27B—H27D | 109.4 |
O32A—S31A—C31 | 109.0 (3) | Cu2—C28B—H28B | 96.3 |
O33A—S31A—O32A | 111.4 (4) | C27B—C28B—Cu2 | 105.0 (5) |
O33A—S31A—C31 | 107.7 (4) | C27B—C28B—H28B | 120.7 |
O31B—S31B—C31 | 104.6 (5) | C29B—C28B—Cu2 | 68.2 (15) |
O32B—S31B—O31B | 112.5 (7) | C29B—C28B—C27B | 118.7 (17) |
O32B—S31B—C31 | 101.0 (6) | C29B—C28B—H28B | 120.7 |
O33B—S31B—O31B | 113.2 (6) | Cu2—C29B—H29C | 103.6 |
O33B—S31B—O32B | 113.6 (7) | Cu2—C29B—H29D | 94.0 |
O33B—S31B—C31 | 110.8 (5) | C28B—C29B—Cu2 | 72.3 (13) |
S31A—O31A—Cu1 | 126.0 (3) | C28B—C29B—H29C | 120.0 |
S31B—O31B—Cu1 | 117.0 (4) | C28B—C29B—H29D | 120.0 |
H12A—N12—H12B | 118 (4) | H29C—C29B—H29D | 120.0 |
C15—N12—H12A | 122 (3) | C32—C31—S31A | 125.1 (3) |
C15—N12—H12B | 119 (3) | C32—C31—S31B | 112.0 (3) |
N14—N13—Cu1 | 119.16 (19) | C32—C31—C36 | 119.6 (4) |
C12—N13—Cu1 | 127.5 (2) | C36—C31—S31A | 115.3 (3) |
C12—N13—N14 | 113.1 (3) | C36—C31—S31B | 128.4 (3) |
N13—N14—Cu2 | 116.85 (19) | C31—C32—H32 | 120.2 |
C15—N14—Cu2 | 127.2 (2) | C31—C32—C33 | 119.6 (4) |
C15—N14—N13 | 112.1 (2) | C33—C32—H32 | 120.2 |
H22A—N22—H22B | 116 (4) | C32—C33—H33 | 119.5 |
C25—N22—H22A | 121 (3) | C34—C33—C32 | 121.0 (4) |
C25—N22—H22B | 119 (3) | C34—C33—H33 | 119.5 |
N24—N23—Cu2 | 119.61 (18) | C33—C34—H34 | 120.5 |
C22—N23—Cu2 | 127.3 (2) | C33—C34—C35 | 119.1 (4) |
C22—N23—N24 | 113.1 (3) | C35—C34—H34 | 120.5 |
N23—N24—Cu1 | 116.81 (18) | C34—C35—H35 | 120.1 |
C25—N24—Cu1 | 126.6 (2) | C36—C35—C34 | 119.8 (4) |
C25—N24—N23 | 112.0 (2) | C36—C35—H35 | 120.1 |
S11—C12—S12 | 117.25 (18) | C31—C36—H36 | 119.5 |
N13—C12—S11 | 114.0 (2) | C35—C36—C31 | 120.9 (4) |
N13—C12—S12 | 128.7 (3) | C35—C36—H36 | 119.5 |
N12—C15—S11 | 121.6 (3) | O41—S41—O42 | 114.2 (2) |
N14—C15—S11 | 113.3 (2) | O41—S41—O43 | 111.24 (18) |
N14—C15—N12 | 125.1 (3) | O41—S41—C41 | 106.60 (18) |
S12—C17A—H17A | 108.6 | O42—S41—O43 | 112.07 (16) |
S12—C17A—H17B | 108.6 | O42—S41—C41 | 106.11 (16) |
H17A—C17A—H17B | 107.5 | O43—S41—C41 | 105.98 (17) |
C18A—C17A—S12 | 114.8 (3) | C42—C41—S41 | 118.3 (3) |
C18A—C17A—H17A | 108.6 | C46—C41—S41 | 121.0 (3) |
C18A—C17A—H17B | 108.6 | C46—C41—C42 | 120.7 (4) |
S12—C17B—H17C | 108.6 | C41—C42—H42 | 120.3 |
S12—C17B—H17D | 108.6 | C43—C42—C41 | 119.3 (4) |
H17C—C17B—H17D | 107.6 | C43—C42—H42 | 120.3 |
C18B—C17B—S12 | 114.6 (11) | C42—C43—H43 | 119.9 |
C18B—C17B—H17C | 108.6 | C42—C43—C44 | 120.1 (4) |
C18B—C17B—H17D | 108.6 | C44—C43—H43 | 119.9 |
Cu1—C18A—H18A | 92.6 | C43—C44—H44 | 120.1 |
C17A—C18A—Cu1 | 107.5 (3) | C45—C44—C43 | 119.8 (4) |
C17A—C18A—H18A | 118.3 | C45—C44—H44 | 120.1 |
C19—C18A—Cu1 | 69.9 (2) | C44—C45—H45 | 119.6 |
C19—C18A—C17A | 123.4 (4) | C44—C45—C46 | 120.8 (4) |
C19—C18A—H18A | 118.3 | C46—C45—H45 | 119.6 |
Cu1—C18B—H18B | 99.7 | C41—C46—C45 | 119.3 (4) |
C17B—C18B—Cu1 | 102.1 (10) | C41—C46—H46 | 120.3 |
C17B—C18B—H18B | 116.7 | C45—C46—H46 | 120.3 |
C19—C18B—Cu1 | 68.9 (6) | C61—O61—H61 | 109 (4) |
C19—C18B—C17B | 126.6 (14) | O61—C61—H61A | 109.5 |
C19—C18B—H18B | 116.7 | O61—C61—H61B | 109.5 |
Cu1—C19—H19A | 106.1 | O61—C61—H61C | 109.5 |
Cu1—C19—H19B | 92.5 | H61A—C61—H61B | 109.5 |
Cu1—C19—H19C | 97.9 | H61A—C61—H61C | 109.5 |
Cu1—C19—H19D | 98.6 | H61B—C61—H61C | 109.5 |
C18A—C19—Cu1 | 71.3 (2) | H51A—O51—H51B | 107 (6) |
Cu1—N13—N14—Cu2 | −28.8 (3) | C12—S11—C15—N14 | −1.4 (2) |
Cu1—N13—N14—C15 | 171.7 (2) | C12—S12—C17A—C18A | 63.3 (4) |
Cu1—N13—C12—S11 | −172.29 (16) | C12—S12—C17B—C18B | −63.0 (11) |
Cu1—N13—C12—S12 | 7.9 (5) | C12—N13—N14—Cu2 | 156.3 (2) |
Cu1—N24—C25—S21 | −153.25 (16) | C12—N13—N14—C15 | −3.2 (4) |
Cu1—N24—C25—N22 | 28.4 (5) | C15—S11—C12—S12 | 179.4 (2) |
Cu2—N14—C15—S11 | −154.08 (16) | C15—S11—C12—N13 | −0.5 (3) |
Cu2—N14—C15—N12 | 26.2 (4) | C17A—S12—C12—S11 | 154.6 (2) |
Cu2—N23—N24—Cu1 | −26.2 (3) | C17A—S12—C12—N13 | −25.5 (4) |
Cu2—N23—N24—C25 | 176.0 (2) | C17A—C18A—C19—Cu1 | 98.2 (4) |
Cu2—N23—C22—S21 | −176.45 (14) | C17B—S12—C12—S11 | −169.9 (5) |
Cu2—N23—C22—S22 | 5.0 (4) | C17B—S12—C12—N13 | 9.9 (6) |
S12—C17A—C18A—Cu1 | −73.8 (3) | C17B—C18B—C19—Cu1 | −89.6 (14) |
S12—C17A—C18A—C19 | −151.0 (3) | C22—S21—C25—N22 | 177.7 (3) |
S12—C17B—C18B—Cu1 | 81.3 (11) | C22—S21—C25—N24 | −0.8 (2) |
S12—C17B—C18B—C19 | 153.9 (10) | C22—S22—C27A—C28A | 55.9 (4) |
S22—C27A—C28A—Cu2 | −75.7 (4) | C22—S22—C27B—C28B | −64.8 (6) |
S22—C27A—C28A—C29A | −152.3 (6) | C22—N23—N24—Cu1 | 155.4 (2) |
S22—C27B—C28B—Cu2 | 80.4 (6) | C22—N23—N24—C25 | −2.4 (4) |
S22—C27B—C28B—C29B | 153.5 (18) | C25—S21—C22—S22 | 178.01 (19) |
S31A—C31—C32—C33 | −178.5 (3) | C25—S21—C22—N23 | −0.7 (2) |
S31A—C31—C36—C35 | 178.2 (3) | C27A—S22—C22—S21 | 166.1 (2) |
S31B—C31—C32—C33 | −179.9 (4) | C27A—S22—C22—N23 | −15.4 (3) |
S31B—C31—C36—C35 | 179.4 (4) | C27A—C28A—C29A—Cu2 | 97.3 (5) |
O31A—S31A—C31—C32 | −39.7 (5) | C27B—S22—C22—S21 | −162.1 (3) |
O31A—S31A—C31—C36 | 142.0 (3) | C27B—S22—C22—N23 | 16.4 (4) |
O31B—S31B—C31—C32 | −118.6 (4) | C27B—C28B—C29B—Cu2 | −95.7 (12) |
O31B—S31B—C31—C36 | 61.8 (6) | C31—S31A—O31A—Cu1 | −70.9 (4) |
O32A—S31A—O31A—Cu1 | 46.0 (5) | C31—S31B—O31B—Cu1 | 83.3 (5) |
O32A—S31A—C31—C32 | −158.4 (3) | C31—C32—C33—C34 | 0.3 (6) |
O32A—S31A—C31—C36 | 23.3 (4) | C32—C31—C36—C35 | −0.2 (5) |
O32B—S31B—O31B—Cu1 | −168.0 (6) | C32—C33—C34—C35 | 0.2 (6) |
O32B—S31B—C31—C32 | 124.4 (6) | C33—C34—C35—C36 | −0.6 (6) |
O32B—S31B—C31—C36 | −55.2 (7) | C34—C35—C36—C31 | 0.6 (6) |
O33A—S31A—O31A—Cu1 | 172.8 (4) | C36—C31—C32—C33 | −0.3 (5) |
O33A—S31A—C31—C32 | 80.6 (5) | S41—C41—C42—C43 | 179.6 (3) |
O33A—S31A—C31—C36 | −97.7 (4) | S41—C41—C46—C45 | −179.4 (3) |
O33B—S31B—O31B—Cu1 | −37.5 (8) | O41—S41—C41—C42 | 58.2 (3) |
O33B—S31B—C31—C32 | 3.7 (7) | O41—S41—C41—C46 | −121.7 (3) |
O33B—S31B—C31—C36 | −175.9 (4) | O42—S41—C41—C42 | −63.9 (3) |
N13—N14—C15—S11 | 2.8 (3) | O42—S41—C41—C46 | 116.2 (3) |
N13—N14—C15—N12 | −176.9 (3) | O43—S41—C41—C42 | 176.8 (3) |
N14—N13—C12—S11 | 2.1 (3) | O43—S41—C41—C46 | −3.1 (3) |
N14—N13—C12—S12 | −177.7 (2) | C41—C42—C43—C44 | 0.3 (6) |
N23—N24—C25—S21 | 1.9 (3) | C42—C41—C46—C45 | 0.7 (5) |
N23—N24—C25—N22 | −176.5 (3) | C42—C43—C44—C45 | −0.5 (6) |
N24—N23—C22—S21 | 1.9 (3) | C43—C44—C45—C46 | 0.7 (6) |
N24—N23—C22—S22 | −176.6 (2) | C44—C45—C46—C41 | −0.9 (6) |
C12—S11—C15—N12 | 178.3 (3) | C46—C41—C42—C43 | −0.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12A···O51i | 0.91 (5) | 1.94 (5) | 2.765 (4) | 150 (4) |
N12—H12B···O41 | 0.87 (5) | 2.00 (5) | 2.867 (4) | 174 (4) |
N22—H22A···O42ii | 0.90 (5) | 2.04 (5) | 2.896 (4) | 158 (4) |
N22—H22B···O61iii | 0.86 (5) | 1.96 (5) | 2.758 (4) | 154 (4) |
C17A—H17A···O33Aiv | 0.99 | 2.54 | 3.476 (7) | 157 |
C17B—H17D···S31Biv | 0.99 | 2.76 | 3.676 (16) | 154 |
C17B—H17D···O33Biv | 0.99 | 1.61 | 2.387 (16) | 132 |
C18A—H18A···O31A | 0.95 | 2.17 | 2.835 (6) | 126 |
C27A—H27A···O33Av | 0.99 | 2.44 | 3.377 (8) | 159 |
C28A—H28A···O32A | 0.95 | 2.05 | 2.769 (7) | 131 |
C27B—H27D···O32Bv | 0.99 | 2.29 | 3.133 (13) | 142 |
C28B—H28B···S41 | 0.95 | 3.01 | 3.891 (8) | 155 |
C28B—H28B···O41 | 0.95 | 2.42 | 3.096 (9) | 128 |
O61—H61···O43vi | 0.75 (6) | 1.98 (6) | 2.726 (4) | 174 (6) |
C61—H61B···O51v | 0.98 | 2.58 | 3.426 (5) | 145 |
O51—H51A···O43v | 0.82 (6) | 2.00 (7) | 2.790 (4) | 164 (6) |
O51—H51B···O32B | 0.81 (7) | 2.20 (7) | 3.010 (11) | 170 (6) |
O51—H51B···O33A | 0.81 (7) | 1.84 (7) | 2.641 (7) | 168 (6) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) x, −y+1/2, z−1/2; (iv) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) −x+2, −y+1, −z+2. |
(1) | |||
Cu1—N3 | 1.9938 (17) | Cu1—m | 1.940 (1) |
Cu1—N4i | 1.9693 (19) | Cu1—O1 | 2.473 (3) |
Cu1—C8 | 2.038 (2) | C8—C9 | 1.360 (3) |
Cu1—C9 | 2.073 (2) | ||
N4i—Cu1—N3 | 114.48 (7) | O1—Cu—m | 97.76 (5) |
C8—Cu1—C9 | 38.62 (8) | C9—C8—C7 | 122.8 (2) |
(2) | |||
Cu1—N3 | 2.0036 (15) | Cu1—m | 1.9454 (9) |
Cu1—N4i | 1.9646 (11) | Cu1 – F1 | 2.6670 (15) |
Cu1—C8 | 2.0451 (12) | C8—C9 | 1.3706 (16) |
Cu1—C9 | 2.0799 (15) | ||
N4i—Cu1—N3 | 114.54 (5) | F1—Cu—m | 95.51 (3) |
C8—Cu1—C9 | 38.80 (5) | C9—C8—C7 | 123.77 (10) |
Symmetry code: (i) -x+1, -y+1, -z+1. m is the mid-point of C═C bond. |
m — middle of allylic C = C bond. |
Cu1A—N13 | 2.045 (3) | Cu2A—C28A | 2.062 (4) |
Cu1A—N24 | 1.962 (2) | Cu2A—C29A | 2.052 (8) |
Cu1A—C18A | 2.054 (4) | Cu2B—O1 | 2.341 (7) |
Cu1A—C19A | 2.039 (6) | Cu1A—O11 | 2.4416 (29) |
Cu1B—O1 | 2.363 (7) | Cu2A—O21 | 2.5391 (31) |
Cu2A—N14 | 1.974 (3) | C18A—C19A | 1.374 (9) |
Cu2A—N23 | 1.998 (3) | C28A—C29A | 1.369 (11) |
Cu1A—m | 1.928 (2) | Cu2A—m? | 1.940 (2) |
N24—Cu1A—N13 | 110.12 (11) | C19A—C18A—C17A | 125.4 (5) |
C19A—Cu1A—C18A | 39.2 (2) | C29A—C28A—C27A | 125.9 (5) |
N14—Cu2A—N23 | 111.13 (12) | O11—Cu1A—m | 98.77 (8) |
C29A—Cu2A—C28A | 38.9 (3) | O21—Cu2A—m? | 101.25 (8) |
References
Alves, S. A., Ferreira, T. C. R., Sabatini, N. S., Trientini, A. C. A., Migliorini, F. L., Baldan, M. R., Ferreira, N. G. & Lanza, M. R. V. (2012). Chemosphere, 88, 155–160. CrossRef CAS Google Scholar
Ardan, B., Slyvka, Yu., Goreshnik, E. & Mys'kiv, M. (2013). Acta Chim. Slov. 60, 484–490. CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C. & Rima, G. (2009). Bioorg. Med. Chem. 17, 5275–5284. Web of Science CrossRef PubMed CAS Google Scholar
Deng, Y., Liu, J., Zhang, Q., Li, F., Yang, Y., Li, P. & Ma, J. (2008). Inorg. Chem. Commun. 11, 433–437. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilden, R. C., Huffling, K. & Sattler, B. J. (2010). J. Obstet. Gynecol. Neonatal Nurs. 39, 103–110. CrossRef Google Scholar
Goreshnik, E. A., Slyvka, Yu. I. & Mys'kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177–180. CSD CrossRef CAS Google Scholar
Goreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys'kiv, M. G. (2016). J. Organomet. Chem. 810, 1–11. CSD CrossRef CAS Google Scholar
Granadino-Roldán, J. M., Garzón, A. S., García, G., Moral, M. N., Navarro, A., Fernández-Liencres, M. P., Peña-Ruiz, T. S. & Fernández-Gómez, M. J. (2011). Phys. Chem. C, 115, 2865–2873. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guha, P. C. (1922). J. Am. Chem. Soc. 44, 1510–1517. CrossRef CAS Google Scholar
He, J. B., Qi, F., Wang, Y. & Deng, N. (2010). Sens. Actuators B, 145, 480–487. CrossRef CAS Google Scholar
Higashihara, T., Wu, H.-C., Mizobe, T., Lu, C., Ueda, M. & Chen, W.-C. (2012). Macromolecules, 45, 9046–9055. CrossRef CAS Google Scholar
Hu, Y., Li, C.-Y., Wang, X.-M., Yang, Y.-H. & Zhu, H.-L. (2014). Chem. Rev. 114, 5572–5610. CrossRef CAS Google Scholar
Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Had, Z., Khan, A., Ali, S. & Choudhar, M. Z. (2010). Eur. J. Med. Chem. 45, 5200–5207. CrossRef CAS Google Scholar
Lake, B. R. M. & Willans, C. E. (2013). Chem. Eur. J. 19, 16780–16790. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lee, J. S., Lee, H., Seo, H. J., Son, E. J., Lee, S. H., Jung, M. E., Lee, M. W., Han, H. K., Kim, J., Kang, J. & Lee, J. (2010). Bioorg. Med. Chem. 18, 2178–2194. CrossRef CAS Google Scholar
Li, Z.-H., Lin, P. & Du, S.-W. (2008). Polyhedron, 27, 232–240. CSD CrossRef Google Scholar
Li, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680. CrossRef CAS Google Scholar
Moshafi, M. H., Sorkhi, M., Emami, S., Nakhjiri, M., Yahya-Meymandi, A., Negahbani, A. S., Siavoshi, F., Omrani, M., Alipour, E., Vosooghi, M., Shafiee, A. & Foroumadi, A. (2011). Arch. Pharm. Chem. Life Sci. 11, 178–183. CrossRef Google Scholar
Mykhalichko, B. M. & Mys'kiv, M. G. (1998). Ukr. Patent UA 25450A. Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Pattn, S. R., Kittur, B. S., Sastry, B. S., Jadav, S. G., Thakur, D. K., Madamwar, S. A. & Shinde, H. V. (2011). Indian J. Chem. Sect. B, 50, 615–618. Google Scholar
Pulvermacher, G. (1894). Chem. Ber. 27, 613. CrossRef Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Slyvka, Yu. I. (2015). J. Struct. Chem. 56, 1118–1123. CSD CrossRef CAS Google Scholar
Slyvka, Yu., Goreshnik, E., Ardan, B., Veryasov, G., Morozov, D. & Mys'kiv, M. (2015). J. Mol. Struct. 1086, 125–130. CSD CrossRef CAS Google Scholar
Slyvka, Y., Goreshnik, E., Pavlyuk, O. & Mys'kiv, M. (2013). Cent. Eur. J. Chem. 11, 1875–1901. CAS Google Scholar
Slyvka, Yu., Pokhodylo, N., Savka, R., Goreshnik, E. & Mys'kiv, M. (2009). Chem. Met. Alloys, 2, 130–137. Google Scholar
Slyvka, Yu., Pokhodylo, N., Savka, R., Mazej, Z., Goreshnik, E. & Mys'kiv, M. (2010). Chem. Met. Alloys, 3, 201–207. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tao, Y. X., Xu, Q. F., Lu, J. M. & Yang, X. B. (2010). Dyes Pigm. 84, 153–158. CrossRef CAS Google Scholar
Trukhina, O. N., Rodriguez-Morgade, M. S., Wolfrum, S., Caballero, E., Snejko, N., Danilova, E. A., Gutierrez-Puebla, E., Islyaikin, M. K., Guldi, D. M. & Torres, T. (2010). J. Am. Chem. Soc. 132, 12991–12999. CrossRef CAS Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia. Google Scholar
Xu, W. M., Li, S. Z., He, M., Yang, S., Li, X. Y. & Li, P. (2013). Bioorg. Med. Chem. Lett. 23, 5821–5824. CrossRef CAS Google Scholar
Zhang, K. L., Qiao, N., Gao, H. Y., Zhou, F. & Zhang, M. (2007). Polyhedron, 26, 2461–2469. CSD CrossRef CAS Google Scholar
Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156. Web of Science CrossRef CAS PubMed Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.