research papers
New 1:1 and 2:1 salts in the `DL-norvaline–maleic acid' system as an example of assembling various crystal structures from similar supramolecular building blocks
aNovosibirsk State University Pirogova str. 2, Novosibirsk 630090, Russian Federation, and bInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str. 18, Novosibirsk 630128, Russian Federation
*Correspondence e-mail: arksergey@gmail.com
Molecular salts and cocrystals of amino acids have potential applications as molecular materials with nonlinear optical, ferroelectric, piezoelectric, and other various target physical properties. The wide choice of amino acids and coformers makes it possible to design various crystal structures. The amino acid–maleic acid system provides a perfect example of a rich variety of crystal structures with different stoichiometries, symmetries and packing motifs built from the molecular building blocks, which are either exactly the same, or differ merely by protonation or as DL-norvaline–maleic acid system with 1:1 and 2:1 stoichiometries, namely DL-norvalinium hydrogen maleate, C5H12NO2+·C4H3O4−, (I), and DL-norvalinium hydrogen maleate–DL-norvaline, C5H12NO2+·C4H3O4−·C5H11NO2, (II). These are the first examples of molecular salts of DL-norvaline with an organic anion. The of (I) has the same C22(12) structure-forming motif which is common for hydrogen maleates of amino acids. The structure of (II) has dimeric cations. Of special interest is that the single crystals of (I) which are originally formed on crystallization from aqueous solution transform into single crystals of (II) if stored in the mother liquor for several hours.
The present paper reports the crystal structures of two new salts of the1. Introduction
Molecular salts and cocrystals of amino acids are interesting mostly due to their potential applications as molecular materials with optical, piezoelectric, ferroelectric and other target physical properties (Fleck & Petrosyan, 2014). For example, large (several millimetres in each direction) crystals of L-alaninium hydrogen maleate [(L-AlaH+)·M−] (Alagar et al., 2001b), L-argininium hydrogen maleate dihydrate [(L-ArgH+)·M−·2H2O] (Sun et al., 2007), L-phenylalaninium hydrogen maleate [(L-PheH+)·M−] (Alagar et al., 2001c), L-histidinium hydrogen maleate hydrate [(L-HisH+)·M−·H2O] (Fleck et al., 2013), L-methioninium L-methionine hydrogen maleate (L-Met·L-MetH+·M−) (Natarajan et al., 2010) and glycinium hydrogen maleate [(GlyH+)·M−] (Alagar et al., 2001a) were obtained and the second harmonic generation (SHG) efficiency, investigated using the Kurtz–Perry powder method (Kurtz & Perry, 1968), was 0.27–1.5 times that of the SGH efficiency of KDP (potassium dideuterium phosphate) (Anbuchezhiyan et al., 2009; Devaprasad & Madhavan, 2010; Yogam et al., 2012; Gonsago et al., 2012; Vasudevan et al., 2013; Charoen-In et al., 2010; Balasubramanian et al., 2010; Natarajan et al., 2008). The wide choice of amino acids and coformers makes it possible to design various crystal structures that could be potentially important from a crystal engineering point of view. Moreover, in all the solvates of this system, in particular, hydrates can form on crystallization.
In addition to the abovementioned nonlinear optical properties, the `amino acid–maleic acid' system provides a perfect example of a molecular salt in which the same small organic coformer (maleic acid) can cocrystallize with a large variety of molecules (amino acids). Maleic acid donates a proton to the amino acid and is present as a small and rigid maleate anion in all the crystalline maleates of amino acids. These structures can have various stoichiometries. The diversity of the stoichiometric ratios is determined by several factors:
(i) the symmetry non-equivalence of several amino acid cations;
(ii) the charge of the side chain of the amino acid;
(iii) the binding of several amino acid cations and
to form complex subunits known as dimeric or trimeric cations.In particular, it is important to compare the crystal structures of chiral and racemic amino acid salts and cocrystals. Crystals of L- and DL-amino acids often have radically different properties (Chesalov et al., 2008; Kolesov & Boldyreva, 2007; Bordallo et al., 2007; Kolesnik et al., 2005), and the same may hold for their salts and cocrystals (Boldyreva, 2014; Arkhipov et al., 2013). Recently, the of L-norvalinium hydrogen maleate–L-norvaline has been analyzed and shown to have dimeric L-Nva⋯L-NvaH+ cations (Arkhipov et al., 2015). In the present paper, we report the structures of racemic salts formed by DL-norvaline and maleic acid having different stoichiometries, namely DL-norvalinium hydrogen maleate, (I), and DL-norvalinium hydrogen maleate–DL-norvaline, (II).
2. Experimental
2.1. Synthesis and crystallization
Crystals of (I) were obtained by slow evaporation at room temperature from a drop of the saturated aqueous solution containing DL-norvaline and maleic acid in a 1:1 ratio (Rychkov et al., 2014). Interestingly, crystallization from an equimolar drop of the solution of DL-norvaline and maleic acid first gives crystals of (I), which, if kept in the mother liquor for a few hours, are transformed into larger crystals of another phase, denoted (II), with a 2:1 stoichiometry of DL-norvaline and maleic acid. One can suppose that phase (I) nucleates and grows faster than phase (II), although the latter is the thermodynamically more stable form. The case is very similar to that observed when crystallizing tolazamide polymorphs (I) and (II) (Boldyreva et al., 2015), as well as to other solution-assisted polymorphic transformations (Munroe et al., 2014; Kobari et al., 2014). The crystals of (II), grown from a small drop were thin and not suitable for single-crystal X-ray structural analysis. Larger crystals of (II) were obtained using slow evaporation from a crystallization vessel.
2.2. solution and refinement
Crystal data, data collection and structure . Suitable crystals of (I) and (II) was selected under a microscope in polarized light and mounted by means of MiTeGen MicroGrippers using MiTeGen LV Cryo Oil (LVCO-1) on an Agilent Xcalibur diffractometer. The n-propyl group (including the H atoms) of the DL-norvalinium cation of the structure of (I) (C4A/C5A) is disordered (the minor-disorder sites are labelled C4B/C5B). The occupation ratio of the disordered sites refined to 0.865 (8):0.135 (8). For the C5B/C4B/C3 atoms, the Uij values were restrained to be within 0.02 Å2 (within 0.04 Å2 for the terminal atom). All H atoms were located initially in a difference Fourier map. The positions of all H atoms were subsequently geometrically optimized and refined using a riding model, with the following assumptions and constraints: N—H = 0.89 Å, O—H = 0.82 Å and C—H = 0.93 (anion), 0.98 (methine), 0.97 (methylene) or 0.96 Å (methyl), with Uiso(H) = 1.5Ueq(parent atom) for the methyl and OH groups, and 1.2Ueq(parent atom) otherwise.
details are summarized in Table 1The selection of a good-quality single crystal of (I) was not easy because the brittle crystals were easily damaged. The crystal eventually selected for the X-ray diffraction experiment contained four domains. Data reduction was carried out in three different ways: (i) taking into account the reflections from the largest domain only (one orientation matrix and 59% of all reflections); (ii) processing the diffraction data as from a multiple crystal (four different orientation matrices) using reflections from all four domains; (iii) processing the diffraction data as from a multiple crystal using four different orientation matrices but taking into consideration the reflection from largest domain (50% of all reflections). According to the F2/σ(F2) and Rint parameters, the first method gave the best results.
All atoms of (II) (except for the C atom of the carboxyl group of the maleate anion, the H atom of the carboxyl group of the dimeric DL-norvalinium–DL-norvaline cation and another H atom of the carboxyl group of the maleate anion) are disordered. The sites with smaller occupancies are defined as B. The occupancy ratio for the disordered sites was refined as 0.556 (11):0.444 (11) for the maleate anion and 0.741 (5):0.259 (5) for the dimeric DL-norvalinium–DL-norvaline cation. The amino acid cations at the sites with higher and lower occupancies are The H1 atom lies on the inversion centre and the H4 atom lies on the mirror plane; therefore, the corresponding site occupancies are equal to 0.5. The C1B—C2B, O1B—C1B, O1—H1 and O4—H4 distances were fixed at 1.480 (2), 1.400 (2), 1.289 (2) and 1.202 (2) Å, respectively. The anisotropic displacement parameters of all the atoms were refined with a rigid-bond restraint. For all non-H atoms, the Uij values were restrained to be within 0.04 Å2 (within 0.08 Å2 for the terminal atom). All H atoms were located initially in a difference Fourier map. The positions of all H atoms (except for the H1 and H4 atoms, for which O—H distances were restrained) were subsequently geometrically optimized and refined using a riding model, with the following assumptions and constraints: N—H = 0.89 Å and C—H = 0.93 (anion), 0.98 (methine), 0.97 (methylene) or 0.96 Å (methyl), with Uiso(H) = 1.5Ueq(C,O) for the methyl and OH groups, and 1.2Ueq(C,N) otherwise.
3. Results and discussion
Currently, 25 crystal structures of molecular salts of maleic acid with amino acids have been reported, with 23 having been documented in the Cambridge Structural Database (CSD; Groom et al., 2016) and two structures having no refcodes [DL-argininium hydrogen maleate (Ravishankar et al., 1998) and L-methioninium L-methionine hydrogen maleate (Natarajan et al., 2010)]. All these structures can be divided into three classes.
(1) Hydrogen maleates with a 1:1 stoichiometry containing one amino acid and one maleate anion in the
The majority of all known hydrogen maleates belong to this class.(2) Hydrogen maleates with a 1:2 stoichiometry containing one amino acid dication and two maleate anions in the , refcode TENVOZ).
Currently only one structure can be assigned to this class (see Table 2
|
(3) Hydrogen maleates with dimeric amino acid cations and maleate anions consequently having a 2:1 stoichiometry.
(4) Hydrogen maleates with a 1:1 stoichiometry containing more than one of each chemical species (amino acid cation and maleate anion) in the ).
(Table 2The title salts, (I) and (II), are the first examples of molecular salts of DL-norvaline with a carboxylic acid (Fig. 1). Maleic acid is known as a common coformer. Due to its compact flat shape, stabilized by an intramolecular hydrogen bond (Table 3) and the presence of several hydrogen-bond acceptors, maleic acid can easily be embedded into different crystalline environments. Salt (I) crystallizes in the centrosymmetric C2/c. The of (I) contains one norvaline cation and one maleate anion, so that it belongs to the first (most populated) class of the aforementioned classification (Fig. 1) (Table 2).
|
The can be compared with those of two polymorphs of pure DL-norvaline, i.e. at 203 (the β-form) and 183 K (the α-form) (Görbitz, 2011). Both compounds have layered structures; the H3N+ group of the norvaline are linked to three COO− groups of other by hydrogen bonds, forming three `head-to-tail' chains. Similar chains (but composed of norvalinium cations) are present also in the structure of (I) [C(5) motifs along the crystallographic b direction]. One can also see C22(6) chains along the b direction formed by hydrogen bonds between the NH3+ group of one norvalinium cation and the COO− group of another cation (Fig. 2 and Table 4). Almost all the amino acid maleates contain C22(12) chains (Rychkov et al., 2016), and (I) is no exception; it also has C22(12) chains formed by norvalinium cations and maleate anions assembling along the c direction. In addition, there are C22(12)′ chains in (I) formed by two types of hydrogen bonds: (i) between the COOH group of a norvalinium cation and the COOH group of a maleate anion, and (ii) between the H3N+ group of a norvalinium cation and the COO− group of a maleate anion (Fig. 3). The second type of hydrogen bond involves one of the O atoms of the COO− group of a maleate anion which is participating in an intramolecular hydrogen bond within a maleate anion (Fig. 3 and Table 3). The C22(6), C22(12) and C22(12)′ chains form half a layer, and two such half-layers are connected by C(5) chains, with each forming a complete layer so that a two-dimensional hydrogen-bonding network parallel to the (100) plane is formed (Fig. 2). The side chains of DL-norvaline are directed to the outer surfaces of the layers and thus adjacent layers interdigitate to give hydrophobic layers with well-defined channels lie parallel to the hydrophobic layers (Fig. 4).
of (I)
|
The molecular salt (II) crystallizes in a centrosymmetric Pnma The of (II) contains dimeric DL-norvalinium–DL-norvaline cations (a zwitterion of norvaline and a norvalinium cation connected by a strong O—H⋯O hydrogen bond) and maleate anions in the 1:1 ratio. The salt (II) could be assigned to the third class according to Table 2. The structure of (II) contains two C33(17) heteromolecular chains along the crystallographic b direction formed by dimeric DL-norvalinium–DL-norvaline cations and maleate anions. Similar hydrogen-bonded chains were observed in the structure of L-norvalinium hydrogen maleate–L-norvaline (Arkhipov et al., 2015) (Fig. 5a). Head-to-tail C(5) chains of dimeric DL-norvalinium–DL-norvaline cations propagate along the c direction normal to the C33(17) chains. Another amino acid C22(9) chain along the a direction is formed by the dimeric DL-norvalinium–DL-norvaline cations. These three types of chains have common norvaline molecules and are connected with each other by hydrogen bonds to form a three-dimensional hydrogen-bonded network. Comparing the structures of (I) and (II), one can see that the same components form different types of crystal structures: a layered structure in (I) and a three-dimensional hydrogen-bonded structure in (II). The structure of (II) also has channels along the crystallographic a direction; the volume of the voids in (II) (12.1%, 230.42 Å3) is about a half of that in (I) (Fig. 4).
The DL-norvaline–maleic acid system is interesting from a crystal engineering point of view: the same molecules form salts with different types of crystal structures. DL-Norvaline can form salts with maleic acid with either a layered structure as in (I) or a three-dimensional hydrogen-bonded structure as in (II). The molecular salts (I) and (II) belong to different stoichiometric classes (Table 2). DL-Norvalinium hydrogen maleate, (I), and DL-norvalinium hydrogen maleate–DL-norvaline, (II), are the first examples of molecular salts of DL-norvaline with a carboxylic acid. The presence of the dimeric cation of DL-norvaline in the structure of (II) makes it possible to form a three-dimensional network of hydrogen bonds, the structural type which is not common for the maleates of amino acids with a large hydrophobic side chain. Despite the large number of hydrogen maleates documented in the literature, the prediction of whether a selected L-amino acid or a DL-racemate will cocrystallize with maleic acid is still difficult to make. For example, for norvaline, both L- and DL-norvalinium hydrogen maleates (with different stoichiometries) have been reported (Arkhipov et al., 2015). For alanine, only L-alaninium hydrogen maleate has been described (Alagar et al., 2001a), with no maleates of the racemic DL-form reported. In contrast, for threonine, DL-threoninium hydrogen maleate exists (Rajagopal et al., 2004), but no maleate of the L-form has been reported. Moreover, the crystallization of DL-alaninium hydrogen maleate is probably impossible because of the resolution of alanine enantiomers in a racemic solution on addition of maleic acid with the formation of L-alaninium hydrogen maleate and D-alaninium hydrogen maleate (Asai et al., 1975). Such `stereoselective' cocrystallization is hard to explain using the traditional synthon approach (Desiraju, 1995). It is quite possible that the number of hydrogen maleates of amino acids obtained is proportional to the time spent searching for them, similar to what McCrone (1965) supposed for polymorphs.
Another interesting point related to the hydrogen maleates of L-amino acids is the presence of dimeric cations in some of the structures. Up to now, this complex structural subunit has been observed in two hydrogen maleates of amino acids, namely in L-norvalinium hydrogen maleate–L-norvaline (Arkhipov et al., 2015) and in L-methioninium L-methionine hydrogen maleate (Natarajan et al., 2010). DL-Norvalinium hydrogen maleate–DL-norvaline, (II), is the first example of a racemic maleate containing the dimeric cation of an amino acid.
Supporting information
https://doi.org/10.1107/S2053229616018271/sk3642sup1.cif
contains datablock . DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229616018271/sk3642Isup2.hkl
Structure factors: contains datablock 2dl_nv_mal. DOI: https://doi.org/10.1107/S2053229616018271/sk3642IIsup3.hkl
Data collection: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2015) for 2dl_nv_mal. Cell
CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2015) for 2dl_nv_mal. Data reduction: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2015) for 2dl_nv_mal. For both compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (I); Mercury (Macrae et al., 2008) for 2dl_nv_mal. For both compounds, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C5H12NO2+·C4H3O4− | F(000) = 992 |
Mr = 233.22 | Dx = 1.247 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.6385 (15) Å | Cell parameters from 3032 reflections |
b = 5.62705 (18) Å | θ = 1.8–25.1° |
c = 23.6867 (10) Å | µ = 0.11 mm−1 |
β = 108.283 (6)° | T = 293 K |
V = 2485.4 (2) Å3 | Block, clear light colourless |
Z = 8 | 0.25 × 0.15 × 0.1 mm |
Agilent Xcalibur Ruby Gemini ultra diffractometer | 2198 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 10.3457 pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
ω scans | h = −23→23 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −6→6 |
Tmin = 0.866, Tmax = 1.000 | l = −28→28 |
13186 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.166 | w = 1/[σ2(Fo2) + (0.0688P)2 + 1.2674P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | (Δ/σ)max < 0.001 |
2198 reflections | Δρmax = 0.25 e Å−3 |
169 parameters | Δρmin = −0.15 e Å−3 |
12 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O2 | 0.30316 (12) | 0.1684 (3) | 0.75497 (7) | 0.0587 (6) | |
O4 | 0.33415 (13) | 0.3088 (3) | 0.45870 (8) | 0.0634 (6) | |
O6 | 0.34166 (13) | 0.3563 (3) | 0.56205 (8) | 0.0653 (6) | |
H6 | 0.3388 | 0.3428 | 0.5269 | 0.098* | |
O5 | 0.33741 (12) | 0.1258 (4) | 0.63532 (8) | 0.0640 (6) | |
O3 | 0.32140 (14) | 0.0195 (3) | 0.39432 (8) | 0.0733 (7) | |
O1 | 0.35365 (15) | 0.4538 (4) | 0.71650 (9) | 0.0797 (8) | |
H1 | 0.3461 | 0.3614 | 0.6884 | 0.120* | |
N1 | 0.29849 (14) | 0.4474 (4) | 0.84537 (9) | 0.0530 (6) | |
H1A | 0.2541 | 0.4754 | 0.8218 | 0.064* | |
H1B | 0.3073 | 0.5355 | 0.8781 | 0.064* | |
H1C | 0.3030 | 0.2943 | 0.8553 | 0.064* | |
C9 | 0.33889 (16) | 0.1511 (4) | 0.58407 (10) | 0.0472 (7) | |
C1 | 0.33256 (16) | 0.3576 (5) | 0.75847 (11) | 0.0493 (7) | |
C6 | 0.32998 (17) | 0.0889 (5) | 0.44513 (11) | 0.0517 (7) | |
C2 | 0.35023 (16) | 0.5090 (5) | 0.81368 (11) | 0.0513 (7) | |
H2 | 0.3446 | 0.6770 | 0.8022 | 0.062* | |
C8 | 0.33796 (19) | −0.0648 (5) | 0.54893 (11) | 0.0602 (9) | |
H8 | 0.3401 | −0.2063 | 0.5697 | 0.072* | |
C7 | 0.33452 (19) | −0.0911 (5) | 0.49233 (12) | 0.0637 (9) | |
H7 | 0.3350 | −0.2480 | 0.4802 | 0.076* | |
C3 | 0.4257 (2) | 0.4676 (7) | 0.85504 (15) | 0.0804 (11) | |
H3AA | 0.4303 | 0.5434 | 0.8928 | 0.097* | 0.865 (8) |
H3AB | 0.4325 | 0.2983 | 0.8623 | 0.097* | 0.865 (8) |
H3BC | 0.4217 | 0.3299 | 0.8784 | 0.097* | 0.135 (8) |
H3BD | 0.4525 | 0.4145 | 0.8292 | 0.097* | 0.135 (8) |
C4A | 0.4845 (3) | 0.5576 (11) | 0.8329 (2) | 0.1011 (19) | 0.865 (8) |
H4AA | 0.5301 | 0.5092 | 0.8608 | 0.121* | 0.865 (8) |
H4AB | 0.4800 | 0.4808 | 0.7952 | 0.121* | 0.865 (8) |
C4B | 0.473 (2) | 0.624 (7) | 0.8964 (16) | 0.114 (9) | 0.135 (8) |
H4BA | 0.4527 | 0.6638 | 0.9274 | 0.136* | 0.135 (8) |
H4BB | 0.5181 | 0.5409 | 0.9150 | 0.136* | 0.135 (8) |
C5A | 0.4863 (4) | 0.8168 (15) | 0.8244 (5) | 0.143 (3) | 0.865 (8) |
H5AA | 0.4440 | 0.8653 | 0.7934 | 0.214* | 0.865 (8) |
H5AB | 0.5280 | 0.8578 | 0.8135 | 0.214* | 0.865 (8) |
H5AC | 0.4881 | 0.8961 | 0.8607 | 0.214* | 0.865 (8) |
C5B | 0.488 (4) | 0.829 (11) | 0.872 (3) | 0.166 (18) | 0.135 (8) |
H5BA | 0.4471 | 0.8746 | 0.8392 | 0.249* | 0.135 (8) |
H5BB | 0.5285 | 0.8054 | 0.8581 | 0.249* | 0.135 (8) |
H5BC | 0.4988 | 0.9530 | 0.9014 | 0.249* | 0.135 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0956 (16) | 0.0514 (12) | 0.0351 (10) | −0.0135 (11) | 0.0289 (9) | −0.0092 (8) |
O4 | 0.1220 (19) | 0.0344 (10) | 0.0397 (10) | −0.0056 (10) | 0.0336 (10) | 0.0026 (7) |
O6 | 0.1231 (19) | 0.0385 (11) | 0.0417 (11) | −0.0051 (11) | 0.0364 (12) | −0.0074 (8) |
O5 | 0.1054 (17) | 0.0600 (12) | 0.0355 (10) | 0.0015 (11) | 0.0350 (10) | −0.0014 (8) |
O3 | 0.139 (2) | 0.0517 (12) | 0.0381 (11) | −0.0037 (12) | 0.0405 (12) | −0.0057 (8) |
O1 | 0.129 (2) | 0.0787 (16) | 0.0470 (12) | −0.0372 (14) | 0.0501 (13) | −0.0171 (10) |
N1 | 0.0863 (18) | 0.0445 (13) | 0.0319 (11) | 0.0082 (11) | 0.0240 (11) | −0.0036 (9) |
C9 | 0.0698 (19) | 0.0395 (14) | 0.0354 (14) | 0.0031 (12) | 0.0208 (12) | 0.0009 (10) |
C1 | 0.0698 (19) | 0.0502 (17) | 0.0322 (13) | −0.0032 (14) | 0.0221 (12) | −0.0026 (11) |
C6 | 0.087 (2) | 0.0372 (14) | 0.0364 (14) | −0.0011 (13) | 0.0279 (13) | −0.0007 (11) |
C2 | 0.072 (2) | 0.0471 (15) | 0.0380 (14) | −0.0066 (13) | 0.0210 (13) | −0.0077 (11) |
C8 | 0.111 (3) | 0.0333 (14) | 0.0418 (15) | 0.0039 (15) | 0.0321 (15) | 0.0065 (11) |
C7 | 0.124 (3) | 0.0296 (13) | 0.0429 (15) | 0.0042 (15) | 0.0347 (16) | −0.0041 (11) |
C3 | 0.082 (3) | 0.088 (3) | 0.065 (2) | 0.002 (2) | 0.0144 (19) | −0.0186 (18) |
C4A | 0.072 (3) | 0.129 (5) | 0.096 (3) | −0.002 (3) | 0.019 (3) | −0.028 (3) |
C4B | 0.114 (16) | 0.106 (16) | 0.104 (16) | −0.005 (15) | 0.012 (14) | −0.044 (14) |
C5A | 0.112 (5) | 0.122 (6) | 0.195 (9) | −0.031 (4) | 0.050 (6) | −0.010 (6) |
C5B | 0.15 (3) | 0.15 (3) | 0.17 (3) | −0.03 (3) | 0.01 (3) | −0.05 (3) |
O2—C1 | 1.202 (3) | C7—H7 | 0.9300 |
O4—C6 | 1.274 (3) | C3—H3AA | 0.9700 |
O6—H6 | 0.8200 | C3—H3AB | 0.9700 |
O6—C9 | 1.275 (3) | C3—H3BC | 0.9700 |
O5—C9 | 1.231 (3) | C3—H3BD | 0.9700 |
O3—C6 | 1.226 (3) | C3—C4A | 1.498 (6) |
O1—H1 | 0.8200 | C3—C4B | 1.43 (3) |
O1—C1 | 1.308 (3) | C4A—H4AA | 0.9700 |
N1—H1A | 0.8900 | C4A—H4AB | 0.9700 |
N1—H1B | 0.8900 | C4A—C5A | 1.474 (9) |
N1—H1C | 0.8900 | C4B—H4BA | 0.9700 |
N1—C2 | 1.482 (4) | C4B—H4BB | 0.9700 |
C9—C8 | 1.469 (4) | C4B—C5B | 1.36 (7) |
C1—C2 | 1.507 (4) | C5A—H5AA | 0.9600 |
C6—C7 | 1.490 (4) | C5A—H5AB | 0.9600 |
C2—H2 | 0.9800 | C5A—H5AC | 0.9600 |
C2—C3 | 1.517 (5) | C5B—H5BA | 0.9600 |
C8—H8 | 0.9300 | C5B—H5BB | 0.9600 |
C8—C7 | 1.329 (4) | C5B—H5BC | 0.9600 |
C9—O6—H6 | 109.5 | H3AA—C3—H3AB | 107.5 |
C1—O1—H1 | 109.5 | H3BC—C3—H3BD | 105.7 |
H1A—N1—H1B | 109.5 | C4A—C3—C2 | 115.2 (3) |
H1A—N1—H1C | 109.5 | C4A—C3—H3AA | 108.5 |
H1B—N1—H1C | 109.5 | C4A—C3—H3AB | 108.5 |
C2—N1—H1A | 109.5 | C4B—C3—C2 | 130.3 (16) |
C2—N1—H1B | 109.5 | C4B—C3—H3BC | 104.7 |
C2—N1—H1C | 109.5 | C4B—C3—H3BD | 104.7 |
O6—C9—C8 | 120.8 (2) | C3—C4A—H4AA | 108.3 |
O5—C9—O6 | 121.7 (2) | C3—C4A—H4AB | 108.3 |
O5—C9—C8 | 117.6 (2) | H4AA—C4A—H4AB | 107.4 |
O2—C1—O1 | 125.0 (2) | C5A—C4A—C3 | 115.9 (5) |
O2—C1—C2 | 122.4 (2) | C5A—C4A—H4AA | 108.3 |
O1—C1—C2 | 112.6 (2) | C5A—C4A—H4AB | 108.3 |
O4—C6—C7 | 119.1 (2) | C3—C4B—H4BA | 108.7 |
O3—C6—O4 | 122.4 (2) | C3—C4B—H4BB | 108.7 |
O3—C6—C7 | 118.5 (2) | H4BA—C4B—H4BB | 107.6 |
N1—C2—C1 | 107.4 (2) | C5B—C4B—C3 | 114 (3) |
N1—C2—H2 | 109.3 | C5B—C4B—H4BA | 108.7 |
N1—C2—C3 | 108.9 (2) | C5B—C4B—H4BB | 108.7 |
C1—C2—H2 | 109.3 | C4A—C5A—H5AA | 109.5 |
C1—C2—C3 | 112.7 (3) | C4A—C5A—H5AB | 109.5 |
C3—C2—H2 | 109.3 | C4A—C5A—H5AC | 109.5 |
C9—C8—H8 | 114.7 | H5AA—C5A—H5AB | 109.5 |
C7—C8—C9 | 130.6 (2) | H5AA—C5A—H5AC | 109.5 |
C7—C8—H8 | 114.7 | H5AB—C5A—H5AC | 109.5 |
C6—C7—H7 | 114.6 | C4B—C5B—H5BA | 109.5 |
C8—C7—C6 | 130.8 (2) | C4B—C5B—H5BB | 109.5 |
C8—C7—H7 | 114.6 | C4B—C5B—H5BC | 109.5 |
C2—C3—H3AA | 108.5 | H5BA—C5B—H5BB | 109.5 |
C2—C3—H3AB | 108.5 | H5BA—C5B—H5BC | 109.5 |
C2—C3—H3BC | 104.7 | H5BB—C5B—H5BC | 109.5 |
C2—C3—H3BD | 104.7 | ||
O2—C1—C2—N1 | −26.0 (4) | N1—C2—C3—C4A | −170.8 (3) |
O2—C1—C2—C3 | 93.9 (4) | N1—C2—C3—C4B | −90 (2) |
O4—C6—C7—C8 | 5.0 (6) | C9—C8—C7—C6 | −0.4 (7) |
O6—C9—C8—C7 | −5.4 (6) | C1—C2—C3—C4A | 70.1 (4) |
O5—C9—C8—C7 | 175.1 (4) | C1—C2—C3—C4B | 151 (2) |
O3—C6—C7—C8 | −174.1 (4) | C2—C3—C4A—C5A | 63.3 (7) |
O1—C1—C2—N1 | 154.9 (3) | C2—C3—C4B—C5B | −57 (5) |
O1—C1—C2—C3 | −85.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···O4 | 0.82 | 1.60 | 2.421 (2) | 178 |
O1—H1···O5 | 0.82 | 1.80 | 2.612 (3) | 171 |
N1—H1A···O2i | 0.89 | 2.11 | 2.864 (3) | 142 |
N1—H1B···O4ii | 0.89 | 2.01 | 2.898 (3) | 172 |
N1—H1C···O3iii | 0.89 | 1.97 | 2.850 (3) | 168 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x, −y+1, z+1/2; (iii) x, −y, z+1/2. |
C5H12NO2+·C4H3O4−·C5H11NO2 | Dx = 1.226 Mg m−3 |
Mr = 350.37 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 6447 reflections |
a = 8.8572 (4) Å | θ = 2.3–27.7° |
b = 27.3614 (11) Å | µ = 0.10 mm−1 |
c = 7.8306 (4) Å | T = 293 K |
V = 1897.71 (15) Å3 | Block, clear light colourless |
Z = 4 | 0.5 × 0.25 × 0.2 mm |
F(000) = 752 |
Agilent Xcalibur Ruby Gemini ultra diffractometer | 1975 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1731 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 10.3457 pixels mm-1 | θmax = 26.4°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −34→34 |
Tmin = 0.948, Tmax = 1.000 | l = −9→9 |
21923 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + 2.5627P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
1975 reflections | Δρmax = 0.15 e Å−3 |
216 parameters | Δρmin = −0.20 e Å−3 |
298 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.3996 (7) | 0.5283 (3) | 0.4353 (8) | 0.0588 (14) | 0.733 (5) |
O2 | 0.2253 (12) | 0.4842 (4) | 0.5382 (11) | 0.0673 (19) | 0.733 (5) |
N1 | 0.1895 (3) | 0.58452 (10) | 0.2864 (4) | 0.0436 (9) | 0.733 (5) |
H1A | 0.209236 | 0.566396 | 0.194754 | 0.052* | 0.733 (5) |
H1B | 0.271973 | 0.601006 | 0.316357 | 0.052* | 0.733 (5) |
H1C | 0.115546 | 0.605455 | 0.262507 | 0.052* | 0.733 (5) |
C1 | 0.2668 (10) | 0.5162 (3) | 0.486 (2) | 0.053 (2) | 0.733 (5) |
C6 | 0.4597 (4) | 0.69058 (10) | 0.2591 (5) | 0.0667 (9) | |
C3 | 0.0925 (9) | 0.5831 (2) | 0.5848 (10) | 0.0563 (15) | 0.733 (5) |
H3A | 0.015017 | 0.605821 | 0.547903 | 0.068* | 0.733 (5) |
H3B | 0.047697 | 0.561615 | 0.669252 | 0.068* | 0.733 (5) |
C2 | 0.1420 (5) | 0.55218 (16) | 0.4302 (6) | 0.0450 (10) | 0.733 (5) |
H2 | 0.054865 | 0.533011 | 0.392004 | 0.054* | 0.733 (5) |
O4 | 0.4852 (12) | 0.70580 (16) | 0.1052 (7) | 0.082 (3) | 0.532 (13) |
C4 | 0.2156 (11) | 0.6112 (4) | 0.6672 (11) | 0.078 (2) | 0.733 (5) |
H4A | 0.258051 | 0.633807 | 0.584784 | 0.093* | 0.733 (5) |
H4B | 0.295023 | 0.588785 | 0.701321 | 0.093* | 0.733 (5) |
C7 | 0.4209 (11) | 0.7257 (3) | 0.3969 (11) | 0.055 (2) | 0.532 (13) |
H7 | 0.391943 | 0.711475 | 0.499571 | 0.066* | 0.532 (13) |
O4B | 0.5932 (11) | 0.70603 (18) | 0.1975 (19) | 0.112 (5) | 0.468 (13) |
N1B | 0.0750 (11) | 0.5607 (3) | 0.3297 (13) | 0.054 (3) | 0.267 (5) |
H1BA | 0.116614 | 0.543114 | 0.246574 | 0.065* | 0.267 (5) |
H1BB | 0.034246 | 0.587671 | 0.285670 | 0.065* | 0.267 (5) |
H1BC | 0.003694 | 0.543223 | 0.381236 | 0.065* | 0.267 (5) |
O1B | 0.425 (2) | 0.5365 (8) | 0.503 (2) | 0.067 (5) | 0.267 (5) |
O2B | 0.229 (4) | 0.4803 (10) | 0.593 (3) | 0.066 (5) | 0.267 (5) |
C2B | 0.1906 (15) | 0.5742 (4) | 0.4535 (19) | 0.054 (3) | 0.267 (5) |
H2B | 0.259337 | 0.597557 | 0.399015 | 0.064* | 0.267 (5) |
C7B | 0.3551 (12) | 0.7257 (3) | 0.3272 (18) | 0.068 (3) | 0.468 (13) |
H7B | 0.271968 | 0.711838 | 0.381295 | 0.082* | 0.468 (13) |
C1B | 0.271 (3) | 0.5271 (8) | 0.473 (7) | 0.049 (4) | 0.267 (5) |
C3B | 0.117 (4) | 0.5995 (9) | 0.605 (4) | 0.086 (6) | 0.267 (5) |
H3BA | 0.052294 | 0.625599 | 0.563819 | 0.103* | 0.267 (5) |
H3BB | 0.053207 | 0.576156 | 0.664850 | 0.103* | 0.267 (5) |
C4B | 0.223 (4) | 0.6193 (12) | 0.723 (4) | 0.107 (7) | 0.267 (5) |
H4BA | 0.240324 | 0.596531 | 0.815453 | 0.129* | 0.267 (5) |
H4BB | 0.318602 | 0.625157 | 0.665381 | 0.129* | 0.267 (5) |
O3 | 0.453 (5) | 0.6486 (10) | 0.284 (6) | 0.073 (7) | 0.532 (13) |
O3B | 0.440 (5) | 0.6447 (12) | 0.290 (6) | 0.063 (5) | 0.468 (13) |
C5 | 0.1602 (13) | 0.6408 (3) | 0.8296 (14) | 0.096 (3) | 0.733 (5) |
H5A | 0.089387 | 0.665441 | 0.794706 | 0.145* | 0.733 (5) |
H5B | 0.245280 | 0.656078 | 0.883680 | 0.145* | 0.733 (5) |
H5C | 0.112409 | 0.618901 | 0.908534 | 0.145* | 0.733 (5) |
C5B | 0.170 (5) | 0.6600 (9) | 0.782 (5) | 0.129 (11) | 0.267 (5) |
H5BA | 0.103300 | 0.674308 | 0.698621 | 0.193* | 0.267 (5) |
H5BB | 0.251346 | 0.682068 | 0.804935 | 0.193* | 0.267 (5) |
H5BC | 0.114773 | 0.653731 | 0.885012 | 0.193* | 0.267 (5) |
H1 | 0.500000 | 0.500000 | 0.500000 | 0.193* | |
H4 | 0.483 (9) | 0.750000 | 0.115 (11) | 0.193* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.044 (3) | 0.052 (3) | 0.080 (4) | 0.016 (2) | 0.004 (2) | 0.021 (3) |
O2 | 0.058 (2) | 0.061 (4) | 0.083 (6) | 0.005 (2) | 0.002 (4) | 0.030 (4) |
N1 | 0.0397 (17) | 0.0352 (15) | 0.056 (2) | 0.0090 (13) | −0.0013 (15) | 0.0050 (14) |
C1 | 0.045 (3) | 0.051 (4) | 0.061 (5) | 0.023 (3) | 0.001 (3) | 0.019 (5) |
C6 | 0.064 (2) | 0.0354 (15) | 0.101 (3) | 0.0003 (13) | 0.0253 (19) | −0.0043 (17) |
C3 | 0.048 (3) | 0.052 (3) | 0.069 (4) | 0.018 (2) | 0.009 (3) | 0.006 (3) |
C2 | 0.040 (2) | 0.034 (2) | 0.061 (3) | 0.0051 (18) | 0.001 (2) | 0.008 (2) |
O4 | 0.115 (7) | 0.047 (2) | 0.084 (3) | 0.000 (3) | 0.028 (4) | −0.011 (2) |
C4 | 0.072 (4) | 0.080 (4) | 0.081 (5) | 0.010 (3) | 0.014 (4) | −0.023 (4) |
C7 | 0.066 (5) | 0.035 (3) | 0.065 (4) | −0.001 (3) | 0.007 (4) | 0.003 (3) |
O4B | 0.070 (5) | 0.043 (3) | 0.223 (12) | 0.004 (3) | 0.081 (7) | 0.000 (4) |
N1B | 0.050 (6) | 0.041 (5) | 0.070 (6) | 0.009 (4) | −0.002 (5) | 0.010 (4) |
O1B | 0.044 (6) | 0.057 (7) | 0.101 (14) | 0.013 (5) | 0.003 (7) | 0.017 (9) |
O2B | 0.074 (7) | 0.059 (6) | 0.064 (11) | 0.029 (5) | 0.017 (8) | 0.050 (7) |
C2B | 0.050 (6) | 0.029 (5) | 0.083 (8) | 0.012 (5) | −0.006 (6) | 0.008 (5) |
C7B | 0.048 (5) | 0.038 (3) | 0.119 (9) | 0.000 (4) | 0.027 (5) | −0.002 (5) |
C1B | 0.053 (7) | 0.035 (8) | 0.059 (10) | 0.006 (6) | 0.014 (6) | 0.026 (7) |
C3B | 0.084 (13) | 0.090 (14) | 0.083 (10) | 0.037 (11) | −0.002 (9) | −0.005 (9) |
C4B | 0.127 (15) | 0.103 (14) | 0.092 (15) | 0.041 (12) | −0.025 (13) | −0.013 (10) |
O3 | 0.071 (14) | 0.023 (4) | 0.124 (11) | 0.004 (5) | 0.026 (9) | 0.005 (5) |
O3B | 0.050 (6) | 0.032 (6) | 0.108 (12) | 0.002 (6) | 0.019 (7) | −0.007 (7) |
C5 | 0.098 (5) | 0.094 (7) | 0.097 (6) | 0.020 (5) | 0.004 (4) | −0.023 (5) |
C5B | 0.20 (3) | 0.071 (14) | 0.12 (2) | 0.029 (16) | 0.020 (18) | 0.002 (12) |
O1—C1 | 1.286 (11) | N1B—H1BA | 0.8900 |
O1—H1 | 1.284 (6) | N1B—H1BB | 0.8900 |
O2—C1 | 1.034 (15) | N1B—H1BC | 0.8900 |
N1—H1A | 0.8900 | N1B—C2B | 1.457 (17) |
N1—H1B | 0.8900 | O1B—C1B | 1.41 (2) |
N1—H1C | 0.8900 | O1B—H1 | 1.20 (2) |
N1—C2 | 1.492 (6) | O2B—C1B | 1.63 (4) |
C1—C2 | 1.544 (7) | C2B—H2B | 0.9800 |
C6—O4 | 1.295 (6) | C2B—C1B | 1.481 (18) |
C6—C7 | 1.486 (8) | C2B—C3B | 1.52 (3) |
C6—O4B | 1.345 (6) | C7B—C7Bi | 1.331 (17) |
C6—C7B | 1.437 (9) | C7B—H7B | 0.9300 |
C6—O3 | 1.17 (3) | C3B—H3BA | 0.9700 |
C6—O3B | 1.29 (3) | C3B—H3BB | 0.9700 |
C3—H3A | 0.9700 | C3B—C4B | 1.42 (3) |
C3—H3B | 0.9700 | C4B—H4BA | 0.9700 |
C3—C2 | 1.541 (8) | C4B—H4BB | 0.9700 |
C3—C4 | 1.481 (10) | C4B—C5B | 1.29 (4) |
C2—H2 | 0.9800 | C5—H5A | 0.9600 |
O4—H4 | 1.212 (7) | C5—H5B | 0.9600 |
C4—H4A | 0.9700 | C5—H5C | 0.9600 |
C4—H4B | 0.9700 | C5B—H5BA | 0.9600 |
C4—C5 | 1.586 (12) | C5B—H5BB | 0.9600 |
C7—C7i | 1.327 (14) | C5B—H5BC | 0.9600 |
C7—H7 | 0.9300 | ||
C1—O1—H1 | 110.8 (7) | C2B—N1B—H1BA | 109.5 |
H1A—N1—H1B | 109.5 | C2B—N1B—H1BB | 109.5 |
H1A—N1—H1C | 109.5 | C2B—N1B—H1BC | 109.5 |
H1B—N1—H1C | 109.5 | C1B—O1B—H1 | 112.4 (17) |
C2—N1—H1A | 109.5 | N1B—C2B—H2B | 108.1 |
C2—N1—H1B | 109.5 | N1B—C2B—C1B | 100.8 (18) |
C2—N1—H1C | 109.5 | N1B—C2B—C3B | 109.4 (15) |
O1—C1—C2 | 113.7 (8) | C1B—C2B—H2B | 108.1 |
O2—C1—O1 | 131.8 (9) | C1B—C2B—C3B | 121 (2) |
O2—C1—C2 | 113.5 (9) | C3B—C2B—H2B | 108.1 |
O4—C6—C7 | 120.5 (4) | C6—C7B—H7B | 114.0 |
O4B—C6—C7B | 119.3 (5) | C7Bi—C7B—C6 | 131.9 (4) |
O3—C6—O4 | 119 (2) | C7Bi—C7B—H7B | 114.0 |
O3—C6—C7 | 120 (2) | O1B—C1B—O2B | 106 (2) |
O3B—C6—O4B | 120 (2) | O1B—C1B—C2B | 109.0 (19) |
O3B—C6—C7B | 120 (2) | C2B—C1B—O2B | 129 (3) |
H3A—C3—H3B | 107.6 | C2B—C3B—H3BA | 109.0 |
C2—C3—H3A | 108.6 | C2B—C3B—H3BB | 109.0 |
C2—C3—H3B | 108.6 | H3BA—C3B—H3BB | 107.8 |
C4—C3—H3A | 108.6 | C4B—C3B—C2B | 113 (3) |
C4—C3—H3B | 108.6 | C4B—C3B—H3BA | 109.0 |
C4—C3—C2 | 114.7 (6) | C4B—C3B—H3BB | 109.0 |
N1—C2—C1 | 113.0 (6) | C3B—C4B—H4BA | 110.0 |
N1—C2—C3 | 110.3 (4) | C3B—C4B—H4BB | 110.0 |
N1—C2—H2 | 108.0 | H4BA—C4B—H4BB | 108.4 |
C1—C2—H2 | 108.0 | C5B—C4B—C3B | 108 (3) |
C3—C2—C1 | 109.3 (8) | C5B—C4B—H4BA | 110.0 |
C3—C2—H2 | 108.0 | C5B—C4B—H4BB | 110.0 |
C6—O4—H4 | 105 (4) | C4—C5—H5A | 109.5 |
C3—C4—H4A | 109.0 | C4—C5—H5B | 109.5 |
C3—C4—H4B | 109.0 | C4—C5—H5C | 109.5 |
C3—C4—C5 | 112.7 (8) | H5A—C5—H5B | 109.5 |
H4A—C4—H4B | 107.8 | H5A—C5—H5C | 109.5 |
C5—C4—H4A | 109.0 | H5B—C5—H5C | 109.5 |
C5—C4—H4B | 109.0 | C4B—C5B—H5BA | 109.5 |
C6—C7—H7 | 114.8 | C4B—C5B—H5BB | 109.5 |
C7i—C7—C6 | 130.4 (3) | C4B—C5B—H5BC | 109.5 |
C7i—C7—H7 | 114.8 | H5BA—C5B—H5BB | 109.5 |
H1BA—N1B—H1BB | 109.5 | H5BA—C5B—H5BC | 109.5 |
H1BA—N1B—H1BC | 109.5 | H5BB—C5B—H5BC | 109.5 |
H1BB—N1B—H1BC | 109.5 | ||
O1—C1—C2—N1 | 17.9 (14) | N1B—C2B—C1B—O1B | 147 (3) |
O1—C1—C2—C3 | −105.4 (12) | N1B—C2B—C1B—O2B | −83 (4) |
O2—C1—C2—N1 | −151.9 (12) | N1B—C2B—C3B—C4B | −173 (2) |
O2—C1—C2—C3 | 84.9 (15) | C2B—C3B—C4B—C5B | 144 (3) |
C2—C3—C4—C5 | −177.9 (7) | C1B—C2B—C3B—C4B | 71 (3) |
O4—C6—C7—C7i | −7.7 (7) | C3B—C2B—C1B—O1B | −92 (3) |
C4—C3—C2—N1 | −67.1 (8) | C3B—C2B—C1B—O2B | 38 (4) |
C4—C3—C2—C1 | 57.7 (9) | O3—C6—C7—C7i | −180 (3) |
O4B—C6—C7B—C7Bi | 8.4 (9) | O3B—C6—C7B—C7Bi | 174 (3) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2ii | 0.89 | 1.94 | 2.807 (8) | 165 |
N1—H1B···O3 | 0.89 | 2.08 | 2.92 (4) | 157 |
N1—H1C···O3iii | 0.89 | 1.90 | 2.79 (4) | 178 |
O1—H1···O1iv | 1.28 (1) | 1.28 (1) | 2.568 (13) | 180 (1) |
O4—H4···O4i | 1.21 (1) | 1.21 (1) | 2.418 (9) | 173 (8) |
Symmetry codes: (i) x, −y+3/2, z; (ii) −x+1/2, −y+1, z−1/2; (iii) x−1/2, y, −z+1/2; (iv) −x+1, −y+1, −z+1. |
Brutto formula | Stoichiometry class | CSD refcodes (references to original work) |
(GlyH+).M- | A+B- | RENBAN (Rajagopal, Krishnakumar, Mostad & Natarajan, 2001) |
(L-AlaH+).M- | BOQTEG (Alagar, Krishnakumar, Nandhini & Natarajan, 2001) | |
(L-PheH+).M- | EDAXIQ (Alagar, Krishnakumar & Natarajan, 2001) | |
(DL-PheH+).M- | VAGVIJ (Alagar et al., 2003) | |
(DL-ValH+).M- | QURSUR (Alagar, Krishnakumar, Mostad & Natarajan, 2001) | |
(L-SerH+).M- | REZPET (Arkhipov et al., 2013) | |
(DL-SerH+). M- | REZPAP (Arkhipov et al., 2013) | |
(DL-MetH+).M- | MOCXUX (Alagar et al., 2002) | |
(SarH+).M- | MIYBAX01 (Ilczyszyn et al., 2003) | |
(L-ValH+).M- | NUZMIG (Rychkov et al., 2016) | |
(DL-ThrH+).M- | ETEYOR (Rajagopal et al., 2004) | |
(β-AlaH+).M- | EDASUX (Rajagopal, Krishnakumar & Natarajan, 2001) | |
(BacH+).M- | LUSXII (Báthori & Kilinkissa, 2015) | |
(L-LysH+).M- | XADTOL (Pratap et al., 2000) | |
(DL-ArgH+).M- | (Ravishankar et al., 1998) | |
(BetH+).M- | NASQED01 (Haussühl & Schreuer, 2001) | |
(L-HisH22+).(M-)2 | An+nB- | TENVOZ (Fleck et al., 2013) |
L-Met.L-MetH+.M- | A2+B- | (Natarajan et al. 2010) |
L-Nva.L-NvaH+.M- | VUKQID (Arkhipov et al., 2015) | |
(L-HisH+)2.(M-)2 | nA+nB- | XADTIF (Pratap et al., 2000) |
(L-LeuH+)3.(M-)3 | VUKQAV (Arkhipov et al., 2015) |
There are also two hydrates belonging to the A+B- class: (L-ArgH+).M-.2H2O (CSD refcode GIHGEK; Sun et al., 2007), (L-HisH+).M-.H2O (CSD refcode TENVUF; Fleck et al., 2013); and two other hydrates related to the nA+nB- class: (L-HisH+)2.(M-)2.3H2O (CSD refcode VAZJUD; Gonsago et al., 2012), (L-IleH+)2.(M-)2.H2O (CSD refcode VUKQEZ; Arkhipov et al., 2015). |
Acknowledgements
This work was supported by a grant from the Ministry of Education and Science of Russia (project 1828) (SGA), and by RFBR (grant No. 16-33-60089 mol_a_dk) (to EAL).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Alagar, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001a). Acta Cryst. E57, o1102–o1104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alagar, M., Krishnakumar, R. V., Nandhini, M. S. & Natarajan, S. (2001b). Acta Cryst. E57, o855–o857. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alagar, M., Krishnakumar, R. V. & Natarajan, S. (2001c). Acta Cryst. E57, o968–o970. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alagar, M., Subha Nandhini, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2003). Acta Cryst. E59, o209–o211. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Alagar, M., Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2002). Acta Cryst. E58, o396–o398. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anbuchezhiyan, M., Ponnusamy, S. & Muthamizhchelvan, C. (2009). Spectrochim. Acta Part A, 74, 917–923. Web of Science CrossRef CAS Google Scholar
Arkhipov, S. G., Rychkov, D. A., Pugachev, A. M. & Boldyreva, E. V. (2015). Acta Cryst. C71, 584–592. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arkhipov, S. G., Zakharov, B. A. & Boldyreva, E. V. (2013). Acta Cryst. C69, 517–521. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Asai, S., Tazuke, H. & Kageyama, H. (1975). US Patent 3897484A; Appl. No. 239786. Google Scholar
Balasubramanian, D., Murugakoothan, P. & Jayavel, R. (2010). J. Cryst. Growth, 312, 1855–1859. Web of Science CrossRef CAS Google Scholar
Báthori, N. B. & Kilinkissa, O. E. Y. (2015). CrystEngComm, 17, 8264–8272. Google Scholar
Boldyreva, E. V. (2014). Z. Kristallogr., 229, 236–245. CAS Google Scholar
Boldyreva, E. V., Arkhipov, S. G., Drebushchak, T. N., Drebushchak, V. A., Losev, E. A., Matvienko, A. A., Minkov, V. S., Rychkov, D. A., Seryotkin, Y. V., Stare, J. & Zakharov, B. A. (2015). Chem. Eur. J. 21, 15395–15404. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bordallo, H. N., Kolesov, B. A., Boldyreva, E. V. & Juranyi, F. (2007). J. Am. Chem. Soc. 129, 10984–10985. Web of Science CrossRef PubMed CAS Google Scholar
Charoen-In, U., Ramasamy, P. & Manyum, P. (2010). J. Cryst. Growth, 312, 2369–2375. CAS Google Scholar
Chesalov, Yu. A., Chernobay, G. B. & Boldyreva, E. V. (2008). J. Struct. Chem. 49, 627–638. Web of Science CrossRef CAS Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Devaprasad, S. A. & Madhavan, J. (2010). Arch. Appl. Sci. Res. 2, 50–56. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fleck, M., Ghazaryan, V. V., Bezhanova, L. S., Atanesyan, A. K. & Petrosyan, A. M. (2013). J. Mol. Struct. 1035, 407–415. Web of Science CSD CrossRef CAS Google Scholar
Fleck, M. & Petrosyan, A. M. (2014). In Salts of Amino Acids. Crystallization, Structure and Properties. Cham, Switzerland: Springer International Publishing. Google Scholar
Gonsago, C. A., Albert, H. M., Karthikeyan, J., Sagayaraj, P. & Pragasam, A. J. A. (2012). Mater. Res. Bull. 47, 1648–1652. Web of Science CSD CrossRef CAS Google Scholar
Görbitz, C. H. (2011). J. Phys. Chem. B, 115, 2447–2453. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haussühl, E. & Schreuer, J. (2001). Z. Kristallogr. 216, 616–622. Google Scholar
Ilczyszyn, M., Godzisz, D. & Ilczyszyn, M. (2003). Spectrochim. Acta A Mol. Biomol. Spectrosc. 59, 1815–1828. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kobari, M., Kubota, N. & Hirasawa, I. (2014). CrystEngComm, 16, 6049–6058. Web of Science CrossRef CAS Google Scholar
Kolesnik, E. N., Goryajnov, S. V. & Boldyreva, E. V. (2005). Dokl. Akad. Nauk, 404, 61–64. Google Scholar
Kolesov, B. A. & Boldyreva, E. V. (2007). J. Phys. Chem. B, 111, 14387–14397. Web of Science CrossRef PubMed CAS Google Scholar
Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3813. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McCrone, W. C. (1965). Polymorphism, in Physics and Chemistry of the Organic Solid State, Vol. 2, edited by D. Fox, M. M. Labes & A. Weissberger, pp. 725–767. New York: Wiley Interscience. Google Scholar
Munroe, A., Croker, D. M., Rasmuson, A. C. & Hodnett, B. K. (2014). Cryst. Growth Des. 14, 3466–3471. Web of Science CrossRef CAS Google Scholar
Natarajan, S., Devi, N. R., Britto Dhas, S. D. M. & Athimoolam, S. (2008). Sci. Technol. Adv. Mater. 9, 025012. Web of Science CrossRef Google Scholar
Natarajan, S., Devi, N. R., Dhas, S. A. M. B. & Athimoolam, S. (2010). J. Optoelectron. Adv. Mater. 4, 516–519. CAS Google Scholar
Pratap, J. V., Ravishankar, R. & Vijayan, M. (2000). Acta Cryst. B56, 690–696. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001a). Acta Cryst. E57, o751–o753. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajagopal, K., Krishnakumar, R. V. & Natarajan, S. (2001b). Acta Cryst. E57, o922–o924. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajagopal, K., Ramachandran, E., Mostad, A. & Natarajan, S. (2004). Acta Cryst. E60, o386–o388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ravishankar, R., Chandra, N. R. & Vijayan, M. (1998). J. Biomol. Struct. Dyn. 15, 1093–1100. CrossRef CAS PubMed Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Rychkov, D. A., Arkhipov, S. G. & Boldyreva, E. V. (2014). J. Appl. Cryst. 47, 1435–1442. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rychkov, D., Arkhipov, S. & Boldyreva, E. (2016). Acta Cryst. B72, 160–163. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Z.-H., Yu, W.-T., Fan, J.-D., Xu, D. & Wang, X.-Q. (2007). Acta Cryst. E63, o2805–o2807. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Vasudevan, P., Sankar, S. & Gokul Raj, S. (2013). Optik (Stuttgart), 124, 4155–4158. Web of Science CrossRef CAS Google Scholar
Yogam, F., Vetha Potheher, I., Vimalan, M., Jeyasekaran, R., Rajesh Kumar, T. & Sagayaraj, P. (2012). Spectrochim. Acta Part A, 95, 369–373. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.