research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

C—I⋯N and C—I⋯π halogen bonding in the structures of 1-benzyl­iodo­imidazole derivatives

CROSSMARK_Color_square_no_text.svg

aChemistry, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA, and bDepartment of Chemistry, University of Wisconsin–Stevens Point, 2001 Fourth Avenue, Stevens Point, WI 54481, USA
*Correspondence e-mail: ericbosch@missouristate.edu

Edited by M. Kubicki, Adam Mickiewicz University, Poland (Received 19 August 2016; accepted 22 November 2016; online 1 January 2017)

Halogen bonding is a well-established and intensively studied inter­molecular inter­action that has also been used in the preparation of functional materials. While polyfluoro­iodo- and polyfluoro­bromo­benzenes have been widely used as aromatic halogen-bond donors, there have been very few studies of iodo­imidazoles with regard to halogen bonding. We describe here the X-ray structures of three iodo­imidazole derivatives, namely 1-benzyl-2-iodo-1H-imidazole, C10H9IN2, (1), 1-benzyl-4-iodo-1H-imidazole, C10H9IN2, (2), and 1-benzyl-2-iodo-1H-benz­imidazole, C14H11IN2, (3), and the halogen bonds that dominate the inter­molecular inter­actions in each of these three structures. The three-dimensional structure of (1) is dominated by a strong C—I⋯N halogen bond, with an N⋯I distance of 2.8765 (2) Å, that connects the mol­ecules into one-dimensional zigzag ribbons of mol­ecules. In contrast, the three-dimensional structures of (2) and (3) both feature C—I⋯π halogen-bonded dimers.

1. Introduction

Halogen bonding is now a well-established and intensively studied inter­molecular inter­action that has also been used in the preparation of functional materials (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Primagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Gilday et al., 2015[Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]). While polyfluoro­iodo- and polyfluoro­bromo­benzenes have been widely used as aromatic halogen-bond donors, there have been very few studies of iodo­imidazoles with regard to halogen bonding. Indeed, a search of the Cambridge Structural Database (CSD; Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) revealed 74 examples involving iodo­imidazoles. It is noteworthy, however, that only 18 of the 74 structures contained neutral iodinated imidazole derivatives. Furthermore, 14 of these 18 structures do not exhibit any close contacts to the I atoms. The structures of five neutral N-unsubstituted iodo­imidazoles are dominated by N—H⋯N hydrogen bonds [refcodes BOWREM, BOWRUC and BOWSAJ (Andrzejewski et al., 2015[Andrzejewski, M., Marciniak, J., Rajewski, K. W. & Katrusiak, A. (2015). Cryst. Growth Des. 15, 1658-1665.]), GARJUG (Chlupatý et al., 2012[Chlupatý, T., Parík, P. & Padelková, Z. (2012). Acta Cryst. E68, o553-o554.]), and WISBUL (Ding et al., 2012[Ding, X., Tuikka, M. & Haukka, M. (2012). In Recent Advances in Crystallography, edited by J. B. Benedict. Rijeka, Croatia: Intech.])] and one structure features N—H⋯O hydrogen bonds (KOZLIW; Jansa et al., 2015[Jansa, J., Lycka, A., Ruzicka, A., Grepl, M. & Vanecek, J. (2015). Tetrahedron, 71, 27-36.]), while seven more sterically hindered imidazole derivatives do not display any major inter­molecular inter­actions and the three-dimensional structures presumably have controlled close packing based on size, shape, and polarity [GOGYOR (Delest et al., 2008[Delest, B., Nshimyumukiza, P., Fasbender, O., Tinant, B., Marchand-Brynaert, J., Darro, F. & Robiette, R. (2008). J. Org. Chem. 73, 6816-6823.]), IGUANM (Al-Mukhtar & Wilson, 1978[Al-Mukhtar, J. H. & Wilson, H. R. (1978). Acta Cryst. B34, 337-339.]), KIRYEQ (Poverlein et al., 2007[Poverlein, C., Jacobi, N., Mayer, P. & Lindel, T. (2007). Synthesis, pp. 3620-3626.]), UJOCIF (Tschamber et al., 2003[Tschamber, T., Gessier, F., Neuburger, M., Gurcha, S. S., Besra, G. S. & Streith, J. (2003). Eur. J. Org. Chem. pp. 2792-2798.]), NUCRAE (Phillips et al., 1997[Phillips, J. G., Fadnis, L. & Williams, D. R. (1997). Tetrahedron Lett. 38, 7835-7838.]), UNIFUS (Terinek & Vasella, 2003[Terinek, M. & Vasella, A. (2003). Helv. Chim. Acta, 86, 3482-3509.]), and UXOXOV (Li et al., 2011[Li, T., Guo, L., Zhang, Y., Wang, J., Zhang, Z., Jing Li, J., Zhang, W., Lin, J., Zhao, W. & Wang, P. G. (2011). Bioorg. Med. Chem. 19, 2136-2144.])]. In contrast, three unhindered N-substituted iodo­imidazoles do display C—I⋯N halogen bonding as the major inter­molecular inter­action [BEQWEB (Mukai & Nishikawa, 2013[Mukai, T. & Nishikawa, K. (2013). X-ray Struct. Anal. Online, 29, 13-14.]), GOGYIL (Delest et al., 2008[Delest, B., Nshimyumukiza, P., Fasbender, O., Tinant, B., Marchand-Brynaert, J., Darro, F. & Robiette, R. (2008). J. Org. Chem. 73, 6816-6823.]) and HUDSUW (Byrne, 2015[Byrne, P. (2015). Private communication (refcode HUDSUW). CCDC, Cambridge, England.])]. A particularly striking example is the identification of a trimeric halogen-bonded unit by Mukai & Nishikawa (2013[Mukai, T. & Nishikawa, K. (2013). X-ray Struct. Anal. Online, 29, 13-14.]). The

[Scheme 1]
reported halogen bonds have N⋯I distances between 2.884 and 2.953 Å, corresponding to 81.7–83.7% of the sum of the van der Waals radii of 3.53 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), and are essentially linear, with C—I⋯N angles between 171.38 and 174.86°. In this study, we present the structures of three iodo­imidazole derivatives, namely 1-benzyl-2-iodo-1H-imidazole, (1), 1-benzyl-4-iodo-1H-imidazole, (2), and 1-benzyl-2-iodo-1H-benz­imidazole, (3), and discuss the inter­molecular halogen-bonding inter­actions and other nonbonding inter­actions that dominate the crystal structures.

2. Experimental

2.1. Synthesis and crystallization

2.1.1. 1-Benzyl-2-iodo-1H-imidazole, (1)

1-Benzyl-1H-im­id­a­zole was synthesized according to the procedure of Salvio et al. (2011[Salvio, R., Cacciapaglia, R. & Maldolini, L. (2011). J. Org. Chem. 76, 5438-5443.]). Compound (1) was synthesized from 1-benzyl-1H-imidazole using a modification of the procedure of de Figueiredo (2007[Figueiredo, R. M. de, Thoret, S., Huet, C. & Dubois, J. (2007). Synthesis, 4, 529-540.]). Thus, 1-benzyl-1H-imidazole (2 g, 12.64 mmol) and anhydrous tetra­hydro­furan (35 ml) were added to a three-necked 250 ml round-bottomed flask under an argon atmosphere. The mixture was cooled to 195 K and stirred at this temperature for 7 min. 1.6 M n-BuLi (8 ml, 12.64 mmol, 1 equivalent) was added dropwise over a period of 2 mins and the resultant mixture stirred at 195 K for 45 min. Iodine (4.81 g, 18.96 mmol, 1.5 equivalents) was crushed and added to the stirred mixture. The cooling bath was removed and the mixture stirred at room temperature for 3 h under argon. The mixture was extracted with CH2Cl2 (300 ml) and the excess I2 was quenched with 10% Na2SO3 (200 ml). The organic layer was separated, washed twice with H2O (200 ml) and twice with brine (200 ml), and then dried over Na2SO4. The solvent was removed in vacuo and the crude product purified by flash column chromatography using a 10:1 (v/v) mixture of hexane and ethyl acetate to afford 2.23 g of the compound as a white solid (yield 7.85 mmol, 62%). RF = 0.27 (hexa­ne/EtOAc, 2:1 v/v). The solid was crystallized from a 9:1 (v/v) mixture of hexane and ethyl acetate to give white needle-like crystals [m.p. 373.5–375.9 K; literature 372–374 K (Moreno-Manas et al., 1990[Moreno-Manas, M., Bassa, J., Llado, N. & Pleixats, R. (1990). J. Heterocycl. Chem. 27, 673-678.])]. 1H NMR (400 MHz, CDCl3): δ 5.10 (s, 2H), 7.01 (d, J = 1.6 Hz, 1H), 7.12–7.15 (m, 3H), 7.32–7.38 (m, 3H).

2.1.2. 1-Benzyl-4-iodo-1H-imidazole, (2)

Compound (2) was synthesized from commercially available 4-iodo-1H-imidazole using a similar procedure to that used to synthesize 1-benzyl-1H-imidazole (see Supporting information).

2.1.3. 1-Benzyl-2-iodo-1H-benz­imidazole, (3)

1-Benzyl-1H-benz­imidazole and the iodinated compound (3) were synthesized using the modified procedure used for the preparation of (1) (see Supporting information).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic) or 0.98 Å (methyl­ene) and Uiso(H) = kUiso(C), where k = 1.5 for the methyl­ene group and 1.2 for all aromatic H atoms. The correct absolute configuration for the mol­ecules of compound (1) in the crystal selected for data collection was determined by the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) of −0.002 (13) by a classical fit to all intensities and was calculated using 913 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 1
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula C10H9IN2 C10H9IN2 C14H11IN2
Mr 284.09 284.09 334.15
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 8.7561 (5), 9.0016 (5), 12.8869 (7) 8.4574 (5), 6.1526 (3), 19.4261 (10) 6.4606 (8), 8.2346 (10), 12.3451 (14)
α, β, γ (°) 90, 90, 90 90, 96.362 (1), 90 108.064 (1), 94.174 (2), 95.366 (2)
V3) 1015.73 (10) 1004.61 (9) 618.05 (13)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.11 3.14 2.57
Crystal size (mm) 0.30 × 0.20 × 0.05 0.22 × 0.22 × 0.22 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.622, 0.746 0.594, 0.746 0.588, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13262, 2228, 2202 12374, 2207, 2114 8079, 2777, 2725
Rint 0.030 0.021 0.016
(sin θ/λ)max−1) 0.641 0.641 0.645
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.030, 1.05 0.016, 0.037, 1.11 0.015, 0.039, 1.09
No. of reflections 2228 2207 2777
No. of parameters 118 118 154
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.27 0.73, −0.52 0.74, −0.35
Absolute structure See §2.2[link]
Computer programs: SMART (Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

2.3. Electrostatic potential calculations

All mol­ecules were geometry optimized using the Spartan'10 (Wavefunction, 2010[Wavefunction (2010). Spartan'10. Wavefunction Inc., Irvine, CA, USA.]) mol­ecular modeling program with density functional theory (DFT) at the B3LYP/6-311+G** level, and the corresponding mol­ecular electrostatic potential energy surface was determined also using Spartan'10. The initial geometry for the optimization corresponded to that observed in the corresponding crystal structure. In the optimized geometry (gas phase), the benzyl group is rotated relative to the imidazole ring and minor conformation-based differences in the electrostatic potentials may be expected between the two conformations. The differences between the observed conformation and the optimized conformation of each of (1), (2), and (3) are collected in Table S1 in the Supporting information.

3. Results and discussion

The asymmetric unit of the X-ray structure of (1) contains a single mol­ecule. The phenyl group is essentially orthogonal to the imidazole group, with a dihedral angle between the planes defined by the phenyl C atoms and the imidazole N and C atoms of 84°. Phenyl atom H6 is positioned above imidazole atom N1, with an N1—C4—C5—C6 torsion angle of 13.0 (4)° and an H6⋯N1 distance of 2.58 Å, compared to the sum of the van der Waals radii of 2.75 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). There is also a close contact between one of the benzyl H atoms and the I atom, with an H4B⋯I1 distance of 3.04 Å, compared to the sum of the van der Waals radii of 3.18 Å. The three-dimensional structure of (1) features an imidazole N⋯I halogen bond, as shown in Fig. 1[link]. The N2⋯I1i distance [symmetry code: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1] is 2.8765 (2) Å, which is 81% of the sum of the van der Waals radii of 3.53 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The halogen bond is almost linear, with a C—I⋯N angle of 174.42 (9)°.

[Figure 1]
Figure 1
The mol­ecular structure of (1), showing the imidazole N⋯I halogen bond (dashed line). Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.

Linear one-dimensional ribbons of zigzag halogen-bonded mol­ecules of (1) dominate the three-dimensional structure, as shown in Fig. 2[link]. These one-dimensional ribbons run parallel to the a axis and are close packed with no other significant inter­molecular inter­actions.

[Figure 2]
Figure 2
The one-dimensional zigzag halogen-bonded ribbon of mol­ecules in the single-crystal X-ray structure of (1).

The X-ray structure of (2) also contains a single mol­ecule in the asymmetric unit having a bent shape. The phenyl group is also almost orthogonal to the imidazole group, with a dihedral angle between the planes defined by the phenyl and imidazole rings of 84°. The phenyl ring is not oriented above the imidazole ring; the C6—C5—C4—N1 torsion angle is −52.0 (2)°. The three-dimensional structure has a weak iodo–π inter­action involving the pendant phenyl ring of an adjacent mol­ecule that results in the formation of C—I⋯π halogen-bonded dimers, as shown in Fig. 3[link].

[Figure 3]
Figure 3
The mol­ecular structure of (2), showing (a) the atom labeling and the C—I⋯π(phen­yl) inter­actions (dashed lines), with displacement ellipsoids drawn at the 50% probability level, and (b) a space-filling model.

In the C—I⋯π-bonded dimer of (2), the C—I bond is directed towards phenyl atoms C7i and C8i [symmetry code: (i) −x + 1, −y + 1, −z + 2] of an adjacent mol­ecule, with I1⋯C7i and I1⋯C8i distances of 3.551 (2) and 3.5534 (2) Å, respectively, both approximately 96% of the sum of the van der Waals radii of 3.68 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The C2—I1⋯C7i and C2—I1⋯C8i angles are 152.99 (1) and 171.24 (1)°, respectively. The C—I⋯Cg1i distance is 3.5861 (2) Å (Cg1 is the centroid of the C5–C10 phenyl ring) and the C—I⋯Cg1i angle is 162.82 (1)°. There are two other close contacts in the three-dimensional structure of (2). One of these is a nonconventional C—H⋯N hydrogen bond between atom N2 and a benzylic H atom of an adjacent mol­ecule, with an N2⋯H4Bii [symmetry code: (ii) x, y − 1, z] distance of 2.55 Å, which is 93% of the sum of the van der Waals radii of 2.75 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]); the C—H⋯N angle is 158°. There is a close H⋯H contact of 2.26 Å between atoms H4A and H7iii [symmetry code: (iii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]] of an adjacent mol­ecule.

The structure of (3) also contains a single mol­ecule in the asymmetric unit, with a dihedral angle between the imidazole and benzyl rings of 86°. In this structure, phenyl atom H9 is positioned above atom N1, with an N1—C8—C9—C14 torsion angle of −13.4 (2)°. There is also a C—I⋯π inter­action to the phenyl ring of an adjacent mol­ecule, resulting in a C—I⋯π-bonded mol­ecular dimeric motif similar to that observed in (2) (Fig. 4[link]).

[Figure 4]
Figure 4
The structure of the C—I⋯π halogen-bonded dimers formed in the structure of (3), showing (a) the atom labeling and the C—I⋯π(phen­yl) inter­actions (dashed lines), with displacement ellipsoids drawn at the 50% probability level, and (b) a space-filling model.

In the C—I⋯π-bonded dimer of (3), the C—I bond is directed towards phenyl atom C13i [symmetry code: (i) −x + 1, −y + 1, −z] of the adjacent mol­ecule, with a C1—I1⋯C13i angle of 178.66 (1)° and an I3⋯C13i distance of 3.3929 (4) Å. This distance is 92% of the sum of the van der Waals radii of 3.68 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The C—I⋯Cg1i distance is 3.4562 (4) Å (Cg1 is the centroid of the C9–C14 phenyl ring) and the C—I⋯Cg1i angle is 156.94 (1)°. There is an intra­molecular C—H⋯π inter­action since benzyl atom H14 lies above the imidazole ring, with an N1—C8—C9—C14 torsion angle of −13.4 (2)°. This inter­action is labeled `x' in Fig. 5[link]. The H14⋯N1 distance is 2.51 Å and the C14—H14⋯N1 angle is 101°. The H14⋯Cg2 distance is 2.82 Å (Cg2 is the centroid of the N1/C1/N2/C2/C7 imidazole ring) and the C14—H14⋯Cg2 angle is 125°.

[Figure 5]
Figure 5
A partial view of the three-dimensional packing of (3), viewed along the a axis. The C—I⋯π inter­action is labeled as Iπ, the C—H⋯π inter­actions are labeled as x, y and z, and the π-stacking is labeled as ππ.

The three-dimensional packing of (3) involves multiple cohesive inter­actions, namely two inter­molecular C—H⋯π inter­actions and two ππ inter­actions. Benz­imidazole atom H5 is involved in a C—H⋯π inter­action with the pendant phenyl ring, labeled `y' in Fig. 5[link]; the H5⋯Cg1ii distance is 2.78 Å and the C—H⋯Cg1ii angle is 149° [Cg1 is the centroid of C9–C14 ring; symmetry code: (ii) −x + 2, −y + 1, −z + 1]. Benzyl atom H13 is involved in an inter­action with the benz­imidazole benzene ring, labeled `z' in Fig. 5[link], with an H13⋯Cg3iii distance of 2.94 Å and a C13—H13⋯Cg3iii angle of 141° [Cg3 is the centroid of the benz­imidazole C2–C7 ring; symmetry code: (iii) x, y + 1, z]. The benz­imidazole groups are alternately π-stacked (labeled ππ in Fig. 5[link]), with the benzene rings overlaid and slightly offset. The Cg3⋯Cg3iv distance is 4.5536 (6) Å, the perpendicular distance between the benzene rings is 4.3405 Å and the slippage is 1.377 Å [symmetry code: (iv) −x + 1, −y + 1, −z + 1].

In order to place these C—I⋯N and C—I⋯π inter­actions in context, two searches of the Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) were made. The first search, for crystal structures containing C—I⋯N contacts with I⋯N distances equal to or less than the sum of the van der Waals radii (3.53 Å), yielded 763 structures with a total of 1082 contacts that met the criteria. Several of these structures corresponded to parallel-displaced π-stacked aromatics, with very short contacts and C—I⋯N angles less than 90°, which we deemed as significantly different to not include in the analysis. Accordingly, the search was modified to include those structures in which the C—I⋯N angle was between 120 and 180°, resulting in 752 structures with 1058 distinct inter­actions that are displayed in the scatterplot of N⋯I distance versus C—I⋯N angle in Fig. 6[link]. The N⋯I distance reported here for (1) [2.876 (3) Å] is less than the median (2.973 Å) of the 1058 reported N⋯I distances and is clearly in the group of shorter C—I⋯N inter­actions. The almost linear C—I⋯N angle is consistent with the majority of the shorter N⋯I distances which are clustered at C—I⋯N angles above 165°.

[Figure 6]
Figure 6
A scatterplot of the N⋯I distances and C—I⋯N angles corresponding to all results of a search of the CSD using Conquest for C—I⋯N contacts with an I⋯N distance less than or equal to 3.53 Å, i.e. the sum of the van der Waals radii, and an C—I⋯N angle between 120 and 180°.

The second search of the CSD using Conquest probed C—I⋯π inter­actions specifically between an I atom bonded to carbon and a benzene ring as the π-system in which the I⋯Cg (Cg is the centroid of the benzene ring) distance was less than 3.68 Å (the sum of the van der Waals radii of C and I) and the C—I⋯π angles were between 120 and 180°. The restrictive angle was chosen to exclude parallel-displaced π-stacked systems. The shortest C—I⋯Cg distance from the search (3.215 Å) was recorded from a crystal of 2-(2-fluoro­pyridin-3-yl)-2-(4-iodo­phen­yl)-2H-3λ5,2λ5-[1,3,2]oxaza­borolo[5,4,3-ij]quinolone under a pressure of 4.88 GPa at ambient temperature (Wesela-Bauman et al., 2014[Wesela-Bauman, G., Parsons, S., Serwatowskia, J. & Woźniak, K. (2014). CrystEngComm, 16, 10780-10790.]). In fact, four of the five shortest C—I⋯Cg distances reported correspond to that study. The C—I⋯Cg distance for the same compound at 100 K and under atmospheric pressure is 3.525 Å. Accordingly, the data corresponding to pressurized crystals from that study are not included in the scatterplot of I⋯Cg distances versus C—I⋯Cg angles displayed in Fig. 7[link].

[Figure 7]
Figure 7
A scatterplot showing the C—I⋯Cg contacts (Cg is the centroid of the benzene ring) to benzene derivatives, with an I⋯Cg distance less than or equal to 3.68 Å, i.e. the sum of the van der Waals radii, and an C—I⋯Cg angle between 120 and 180°.

The shortest C—I⋯Cg distance of 3.272 Å in Fig. 7[link] corresponds to the structure of the p-xylene solvate of hexa­kis­(4-iodo­phen­yl)benzene that includes an iodo–π inter­action between one of the iodo­benzene mol­ecules and the included p-xylene solvent mol­ecule (Kobayashi et al., 2005[Kobayashi, K., Kobayashi, N., Ikuta, M., Therrien, B., Sakamoto, S. & Yamaguchi, K. (2005). J. Org. Chem. 70, 749-752.]). The next six close contacts have C—I⋯Cg distances between 3.376 and 3.400 Å. The C—I⋯Cg distance of 3.4562 (4) Å reported here for (3) is clearly amongst the shorter C—I⋯Cg distances reported to date.

In order to better understand the halogen-bonding behavior of (1), (2), and (3), the mol­ecular electrostatic potentials of these three compounds were calculated and the plots showing the mol­ecular electrostatic potential surfaces are shown in Fig. 8[link].

[Figure 8]
Figure 8
The mol­ecular electrostatic potential maps of compounds (1), (2), and (3), shown on the same scale (right).

The calculated positive electrostatic potential associated with the positive σ-hole on the I atom of compounds (1), (2), and (3) were determined to be 123, 81, and 129 kJ mol−1, respectively. These modest values associated with the positive σ-hole are considerably lower than the values reported for the better known halogen-bond donors. For example, iodo­penta­fluoro­benzene has a calculated positive electrostatic potential associated with the σ-hole on the I atom of 166 kJ mol−1 (Aakeröy et al., 2014[Aakeröy, C. B., Wijethunga, T. K., Haj, M. A., Desper, J. & Moore, C. (2014). CrystEngComm, 16, 7218-7225.]). The positive electrostatic potential associated with the σ-hole on the I atom of 1,3,5-tri­iodo-2,4,6-tri­nitro­benzene has recently been reported as 213 kJ mol−1, which is the most positive value calculated to date (Goud et al., 2016[Goud, N. R., Bolton, O., Burgess, E. C. & Matzger, A. J. (2016). Cryst. Growth Des. 16, 1765-1771.]). Nevertheless, the 2-iodo­imidazole derivatives are distinctly better halogen-bond donors than iodo­benzene, with a calculated electrostatic potential of 103 kJ mol−1 (Aakeröy et al., 2014[Aakeröy, C. B., Wijethunga, T. K., Haj, M. A., Desper, J. & Moore, C. (2014). CrystEngComm, 16, 7218-7225.]), while the 4-iodo­imidazole derivative is a poorer halogen-bond acceptor than iodo­benzene. The negative electrostatic potential on the unsubstituted N atom of compounds (1), (2), and (3) are −204, −210, and −193 kJ mol−1, respectively. These values are similar to the values reported for a series of N-substituted imidazole derivatives (Aakeröy et al., 2016[Aakeröy, C. B., Wijethunga, T. K., Desper, J. & Dakovic, M. (2016). Cryst. Growth Des. 15, 2662-2670.]). Thus, while the relatively weak halogen-bonding inter­action of (2) can be ascribed to the low positive electrostatic potential on the I atom, rationalizing the other two results is difficult. The conundrum is that compounds (1) and (3) have similar halogen-bond-donor properties and similar halogen-bond-acceptor properties on the unsubstituted imidazole N atom, yet form different types of halogen bonds (C—I⋯N versus C—I⋯π).

In conclusion, we have demonstrated that 2-iodo­imidazoles are effective halogen-bond donors and acceptors and may form C—I⋯N or C—I⋯π halogen bonds but we are, as yet, unable to rationalize the factors that control the type of halogen bonding. In our future work, we plan to explore intra- and inter­molecular C—I⋯π inter­actions.

Supporting information


Computing details top

For all structures, data collection: SMART (Bruker, 2014); cell refinement: SMART (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

1-Benzyl-2-iodo-1H-imidazole (1) top
Crystal data top
C10H9IN2Dx = 1.858 Mg m3
Mr = 284.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7864 reflections
a = 8.7561 (5) Åθ = 2.8–27.1°
b = 9.0016 (5) ŵ = 3.11 mm1
c = 12.8869 (7) ÅT = 100 K
V = 1015.73 (10) Å3Irregular, colourless
Z = 40.30 × 0.20 × 0.05 mm
F(000) = 544
Data collection top
Bruker APEXII CCD
diffractometer
2228 independent reflections
Radiation source: fine-focus sealed tube2202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3660 pixels mm-1θmax = 27.1°, θmin = 2.8°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1111
Tmin = 0.622, Tmax = 0.746l = 1616
13262 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0131P)2 + 0.0966P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.030(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.25 e Å3
2228 reflectionsΔρmin = 0.27 e Å3
118 parametersAbsolute structure: Flack x determined using 913 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.002 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.23697 (2)0.28234 (2)0.52915 (2)0.01308 (5)
N10.1137 (3)0.4336 (3)0.72457 (18)0.0140 (5)
C10.0779 (3)0.3510 (3)0.6399 (2)0.0126 (6)
N20.0686 (3)0.3169 (3)0.63687 (19)0.0153 (5)
C20.1294 (3)0.3814 (3)0.7256 (2)0.0175 (6)
H10.23370.37590.74560.021*
C30.0203 (3)0.4526 (3)0.7792 (2)0.0173 (6)
H90.03290.50570.84230.021*
C40.2632 (4)0.4913 (3)0.7544 (2)0.0163 (6)
H70.24840.58590.79230.020*
H80.32180.51380.69060.020*
C50.3573 (3)0.3881 (3)0.8214 (2)0.0145 (6)
C60.3217 (3)0.2395 (3)0.8364 (2)0.0165 (6)
H30.23450.19800.80350.020*
C70.4136 (3)0.1504 (4)0.8995 (2)0.0210 (7)
H40.38850.04870.90940.025*
C80.5407 (3)0.2094 (4)0.9477 (2)0.0215 (7)
H20.60270.14870.99090.026*
C90.5776 (4)0.3587 (4)0.9327 (2)0.0222 (7)
H50.66470.40010.96580.027*
C100.4869 (3)0.4463 (3)0.8693 (2)0.0177 (6)
H60.51340.54740.85830.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01264 (8)0.01415 (9)0.01244 (8)0.00140 (7)0.00028 (7)0.00020 (6)
N10.0139 (12)0.0132 (12)0.0150 (12)0.0009 (10)0.0017 (10)0.0015 (10)
C10.0138 (14)0.0102 (13)0.0138 (14)0.0027 (11)0.0002 (11)0.0008 (11)
N20.0134 (11)0.0163 (14)0.0161 (12)0.0017 (9)0.0001 (9)0.0000 (9)
C20.0153 (14)0.0183 (16)0.0189 (15)0.0027 (12)0.0024 (12)0.0005 (12)
C30.0206 (16)0.0178 (15)0.0135 (14)0.0043 (13)0.0023 (13)0.0010 (12)
C40.0169 (14)0.0147 (13)0.0172 (12)0.0036 (12)0.0032 (15)0.0006 (10)
C50.0142 (14)0.0182 (15)0.0110 (14)0.0018 (12)0.0021 (11)0.0028 (11)
C60.0148 (13)0.0173 (16)0.0174 (13)0.0015 (11)0.0003 (11)0.0018 (12)
C70.0222 (16)0.0204 (15)0.0203 (15)0.0022 (13)0.0067 (13)0.0026 (13)
C80.0211 (14)0.0277 (17)0.0156 (14)0.0087 (15)0.0008 (11)0.0024 (14)
C90.0171 (15)0.0285 (18)0.0210 (16)0.0039 (14)0.0034 (12)0.0039 (14)
C100.0169 (15)0.0168 (15)0.0195 (15)0.0010 (12)0.0007 (13)0.0037 (13)
Geometric parameters (Å, º) top
I1—C12.088 (3)C5—C61.387 (4)
N1—C11.357 (4)C5—C101.394 (4)
N1—C31.379 (3)C6—C71.397 (4)
N1—C41.461 (4)C6—H30.9500
C1—N21.319 (3)C7—C81.381 (4)
N2—C21.389 (4)C7—H40.9500
C2—C31.341 (4)C8—C91.395 (5)
C2—H10.9500C8—H20.9500
C3—H90.9500C9—C101.386 (4)
C4—C51.512 (4)C9—H50.9500
C4—H70.9900C10—H60.9500
C4—H80.9900
C1—N1—C3106.4 (2)C6—C5—C10118.9 (3)
C1—N1—C4127.8 (2)C6—C5—C4123.4 (3)
C3—N1—C4125.8 (2)C10—C5—C4117.7 (3)
N2—C1—N1112.1 (2)C5—C6—C7120.4 (3)
N2—C1—I1124.0 (2)C5—C6—H3119.8
N1—C1—I1123.9 (2)C7—C6—H3119.8
C1—N2—C2104.5 (2)C8—C7—C6120.3 (3)
C3—C2—N2110.5 (3)C8—C7—H4119.8
C3—C2—H1124.7C6—C7—H4119.8
N2—C2—H1124.7C7—C8—C9119.7 (3)
C2—C3—N1106.5 (3)C7—C8—H2120.2
C2—C3—H9126.8C9—C8—H2120.2
N1—C3—H9126.8C10—C9—C8119.8 (3)
N1—C4—C5114.8 (2)C10—C9—H5120.1
N1—C4—H7108.6C8—C9—H5120.1
C5—C4—H7108.6C9—C10—C5120.9 (3)
N1—C4—H8108.6C9—C10—H6119.5
C5—C4—H8108.6C5—C10—H6119.5
H7—C4—H8107.5
C3—N1—C1—N20.2 (3)C3—N1—C4—C590.2 (3)
C4—N1—C1—N2179.7 (2)N1—C4—C5—C613.0 (4)
C3—N1—C1—I1178.7 (2)N1—C4—C5—C10167.7 (2)
C4—N1—C1—I10.9 (4)C10—C5—C6—C70.8 (4)
N1—C1—N2—C20.3 (3)C4—C5—C6—C7179.9 (3)
I1—C1—N2—C2178.5 (2)C5—C6—C7—C80.0 (4)
C1—N2—C2—C30.3 (3)C6—C7—C8—C90.3 (4)
N2—C2—C3—N10.2 (3)C7—C8—C9—C100.2 (4)
C1—N1—C3—C20.1 (3)C8—C9—C10—C51.1 (4)
C4—N1—C3—C2179.5 (3)C6—C5—C10—C91.4 (4)
C1—N1—C4—C589.3 (3)C4—C5—C10—C9179.3 (3)
1-Benzyl-4-iodo-1H-benzimidazole (2) top
Crystal data top
C10H9IN2F(000) = 544
Mr = 284.09Dx = 1.878 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4574 (5) ÅCell parameters from 7481 reflections
b = 6.1526 (3) Åθ = 2.5–27.1°
c = 19.4261 (10) ŵ = 3.14 mm1
β = 96.362 (1)°T = 100 K
V = 1004.61 (9) Å3Cut irregular cube, colourless
Z = 40.22 × 0.22 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
2207 independent reflections
Radiation source: fine-focus sealed tube2114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3660 pixels mm-1θmax = 27.1°, θmin = 2.1°
phi and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 77
Tmin = 0.594, Tmax = 0.746l = 2424
12374 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.0133P)2 + 0.8316P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
2207 reflectionsΔρmax = 0.73 e Å3
118 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.78435 (2)0.28882 (2)0.99037 (2)0.02415 (5)
N10.62017 (18)0.7607 (3)0.84311 (8)0.0184 (3)
C10.6885 (2)0.6133 (3)0.80429 (9)0.0193 (4)
H10.69110.62690.75570.023*
N20.75130 (18)0.4480 (3)0.84125 (8)0.0202 (3)
C20.7195 (2)0.4950 (3)0.90773 (9)0.0176 (4)
C30.6390 (2)0.6861 (3)0.91019 (9)0.0202 (4)
H30.60350.75330.94970.024*
C40.5408 (2)0.9614 (3)0.81736 (10)0.0234 (4)
H4A0.54200.96920.76650.028*
H4B0.60111.08760.83810.028*
C50.3709 (2)0.9758 (3)0.83403 (9)0.0180 (4)
C60.2651 (2)0.8056 (3)0.81699 (10)0.0212 (4)
H60.30050.67810.79580.025*
C70.1081 (2)0.8218 (3)0.83096 (10)0.0256 (4)
H70.03650.70480.81970.031*
C80.0554 (2)1.0088 (4)0.86130 (10)0.0265 (4)
H80.05231.02010.87050.032*
C90.1594 (3)1.1779 (3)0.87815 (11)0.0277 (4)
H90.12311.30580.89880.033*
C100.3176 (2)1.1619 (3)0.86495 (10)0.0240 (4)
H100.38911.27830.87710.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02821 (8)0.02566 (8)0.01895 (7)0.00504 (5)0.00421 (5)0.00451 (5)
N10.0185 (8)0.0183 (8)0.0193 (8)0.0004 (6)0.0055 (6)0.0031 (6)
C10.0177 (9)0.0255 (10)0.0152 (8)0.0006 (7)0.0038 (7)0.0016 (7)
N20.0198 (8)0.0235 (8)0.0177 (7)0.0025 (6)0.0045 (6)0.0027 (6)
C20.0171 (8)0.0191 (9)0.0167 (8)0.0005 (7)0.0027 (7)0.0004 (7)
C30.0248 (10)0.0203 (10)0.0167 (9)0.0003 (7)0.0075 (7)0.0000 (7)
C40.0248 (10)0.0186 (9)0.0281 (10)0.0021 (8)0.0089 (8)0.0080 (8)
C50.0211 (9)0.0178 (9)0.0151 (8)0.0028 (7)0.0022 (7)0.0043 (7)
C60.0259 (10)0.0184 (9)0.0190 (9)0.0042 (7)0.0009 (7)0.0028 (7)
C70.0212 (10)0.0305 (12)0.0236 (10)0.0015 (8)0.0045 (8)0.0048 (8)
C80.0195 (9)0.0380 (12)0.0216 (9)0.0078 (8)0.0004 (7)0.0019 (8)
C90.0314 (11)0.0263 (11)0.0257 (10)0.0106 (9)0.0050 (8)0.0037 (8)
C100.0279 (10)0.0185 (10)0.0254 (10)0.0007 (8)0.0015 (8)0.0010 (8)
Geometric parameters (Å, º) top
I1—C22.0717 (18)C5—C101.391 (3)
N1—C11.349 (2)C5—C61.393 (3)
N1—C31.374 (2)C6—C71.388 (3)
N1—C41.467 (2)C6—H60.9500
C1—N21.322 (2)C7—C81.388 (3)
C1—H10.9500C7—H70.9500
N2—C21.379 (2)C8—C91.378 (3)
C2—C31.362 (3)C8—H80.9500
C3—H30.9500C9—C101.394 (3)
C4—C51.510 (3)C9—H90.9500
C4—H4A0.9900C10—H100.9500
C4—H4B0.9900
C1—N1—C3107.09 (15)C10—C5—C6119.40 (17)
C1—N1—C4125.67 (16)C10—C5—C4120.18 (18)
C3—N1—C4127.24 (16)C6—C5—C4120.39 (17)
N2—C1—N1112.62 (16)C7—C6—C5120.18 (18)
N2—C1—H1123.7C7—C6—H6119.9
N1—C1—H1123.7C5—C6—H6119.9
C1—N2—C2103.82 (15)C8—C7—C6120.08 (19)
C3—C2—N2111.35 (16)C8—C7—H7120.0
C3—C2—I1126.28 (13)C6—C7—H7120.0
N2—C2—I1122.34 (13)C9—C8—C7120.02 (19)
C2—C3—N1105.11 (16)C9—C8—H8120.0
C2—C3—H3127.4C7—C8—H8120.0
N1—C3—H3127.4C8—C9—C10120.24 (19)
N1—C4—C5112.76 (15)C8—C9—H9119.9
N1—C4—H4A109.0C10—C9—H9119.9
C5—C4—H4A109.0C5—C10—C9120.08 (19)
N1—C4—H4B109.0C5—C10—H10120.0
C5—C4—H4B109.0C9—C10—H10120.0
H4A—C4—H4B107.8
C3—N1—C1—N20.3 (2)N1—C4—C5—C10129.69 (19)
C4—N1—C1—N2179.94 (17)N1—C4—C5—C652.0 (2)
N1—C1—N2—C20.3 (2)C10—C5—C6—C70.2 (3)
C1—N2—C2—C30.1 (2)C4—C5—C6—C7178.49 (18)
C1—N2—C2—I1178.38 (13)C5—C6—C7—C80.7 (3)
N2—C2—C3—N10.0 (2)C6—C7—C8—C90.6 (3)
I1—C2—C3—N1178.47 (13)C7—C8—C9—C100.1 (3)
C1—N1—C3—C20.2 (2)C6—C5—C10—C90.5 (3)
C4—N1—C3—C2179.96 (17)C4—C5—C10—C9177.82 (18)
C1—N1—C4—C5123.20 (19)C8—C9—C10—C50.7 (3)
C3—N1—C4—C556.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N2i0.992.553.488 (3)158
C4—H4B···N2i0.992.553.488 (3)158
C4—H4B···N2i0.992.553.488 (3)158
C4—H4B···N2i0.992.553.488 (3)158
Symmetry code: (i) x, y+1, z.
1-Benzyl-2-iodo-1H-benzimidazole (3) top
Crystal data top
C14H11IN2Z = 2
Mr = 334.15F(000) = 324
Triclinic, P1Dx = 1.796 Mg m3
a = 6.4606 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2346 (10) ÅCell parameters from 6682 reflections
c = 12.3451 (14) Åθ = 2.6–27.3°
α = 108.064 (1)°µ = 2.57 mm1
β = 94.174 (2)°T = 100 K
γ = 95.366 (2)°Cut irregular cube, colourless
V = 618.05 (13) Å30.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
2777 independent reflections
Radiation source: fine-focus sealed tube2725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.3660 pixels mm-1θmax = 27.3°, θmin = 1.8°
phi and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1010
Tmin = 0.588, Tmax = 0.746l = 1515
8079 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.3329P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2777 reflectionsΔρmax = 0.74 e Å3
154 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.36505 (2)0.21176 (2)0.00445 (2)0.01647 (5)
N10.6779 (2)0.27787 (17)0.20512 (12)0.0120 (3)
C10.4707 (3)0.2345 (2)0.16333 (14)0.0128 (3)
N20.3471 (2)0.20232 (18)0.23569 (12)0.0150 (3)
C20.4817 (3)0.2263 (2)0.33480 (14)0.0139 (3)
C30.4394 (3)0.2054 (2)0.43956 (15)0.0182 (3)
H30.30120.17240.45310.022*
C40.6071 (3)0.2349 (2)0.52297 (15)0.0194 (4)
H40.58280.22010.59450.023*
C50.8118 (3)0.2859 (2)0.50456 (15)0.0175 (3)
H50.92210.30570.56410.021*
C60.8566 (3)0.3081 (2)0.40127 (15)0.0151 (3)
H60.99430.34380.38850.018*
C70.6875 (3)0.2749 (2)0.31748 (14)0.0122 (3)
C80.8525 (3)0.3389 (2)0.15353 (14)0.0132 (3)
H8B0.82230.29380.06910.016*
H8A0.97990.29290.17490.016*
C90.8940 (3)0.5343 (2)0.19092 (13)0.0117 (3)
C101.0811 (3)0.6095 (2)0.16685 (15)0.0158 (3)
H101.17890.53830.12900.019*
C111.1250 (3)0.7877 (2)0.19790 (15)0.0177 (3)
H111.25230.83760.18110.021*
C120.9832 (3)0.8928 (2)0.25341 (15)0.0160 (3)
H121.01291.01440.27420.019*
C130.7972 (3)0.8192 (2)0.27853 (14)0.0150 (3)
H130.70060.89070.31730.018*
C140.7526 (3)0.6401 (2)0.24673 (14)0.0136 (3)
H140.62500.59040.26330.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01853 (7)0.01995 (7)0.01172 (6)0.00853 (4)0.00073 (4)0.00460 (4)
N10.0124 (6)0.0118 (6)0.0118 (6)0.0009 (5)0.0018 (5)0.0038 (5)
C10.0145 (8)0.0118 (7)0.0120 (7)0.0031 (6)0.0003 (6)0.0036 (6)
N20.0129 (7)0.0168 (7)0.0161 (7)0.0012 (5)0.0005 (5)0.0069 (6)
C20.0138 (8)0.0130 (7)0.0157 (8)0.0018 (6)0.0016 (6)0.0058 (6)
C30.0155 (8)0.0236 (9)0.0182 (8)0.0018 (7)0.0050 (7)0.0099 (7)
C40.0229 (9)0.0238 (9)0.0144 (8)0.0035 (7)0.0036 (7)0.0098 (7)
C50.0193 (9)0.0179 (8)0.0144 (8)0.0025 (7)0.0026 (7)0.0048 (6)
C60.0133 (8)0.0136 (7)0.0170 (8)0.0005 (6)0.0001 (6)0.0038 (6)
C70.0158 (8)0.0099 (7)0.0113 (7)0.0021 (6)0.0025 (6)0.0035 (6)
C80.0121 (7)0.0135 (7)0.0148 (8)0.0016 (6)0.0046 (6)0.0049 (6)
C90.0130 (7)0.0128 (7)0.0102 (7)0.0022 (6)0.0003 (6)0.0051 (6)
C100.0142 (8)0.0165 (8)0.0174 (8)0.0040 (6)0.0051 (6)0.0049 (6)
C110.0155 (8)0.0190 (8)0.0194 (8)0.0008 (6)0.0040 (7)0.0078 (7)
C120.0199 (8)0.0129 (7)0.0151 (8)0.0010 (6)0.0011 (6)0.0048 (6)
C130.0161 (8)0.0142 (8)0.0150 (8)0.0045 (6)0.0028 (6)0.0043 (6)
C140.0122 (7)0.0159 (8)0.0141 (8)0.0021 (6)0.0029 (6)0.0063 (6)
Geometric parameters (Å, º) top
I1—C12.0787 (16)C6—H60.9500
N1—C11.372 (2)C8—C91.522 (2)
N1—C71.392 (2)C8—H8B0.9900
N1—C81.459 (2)C8—H8A0.9900
C1—N21.310 (2)C9—C141.392 (2)
N2—C21.398 (2)C9—C101.399 (2)
C2—C31.399 (2)C10—C111.392 (2)
C2—C71.403 (2)C10—H100.9500
C3—C41.388 (3)C11—C121.389 (2)
C3—H30.9500C11—H110.9500
C4—C51.406 (3)C12—C131.394 (2)
C4—H40.9500C12—H120.9500
C5—C61.390 (2)C13—C141.399 (2)
C5—H50.9500C13—H130.9500
C6—C71.393 (2)C14—H140.9500
C1—N1—C7105.30 (13)N1—C8—C9112.67 (13)
C1—N1—C8129.42 (14)N1—C8—H8B109.1
C7—N1—C8124.77 (14)C9—C8—H8B109.1
N2—C1—N1114.90 (14)N1—C8—H8A109.1
N2—C1—I1122.95 (12)C9—C8—H8A109.1
N1—C1—I1122.10 (12)H8B—C8—H8A107.8
C1—N2—C2103.99 (14)C14—C9—C10119.12 (15)
N2—C2—C3130.02 (16)C14—C9—C8122.54 (14)
N2—C2—C7110.06 (14)C10—C9—C8118.33 (14)
C3—C2—C7119.90 (16)C11—C10—C9120.50 (16)
C4—C3—C2117.39 (16)C11—C10—H10119.8
C4—C3—H3121.3C9—C10—H10119.8
C2—C3—H3121.3C12—C11—C10120.19 (16)
C3—C4—C5121.86 (16)C12—C11—H11119.9
C3—C4—H4119.1C10—C11—H11119.9
C5—C4—H4119.1C11—C12—C13119.71 (15)
C6—C5—C4121.53 (16)C11—C12—H12120.1
C6—C5—H5119.2C13—C12—H12120.1
C4—C5—H5119.2C12—C13—C14120.09 (16)
C5—C6—C7116.04 (16)C12—C13—H13120.0
C5—C6—H6122.0C14—C13—H13120.0
C7—C6—H6122.0C9—C14—C13120.39 (15)
N1—C7—C6131.00 (15)C9—C14—H14119.8
N1—C7—C2105.74 (14)C13—C14—H14119.8
C6—C7—C2123.26 (15)
C7—N1—C1—N20.68 (19)C5—C6—C7—C21.7 (2)
C8—N1—C1—N2172.65 (15)N2—C2—C7—N10.90 (18)
C7—N1—C1—I1178.20 (11)C3—C2—C7—N1177.77 (15)
C8—N1—C1—I19.8 (2)N2—C2—C7—C6179.92 (15)
N1—C1—N2—C20.12 (19)C3—C2—C7—C61.4 (3)
I1—C1—N2—C2177.62 (11)C1—N1—C8—C993.38 (19)
C1—N2—C2—C3178.00 (18)C7—N1—C8—C977.17 (19)
C1—N2—C2—C70.49 (18)N1—C8—C9—C1413.4 (2)
N2—C2—C3—C4178.48 (17)N1—C8—C9—C10167.25 (14)
C7—C2—C3—C40.1 (3)C14—C9—C10—C110.2 (2)
C2—C3—C4—C50.8 (3)C8—C9—C10—C11179.10 (15)
C3—C4—C5—C60.5 (3)C9—C10—C11—C120.1 (3)
C4—C5—C6—C70.7 (3)C10—C11—C12—C130.4 (3)
C1—N1—C7—C6179.98 (17)C11—C12—C13—C140.8 (3)
C8—N1—C7—C67.5 (3)C10—C9—C14—C130.1 (2)
C1—N1—C7—C20.92 (17)C8—C9—C14—C13179.45 (15)
C8—N1—C7—C2173.37 (14)C12—C13—C14—C90.6 (3)
C5—C6—C7—N1177.29 (16)
 

Acknowledgements

We thank the National Science Foundation for financial support of this research (RUI grant No. 1606556), the Missouri State University Provost Incentive Fund that funded the purchase of the X-ray diffractometer, and the Missouri State University Graduate College for funding CIN.

References

First citationAakeröy, C. B., Wijethunga, T. K., Desper, J. & Dakovic, M. (2016). Cryst. Growth Des. 15, 2662–2670.  Google Scholar
First citationAakeröy, C. B., Wijethunga, T. K., Haj, M. A., Desper, J. & Moore, C. (2014). CrystEngComm, 16, 7218–7225.  Google Scholar
First citationAl-Mukhtar, J. H. & Wilson, H. R. (1978). Acta Cryst. B34, 337–339.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAndrzejewski, M., Marciniak, J., Rajewski, K. W. & Katrusiak, A. (2015). Cryst. Growth Des. 15, 1658–1665.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationByrne, P. (2015). Private communication (refcode HUDSUW). CCDC, Cambridge, England.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Primagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS Google Scholar
First citationChlupatý, T., Parík, P. & Padelková, Z. (2012). Acta Cryst. E68, o553–o554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDelest, B., Nshimyumukiza, P., Fasbender, O., Tinant, B., Marchand-Brynaert, J., Darro, F. & Robiette, R. (2008). J. Org. Chem. 73, 6816–6823.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDing, X., Tuikka, M. & Haukka, M. (2012). In Recent Advances in Crystallography, edited by J. B. Benedict. Rijeka, Croatia: Intech.  Google Scholar
First citationFigueiredo, R. M. de, Thoret, S., Huet, C. & Dubois, J. (2007). Synthesis, 4, 529–540.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGoud, N. R., Bolton, O., Burgess, E. C. & Matzger, A. J. (2016). Cryst. Growth Des. 16, 1765–1771.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJansa, J., Lycka, A., Ruzicka, A., Grepl, M. & Vanecek, J. (2015). Tetrahedron, 71, 27–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationKobayashi, K., Kobayashi, N., Ikuta, M., Therrien, B., Sakamoto, S. & Yamaguchi, K. (2005). J. Org. Chem. 70, 749–752.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, T., Guo, L., Zhang, Y., Wang, J., Zhang, Z., Jing Li, J., Zhang, W., Lin, J., Zhao, W. & Wang, P. G. (2011). Bioorg. Med. Chem. 19, 2136–2144.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno-Manas, M., Bassa, J., Llado, N. & Pleixats, R. (1990). J. Heterocycl. Chem. 27, 673–678.  CAS Google Scholar
First citationMukai, T. & Nishikawa, K. (2013). X-ray Struct. Anal. Online, 29, 13–14.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPhillips, J. G., Fadnis, L. & Williams, D. R. (1997). Tetrahedron Lett. 38, 7835–7838.  CSD CrossRef CAS Web of Science Google Scholar
First citationPoverlein, C., Jacobi, N., Mayer, P. & Lindel, T. (2007). Synthesis, pp. 3620–3626.  Google Scholar
First citationSalvio, R., Cacciapaglia, R. & Maldolini, L. (2011). J. Org. Chem. 76, 5438–5443.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerinek, M. & Vasella, A. (2003). Helv. Chim. Acta, 86, 3482–3509.  Web of Science CSD CrossRef CAS Google Scholar
First citationTschamber, T., Gessier, F., Neuburger, M., Gurcha, S. S., Besra, G. S. & Streith, J. (2003). Eur. J. Org. Chem. pp. 2792–2798.  Web of Science CSD CrossRef Google Scholar
First citationWavefunction (2010). Spartan'10. Wavefunction Inc., Irvine, CA, USA.  Google Scholar
First citationWesela-Bauman, G., Parsons, S., Serwatowskia, J. & Woźniak, K. (2014). CrystEngComm, 16, 10780–10790.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds