research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Three-dimensional organic–inorganic hybrid sodium halide perovskite: C4H12N2·NaI3 and a hydrogen-bonded supra­molecular three-dimensional network in 3C4H12N2·NaI4·3I·H2O

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and bCollege of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: weiqiangliao@seu.edu.cn

Edited by H. Shepherd, University of Canterbury, England (Received 3 March 2018; accepted 4 May 2018; online 23 May 2018)

The rational selection of ligands is vitally important in the construction of new organic–inorganic hybrid three-dimensional perovskite complexes. As part of an exploration of perovskite-type materials, two new Na–I compounds based on the piperazine ligand, namely poly[piperazinediium [tri-μ-iodido-sodium]], {(C4H12N2)[NaI3]}n, 1, and catena-poly[tris­(piperazinediium) [[tri­iodido­sodium]-μ-iodido] triiodide monohydrate], {(C4H12N2)3[NaI4]I3·H2O}n, 2, have been synthesized by adjusting the stoichiometric ratio of sodium iodide and piperazine, and were characterized by single-crystal X-ray diffraction. In the crystal structures of 1 and 2, each NaI cation is linked to six I atoms, but the compounds show completely different configurations. In 1, the structure includes a perovskite-like array of vertex-sharing NaI6 octa­hedra stretching along the direction of the three axes, and each piperazinediium dication is enclosed in the NaI3 perovskite cage. However, in 2, each NaI atom bridges a single I atom to form a one-dimensional linear chain, and complex inter­molecular hydrogen bonds connect these one-dimensional chains into a three-dimensional supra­molecular network.

1. Introduction

In recent decades, three-dimensional organic–inorganic hybrid perovskites have been of inter­est to researchers, not only for their remarkable structural variability and highly tunable properties, but also for their rich physical properties, such as superconductivity, ionic conductivity and ferroelectric related properties (Jin et al., 2009[Jin, H. H., Sang, H. I., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., Yong, H. L., Kim, H. J., Sarkar, A. & Nazeeruddin, M. K. (2009). Nat. Photonics, 7, 486-491.]; Saparov & Mitzi, 2016[Saparov, B. & Mitzi, D. B. (2016). Chem. Rev. 116, 4558-4596.]; Veldhuis et al., 2016[Veldhuis, S. A., Boix, P. P., Yantara, N., Li, M., Sum, T. C., Mathews, N. & Mhaisalkar, S. G. (2016). Adv. Mater. 28, 6804-6834.]). Such hybrid perovskites have a simple generic formula of AMX3 (A = organic cation, M = metal cation and X = halogen anion) and the structural characteristic of corner-sharing MX6 octa­hedra. Among them, there have been a large number of reports on the halometallates of PbII and SnII ions because of their superior semiconducting properties, but related systems containing alkali metal halides are rare (Lee et al., 2003[Lee, Y., Mitzi, D. B., Barnes, P. W. & Vogt, T. (2003). Phys. Rev. B, 68, 366-369.]; Shi et al., 2017[Shi, Z., Guo, J., Chen, Y., Li, Q., Pan, Y., Zhang, H., Xia, Y. & Huang, W. (2017). Adv. Mater. 29, 1605005-1605033.]; Liao et al., 2016b[Liao, W. Q., Zhao, D. W., Yu, Y., Shrestha, N., Ghimire, K., Grice, C. R., Wang, C. L., Xiao, Y. Q., Cimaroli, A. J., Eiiingson, R. J., Podraza, N. J., Zhu, K., Xiong, R. G. & Yan, Y. Y. (2016b). J. Am. Chem. Soc. 138, 12360-12363.]; Galkowski et al., 2016[Galkowski, K., Mitioglu, A., Miyata, A., Plochocka, P., Portugall, O., Eperon, G. E., Wang, J. T. W., Stergiopoulos, T., Stranks, S. D., Snaith, H. J. & Nicholas, R. J. (2016). Energy Environ. Sci. 9, 962-970.]; Yang et al., 2015[Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J. & Seok, S. I. (2015). Science, 348, 1234-1237.]; Liao et al., 2016a[Liao, W. Q., Zhao, D. W., Yu, Y., Grice, C. R., Wang, C. L., Cimaroli, A. J., Schulz, P., Meng, W. W., Zhu, K., Xiong, R. G. & Yan, Y. Y. (2016a). Adv. Mater. 28, 9333-9340.]). To be precise, the first alkali metal halide perovskites, RMCl3 (R = piperazine and M = K, Rb and Cs), were found less than ten years ago (Paton & Harrison, 2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7850-7853.]). In recent years, due to the development of mol­ecular ferroelectric materials (You et al., 2017[You, Y. M., Liao, W. Q., Zhao, D., Ye, H. Y., Zhang, Y., Zhou, Q., Niu, X., Wang, J., Li, P. F., Fu, D. W., Wang, Z., Gao, S., Yang, K., Liu, J. M., Li, J., Yan, Y. & Xiong, R. G. (2017). Science, 357, 306-309.]; Xu et al., 2017[Xu, W. J., Li, P. F., Tang, Y. Y., Zhang, W. X., Xiong, R. G. & Chen, X. M. (2017). J. Am. Chem. Soc. 139, 6369-6375.]; Liao et al., 2017[Liao, W. Q., Tang, Y. Y., Li, P. F., You, Y. M. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 18071-18077.]), three-dimensional alkali metal halide perovskites have attracted the attention of researchers again. Just last year, Xiong and co-workers reported two high-Tc three-dimensional perovskite ferroelectric materials, i.e. [3-ammonio­pyr­roli­dinium]·RbBr3 and [N-methyl-1,4-diazo­niabi­cyclo­[2.2.2]octa­ne]·RbI3 (Pan et al., 2017[Pan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954-3957.]; Zhang et al., 2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.]).

Following on from this work, we report the new three-dimensional organic–inorganic hybrid perovskite C4H12N2·NaI3 (1). In addition, considering that the dimensionality of three-dimensional perovskites can often be switched by alteration of the experimental conditions (e.g. CH3NH3·PbI3; Jodlowski et al., 2016[Jodlowski, A. D., Yépez, A., Luque, R., Camacho, L. & De, M. G. (2016). Angew. Chem. Int. Ed. 55, 14972-14977.]), we obtained a new compound, i.e. 3C4H12N2·NaI4·3I·H2O (2) with a peculiar one-dimensional [NaI5]4− linear chain and a three-dimensional hydrogen-bonded supra­molecular network by adjusting the stoichiometry of piperazine and sodium iodide.

2. Experimental

2.1. Synthesis and crystallization

2.1.1. Synthesis of C4H12N2·NaI3, (1)

An aqueous solution (20 ml) of sodium iodide (1.49 g, 10 mmol) was added dropwise to an equimolar ratio of piperazine (0.86 g, 10 mmol) in water (5 ml) with stirring. The solution was then filtered to remove insoluble impurities. Yellow block-shaped crystals of 1 suitable for X-ray diffraction were obtained by slow volatilization of the aqueous solution at 330 K after 2 d.

2.1.2. Synthesis of 3C4H12N2·NaI4·3I·H2O, (2)

An aqueous solution (20 ml) of sodium iodide (0.75 g, 5 mmol) was added dropwise to an aqueous solution (5 ml) of piperazine (1.29 g, 15 mmol). The solution was stirred for 20 min and then filtered to remove insoluble impurities. Yellow needle-shaped crystals of 2 were obtained by slow volatilization of the aqueous solution at 330 K after 2 d.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms bonded to O atoms were located from difference Fourier maps and refined with an O—H distance restraint of 0.85 (1) Å. Other H atoms were placed in idealized positions and included as riding, with C—H = 0.97 Å (methyl­ene) or N—H = 0.89 Å. Uiso(H) values were set at 1.2Ueq(C,N) for methyl­ene and piperazinediium, and at 1.5Ueq(O) of water H atoms.

Table 1
Experimental details

  1 2
Crystal data
Chemical formula (C4H12N2)[NaI3] (C4H12N2)3[NaI4]I3·H2O
Mr 491.85 1193.77
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 9.842 (6), 9.309 (6), 12.538 (8) 12.186 (2), 22.828 (5), 12.214 (2)
β (°) 93.450 (9) 111.89 (3)
V3) 1146.6 (13) 3152.7 (12)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 8.16 6.92
Crystal size (mm) 0.38 × 0.28 × 0.20 0.38 × 0.28 × 0.20
 
Data collection
Diffractometer Rigaku SCXmini
Absorption correction Multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.080, 0.195 0.112, 0.251
No. of measured, independent and observed [I > 2σ(I)] reflections 3288, 1311, 1153 20677, 7234, 4432
Rint 0.083 0.075
(sin θ/λ)max−1) 0.648 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.165, 1.03 0.085, 0.142, 1.09
No. of reflections 1311 7234
No. of parameters 48 252
No. of restraints 0 2
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.80, −1.66 1.23, −1.05
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

3. Results and discussion

3.1. Structure of C4H12N2·NaI3, (1)

Compound 1 crystallizes in the monoclinic system (space group C2/c) and exhibits the three-dimensional perovskite framework. The asymmetry unit (Fig. 1[link]) includes one NaI cation located on a twofold axis, one half of a piperazinediium dication located about a centre of inversion and two iodide ions attached to the NaI cation. As shown in Fig. 2[link], 1 is different from C4H12N2·KCl3·H2O, due to the Na—I bond length being less than that of K—Cl (Table 2[link]); the NaI6 perovskite cage encloses one piperazinediium cation and prevents the entry of water mol­ecules. In addition, the H atoms on the C and N atoms of piperazinediium form weak hydrogen bonds with the I atoms in the cage, resulting in significant octa­hedral tilting (Fig. 3[link]). According to Glazer's 23 tilt system (Glazer, 1972[Glazer, A. M. (1972). Acta Cryst. B28, 3384-3392.], 1975[Glazer, A. M. (1975). Acta Cryst. A31, 756-762.]), the octa­hedral tilting of compound 1 should belong to the `abb' type. Detailed information of the C—H⋯I and N—H⋯I hydrogen bonds is given in Table 3[link]. It can be seen from the packing diagram (Fig. 4[link]) that the piperazinediium cations in the ab plane are arranged along the same direction; however, the piperazinediium cations along the c axis are arranged in a zigzag manner, viz. `\/\'. In summary, compound 1 has the familiar three-dimensional perovskite framework structure, where the piperazinediium cations are confined in the cavities enclosed by corner-sharing NaI6 octa­hedra and stabilized by C—H⋯I and N—H⋯I hydrogen bonds.

Table 2
Selected geometric parameters (Å, °) for 1

C2—C1 1.504 (14) Na1—I2 3.156 (2)
C2—N1i 1.532 (14) Na1—I1 3.325 (5)
N1—C1 1.456 (13)    
       
Na1—I1—Na1ii 169.12 (12) I2—Na1—I1v 84.40 (9)
Na1iii—I2—Na1 180.0 I2iv—Na1—I1vi 84.40 (9)
N1—C1—C2 111.6 (8) I1vi—Na1—I1v 100.45 (19)
I2iv—Na1—I1 101.40 (10) I1—Na1—I1v 169.12 (12)
I2—Na1—I1iv 101.40 (10) I1iv—Na1—I1vi 169.12 (12)
I2iv—Na1—I2 166.6 (3) I1iv—Na1—I1 86.15 (18)
I2—Na1—I1 88.41 (8) I1iv—Na1—I1v 87.29 (5)
I2iv—Na1—I1iv 88.41 (8) I1—Na1—I1vi 87.29 (5)
I2iv—Na1—I1v 87.06 (9) C1—C2—N1i 108.4 (9)
I2—Na1—I1vi 87.06 (9) C1—N1—C2i 110.2 (8)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for 1

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1D⋯I1i 0.97 3.12 3.937 (11) 143
C1—H1C⋯I2 0.97 3.23 3.914 (11) 129
C1—H1C⋯I1vii 0.97 3.14 3.790 (10) 126
C2—H2B⋯I1viii 0.97 3.17 3.930 (11) 136
C2—H2A⋯I1iv 0.97 3.23 3.930 (13) 131
N1—H1B⋯I1i 0.89 2.80 3.628 (10) 156
N1—H1A⋯I2ii 0.89 3.11 3.677 (8) 123
N1—H1A⋯I1vii 0.89 3.14 3.746 (8) 127
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+1, y, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the asymmetric unit in compound 1. All H atoms have been omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) x − [{1\over 2}], y + [{1\over 2}], z; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, y, −z + [{1\over 2}]; (v) x + [{1\over 2}], y − [{1\over 2}], z; (vi) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}].]
[Figure 2]
Figure 2
(a) A view of the three-dimensional perovskite cage of C4H12N2·KCl3·H2O. (b) A view of the three-dimensional perovskite cage of compound 1.
[Figure 3]
Figure 3
The hydrogen bonds (dashed lines) in 1 of the C and N atoms of the piperazinediium cation with the I atoms of the NaI6 octa­hedra. [Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) x − [{1\over 2}], y + [{1\over 2}], z; (iv) −x + 1, y, −z + [{1\over 2}]; (vii) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (viii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]
[Figure 4]
Figure 4
A packing view of compound 1, showing the three-dimensional perovskite structure.

3.2. Structure of 3C4H12N2·NaI4·3I·H2O, (2)

Compound 2 crystallizes in the monoclinic system (space group P21/n) but displays a one-dimensional linear chain-like geometry. The asymmetry unit contains three whole piperazinediium cations, one lattice water mol­ecule, two dissociated iodide ions and one Na atom in a glide plane coordinated with five iodide ions. As can be seen from Fig. 5[link], each Na atom is coordinated by six I atoms, and two Na atoms are bridged by one I atom and extended in an infinite manner along a horizontal direction, thus presenting a one-dimensional linear chain. As shown in Table 4[link], the length of the Na—I bonds are within the reasonable range 3.180 (5)–3.515 (6) Å and the I—Na—I angles are in the ranges 84.32 (14)–94.56 (16) and 176.97 (18)–178.20 (17)°. It is worth noting that there are very complex hydrogen bonds in compound 2. These hydrogen bonds can be divided roughly into four types (Fig. 6[link]): (i) piperazinediium N atoms act as donors and water O atoms act as acceptors in N—H⋯O hydrogen bonds (red dashed lines); (ii) water O atoms act as donors and I atoms in the metal halide chain act as acceptors in O—H⋯I hydrogen bonds (green dashed lines); (iii) piperazinediium N atoms act as donors and bridging I atoms act as acceptors in N—H⋯I hydrogen bonds (yellow dashed lines); (iv) piperazinediium N atoms act as donors and the free I atoms act as acceptors in N—H⋯I hydrogen bonds (blue dashed lines). Detailed information of the hydrogen bonds is given in Table 5[link]. As shown in Fig. 7[link], the water H atoms form hydrogen bonds with the I atoms on the two sides of the NaI5 chain (i.e. O1i—H1⋯I5ii and O1i—H2⋯I2ix; Table 5[link]), thus forming a two-dimensional network on the ac plane. On the other hand, the free I atoms (i.e. I6 and I7) and the bridging I atoms (i.e. I3) form N—H⋯I hydrogen bonds with the H atoms of the piperazinediium N atoms, which extends the two-dimensional network into a three-dimensional hydrogen-bonded supra­molecular network (Fig. 8[link]).

Table 4
Selected geometric parameters (Å, °) for 2

C1—N1 1.515 (14) C9—C10 1.480 (18)
C1—C2 1.511 (18) C10—N6 1.477 (13)
C2—N2 1.451 (16) C11—C12 1.514 (17)
C3—N1 1.481 (14) C11—N5 1.487 (13)
C3—C4 1.519 (16) C12—N6 1.509 (13)
C4—N2 1.447 (17) I1—Na1 3.419 (6)
C5—C6 1.527 (16) I2—Na1 3.205 (5)
C5—N3 1.472 (13) I3—Na1 3.381 (5)
C6—N4 1.452 (14) I3—Na1i 3.456 (5)
C7—C8 1.532 (16) I4—Na1 3.515 (6)
C7—N3 1.475 (13) I5—Na1 3.180 (5)
C8—N4 1.486 (14) Na1—I3ii 3.456 (5)
C9—N5 1.493 (14)    
       
C10—N6—C12 111.1 (9) I3—Na1—I1 91.38 (13)
C10—C9—N5 110.8 (10) I5—Na1—I4 94.12 (14)
C11—N5—C9 110.5 (8) I5—Na1—I3ii 92.63 (13)
C2—C1—N1 111.0 (10) I5—Na1—I1 86.95 (13)
C3—N1—C1 109.5 (10) I5—Na1—I3 88.73 (12)
C4—N2—C2 114.6 (12) I5—Na1—I2 177.4 (2)
C5—N3—C7 112.7 (10) N1—C3—C4 113.1 (10)
C6—N4—C8 111.8 (10) N2—C4—C3 109.0 (11)
I1—Na1—I4 178.20 (17) N2—C2—C1 108.3 (11)
I1—Na1—I3ii 91.40 (13) N3—C7—C8 110.8 (10)
I2—Na1—I4 84.32 (12) N3—C5—C6 110.7 (10)
I2—Na1—I3ii 89.46 (12) N4—C8—C7 105.3 (11)
I2—Na1—I1 94.56 (14) N4—C6—C5 106.4 (10)
I2—Na1—I3 89.12 (13) N5—C11—C12 111.3 (10)
I3ii—Na1—I4 90.00 (12) N6—C12—C11 109.0 (10)
I3—Na1—I4 87.19 (13) N6—C10—C9 110.8 (10)
I3—Na1—I3ii 176.97 (18) Na1—I3—Na1i 176.87 (7)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for 2

D—H⋯A D—H H⋯A DA D—H⋯A
N6vi—H6B⋯I6vi 0.89 2.99 3.626 (11) 130
N6vi—H6A⋯O1iii 0.89 1.97 2.856 (16) 175
N5vi—H5B⋯O1ii 0.89 1.99 2.878 (15) 178
N5vi—H5A⋯I7xii 0.89 2.83 3.557 (10) 140
N4v—H4B⋯I6xiii 0.89 2.55 3.440 (12) 175
N4v—H4A⋯I5vii 0.89 2.99 3.663 (13) 134
N4v—H4A⋯I1vii 0.89 3.25 3.881 (14) 130
N3v—H3B⋯I4iv 0.89 3.22 3.748 (11) 121
N3v—H3B⋯I3ix 0.89 3.22 3.767 (12) 122
N3v—H3B⋯I2ix 0.89 3.04 3.610 (11) 124
N3v—H3A⋯I7xii 0.89 2.68 3.543 (12) 165
N2iv—H2B⋯I2ix 0.89 3.14 3.867 (16) 140
N2iv—H2A⋯I3ix 0.89 2.70 3.405 (13) 138
N1iv—H1B⋯I6xi 0.89 2.62 3.496 (11) 169
N1iv—H1A⋯I7xii 0.89 2.92 3.613 (11) 136
N1iv—H1A⋯I1viii 0.89 3.32 3.804 (11) 117
O1i—H2⋯I2ix 0.85 (1) 2.68 (9) 3.471 (12) 155 (18)
O1i—H1⋯I5ii 0.85 (1) 2.69 (4) 3.501 (11) 161 (11)
Symmetry codes: (i) x-2, y, z; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) -x-1, -y+1, -z+1; (v) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) x-2, y+1, z; (vii) [-x-{\script{1\over 2}}], [y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ix) -x-1, -y+1, -z+1; (x) [-x-{\script{3\over 2}}, y+{\script{1\over 2}}], [-z+{\script{1\over 2}}]; (xi) [x-{\script{5\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (xii) x-2, y+1, z; (xiii) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
A view of the asymmetric unit in compound 2. All H atoms have been omitted for clarity. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].]
[Figure 6]
Figure 6
A partial view of the crystal packing of compound 2, showing the inter­molecular N—H⋯I (blee and yellow dashed lines), N—H⋯O (red dashed lines) and O—H⋯I (green dashed lines) hydrogen bonds. All H atoms on C atoms have been omitted for clarity. [Symmetry codes: (i) x − 2, y, z; (ii) −x − [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x, −y + 2, −z + 1; (iv) −x − 1, −y + 1, −z + 1; (v) x − [{3\over 2}], −y + [{3\over 2}], −z + [{1\over 2}]; (vi) x − 2, y + 1, z; (vii) −x − [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (viii) x − [{3\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ix) −x − 1, −y + 1, −z + 1; (x) −x − [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (xi) x − [{5\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (xii) x − 2, y + 1, z; (xiii) x − [{3\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]
[Figure 7]
Figure 7
The hydrogen bonds of the O—H⋯I (green dashed lines) and N—H⋯O (red dashed lines) types in 2, showing the two-dimensional network on the ac plane.
[Figure 8]
Figure 8
A packing view of compound 2, showing the three-dimensional hydrogen-bonded network.

4. Summary

Two new organic–inorganic hybrid sodium halides have been synthesized by adjusting the stoichiometric ratio of sodium iodide and piperazine. C4H12N2·NaI3, 1, presents an inter­esting three-dimensional perovskite structure. However, compound 3C4H12N2·NaI4·3I·H2O, 2, features a singular three-dimensional hydrogen-bonded network. The different structures of compounds 1 and 2 show that the stoichiometric ratio plays a key role in the synthesis of various frameworks.

Supporting information


Computing details top

For both structures, data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for C2C; SHELXL2014/7 (Sheldrick, 2015) for C. For both structures, molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Poly[piperazinediium [tri-µ-iodido-sodium]] (C2C) top
Crystal data top
(C4H12N2)[NaI3]F(000) = 880
Mr = 491.85Dx = 2.849 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 9.842 (6) ÅCell parameters from 1311 reflections
b = 9.309 (6) Åθ = 3.0–27.4°
c = 12.538 (8) ŵ = 8.16 mm1
β = 93.450 (9)°T = 293 K
V = 1146.6 (13) Å3Thick sheet, pale yellow
Z = 40.38 × 0.28 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
1153 reflections with I > 2σ(I)
ω scansRint = 0.083
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
θmax = 27.4°, θmin = 3.0°
Tmin = 0.080, Tmax = 0.195h = 1212
3288 measured reflectionsk = 1211
1311 independent reflectionsl = 1316
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0991P)2 + 35.0953P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.165(Δ/σ)max < 0.001
S = 1.03Δρmax = 1.80 e Å3
1311 reflectionsΔρmin = 1.66 e Å3
48 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015)
0 restraintsExtinction coefficient: 0.0060 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6137 (11)0.9015 (13)0.5161 (10)0.038 (2)
H2A0.59620.83250.45890.045*
H2B0.69670.87370.55640.045*
N10.3706 (8)0.9477 (9)0.5305 (7)0.0297 (17)
H1A0.30330.94750.57480.036*
H1B0.34960.88580.47800.036*
C10.4967 (10)0.9034 (11)0.5879 (7)0.030 (2)
H1C0.48500.80820.61750.036*
H1D0.51730.96900.64680.036*
Na10.50000.5394 (8)0.25000.0416 (14)
I10.27208 (6)0.80033 (7)0.26933 (5)0.0303 (3)
I20.50000.50000.50000.0300 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.031 (5)0.040 (5)0.043 (6)0.011 (4)0.007 (4)0.016 (5)
N10.022 (4)0.032 (4)0.035 (4)0.005 (3)0.007 (3)0.008 (3)
C10.039 (5)0.034 (5)0.018 (4)0.003 (4)0.004 (3)0.012 (4)
Na10.053 (4)0.046 (4)0.027 (3)0.0000.008 (3)0.000
I10.0337 (4)0.0296 (4)0.0278 (4)0.0045 (2)0.0037 (3)0.0039 (2)
I20.0287 (5)0.0368 (5)0.0248 (5)0.0031 (3)0.0036 (3)0.0013 (3)
Geometric parameters (Å, º) top
C2—C11.504 (14)C1—H1D0.9700
C2—N1i1.532 (14)Na1—I2ii3.156 (2)
C2—H2A0.9700Na1—I23.156 (2)
C2—H2B0.9700Na1—I1ii3.325 (5)
N1—C11.456 (13)Na1—I13.325 (5)
N1—C2i1.532 (14)Na1—I1iii3.479 (5)
N1—H1A0.8900Na1—I1iv3.479 (5)
N1—H1B0.8900I1—Na1v3.479 (5)
C1—H1C0.9700I2—Na1vi3.156 (2)
Na1—I1—Na1v169.12 (12)C1—C2—N1i108.4 (9)
Na1vi—I2—Na1180.0C1—C2—H2A110.0
N1—C1—C2111.6 (8)N1i—C2—H2A110.0
I2ii—Na1—I1101.40 (10)C1—C2—H2B110.0
I2—Na1—I1ii101.40 (10)N1i—C2—H2B110.0
I2ii—Na1—I2166.6 (3)H2A—C2—H2B108.4
I2—Na1—I188.41 (8)C1—N1—C2i110.2 (8)
I2ii—Na1—I1ii88.41 (8)C1—N1—H1A109.6
I2ii—Na1—I1iv87.06 (9)C2i—N1—H1A109.6
I2—Na1—I1iii87.06 (9)C1—N1—H1B109.6
I2—Na1—I1iv84.40 (9)C2i—N1—H1B109.6
I2ii—Na1—I1iii84.40 (9)H1A—N1—H1B108.1
I1iii—Na1—I1iv100.45 (19)N1—C1—H1C109.3
I1—Na1—I1iv169.12 (12)C2—C1—H1C109.3
I1ii—Na1—I1iii169.12 (12)N1—C1—H1D109.3
I1ii—Na1—I186.15 (18)C2—C1—H1D109.3
I1ii—Na1—I1iv87.29 (5)H1C—C1—H1D108.0
I1—Na1—I1iii87.29 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x1/2, y+1/2, z; (vi) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1D···I1i0.973.123.937 (11)143
C1—H1C···I20.973.233.914 (11)129
C1—H1C···I1vii0.973.143.790 (10)126
C2—H2B···I1viii0.973.173.930 (11)136
C2—H2A···I1ii0.973.233.930 (13)131
N1—H1B···I1i0.892.803.628 (10)156
N1—H1A···I2v0.893.113.677 (8)123
N1—H1A···I1vii0.893.143.746 (8)127
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+1/2; (v) x1/2, y+1/2, z; (vii) x+1/2, y+3/2, z+1; (viii) x+1/2, y+3/2, z+1/2.
catena-Poly[tris(piperazinediium) [µ-iodido-triiodidosodium] triiodide monohydrate] (C) top
Crystal data top
(C4H12N2)3[NaI4]I3·H2OF(000) = 2168
Mr = 1193.77Dx = 2.515 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.186 (2) ÅCell parameters from 7234 reflections
b = 22.828 (5) Åθ = 3.0–27.5°
c = 12.214 (2) ŵ = 6.92 mm1
β = 111.89 (3)°T = 293 K
V = 3152.7 (12) Å3Bar, pale yellow
Z = 40.38 × 0.28 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
4432 reflections with I > 2σ(I)
ω scansRint = 0.075
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.112, Tmax = 0.251h = 1215
20677 measured reflectionsk = 2929
7234 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.085 w = 1/[σ2(Fo2) + (0.0274P)2 + 33.3838P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max = 0.024
S = 1.09Δρmax = 1.23 e Å3
7234 reflectionsΔρmin = 1.05 e Å3
252 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015)
2 restraintsExtinction coefficient: 0.0060 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5220 (12)0.0196 (6)0.6547 (11)0.056 (4)
H1C0.56880.00460.62320.068*
H1D0.45450.03420.58890.068*
C20.5959 (12)0.0706 (6)0.7215 (13)0.059 (4)
H2C0.66620.05640.78460.071*
H2D0.62030.09440.66890.071*
C30.4140 (10)0.0205 (6)0.7881 (11)0.051 (4)
H3C0.39330.00260.84420.061*
H3D0.34110.03350.72700.061*
C40.4843 (12)0.0737 (6)0.8507 (12)0.060 (4)
H4C0.43490.09900.87680.072*
H4D0.55140.06140.91950.072*
C50.5148 (9)0.5834 (5)0.1450 (10)0.042 (3)
H5C0.55650.61920.17910.050*
H5D0.51000.58090.06400.050*
C60.5831 (10)0.5308 (6)0.2146 (10)0.048 (3)
H6C0.54460.49460.17900.058*
H6D0.66320.53060.21590.058*
C70.3947 (11)0.5840 (6)0.2674 (9)0.046 (3)
H7A0.31380.58230.26380.056*
H7B0.43040.61970.30850.056*
C80.4636 (10)0.5310 (6)0.3357 (10)0.051 (4)
H8A0.46680.53130.41620.061*
H8B0.42670.49480.29810.061*
C90.7130 (11)0.2167 (6)0.5849 (11)0.054 (4)
H9A0.63420.21040.58480.065*
H9B0.76670.19020.64180.065*
C100.7496 (11)0.2779 (6)0.6197 (11)0.052 (4)
H10A0.69300.30460.56570.062*
H10B0.75040.28510.69830.062*
C110.8322 (10)0.2155 (6)0.4619 (11)0.050 (4)
H11A0.83000.20850.38280.060*
H11B0.88900.18870.51490.060*
C120.8713 (11)0.2779 (6)0.4977 (10)0.048 (3)
H12A0.95080.28370.49960.058*
H12B0.81890.30500.44090.058*
H10.984 (8)0.803 (4)0.168 (8)0.03 (3)*
H20.940 (14)0.810 (4)0.233 (13)0.12 (7)*
I10.16282 (7)0.35776 (4)0.65969 (7)0.0437 (2)
I20.19192 (8)0.14533 (4)0.64746 (8)0.0530 (3)
I30.04389 (7)0.24624 (3)0.29429 (7)0.0400 (2)
I40.41057 (7)0.14436 (4)0.41939 (7)0.0459 (2)
I50.38048 (8)0.35852 (4)0.42790 (8)0.0544 (3)
I60.77355 (7)0.43764 (4)0.52414 (7)0.0412 (2)
I70.77778 (7)0.05265 (4)0.52459 (7)0.0420 (2)
N10.4792 (9)0.0172 (5)0.7341 (9)0.055 (3)
H1A0.43200.04550.69230.066*
H1B0.54070.03370.79040.066*
N20.5249 (12)0.1051 (5)0.7700 (13)0.096 (5)
H2A0.56730.13590.80760.116*
H2B0.46220.11880.71070.116*
N30.3948 (9)0.5853 (5)0.1468 (9)0.057 (3)
H3A0.35370.55480.10660.068*
H3B0.35870.61780.11070.068*
N40.5841 (10)0.5368 (5)0.3333 (10)0.072 (4)
H4A0.61380.57160.36210.086*
H4B0.63090.50940.37930.086*
N50.7133 (7)0.2041 (4)0.4651 (7)0.033 (2)
H5A0.69360.16680.44660.040*
H5B0.65990.22650.41190.040*
N60.8684 (8)0.2893 (4)0.6183 (8)0.042 (3)
H6A0.92100.26640.67110.050*
H6B0.88840.32640.63860.050*
Na10.2893 (5)0.2536 (2)0.5431 (5)0.0628 (15)
O10.9568 (9)0.7784 (5)0.2044 (9)0.055 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.083 (10)0.052 (9)0.041 (8)0.015 (8)0.031 (8)0.003 (7)
C20.054 (8)0.062 (10)0.081 (11)0.004 (8)0.049 (8)0.019 (8)
C30.047 (7)0.055 (9)0.068 (9)0.021 (7)0.043 (7)0.032 (7)
C40.069 (10)0.060 (10)0.069 (10)0.010 (8)0.047 (9)0.013 (8)
C50.037 (7)0.048 (8)0.045 (8)0.001 (6)0.021 (6)0.002 (6)
C60.037 (7)0.069 (10)0.039 (8)0.005 (7)0.015 (6)0.015 (7)
C70.054 (8)0.063 (10)0.025 (7)0.023 (7)0.018 (6)0.008 (6)
C80.041 (7)0.082 (11)0.030 (7)0.004 (7)0.015 (6)0.005 (7)
C90.045 (8)0.069 (10)0.056 (9)0.016 (7)0.029 (7)0.012 (8)
C100.054 (8)0.063 (10)0.048 (8)0.019 (7)0.030 (7)0.023 (7)
C110.048 (8)0.057 (9)0.058 (9)0.018 (7)0.033 (7)0.022 (7)
C120.056 (8)0.055 (9)0.040 (8)0.006 (7)0.024 (7)0.004 (6)
I10.0415 (5)0.0397 (5)0.0435 (5)0.0021 (4)0.0084 (4)0.0001 (4)
I20.0637 (6)0.0488 (6)0.0507 (6)0.0036 (5)0.0260 (5)0.0005 (4)
I30.0472 (5)0.0315 (4)0.0473 (5)0.0007 (4)0.0247 (4)0.0015 (4)
I40.0398 (5)0.0429 (5)0.0491 (5)0.0039 (4)0.0096 (4)0.0039 (4)
I50.0668 (6)0.0471 (6)0.0530 (6)0.0021 (5)0.0268 (5)0.0028 (5)
I60.0399 (4)0.0455 (5)0.0373 (5)0.0053 (4)0.0134 (4)0.0055 (4)
I70.0405 (5)0.0433 (5)0.0419 (5)0.0023 (4)0.0150 (4)0.0036 (4)
N10.059 (7)0.044 (7)0.056 (7)0.007 (6)0.015 (6)0.004 (6)
N20.104 (11)0.034 (8)0.149 (14)0.027 (8)0.046 (11)0.022 (9)
N30.066 (7)0.044 (7)0.065 (8)0.015 (6)0.030 (6)0.013 (6)
N40.065 (8)0.077 (9)0.060 (8)0.032 (7)0.008 (7)0.015 (7)
N50.028 (5)0.035 (6)0.031 (6)0.007 (4)0.004 (4)0.011 (4)
N60.043 (6)0.037 (6)0.051 (7)0.023 (5)0.025 (5)0.020 (5)
Na10.068 (3)0.052 (3)0.069 (4)0.006 (3)0.026 (3)0.014 (3)
O10.068 (6)0.047 (6)0.065 (7)0.001 (5)0.040 (6)0.001 (5)
Geometric parameters (Å, º) top
C1—N11.515 (14)C4—H4D0.9700
C1—C21.511 (18)C5—H5C0.9700
C2—N21.451 (16)C5—H5D0.9700
C3—N11.481 (14)C6—H6C0.9700
C3—C41.519 (16)C6—H6D0.9700
C4—N21.447 (17)C7—H7A0.9700
C5—C61.527 (16)C7—H7B0.9700
C5—N31.472 (13)C8—H8A0.9700
C6—N41.452 (14)C8—H8B0.9700
C7—C81.532 (16)C9—H9A0.9700
C7—N31.475 (13)C9—H9B0.9700
C8—N41.486 (14)C10—H10A0.9700
C9—N51.493 (14)C10—H10B0.9700
C9—C101.480 (18)C11—H11A0.9700
C10—N61.477 (13)C11—H11B0.9700
C11—C121.514 (17)C12—H12A0.9700
C11—N51.487 (13)C12—H12B0.9700
C12—N61.509 (13)N1—H1A0.8900
I1—Na13.419 (6)N1—H1B0.8900
I2—Na13.205 (5)N2—H2A0.8900
I3—Na13.381 (5)N2—H2B0.8900
I3—Na1i3.456 (5)N3—H3A0.8900
I4—Na13.515 (6)N3—H3B0.8900
I5—Na13.180 (5)N4—H4A0.8900
Na1—I3ii3.456 (5)N4—H4B0.8900
C1—H1C0.9700N5—H5A0.8900
C1—H1D0.9700N5—H5B0.8900
C2—H2C0.9700N6—H6A0.8900
C2—H2D0.9700N6—H6B0.8900
C3—H3C0.9700O1—H10.849 (10)
C3—H3D0.9700O1—H20.850 (10)
C4—H4C0.9700
C10—N6—C12111.1 (9)H6C—C6—H6D108.6
C10—C9—N5110.8 (10)N3—C7—H7A109.5
C11—N5—C9110.5 (8)C8—C7—H7A109.5
C2—C1—N1111.0 (10)N3—C7—H7B109.5
C3—N1—C1109.5 (10)C8—C7—H7B109.5
C4—N2—C2114.6 (12)H7A—C7—H7B108.1
C5—N3—C7112.7 (10)N4—C8—H8A110.7
C6—N4—C8111.8 (10)C7—C8—H8A110.7
I1—Na1—I4178.20 (17)N4—C8—H8B110.7
I1—Na1—I3ii91.40 (13)C7—C8—H8B110.7
I2—Na1—I484.32 (12)H8A—C8—H8B108.8
I2—Na1—I3ii89.46 (12)C10—C9—H9A109.5
I2—Na1—I194.56 (14)N5—C9—H9A109.5
I2—Na1—I389.12 (13)C10—C9—H9B109.5
I3ii—Na1—I490.00 (12)N5—C9—H9B109.5
I3—Na1—I487.19 (13)H9A—C9—H9B108.1
I3—Na1—I3ii176.97 (18)N6—C10—H10A109.5
I3—Na1—I191.38 (13)C9—C10—H10A109.5
I5—Na1—I494.12 (14)N6—C10—H10B109.5
I5—Na1—I3ii92.63 (13)C9—C10—H10B109.5
I5—Na1—I186.95 (13)H10A—C10—H10B108.1
I5—Na1—I388.73 (12)N5—C11—H11A109.4
I5—Na1—I2177.4 (2)C12—C11—H11A109.4
N1—C3—C4113.1 (10)N5—C11—H11B109.4
N2—C4—C3109.0 (11)C12—C11—H11B109.4
N2—C2—C1108.3 (11)H11A—C11—H11B108.0
N3—C7—C8110.8 (10)N6—C12—H12A109.9
N3—C5—C6110.7 (10)C11—C12—H12A109.9
N4—C8—C7105.3 (11)N6—C12—H12B109.9
N4—C6—C5106.4 (10)C11—C12—H12B109.9
N5—C11—C12111.3 (10)H12A—C12—H12B108.3
N6—C12—C11109.0 (10)C3—N1—H1A109.8
N6—C10—C9110.8 (10)C1—N1—H1A109.8
Na1—I3—Na1i176.87 (7)C3—N1—H1B109.8
C2—C1—H1C109.4C1—N1—H1B109.8
N1—C1—H1C109.4H1A—N1—H1B108.2
C2—C1—H1D109.4C4—N2—H2A108.6
N1—C1—H1D109.4C2—N2—H2A108.6
H1C—C1—H1D108.0C4—N2—H2B108.6
N2—C2—H2C110.0C2—N2—H2B108.6
C1—C2—H2C110.0H2A—N2—H2B107.6
N2—C2—H2D110.0C5—N3—H3A109.1
C1—C2—H2D110.0C7—N3—H3A109.1
H2C—C2—H2D108.4C5—N3—H3B109.1
N1—C3—H3C108.9C7—N3—H3B109.1
C4—C3—H3C108.9H3A—N3—H3B107.8
N1—C3—H3D108.9C6—N4—H4A109.3
C4—C3—H3D108.9C8—N4—H4A109.3
H3C—C3—H3D107.8C6—N4—H4B109.3
N2—C4—H4C109.9C8—N4—H4B109.3
C3—C4—H4C109.9H4A—N4—H4B107.9
N2—C4—H4D109.9C11—N5—H5A109.6
C3—C4—H4D109.9C9—N5—H5A109.6
H4C—C4—H4D108.3C11—N5—H5B109.6
N3—C5—H5C109.5C9—N5—H5B109.6
C6—C5—H5C109.5H5A—N5—H5B108.1
N3—C5—H5D109.5C10—N6—H6A109.4
C6—C5—H5D109.5C12—N6—H6A109.4
H5C—C5—H5D108.1C10—N6—H6B109.4
N4—C6—H6C110.5C12—N6—H6B109.4
C5—C6—H6C110.5H6A—N6—H6B108.0
N4—C6—H6D110.5H1—O1—H282 (10)
C5—C6—H6D110.5
N1—C1—C2—N257.7 (15)C1—C2—N2—C460.1 (16)
N1—C3—C4—N253.3 (17)C6—C5—N3—C754.3 (14)
N3—C5—C6—N457.8 (13)C8—C7—N3—C554.8 (14)
N3—C7—C8—N457.5 (13)C5—C6—N4—C866.0 (14)
N5—C9—C10—N658.0 (14)C7—C8—N4—C665.9 (13)
N5—C11—C12—N656.2 (13)C12—C11—N5—C956.9 (13)
C4—C3—N1—C153.5 (15)C10—C9—N5—C1157.2 (14)
C2—C1—N1—C355.7 (14)C9—C10—N6—C1258.3 (14)
C3—C4—N2—C257.2 (16)C11—C12—N6—C1056.7 (13)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6viiii—H6B···I6viiii0.892.993.626 (11)130
N6viiii—H6A···O1iiiiv0.891.972.856 (16)175
N5viiii—H5B···O1iiv0.891.992.878 (15)178
N5viiii—H5A···I7xiiiii0.892.833.557 (10)140
N4vvi—H4B···I6xiiivii0.892.553.440 (12)175
N4vvi—H4A···I5viiviii0.892.993.663 (13)134
N4vvi—H4A···I1viiviii0.893.253.881 (14)130
N3vvi—H3B···I4ivix0.893.223.748 (11)121
N3vvi—H3B···I3ixix0.893.223.767 (12)122
N3vvi—H3B···I2ixix0.893.043.610 (11)124
N3vvi—H3A···I7xiiiii0.892.683.543 (12)165
N2ivix—H2B···I2ixix0.893.143.867 (16)140
N2ivix—H2A···I3ixix0.892.703.405 (13)138
N1ivix—H1B···I6xix0.892.623.496 (11)169
N1ivix—H1A···I7xiiiii0.892.923.613 (11)136
N1ivix—H1A···I1viiixi0.893.323.804 (11)117
O1ixii—H2···I2ixix0.85 (1)2.68 (9)3.471 (12)155 (18)
O1ixii—H1···I5iiv0.85 (1)2.69 (4)3.501 (11)161 (11)
Symmetry codes: (iii) x2, y+1, z; (iv) x, y+2, z+1; (v) x1/2, y+1/2, z+1/2; (vi) x3/2, y+1/2, z+1/2; (vii) x3/2, y+3/2, z+1/2; (viii) x1/2, y+1/2, z+3/2; (ix) x1, y+1, z+1; (x) x5/2, y+3/2, z1/2; (xi) x3/2, y+1/2, z1/2; (xii) x+2, y, z.
 

Acknowledgements

The authors thank the College of Chemistry and Chemical Engineering, Southeast University, China, for support.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21703033); Natural Science Foundation of Jaingsu Province (award No. BK20170658).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGalkowski, K., Mitioglu, A., Miyata, A., Plochocka, P., Portugall, O., Eperon, G. E., Wang, J. T. W., Stergiopoulos, T., Stranks, S. D., Snaith, H. J. & Nicholas, R. J. (2016). Energy Environ. Sci. 9, 962–970.  CrossRef Google Scholar
First citationGlazer, A. M. (1972). Acta Cryst. B28, 3384–3392.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGlazer, A. M. (1975). Acta Cryst. A31, 756–762.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJin, H. H., Sang, H. I., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., Yong, H. L., Kim, H. J., Sarkar, A. & Nazeeruddin, M. K. (2009). Nat. Photonics, 7, 486–491.  Google Scholar
First citationJodlowski, A. D., Yépez, A., Luque, R., Camacho, L. & De, M. G. (2016). Angew. Chem. Int. Ed. 55, 14972–14977.  CrossRef Google Scholar
First citationLee, Y., Mitzi, D. B., Barnes, P. W. & Vogt, T. (2003). Phys. Rev. B, 68, 366–369.  Google Scholar
First citationLiao, W. Q., Tang, Y. Y., Li, P. F., You, Y. M. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 18071–18077.  CrossRef Google Scholar
First citationLiao, W. Q., Zhao, D. W., Yu, Y., Grice, C. R., Wang, C. L., Cimaroli, A. J., Schulz, P., Meng, W. W., Zhu, K., Xiong, R. G. & Yan, Y. Y. (2016a). Adv. Mater. 28, 9333–9340.  CrossRef Google Scholar
First citationLiao, W. Q., Zhao, D. W., Yu, Y., Shrestha, N., Ghimire, K., Grice, C. R., Wang, C. L., Xiao, Y. Q., Cimaroli, A. J., Eiiingson, R. J., Podraza, N. J., Zhu, K., Xiong, R. G. & Yan, Y. Y. (2016b). J. Am. Chem. Soc. 138, 12360–12363.  CrossRef Google Scholar
First citationPan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954–3957.  CrossRef Google Scholar
First citationPaton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7850–7853.  CrossRef Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaparov, B. & Mitzi, D. B. (2016). Chem. Rev. 116, 4558–4596.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z., Guo, J., Chen, Y., Li, Q., Pan, Y., Zhang, H., Xia, Y. & Huang, W. (2017). Adv. Mater. 29, 1605005–1605033.  CrossRef Google Scholar
First citationVeldhuis, S. A., Boix, P. P., Yantara, N., Li, M., Sum, T. C., Mathews, N. & Mhaisalkar, S. G. (2016). Adv. Mater. 28, 6804–6834.  CrossRef Google Scholar
First citationXu, W. J., Li, P. F., Tang, Y. Y., Zhang, W. X., Xiong, R. G. & Chen, X. M. (2017). J. Am. Chem. Soc. 139, 6369–6375.  CrossRef Google Scholar
First citationYang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J. & Seok, S. I. (2015). Science, 348, 1234–1237.  CrossRef Google Scholar
First citationYou, Y. M., Liao, W. Q., Zhao, D., Ye, H. Y., Zhang, Y., Zhou, Q., Niu, X., Wang, J., Li, P. F., Fu, D. W., Wang, Z., Gao, S., Yang, K., Liu, J. M., Li, J., Yan, Y. & Xiong, R. G. (2017). Science, 357, 306–309.  CrossRef Google Scholar
First citationZhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897–10902.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds