research papers
The coordination complex structures and hydrogen bonding in the three-dimensional alkaline earth metal salts (Mg, Ca, Sr and Ba) of (4-aminophenyl)arsonic acid
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au
(4-Aminophenyl)arsonic acid (p-arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4-aminophenyl)arsonic acid (p-arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena-poly[[[diaquacalcium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ2O:O′]-[diaquacalcium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ2O:O]] dihydrate], {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n, (II), catena-poly[[triaquastrontium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ2O:O′]], [Sr(C6H7AsNO3)2(H2O)3]n, (III), and catena-poly[[triaquabarium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ2O:O′]], [Ba(C6H7AsNO3)2(H2O)3]n, (IV). In the structure of magnesium salt (I), the centrosymmetric octahedral [Mg(H2O)6]2+ cation, the two hydrogen p-arsanilate anions and the four water molecules of solvation form a three-dimensional network structure through inter-species O—H and N—H hydrogen-bonding interactions with water and arsonate O-atom and amine N-atom acceptors. In one-dimensional coordination polymer (II), the distorted octahedral CaO6 comprises two trans-related water molecules and four arsonate O-atom donors from bridging hydrogen arsanilate ligands. One bridging extension is four-membered via a single O atom and the other is eight-membered via O:O′-bridging, both across inversion centres, giving a chain coordination polymer extending along the [100] direction. Extensive hydrogen-bonding involving O—H⋯O, O—H⋯N and N—H⋯O interactions gives an overall three-dimensional structure. The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular MO7 coordination polyhedra about the M2+ centres, which lie on twofold rotation axes along with one of the coordinated water molecules. The coordination centres are linked through inversion-related arsonate O:O′-bridges, giving eight-membered ring motifs and forming coordination polymeric chains extending along the [100] direction. Inter-chain N—H⋯O and O—H⋯O hydrogen-bonding interactions extend the structures into three dimensions and the crystal packing includes π–π ring interactions [minimum ring centroid separations = 3.4666 (17) Å for (III) and 3.4855 (8) Å for (IV)].
1. Introduction
The compound (4-aminophenyl)arsonic acid (or p-arsanilic acid) has a continuing usage as an antihelminth in veterinary applications (Steverding, 2010) and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl (Ehrlich & Bertheim, 1907; O'Neil, 2001; Bosch & Rosich, 2008). We reported the of atoxyl, together with that of the monoammonium salt (Smith & Wermuth, 2014) but the number of structures of monometal (as distinct from mixed metal) complexes with p-arsanilic acid are few in the crystallographic literature, examples being with silver(I), zinc, cadmium and lead (Lesikar-Parrish et al., 2013) and uranium (as UO2) (Adelani et al., 2012). An example of a mixed-metal compound is the sodium salt of a hybrid organic–inorganic polyoxovanadate cluster formed with p-arsanilate anions (Breen & Schmitt, 2008).
Our 2:1 stoichiometric reactions of p-arsanilic acid with magnesium, calcium, strontium and barium carbonates in aqueous ethanol gave the title compounds [Mg(H2O)6](C6H7AsNO3)2. 4H2O, (I), {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n, (II), [Sr(C6H7AsNO3)2(H2O)3]n, (III), and [Ba(C6H7AsNO3)2(H2O)3]n, (IV), respectively. The structures and hydrogen-bonded packing modes for (I)–(IV) are reported herein.
2. Experimental
2.1. Synthesis and crystallization
The title compounds (I)–(IV) were synthesized by heating together under reflux for 5 min, 1.0 mmol (216 mg) of (4-aminophenyl)arsonic acid and 0.5 mmol of the appropriate carbonate, i.e. 42 mg of MgCO3 for (I), 50 mg of CaCO3 for (II), 74 mg of SrCO3 for (III) or 98 mg of BaCO3 for (IV), in 20 ml of 50% (v/v) ethanol/water. Partial room-temperature evaporation of the solutions gave colourless needles of all compounds from which specimens suitable for the X-ray analyses were cleaved. Crystals were mounted on conventional glass fibres using epoxy resin.
2.2. Refinement
Crystal data, data collection and structure . H atoms involved in hydrogen bonds were located by difference Fourier methods and their isotropic displacement parameters were allowed to ride. N—H bond lengths were restrained to 0.88 (2) Å for (I) and (II), and to 0.90 (2) Å for (III) and (IV). O—H bond lengths were restrained to 0.90 (2) Å in all cases. H atoms bonded to C atoms were included in the in calculated positions (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 13. Results and discussion
In the structure of magnesium compound (I), the cations exist as the commonly found centrosymmetric octahedral [Mg(H2O)6]2+ species with the hydrogen p-arsanilate acting as counter-anions. The coordinated aqua ligands are related in pairs by (−x + 1, −y + 1, −z + 1), denoted symmetry code (i) (Fig. 1). The Mg—O bond lengths [2.066 (2)–2.0734 (18) Å] are typical of those found in [Mg(H2O)6]2+ complex cations with analogous phosphonate anions, e.g. with hydrogen diphenylmethylphosphonate (Lee et al., 1988), hydrogen (2-aminoethyl)phosphonate (Schier et al., 1990) and the carboxylate anion 4-nitrobenzoate (Arlin et al., 2011).
In the crystal of (I), extensive hydrogen-bonding involving all H-atom donors of the anions and those of both the coordinated and solvent water molecules (O4W and O5W) with arsanilate O- and N-atom acceptors and water O-atom acceptors (Table 2) generate a three-dimensional structure (Figs. 2 and 3). The coordinated water molecules interact with both arsanilate O11v, O12 and O13i, and water O4W, O5W and O5Wv atoms. These interactions include an R33(10) cyclic motif involving both the Mg and As atoms. The solvent water molecules involve O11, O11v, O12vi and O1Wvii acceptors. The arsanilate amine group acts as both a double donor to O12iv and O4Wiii atoms and as an acceptor to the O13 acid H-atom donor of an inversion-related anion, linking these along [010]. Weak π–π associations are also present between inversion-related anions [ring centroid separation Cg⋯Cgii = 3.7187 (14) Å] [symmetry codes: (ii) −x, −y + 2, −z + 1; (iii) x − 1, y, z; (iv) −x, −y + 1, −z + 1; (v) −x + 1, y − , −z + ; (vi) −x + 1, y + , −z + ; (vii) x, y + 1, z].
|
In the structure of the coordination polymeric calcium compound (II), the repeat unit is a distorted octahedral CaO6 complex comprising four O-atom donors (with two bridging) from the two independent hydrogen p-arsanilate anions (A and B), together with two independent monodentate water molecules (O1W and O2W). Present also in the structure are two water molecules of solvation (O3W and O4W) (Fig. 4). The Ca—O bond lengths are in the range 2.306 (2)–2.420 (2) Å (Table 3), typical values for Ca—O bond lengths in the six-coordinate diaquacalcium–carboxylate–L-valine complex (Lamberts & Englert, 2015) (2.278–2.372 Å). The bridging carboxylate O atoms in (II) generate a coordination polymer extending along [100] through centrosymmetric cyclic ring systems, i.e. four-membered through O11Bi and eight-membered through O11Aii and O12Aii [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1] (Fig. 5). The Ca⋯Cai separation in the four-membered ring is 3.801 (2) Å. The involves a number of inter-chain N—H⋯O and O—H⋯O hydrogen-bonding interactions to arsonate and water O-atom acceptors, as well as to the amine N-atom acceptors (Table 4 and Fig. 5). These generate an overall three-dimensional framework structure (Fig. 6) in which no π–π ring interactions are present.
|
|
The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular MO7 coordination polyhedra about the M2+ centres, which lie on twofold rotation axes. The basic SrO7 or BaO7 complex repeat units (Figs. 7 and 8) comprise three monodentate water molecules, with one (O2W) lying on a twofold rotation axis and the others (O1W and O1Wi) related by the rotation axis [symmetry code: (i) −x + , y, −z + 1]. The coordination sphere is completed by four O:O′-bridging arsonate O-atom donors, i.e. O11, O11i, O12ii and O12iii [symmetry codes: (ii) −x + 1, −y, −z + 1; (iii) x + , −y, z]. The M—O bond-length ranges are 2.549 (2)–2.628 (2) (for Sr) and 2.694 (2)–2.779 (2) Å (for Ba) (Tables 5 and 6).
|
|
Both O:O′-bridging groups provide eight-membered cyclic extensions of the structure, one of which is centrosymmetric, giving a one-dimensional chain polymer structure extending along [100] (Fig. 9). In the crystal, there are inter-polymer N—H⋯O and O—H⋯O hydrogen-bonding associations to arsonate and water O-atom acceptors (Tables 7 and 8), generating a three-dimensional framework structure (Fig. 10). Present also in the crystal packing of (III) and (IV) are relatively strong π–π aromatic ring interactions with ring centroid separations (Cg⋯Cgvii) of 3.4666 (17) Å in (III) and 3.4855 (8) Å in (IV) between inversion-related hydrogen arsanilate ligands [symmetry code: (vii) −x + , −y + , −z + ].
|
|
The monoanionic arsonate groups in all four structures are similar in having delocalized As—O11 and As—O12 bonds, which are essentially equal: 1.6617 (15) and 1.6581 (14) Å in (I); 1.673 (2) and 1.645 (2) Å in (IIA), and 1.667 (2) and 1.668 (2) Å in (IIB); 1.6650 (16) and 1.6705 (19) Å in (III); 1.667 (2) and 1.668 (2) Å in (IV). These compare with 1.672 (3) and 1.677 (3), and 1.670 (3) and 1.659 (3) Å in the ammonium and sodium salts, respectively (Smith & Wermuth, 2014), and 1.656 (6) and 1.669 (6) Å in the zwitterionic parent acid (Shimada, 1961; Nuttall & Hunter, 1996). The As—O13(H) bonds are 1.7412 (16) Å in (I), 1.721 (2) Å in (IIA) and 1.727 (2) Å in (IIB), 1.746 (2) Å in (III) and 1.749 (2) Å in (IV), compared with 1.737 (8) Å in the parent acid.
The work reported here provides a comparison of the coordination chemistry and hydrogen bonding in the three-dimensional structures of the alkaline earth series of complexes with hydrogen (4-aminophenyl)arsonic acid. With the exception of Mg complex (I), all the compounds form basically similar supramolecular structures in which the primary core comprising the polymeric metal complex and water molecules form layers which are linked through the peripheral arsanilate ring systems by hydrogen bonding involving the para-related aniline amino group. This packing feature is also found in the sodium hydrogen p-arsanilate structure (Smith & Wermuth, 2014), although the primary layer differs from the alkaline-earth members (II)–(IV) in that it involves an NaO5 complex core with one of the three coordinated water molecules bridging.
Supporting information
https://doi.org/10.1107/S2053229616019434/ov3082sup1.cif
contains datablocks global, I, II, III, IV. DOI:Structure factors: contains datablock shelxl. DOI: https://doi.org/10.1107/S2053229616019434/ov3082Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2053229616019434/ov3082IIsup3.hkl
Structure factors: contains datablock shelxl. DOI: https://doi.org/10.1107/S2053229616019434/ov3082IIIsup4.hkl
Structure factors: contains datablock shelxl. DOI: https://doi.org/10.1107/S2053229616019434/ov3082IVsup5.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015 for (I); CrysAlis PRO (Rigaku OD, 2015) for (II), (III), (IV). For all compounds, cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).[Mg(H2O)6](C6H7AsNO3)·4H2O | F(000) = 652 |
Mr = 636.56 | Dx = 1.680 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3242 reflections |
a = 15.1693 (6) Å | θ = 3.6–29.1° |
b = 6.7367 (2) Å | µ = 2.75 mm−1 |
c = 12.9532 (4) Å | T = 200 K |
β = 108.033 (4)° | Prism, colourless |
V = 1258.68 (7) Å3 | 0.35 × 0.18 × 0.10 mm |
Z = 2 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2466 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2149 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −18→18 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −8→8 |
Tmin = 0.700, Tmax = 0.980 | l = −15→15 |
8901 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0344P)2 + 0.0883P] where P = (Fo2 + 2Fc2)/3 |
2466 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.40 e Å−3 |
13 restraints | Δρmin = −0.64 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
As1 | 0.23165 (2) | 0.74327 (3) | 0.60063 (2) | 0.0166 (1) | |
O11 | 0.29867 (12) | 0.8873 (2) | 0.69756 (12) | 0.0246 (5) | |
O12 | 0.26694 (12) | 0.5094 (2) | 0.60663 (12) | 0.0236 (5) | |
O13 | 0.23879 (12) | 0.8264 (2) | 0.47619 (12) | 0.0244 (5) | |
N4 | −0.17769 (16) | 0.7891 (3) | 0.56343 (19) | 0.0242 (7) | |
C1 | 0.10489 (18) | 0.7641 (3) | 0.59183 (19) | 0.0186 (7) | |
C2 | 0.07751 (19) | 0.7930 (4) | 0.6839 (2) | 0.0258 (8) | |
C3 | −0.0154 (2) | 0.7997 (4) | 0.6747 (2) | 0.0278 (8) | |
C4 | −0.08290 (19) | 0.7765 (3) | 0.5742 (2) | 0.0206 (7) | |
C5 | −0.0548 (2) | 0.7492 (3) | 0.4821 (2) | 0.0230 (8) | |
C6 | 0.0379 (2) | 0.7422 (3) | 0.4915 (2) | 0.0218 (8) | |
Mg1 | 0.50000 | 0.50000 | 0.50000 | 0.0192 (3) | |
O1W | 0.44254 (13) | 0.4488 (3) | 0.62346 (13) | 0.0264 (5) | |
O2W | 0.61417 (14) | 0.3374 (3) | 0.58760 (13) | 0.0305 (6) | |
O3W | 0.56172 (16) | 0.7579 (2) | 0.57476 (16) | 0.0308 (7) | |
O4W | 0.73459 (16) | 0.7514 (2) | 0.73245 (16) | 0.0294 (7) | |
O5W | 0.45949 (14) | 1.0160 (3) | 0.66270 (14) | 0.0283 (6) | |
H2 | 0.12280 | 0.80820 | 0.75290 | 0.0310* | |
H3 | −0.03370 | 0.82040 | 0.73770 | 0.0330* | |
H5 | −0.10000 | 0.73540 | 0.41280 | 0.0280* | |
H6 | 0.05640 | 0.72220 | 0.42850 | 0.0260* | |
H13 | 0.2204 (19) | 0.945 (3) | 0.462 (2) | 0.0370* | |
H41 | −0.193 (2) | 0.772 (3) | 0.6215 (19) | 0.0290* | |
H42 | −0.2074 (19) | 0.711 (3) | 0.5111 (18) | 0.0290* | |
H11W | 0.3843 (13) | 0.463 (4) | 0.615 (2) | 0.0400* | |
H12W | 0.4704 (19) | 0.481 (4) | 0.6882 (15) | 0.0400* | |
H21W | 0.641 (2) | 0.345 (4) | 0.6574 (14) | 0.0460* | |
H22W | 0.6573 (19) | 0.286 (4) | 0.569 (3) | 0.0460* | |
H31W | 0.6181 (16) | 0.761 (4) | 0.623 (2) | 0.0460* | |
H32W | 0.5287 (19) | 0.852 (3) | 0.592 (2) | 0.0460* | |
H41W | 0.729 (2) | 0.639 (3) | 0.760 (2) | 0.0440* | |
H42W | 0.738 (2) | 0.839 (3) | 0.7823 (19) | 0.0440* | |
H51W | 0.4052 (14) | 0.979 (4) | 0.666 (2) | 0.0420* | |
H52W | 0.457 (2) | 1.135 (3) | 0.645 (2) | 0.0420* |
U11 | U22 | U33 | U12 | U13 | U23 | |
As1 | 0.0139 (2) | 0.0182 (2) | 0.0174 (2) | 0.0013 (1) | 0.0043 (1) | 0.0003 (1) |
O11 | 0.0234 (11) | 0.0262 (8) | 0.0215 (8) | −0.0038 (7) | 0.0030 (7) | −0.0036 (7) |
O12 | 0.0209 (10) | 0.0188 (8) | 0.0305 (9) | 0.0025 (7) | 0.0069 (7) | 0.0011 (7) |
O13 | 0.0278 (11) | 0.0250 (8) | 0.0232 (9) | 0.0068 (8) | 0.0122 (8) | 0.0044 (7) |
N4 | 0.0171 (13) | 0.0292 (10) | 0.0275 (12) | −0.0008 (9) | 0.0087 (10) | −0.0004 (9) |
C1 | 0.0142 (14) | 0.0191 (11) | 0.0222 (12) | 0.0018 (9) | 0.0052 (10) | 0.0021 (8) |
C2 | 0.0208 (16) | 0.0369 (13) | 0.0180 (12) | 0.0028 (11) | 0.0037 (11) | −0.0006 (10) |
C3 | 0.0264 (17) | 0.0387 (13) | 0.0203 (12) | 0.0041 (12) | 0.0103 (12) | 0.0017 (11) |
C4 | 0.0192 (15) | 0.0168 (10) | 0.0261 (13) | 0.0017 (10) | 0.0074 (11) | 0.0024 (9) |
C5 | 0.0189 (16) | 0.0275 (13) | 0.0204 (12) | 0.0003 (10) | 0.0031 (11) | −0.0028 (9) |
C6 | 0.0224 (16) | 0.0253 (12) | 0.0183 (12) | 0.0006 (10) | 0.0070 (11) | −0.0045 (9) |
Mg1 | 0.0172 (7) | 0.0225 (5) | 0.0180 (5) | 0.0019 (5) | 0.0056 (5) | 0.0000 (4) |
O1W | 0.0199 (11) | 0.0403 (9) | 0.0197 (8) | 0.0020 (9) | 0.0073 (8) | −0.0018 (8) |
O2W | 0.0252 (12) | 0.0448 (11) | 0.0199 (9) | 0.0172 (9) | 0.0048 (8) | −0.0008 (8) |
O3W | 0.0246 (13) | 0.0304 (10) | 0.0352 (11) | 0.0010 (8) | 0.0060 (9) | −0.0106 (8) |
O4W | 0.0359 (14) | 0.0277 (10) | 0.0273 (10) | −0.0049 (8) | 0.0136 (10) | −0.0021 (7) |
O5W | 0.0240 (12) | 0.0257 (9) | 0.0347 (10) | 0.0002 (8) | 0.0082 (8) | 0.0030 (8) |
Mg1—O1W | 2.0734 (18) | O4W—H41W | 0.85 (2) |
Mg1—O2W | 2.066 (2) | O4W—H42W | 0.86 (2) |
Mg1—O3W | 2.0668 (16) | O5W—H51W | 0.87 (2) |
Mg1—O1Wi | 2.0734 (18) | O5W—H52W | 0.83 (2) |
Mg1—O2Wi | 2.066 (2) | N4—C4 | 1.404 (4) |
Mg1—O3Wi | 2.0668 (16) | N4—H41 | 0.86 (3) |
As1—O11 | 1.6617 (15) | N4—H42 | 0.87 (2) |
As1—O12 | 1.6581 (14) | C1—C6 | 1.388 (4) |
As1—O13 | 1.7412 (15) | C1—C2 | 1.393 (4) |
As1—C1 | 1.896 (3) | C2—C3 | 1.378 (4) |
O13—H13 | 0.85 (2) | C3—C4 | 1.394 (4) |
O1W—H12W | 0.84 (2) | C4—C5 | 1.398 (4) |
O1W—H11W | 0.86 (2) | C5—C6 | 1.374 (4) |
O2W—H21W | 0.871 (18) | C2—H2 | 0.9500 |
O2W—H22W | 0.84 (3) | C3—H3 | 0.9500 |
O3W—H32W | 0.88 (2) | C5—H5 | 0.9500 |
O3W—H31W | 0.89 (3) | C6—H6 | 0.9500 |
O11—As1—O12 | 113.97 (8) | H21W—O2W—H22W | 100 (3) |
O11—As1—O13 | 108.23 (7) | Mg1—O3W—H32W | 121.0 (18) |
O11—As1—C1 | 111.97 (9) | H31W—O3W—H32W | 108 (2) |
O12—As1—O13 | 103.73 (7) | Mg1—O3W—H31W | 123.1 (17) |
O12—As1—C1 | 112.33 (9) | H41W—O4W—H42W | 107 (2) |
O13—As1—C1 | 105.85 (9) | H51W—O5W—H52W | 109 (3) |
O1Wi—Mg1—O3W | 89.08 (8) | C4—N4—H41 | 117 (2) |
O2Wi—Mg1—O3W | 89.59 (8) | H41—N4—H42 | 113 (2) |
O3W—Mg1—O3Wi | 180.00 | C4—N4—H42 | 108 (2) |
O1Wi—Mg1—O2Wi | 88.24 (8) | C2—C1—C6 | 119.4 (3) |
O1Wi—Mg1—O3Wi | 90.92 (8) | As1—C1—C6 | 118.9 (2) |
O2Wi—Mg1—O3Wi | 90.41 (8) | As1—C1—C2 | 121.65 (19) |
O1Wi—Mg1—O2W | 91.76 (8) | C1—C2—C3 | 119.9 (2) |
O1W—Mg1—O2W | 88.24 (8) | C2—C3—C4 | 120.9 (2) |
O1W—Mg1—O3W | 90.92 (8) | N4—C4—C3 | 121.3 (2) |
O1W—Mg1—O1Wi | 180.00 | C3—C4—C5 | 118.8 (3) |
O1W—Mg1—O2Wi | 91.76 (8) | N4—C4—C5 | 119.8 (2) |
O1W—Mg1—O3Wi | 89.08 (8) | C4—C5—C6 | 120.2 (2) |
O2W—Mg1—O3W | 90.41 (8) | C1—C6—C5 | 120.8 (2) |
O2W—Mg1—O2Wi | 180.00 | C3—C2—H2 | 120.00 |
O2W—Mg1—O3Wi | 89.59 (8) | C1—C2—H2 | 120.00 |
As1—O13—H13 | 113.2 (18) | C2—C3—H3 | 120.00 |
Mg1—O1W—H11W | 122.9 (17) | C4—C3—H3 | 120.00 |
H11W—O1W—H12W | 106 (3) | C6—C5—H5 | 120.00 |
Mg1—O1W—H12W | 121.6 (19) | C4—C5—H5 | 120.00 |
Mg1—O2W—H21W | 125.6 (19) | C1—C6—H6 | 120.00 |
Mg1—O2W—H22W | 131 (2) | C5—C6—H6 | 120.00 |
O11—As1—C1—C2 | −34.6 (2) | As1—C1—C6—C5 | 177.68 (16) |
O11—As1—C1—C6 | 147.97 (16) | C2—C1—C6—C5 | 0.2 (3) |
O12—As1—C1—C2 | 95.2 (2) | C1—C2—C3—C4 | 0.5 (4) |
O12—As1—C1—C6 | −82.29 (18) | C2—C3—C4—N4 | −178.0 (2) |
O13—As1—C1—C2 | −152.29 (18) | C2—C3—C4—C5 | −1.0 (4) |
O13—As1—C1—C6 | 30.24 (18) | N4—C4—C5—C6 | 178.20 (19) |
As1—C1—C2—C3 | −177.5 (2) | C3—C4—C5—C6 | 1.1 (3) |
C6—C1—C2—C3 | 0.0 (4) | C4—C5—C6—C1 | −0.7 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13···N4ii | 0.85 (2) | 1.90 (2) | 2.745 (3) | 177 (3) |
N4—H41···O4Wiii | 0.86 (3) | 2.07 (3) | 2.904 (3) | 164 (3) |
N4—H42···O12iv | 0.87 (2) | 2.12 (2) | 2.980 (3) | 172 (2) |
O1W—H11W···O12 | 0.86 (2) | 1.78 (2) | 2.636 (3) | 175 (2) |
O1W—H12W···O5Wv | 0.84 (2) | 1.91 (2) | 2.745 (2) | 172 (3) |
O2W—H21W···O11v | 0.87 (2) | 1.84 (2) | 2.707 (2) | 174 (2) |
O2W—H22W···O13i | 0.84 (3) | 1.99 (3) | 2.831 (3) | 178 (3) |
O3W—H31W···O4W | 0.89 (3) | 1.89 (3) | 2.781 (3) | 175 (3) |
O3W—H32W···O5W | 0.88 (2) | 1.94 (3) | 2.796 (3) | 165 (2) |
O4W—H41W···O11v | 0.85 (2) | 1.87 (2) | 2.716 (2) | 172 (3) |
O4W—H42W···O12vi | 0.86 (2) | 1.86 (2) | 2.720 (2) | 173 (3) |
O5W—H51W···O11 | 0.87 (2) | 1.89 (2) | 2.755 (3) | 170 (2) |
O5W—H52W···O1Wvii | 0.83 (2) | 2.14 (2) | 2.957 (3) | 170 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z+1; (iii) x−1, y, z; (iv) −x, −y+1, −z+1; (v) −x+1, y−1/2, −z+3/2; (vi) −x+1, y+1/2, −z+3/2; (vii) x, y+1, z. |
[Ca(C6H7AsNO3)2(H2O)2]·2H2O | Z = 2 |
Mr = 544.24 | F(000) = 548 |
Triclinic, P1 | Dx = 1.890 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.001 (5) Å | Cell parameters from 2319 reflections |
b = 9.672 (5) Å | θ = 3.7–29.1° |
c = 11.756 (5) Å | µ = 3.82 mm−1 |
α = 77.096 (5)° | T = 200 K |
β = 74.096 (5)° | Needle, colourless |
γ = 82.236 (5)° | 0.35 × 0.11 × 0.10 mm |
V = 956.4 (8) Å3 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 3744 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 3276 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −11→11 |
Tmin = 0.931, Tmax = 0.980 | l = −11→14 |
6921 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0206P)2 + 0.3783P] where P = (Fo2 + 2Fc2)/3 |
3744 reflections | (Δ/σ)max < 0.001 |
286 parameters | Δρmax = 0.55 e Å−3 |
14 restraints | Δρmin = −0.47 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
As1A | 0.46094 (3) | 0.29369 (3) | 0.70142 (3) | 0.0151 (1) | |
As1B | 0.05599 (3) | 0.77612 (3) | 0.30427 (3) | 0.0150 (1) | |
Ca1 | 0.21559 (7) | 0.47820 (7) | 0.49139 (5) | 0.0163 (2) | |
O1W | 0.2142 (3) | 0.6294 (3) | 0.6273 (3) | 0.0385 (10) | |
O2W | 0.2504 (3) | 0.2937 (3) | 0.3844 (2) | 0.0337 (9) | |
O11A | 0.3299 (2) | 0.3106 (2) | 0.62105 (19) | 0.0212 (7) | |
O11B | 0.0283 (2) | 0.6219 (2) | 0.40158 (19) | 0.0188 (6) | |
O12A | 0.5836 (2) | 0.4184 (2) | 0.65510 (19) | 0.0237 (7) | |
O12B | 0.1482 (2) | 0.8895 (2) | 0.3433 (2) | 0.0215 (7) | |
O13A | 0.5597 (2) | 0.1296 (2) | 0.6925 (2) | 0.0245 (7) | |
O13B | −0.1207 (2) | 0.8695 (2) | 0.3001 (2) | 0.0210 (7) | |
N4A | 0.1055 (3) | 0.1983 (3) | 1.2273 (3) | 0.0280 (10) | |
N4B | 0.3873 (3) | 0.6567 (4) | −0.1903 (3) | 0.0316 (11) | |
C1A | 0.3520 (3) | 0.2727 (3) | 0.8657 (3) | 0.0174 (9) | |
C1B | 0.1555 (3) | 0.7413 (3) | 0.1487 (3) | 0.0175 (9) | |
C2A | 0.2011 (3) | 0.3329 (4) | 0.8981 (3) | 0.0214 (10) | |
C2B | 0.2238 (3) | 0.6061 (3) | 0.1366 (3) | 0.0193 (10) | |
C3A | 0.1191 (3) | 0.3081 (4) | 1.0179 (3) | 0.0219 (10) | |
C3B | 0.3031 (3) | 0.5791 (4) | 0.0248 (3) | 0.0224 (10) | |
C4A | 0.1858 (4) | 0.2232 (4) | 1.1056 (3) | 0.0211 (10) | |
C4B | 0.3143 (4) | 0.6866 (4) | −0.0779 (3) | 0.0234 (10) | |
C5A | 0.3378 (4) | 0.1650 (4) | 1.0731 (3) | 0.0237 (10) | |
C5B | 0.2442 (4) | 0.8224 (4) | −0.0651 (3) | 0.0233 (10) | |
C6A | 0.4189 (4) | 0.1893 (4) | 0.9545 (3) | 0.0219 (10) | |
C6B | 0.1668 (3) | 0.8504 (4) | 0.0465 (3) | 0.0220 (10) | |
O3W | 0.1947 (3) | 0.9169 (3) | 0.5593 (2) | 0.0356 (9) | |
O4W | 0.4898 (3) | −0.1005 (3) | 0.6212 (3) | 0.0354 (9) | |
H2A | 0.15470 | 0.39070 | 0.83840 | 0.0260* | |
H2B | 0.21590 | 0.53190 | 0.20580 | 0.0230* | |
H3A | 0.01610 | 0.34950 | 1.04030 | 0.0260* | |
H3B | 0.35060 | 0.48650 | 0.01740 | 0.0270* | |
H5A | 0.38500 | 0.10860 | 1.13290 | 0.0280* | |
H5B | 0.25020 | 0.89610 | −0.13440 | 0.0280* | |
H6A | 0.52240 | 0.14880 | 0.93250 | 0.0260* | |
H6B | 0.12120 | 0.94340 | 0.05430 | 0.0260* | |
H11W | 0.273 (4) | 0.622 (5) | 0.679 (3) | 0.0580* | |
H12W | 0.202 (5) | 0.723 (2) | 0.600 (4) | 0.0580* | |
H13A | 0.660 (2) | 0.135 (4) | 0.680 (3) | 0.0370* | |
H13B | −0.194 (3) | 0.810 (3) | 0.319 (3) | 0.0310* | |
H21W | 0.200 (4) | 0.270 (4) | 0.340 (3) | 0.0510* | |
H22W | 0.325 (3) | 0.227 (3) | 0.393 (4) | 0.0510* | |
H41A | 0.121 (4) | 0.109 (2) | 1.263 (3) | 0.0340* | |
H41B | 0.459 (3) | 0.587 (3) | −0.192 (3) | 0.0380* | |
H42A | 0.008 (2) | 0.230 (4) | 1.234 (3) | 0.0340* | |
H42B | 0.421 (4) | 0.731 (3) | −0.241 (3) | 0.0380* | |
H31W | 0.159 (4) | 0.984 (4) | 0.602 (3) | 0.0530* | |
H32W | 0.172 (4) | 0.934 (5) | 0.488 (2) | 0.0530* | |
H41W | 0.415 (4) | −0.087 (5) | 0.585 (3) | 0.0530* | |
H42W | 0.511 (5) | −0.023 (3) | 0.641 (4) | 0.0530* |
U11 | U22 | U33 | U12 | U13 | U23 | |
As1A | 0.0135 (2) | 0.0163 (2) | 0.0145 (2) | −0.0032 (1) | −0.0032 (1) | −0.0001 (1) |
As1B | 0.0142 (2) | 0.0138 (2) | 0.0154 (2) | −0.0020 (1) | −0.0030 (1) | −0.0003 (1) |
Ca1 | 0.0148 (3) | 0.0169 (3) | 0.0157 (3) | −0.0035 (3) | −0.0033 (3) | 0.0008 (3) |
O1W | 0.0565 (18) | 0.0258 (15) | 0.0412 (17) | 0.0004 (14) | −0.0250 (14) | −0.0096 (14) |
O2W | 0.0362 (15) | 0.0327 (16) | 0.0398 (16) | 0.0034 (12) | −0.0159 (13) | −0.0184 (13) |
O11A | 0.0198 (11) | 0.0229 (13) | 0.0203 (12) | −0.0042 (10) | −0.0078 (9) | 0.0016 (10) |
O11B | 0.0148 (10) | 0.0176 (12) | 0.0198 (11) | −0.0042 (9) | −0.0027 (9) | 0.0043 (10) |
O12A | 0.0228 (11) | 0.0252 (13) | 0.0217 (12) | −0.0131 (10) | −0.0002 (10) | −0.0017 (11) |
O12B | 0.0172 (11) | 0.0219 (13) | 0.0276 (13) | −0.0032 (9) | −0.0079 (10) | −0.0055 (11) |
O13A | 0.0179 (11) | 0.0204 (13) | 0.0345 (14) | 0.0014 (10) | −0.0064 (11) | −0.0061 (11) |
O13B | 0.0162 (11) | 0.0176 (12) | 0.0281 (13) | −0.0025 (9) | −0.0069 (10) | −0.0001 (10) |
N4A | 0.0315 (16) | 0.0289 (18) | 0.0184 (16) | −0.0068 (15) | 0.0017 (13) | −0.0011 (14) |
N4B | 0.0362 (18) | 0.032 (2) | 0.0212 (17) | −0.0058 (15) | 0.0028 (14) | −0.0046 (15) |
C1A | 0.0182 (15) | 0.0179 (17) | 0.0147 (16) | −0.0065 (13) | −0.0021 (13) | 0.0002 (13) |
C1B | 0.0159 (15) | 0.0203 (17) | 0.0160 (16) | −0.0030 (13) | −0.0040 (13) | −0.0018 (14) |
C2A | 0.0198 (16) | 0.0227 (18) | 0.0219 (18) | −0.0018 (14) | −0.0082 (14) | −0.0010 (15) |
C2B | 0.0227 (16) | 0.0168 (17) | 0.0177 (17) | −0.0054 (14) | −0.0045 (14) | −0.0002 (14) |
C3A | 0.0128 (15) | 0.0235 (19) | 0.0276 (19) | −0.0033 (13) | −0.0004 (14) | −0.0061 (16) |
C3B | 0.0217 (16) | 0.0190 (18) | 0.0285 (19) | −0.0033 (14) | −0.0084 (15) | −0.0054 (15) |
C4A | 0.0257 (17) | 0.0201 (18) | 0.0164 (17) | −0.0094 (14) | 0.0005 (14) | −0.0040 (14) |
C4B | 0.0197 (16) | 0.031 (2) | 0.0212 (18) | −0.0115 (15) | −0.0040 (14) | −0.0045 (16) |
C5A | 0.0262 (17) | 0.0226 (19) | 0.0219 (18) | −0.0019 (15) | −0.0100 (15) | 0.0014 (15) |
C5B | 0.0292 (18) | 0.0210 (18) | 0.0160 (17) | −0.0047 (15) | −0.0057 (14) | 0.0056 (15) |
C6A | 0.0183 (16) | 0.0227 (18) | 0.0243 (18) | −0.0020 (14) | −0.0064 (14) | −0.0021 (15) |
C6B | 0.0226 (16) | 0.0167 (17) | 0.0250 (18) | −0.0019 (14) | −0.0064 (14) | 0.0002 (15) |
O3W | 0.0452 (16) | 0.0310 (16) | 0.0298 (16) | 0.0053 (13) | −0.0086 (13) | −0.0104 (13) |
O4W | 0.0402 (15) | 0.0256 (15) | 0.0433 (17) | −0.0040 (13) | −0.0149 (13) | −0.0067 (13) |
Ca1—O1W | 2.392 (3) | N4B—C4B | 1.380 (5) |
Ca1—O2W | 2.345 (3) | N4A—H42A | 0.88 (2) |
Ca1—O11A | 2.306 (2) | N4A—H41A | 0.88 (2) |
Ca1—O11B | 2.361 (2) | N4B—H41B | 0.87 (3) |
Ca1—O11Bi | 2.420 (2) | N4B—H42B | 0.86 (3) |
Ca1—O12Aii | 2.291 (2) | C1A—C6A | 1.393 (5) |
As1A—O11A | 1.673 (2) | C1A—C2A | 1.390 (4) |
As1A—O12A | 1.645 (2) | C1B—C6B | 1.401 (5) |
As1A—O13A | 1.721 (2) | C1B—C2B | 1.388 (4) |
As1A—C1A | 1.890 (3) | C2A—C3A | 1.383 (5) |
As1B—O11B | 1.667 (2) | C2B—C3B | 1.376 (5) |
As1B—O12B | 1.668 (2) | C3A—C4A | 1.388 (5) |
As1B—O13B | 1.727 (2) | C3B—C4B | 1.396 (5) |
As1B—C1B | 1.886 (3) | C4A—C5A | 1.392 (5) |
O1W—H12W | 0.89 (2) | C4B—C5B | 1.399 (6) |
O1W—H11W | 0.90 (4) | C5A—C6A | 1.369 (5) |
O2W—H22W | 0.88 (3) | C5B—C6B | 1.374 (5) |
O2W—H21W | 0.86 (4) | C2A—H2A | 0.9500 |
O13A—H13A | 0.88 (2) | C2B—H2B | 0.9500 |
O13B—H13B | 0.88 (3) | C3A—H3A | 0.9500 |
O3W—H31W | 0.88 (4) | C3B—H3B | 0.9500 |
O3W—H32W | 0.89 (3) | C5A—H5A | 0.9500 |
O4W—H42W | 0.89 (4) | C5B—H5B | 0.9500 |
O4W—H41W | 0.87 (4) | C6A—H6A | 0.9500 |
N4A—C4A | 1.398 (5) | C6B—H6B | 0.9500 |
O11A—As1A—O12A | 114.52 (10) | C4A—N4A—H41A | 112 (2) |
O11A—As1A—O13A | 106.16 (10) | H41A—N4A—H42A | 115 (3) |
O11A—As1A—C1A | 107.43 (11) | C4A—N4A—H42A | 109 (2) |
O12A—As1A—O13A | 109.97 (10) | C4B—N4B—H42B | 112 (2) |
O12A—As1A—C1A | 114.58 (12) | H41B—N4B—H42B | 111 (3) |
O13A—As1A—C1A | 103.28 (12) | C4B—N4B—H41B | 116 (2) |
O11B—As1B—O12B | 114.80 (10) | C2A—C1A—C6A | 119.5 (3) |
O11B—As1B—O13B | 109.59 (10) | As1A—C1A—C2A | 120.2 (2) |
O11B—As1B—C1B | 109.58 (12) | As1A—C1A—C6A | 120.2 (2) |
O12B—As1B—O13B | 102.37 (10) | As1B—C1B—C6B | 121.2 (2) |
O12B—As1B—C1B | 111.56 (12) | C2B—C1B—C6B | 119.8 (3) |
O13B—As1B—C1B | 108.58 (12) | As1B—C1B—C2B | 119.0 (2) |
O1W—Ca1—O2W | 166.97 (10) | C1A—C2A—C3A | 119.5 (3) |
O1W—Ca1—O11A | 83.52 (9) | C1B—C2B—C3B | 120.3 (3) |
O1W—Ca1—O11B | 95.61 (9) | C2A—C3A—C4A | 120.6 (3) |
O1W—Ca1—O11Bi | 97.05 (9) | C2B—C3B—C4B | 120.6 (3) |
O1W—Ca1—O12Aii | 93.82 (9) | N4A—C4A—C3A | 121.5 (3) |
O2W—Ca1—O11A | 83.57 (8) | C3A—C4A—C5A | 119.7 (3) |
O2W—Ca1—O11B | 97.20 (8) | N4A—C4A—C5A | 118.8 (3) |
O2W—Ca1—O11Bi | 84.13 (8) | N4B—C4B—C3B | 120.1 (4) |
O2W—Ca1—O12Aii | 87.99 (8) | C3B—C4B—C5B | 118.9 (3) |
O11A—Ca1—O11B | 162.13 (8) | N4B—C4B—C5B | 121.0 (3) |
O11A—Ca1—O11Bi | 87.66 (7) | C4A—C5A—C6A | 119.7 (3) |
O11A—Ca1—O12Aii | 105.49 (7) | C4B—C5B—C6B | 120.8 (3) |
O11B—Ca1—O11Bi | 74.70 (7) | C1A—C6A—C5A | 121.0 (3) |
O11B—Ca1—O12Aii | 92.38 (7) | C1B—C6B—C5B | 119.7 (3) |
O11Bi—Ca1—O12Aii | 163.83 (8) | C1A—C2A—H2A | 120.00 |
As1A—O11A—Ca1 | 141.02 (11) | C3A—C2A—H2A | 120.00 |
As1B—O11B—Ca1 | 126.08 (10) | C1B—C2B—H2B | 120.00 |
As1B—O11B—Ca1i | 127.68 (10) | C3B—C2B—H2B | 120.00 |
Ca1—O11B—Ca1i | 105.30 (8) | C4A—C3A—H3A | 120.00 |
As1A—O12A—Ca1ii | 148.32 (12) | C2A—C3A—H3A | 120.00 |
H11W—O1W—H12W | 104 (4) | C2B—C3B—H3B | 120.00 |
Ca1—O1W—H11W | 130 (3) | C4B—C3B—H3B | 120.00 |
Ca1—O1W—H12W | 117 (3) | C4A—C5A—H5A | 120.00 |
Ca1—O2W—H21W | 134 (3) | C6A—C5A—H5A | 120.00 |
Ca1—O2W—H22W | 118 (2) | C6B—C5B—H5B | 120.00 |
H21W—O2W—H22W | 108 (3) | C4B—C5B—H5B | 120.00 |
As1A—O13A—H13A | 111 (3) | C1A—C6A—H6A | 120.00 |
As1B—O13B—H13B | 110 (2) | C5A—C6A—H6A | 119.00 |
H31W—O3W—H32W | 115 (4) | C5B—C6B—H6B | 120.00 |
H41W—O4W—H42W | 115 (4) | C1B—C6B—H6B | 120.00 |
O12A—As1A—O11A—Ca1 | −20.6 (2) | O12Aii—Ca1—O11B—As1B | −20.34 (14) |
O13A—As1A—O11A—Ca1 | −142.16 (17) | O12Aii—Ca1—O11B—Ca1i | 170.13 (8) |
C1A—As1A—O11A—Ca1 | 107.86 (19) | O1W—Ca1—O11Bi—As1Bi | −96.79 (15) |
O11A—As1A—O12A—Ca1ii | −67.3 (2) | O1W—Ca1—O11Bi—Ca1i | 93.92 (10) |
O13A—As1A—O12A—Ca1ii | 52.2 (2) | O2W—Ca1—O11Bi—As1Bi | 70.16 (14) |
C1A—As1A—O12A—Ca1ii | 167.9 (2) | O2W—Ca1—O11Bi—Ca1i | −99.14 (9) |
O11A—As1A—C1A—C2A | −28.5 (3) | O11A—Ca1—O11Bi—As1Bi | −13.62 (14) |
O11A—As1A—C1A—C6A | 147.5 (3) | O11A—Ca1—O11Bi—Ca1i | 177.09 (9) |
O12A—As1A—C1A—C2A | 100.0 (3) | O11B—Ca1—O11Bi—As1Bi | 169.30 (15) |
O12A—As1A—C1A—C6A | −84.1 (3) | O11B—Ca1—O11Bi—Ca1i | 0.00 (8) |
O13A—As1A—C1A—C2A | −140.4 (3) | O1W—Ca1—O12Aii—As1Aii | −4.1 (2) |
O13A—As1A—C1A—C6A | 35.5 (3) | O2W—Ca1—O12Aii—As1Aii | −171.2 (2) |
O12B—As1B—O11B—Ca1 | −46.35 (16) | O11A—Ca1—O12Aii—As1Aii | −88.4 (2) |
O12B—As1B—O11B—Ca1i | 120.84 (13) | O11B—Ca1—O12Aii—As1Aii | 91.7 (2) |
O13B—As1B—O11B—Ca1 | −160.87 (12) | As1A—C1A—C2A—C3A | 175.4 (3) |
O13B—As1B—O11B—Ca1i | 6.33 (16) | C6A—C1A—C2A—C3A | −0.6 (5) |
C1B—As1B—O11B—Ca1 | 80.09 (15) | As1A—C1A—C6A—C5A | −175.5 (3) |
C1B—As1B—O11B—Ca1i | −112.72 (15) | C2A—C1A—C6A—C5A | 0.4 (5) |
O11B—As1B—C1B—C2B | −14.6 (3) | As1B—C1B—C2B—C3B | −177.1 (2) |
O11B—As1B—C1B—C6B | 168.0 (2) | C6B—C1B—C2B—C3B | 0.3 (4) |
O12B—As1B—C1B—C2B | 113.7 (2) | As1B—C1B—C6B—C5B | 178.0 (3) |
O12B—As1B—C1B—C6B | −63.7 (3) | C2B—C1B—C6B—C5B | 0.6 (5) |
O13B—As1B—C1B—C2B | −134.2 (2) | C1A—C2A—C3A—C4A | −0.4 (5) |
O13B—As1B—C1B—C6B | 48.3 (3) | C1B—C2B—C3B—C4B | −0.8 (5) |
O1W—Ca1—O11A—As1A | −40.53 (19) | C2A—C3A—C4A—N4A | 179.2 (3) |
O2W—Ca1—O11A—As1A | 137.75 (19) | C2A—C3A—C4A—C5A | 1.4 (6) |
O11Bi—Ca1—O11A—As1A | −137.90 (18) | C2B—C3B—C4B—N4B | −176.7 (3) |
O12Aii—Ca1—O11A—As1A | 51.65 (19) | C2B—C3B—C4B—C5B | 0.3 (5) |
O1W—Ca1—O11B—As1B | 73.73 (15) | N4A—C4A—C5A—C6A | −179.4 (3) |
O1W—Ca1—O11B—Ca1i | −95.79 (10) | C3A—C4A—C5A—C6A | −1.5 (6) |
O2W—Ca1—O11B—As1B | −108.61 (14) | N4B—C4B—C5B—C6B | 177.6 (3) |
O2W—Ca1—O11B—Ca1i | 81.87 (9) | C3B—C4B—C5B—C6B | 0.6 (5) |
O11Bi—Ca1—O11B—As1B | 169.52 (15) | C4A—C5A—C6A—C1A | 0.6 (6) |
O11Bi—Ca1—O11B—Ca1i | 0.00 (7) | C4B—C5B—C6B—C1B | −1.1 (5) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13A—H13A···O12Bii | 0.88 (2) | 1.67 (2) | 2.534 (3) | 169 (4) |
O13B—H13B···O11Ai | 0.88 (3) | 1.70 (3) | 2.578 (3) | 170 (3) |
N4A—H41A···O12Biii | 0.88 (2) | 2.13 (2) | 3.014 (4) | 176 (4) |
N4B—H42B···O4Wiv | 0.86 (3) | 2.05 (3) | 2.901 (5) | 172 (4) |
O1W—H11W···N4Bv | 0.90 (4) | 2.17 (4) | 3.048 (5) | 166 (4) |
O1W—H12W···O3W | 0.89 (2) | 1.83 (2) | 2.712 (4) | 171 (3) |
O2W—H21W···N4Avi | 0.86 (4) | 2.04 (4) | 2.893 (4) | 173 (4) |
O2W—H22W···O4Wvii | 0.88 (3) | 1.92 (3) | 2.785 (4) | 168 (4) |
O3W—H31W···O13Bviii | 0.88 (4) | 1.96 (4) | 2.827 (4) | 169 (4) |
O3W—H32W···O12B | 0.89 (3) | 1.92 (3) | 2.758 (4) | 157 (4) |
O4W—H41W···O3Wix | 0.87 (4) | 2.08 (4) | 2.915 (4) | 160 (3) |
O4W—H42W···O13A | 0.89 (4) | 1.86 (3) | 2.748 (4) | 176 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z+1; (iv) x, y+1, z−1; (v) x, y, z+1; (vi) x, y, z−1; (vii) −x+1, −y, −z+1; (viii) −x, −y+2, −z+1; (ix) x, y−1, z. |
[Sr(C6H7AsNO3)2(H2O)3] | F(000) = 1128 |
Mr = 573.76 | Dx = 2.166 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2ya | Cell parameters from 2201 reflections |
a = 9.8935 (3) Å | θ = 3.6–29.0° |
b = 7.5844 (3) Å | µ = 6.85 mm−1 |
c = 23.6669 (9) Å | T = 200 K |
β = 97.866 (3)° | Block, colourless |
V = 1759.17 (11) Å3 | 0.25 × 0.12 × 0.12 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1737 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1606 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −9→8 |
Tmin = 0.791, Tmax = 0.980 | l = −29→26 |
3326 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0188P)2 + 2.3681P] where P = (Fo2 + 2Fc2)/3 |
1737 reflections | (Δ/σ)max = 0.001 |
137 parameters | Δρmax = 0.47 e Å−3 |
7 restraints | Δρmin = −0.54 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.75000 | 0.28095 (5) | 0.50000 | 0.0144 (1) | |
As1 | 0.44233 (2) | 0.06077 (3) | 0.41189 (1) | 0.0131 (1) | |
O1W | 0.5937 (2) | 0.4181 (3) | 0.56983 (10) | 0.0265 (7) | |
O2W | 0.75000 | 0.6274 (4) | 0.50000 | 0.0384 (11) | |
O11 | 0.51439 (18) | 0.2419 (2) | 0.44227 (8) | 0.0197 (6) | |
O12 | 0.31029 (18) | −0.0183 (3) | 0.44109 (8) | 0.0198 (6) | |
O13 | 0.56339 (18) | −0.1079 (3) | 0.42091 (8) | 0.0194 (6) | |
N4 | 0.3286 (3) | 0.0837 (4) | 0.15430 (11) | 0.0284 (9) | |
C1 | 0.3951 (2) | 0.0844 (4) | 0.33210 (11) | 0.0149 (7) | |
C2 | 0.2969 (3) | −0.0261 (4) | 0.30314 (12) | 0.0178 (8) | |
C3 | 0.2717 (3) | −0.0238 (4) | 0.24435 (12) | 0.0198 (8) | |
C4 | 0.3452 (3) | 0.0894 (4) | 0.21317 (12) | 0.0189 (8) | |
C5 | 0.4396 (3) | 0.2040 (4) | 0.24267 (12) | 0.0209 (9) | |
C6 | 0.4645 (3) | 0.2017 (4) | 0.30139 (12) | 0.0188 (8) | |
H2 | 0.24690 | −0.10380 | 0.32400 | 0.0210* | |
H3 | 0.20410 | −0.09940 | 0.22490 | 0.0240* | |
H5 | 0.48760 | 0.28480 | 0.22210 | 0.0250* | |
H6 | 0.52930 | 0.28060 | 0.32090 | 0.0230* | |
H11W | 0.553 (3) | 0.521 (3) | 0.5654 (16) | 0.0400* | |
H12W | 0.529 (3) | 0.344 (3) | 0.5764 (14) | 0.0400* | |
H13 | 0.648 (2) | −0.071 (4) | 0.4277 (13) | 0.0290* | |
H21W | 0.691 (3) | 0.698 (4) | 0.5081 (18) | 0.0580* | |
H41 | 0.254 (2) | 0.032 (4) | 0.1360 (13) | 0.0340* | |
H42 | 0.359 (3) | 0.177 (3) | 0.1374 (14) | 0.0340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.0146 (2) | 0.0124 (2) | 0.0158 (2) | 0.0000 | 0.0004 (1) | 0.0000 |
As1 | 0.0119 (1) | 0.0115 (2) | 0.0156 (2) | 0.0002 (1) | 0.0015 (1) | −0.0001 (1) |
O1W | 0.0245 (11) | 0.0177 (11) | 0.0387 (13) | −0.0007 (9) | 0.0097 (9) | −0.0027 (10) |
O2W | 0.051 (2) | 0.0175 (17) | 0.048 (2) | 0.0000 | 0.0117 (17) | 0.0000 |
O11 | 0.0218 (10) | 0.0129 (9) | 0.0224 (10) | −0.0005 (8) | −0.0041 (8) | −0.0018 (9) |
O12 | 0.0153 (9) | 0.0228 (10) | 0.0220 (11) | 0.0016 (8) | 0.0052 (7) | 0.0053 (9) |
O13 | 0.0130 (9) | 0.0144 (9) | 0.0304 (11) | 0.0012 (8) | 0.0011 (8) | −0.0007 (9) |
N4 | 0.0347 (15) | 0.0312 (16) | 0.0192 (14) | 0.0027 (13) | 0.0031 (11) | 0.0018 (12) |
C1 | 0.0142 (12) | 0.0151 (13) | 0.0154 (13) | 0.0026 (11) | 0.0023 (10) | −0.0007 (12) |
C2 | 0.0186 (14) | 0.0139 (13) | 0.0211 (15) | −0.0026 (11) | 0.0036 (11) | −0.0007 (12) |
C3 | 0.0210 (14) | 0.0157 (13) | 0.0214 (15) | −0.0019 (12) | −0.0012 (11) | −0.0029 (12) |
C4 | 0.0188 (13) | 0.0195 (14) | 0.0181 (14) | 0.0091 (12) | 0.0015 (10) | −0.0009 (12) |
C5 | 0.0183 (14) | 0.0214 (15) | 0.0241 (16) | 0.0016 (12) | 0.0067 (11) | 0.0077 (13) |
C6 | 0.0164 (13) | 0.0157 (14) | 0.0238 (15) | −0.0018 (11) | 0.0010 (11) | 0.0005 (12) |
Sr1—O1W | 2.628 (2) | O13—H13 | 0.88 (2) |
Sr1—O2W | 2.628 (3) | N4—C4 | 1.381 (4) |
Sr1—O11 | 2.5527 (18) | N4—H41 | 0.89 (2) |
Sr1—O1Wi | 2.628 (2) | N4—H42 | 0.89 (3) |
Sr1—O11i | 2.5527 (18) | C1—C2 | 1.391 (4) |
Sr1—O12ii | 2.549 (2) | C1—C6 | 1.388 (4) |
Sr1—O12iii | 2.549 (2) | C2—C3 | 1.380 (4) |
As1—O11 | 1.6650 (16) | C3—C4 | 1.399 (4) |
As1—O12 | 1.6705 (19) | C4—C5 | 1.392 (4) |
As1—O13 | 1.746 (2) | C5—C6 | 1.378 (4) |
As1—C1 | 1.891 (3) | C2—H2 | 0.9500 |
O1W—H11W | 0.88 (2) | C3—H3 | 0.9500 |
O1W—H12W | 0.88 (3) | C5—H5 | 0.9500 |
O2W—H21W | 0.83 (3) | C6—H6 | 0.9500 |
O2W—H21Wi | 0.83 (3) | ||
O1W—Sr1—O2W | 66.68 (5) | Sr1—O1W—H11W | 125 (2) |
O1W—Sr1—O11 | 79.03 (6) | Sr1—O1W—H12W | 111.3 (18) |
O1W—Sr1—O1Wi | 133.36 (7) | H11W—O1W—H12W | 105 (3) |
O1W—Sr1—O11i | 106.39 (6) | H21W—O2W—H21Wi | 100 (3) |
O1W—Sr1—O12ii | 76.31 (7) | Sr1—O2W—H21Wi | 130 (2) |
O1W—Sr1—O12iii | 148.81 (7) | Sr1—O2W—H21W | 130 (2) |
O2W—Sr1—O11 | 96.66 (4) | As1—O13—H13 | 114.2 (19) |
O1Wi—Sr1—O2W | 66.68 (5) | C4—N4—H41 | 118.6 (19) |
O2W—Sr1—O11i | 96.66 (4) | H41—N4—H42 | 116 (3) |
O2W—Sr1—O12ii | 141.41 (5) | C4—N4—H42 | 116 (2) |
O2W—Sr1—O12iii | 141.41 (5) | As1—C1—C6 | 120.8 (2) |
O1Wi—Sr1—O11 | 106.39 (6) | As1—C1—C2 | 119.7 (2) |
O11—Sr1—O11i | 166.68 (5) | C2—C1—C6 | 119.4 (2) |
O11—Sr1—O12ii | 86.40 (6) | C1—C2—C3 | 120.5 (3) |
O11—Sr1—O12iii | 83.19 (6) | C2—C3—C4 | 120.3 (3) |
O1Wi—Sr1—O11i | 79.03 (6) | N4—C4—C5 | 120.3 (3) |
O1Wi—Sr1—O12ii | 148.81 (7) | N4—C4—C3 | 121.0 (3) |
O1Wi—Sr1—O12iii | 76.31 (7) | C3—C4—C5 | 118.7 (3) |
O11i—Sr1—O12ii | 83.19 (6) | C4—C5—C6 | 120.9 (3) |
O11i—Sr1—O12iii | 86.40 (6) | C1—C6—C5 | 120.2 (3) |
O12ii—Sr1—O12iii | 77.18 (7) | C1—C2—H2 | 120.00 |
O11—As1—O12 | 115.50 (10) | C3—C2—H2 | 120.00 |
O11—As1—O13 | 107.81 (9) | C2—C3—H3 | 120.00 |
O11—As1—C1 | 112.69 (11) | C4—C3—H3 | 120.00 |
O12—As1—O13 | 104.40 (10) | C4—C5—H5 | 120.00 |
O12—As1—C1 | 110.29 (9) | C6—C5—H5 | 119.00 |
O13—As1—C1 | 105.26 (10) | C1—C6—H6 | 120.00 |
Sr1—O11—As1 | 129.24 (9) | C5—C6—H6 | 120.00 |
Sr1ii—O12—As1 | 139.61 (11) | ||
O1W—Sr1—O11—As1 | −127.66 (13) | O12—As1—C1—C6 | 156.6 (2) |
O2W—Sr1—O11—As1 | 167.73 (11) | O13—As1—C1—C2 | 83.8 (2) |
O1Wi—Sr1—O11—As1 | 100.13 (13) | O13—As1—C1—C6 | −91.3 (2) |
O12ii—Sr1—O11—As1 | −50.91 (12) | As1—C1—C2—C3 | −173.0 (2) |
O12iii—Sr1—O11—As1 | 26.60 (12) | C6—C1—C2—C3 | 2.2 (4) |
O12—As1—O11—Sr1 | 111.52 (12) | As1—C1—C6—C5 | 172.8 (2) |
O13—As1—O11—Sr1 | −4.75 (14) | C2—C1—C6—C5 | −2.3 (4) |
C1—As1—O11—Sr1 | −120.47 (12) | C1—C2—C3—C4 | 0.3 (5) |
O11—As1—O12—Sr1ii | −109.92 (16) | C2—C3—C4—N4 | 175.0 (3) |
O13—As1—O12—Sr1ii | 8.26 (18) | C2—C3—C4—C5 | −2.6 (4) |
C1—As1—O12—Sr1ii | 120.88 (16) | N4—C4—C5—C6 | −175.1 (3) |
O11—As1—C1—C2 | −159.0 (2) | C3—C4—C5—C6 | 2.6 (5) |
O11—As1—C1—C6 | 25.9 (3) | C4—C5—C6—C1 | −0.1 (5) |
O12—As1—C1—C2 | −28.3 (3) |
Symmetry codes: (i) −x+3/2, y, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1/2, −y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O11iv | 0.88 (2) | 1.92 (2) | 2.791 (3) | 173 (3) |
O1W—H12W···O13ii | 0.88 (3) | 2.02 (2) | 2.845 (3) | 156 (3) |
O13—H13···O12iii | 0.88 (2) | 1.73 (2) | 2.606 (3) | 176 (3) |
O2W—H21W···O11iv | 0.83 (3) | 2.52 (3) | 3.267 (2) | 149 (3) |
N4—H41···O1Wv | 0.89 (2) | 2.24 (3) | 3.115 (4) | 165 (2) |
N4—H42···O13vi | 0.89 (3) | 2.33 (3) | 3.210 (4) | 170 (3) |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1/2, −y, z; (iv) −x+1, −y+1, −z+1; (v) x−1/2, y−1/2, z−1/2; (vi) −x+1, y+1/2, −z+1/2. |
[Ba(C6H7AsNO3)2(H2O)3] | F(000) = 1200 |
Mr = 623.92 | Dx = 2.257 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2ya | Cell parameters from 1721 reflections |
a = 9.9997 (8) Å | θ = 4.6–29.1° |
b = 7.7305 (6) Å | µ = 5.79 mm−1 |
c = 23.979 (2) Å | T = 200 K |
β = 98.214 (7)° | Block, colourless |
V = 1834.7 (3) Å3 | 0.36 × 0.22 × 0.16 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1801 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1696 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −12→10 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −9→7 |
Tmin = 0.470, Tmax = 0.970 | l = −29→28 |
3485 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0262P)2 + 0.1187P] where P = (Fo2 + 2Fc2)/3 |
1801 reflections | (Δ/σ)max = 0.001 |
137 parameters | Δρmax = 0.85 e Å−3 |
7 restraints | Δρmin = −0.95 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.75000 | 0.28700 (3) | 0.50000 | 0.0145 (1) | |
As1 | 0.43401 (3) | 0.05954 (4) | 0.40830 (1) | 0.0122 (1) | |
O1W | 0.5902 (2) | 0.4300 (3) | 0.57359 (12) | 0.0261 (8) | |
O2W | 0.75000 | 0.6465 (5) | 0.50000 | 0.0350 (11) | |
O11 | 0.5036 (2) | 0.2376 (3) | 0.43911 (10) | 0.0208 (7) | |
O12 | 0.30116 (19) | −0.0164 (3) | 0.43546 (9) | 0.0205 (7) | |
O13 | 0.55376 (19) | −0.1064 (3) | 0.41966 (10) | 0.0182 (7) | |
N4 | 0.3301 (3) | 0.0886 (4) | 0.15278 (13) | 0.0264 (10) | |
C1 | 0.3921 (3) | 0.0829 (4) | 0.32900 (13) | 0.0143 (9) | |
C2 | 0.2955 (3) | −0.0255 (4) | 0.29931 (14) | 0.0174 (9) | |
C3 | 0.2734 (3) | −0.0207 (4) | 0.24105 (13) | 0.0174 (9) | |
C4 | 0.3463 (3) | 0.0915 (4) | 0.21100 (13) | 0.0175 (9) | |
C5 | 0.4402 (3) | 0.2028 (4) | 0.24149 (15) | 0.0202 (10) | |
C6 | 0.4626 (3) | 0.1983 (4) | 0.30002 (14) | 0.0180 (9) | |
H2 | 0.24500 | −0.10250 | 0.31910 | 0.0210* | |
H3 | 0.20750 | −0.09500 | 0.22110 | 0.0210* | |
H5 | 0.48910 | 0.28230 | 0.22190 | 0.0240* | |
H6 | 0.52650 | 0.27470 | 0.32020 | 0.0220* | |
H11W | 0.555 (3) | 0.534 (3) | 0.5741 (18) | 0.0390* | |
H12W | 0.534 (3) | 0.358 (4) | 0.5849 (17) | 0.0390* | |
H13 | 0.636 (2) | −0.071 (4) | 0.4302 (14) | 0.0270* | |
H21W | 0.688 (4) | 0.715 (5) | 0.509 (2) | 0.0520* | |
H41 | 0.259 (3) | 0.040 (5) | 0.1339 (14) | 0.0320* | |
H42 | 0.355 (4) | 0.180 (4) | 0.1350 (15) | 0.0320* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0157 (1) | 0.0125 (2) | 0.0147 (2) | 0.0000 | 0.0004 (1) | 0.0000 |
As1 | 0.0107 (2) | 0.0117 (2) | 0.0143 (2) | 0.0007 (1) | 0.0019 (1) | 0.0008 (1) |
O1W | 0.0243 (12) | 0.0181 (13) | 0.0382 (16) | −0.0006 (9) | 0.0120 (11) | −0.0007 (12) |
O2W | 0.048 (2) | 0.0165 (19) | 0.042 (2) | 0.0000 | 0.0120 (19) | 0.0000 |
O11 | 0.0238 (11) | 0.0140 (11) | 0.0230 (13) | 0.0004 (9) | −0.0026 (10) | −0.0031 (10) |
O12 | 0.0134 (10) | 0.0255 (13) | 0.0236 (13) | 0.0007 (9) | 0.0066 (9) | 0.0071 (11) |
O13 | 0.0114 (10) | 0.0137 (11) | 0.0289 (13) | 0.0020 (9) | 0.0006 (9) | 0.0009 (11) |
N4 | 0.0287 (16) | 0.0326 (18) | 0.0177 (16) | 0.0031 (13) | 0.0025 (13) | 0.0022 (14) |
C1 | 0.0143 (14) | 0.0159 (15) | 0.0125 (16) | 0.0046 (12) | 0.0013 (12) | 0.0006 (14) |
C2 | 0.0141 (14) | 0.0161 (16) | 0.0225 (18) | −0.0022 (12) | 0.0041 (12) | 0.0012 (15) |
C3 | 0.0147 (14) | 0.0146 (15) | 0.0221 (17) | −0.0014 (12) | −0.0004 (13) | −0.0016 (14) |
C4 | 0.0167 (15) | 0.0184 (16) | 0.0172 (17) | 0.0074 (13) | 0.0023 (13) | −0.0002 (15) |
C5 | 0.0187 (16) | 0.0210 (18) | 0.0221 (19) | 0.0022 (13) | 0.0067 (14) | 0.0083 (15) |
C6 | 0.0141 (14) | 0.0168 (16) | 0.0229 (18) | −0.0003 (12) | 0.0015 (13) | 0.0000 (14) |
Ba1—O1W | 2.774 (2) | O13—H13 | 0.87 (2) |
Ba1—O2W | 2.779 (4) | N4—C4 | 1.382 (4) |
Ba1—O11 | 2.706 (2) | N4—H41 | 0.87 (3) |
Ba1—O1Wi | 2.774 (2) | N4—H42 | 0.88 (3) |
Ba1—O11i | 2.706 (2) | C1—C2 | 1.395 (4) |
Ba1—O12ii | 2.694 (2) | C1—C6 | 1.384 (4) |
Ba1—O12iii | 2.694 (2) | C2—C3 | 1.383 (5) |
As1—O11 | 1.667 (2) | C3—C4 | 1.398 (4) |
As1—O12 | 1.668 (2) | C4—C5 | 1.400 (4) |
As1—O13 | 1.749 (2) | C5—C6 | 1.390 (5) |
As1—C1 | 1.897 (3) | C2—H2 | 0.9500 |
O1W—H11W | 0.88 (2) | C3—H3 | 0.9500 |
O1W—H12W | 0.86 (3) | C5—H5 | 0.9500 |
O2W—H21W | 0.87 (4) | C6—H6 | 0.9500 |
O2W—H21Wi | 0.87 (4) | ||
O1W—Ba1—O2W | 66.52 (5) | Ba1—O1W—H11W | 130 (3) |
O1W—Ba1—O11 | 80.60 (7) | Ba1—O1W—H12W | 114 (2) |
O1W—Ba1—O1Wi | 133.03 (7) | H11W—O1W—H12W | 108 (3) |
O1W—Ba1—O11i | 106.02 (7) | H21W—O2W—H21Wi | 105 (4) |
O1W—Ba1—O12ii | 76.71 (7) | Ba1—O2W—H21Wi | 128 (3) |
O1W—Ba1—O12iii | 148.07 (6) | Ba1—O2W—H21W | 128 (3) |
O2W—Ba1—O11 | 98.11 (5) | As1—O13—H13 | 114 (2) |
O1Wi—Ba1—O2W | 66.52 (5) | C4—N4—H41 | 120 (2) |
O2W—Ba1—O11i | 98.11 (5) | H41—N4—H42 | 111 (3) |
O2W—Ba1—O12ii | 140.93 (5) | C4—N4—H42 | 118 (2) |
O2W—Ba1—O12iii | 140.93 (5) | As1—C1—C6 | 120.6 (2) |
O1Wi—Ba1—O11 | 106.02 (7) | As1—C1—C2 | 119.5 (2) |
O11—Ba1—O11i | 163.77 (7) | C2—C1—C6 | 119.8 (3) |
O11—Ba1—O12ii | 88.13 (7) | C1—C2—C3 | 119.9 (3) |
O11—Ba1—O12iii | 79.25 (6) | C2—C3—C4 | 121.2 (3) |
O1Wi—Ba1—O11i | 80.60 (7) | N4—C4—C5 | 120.7 (3) |
O1Wi—Ba1—O12ii | 148.07 (6) | N4—C4—C3 | 121.1 (3) |
O1Wi—Ba1—O12iii | 76.71 (7) | C3—C4—C5 | 118.2 (3) |
O11i—Ba1—O12ii | 79.25 (6) | C4—C5—C6 | 120.8 (3) |
O11i—Ba1—O12iii | 88.13 (7) | C1—C6—C5 | 120.2 (3) |
O12ii—Ba1—O12iii | 78.13 (7) | C1—C2—H2 | 120.00 |
O11—As1—O12 | 115.03 (11) | C3—C2—H2 | 120.00 |
O11—As1—O13 | 107.67 (10) | C2—C3—H3 | 119.00 |
O11—As1—C1 | 112.60 (12) | C4—C3—H3 | 119.00 |
O12—As1—O13 | 104.29 (11) | C4—C5—H5 | 120.00 |
O12—As1—C1 | 110.54 (12) | C6—C5—H5 | 120.00 |
O13—As1—C1 | 105.91 (12) | C1—C6—H6 | 120.00 |
Ba1—O11—As1 | 130.25 (11) | C5—C6—H6 | 120.00 |
Ba1ii—O12—As1 | 136.46 (11) | ||
O1W—Ba1—O11—As1 | −129.08 (16) | O12—As1—C1—C6 | 155.9 (2) |
O2W—Ba1—O11—As1 | 166.49 (14) | O13—As1—C1—C2 | 84.0 (3) |
O1Wi—Ba1—O11—As1 | 98.70 (15) | O13—As1—C1—C6 | −91.7 (3) |
O12ii—Ba1—O11—As1 | −52.24 (15) | As1—C1—C2—C3 | −173.9 (2) |
O12iii—Ba1—O11—As1 | 26.03 (14) | C6—C1—C2—C3 | 1.9 (5) |
O12—As1—O11—Ba1 | 113.92 (14) | As1—C1—C6—C5 | 173.8 (2) |
O13—As1—O11—Ba1 | −1.84 (18) | C2—C1—C6—C5 | −1.9 (5) |
C1—As1—O11—Ba1 | −118.21 (16) | C1—C2—C3—C4 | −0.1 (5) |
O11—As1—O12—Ba1ii | −106.90 (17) | C2—C3—C4—N4 | 176.0 (3) |
O13—As1—O12—Ba1ii | 10.78 (18) | C2—C3—C4—C5 | −1.7 (5) |
C1—As1—O12—Ba1ii | 124.21 (17) | N4—C4—C5—C6 | −176.0 (3) |
O11—As1—C1—C2 | −158.6 (2) | C3—C4—C5—C6 | 1.7 (5) |
O11—As1—C1—C6 | 25.7 (3) | C4—C5—C6—C1 | 0.1 (5) |
O12—As1—C1—C2 | −28.4 (3) |
Symmetry codes: (i) −x+3/2, y, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1/2, −y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O11iv | 0.88 (2) | 1.87 (2) | 2.738 (3) | 168 (4) |
O1W—H12W···O13ii | 0.86 (3) | 2.13 (3) | 2.902 (3) | 149 (3) |
O13—H13···O12iii | 0.87 (2) | 1.77 (2) | 2.626 (3) | 167 (3) |
O2W—H21W···O11iv | 0.87 (4) | 2.46 (4) | 3.229 (2) | 149 (3) |
N4—H41···O1Wv | 0.87 (3) | 2.23 (3) | 3.092 (4) | 171 (3) |
N4—H42···O13vi | 0.88 (3) | 2.37 (3) | 3.241 (4) | 170 (3) |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1/2, −y, z; (iv) −x+1, −y+1, −z+1; (v) x−1/2, y−1/2, z−1/2; (vi) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology.
References
Adelani, P. O., Jouffret, L. J., Szymanowski, J. E. S. & Burns, P. C. (2012). Inorg. Chem. 51, 12032–12040. Web of Science CSD CrossRef CAS PubMed Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318–1327. Web of Science CSD CrossRef CAS Google Scholar
Bosch, F. & Rosich, L. (2008). Pharmacology, 82, 171–179. Web of Science CrossRef PubMed CAS Google Scholar
Breen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904–6908. Web of Science CSD CrossRef CAS Google Scholar
Ehrlich, P. & Bertheim, A. (1907). Berichte, pp. 3292–3297. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lamberts, K. & Englert, U. (2015). Crystals, 5, 261–272. CrossRef CAS Google Scholar
Lee, H., Lynch, V. M., Cao, G. & Mallouk, T. E. (1988). Acta Cryst. C44, 365–367. CrossRef CAS IUCr Journals Google Scholar
Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432. CAS Google Scholar
Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683. CSD CrossRef CAS IUCr Journals Google Scholar
O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 1535. Whitehouse Station, New Jersey: Merck & Co. Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Schier, A., Gamper, S. & Muller, G. (1990). Inorg. Chim. Acta, 177, 179–183. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643. CrossRef CAS Web of Science Google Scholar
Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steverding, D. (2010). Parasites Vectors, 3, 15. doi:10.1186/1756-3305-3-15. CrossRef Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.