research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

The coordination complex structures and hydrogen bonding in the three-dimensional alkaline earth metal salts (Mg, Ca, Sr and Ba) of (4-amino­phenyl)arsonic acid

CROSSMARK_Color_square_no_text.svg

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

Edited by A. G. Oliver, University of Notre Dame, USA (Received 26 September 2016; accepted 5 December 2016; online 1 January 2017)

(4-Amino­phen­yl)arsonic acid (p-arsanilic acid) is used as an anti­helminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the anti­syphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4-amino­phen­yl)arsonic acid (p-arsanilic acid) have been determined, viz. hexa­aqua­magnesium bis­[hydrogen (4-amino­phen­yl)arsonate] tetra­hydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena-poly[[[di­aqua­calcium]-bis­[μ2-hydrogen (4-amino­phen­yl)arsonato-κ2O:O′]-[di­aqua­calcium]-bis­[μ2-hydrogen (4-amino­phen­yl)arsonato-κ2O:O]] dihydrate], {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n, (II), catena-poly[[tri­aqua­strontium]-bis­[μ2-hydrogen (4-amino­phen­yl)arsonato-κ2O:O′]], [Sr(C6H7AsNO3)2(H2O)3]n, (III), and catena-poly[[tri­aqua­barium]-bis­[μ2-hy­drogen (4-amino­phen­yl)arsonato-κ2O:O′]], [Ba(C6H7AsNO3)2(H2O)3]n, (IV). In the structure of magnesium salt (I), the centrosymmetric octa­hedral [Mg(H2O)6]2+ cation, the two hydrogen p-arsanilate anions and the four water mol­ecules of solvation form a three-dimensional network structure through inter-species O—H and N—H hydrogen-bonding inter­actions with water and arsonate O-atom and amine N-atom acceptors. In one-dimensional coordination polymer (II), the distorted octa­hedral CaO6 coordination polyhedron comprises two trans-related water mol­ecules and four arsonate O-atom donors from bridging hydrogen arsanilate ligands. One bridging extension is four-membered via a single O atom and the other is eight-membered via O:O′-bridging, both across inversion centres, giving a chain coordination polymer extending along the [100] direction. Extensive hydrogen-bonding involving O—H⋯O, O—H⋯N and N—H⋯O inter­actions gives an overall three-dimensional structure. The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular MO7 coordination polyhedra about the M2+ centres, which lie on twofold rotation axes along with one of the coordinated water mol­ecules. The coordination centres are linked through inversion-related arsonate O:O′-bridges, giving eight-membered ring motifs and forming coordination polymeric chains extending along the [100] direction. Inter-chain N—H⋯O and O—H⋯O hydrogen-bonding inter­actions extend the structures into three dimensions and the crystal packing includes ππ ring inter­actions [minimum ring centroid separations = 3.4666 (17) Å for (III) and 3.4855 (8) Å for (IV)].

1. Introduction

The compound (4-amino­phen­yl)arsonic acid (or p-arsanilic acid) has a continuing usage as an anti­helminth in veterinary applications (Steverding, 2010[Steverding, D. (2010). Parasites Vectors, 3, 15. doi:10.1186/1756-3305-3-15.]) and was earlier used in the monosodium salt dihydrate form as the anti­syphilitic drug atoxyl (Ehrlich & Bertheim, 1907[Ehrlich, P. & Bertheim, A. (1907). Berichte, pp. 3292-3297.]; O'Neil, 2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 1535. Whitehouse Station, New Jersey: Merck & Co.]; Bosch & Rosich, 2008[Bosch, F. & Rosich, L. (2008). Pharmacology, 82, 171-179.]). We reported the crystal structure of atoxyl, together with that of the mono­ammonium salt (Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]) but the number of structures of monometal (as distinct from mixed metal) complexes with p-arsanilic acid are few in the crystallographic literature, examples being with silver(I), zinc, cadmium and lead (Lesikar-Parrish et al., 2013[Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424-432.]) and uranium (as UO2) (Adelani et al., 2012[Adelani, P. O., Jouffret, L. J., Szymanowski, J. E. S. & Burns, P. C. (2012). Inorg. Chem. 51, 12032-12040.]). An example of a mixed-metal compound is the sodium salt of a hybrid organic–inorganic polyoxovanadate cluster formed with p-arsanilate anions (Breen & Schmitt, 2008[Breen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904-6908.]).

[Scheme 1]

Our 2:1 stoichiometric reactions of p-arsanilic acid with magnesium, calcium, strontium and barium carbonates in aqueous ethanol gave the title compounds [Mg(H2O)6](C6H7AsNO3)2. 4H2O, (I)[link], {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n, (II)[link], [Sr(C6H7AsNO3)2(H2O)3]n, (III)[link], and [Ba(C6H7AsNO3)2(H2O)3]n, (IV)[link], respectively. The structures and hydrogen-bonded packing modes for (I)–(IV) are reported herein.

2. Experimental

2.1. Synthesis and crystallization

The title compounds (I)–(IV) were synthesized by heating together under reflux for 5 min, 1.0 mmol (216 mg) of (4-amino­phen­yl)arsonic acid and 0.5 mmol of the appropriate carbonate, i.e. 42 mg of MgCO3 for (I)[link], 50 mg of CaCO3 for (II)[link], 74 mg of SrCO3 for (III)[link] or 98 mg of BaCO3 for (IV)[link], in 20 ml of 50% (v/v) ethanol/water. Partial room-temperature evaporation of the solutions gave colourless needles of all compounds from which specimens suitable for the X-ray analyses were cleaved. Crystals were mounted on conventional glass fibres using ep­oxy resin.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms involved in hydrogen bonds were located by difference Fourier methods and their isotropic displacement parameters were allowed to ride. N—H bond lengths were restrained to 0.88 (2) Å for (I) and (II), and to 0.90 (2) Å for (III) and (IV). O—H bond lengths were restrained to 0.90 (2) Å in all cases. H atoms bonded to C atoms were included in the refinement in calculated positions (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula [Mg(H2O)6](C6H7AsNO3)·4H2O [Ca(C6H7AsNO3)2(H2O)2]·2H2O [Sr(C6H7AsNO3)2(H2O)3] [Ba(C6H7AsNO3)2(H2O)3]
Mr 636.56 544.24 573.76 623.92
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, I2/a Monoclinic, I2/a
Temperature (K) 200 200 200 200
a, b, c (Å) 15.1693 (6), 6.7367 (2), 12.9532 (4) 9.001 (5), 9.672 (5), 11.756 (5) 9.8935 (3), 7.5844 (3), 23.6669 (9) 9.9997 (8), 7.7305 (6), 23.979 (2)
α, β, γ (°) 90, 108.033 (4), 90 77.096 (5), 74.096 (5), 82.236 (5) 90, 97.866 (3), 90 90, 98.214 (7), 90
V3) 1258.68 (7) 956.4 (8) 1759.17 (11) 1834.7 (3)
Z 2 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.75 3.82 6.85 5.79
Crystal size (mm) 0.35 × 0.18 × 0.10 0.35 × 0.11 × 0.10 0.25 × 0.12 × 0.12 0.36 × 0.22 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.700, 0.980 0.931, 0.980 0.791, 0.980 0.470, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 8901, 2466, 2149 6921, 3744, 3276 3326, 1737, 1606 3485, 1801, 1696
Rint 0.032 0.032 0.020 0.029
(sin θ/λ)max−1) 0.617 0.617 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.12 0.031, 0.068, 1.06 0.022, 0.051, 1.09 0.023, 0.055, 1.10
No. of reflections 2466 3744 1737 1801
No. of parameters 190 286 137 137
No. of restraints 13 14 7 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.64 0.55, −0.47 0.47, −0.54 0.85, −0.95
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

3. Results and discussion

In the structure of magnesium compound (I)[link], the cations exist as the commonly found centrosymmetric octa­hedral [Mg(H2O)6]2+ species with the hydrogen p-arsanilate acting as counter-anions. The coordinated aqua ligands are related in pairs by (−x + 1, −y + 1, −z + 1), denoted symmetry code (i) (Fig. 1[link]). The Mg—O bond lengths [2.066 (2)–2.0734 (18) Å] are typical of those found in [Mg(H2O)6]2+ complex cations with analogous phospho­nate anions, e.g. with hydrogen di­phenyl­methyl­phospho­nate (Lee et al., 1988[Lee, H., Lynch, V. M., Cao, G. & Mallouk, T. E. (1988). Acta Cryst. C44, 365-367.]), hydrogen (2-amino­ethyl)phospho­nate (Schier et al., 1990[Schier, A., Gamper, S. & Muller, G. (1990). Inorg. Chim. Acta, 177, 179-183.]) and the carboxyl­ate anion 4-nitro­benzoate (Arlin et al., 2011[Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318-1327.]).

[Figure 1]
Figure 1
The mol­ecular configuration and atom-naming scheme for the hexa­aqua­magnesium cation, the p-arsanilate anion and the two water mol­ecules of solvation in the the asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines. [Inversion-related atoms are indicated by the symmetry code (i) −x + 1, −y + 1, −z + 1.]

In the crystal of (I)[link], extensive hydrogen-bonding involving all H-atom donors of the anions and those of both the coordinated and solvent water mol­ecules (O4W and O5W) with arsanilate O- and N-atom acceptors and water O-atom acceptors (Table 2[link]) generate a three-dimensional structure (Figs. 2[link] and 3[link]). The coordinated water mol­ecules inter­act with both arsanilate O11v, O12 and O13i, and water O4W, O5W and O5Wv atoms. These inter­actions include an R33(10) cyclic motif involving both the Mg and As atoms. The solvent water mol­ecules involve O11, O11v, O12vi and O1Wvii acceptors. The arsanilate amine group acts as both a double donor to O12iv and O4Wiii atoms and as an acceptor to the O13 acid H-atom donor of an inversion-related anion, linking these along [010]. Weak ππ associations are also present between inversion-related anions [ring centroid separation CgCgii = 3.7187 (14) Å] [symmetry codes: (ii) −x, −y + 2, −z + 1; (iii) x − 1, y, z; (iv) −x, −y + 1, −z + 1; (v) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (vi) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (vii) x, y + 1, z].

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N4ii 0.85 (2) 1.89 (2) 2.746 (3) 177 (3)
N4—H41⋯O4Wiii 0.86 (3) 2.07 (3) 2.903 (3) 164 (3)
N4—H42⋯O12iv 0.86 (2) 2.12 (2) 2.980 (3) 172 (2)
O1W—H11W⋯O12 0.86 (2) 1.78 (2) 2.636 (3) 175 (2)
O1W—H12W⋯O5Wv 0.84 (2) 1.91 (2) 2.745 (2) 172 (3)
O2W—H21W⋯O11v 0.87 (2) 1.84 (2) 2.707 (2) 174 (2)
O2W—H22W⋯O13i 0.84 (3) 2.00 (3) 2.832 (3) 177 (3)
O3W—H31W⋯O4W 0.89 (2) 1.90 (2) 2.781 (3) 175 (3)
O3W—H32W⋯O5W 0.87 (2) 1.94 (3) 2.796 (3) 165 (2)
O4W—H41W⋯O11v 0.85 (2) 1.87 (2) 2.717 (2) 171 (3)
O4W—H42W⋯O12vi 0.87 (2) 1.86 (2) 2.720 (2) 174 (3)
O5W—H51W⋯O11 0.87 (2) 1.89 (2) 2.754 (3) 170 (2)
O5W—H52W⋯O1Wvii 0.83 (2) 2.14 (2) 2.958 (3) 169 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) x-1, y, z; (iv) -x, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) x, y+1, z.
[Figure 2]
Figure 2
The hydrogen-bonding extension in the structure of (I)[link], showing the symmetry operations (see Table 2[link]). H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
A perspective view of the three-dimensional hydrogen-bonded framework structure of (I)[link] in the unit cell, showing the hydrogen-bonding associations as dashed lines. H atoms not involved in hydrogen bonding have been omitted. For symmetry codes, see Table 2[link].

In the structure of the coordination polymeric calcium compound (II)[link], the repeat unit is a distorted octa­hedral CaO6 complex comprising four O-atom donors (with two bridging) from the two independent hydrogen p-arsanilate anions (A and B), together with two independent monodentate water mol­ecules (O1W and O2W). Present also in the structure are two water mol­ecules of solvation (O3W and O4W) (Fig. 4[link]). The Ca—O bond lengths are in the range 2.306 (2)–2.420 (2) Å (Table 3[link]), typical values for Ca—O bond lengths in the six-coordinate di­aquacalcium–carboxyl­ate–L-valine com­plex (Lamberts & Englert, 2015[Lamberts, K. & Englert, U. (2015). Crystals, 5, 261-272.]) (2.278–2.372 Å). The bridging carboxyl­ate O atoms in (II)[link] generate a coordination polymer extending along [100] through centrosymmetric cyclic ring systems, i.e. four-membered through O11Bi and eight-membered through O11Aii and O12Aii [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1] (Fig. 5[link]). The Ca⋯Cai separation in the four-membered ring is 3.801 (2) Å. The crystal structure involves a number of inter-chain N—H⋯O and O—H⋯O hydrogen-bonding inter­actions to arsonate and water O-atom acceptors, as well as to the amine N-atom acceptors (Table 4[link] and Fig. 5[link]). These generate an overall three-dimensional framework structure (Fig. 6[link]) in which no ππ ring inter­actions are present.

Table 3
Selected bond lengths (Å) for (II)[link]

Ca1—O1W 2.392 (3) Ca1—O11B 2.361 (2)
Ca1—O2W 2.345 (3) Ca1—O11Bi 2.420 (2)
Ca1—O11A 2.306 (2) Ca1—O12Aii 2.291 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O13A—H13A⋯O12Bii 0.88 (2) 1.67 (2) 2.534 (3) 169 (4)
O13B—H13B⋯O11Ai 0.88 (3) 1.70 (3) 2.578 (3) 170 (3)
N4A—H41A⋯O12Biii 0.88 (2) 2.13 (2) 3.014 (4) 176 (4)
N4B—H42B⋯O4Wiv 0.86 (3) 2.05 (3) 2.901 (5) 172 (4)
O1W—H11W⋯N4Bv 0.90 (4) 2.17 (4) 3.048 (5) 166 (4)
O1W—H12W⋯O3W 0.89 (2) 1.83 (2) 2.712 (4) 171 (3)
O2W—H21W⋯N4Avi 0.86 (4) 2.04 (4) 2.893 (4) 173 (4)
O2W—H22W⋯O4Wvii 0.88 (3) 1.92 (3) 2.785 (4) 168 (4)
O3W—H31W⋯O13Bviii 0.88 (4) 1.96 (4) 2.827 (4) 169 (4)
O3W—H32W⋯O12B 0.89 (3) 1.92 (3) 2.758 (4) 157 (4)
O4W—H41W⋯O3Wix 0.87 (4) 2.08 (4) 2.915 (4) 160 (3)
O4W—H42W⋯O13A 0.89 (4) 1.86 (3) 2.748 (4) 176 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z+1; (iv) x, y+1, z-1; (v) x, y, z+1; (vi) x, y, z-1; (vii) -x+1, -y, -z+1; (viii) -x, -y+2, -z+1; (ix) x, y-1, z.
[Figure 4]
Figure 4
The mol­ecular configuration and atom-naming scheme for the asymmetric unit and the water mol­ecules of solvation (O3W and O4W) in (II)[link]. Displacement ellipsoids are drawn at the 40% probability level. For symmetry codes, see Table 3[link].
[Figure 5]
Figure 5
A portion of the one-dimensional coordination polymeric chains in the structure of (II)[link] extending along a. For symmetry codes, see Table 3[link].
[Figure 6]
Figure 6
Hydrogen bonding in the three-dimensional structure of (II)[link], viewed down b, showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted. For symmetry codes, see Table 4[link].

The structures of the polymeric Sr and Ba complexes (III)[link] and (IV)[link], respectively, are isotypic and are based on irregular MO7 coordination polyhedra about the M2+ centres, which lie on twofold rotation axes. The basic SrO7 or BaO7 complex repeat units (Figs. 7[link] and 8[link]) comprise three monodentate water mol­ecules, with one (O2W) lying on a twofold rotation axis and the others (O1W and O1Wi) related by the rotation axis [symmetry code: (i) −x + [{3\over 2}], y, −z + 1]. The coordination sphere is completed by four O:O′-bridging arsonate O-atom donors, i.e. O11, O11i, O12ii and O12iii [symmetry codes: (ii) −x + 1, −y, −z + 1; (iii) x + [{1\over 2}], −y, z]. The M—O bond-length ranges are 2.549 (2)–2.628 (2) (for Sr) and 2.694 (2)–2.779 (2) Å (for Ba) (Tables 5[link] and 6[link]).

Table 5
Selected bond lengths (Å) for (III)[link]

Sr1—O1W 2.628 (2) Sr1—O11i 2.5527 (18)
Sr1—O2W 2.628 (3) Sr1—O12ii 2.549 (2)
Sr1—O11 2.5527 (18) Sr1—O12iii 2.549 (2)
Sr1—O1Wi 2.628 (2)    
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, -z+1]; (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y, z].

Table 6
Selected bond lengths (Å) for (IV)[link]

Ba1—O1W 2.774 (2) Ba1—O11i 2.706 (2)
Ba1—O2W 2.779 (4) Ba1—O12ii 2.694 (2)
Ba1—O11 2.706 (2) Ba1—O12iii 2.694 (2)
Ba1—O1Wi 2.774 (2)    
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, -z+1]; (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y, z].
[Figure 7]
Figure 7
The mol­ecular configuration and atom-naming scheme for the complex unit in (III)[link]. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) −x + [3 \over 2], y, −z + 1; (ii) −x + 1, −y, −z + 1; (iii) x + [1 \over 2], −y, z.]
[Figure 8]
Figure 8
The mol­ecular configuration and atom-naming scheme for the complex unit in (IV)[link]. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) −x + [3 \over 2], y, −z + 1; (ii) −x + 1, −y, −z + 1; (iii) x + [1 \over 2], −y, z.]

Both O:O′-bridging groups provide eight-membered cyclic extensions of the structure, one of which is centrosymmetric, giving a one-dimensional chain polymer structure extending along [100] (Fig. 9[link]). In the crystal, there are inter-polymer N—H⋯O and O—H⋯O hydrogen-bonding associations to arsonate and water O-atom acceptors (Tables 7[link] and 8[link]), generating a three-dimensional framework structure (Fig. 10[link]). Present also in the crystal packing of (III)[link] and (IV)[link] are relatively strong ππ aromatic ring inter­actions with ring centroid separations (CgCgvii) of 3.4666 (17) Å in (III)[link] and 3.4855 (8) Å in (IV)[link] between inversion-related hydrogen arsanilate ligands [symmetry code: (vii) −x + [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}]].

Table 7
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O11iv 0.88 (2) 1.92 (2) 2.791 (3) 173 (3)
O1W—H12W⋯O13ii 0.88 (3) 2.02 (2) 2.845 (3) 156 (3)
O13—H13⋯O12iii 0.88 (2) 1.73 (2) 2.606 (3) 176 (3)
O2W—H21W⋯O11iv 0.83 (3) 2.52 (3) 3.267 (2) 149 (3)
N4—H41⋯O1Wv 0.89 (2) 2.24 (3) 3.115 (4) 165 (2)
N4—H42⋯O13vi 0.89 (3) 2.33 (3) 3.210 (4) 170 (3)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y, z]; (iv) -x+1, -y+1, -z+1; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 8
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O11iv 0.88 (2) 1.87 (2) 2.738 (3) 168 (4)
O1W—H12W⋯O13ii 0.86 (3) 2.13 (3) 2.902 (3) 149 (3)
O13—H13⋯O12iii 0.87 (2) 1.77 (2) 2.626 (3) 167 (3)
O2W—H21W⋯O11iv 0.87 (4) 2.46 (4) 3.229 (2) 149 (3)
N4—H41⋯O1Wv 0.87 (3) 2.23 (3) 3.092 (4) 171 (3)
N4—H42⋯O13vi 0.88 (3) 2.37 (3) 3.241 (4) 170 (3)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y, z]; (iv) -x+1, -y+1, -z+1; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 9]
Figure 9
The one-dimensional coordination polymeric chains in the structure of (III)[link], extending along a. The isotypic structure of (IV)[link] is similar. For symmetry codes, see Tables 7[link] and 8[link].
[Figure 10]
Figure 10
The hydrogen bonding in the three-dimensional complex structures of (III)[link] and (IV)[link]. Non-associative H atoms have been omitted.

The monoanionic arsonate groups in all four structures are similar in having delocalized As—O11 and As—O12 bonds, which are essentially equal: 1.6617 (15) and 1.6581 (14) Å in (I)[link]; 1.673 (2) and 1.645 (2) Å in (IIA), and 1.667 (2) and 1.668 (2) Å in (IIB); 1.6650 (16) and 1.6705 (19) Å in (III)[link]; 1.667 (2) and 1.668 (2) Å in (IV)[link]. These compare with 1.672 (3) and 1.677 (3), and 1.670 (3) and 1.659 (3) Å in the ammonium and sodium salts, respectively (Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]), and 1.656 (6) and 1.669 (6) Å in the zwitterionic parent acid (Shimada, 1961[Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639-643.]; Nuttall & Hunter, 1996[Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.]). The As—O13(H) bonds are 1.7412 (16) Å in (I)[link], 1.721 (2) Å in (IIA) and 1.727 (2) Å in (IIB), 1.746 (2) Å in (III)[link] and 1.749 (2) Å in (IV)[link], compared with 1.737 (8) Å in the parent acid.

The work reported here provides a comparison of the coordination chemistry and hydrogen bonding in the three-dimensional structures of the alkaline earth series of complexes with hydrogen (4-amino­phenyl)­arsonic acid. With the exception of Mg complex (I)[link], all the compounds form basically similar supra­molecular structures in which the primary core comprising the polymeric metal complex and water mol­ecules form layers which are linked through the peripheral arsanilate ring systems by hydrogen bonding involving the para-related aniline amino group. This packing feature is also found in the sodium hydrogen p-arsanilate structure (Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]), although the primary layer differs from the alkaline-earth members (II)–(IV) in that it involves an NaO5 complex core with one of the three coordinated water mol­ecules bridging.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015 for (I); CrysAlis PRO (Rigaku OD, 2015) for (II), (III), (IV). For all compounds, cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) Hexaaquamagnesium bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate top
Crystal data top
[Mg(H2O)6](C6H7AsNO3)·4H2OF(000) = 652
Mr = 636.56Dx = 1.680 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3242 reflections
a = 15.1693 (6) Åθ = 3.6–29.1°
b = 6.7367 (2) ŵ = 2.75 mm1
c = 12.9532 (4) ÅT = 200 K
β = 108.033 (4)°Prism, colourless
V = 1258.68 (7) Å30.35 × 0.18 × 0.10 mm
Z = 2
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2466 independent reflections
Radiation source: Enhance (Mo) X-ray source2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 88
Tmin = 0.700, Tmax = 0.980l = 1515
8901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.0883P]
where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.40 e Å3
13 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.23165 (2)0.74327 (3)0.60063 (2)0.0166 (1)
O110.29867 (12)0.8873 (2)0.69756 (12)0.0246 (5)
O120.26694 (12)0.5094 (2)0.60663 (12)0.0236 (5)
O130.23879 (12)0.8264 (2)0.47619 (12)0.0244 (5)
N40.17769 (16)0.7891 (3)0.56343 (19)0.0242 (7)
C10.10489 (18)0.7641 (3)0.59183 (19)0.0186 (7)
C20.07751 (19)0.7930 (4)0.6839 (2)0.0258 (8)
C30.0154 (2)0.7997 (4)0.6747 (2)0.0278 (8)
C40.08290 (19)0.7765 (3)0.5742 (2)0.0206 (7)
C50.0548 (2)0.7492 (3)0.4821 (2)0.0230 (8)
C60.0379 (2)0.7422 (3)0.4915 (2)0.0218 (8)
Mg10.500000.500000.500000.0192 (3)
O1W0.44254 (13)0.4488 (3)0.62346 (13)0.0264 (5)
O2W0.61417 (14)0.3374 (3)0.58760 (13)0.0305 (6)
O3W0.56172 (16)0.7579 (2)0.57476 (16)0.0308 (7)
O4W0.73459 (16)0.7514 (2)0.73245 (16)0.0294 (7)
O5W0.45949 (14)1.0160 (3)0.66270 (14)0.0283 (6)
H20.122800.808200.752900.0310*
H30.033700.820400.737700.0330*
H50.100000.735400.412800.0280*
H60.056400.722200.428500.0260*
H130.2204 (19)0.945 (3)0.462 (2)0.0370*
H410.193 (2)0.772 (3)0.6215 (19)0.0290*
H420.2074 (19)0.711 (3)0.5111 (18)0.0290*
H11W0.3843 (13)0.463 (4)0.615 (2)0.0400*
H12W0.4704 (19)0.481 (4)0.6882 (15)0.0400*
H21W0.641 (2)0.345 (4)0.6574 (14)0.0460*
H22W0.6573 (19)0.286 (4)0.569 (3)0.0460*
H31W0.6181 (16)0.761 (4)0.623 (2)0.0460*
H32W0.5287 (19)0.852 (3)0.592 (2)0.0460*
H41W0.729 (2)0.639 (3)0.760 (2)0.0440*
H42W0.738 (2)0.839 (3)0.7823 (19)0.0440*
H51W0.4052 (14)0.979 (4)0.666 (2)0.0420*
H52W0.457 (2)1.135 (3)0.645 (2)0.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0139 (2)0.0182 (2)0.0174 (2)0.0013 (1)0.0043 (1)0.0003 (1)
O110.0234 (11)0.0262 (8)0.0215 (8)0.0038 (7)0.0030 (7)0.0036 (7)
O120.0209 (10)0.0188 (8)0.0305 (9)0.0025 (7)0.0069 (7)0.0011 (7)
O130.0278 (11)0.0250 (8)0.0232 (9)0.0068 (8)0.0122 (8)0.0044 (7)
N40.0171 (13)0.0292 (10)0.0275 (12)0.0008 (9)0.0087 (10)0.0004 (9)
C10.0142 (14)0.0191 (11)0.0222 (12)0.0018 (9)0.0052 (10)0.0021 (8)
C20.0208 (16)0.0369 (13)0.0180 (12)0.0028 (11)0.0037 (11)0.0006 (10)
C30.0264 (17)0.0387 (13)0.0203 (12)0.0041 (12)0.0103 (12)0.0017 (11)
C40.0192 (15)0.0168 (10)0.0261 (13)0.0017 (10)0.0074 (11)0.0024 (9)
C50.0189 (16)0.0275 (13)0.0204 (12)0.0003 (10)0.0031 (11)0.0028 (9)
C60.0224 (16)0.0253 (12)0.0183 (12)0.0006 (10)0.0070 (11)0.0045 (9)
Mg10.0172 (7)0.0225 (5)0.0180 (5)0.0019 (5)0.0056 (5)0.0000 (4)
O1W0.0199 (11)0.0403 (9)0.0197 (8)0.0020 (9)0.0073 (8)0.0018 (8)
O2W0.0252 (12)0.0448 (11)0.0199 (9)0.0172 (9)0.0048 (8)0.0008 (8)
O3W0.0246 (13)0.0304 (10)0.0352 (11)0.0010 (8)0.0060 (9)0.0106 (8)
O4W0.0359 (14)0.0277 (10)0.0273 (10)0.0049 (8)0.0136 (10)0.0021 (7)
O5W0.0240 (12)0.0257 (9)0.0347 (10)0.0002 (8)0.0082 (8)0.0030 (8)
Geometric parameters (Å, º) top
Mg1—O1W2.0734 (18)O4W—H41W0.85 (2)
Mg1—O2W2.066 (2)O4W—H42W0.86 (2)
Mg1—O3W2.0668 (16)O5W—H51W0.87 (2)
Mg1—O1Wi2.0734 (18)O5W—H52W0.83 (2)
Mg1—O2Wi2.066 (2)N4—C41.404 (4)
Mg1—O3Wi2.0668 (16)N4—H410.86 (3)
As1—O111.6617 (15)N4—H420.87 (2)
As1—O121.6581 (14)C1—C61.388 (4)
As1—O131.7412 (15)C1—C21.393 (4)
As1—C11.896 (3)C2—C31.378 (4)
O13—H130.85 (2)C3—C41.394 (4)
O1W—H12W0.84 (2)C4—C51.398 (4)
O1W—H11W0.86 (2)C5—C61.374 (4)
O2W—H21W0.871 (18)C2—H20.9500
O2W—H22W0.84 (3)C3—H30.9500
O3W—H32W0.88 (2)C5—H50.9500
O3W—H31W0.89 (3)C6—H60.9500
O11—As1—O12113.97 (8)H21W—O2W—H22W100 (3)
O11—As1—O13108.23 (7)Mg1—O3W—H32W121.0 (18)
O11—As1—C1111.97 (9)H31W—O3W—H32W108 (2)
O12—As1—O13103.73 (7)Mg1—O3W—H31W123.1 (17)
O12—As1—C1112.33 (9)H41W—O4W—H42W107 (2)
O13—As1—C1105.85 (9)H51W—O5W—H52W109 (3)
O1Wi—Mg1—O3W89.08 (8)C4—N4—H41117 (2)
O2Wi—Mg1—O3W89.59 (8)H41—N4—H42113 (2)
O3W—Mg1—O3Wi180.00C4—N4—H42108 (2)
O1Wi—Mg1—O2Wi88.24 (8)C2—C1—C6119.4 (3)
O1Wi—Mg1—O3Wi90.92 (8)As1—C1—C6118.9 (2)
O2Wi—Mg1—O3Wi90.41 (8)As1—C1—C2121.65 (19)
O1Wi—Mg1—O2W91.76 (8)C1—C2—C3119.9 (2)
O1W—Mg1—O2W88.24 (8)C2—C3—C4120.9 (2)
O1W—Mg1—O3W90.92 (8)N4—C4—C3121.3 (2)
O1W—Mg1—O1Wi180.00C3—C4—C5118.8 (3)
O1W—Mg1—O2Wi91.76 (8)N4—C4—C5119.8 (2)
O1W—Mg1—O3Wi89.08 (8)C4—C5—C6120.2 (2)
O2W—Mg1—O3W90.41 (8)C1—C6—C5120.8 (2)
O2W—Mg1—O2Wi180.00C3—C2—H2120.00
O2W—Mg1—O3Wi89.59 (8)C1—C2—H2120.00
As1—O13—H13113.2 (18)C2—C3—H3120.00
Mg1—O1W—H11W122.9 (17)C4—C3—H3120.00
H11W—O1W—H12W106 (3)C6—C5—H5120.00
Mg1—O1W—H12W121.6 (19)C4—C5—H5120.00
Mg1—O2W—H21W125.6 (19)C1—C6—H6120.00
Mg1—O2W—H22W131 (2)C5—C6—H6120.00
O11—As1—C1—C234.6 (2)As1—C1—C6—C5177.68 (16)
O11—As1—C1—C6147.97 (16)C2—C1—C6—C50.2 (3)
O12—As1—C1—C295.2 (2)C1—C2—C3—C40.5 (4)
O12—As1—C1—C682.29 (18)C2—C3—C4—N4178.0 (2)
O13—As1—C1—C2152.29 (18)C2—C3—C4—C51.0 (4)
O13—As1—C1—C630.24 (18)N4—C4—C5—C6178.20 (19)
As1—C1—C2—C3177.5 (2)C3—C4—C5—C61.1 (3)
C6—C1—C2—C30.0 (4)C4—C5—C6—C10.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N4ii0.85 (2)1.90 (2)2.745 (3)177 (3)
N4—H41···O4Wiii0.86 (3)2.07 (3)2.904 (3)164 (3)
N4—H42···O12iv0.87 (2)2.12 (2)2.980 (3)172 (2)
O1W—H11W···O120.86 (2)1.78 (2)2.636 (3)175 (2)
O1W—H12W···O5Wv0.84 (2)1.91 (2)2.745 (2)172 (3)
O2W—H21W···O11v0.87 (2)1.84 (2)2.707 (2)174 (2)
O2W—H22W···O13i0.84 (3)1.99 (3)2.831 (3)178 (3)
O3W—H31W···O4W0.89 (3)1.89 (3)2.781 (3)175 (3)
O3W—H32W···O5W0.88 (2)1.94 (3)2.796 (3)165 (2)
O4W—H41W···O11v0.85 (2)1.87 (2)2.716 (2)172 (3)
O4W—H42W···O12vi0.86 (2)1.86 (2)2.720 (2)173 (3)
O5W—H51W···O110.87 (2)1.89 (2)2.755 (3)170 (2)
O5W—H52W···O1Wvii0.83 (2)2.14 (2)2.957 (3)170 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1; (iii) x1, y, z; (iv) x, y+1, z+1; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2; (vii) x, y+1, z.
(II) catena-Poly[[[diaquacalcium]-bis[µ2-hydrogen (4-aminophenyl)arsonato-κ2O:O']-[diaquacalcium]-bis[µ2-hydrogen (4-aminophenyl)arsonato-κ2O:O]] dihydrate] top
Crystal data top
[Ca(C6H7AsNO3)2(H2O)2]·2H2OZ = 2
Mr = 544.24F(000) = 548
Triclinic, P1Dx = 1.890 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.001 (5) ÅCell parameters from 2319 reflections
b = 9.672 (5) Åθ = 3.7–29.1°
c = 11.756 (5) ŵ = 3.82 mm1
α = 77.096 (5)°T = 200 K
β = 74.096 (5)°Needle, colourless
γ = 82.236 (5)°0.35 × 0.11 × 0.10 mm
V = 956.4 (8) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3744 independent reflections
Radiation source: Enhance (Mo) X-ray source3276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1111
Tmin = 0.931, Tmax = 0.980l = 1114
6921 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0206P)2 + 0.3783P]
where P = (Fo2 + 2Fc2)/3
3744 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.55 e Å3
14 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As1A0.46094 (3)0.29369 (3)0.70142 (3)0.0151 (1)
As1B0.05599 (3)0.77612 (3)0.30427 (3)0.0150 (1)
Ca10.21559 (7)0.47820 (7)0.49139 (5)0.0163 (2)
O1W0.2142 (3)0.6294 (3)0.6273 (3)0.0385 (10)
O2W0.2504 (3)0.2937 (3)0.3844 (2)0.0337 (9)
O11A0.3299 (2)0.3106 (2)0.62105 (19)0.0212 (7)
O11B0.0283 (2)0.6219 (2)0.40158 (19)0.0188 (6)
O12A0.5836 (2)0.4184 (2)0.65510 (19)0.0237 (7)
O12B0.1482 (2)0.8895 (2)0.3433 (2)0.0215 (7)
O13A0.5597 (2)0.1296 (2)0.6925 (2)0.0245 (7)
O13B0.1207 (2)0.8695 (2)0.3001 (2)0.0210 (7)
N4A0.1055 (3)0.1983 (3)1.2273 (3)0.0280 (10)
N4B0.3873 (3)0.6567 (4)0.1903 (3)0.0316 (11)
C1A0.3520 (3)0.2727 (3)0.8657 (3)0.0174 (9)
C1B0.1555 (3)0.7413 (3)0.1487 (3)0.0175 (9)
C2A0.2011 (3)0.3329 (4)0.8981 (3)0.0214 (10)
C2B0.2238 (3)0.6061 (3)0.1366 (3)0.0193 (10)
C3A0.1191 (3)0.3081 (4)1.0179 (3)0.0219 (10)
C3B0.3031 (3)0.5791 (4)0.0248 (3)0.0224 (10)
C4A0.1858 (4)0.2232 (4)1.1056 (3)0.0211 (10)
C4B0.3143 (4)0.6866 (4)0.0779 (3)0.0234 (10)
C5A0.3378 (4)0.1650 (4)1.0731 (3)0.0237 (10)
C5B0.2442 (4)0.8224 (4)0.0651 (3)0.0233 (10)
C6A0.4189 (4)0.1893 (4)0.9545 (3)0.0219 (10)
C6B0.1668 (3)0.8504 (4)0.0465 (3)0.0220 (10)
O3W0.1947 (3)0.9169 (3)0.5593 (2)0.0356 (9)
O4W0.4898 (3)0.1005 (3)0.6212 (3)0.0354 (9)
H2A0.154700.390700.838400.0260*
H2B0.215900.531900.205800.0230*
H3A0.016100.349501.040300.0260*
H3B0.350600.486500.017400.0270*
H5A0.385000.108601.132900.0280*
H5B0.250200.896100.134400.0280*
H6A0.522400.148800.932500.0260*
H6B0.121200.943400.054300.0260*
H11W0.273 (4)0.622 (5)0.679 (3)0.0580*
H12W0.202 (5)0.723 (2)0.600 (4)0.0580*
H13A0.660 (2)0.135 (4)0.680 (3)0.0370*
H13B0.194 (3)0.810 (3)0.319 (3)0.0310*
H21W0.200 (4)0.270 (4)0.340 (3)0.0510*
H22W0.325 (3)0.227 (3)0.393 (4)0.0510*
H41A0.121 (4)0.109 (2)1.263 (3)0.0340*
H41B0.459 (3)0.587 (3)0.192 (3)0.0380*
H42A0.008 (2)0.230 (4)1.234 (3)0.0340*
H42B0.421 (4)0.731 (3)0.241 (3)0.0380*
H31W0.159 (4)0.984 (4)0.602 (3)0.0530*
H32W0.172 (4)0.934 (5)0.488 (2)0.0530*
H41W0.415 (4)0.087 (5)0.585 (3)0.0530*
H42W0.511 (5)0.023 (3)0.641 (4)0.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As1A0.0135 (2)0.0163 (2)0.0145 (2)0.0032 (1)0.0032 (1)0.0001 (1)
As1B0.0142 (2)0.0138 (2)0.0154 (2)0.0020 (1)0.0030 (1)0.0003 (1)
Ca10.0148 (3)0.0169 (3)0.0157 (3)0.0035 (3)0.0033 (3)0.0008 (3)
O1W0.0565 (18)0.0258 (15)0.0412 (17)0.0004 (14)0.0250 (14)0.0096 (14)
O2W0.0362 (15)0.0327 (16)0.0398 (16)0.0034 (12)0.0159 (13)0.0184 (13)
O11A0.0198 (11)0.0229 (13)0.0203 (12)0.0042 (10)0.0078 (9)0.0016 (10)
O11B0.0148 (10)0.0176 (12)0.0198 (11)0.0042 (9)0.0027 (9)0.0043 (10)
O12A0.0228 (11)0.0252 (13)0.0217 (12)0.0131 (10)0.0002 (10)0.0017 (11)
O12B0.0172 (11)0.0219 (13)0.0276 (13)0.0032 (9)0.0079 (10)0.0055 (11)
O13A0.0179 (11)0.0204 (13)0.0345 (14)0.0014 (10)0.0064 (11)0.0061 (11)
O13B0.0162 (11)0.0176 (12)0.0281 (13)0.0025 (9)0.0069 (10)0.0001 (10)
N4A0.0315 (16)0.0289 (18)0.0184 (16)0.0068 (15)0.0017 (13)0.0011 (14)
N4B0.0362 (18)0.032 (2)0.0212 (17)0.0058 (15)0.0028 (14)0.0046 (15)
C1A0.0182 (15)0.0179 (17)0.0147 (16)0.0065 (13)0.0021 (13)0.0002 (13)
C1B0.0159 (15)0.0203 (17)0.0160 (16)0.0030 (13)0.0040 (13)0.0018 (14)
C2A0.0198 (16)0.0227 (18)0.0219 (18)0.0018 (14)0.0082 (14)0.0010 (15)
C2B0.0227 (16)0.0168 (17)0.0177 (17)0.0054 (14)0.0045 (14)0.0002 (14)
C3A0.0128 (15)0.0235 (19)0.0276 (19)0.0033 (13)0.0004 (14)0.0061 (16)
C3B0.0217 (16)0.0190 (18)0.0285 (19)0.0033 (14)0.0084 (15)0.0054 (15)
C4A0.0257 (17)0.0201 (18)0.0164 (17)0.0094 (14)0.0005 (14)0.0040 (14)
C4B0.0197 (16)0.031 (2)0.0212 (18)0.0115 (15)0.0040 (14)0.0045 (16)
C5A0.0262 (17)0.0226 (19)0.0219 (18)0.0019 (15)0.0100 (15)0.0014 (15)
C5B0.0292 (18)0.0210 (18)0.0160 (17)0.0047 (15)0.0057 (14)0.0056 (15)
C6A0.0183 (16)0.0227 (18)0.0243 (18)0.0020 (14)0.0064 (14)0.0021 (15)
C6B0.0226 (16)0.0167 (17)0.0250 (18)0.0019 (14)0.0064 (14)0.0002 (15)
O3W0.0452 (16)0.0310 (16)0.0298 (16)0.0053 (13)0.0086 (13)0.0104 (13)
O4W0.0402 (15)0.0256 (15)0.0433 (17)0.0040 (13)0.0149 (13)0.0067 (13)
Geometric parameters (Å, º) top
Ca1—O1W2.392 (3)N4B—C4B1.380 (5)
Ca1—O2W2.345 (3)N4A—H42A0.88 (2)
Ca1—O11A2.306 (2)N4A—H41A0.88 (2)
Ca1—O11B2.361 (2)N4B—H41B0.87 (3)
Ca1—O11Bi2.420 (2)N4B—H42B0.86 (3)
Ca1—O12Aii2.291 (2)C1A—C6A1.393 (5)
As1A—O11A1.673 (2)C1A—C2A1.390 (4)
As1A—O12A1.645 (2)C1B—C6B1.401 (5)
As1A—O13A1.721 (2)C1B—C2B1.388 (4)
As1A—C1A1.890 (3)C2A—C3A1.383 (5)
As1B—O11B1.667 (2)C2B—C3B1.376 (5)
As1B—O12B1.668 (2)C3A—C4A1.388 (5)
As1B—O13B1.727 (2)C3B—C4B1.396 (5)
As1B—C1B1.886 (3)C4A—C5A1.392 (5)
O1W—H12W0.89 (2)C4B—C5B1.399 (6)
O1W—H11W0.90 (4)C5A—C6A1.369 (5)
O2W—H22W0.88 (3)C5B—C6B1.374 (5)
O2W—H21W0.86 (4)C2A—H2A0.9500
O13A—H13A0.88 (2)C2B—H2B0.9500
O13B—H13B0.88 (3)C3A—H3A0.9500
O3W—H31W0.88 (4)C3B—H3B0.9500
O3W—H32W0.89 (3)C5A—H5A0.9500
O4W—H42W0.89 (4)C5B—H5B0.9500
O4W—H41W0.87 (4)C6A—H6A0.9500
N4A—C4A1.398 (5)C6B—H6B0.9500
O11A—As1A—O12A114.52 (10)C4A—N4A—H41A112 (2)
O11A—As1A—O13A106.16 (10)H41A—N4A—H42A115 (3)
O11A—As1A—C1A107.43 (11)C4A—N4A—H42A109 (2)
O12A—As1A—O13A109.97 (10)C4B—N4B—H42B112 (2)
O12A—As1A—C1A114.58 (12)H41B—N4B—H42B111 (3)
O13A—As1A—C1A103.28 (12)C4B—N4B—H41B116 (2)
O11B—As1B—O12B114.80 (10)C2A—C1A—C6A119.5 (3)
O11B—As1B—O13B109.59 (10)As1A—C1A—C2A120.2 (2)
O11B—As1B—C1B109.58 (12)As1A—C1A—C6A120.2 (2)
O12B—As1B—O13B102.37 (10)As1B—C1B—C6B121.2 (2)
O12B—As1B—C1B111.56 (12)C2B—C1B—C6B119.8 (3)
O13B—As1B—C1B108.58 (12)As1B—C1B—C2B119.0 (2)
O1W—Ca1—O2W166.97 (10)C1A—C2A—C3A119.5 (3)
O1W—Ca1—O11A83.52 (9)C1B—C2B—C3B120.3 (3)
O1W—Ca1—O11B95.61 (9)C2A—C3A—C4A120.6 (3)
O1W—Ca1—O11Bi97.05 (9)C2B—C3B—C4B120.6 (3)
O1W—Ca1—O12Aii93.82 (9)N4A—C4A—C3A121.5 (3)
O2W—Ca1—O11A83.57 (8)C3A—C4A—C5A119.7 (3)
O2W—Ca1—O11B97.20 (8)N4A—C4A—C5A118.8 (3)
O2W—Ca1—O11Bi84.13 (8)N4B—C4B—C3B120.1 (4)
O2W—Ca1—O12Aii87.99 (8)C3B—C4B—C5B118.9 (3)
O11A—Ca1—O11B162.13 (8)N4B—C4B—C5B121.0 (3)
O11A—Ca1—O11Bi87.66 (7)C4A—C5A—C6A119.7 (3)
O11A—Ca1—O12Aii105.49 (7)C4B—C5B—C6B120.8 (3)
O11B—Ca1—O11Bi74.70 (7)C1A—C6A—C5A121.0 (3)
O11B—Ca1—O12Aii92.38 (7)C1B—C6B—C5B119.7 (3)
O11Bi—Ca1—O12Aii163.83 (8)C1A—C2A—H2A120.00
As1A—O11A—Ca1141.02 (11)C3A—C2A—H2A120.00
As1B—O11B—Ca1126.08 (10)C1B—C2B—H2B120.00
As1B—O11B—Ca1i127.68 (10)C3B—C2B—H2B120.00
Ca1—O11B—Ca1i105.30 (8)C4A—C3A—H3A120.00
As1A—O12A—Ca1ii148.32 (12)C2A—C3A—H3A120.00
H11W—O1W—H12W104 (4)C2B—C3B—H3B120.00
Ca1—O1W—H11W130 (3)C4B—C3B—H3B120.00
Ca1—O1W—H12W117 (3)C4A—C5A—H5A120.00
Ca1—O2W—H21W134 (3)C6A—C5A—H5A120.00
Ca1—O2W—H22W118 (2)C6B—C5B—H5B120.00
H21W—O2W—H22W108 (3)C4B—C5B—H5B120.00
As1A—O13A—H13A111 (3)C1A—C6A—H6A120.00
As1B—O13B—H13B110 (2)C5A—C6A—H6A119.00
H31W—O3W—H32W115 (4)C5B—C6B—H6B120.00
H41W—O4W—H42W115 (4)C1B—C6B—H6B120.00
O12A—As1A—O11A—Ca120.6 (2)O12Aii—Ca1—O11B—As1B20.34 (14)
O13A—As1A—O11A—Ca1142.16 (17)O12Aii—Ca1—O11B—Ca1i170.13 (8)
C1A—As1A—O11A—Ca1107.86 (19)O1W—Ca1—O11Bi—As1Bi96.79 (15)
O11A—As1A—O12A—Ca1ii67.3 (2)O1W—Ca1—O11Bi—Ca1i93.92 (10)
O13A—As1A—O12A—Ca1ii52.2 (2)O2W—Ca1—O11Bi—As1Bi70.16 (14)
C1A—As1A—O12A—Ca1ii167.9 (2)O2W—Ca1—O11Bi—Ca1i99.14 (9)
O11A—As1A—C1A—C2A28.5 (3)O11A—Ca1—O11Bi—As1Bi13.62 (14)
O11A—As1A—C1A—C6A147.5 (3)O11A—Ca1—O11Bi—Ca1i177.09 (9)
O12A—As1A—C1A—C2A100.0 (3)O11B—Ca1—O11Bi—As1Bi169.30 (15)
O12A—As1A—C1A—C6A84.1 (3)O11B—Ca1—O11Bi—Ca1i0.00 (8)
O13A—As1A—C1A—C2A140.4 (3)O1W—Ca1—O12Aii—As1Aii4.1 (2)
O13A—As1A—C1A—C6A35.5 (3)O2W—Ca1—O12Aii—As1Aii171.2 (2)
O12B—As1B—O11B—Ca146.35 (16)O11A—Ca1—O12Aii—As1Aii88.4 (2)
O12B—As1B—O11B—Ca1i120.84 (13)O11B—Ca1—O12Aii—As1Aii91.7 (2)
O13B—As1B—O11B—Ca1160.87 (12)As1A—C1A—C2A—C3A175.4 (3)
O13B—As1B—O11B—Ca1i6.33 (16)C6A—C1A—C2A—C3A0.6 (5)
C1B—As1B—O11B—Ca180.09 (15)As1A—C1A—C6A—C5A175.5 (3)
C1B—As1B—O11B—Ca1i112.72 (15)C2A—C1A—C6A—C5A0.4 (5)
O11B—As1B—C1B—C2B14.6 (3)As1B—C1B—C2B—C3B177.1 (2)
O11B—As1B—C1B—C6B168.0 (2)C6B—C1B—C2B—C3B0.3 (4)
O12B—As1B—C1B—C2B113.7 (2)As1B—C1B—C6B—C5B178.0 (3)
O12B—As1B—C1B—C6B63.7 (3)C2B—C1B—C6B—C5B0.6 (5)
O13B—As1B—C1B—C2B134.2 (2)C1A—C2A—C3A—C4A0.4 (5)
O13B—As1B—C1B—C6B48.3 (3)C1B—C2B—C3B—C4B0.8 (5)
O1W—Ca1—O11A—As1A40.53 (19)C2A—C3A—C4A—N4A179.2 (3)
O2W—Ca1—O11A—As1A137.75 (19)C2A—C3A—C4A—C5A1.4 (6)
O11Bi—Ca1—O11A—As1A137.90 (18)C2B—C3B—C4B—N4B176.7 (3)
O12Aii—Ca1—O11A—As1A51.65 (19)C2B—C3B—C4B—C5B0.3 (5)
O1W—Ca1—O11B—As1B73.73 (15)N4A—C4A—C5A—C6A179.4 (3)
O1W—Ca1—O11B—Ca1i95.79 (10)C3A—C4A—C5A—C6A1.5 (6)
O2W—Ca1—O11B—As1B108.61 (14)N4B—C4B—C5B—C6B177.6 (3)
O2W—Ca1—O11B—Ca1i81.87 (9)C3B—C4B—C5B—C6B0.6 (5)
O11Bi—Ca1—O11B—As1B169.52 (15)C4A—C5A—C6A—C1A0.6 (6)
O11Bi—Ca1—O11B—Ca1i0.00 (7)C4B—C5B—C6B—C1B1.1 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13A—H13A···O12Bii0.88 (2)1.67 (2)2.534 (3)169 (4)
O13B—H13B···O11Ai0.88 (3)1.70 (3)2.578 (3)170 (3)
N4A—H41A···O12Biii0.88 (2)2.13 (2)3.014 (4)176 (4)
N4B—H42B···O4Wiv0.86 (3)2.05 (3)2.901 (5)172 (4)
O1W—H11W···N4Bv0.90 (4)2.17 (4)3.048 (5)166 (4)
O1W—H12W···O3W0.89 (2)1.83 (2)2.712 (4)171 (3)
O2W—H21W···N4Avi0.86 (4)2.04 (4)2.893 (4)173 (4)
O2W—H22W···O4Wvii0.88 (3)1.92 (3)2.785 (4)168 (4)
O3W—H31W···O13Bviii0.88 (4)1.96 (4)2.827 (4)169 (4)
O3W—H32W···O12B0.89 (3)1.92 (3)2.758 (4)157 (4)
O4W—H41W···O3Wix0.87 (4)2.08 (4)2.915 (4)160 (3)
O4W—H42W···O13A0.89 (4)1.86 (3)2.748 (4)176 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z+1; (iv) x, y+1, z1; (v) x, y, z+1; (vi) x, y, z1; (vii) x+1, y, z+1; (viii) x, y+2, z+1; (ix) x, y1, z.
(III) catena-Poly[[triaquastrontium]-bis[µ2-hydrogen (4-aminophenyl)arsonato-κ2O:O']] top
Crystal data top
[Sr(C6H7AsNO3)2(H2O)3]F(000) = 1128
Mr = 573.76Dx = 2.166 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 2201 reflections
a = 9.8935 (3) Åθ = 3.6–29.0°
b = 7.5844 (3) ŵ = 6.85 mm1
c = 23.6669 (9) ÅT = 200 K
β = 97.866 (3)°Block, colourless
V = 1759.17 (11) Å30.25 × 0.12 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1737 independent reflections
Radiation source: Enhance (Mo) X-ray source1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 98
Tmin = 0.791, Tmax = 0.980l = 2926
3326 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0188P)2 + 2.3681P]
where P = (Fo2 + 2Fc2)/3
1737 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.47 e Å3
7 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.750000.28095 (5)0.500000.0144 (1)
As10.44233 (2)0.06077 (3)0.41189 (1)0.0131 (1)
O1W0.5937 (2)0.4181 (3)0.56983 (10)0.0265 (7)
O2W0.750000.6274 (4)0.500000.0384 (11)
O110.51439 (18)0.2419 (2)0.44227 (8)0.0197 (6)
O120.31029 (18)0.0183 (3)0.44109 (8)0.0198 (6)
O130.56339 (18)0.1079 (3)0.42091 (8)0.0194 (6)
N40.3286 (3)0.0837 (4)0.15430 (11)0.0284 (9)
C10.3951 (2)0.0844 (4)0.33210 (11)0.0149 (7)
C20.2969 (3)0.0261 (4)0.30314 (12)0.0178 (8)
C30.2717 (3)0.0238 (4)0.24435 (12)0.0198 (8)
C40.3452 (3)0.0894 (4)0.21317 (12)0.0189 (8)
C50.4396 (3)0.2040 (4)0.24267 (12)0.0209 (9)
C60.4645 (3)0.2017 (4)0.30139 (12)0.0188 (8)
H20.246900.103800.324000.0210*
H30.204100.099400.224900.0240*
H50.487600.284800.222100.0250*
H60.529300.280600.320900.0230*
H11W0.553 (3)0.521 (3)0.5654 (16)0.0400*
H12W0.529 (3)0.344 (3)0.5764 (14)0.0400*
H130.648 (2)0.071 (4)0.4277 (13)0.0290*
H21W0.691 (3)0.698 (4)0.5081 (18)0.0580*
H410.254 (2)0.032 (4)0.1360 (13)0.0340*
H420.359 (3)0.177 (3)0.1374 (14)0.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0146 (2)0.0124 (2)0.0158 (2)0.00000.0004 (1)0.0000
As10.0119 (1)0.0115 (2)0.0156 (2)0.0002 (1)0.0015 (1)0.0001 (1)
O1W0.0245 (11)0.0177 (11)0.0387 (13)0.0007 (9)0.0097 (9)0.0027 (10)
O2W0.051 (2)0.0175 (17)0.048 (2)0.00000.0117 (17)0.0000
O110.0218 (10)0.0129 (9)0.0224 (10)0.0005 (8)0.0041 (8)0.0018 (9)
O120.0153 (9)0.0228 (10)0.0220 (11)0.0016 (8)0.0052 (7)0.0053 (9)
O130.0130 (9)0.0144 (9)0.0304 (11)0.0012 (8)0.0011 (8)0.0007 (9)
N40.0347 (15)0.0312 (16)0.0192 (14)0.0027 (13)0.0031 (11)0.0018 (12)
C10.0142 (12)0.0151 (13)0.0154 (13)0.0026 (11)0.0023 (10)0.0007 (12)
C20.0186 (14)0.0139 (13)0.0211 (15)0.0026 (11)0.0036 (11)0.0007 (12)
C30.0210 (14)0.0157 (13)0.0214 (15)0.0019 (12)0.0012 (11)0.0029 (12)
C40.0188 (13)0.0195 (14)0.0181 (14)0.0091 (12)0.0015 (10)0.0009 (12)
C50.0183 (14)0.0214 (15)0.0241 (16)0.0016 (12)0.0067 (11)0.0077 (13)
C60.0164 (13)0.0157 (14)0.0238 (15)0.0018 (11)0.0010 (11)0.0005 (12)
Geometric parameters (Å, º) top
Sr1—O1W2.628 (2)O13—H130.88 (2)
Sr1—O2W2.628 (3)N4—C41.381 (4)
Sr1—O112.5527 (18)N4—H410.89 (2)
Sr1—O1Wi2.628 (2)N4—H420.89 (3)
Sr1—O11i2.5527 (18)C1—C21.391 (4)
Sr1—O12ii2.549 (2)C1—C61.388 (4)
Sr1—O12iii2.549 (2)C2—C31.380 (4)
As1—O111.6650 (16)C3—C41.399 (4)
As1—O121.6705 (19)C4—C51.392 (4)
As1—O131.746 (2)C5—C61.378 (4)
As1—C11.891 (3)C2—H20.9500
O1W—H11W0.88 (2)C3—H30.9500
O1W—H12W0.88 (3)C5—H50.9500
O2W—H21W0.83 (3)C6—H60.9500
O2W—H21Wi0.83 (3)
O1W—Sr1—O2W66.68 (5)Sr1—O1W—H11W125 (2)
O1W—Sr1—O1179.03 (6)Sr1—O1W—H12W111.3 (18)
O1W—Sr1—O1Wi133.36 (7)H11W—O1W—H12W105 (3)
O1W—Sr1—O11i106.39 (6)H21W—O2W—H21Wi100 (3)
O1W—Sr1—O12ii76.31 (7)Sr1—O2W—H21Wi130 (2)
O1W—Sr1—O12iii148.81 (7)Sr1—O2W—H21W130 (2)
O2W—Sr1—O1196.66 (4)As1—O13—H13114.2 (19)
O1Wi—Sr1—O2W66.68 (5)C4—N4—H41118.6 (19)
O2W—Sr1—O11i96.66 (4)H41—N4—H42116 (3)
O2W—Sr1—O12ii141.41 (5)C4—N4—H42116 (2)
O2W—Sr1—O12iii141.41 (5)As1—C1—C6120.8 (2)
O1Wi—Sr1—O11106.39 (6)As1—C1—C2119.7 (2)
O11—Sr1—O11i166.68 (5)C2—C1—C6119.4 (2)
O11—Sr1—O12ii86.40 (6)C1—C2—C3120.5 (3)
O11—Sr1—O12iii83.19 (6)C2—C3—C4120.3 (3)
O1Wi—Sr1—O11i79.03 (6)N4—C4—C5120.3 (3)
O1Wi—Sr1—O12ii148.81 (7)N4—C4—C3121.0 (3)
O1Wi—Sr1—O12iii76.31 (7)C3—C4—C5118.7 (3)
O11i—Sr1—O12ii83.19 (6)C4—C5—C6120.9 (3)
O11i—Sr1—O12iii86.40 (6)C1—C6—C5120.2 (3)
O12ii—Sr1—O12iii77.18 (7)C1—C2—H2120.00
O11—As1—O12115.50 (10)C3—C2—H2120.00
O11—As1—O13107.81 (9)C2—C3—H3120.00
O11—As1—C1112.69 (11)C4—C3—H3120.00
O12—As1—O13104.40 (10)C4—C5—H5120.00
O12—As1—C1110.29 (9)C6—C5—H5119.00
O13—As1—C1105.26 (10)C1—C6—H6120.00
Sr1—O11—As1129.24 (9)C5—C6—H6120.00
Sr1ii—O12—As1139.61 (11)
O1W—Sr1—O11—As1127.66 (13)O12—As1—C1—C6156.6 (2)
O2W—Sr1—O11—As1167.73 (11)O13—As1—C1—C283.8 (2)
O1Wi—Sr1—O11—As1100.13 (13)O13—As1—C1—C691.3 (2)
O12ii—Sr1—O11—As150.91 (12)As1—C1—C2—C3173.0 (2)
O12iii—Sr1—O11—As126.60 (12)C6—C1—C2—C32.2 (4)
O12—As1—O11—Sr1111.52 (12)As1—C1—C6—C5172.8 (2)
O13—As1—O11—Sr14.75 (14)C2—C1—C6—C52.3 (4)
C1—As1—O11—Sr1120.47 (12)C1—C2—C3—C40.3 (5)
O11—As1—O12—Sr1ii109.92 (16)C2—C3—C4—N4175.0 (3)
O13—As1—O12—Sr1ii8.26 (18)C2—C3—C4—C52.6 (4)
C1—As1—O12—Sr1ii120.88 (16)N4—C4—C5—C6175.1 (3)
O11—As1—C1—C2159.0 (2)C3—C4—C5—C62.6 (5)
O11—As1—C1—C625.9 (3)C4—C5—C6—C10.1 (5)
O12—As1—C1—C228.3 (3)
Symmetry codes: (i) x+3/2, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11iv0.88 (2)1.92 (2)2.791 (3)173 (3)
O1W—H12W···O13ii0.88 (3)2.02 (2)2.845 (3)156 (3)
O13—H13···O12iii0.88 (2)1.73 (2)2.606 (3)176 (3)
O2W—H21W···O11iv0.83 (3)2.52 (3)3.267 (2)149 (3)
N4—H41···O1Wv0.89 (2)2.24 (3)3.115 (4)165 (2)
N4—H42···O13vi0.89 (3)2.33 (3)3.210 (4)170 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y, z; (iv) x+1, y+1, z+1; (v) x1/2, y1/2, z1/2; (vi) x+1, y+1/2, z+1/2.
(IV) catena-Poly[[triaquabarium]-bis[µ2-hydrogen (4-aminophenyl)arsonato-κ2O:O']] top
Crystal data top
[Ba(C6H7AsNO3)2(H2O)3]F(000) = 1200
Mr = 623.92Dx = 2.257 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 1721 reflections
a = 9.9997 (8) Åθ = 4.6–29.1°
b = 7.7305 (6) ŵ = 5.79 mm1
c = 23.979 (2) ÅT = 200 K
β = 98.214 (7)°Block, colourless
V = 1834.7 (3) Å30.36 × 0.22 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1801 independent reflections
Radiation source: Enhance (Mo) X-ray source1696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1210
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 97
Tmin = 0.470, Tmax = 0.970l = 2928
3485 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.1187P]
where P = (Fo2 + 2Fc2)/3
1801 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.85 e Å3
7 restraintsΔρmin = 0.95 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.750000.28700 (3)0.500000.0145 (1)
As10.43401 (3)0.05954 (4)0.40830 (1)0.0122 (1)
O1W0.5902 (2)0.4300 (3)0.57359 (12)0.0261 (8)
O2W0.750000.6465 (5)0.500000.0350 (11)
O110.5036 (2)0.2376 (3)0.43911 (10)0.0208 (7)
O120.30116 (19)0.0164 (3)0.43546 (9)0.0205 (7)
O130.55376 (19)0.1064 (3)0.41966 (10)0.0182 (7)
N40.3301 (3)0.0886 (4)0.15278 (13)0.0264 (10)
C10.3921 (3)0.0829 (4)0.32900 (13)0.0143 (9)
C20.2955 (3)0.0255 (4)0.29931 (14)0.0174 (9)
C30.2734 (3)0.0207 (4)0.24105 (13)0.0174 (9)
C40.3463 (3)0.0915 (4)0.21100 (13)0.0175 (9)
C50.4402 (3)0.2028 (4)0.24149 (15)0.0202 (10)
C60.4626 (3)0.1983 (4)0.30002 (14)0.0180 (9)
H20.245000.102500.319100.0210*
H30.207500.095000.221100.0210*
H50.489100.282300.221900.0240*
H60.526500.274700.320200.0220*
H11W0.555 (3)0.534 (3)0.5741 (18)0.0390*
H12W0.534 (3)0.358 (4)0.5849 (17)0.0390*
H130.636 (2)0.071 (4)0.4302 (14)0.0270*
H21W0.688 (4)0.715 (5)0.509 (2)0.0520*
H410.259 (3)0.040 (5)0.1339 (14)0.0320*
H420.355 (4)0.180 (4)0.1350 (15)0.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0157 (1)0.0125 (2)0.0147 (2)0.00000.0004 (1)0.0000
As10.0107 (2)0.0117 (2)0.0143 (2)0.0007 (1)0.0019 (1)0.0008 (1)
O1W0.0243 (12)0.0181 (13)0.0382 (16)0.0006 (9)0.0120 (11)0.0007 (12)
O2W0.048 (2)0.0165 (19)0.042 (2)0.00000.0120 (19)0.0000
O110.0238 (11)0.0140 (11)0.0230 (13)0.0004 (9)0.0026 (10)0.0031 (10)
O120.0134 (10)0.0255 (13)0.0236 (13)0.0007 (9)0.0066 (9)0.0071 (11)
O130.0114 (10)0.0137 (11)0.0289 (13)0.0020 (9)0.0006 (9)0.0009 (11)
N40.0287 (16)0.0326 (18)0.0177 (16)0.0031 (13)0.0025 (13)0.0022 (14)
C10.0143 (14)0.0159 (15)0.0125 (16)0.0046 (12)0.0013 (12)0.0006 (14)
C20.0141 (14)0.0161 (16)0.0225 (18)0.0022 (12)0.0041 (12)0.0012 (15)
C30.0147 (14)0.0146 (15)0.0221 (17)0.0014 (12)0.0004 (13)0.0016 (14)
C40.0167 (15)0.0184 (16)0.0172 (17)0.0074 (13)0.0023 (13)0.0002 (15)
C50.0187 (16)0.0210 (18)0.0221 (19)0.0022 (13)0.0067 (14)0.0083 (15)
C60.0141 (14)0.0168 (16)0.0229 (18)0.0003 (12)0.0015 (13)0.0000 (14)
Geometric parameters (Å, º) top
Ba1—O1W2.774 (2)O13—H130.87 (2)
Ba1—O2W2.779 (4)N4—C41.382 (4)
Ba1—O112.706 (2)N4—H410.87 (3)
Ba1—O1Wi2.774 (2)N4—H420.88 (3)
Ba1—O11i2.706 (2)C1—C21.395 (4)
Ba1—O12ii2.694 (2)C1—C61.384 (4)
Ba1—O12iii2.694 (2)C2—C31.383 (5)
As1—O111.667 (2)C3—C41.398 (4)
As1—O121.668 (2)C4—C51.400 (4)
As1—O131.749 (2)C5—C61.390 (5)
As1—C11.897 (3)C2—H20.9500
O1W—H11W0.88 (2)C3—H30.9500
O1W—H12W0.86 (3)C5—H50.9500
O2W—H21W0.87 (4)C6—H60.9500
O2W—H21Wi0.87 (4)
O1W—Ba1—O2W66.52 (5)Ba1—O1W—H11W130 (3)
O1W—Ba1—O1180.60 (7)Ba1—O1W—H12W114 (2)
O1W—Ba1—O1Wi133.03 (7)H11W—O1W—H12W108 (3)
O1W—Ba1—O11i106.02 (7)H21W—O2W—H21Wi105 (4)
O1W—Ba1—O12ii76.71 (7)Ba1—O2W—H21Wi128 (3)
O1W—Ba1—O12iii148.07 (6)Ba1—O2W—H21W128 (3)
O2W—Ba1—O1198.11 (5)As1—O13—H13114 (2)
O1Wi—Ba1—O2W66.52 (5)C4—N4—H41120 (2)
O2W—Ba1—O11i98.11 (5)H41—N4—H42111 (3)
O2W—Ba1—O12ii140.93 (5)C4—N4—H42118 (2)
O2W—Ba1—O12iii140.93 (5)As1—C1—C6120.6 (2)
O1Wi—Ba1—O11106.02 (7)As1—C1—C2119.5 (2)
O11—Ba1—O11i163.77 (7)C2—C1—C6119.8 (3)
O11—Ba1—O12ii88.13 (7)C1—C2—C3119.9 (3)
O11—Ba1—O12iii79.25 (6)C2—C3—C4121.2 (3)
O1Wi—Ba1—O11i80.60 (7)N4—C4—C5120.7 (3)
O1Wi—Ba1—O12ii148.07 (6)N4—C4—C3121.1 (3)
O1Wi—Ba1—O12iii76.71 (7)C3—C4—C5118.2 (3)
O11i—Ba1—O12ii79.25 (6)C4—C5—C6120.8 (3)
O11i—Ba1—O12iii88.13 (7)C1—C6—C5120.2 (3)
O12ii—Ba1—O12iii78.13 (7)C1—C2—H2120.00
O11—As1—O12115.03 (11)C3—C2—H2120.00
O11—As1—O13107.67 (10)C2—C3—H3119.00
O11—As1—C1112.60 (12)C4—C3—H3119.00
O12—As1—O13104.29 (11)C4—C5—H5120.00
O12—As1—C1110.54 (12)C6—C5—H5120.00
O13—As1—C1105.91 (12)C1—C6—H6120.00
Ba1—O11—As1130.25 (11)C5—C6—H6120.00
Ba1ii—O12—As1136.46 (11)
O1W—Ba1—O11—As1129.08 (16)O12—As1—C1—C6155.9 (2)
O2W—Ba1—O11—As1166.49 (14)O13—As1—C1—C284.0 (3)
O1Wi—Ba1—O11—As198.70 (15)O13—As1—C1—C691.7 (3)
O12ii—Ba1—O11—As152.24 (15)As1—C1—C2—C3173.9 (2)
O12iii—Ba1—O11—As126.03 (14)C6—C1—C2—C31.9 (5)
O12—As1—O11—Ba1113.92 (14)As1—C1—C6—C5173.8 (2)
O13—As1—O11—Ba11.84 (18)C2—C1—C6—C51.9 (5)
C1—As1—O11—Ba1118.21 (16)C1—C2—C3—C40.1 (5)
O11—As1—O12—Ba1ii106.90 (17)C2—C3—C4—N4176.0 (3)
O13—As1—O12—Ba1ii10.78 (18)C2—C3—C4—C51.7 (5)
C1—As1—O12—Ba1ii124.21 (17)N4—C4—C5—C6176.0 (3)
O11—As1—C1—C2158.6 (2)C3—C4—C5—C61.7 (5)
O11—As1—C1—C625.7 (3)C4—C5—C6—C10.1 (5)
O12—As1—C1—C228.4 (3)
Symmetry codes: (i) x+3/2, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11iv0.88 (2)1.87 (2)2.738 (3)168 (4)
O1W—H12W···O13ii0.86 (3)2.13 (3)2.902 (3)149 (3)
O13—H13···O12iii0.87 (2)1.77 (2)2.626 (3)167 (3)
O2W—H21W···O11iv0.87 (4)2.46 (4)3.229 (2)149 (3)
N4—H41···O1Wv0.87 (3)2.23 (3)3.092 (4)171 (3)
N4—H42···O13vi0.88 (3)2.37 (3)3.241 (4)170 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y, z; (iv) x+1, y+1, z+1; (v) x1/2, y1/2, z1/2; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology.

References

First citationAdelani, P. O., Jouffret, L. J., Szymanowski, J. E. S. & Burns, P. C. (2012). Inorg. Chem. 51, 12032–12040.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318–1327.  Web of Science CSD CrossRef CAS Google Scholar
First citationBosch, F. & Rosich, L. (2008). Pharmacology, 82, 171–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBreen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904–6908.  Web of Science CSD CrossRef CAS Google Scholar
First citationEhrlich, P. & Bertheim, A. (1907). Berichte, pp. 3292–3297.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLamberts, K. & Englert, U. (2015). Crystals, 5, 261–272.  CrossRef CAS Google Scholar
First citationLee, H., Lynch, V. M., Cao, G. & Mallouk, T. E. (1988). Acta Cryst. C44, 365–367.  CrossRef CAS IUCr Journals Google Scholar
First citationLesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432.  CAS Google Scholar
First citationNuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 1535. Whitehouse Station, New Jersey: Merck & Co.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchier, A., Gamper, S. & Muller, G. (1990). Inorg. Chim. Acta, 177, 179–183.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643.  CrossRef CAS Web of Science Google Scholar
First citationSmith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteverding, D. (2010). Parasites Vectors, 3, 15. doi:10.1186/1756-3305-3-15.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds