research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Pyridine and 3-methyl­pyridine solvates of the triple sulfa drug constitutent sulfamethazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
*Correspondence e-mail: u_h_patel@yahoo.com

Edited by J. White, The University of Melbourne, Australia (Received 6 May 2016; accepted 8 October 2016; online 1 January 2017)

Sulfonamides display a wide variety of pharmacological activities. Sulfamethazine [abbreviated as SMZ; systematic name 4-amino-N-(4,6-di­methyl­pyrimidin-2-yl)benzene­sulfonamide], one of the constitutents of the triple sulfa drugs, has wide clinical use. Pharmaceutical solvates are crystalline solids of active pharmaceutical ingredients (APIs) incorporating one or more solvent mol­ecules in the crystal lattice, and these have received special attention, as the solvent molecule can impart characteristic physicochemical properties to APIs and solvates, therefore playing a significant role in drug development. The ability of SMZ to form solvates has been investigated. Both pyridine and 3-methyl­pyridine form solvates with SMZ in 1:1 molar ratios. The pyridine monosolvate, C12H14N4O2S·C5H5N, crystallizes in the ortho­rhom­bic space group Pna21, with Z = 8 and two mol­ecules per assymetric unit, whereas the 3-methyl­pyridine monosolvate, C12H14N4O2S·C6H7N, crystallizes in the ortho­rhom­bic space group P212121, with Z = 4. Crystal structure analysis reveals intra­molecular N—H⋯N hydrogen bonds between the mol­ecules of SMZ and the pyridine solvent mol­ecules. The solvent mol­ecules in both structures play an active part in strong inter­molecular inter­actions, thereby contributing significantly to the stability of both structures. Three-dimensional hydrogen-bonding networks exist in both structures involving at least one sulfonyl O atom and the amine N atom. In the pyridine solvate, there is a short ππ inter­action [centroid–centroid distance = 3.926 (3) Å] involving the centroids of the pyridine rings of two solvent mol­ecules and a weak inter­molecular C—H⋯π inter­action also contributes to the stability of the crystal packing.

1. Introduction

Sulfonamides are recognized for their wide variety of pharmacological activities, including anti­bacterial, anti­tumor, anti­carbonic anhydrase, hypoglycaemic, anti­thyroid and protease inhibitory activity. Clinically useful sulfonamides are derived from sulfanilamide, which is similar to 4-amino­benzoic acid, a factor required by bacteria for folic acid synthesis (Wolff, 1996[Wolff, M. E. (1996). Burger's Medicinal Chemistry and Drug Discovery, Vol. 2, 5th ed., pp. 528-576. New York: John Wiley & Sons Inc.]). Sulfamethazine [abbreviated as SMZ; sys­tem­atic name: 4-amino-N-(4,6-di­methyl­pyrimidin-2-yl)benzene­sulfonamide], one of the constitutents of the triple sulfa drugs, has wide clinical use. The crystal structure of SMZ has been reported (Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.]; Tiwari et al., 1984[Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.]). Pharmaceutical solvates, crystalline solids of active pharmaceutical ingredients (APIs) which incorporate one or more solvent mol­ecules in the crystal lattice, have received special attention as the presence of a particular solvent in the crystal lattice can impart characteristic physicochemical properties to the APIs. Therefore, solvates play a significant role in drug development (Byrn et al., 1999[Byrn, S. R., Pfeiffer, R. R. & Stowell, J. G. (1999). In Solid-State Chemistry of Drugs, 2nd ed. West Lafayette, IN, USA: SSCI Inc.]; Lee et al., 2011[Lee, A. Y., Erdemir, D. & Myerson, A. L. (2011). Annu. Rev. Chem. Biomol. Eng. 2, 259-280.]). As per our ongoing research program on crystallographic investigations of different derivatives of sulfonamides and their mol­ecular solvates (Tailor et al., 2015[Tailor, S. M. & Patel, U. H. (2015). Acta Cryst. C71, 944-953.]), we report here the crystal structure of SMZ as the solvates of pyridine and 3-methyl­pyridine, i.e. (1) and (2), respectively.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

Crystals of the title sulfamethazine (SMZ) solvates were grown by slow evaporation from a saturated solution of SMZ in the respective solvent [i.e. pyridine for (1) and 3-methyl­pyridine for (2)]. The solutions were allowed to stand at room temperature for a few days. Tiny transparent single crystals were collected and allowed to dry in the air.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms were positioned geometrically, with N—H = 0.90 Å for NH2, C—H = 0.96 Å for CH3 and C—H = 0.93 Å for aromatic H atoms. In addition, the H atoms are constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) otherwise.

Table 1
Experimental details

  (1) (2)
Crystal data
Chemical formula C12H14N4O2S·C5H5N C12H14N4O2S·C6H7N
Mr 357.43 371.46
Crystal system, space group Orthorhombic, Pna21 Orthorhombic, P212121
Temperature (K) 293 296
a, b, c (Å) 30.5388 (9), 8.0984 (2), 15.0810 (4) 9.6920 (2), 25.1673 (6), 7.9853 (2)
V3) 3729.76 (17) 1947.79 (8)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.19
Crystal size (mm) 0.65 × 0.30 × 0.25 0.65 × 0.60 × 0.35
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 18564, 6825, 4494 10022, 4438, 4082
Rint 0.035 0.022
(sin θ/λ)max−1) 0.648 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.105, 1.00 0.037, 0.102, 1.03
No. of reflections 6825 4438
No. of parameters 517 270
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19 0.23, −0.28
Absolute structure Refined as an inversion twin (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) Refined as an inversion twin (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.04 (8) −0.01 (9)
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

3. Results and discussion

The pyridine solvate of SMZ, (1), crystallizes in the ortho­rhom­bic space group Pna21, with Z = 4 and two mol­ecules of SMZ and two mol­ecules of pyridine in the asymmetric unit. The 3-methyl­pyridine solvate of SMZ, (2), crystallizes in the ortho­rhom­bic space group P212121, also with Z = 4. In both solvates (Figs. 1[link] and 2[link]), the bond lengths and angles of SMZ are comparable with those found in the unsolvated mol­ecule (Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.]; Tiwari et al., 1984[Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.]). The endocyclic angles at atom C12 [127.3 (3)° for mol­ecule A and 128.2 (4)° for mol­ecule B in (1), and 127.8 (2)° in (2)] are similar to that observed in the unsolvated mol­ecule [129.5 (1) (Tiwari et al., 1984[Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.]) and 129.1 (1)° (Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.])]. The distorted tetra­hedral geometries around the S atom for both the solvates are also analogous to that found in the unsolvated mol­ecule (Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.]; Tiwari et al., 1984[Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.]). The angle of inclination between the planes of the two six-membered rings of SMZ is 89.03 (15)° in mol­ecule A of (1), 89.40 (16)° in mol­ecule B of (1) and 82.81 (10)° for (2), which are different than those of the unsolvated mol­ecule [78.1 (Tiwari et al., 1984[Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.]) and 75.5° (Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.])]. The planes of the arene ring of SMZ and the pyridine ring of the solvent mol­ecule are nearly perpendicular to each other in both solvates. The solvated structures are generally similar to each other; the orientation of the arene ring described by the C10—C4—S1—N11 torsion angle [55.1 (3)° in the unsolvated mol­ecule; Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.]] is 75.9 (3)° for mol­ecule A of (1), 78.1 (4)° for mol­ecule B of (1) and 79.7 (2)° for (2). The orientation of the pyridine ring described by the N17—C12—N11—S1 torsion angle is −12.0 (6)° for mol­ecule A of (1), −10.8 (5)° for mol­ecule B of (1) and 18.1 (3)° for (2). The orientation of the mol­ecule about the S1—N11 bond [83.0 (3)° in the unsolvated mol­ecule; Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.]] is 58.9 (4)° for mol­ecule A of (1), 56.1 (4)° for mol­ecule B of (1) and 49.5 (2)° for (2).

[Figure 1]
Figure 1
The molecular structure of sulfamethazine pyridine monosolvate, (1)[link]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The molecular structure of sulfamethazine 3-methylpyridine monosolvate, (2)[link]. Displacement ellipsoids are drawn at the 50% probability level.

In (1), the SMZ and pyridine mol­ecules are linked via a hydrogen-bond inter­action involving the sulfonyl N—H group of SMZ and the pyridine N atom (Fig. 3[link] and Table 2[link]). In addition, the amino N atom of mol­ecule B (N8B) hydrogen bonds via H81B to both sulfonyl atom O3Bi and pyrimidine atom N17Bi of an adjacent SMZ mol­ecule, while the amino N atom of mol­ecule A (N8A) hydrogen bonds via atom H82A to sulfonyl atom O3A of the same SMZ mol­ecule and via H81A to sulfonyl atom O3B of an adjacent SMZ mol­ecule. These hydrogen bonds link the mol­ecules along the b axis. The two pyridine solvent mol­ecules associated with mol­ecules A and B are linked by a weak but significant ππ inter­action [Cg1⋯Cg2(−x + [{1\over 2}], y − [{1\over 2}], z − [{1\over 2}]) = 3.926 (3) Å; Cg1 and Cg2 are the centroids of the pyridine rings N20A/C21A–C25A and N20B/C21B–C25B, respectively, of the solvent molecules]; there is also a C—H⋯π inter­action involving atom C15A, via H15A, to the centroid (Cg3ii; Table 2[link]) of an arene ring (atoms C4–C7/C9/C10) of an adjacent SMZ mol­ecule.

Table 2
Hydrogen-bond geometry (Å, °) for (1)[link]

Cg3 is the centroid of the C4–C7/C9/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N8A—H81A⋯O3B 0.81 (5) 2.34 (5) 3.176 (6) 172 (5)
N8A—H82A⋯O3A 0.78 (4) 2.49 (4) 3.168 (6) 139 (4)
N8B—H81B⋯O3Bi 0.82 (5) 2.59 (5) 3.275 (6) 142 (4)
N8B—H81B⋯N17Bi 0.82 (5) 2.55 (5) 3.261 (6) 145 (4)
N11A—H11A⋯N20A 0.81 (4) 2.09 (5) 2.894 (6) 171 (5)
N11B—H11B⋯N20B 0.80 (4) 2.04 (4) 2.834 (5) 174 (3)
C15A—H15ACg3ii 0.93 (4) 2.85 3.765 (5) 170
Symmetry code: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing diagram showing the hydrogen-bonding interactions in (1)[link]. The symmetry codes are as in Table 2[link].

In (2), the 3-methyl­pyridine solvent mol­ecule and the pyrimidine residue of SMZ lie in the ab plane and are arranged in a row along the a axis, as highlighted in Fig. 4[link]. The SMZ mol­ecule and the 3-methyl­pyridine solvent mol­ecule are linked via a hydrogen bond between the sulfonyl N—H group of SMZ and the pyridine N atom (Table 3[link]), while the amine N—H group of SMZ is hydrogen bonded to one of the sulfonyl O atoms of two adjacent SMZ mol­ecules.

Table 3
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯O3i 0.87 2.31 3.1792 (3) 173
N8—H8B⋯O3ii 0.88 2.57 3.2821 (3) 139
N8—H8B⋯N17ii 0.88 2.46 3.1984 (3) 141
N11—H11⋯N20 0.96 1.90 2.8550 (3) 174
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1.
[Figure 4]
Figure 4
Packing diagram showing the hydrogen-bonding interactions (dashed lines) in (2)[link].

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015) for (1); SHELXL2016 (Sheldrick, 2015) for (2). For both compounds, molecular graphics: PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

(1) 4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide pyridine monosolvate top
Crystal data top
C12H14N4O2S·C5H5NDx = 1.273 Mg m3
Mr = 357.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4378 reflections
a = 30.5388 (9) Åθ = 2.7–21.2°
b = 8.0984 (2) ŵ = 0.19 mm1
c = 15.0810 (4) ÅT = 293 K
V = 3729.76 (17) Å3Needle, colourless
Z = 80.65 × 0.30 × 0.25 mm
F(000) = 1504
Data collection top
Bruker Kappa APEXII CCD
diffractometer
Rint = 0.035
φ and ω scansθmax = 27.4°, θmin = 1.3°
18564 measured reflectionsh = 2639
6825 independent reflectionsk = 108
4494 reflections with I > 2σ(I)l = 1911
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.047(Δ/σ)max = 0.005
wR(F2) = 0.105Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.19 e Å3
6825 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
517 parametersExtinction coefficient: 0.0016 (4)
1 restraintAbsolute structure: Refined as an inversion twin (Flack, 1983)
Hydrogen site location: mixedAbsolute structure parameter: 0.04 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20A0.30004 (15)0.8913 (5)0.2996 (3)0.0820 (13)
C25A0.3316 (2)0.8679 (7)0.3576 (4)0.0906 (17)
H25A0.3242540.8731170.4173750.109*
C24A0.3736 (2)0.8368 (9)0.3368 (6)0.115 (2)
H24A0.3944630.8191050.3807620.138*
C21A0.3108 (2)0.8853 (10)0.2166 (5)0.123 (2)
H21A0.2891260.9041160.1744720.147*
C22A0.3520 (3)0.8528 (13)0.1880 (6)0.167 (4)
H22A0.3582880.8445800.1278620.200*
C23A0.3845 (3)0.8322 (11)0.2516 (9)0.158 (3)
H23A0.4134510.8154440.2346560.189*
S1B0.02690 (3)0.27065 (11)0.43631 (7)0.0441 (3)
S1A0.20516 (3)0.95563 (13)0.46009 (7)0.0536 (3)
O3B0.00381 (8)0.3942 (3)0.46281 (19)0.0526 (7)
N17B0.05700 (11)0.3537 (4)0.6183 (2)0.0497 (8)
O2B0.03220 (9)0.2389 (3)0.34374 (18)0.0573 (8)
C10B0.02973 (14)0.0611 (5)0.4606 (3)0.0533 (11)
C7A0.12822 (12)0.4776 (5)0.4602 (3)0.0489 (9)
C4A0.17513 (12)0.7738 (4)0.4598 (3)0.0442 (9)
C12B0.08850 (13)0.3473 (4)0.5573 (3)0.0436 (9)
N11B0.07562 (11)0.3225 (4)0.4690 (2)0.0481 (8)
O3A0.17959 (11)1.0823 (3)0.5007 (2)0.0653 (8)
C10A0.19598 (14)0.6254 (5)0.4419 (3)0.0532 (11)
N17A0.14181 (12)1.0502 (4)0.3192 (2)0.0578 (9)
C6A0.10755 (14)0.6291 (5)0.4763 (3)0.0512 (11)
N8A0.10533 (17)0.3354 (6)0.4608 (4)0.0746 (13)
N13B0.13131 (11)0.3637 (4)0.5687 (2)0.0541 (9)
C5A0.13036 (14)0.7736 (5)0.4765 (3)0.0513 (11)
N11A0.21463 (13)1.0049 (5)0.3560 (3)0.0583 (10)
C4B0.01261 (12)0.0878 (4)0.4906 (3)0.0400 (9)
C6B0.02321 (14)0.0545 (5)0.6085 (3)0.0530 (11)
O2A0.24790 (9)0.9224 (3)0.4943 (2)0.0667 (9)
N13A0.19812 (13)1.0397 (5)0.2096 (3)0.0705 (11)
C16B0.07060 (15)0.3713 (5)0.7036 (3)0.0518 (11)
C15B0.11458 (17)0.3878 (6)0.7215 (3)0.0639 (12)
C5B0.01422 (13)0.0901 (5)0.5644 (3)0.0512 (10)
C12A0.18292 (14)1.0333 (5)0.2928 (3)0.0503 (10)
C9B0.02067 (15)0.2048 (6)0.5052 (3)0.0600 (12)
N8B0.01412 (18)0.3465 (6)0.6281 (4)0.0688 (13)
C15A0.1248 (2)1.0851 (7)0.1674 (4)0.0804 (17)
C16A0.11190 (16)1.0772 (5)0.2545 (4)0.0656 (13)
C7B0.00593 (13)0.2046 (5)0.5817 (3)0.0525 (11)
C19B0.03641 (17)0.3704 (7)0.7725 (3)0.0792 (15)
H1910.0497300.3836660.8297380.119*
H1920.0163490.4596350.7621200.119*
H1930.0208670.2674580.7706160.119*
C9A0.17331 (13)0.4795 (5)0.4425 (3)0.0549 (10)
C14B0.14401 (15)0.3858 (6)0.6528 (3)0.0596 (12)
C18B0.19249 (16)0.4075 (8)0.6669 (4)0.0966 (19)
H1830.1982780.4223470.7289710.145*
H1820.2076710.3112430.6460000.145*
H1810.2024390.5026740.6347700.145*
C14A0.1681 (2)1.0682 (6)0.1464 (3)0.0781 (16)
C19A0.06528 (16)1.0934 (7)0.2830 (4)0.0945 (18)
H19X0.0471451.1122040.2319630.142*
H19Z0.0625091.1847810.3231700.142*
H19Y0.0561930.9937790.3121240.142*
C18A0.1855 (2)1.0738 (10)0.0532 (4)0.135 (3)
H18Z0.1618731.0946310.0127190.202*
H18X0.1989410.9699360.0389440.202*
H18Y0.2068391.1604120.0483130.202*
N20B0.14115 (12)0.2099 (5)0.3505 (3)0.0682 (10)
C21B0.18363 (18)0.2129 (6)0.3658 (4)0.0786 (15)
H21B0.1932310.2517300.4205240.094*
C25B0.1298 (2)0.1555 (10)0.2723 (4)0.125 (3)
H25B0.1001480.1551040.2582920.150*
C23B0.2015 (2)0.1057 (9)0.2257 (5)0.110 (2)
H23B0.2216050.0726020.1830230.132*
C24B0.1583 (2)0.0993 (11)0.2099 (4)0.140 (3)
H24B0.1479170.0567230.1566850.168*
C22B0.21464 (17)0.1617 (7)0.3053 (5)0.0904 (17)
H22B0.2442740.1658520.3193090.108*
H9A0.1899 (12)0.378 (5)0.427 (3)0.059 (12)*
H82A0.1168 (14)0.252 (5)0.449 (3)0.058 (16)*
H5A0.1172 (12)0.881 (5)0.484 (2)0.049 (11)*
H10B0.0500 (11)0.054 (4)0.411 (3)0.046 (10)*
H5B0.0245 (12)0.199 (5)0.591 (3)0.061 (12)*
H10A0.2265 (13)0.628 (4)0.429 (3)0.055 (11)*
H15B0.1231 (12)0.389 (4)0.784 (3)0.049 (11)*
H9B0.0287 (13)0.307 (5)0.484 (3)0.066 (14)*
H81A0.0789 (16)0.342 (5)0.465 (4)0.071 (16)*
H6A0.0789 (13)0.625 (4)0.490 (3)0.056 (12)*
H6B0.0404 (14)0.059 (5)0.654 (3)0.068 (15)*
H11B0.0926 (12)0.286 (4)0.434 (3)0.047 (12)*
H11A0.2393 (15)0.974 (5)0.346 (3)0.067 (16)*
H81B0.0035 (14)0.430 (6)0.606 (3)0.064 (16)*
H15A0.1058 (19)1.108 (7)0.127 (5)0.11 (2)*
H82B0.025 (2)0.347 (8)0.674 (5)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20A0.078 (3)0.100 (3)0.068 (3)0.010 (2)0.003 (3)0.015 (2)
C25A0.093 (4)0.107 (4)0.072 (4)0.027 (3)0.004 (4)0.012 (3)
C24A0.086 (5)0.145 (6)0.113 (6)0.036 (4)0.002 (5)0.000 (5)
C21A0.091 (5)0.204 (8)0.073 (5)0.020 (5)0.002 (4)0.009 (5)
C22A0.143 (8)0.276 (12)0.082 (6)0.057 (8)0.039 (6)0.017 (6)
C23A0.092 (6)0.215 (9)0.165 (10)0.041 (6)0.032 (7)0.015 (8)
S1B0.0428 (5)0.0524 (6)0.0373 (5)0.0013 (4)0.0031 (5)0.0002 (5)
S1A0.0545 (6)0.0593 (6)0.0471 (7)0.0040 (5)0.0064 (6)0.0056 (5)
O3B0.0523 (15)0.0511 (14)0.0544 (18)0.0066 (12)0.0028 (15)0.0054 (13)
N17B0.051 (2)0.060 (2)0.038 (2)0.0011 (17)0.0039 (18)0.0018 (16)
O2B0.0572 (17)0.0802 (19)0.0344 (16)0.0083 (14)0.0048 (14)0.0008 (14)
C10B0.056 (2)0.057 (3)0.048 (3)0.002 (2)0.010 (3)0.009 (2)
C7A0.045 (2)0.055 (2)0.047 (2)0.004 (2)0.002 (2)0.004 (2)
C4A0.044 (2)0.055 (2)0.034 (2)0.0043 (18)0.0018 (19)0.002 (2)
C12B0.053 (3)0.041 (2)0.037 (2)0.0071 (18)0.002 (2)0.0013 (17)
N11B0.0394 (19)0.072 (2)0.0333 (19)0.0053 (16)0.0031 (18)0.0053 (17)
O3A0.081 (2)0.0565 (17)0.058 (2)0.0004 (16)0.0001 (17)0.0046 (13)
C10A0.041 (2)0.063 (3)0.056 (3)0.002 (2)0.006 (2)0.008 (2)
N17A0.052 (2)0.069 (2)0.052 (2)0.0009 (18)0.005 (2)0.0056 (17)
C6A0.034 (2)0.072 (3)0.048 (3)0.000 (2)0.005 (2)0.001 (2)
N8A0.055 (3)0.060 (3)0.109 (4)0.005 (2)0.004 (3)0.005 (3)
N13B0.043 (2)0.079 (2)0.040 (2)0.0167 (17)0.0072 (17)0.0001 (17)
C5A0.055 (3)0.051 (3)0.048 (3)0.010 (2)0.005 (2)0.0015 (19)
N11A0.046 (2)0.076 (3)0.053 (3)0.003 (2)0.000 (2)0.0191 (19)
C4B0.0341 (18)0.044 (2)0.042 (2)0.0022 (17)0.0003 (18)0.0006 (16)
C6B0.048 (3)0.061 (3)0.051 (3)0.004 (2)0.012 (2)0.006 (2)
O2A0.0549 (17)0.0802 (19)0.065 (2)0.0100 (15)0.0162 (16)0.0102 (15)
N13A0.074 (3)0.083 (3)0.055 (3)0.015 (2)0.004 (2)0.017 (2)
C16B0.066 (3)0.055 (2)0.034 (2)0.002 (2)0.001 (2)0.0030 (18)
C15B0.068 (3)0.085 (3)0.039 (3)0.010 (2)0.011 (3)0.000 (2)
C5B0.047 (2)0.052 (3)0.055 (3)0.007 (2)0.007 (2)0.000 (2)
C12A0.056 (3)0.051 (2)0.044 (3)0.007 (2)0.000 (2)0.009 (2)
C9B0.070 (3)0.046 (3)0.064 (3)0.005 (2)0.005 (3)0.011 (2)
N8B0.086 (3)0.049 (3)0.071 (3)0.002 (2)0.005 (3)0.012 (3)
C15A0.089 (5)0.097 (4)0.055 (4)0.001 (3)0.024 (4)0.017 (3)
C16A0.061 (3)0.067 (3)0.069 (4)0.004 (2)0.014 (3)0.003 (2)
C7B0.049 (2)0.055 (3)0.053 (3)0.000 (2)0.010 (2)0.001 (2)
C19B0.084 (4)0.105 (4)0.049 (3)0.009 (3)0.012 (3)0.002 (3)
C9A0.046 (2)0.053 (3)0.065 (3)0.005 (2)0.001 (2)0.004 (2)
C14B0.055 (3)0.074 (3)0.050 (3)0.018 (2)0.008 (3)0.002 (2)
C18B0.071 (4)0.149 (5)0.070 (4)0.033 (3)0.021 (3)0.002 (3)
C14A0.099 (4)0.090 (4)0.045 (3)0.019 (3)0.007 (3)0.016 (3)
C19A0.063 (4)0.126 (5)0.094 (4)0.023 (3)0.019 (3)0.017 (3)
C18A0.152 (6)0.196 (7)0.056 (4)0.017 (5)0.008 (5)0.035 (4)
N20B0.054 (2)0.105 (3)0.046 (2)0.003 (2)0.001 (2)0.009 (2)
C21B0.073 (4)0.095 (4)0.068 (4)0.008 (3)0.012 (3)0.005 (3)
C25B0.063 (4)0.250 (8)0.062 (4)0.030 (5)0.007 (3)0.053 (5)
C23B0.076 (5)0.167 (6)0.086 (5)0.034 (4)0.021 (4)0.017 (4)
C24B0.078 (5)0.284 (10)0.057 (4)0.055 (5)0.006 (4)0.054 (5)
C22B0.050 (3)0.109 (4)0.113 (6)0.007 (3)0.002 (4)0.015 (4)
Geometric parameters (Å, º) top
N20A—C21A1.294 (8)C6B—C5B1.374 (6)
N20A—C25A1.314 (7)C6B—C7B1.385 (6)
C25A—C24A1.347 (8)C6B—H6B0.87 (4)
C25A—H25A0.9300N13A—C12A1.339 (5)
C24A—C23A1.327 (11)N13A—C14A1.342 (6)
C24A—H24A0.9300C16B—C15B1.377 (6)
C21A—C22A1.356 (10)C16B—C19B1.473 (6)
C21A—H21A0.9300C15B—C14B1.372 (6)
C22A—C23A1.390 (12)C15B—H15B0.98 (4)
C22A—H22A0.9300C5B—H5B1.02 (4)
C23A—H23A0.9300C9B—C7B1.412 (6)
S1B—O3B1.428 (3)C9B—H9B0.92 (4)
S1B—O2B1.429 (3)N8B—C7B1.368 (6)
S1B—N11B1.623 (3)N8B—H81B0.82 (4)
S1B—C4B1.747 (4)N8B—H82B0.76 (6)
S1A—O3A1.427 (3)C15A—C14A1.367 (8)
S1A—O2A1.429 (3)C15A—C16A1.373 (8)
S1A—N11A1.645 (4)C15A—H15A0.86 (6)
S1A—C4A1.735 (4)C16A—C19A1.493 (7)
N17B—C12B1.332 (5)C19B—H1910.9600
N17B—C16B1.359 (5)C19B—H1920.9600
C10B—C9B1.372 (6)C19B—H1930.9600
C10B—C4B1.389 (5)C9A—H9A1.00 (4)
C10B—H10B0.97 (4)C14B—C18B1.506 (6)
C7A—N8A1.347 (5)C18B—H1830.9600
C7A—C6A1.401 (5)C18B—H1820.9600
C7A—C9A1.403 (5)C18B—H1810.9600
C4A—C10A1.387 (5)C14A—C18A1.505 (8)
C4A—C5A1.390 (5)C19A—H19X0.9600
C12B—N13B1.325 (5)C19A—H19Z0.9600
C12B—N11B1.403 (5)C19A—H19Y0.9600
N11B—H11B0.80 (4)C18A—H18Z0.9600
C10A—C9A1.369 (6)C18A—H18X0.9600
C10A—H10A0.95 (4)C18A—H18Y0.9600
N17A—C12A1.324 (5)N20B—C25B1.306 (7)
N17A—C16A1.354 (6)N20B—C21B1.318 (6)
C6A—C5A1.362 (6)C21B—C22B1.380 (7)
C6A—H6A0.90 (4)C21B—H21B0.9300
N8A—H82A0.78 (4)C25B—C24B1.360 (8)
N8A—H81A0.81 (5)C25B—H25B0.9300
N13B—C14B1.338 (5)C23B—C24B1.340 (8)
C5A—H5A0.96 (4)C23B—C22B1.345 (8)
N11A—C12A1.379 (5)C23B—H23B0.9300
N11A—H11A0.81 (4)C24B—H24B0.9300
C4B—C5B1.383 (5)C22B—H22B0.9300
C21A—N20A—C25A116.9 (5)C14B—C15B—H15B124 (2)
N20A—C25A—C24A124.8 (6)C16B—C15B—H15B117 (2)
N20A—C25A—H25A117.6C6B—C5B—C4B119.8 (4)
C24A—C25A—H25A117.6C6B—C5B—H5B119 (2)
C23A—C24A—C25A118.0 (8)C4B—C5B—H5B121 (2)
C23A—C24A—H24A121.0N17A—C12A—N13A127.3 (4)
C25A—C24A—H24A121.0N17A—C12A—N11A118.4 (4)
N20A—C21A—C22A123.4 (7)N13A—C12A—N11A114.3 (4)
N20A—C21A—H21A118.3C10B—C9B—C7B121.0 (4)
C22A—C21A—H21A118.3C10B—C9B—H9B123 (3)
C21A—C22A—C23A117.8 (8)C7B—C9B—H9B116 (3)
C21A—C22A—H22A121.1C7B—N8B—H81B114 (3)
C23A—C22A—H22A121.1C7B—N8B—H82B123 (5)
C24A—C23A—C22A119.0 (7)H81B—N8B—H82B122 (6)
C24A—C23A—H23A120.5C14A—C15A—C16A119.6 (5)
C22A—C23A—H23A120.5C14A—C15A—H15A121 (4)
O3B—S1B—O2B118.29 (17)C16A—C15A—H15A120 (4)
O3B—S1B—N11B109.62 (18)N17A—C16A—C15A120.3 (5)
O2B—S1B—N11B103.88 (18)N17A—C16A—C19A116.7 (5)
O3B—S1B—C4B107.37 (17)C15A—C16A—C19A123.0 (5)
O2B—S1B—C4B109.47 (17)N8B—C7B—C6B121.2 (5)
N11B—S1B—C4B107.80 (18)N8B—C7B—C9B121.5 (4)
O3A—S1A—O2A118.69 (19)C6B—C7B—C9B117.3 (4)
O3A—S1A—N11A109.4 (2)C16B—C19B—H191109.5
O2A—S1A—N11A103.3 (2)C16B—C19B—H192109.5
O3A—S1A—C4A108.77 (18)H191—C19B—H192109.5
O2A—S1A—C4A108.91 (16)C16B—C19B—H193109.5
N11A—S1A—C4A107.25 (19)H191—C19B—H193109.5
C12B—N17B—C16B115.9 (3)H192—C19B—H193109.5
C9B—C10B—C4B120.1 (4)C10A—C9A—C7A120.5 (4)
C9B—C10B—H10B124 (2)C10A—C9A—H9A117 (2)
C4B—C10B—H10B116 (2)C7A—C9A—H9A122 (2)
N8A—C7A—C6A120.9 (4)N13B—C14B—C15B121.8 (4)
N8A—C7A—C9A121.3 (4)N13B—C14B—C18B115.8 (4)
C6A—C7A—C9A117.8 (4)C15B—C14B—C18B122.4 (4)
C10A—C4A—C5A119.1 (4)C14B—C18B—H183109.5
C10A—C4A—S1A119.6 (3)C14B—C18B—H182109.5
C5A—C4A—S1A121.4 (3)H183—C18B—H182109.5
N13B—C12B—N17B128.2 (4)C14B—C18B—H181109.5
N13B—C12B—N11B114.5 (4)H183—C18B—H181109.5
N17B—C12B—N11B117.3 (3)H182—C18B—H181109.5
C12B—N11B—S1B125.6 (3)N13A—C14A—C15A121.0 (5)
C12B—N11B—H11B120 (3)N13A—C14A—C18A115.3 (6)
S1B—N11B—H11B107 (3)C15A—C14A—C18A123.7 (6)
C9A—C10A—C4A121.0 (4)C16A—C19A—H19X109.5
C9A—C10A—H10A121 (2)C16A—C19A—H19Z109.5
C4A—C10A—H10A118 (2)H19X—C19A—H19Z109.5
C12A—N17A—C16A116.1 (4)C16A—C19A—H19Y109.5
C5A—C6A—C7A121.5 (4)H19X—C19A—H19Y109.5
C5A—C6A—H6A122 (2)H19Z—C19A—H19Y109.5
C7A—C6A—H6A117 (2)C14A—C18A—H18Z109.5
C7A—N8A—H82A120 (3)C14A—C18A—H18X109.5
C7A—N8A—H81A117 (3)H18Z—C18A—H18X109.5
H82A—N8A—H81A121 (5)C14A—C18A—H18Y109.5
C12B—N13B—C14B115.0 (4)H18Z—C18A—H18Y109.5
C6A—C5A—C4A120.2 (4)H18X—C18A—H18Y109.5
C6A—C5A—H5A124 (2)C25B—N20B—C21B115.2 (5)
C4A—C5A—H5A116 (2)N20B—C21B—C22B123.6 (5)
C12A—N11A—S1A125.2 (3)N20B—C21B—H21B118.2
C12A—N11A—H11A125 (4)C22B—C21B—H21B118.2
S1A—N11A—H11A106 (4)N20B—C25B—C24B124.6 (6)
C5B—C4B—C10B119.8 (4)N20B—C25B—H25B117.7
C5B—C4B—S1B120.9 (3)C24B—C25B—H25B117.7
C10B—C4B—S1B119.3 (3)C24B—C23B—C22B117.8 (6)
C5B—C6B—C7B122.0 (5)C24B—C23B—H23B121.1
C5B—C6B—H6B123 (3)C22B—C23B—H23B121.1
C7B—C6B—H6B115 (3)C23B—C24B—C25B119.6 (6)
C12A—N13A—C14A115.8 (4)C23B—C24B—H24B120.2
N17B—C16B—C15B119.6 (4)C25B—C24B—H24B120.2
N17B—C16B—C19B116.8 (4)C23B—C22B—C21B119.1 (5)
C15B—C16B—C19B123.6 (4)C23B—C22B—H22B120.4
C14B—C15B—C16B119.4 (4)C21B—C22B—H22B120.4
C21A—N20A—C25A—C24A0.7 (9)C12B—N17B—C16B—C15B2.5 (5)
N20A—C25A—C24A—C23A1.2 (11)C12B—N17B—C16B—C19B177.1 (4)
C25A—N20A—C21A—C22A1.5 (11)N17B—C16B—C15B—C14B0.2 (6)
N20A—C21A—C22A—C23A2.9 (15)C19B—C16B—C15B—C14B179.4 (4)
C25A—C24A—C23A—C22A2.6 (13)C7B—C6B—C5B—C4B0.4 (6)
C21A—C22A—C23A—C24A3.3 (15)C10B—C4B—C5B—C6B1.0 (6)
O3A—S1A—C4A—C10A166.0 (3)S1B—C4B—C5B—C6B176.8 (3)
O2A—S1A—C4A—C10A35.2 (4)C16A—N17A—C12A—N13A0.1 (6)
N11A—S1A—C4A—C10A75.9 (4)C16A—N17A—C12A—N11A179.7 (4)
O3A—S1A—C4A—C5A14.6 (4)C14A—N13A—C12A—N17A0.8 (7)
O2A—S1A—C4A—C5A145.3 (3)C14A—N13A—C12A—N11A179.6 (4)
N11A—S1A—C4A—C5A103.6 (4)S1A—N11A—C12A—N17A12.0 (6)
C16B—N17B—C12B—N13B3.5 (5)S1A—N11A—C12A—N13A167.6 (3)
C16B—N17B—C12B—N11B177.5 (3)C4B—C10B—C9B—C7B0.1 (6)
N13B—C12B—N11B—S1B170.0 (3)C12A—N17A—C16A—C15A0.3 (6)
N17B—C12B—N11B—S1B10.8 (5)C12A—N17A—C16A—C19A178.9 (4)
O3B—S1B—N11B—C12B60.5 (4)C14A—C15A—C16A—N17A1.1 (8)
O2B—S1B—N11B—C12B172.2 (3)C14A—C15A—C16A—C19A179.6 (5)
C4B—S1B—N11B—C12B56.1 (4)C5B—C6B—C7B—N8B177.9 (4)
C5A—C4A—C10A—C9A1.6 (7)C5B—C6B—C7B—C9B1.6 (6)
S1A—C4A—C10A—C9A179.0 (4)C10B—C9B—C7B—N8B178.1 (4)
N8A—C7A—C6A—C5A179.5 (4)C10B—C9B—C7B—C6B1.5 (6)
C9A—C7A—C6A—C5A1.2 (6)C4A—C10A—C9A—C7A0.9 (7)
N17B—C12B—N13B—C14B1.6 (6)N8A—C7A—C9A—C10A179.7 (5)
N11B—C12B—N13B—C14B179.4 (3)C6A—C7A—C9A—C10A0.5 (7)
C7A—C6A—C5A—C4A0.6 (6)C12B—N13B—C14B—C15B1.2 (6)
C10A—C4A—C5A—C6A0.8 (6)C12B—N13B—C14B—C18B179.0 (4)
S1A—C4A—C5A—C6A179.7 (3)C16B—C15B—C14B—N13B1.8 (7)
O3A—S1A—N11A—C12A58.8 (4)C16B—C15B—C14B—C18B178.4 (5)
O2A—S1A—N11A—C12A173.9 (4)C12A—N13A—C14A—C15A1.5 (7)
C4A—S1A—N11A—C12A58.9 (4)C12A—N13A—C14A—C18A179.6 (5)
C9B—C10B—C4B—C5B1.2 (6)C16A—C15A—C14A—N13A1.7 (8)
C9B—C10B—C4B—S1B176.7 (3)C16A—C15A—C14A—C18A179.6 (5)
O3B—S1B—C4B—C5B18.3 (4)C25B—N20B—C21B—C22B0.6 (8)
O2B—S1B—C4B—C5B147.9 (3)C21B—N20B—C25B—C24B2.2 (11)
N11B—S1B—C4B—C5B99.7 (3)C22B—C23B—C24B—C25B2.9 (13)
O3B—S1B—C4B—C10B163.9 (3)N20B—C25B—C24B—C23B3.4 (14)
O2B—S1B—C4B—C10B34.3 (4)C24B—C23B—C22B—C21B1.4 (11)
N11B—S1B—C4B—C10B78.1 (4)N20B—C21B—C22B—C23B0.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8A—H81A···O3B0.81 (5)2.34 (5)3.176 (6)172 (5)
N8A—H82A···O3A0.78 (4)2.49 (4)3.168 (6)139 (4)
N8B—H81B···O3Bi0.82 (5)2.59 (5)3.275 (6)142 (4)
N8B—H81B···N17Bi0.82 (5)2.55 (5)3.261 (6)145 (4)
N11A—H11A···N20A0.81 (4)2.09 (5)2.894 (6)171 (5)
N11B—H11B···N20B0.80 (4)2.04 (4)2.834 (5)174 (3)
Symmetry code: (i) x, y1, z.
(2) 4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide pyridine monosolvate top
Crystal data top
C12H14N4O2S·C6H7NDx = 1.267 Mg m3
Mr = 371.46Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6058 reflections
a = 9.6920 (2) Åθ = 2.3–27.5°
b = 25.1673 (6) ŵ = 0.19 mm1
c = 7.9853 (2) ÅT = 296 K
V = 1947.79 (8) Å3Needle, colorless
Z = 40.65 × 0.60 × 0.35 mm
F(000) = 784
Data collection top
Bruker Kappa APEXII CCD
diffractometer
Rint = 0.022
φ and ω scansθmax = 27.5°, θmin = 1.6°
10022 measured reflectionsh = 712
4438 independent reflectionsk = 3228
4082 reflections with I > 2σ(I)l = 910
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1007P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.23 e Å3
4438 reflectionsΔρmin = 0.28 e Å3
270 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.01 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44885 (5)0.65278 (2)0.74692 (7)0.04252 (15)
O20.31271 (17)0.63361 (8)0.7099 (2)0.0599 (5)
O30.4646 (2)0.69307 (7)0.8725 (2)0.0568 (5)
N130.7158 (2)0.54388 (8)0.8259 (3)0.0539 (5)
C60.6878 (3)0.73158 (9)0.4223 (3)0.0495 (5)
N110.5299 (2)0.59874 (7)0.8069 (3)0.0440 (4)
N80.7199 (3)0.72280 (10)0.1257 (3)0.0609 (6)
C40.5271 (2)0.67515 (8)0.5639 (3)0.0388 (4)
C50.6251 (3)0.71551 (9)0.5680 (3)0.0460 (5)
N170.74845 (19)0.63772 (7)0.8302 (2)0.0436 (4)
C70.6565 (2)0.70779 (8)0.2691 (3)0.0442 (5)
C120.6727 (2)0.59385 (8)0.8216 (3)0.0401 (4)
C90.5570 (3)0.66678 (9)0.2682 (3)0.0496 (5)
C100.4941 (3)0.65099 (9)0.4133 (3)0.0451 (5)
C160.8857 (2)0.63022 (11)0.8340 (3)0.0511 (5)
C150.9413 (3)0.58014 (12)0.8330 (4)0.0642 (7)
C240.4181 (4)0.40510 (12)0.7755 (4)0.0715 (8)
N200.4000 (2)0.49939 (9)0.7369 (4)0.0648 (6)
C210.2893 (3)0.49161 (15)0.6425 (5)0.0752 (9)
H210.2446790.5209520.5969260.090*
C250.4616 (3)0.45649 (11)0.8002 (4)0.0652 (7)
H250.5397420.4617260.8658450.078*
C190.9738 (3)0.67906 (13)0.8382 (5)0.0723 (8)
H19A0.9751910.6932190.9498420.108*
H19B0.9367510.7051350.7628810.108*
H19C1.0660830.6701510.8046340.108*
C140.8535 (3)0.53738 (11)0.8339 (5)0.0657 (8)
C220.2380 (4)0.44171 (19)0.6095 (5)0.0879 (11)
H220.1601840.4374320.5426660.105*
C260.4937 (6)0.35923 (15)0.8538 (8)0.125 (2)
H26A0.4492310.3265560.8233230.187*
H26B0.5873790.3588380.8146470.187*
H26C0.4928660.3630210.9734200.187*
C180.9020 (4)0.48042 (14)0.8406 (9)0.1108 (17)
H18A0.8779410.4627900.7380790.166*
H18B0.8584990.4626440.9329750.166*
H18C1.0002850.4796000.8550610.166*
C230.3029 (4)0.39881 (15)0.6761 (5)0.0830 (11)
H230.2693280.3648760.6545590.100*
H50.648 (3)0.7310 (10)0.679 (3)0.041 (6)*
H90.531 (3)0.6502 (13)0.167 (4)0.066 (8)*
H60.748 (3)0.7616 (13)0.425 (4)0.065 (9)*
H8B0.692 (3)0.7089 (13)0.031 (4)0.062 (9)*
H100.424 (4)0.6244 (14)0.414 (4)0.068 (8)*
H8A0.782 (3)0.7477 (12)0.132 (4)0.054 (8)*
H110.481 (3)0.5667 (14)0.780 (4)0.074 (9)*
H151.031 (4)0.5753 (13)0.844 (4)0.074 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0365 (3)0.0450 (3)0.0461 (3)0.0105 (2)0.0038 (2)0.0067 (2)
O20.0322 (8)0.0758 (12)0.0717 (11)0.0089 (8)0.0035 (7)0.0193 (9)
O30.0677 (12)0.0560 (10)0.0466 (8)0.0166 (9)0.0066 (9)0.0011 (7)
N130.0430 (11)0.0420 (9)0.0767 (13)0.0055 (8)0.0122 (10)0.0026 (10)
C60.0558 (15)0.0391 (11)0.0535 (12)0.0099 (11)0.0007 (11)0.0010 (10)
N110.0339 (9)0.0384 (8)0.0596 (10)0.0031 (7)0.0027 (8)0.0098 (8)
N80.0699 (16)0.0616 (14)0.0511 (12)0.0179 (12)0.0136 (11)0.0072 (10)
C40.0402 (11)0.0355 (9)0.0406 (9)0.0042 (8)0.0025 (9)0.0038 (8)
C50.0596 (15)0.0351 (10)0.0434 (10)0.0022 (9)0.0046 (11)0.0038 (9)
N170.0376 (9)0.0435 (9)0.0496 (10)0.0009 (7)0.0028 (8)0.0002 (8)
C70.0475 (11)0.0371 (9)0.0481 (11)0.0008 (8)0.0022 (10)0.0020 (9)
C120.0346 (10)0.0416 (10)0.0440 (10)0.0036 (8)0.0032 (9)0.0048 (9)
C90.0587 (13)0.0483 (11)0.0417 (11)0.0094 (10)0.0021 (11)0.0067 (9)
C100.0470 (12)0.0403 (10)0.0480 (10)0.0077 (9)0.0042 (9)0.0004 (10)
C160.0377 (12)0.0607 (14)0.0548 (12)0.0026 (11)0.0001 (10)0.0054 (11)
C150.0355 (12)0.0691 (16)0.0880 (19)0.0097 (13)0.0086 (14)0.0101 (15)
C240.081 (2)0.0565 (14)0.0769 (19)0.0125 (14)0.0183 (17)0.0003 (14)
N200.0543 (12)0.0563 (12)0.0838 (16)0.0073 (10)0.0075 (12)0.0001 (13)
C210.0542 (17)0.085 (2)0.087 (2)0.0046 (16)0.0100 (15)0.0019 (18)
C250.0632 (17)0.0558 (14)0.0767 (17)0.0085 (13)0.0096 (14)0.0002 (13)
C190.0449 (15)0.0752 (18)0.097 (2)0.0154 (13)0.0101 (15)0.0133 (18)
C140.0503 (15)0.0541 (14)0.093 (2)0.0195 (12)0.0156 (15)0.0038 (15)
C220.060 (2)0.116 (3)0.088 (2)0.026 (2)0.0038 (17)0.024 (2)
C260.174 (6)0.060 (2)0.140 (4)0.007 (3)0.011 (4)0.019 (3)
C180.072 (2)0.0599 (18)0.201 (5)0.0315 (17)0.028 (3)0.009 (3)
C230.083 (2)0.076 (2)0.089 (2)0.035 (2)0.025 (2)0.0230 (19)
Geometric parameters (Å, º) top
S1—O31.4342 (18)C16—C191.497 (4)
S1—O21.4357 (19)C15—C141.372 (4)
S1—N111.6421 (18)C15—H150.88 (4)
S1—C41.740 (2)C24—C251.375 (4)
N13—C121.326 (3)C24—C231.379 (6)
N13—C141.346 (3)C24—C261.504 (6)
C6—C51.373 (4)N20—C211.325 (4)
C6—C71.396 (3)N20—C251.334 (4)
C6—H60.96 (3)C21—C221.376 (5)
N11—C121.394 (3)C21—H210.9300
N11—H110.96 (4)C25—H250.9300
N8—C71.354 (3)C19—H19A0.9600
N8—H8B0.88 (3)C19—H19B0.9600
N8—H8A0.87 (3)C19—H19C0.9600
C4—C101.385 (3)C14—C181.509 (4)
C4—C51.392 (3)C22—C231.358 (6)
C5—H50.99 (3)C22—H220.9300
N17—C121.328 (3)C26—H26A0.9600
N17—C161.344 (3)C26—H26B0.9600
C7—C91.412 (3)C26—H26C0.9600
C9—C101.369 (3)C18—H18A0.9600
C9—H90.94 (3)C18—H18B0.9600
C10—H100.95 (3)C18—H18C0.9600
C16—C151.371 (4)C23—H230.9300
O3—S1—O2118.66 (12)C16—C15—H15121 (2)
O3—S1—N11109.31 (11)C14—C15—H15120 (2)
O2—S1—N11102.80 (11)C25—C24—C23116.1 (3)
O3—S1—C4108.19 (11)C25—C24—C26120.9 (4)
O2—S1—C4109.64 (11)C23—C24—C26123.1 (3)
N11—S1—C4107.72 (10)C21—N20—C25117.3 (3)
C12—N13—C14115.4 (2)N20—C21—C22122.4 (3)
C5—C6—C7121.3 (2)N20—C21—H21118.8
C5—C6—H6119 (2)C22—C21—H21118.8
C7—C6—H6119 (2)N20—C25—C24124.7 (3)
C12—N11—S1124.94 (16)N20—C25—H25117.6
C12—N11—H11116 (2)C24—C25—H25117.6
S1—N11—H11113 (2)C16—C19—H19A109.5
C7—N8—H8B119 (2)C16—C19—H19B109.5
C7—N8—H8A118 (2)H19A—C19—H19B109.5
H8B—N8—H8A123 (3)C16—C19—H19C109.5
C10—C4—C5119.9 (2)H19A—C19—H19C109.5
C10—C4—S1119.13 (17)H19B—C19—H19C109.5
C5—C4—S1120.96 (17)N13—C14—C15121.3 (2)
C6—C5—C4119.8 (2)N13—C14—C18115.2 (3)
C6—C5—H5122.9 (15)C15—C14—C18123.5 (3)
C4—C5—H5117.2 (15)C23—C22—C21118.9 (3)
C12—N17—C16115.6 (2)C23—C22—H22120.6
N8—C7—C6121.5 (2)C21—C22—H22120.6
N8—C7—C9120.6 (2)C24—C26—H26A109.5
C6—C7—C9117.8 (2)C24—C26—H26B109.5
N13—C12—N17127.8 (2)H26A—C26—H26B109.5
N13—C12—N11113.5 (2)C24—C26—H26C109.5
N17—C12—N11118.68 (19)H26A—C26—H26C109.5
C10—C9—C7120.8 (2)H26B—C26—H26C109.5
C10—C9—H9118 (2)C14—C18—H18A109.5
C7—C9—H9121 (2)C14—C18—H18B109.5
C9—C10—C4120.3 (2)H18A—C18—H18B109.5
C9—C10—H10122 (2)C14—C18—H18C109.5
C4—C10—H10118 (2)H18A—C18—H18C109.5
N17—C16—C15121.2 (2)H18B—C18—H18C109.5
N17—C16—C19116.7 (2)C22—C23—C24120.6 (3)
C15—C16—C19122.0 (2)C22—C23—H23119.7
C16—C15—C14118.5 (2)C24—C23—H23119.7
O3—S1—N11—C1267.8 (2)C6—C7—C9—C100.1 (4)
O2—S1—N11—C12165.2 (2)C7—C9—C10—C40.0 (4)
C4—S1—N11—C1249.5 (2)C5—C4—C10—C90.3 (4)
O3—S1—C4—C10162.20 (18)S1—C4—C10—C9178.1 (2)
O2—S1—C4—C1031.4 (2)C12—N17—C16—C151.5 (4)
N11—S1—C4—C1079.7 (2)C12—N17—C16—C19178.1 (2)
O3—S1—C4—C520.0 (2)N17—C16—C15—C142.2 (4)
O2—S1—C4—C5150.80 (19)C19—C16—C15—C14178.2 (3)
N11—S1—C4—C598.0 (2)C25—N20—C21—C220.1 (5)
C7—C6—C5—C40.7 (4)C21—N20—C25—C240.5 (5)
C10—C4—C5—C60.6 (4)C23—C24—C25—N200.7 (5)
S1—C4—C5—C6178.42 (19)C26—C24—C25—N20179.3 (4)
C5—C6—C7—N8178.7 (3)C12—N13—C14—C151.7 (5)
C5—C6—C7—C90.5 (4)C12—N13—C14—C18179.4 (4)
C14—N13—C12—N172.6 (4)C16—C15—C14—N133.9 (5)
C14—N13—C12—N11177.7 (3)C16—C15—C14—C18177.2 (4)
C16—N17—C12—N134.2 (4)N20—C21—C22—C230.1 (6)
C16—N17—C12—N11176.1 (2)C21—C22—C23—C240.1 (6)
S1—N11—C12—N13162.20 (19)C25—C24—C23—C220.5 (5)
S1—N11—C12—N1718.1 (3)C26—C24—C23—C22179.5 (4)
N8—C7—C9—C10179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O3i0.872.313.1792 (3)173
N8—H8B···O3ii0.882.573.2821 (3)139
N8—H8B···N17ii0.882.463.1984 (3)141
N11—H11···N200.961.902.8550 (3)174
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z1.
 

Acknowledgements

We are thankful to DST, New Delhi, for providing the single-crystal diffractometer (Kappa APEXII) at the Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, under the DST–FIST facility. KPP is also thankful to UGC for financial support (RFSMS) to carry out research work.

References

First citationBasak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492–494.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationByrn, S. R., Pfeiffer, R. R. & Stowell, J. G. (1999). In Solid-State Chemistry of Drugs, 2nd ed. West Lafayette, IN, USA: SSCI Inc.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, A. Y., Erdemir, D. & Myerson, A. L. (2011). Annu. Rev. Chem. Biomol. Eng. 2, 259–280.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTailor, S. M. & Patel, U. H. (2015). Acta Cryst. C71, 944–953.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655–657.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, M. E. (1996). Burger's Medicinal Chemistry and Drug Discovery, Vol. 2, 5th ed., pp. 528–576. New York: John Wiley & Sons Inc.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds