research papers
Three-dimensional organic–inorganic hybrid sodium halide perovskite: C4H12N2·NaI3 and a hydrogen-bonded supramolecular three-dimensional network in 3C4H12N2·NaI4·3I·H2O
aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and bCollege of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: weiqiangliao@seu.edu.cn
The rational selection of ligands is vitally important in the construction of new organic–inorganic hybrid three-dimensional perovskite complexes. As part of an exploration of perovskite-type materials, two new Na–I compounds based on the piperazine ligand, namely poly[piperazinediium [tri-μ-iodido-sodium]], {(C4H12N2)[NaI3]}n, 1, and catena-poly[tris(piperazinediium) [[triiodidosodium]-μ-iodido] triiodide monohydrate], {(C4H12N2)3[NaI4]I3·H2O}n, 2, have been synthesized by adjusting the stoichiometric ratio of sodium iodide and piperazine, and were characterized by single-crystal X-ray diffraction. In the crystal structures of 1 and 2, each NaI cation is linked to six I atoms, but the compounds show completely different configurations. In 1, the structure includes a perovskite-like array of vertex-sharing NaI6 octahedra stretching along the direction of the three axes, and each piperazinediium dication is enclosed in the NaI3 perovskite cage. However, in 2, each NaI atom bridges a single I atom to form a one-dimensional linear chain, and complex intermolecular hydrogen bonds connect these one-dimensional chains into a three-dimensional supramolecular network.
1. Introduction
In recent decades, three-dimensional organic–inorganic hybrid perovskites have been of interest to researchers, not only for their remarkable structural variability and highly tunable properties, but also for their rich physical properties, such as superconductivity, et al., 2009; Saparov & Mitzi, 2016; Veldhuis et al., 2016). Such hybrid perovskites have a simple generic formula of AMX3 (A = organic cation, M = metal cation and X = halogen anion) and the structural characteristic of corner-sharing MX6 octahedra. Among them, there have been a large number of reports on the halometallates of PbII and SnII ions because of their superior semiconducting properties, but related systems containing alkali metal halides are rare (Lee et al., 2003; Shi et al., 2017; Liao et al., 2016b; Galkowski et al., 2016; Yang et al., 2015; Liao et al., 2016a). To be precise, the first alkali metal halide perovskites, RMCl3 (R = piperazine and M = K, Rb and Cs), were found less than ten years ago (Paton & Harrison, 2010). In recent years, due to the development of molecular ferroelectric materials (You et al., 2017; Xu et al., 2017; Liao et al., 2017), three-dimensional alkali metal halide perovskites have attracted the attention of researchers again. Just last year, Xiong and co-workers reported two high-Tc three-dimensional perovskite ferroelectric materials, i.e. [3-ammoniopyrrolidinium]·RbBr3 and [N-methyl-1,4-diazoniabicyclo[2.2.2]octane]·RbI3 (Pan et al., 2017; Zhang et al., 2017).
and ferroelectric related properties (JinFollowing on from this work, we report the new three-dimensional organic–inorganic hybrid perovskite C4H12N2·NaI3 (1). In addition, considering that the dimensionality of three-dimensional perovskites can often be switched by alteration of the experimental conditions (e.g. CH3NH3·PbI3; Jodlowski et al., 2016), we obtained a new compound, i.e. 3C4H12N2·NaI4·3I·H2O (2) with a peculiar one-dimensional [NaI5]4− linear chain and a three-dimensional hydrogen-bonded supramolecular network by adjusting the stoichiometry of piperazine and sodium iodide.
2. Experimental
2.1. Synthesis and crystallization
2.1.1. Synthesis of C4H12N2·NaI3, (1)
An aqueous solution (20 ml) of sodium iodide (1.49 g, 10 mmol) was added dropwise to an equimolar ratio of piperazine (0.86 g, 10 mmol) in water (5 ml) with stirring. The solution was then filtered to remove insoluble impurities. Yellow block-shaped crystals of 1 suitable for X-ray diffraction were obtained by slow of the aqueous solution at 330 K after 2 d.
2.1.2. Synthesis of 3C4H12N2·NaI4·3I·H2O, (2)
An aqueous solution (20 ml) of sodium iodide (0.75 g, 5 mmol) was added dropwise to an aqueous solution (5 ml) of piperazine (1.29 g, 15 mmol). The solution was stirred for 20 min and then filtered to remove insoluble impurities. Yellow needle-shaped crystals of 2 were obtained by slow of the aqueous solution at 330 K after 2 d.
2.2. Refinement
Crystal data, data collection and structure . H atoms bonded to O atoms were located from difference Fourier maps and refined with an O—H distance restraint of 0.85 (1) Å. Other H atoms were placed in idealized positions and included as riding, with C—H = 0.97 Å (methylene) or N—H = 0.89 Å. Uiso(H) values were set at 1.2Ueq(C,N) for methylene and piperazinediium, and at 1.5Ueq(O) of water H atoms.
details are summarized in Table 13. Results and discussion
3.1. Structure of C4H12N2·NaI3, (1)
Compound 1 crystallizes in the monoclinic system (space group C2/c) and exhibits the three-dimensional perovskite framework. The asymmetry unit (Fig. 1) includes one NaI cation located on a twofold axis, one half of a piperazinediium dication located about a centre of inversion and two iodide ions attached to the NaI cation. As shown in Fig. 2, 1 is different from C4H12N2·KCl3·H2O, due to the Na—I bond length being less than that of K—Cl (Table 2); the NaI6 perovskite cage encloses one piperazinediium cation and prevents the entry of water molecules. In addition, the H atoms on the C and N atoms of piperazinediium form weak hydrogen bonds with the I atoms in the cage, resulting in significant octahedral tilting (Fig. 3). According to Glazer's 23 tilt system (Glazer, 1972, 1975), the octahedral tilting of compound 1 should belong to the `a−b−b−' type. Detailed information of the C—H⋯I and N—H⋯I hydrogen bonds is given in Table 3. It can be seen from the packing diagram (Fig. 4) that the piperazinediium cations in the ab plane are arranged along the same direction; however, the piperazinediium cations along the c axis are arranged in a zigzag manner, viz. `\/\'. In summary, compound 1 has the familiar three-dimensional perovskite framework structure, where the piperazinediium cations are confined in the cavities enclosed by corner-sharing NaI6 octahedra and stabilized by C—H⋯I and N—H⋯I hydrogen bonds.
|
|
3.2. Structure of 3C4H12N2·NaI4·3I·H2O, (2)
Compound 2 crystallizes in the monoclinic system (space group P21/n) but displays a one-dimensional linear chain-like geometry. The asymmetry unit contains three whole piperazinediium cations, one lattice water molecule, two dissociated iodide ions and one Na atom in a glide plane coordinated with five iodide ions. As can be seen from Fig. 5, each Na atom is coordinated by six I atoms, and two Na atoms are bridged by one I atom and extended in an infinite manner along a horizontal direction, thus presenting a one-dimensional linear chain. As shown in Table 4, the length of the Na—I bonds are within the reasonable range 3.180 (5)–3.515 (6) Å and the I—Na—I angles are in the ranges 84.32 (14)–94.56 (16) and 176.97 (18)–178.20 (17)°. It is worth noting that there are very complex hydrogen bonds in compound 2. These hydrogen bonds can be divided roughly into four types (Fig. 6): (i) piperazinediium N atoms act as donors and water O atoms act as acceptors in N—H⋯O hydrogen bonds (red dashed lines); (ii) water O atoms act as donors and I atoms in the metal halide chain act as acceptors in O—H⋯I hydrogen bonds (green dashed lines); (iii) piperazinediium N atoms act as donors and bridging I atoms act as acceptors in N—H⋯I hydrogen bonds (yellow dashed lines); (iv) piperazinediium N atoms act as donors and the free I atoms act as acceptors in N—H⋯I hydrogen bonds (blue dashed lines). Detailed information of the hydrogen bonds is given in Table 5. As shown in Fig. 7, the water H atoms form hydrogen bonds with the I atoms on the two sides of the NaI5 chain (i.e. O1i—H1⋯I5ii and O1i—H2⋯I2ix; Table 5), thus forming a two-dimensional network on the ac plane. On the other hand, the free I atoms (i.e. I6 and I7) and the bridging I atoms (i.e. I3) form N—H⋯I hydrogen bonds with the H atoms of the piperazinediium N atoms, which extends the two-dimensional network into a three-dimensional hydrogen-bonded supramolecular network (Fig. 8).
|
|
4. Summary
Two new organic–inorganic hybrid sodium halides have been synthesized by adjusting the stoichiometric ratio of sodium iodide and piperazine. C4H12N2·NaI3, 1, presents an interesting three-dimensional perovskite structure. However, compound 3C4H12N2·NaI4·3I·H2O, 2, features a singular three-dimensional hydrogen-bonded network. The different structures of compounds 1 and 2 show that the stoichiometric ratio plays a key role in the synthesis of various frameworks.
Supporting information
https://doi.org/10.1107/S2053229618006885/qp3008sup1.cif
contains datablocks C2C, C, global. DOI:Structure factors: contains datablock C2C. DOI: https://doi.org/10.1107/S2053229618006885/qp3008C2Csup2.hkl
Structure factors: contains datablock C. DOI: https://doi.org/10.1107/S2053229618006885/qp3008Csup3.hkl
For both structures, data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for C2C; SHELXL2014/7 (Sheldrick, 2015) for C. For both structures, molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).(C4H12N2)[NaI3] | F(000) = 880 |
Mr = 491.85 | Dx = 2.849 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.842 (6) Å | Cell parameters from 1311 reflections |
b = 9.309 (6) Å | θ = 3.0–27.4° |
c = 12.538 (8) Å | µ = 8.16 mm−1 |
β = 93.450 (9)° | T = 293 K |
V = 1146.6 (13) Å3 | Thick sheet, pale yellow |
Z = 4 | 0.38 × 0.28 × 0.20 mm |
Rigaku SCXmini diffractometer | 1153 reflections with I > 2σ(I) |
ω scans | Rint = 0.083 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | θmax = 27.4°, θmin = 3.0° |
Tmin = 0.080, Tmax = 0.195 | h = −12→12 |
3288 measured reflections | k = −12→11 |
1311 independent reflections | l = −13→16 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.058 | w = 1/[σ2(Fo2) + (0.0991P)2 + 35.0953P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.165 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 1.80 e Å−3 |
1311 reflections | Δρmin = −1.66 e Å−3 |
48 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015) |
0 restraints | Extinction coefficient: 0.0060 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.6137 (11) | 0.9015 (13) | 0.5161 (10) | 0.038 (2) | |
H2A | 0.5962 | 0.8325 | 0.4589 | 0.045* | |
H2B | 0.6967 | 0.8737 | 0.5564 | 0.045* | |
N1 | 0.3706 (8) | 0.9477 (9) | 0.5305 (7) | 0.0297 (17) | |
H1A | 0.3033 | 0.9475 | 0.5748 | 0.036* | |
H1B | 0.3496 | 0.8858 | 0.4780 | 0.036* | |
C1 | 0.4967 (10) | 0.9034 (11) | 0.5879 (7) | 0.030 (2) | |
H1C | 0.4850 | 0.8082 | 0.6175 | 0.036* | |
H1D | 0.5173 | 0.9690 | 0.6468 | 0.036* | |
Na1 | 0.5000 | 0.5394 (8) | 0.2500 | 0.0416 (14) | |
I1 | 0.27208 (6) | 0.80033 (7) | 0.26933 (5) | 0.0303 (3) | |
I2 | 0.5000 | 0.5000 | 0.5000 | 0.0300 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.031 (5) | 0.040 (5) | 0.043 (6) | 0.011 (4) | 0.007 (4) | 0.016 (5) |
N1 | 0.022 (4) | 0.032 (4) | 0.035 (4) | −0.005 (3) | 0.007 (3) | 0.008 (3) |
C1 | 0.039 (5) | 0.034 (5) | 0.018 (4) | −0.003 (4) | 0.004 (3) | 0.012 (4) |
Na1 | 0.053 (4) | 0.046 (4) | 0.027 (3) | 0.000 | 0.008 (3) | 0.000 |
I1 | 0.0337 (4) | 0.0296 (4) | 0.0278 (4) | −0.0045 (2) | 0.0037 (3) | −0.0039 (2) |
I2 | 0.0287 (5) | 0.0368 (5) | 0.0248 (5) | −0.0031 (3) | 0.0036 (3) | −0.0013 (3) |
C2—C1 | 1.504 (14) | C1—H1D | 0.9700 |
C2—N1i | 1.532 (14) | Na1—I2ii | 3.156 (2) |
C2—H2A | 0.9700 | Na1—I2 | 3.156 (2) |
C2—H2B | 0.9700 | Na1—I1ii | 3.325 (5) |
N1—C1 | 1.456 (13) | Na1—I1 | 3.325 (5) |
N1—C2i | 1.532 (14) | Na1—I1iii | 3.479 (5) |
N1—H1A | 0.8900 | Na1—I1iv | 3.479 (5) |
N1—H1B | 0.8900 | I1—Na1v | 3.479 (5) |
C1—H1C | 0.9700 | I2—Na1vi | 3.156 (2) |
Na1—I1—Na1v | 169.12 (12) | C1—C2—N1i | 108.4 (9) |
Na1vi—I2—Na1 | 180.0 | C1—C2—H2A | 110.0 |
N1—C1—C2 | 111.6 (8) | N1i—C2—H2A | 110.0 |
I2ii—Na1—I1 | 101.40 (10) | C1—C2—H2B | 110.0 |
I2—Na1—I1ii | 101.40 (10) | N1i—C2—H2B | 110.0 |
I2ii—Na1—I2 | 166.6 (3) | H2A—C2—H2B | 108.4 |
I2—Na1—I1 | 88.41 (8) | C1—N1—C2i | 110.2 (8) |
I2ii—Na1—I1ii | 88.41 (8) | C1—N1—H1A | 109.6 |
I2ii—Na1—I1iv | 87.06 (9) | C2i—N1—H1A | 109.6 |
I2—Na1—I1iii | 87.06 (9) | C1—N1—H1B | 109.6 |
I2—Na1—I1iv | 84.40 (9) | C2i—N1—H1B | 109.6 |
I2ii—Na1—I1iii | 84.40 (9) | H1A—N1—H1B | 108.1 |
I1iii—Na1—I1iv | 100.45 (19) | N1—C1—H1C | 109.3 |
I1—Na1—I1iv | 169.12 (12) | C2—C1—H1C | 109.3 |
I1ii—Na1—I1iii | 169.12 (12) | N1—C1—H1D | 109.3 |
I1ii—Na1—I1 | 86.15 (18) | C2—C1—H1D | 109.3 |
I1ii—Na1—I1iv | 87.29 (5) | H1C—C1—H1D | 108.0 |
I1—Na1—I1iii | 87.29 (5) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, y−1/2, z; (v) x−1/2, y+1/2, z; (vi) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1D···I1i | 0.97 | 3.12 | 3.937 (11) | 143 |
C1—H1C···I2 | 0.97 | 3.23 | 3.914 (11) | 129 |
C1—H1C···I1vii | 0.97 | 3.14 | 3.790 (10) | 126 |
C2—H2B···I1viii | 0.97 | 3.17 | 3.930 (11) | 136 |
C2—H2A···I1ii | 0.97 | 3.23 | 3.930 (13) | 131 |
N1—H1B···I1i | 0.89 | 2.80 | 3.628 (10) | 156 |
N1—H1A···I2v | 0.89 | 3.11 | 3.677 (8) | 123 |
N1—H1A···I1vii | 0.89 | 3.14 | 3.746 (8) | 127 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y, −z+1/2; (v) x−1/2, y+1/2, z; (vii) −x+1/2, −y+3/2, −z+1; (viii) x+1/2, −y+3/2, z+1/2. |
(C4H12N2)3[NaI4]I3·H2O | F(000) = 2168 |
Mr = 1193.77 | Dx = 2.515 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.186 (2) Å | Cell parameters from 7234 reflections |
b = 22.828 (5) Å | θ = 3.0–27.5° |
c = 12.214 (2) Å | µ = 6.92 mm−1 |
β = 111.89 (3)° | T = 293 K |
V = 3152.7 (12) Å3 | Bar, pale yellow |
Z = 4 | 0.38 × 0.28 × 0.20 mm |
Rigaku SCXmini diffractometer | 4432 reflections with I > 2σ(I) |
ω scans | Rint = 0.075 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | θmax = 27.5°, θmin = 3.1° |
Tmin = 0.112, Tmax = 0.251 | h = −12→15 |
20677 measured reflections | k = −29→29 |
7234 independent reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.085 | w = 1/[σ2(Fo2) + (0.0274P)2 + 33.3838P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.142 | (Δ/σ)max = 0.024 |
S = 1.09 | Δρmax = 1.23 e Å−3 |
7234 reflections | Δρmin = −1.05 e Å−3 |
252 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015) |
2 restraints | Extinction coefficient: 0.0060 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5220 (12) | 0.0196 (6) | 0.6547 (11) | 0.056 (4) | |
H1C | 0.5688 | −0.0046 | 0.6232 | 0.068* | |
H1D | 0.4545 | 0.0342 | 0.5889 | 0.068* | |
C2 | 0.5959 (12) | 0.0706 (6) | 0.7215 (13) | 0.059 (4) | |
H2C | 0.6662 | 0.0564 | 0.7846 | 0.071* | |
H2D | 0.6203 | 0.0944 | 0.6689 | 0.071* | |
C3 | 0.4140 (10) | 0.0205 (6) | 0.7881 (11) | 0.051 (4) | |
H3C | 0.3933 | −0.0026 | 0.8442 | 0.061* | |
H3D | 0.3411 | 0.0335 | 0.7270 | 0.061* | |
C4 | 0.4843 (12) | 0.0737 (6) | 0.8507 (12) | 0.060 (4) | |
H4C | 0.4349 | 0.0990 | 0.8768 | 0.072* | |
H4D | 0.5514 | 0.0614 | 0.9195 | 0.072* | |
C5 | 0.5148 (9) | 0.5834 (5) | 0.1450 (10) | 0.042 (3) | |
H5C | 0.5565 | 0.6192 | 0.1791 | 0.050* | |
H5D | 0.5100 | 0.5809 | 0.0640 | 0.050* | |
C6 | 0.5831 (10) | 0.5308 (6) | 0.2146 (10) | 0.048 (3) | |
H6C | 0.5446 | 0.4946 | 0.1790 | 0.058* | |
H6D | 0.6632 | 0.5306 | 0.2159 | 0.058* | |
C7 | 0.3947 (11) | 0.5840 (6) | 0.2674 (9) | 0.046 (3) | |
H7A | 0.3138 | 0.5823 | 0.2638 | 0.056* | |
H7B | 0.4304 | 0.6197 | 0.3085 | 0.056* | |
C8 | 0.4636 (10) | 0.5310 (6) | 0.3357 (10) | 0.051 (4) | |
H8A | 0.4668 | 0.5313 | 0.4162 | 0.061* | |
H8B | 0.4267 | 0.4948 | 0.2981 | 0.061* | |
C9 | 0.7130 (11) | 0.2167 (6) | 0.5849 (11) | 0.054 (4) | |
H9A | 0.6342 | 0.2104 | 0.5848 | 0.065* | |
H9B | 0.7667 | 0.1902 | 0.6418 | 0.065* | |
C10 | 0.7496 (11) | 0.2779 (6) | 0.6197 (11) | 0.052 (4) | |
H10A | 0.6930 | 0.3046 | 0.5657 | 0.062* | |
H10B | 0.7504 | 0.2851 | 0.6983 | 0.062* | |
C11 | 0.8322 (10) | 0.2155 (6) | 0.4619 (11) | 0.050 (4) | |
H11A | 0.8300 | 0.2085 | 0.3828 | 0.060* | |
H11B | 0.8890 | 0.1887 | 0.5149 | 0.060* | |
C12 | 0.8713 (11) | 0.2779 (6) | 0.4977 (10) | 0.048 (3) | |
H12A | 0.9508 | 0.2837 | 0.4996 | 0.058* | |
H12B | 0.8189 | 0.3050 | 0.4409 | 0.058* | |
H1 | 0.984 (8) | 0.803 (4) | 0.168 (8) | 0.03 (3)* | |
H2 | 0.940 (14) | 0.810 (4) | 0.233 (13) | 0.12 (7)* | |
I1 | 0.16282 (7) | 0.35776 (4) | 0.65969 (7) | 0.0437 (2) | |
I2 | 0.19192 (8) | 0.14533 (4) | 0.64746 (8) | 0.0530 (3) | |
I3 | 0.04389 (7) | 0.24624 (3) | 0.29429 (7) | 0.0400 (2) | |
I4 | 0.41057 (7) | 0.14436 (4) | 0.41939 (7) | 0.0459 (2) | |
I5 | 0.38048 (8) | 0.35852 (4) | 0.42790 (8) | 0.0544 (3) | |
I6 | 0.77355 (7) | 0.43764 (4) | 0.52414 (7) | 0.0412 (2) | |
I7 | 0.77778 (7) | 0.05265 (4) | 0.52459 (7) | 0.0420 (2) | |
N1 | 0.4792 (9) | −0.0172 (5) | 0.7341 (9) | 0.055 (3) | |
H1A | 0.4320 | −0.0455 | 0.6923 | 0.066* | |
H1B | 0.5407 | −0.0337 | 0.7904 | 0.066* | |
N2 | 0.5249 (12) | 0.1051 (5) | 0.7700 (13) | 0.096 (5) | |
H2A | 0.5673 | 0.1359 | 0.8076 | 0.116* | |
H2B | 0.4622 | 0.1188 | 0.7107 | 0.116* | |
N3 | 0.3948 (9) | 0.5853 (5) | 0.1468 (9) | 0.057 (3) | |
H3A | 0.3537 | 0.5548 | 0.1066 | 0.068* | |
H3B | 0.3587 | 0.6178 | 0.1107 | 0.068* | |
N4 | 0.5841 (10) | 0.5368 (5) | 0.3333 (10) | 0.072 (4) | |
H4A | 0.6138 | 0.5716 | 0.3621 | 0.086* | |
H4B | 0.6309 | 0.5094 | 0.3793 | 0.086* | |
N5 | 0.7133 (7) | 0.2041 (4) | 0.4651 (7) | 0.033 (2) | |
H5A | 0.6936 | 0.1668 | 0.4466 | 0.040* | |
H5B | 0.6599 | 0.2265 | 0.4119 | 0.040* | |
N6 | 0.8684 (8) | 0.2893 (4) | 0.6183 (8) | 0.042 (3) | |
H6A | 0.9210 | 0.2664 | 0.6711 | 0.050* | |
H6B | 0.8884 | 0.3264 | 0.6386 | 0.050* | |
Na1 | 0.2893 (5) | 0.2536 (2) | 0.5431 (5) | 0.0628 (15) | |
O1 | 0.9568 (9) | 0.7784 (5) | 0.2044 (9) | 0.055 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.083 (10) | 0.052 (9) | 0.041 (8) | −0.015 (8) | 0.031 (8) | −0.003 (7) |
C2 | 0.054 (8) | 0.062 (10) | 0.081 (11) | 0.004 (8) | 0.049 (8) | 0.019 (8) |
C3 | 0.047 (7) | 0.055 (9) | 0.068 (9) | −0.021 (7) | 0.043 (7) | −0.032 (7) |
C4 | 0.069 (10) | 0.060 (10) | 0.069 (10) | −0.010 (8) | 0.047 (9) | −0.013 (8) |
C5 | 0.037 (7) | 0.048 (8) | 0.045 (8) | 0.001 (6) | 0.021 (6) | 0.002 (6) |
C6 | 0.037 (7) | 0.069 (10) | 0.039 (8) | 0.005 (7) | 0.015 (6) | −0.015 (7) |
C7 | 0.054 (8) | 0.063 (10) | 0.025 (7) | 0.023 (7) | 0.018 (6) | 0.008 (6) |
C8 | 0.041 (7) | 0.082 (11) | 0.030 (7) | 0.004 (7) | 0.015 (6) | −0.005 (7) |
C9 | 0.045 (8) | 0.069 (10) | 0.056 (9) | −0.016 (7) | 0.029 (7) | −0.012 (8) |
C10 | 0.054 (8) | 0.063 (10) | 0.048 (8) | −0.019 (7) | 0.030 (7) | −0.023 (7) |
C11 | 0.048 (8) | 0.057 (9) | 0.058 (9) | −0.018 (7) | 0.033 (7) | −0.022 (7) |
C12 | 0.056 (8) | 0.055 (9) | 0.040 (8) | −0.006 (7) | 0.024 (7) | −0.004 (6) |
I1 | 0.0415 (5) | 0.0397 (5) | 0.0435 (5) | −0.0021 (4) | 0.0084 (4) | −0.0001 (4) |
I2 | 0.0637 (6) | 0.0488 (6) | 0.0507 (6) | 0.0036 (5) | 0.0260 (5) | −0.0005 (4) |
I3 | 0.0472 (5) | 0.0315 (4) | 0.0473 (5) | 0.0007 (4) | 0.0247 (4) | 0.0015 (4) |
I4 | 0.0398 (5) | 0.0429 (5) | 0.0491 (5) | −0.0039 (4) | 0.0096 (4) | 0.0039 (4) |
I5 | 0.0668 (6) | 0.0471 (6) | 0.0530 (6) | −0.0021 (5) | 0.0268 (5) | −0.0028 (5) |
I6 | 0.0399 (4) | 0.0455 (5) | 0.0373 (5) | 0.0053 (4) | 0.0134 (4) | 0.0055 (4) |
I7 | 0.0405 (5) | 0.0433 (5) | 0.0419 (5) | 0.0023 (4) | 0.0150 (4) | 0.0036 (4) |
N1 | 0.059 (7) | 0.044 (7) | 0.056 (7) | −0.007 (6) | 0.015 (6) | −0.004 (6) |
N2 | 0.104 (11) | 0.034 (8) | 0.149 (14) | −0.027 (8) | 0.046 (11) | −0.022 (9) |
N3 | 0.066 (7) | 0.044 (7) | 0.065 (8) | 0.015 (6) | 0.030 (6) | 0.013 (6) |
N4 | 0.065 (8) | 0.077 (9) | 0.060 (8) | 0.032 (7) | 0.008 (7) | 0.015 (7) |
N5 | 0.028 (5) | 0.035 (6) | 0.031 (6) | −0.007 (4) | 0.004 (4) | −0.011 (4) |
N6 | 0.043 (6) | 0.037 (6) | 0.051 (7) | −0.023 (5) | 0.025 (5) | −0.020 (5) |
Na1 | 0.068 (3) | 0.052 (3) | 0.069 (4) | −0.006 (3) | 0.026 (3) | 0.014 (3) |
O1 | 0.068 (6) | 0.047 (6) | 0.065 (7) | −0.001 (5) | 0.040 (6) | 0.001 (5) |
C1—N1 | 1.515 (14) | C4—H4D | 0.9700 |
C1—C2 | 1.511 (18) | C5—H5C | 0.9700 |
C2—N2 | 1.451 (16) | C5—H5D | 0.9700 |
C3—N1 | 1.481 (14) | C6—H6C | 0.9700 |
C3—C4 | 1.519 (16) | C6—H6D | 0.9700 |
C4—N2 | 1.447 (17) | C7—H7A | 0.9700 |
C5—C6 | 1.527 (16) | C7—H7B | 0.9700 |
C5—N3 | 1.472 (13) | C8—H8A | 0.9700 |
C6—N4 | 1.452 (14) | C8—H8B | 0.9700 |
C7—C8 | 1.532 (16) | C9—H9A | 0.9700 |
C7—N3 | 1.475 (13) | C9—H9B | 0.9700 |
C8—N4 | 1.486 (14) | C10—H10A | 0.9700 |
C9—N5 | 1.493 (14) | C10—H10B | 0.9700 |
C9—C10 | 1.480 (18) | C11—H11A | 0.9700 |
C10—N6 | 1.477 (13) | C11—H11B | 0.9700 |
C11—C12 | 1.514 (17) | C12—H12A | 0.9700 |
C11—N5 | 1.487 (13) | C12—H12B | 0.9700 |
C12—N6 | 1.509 (13) | N1—H1A | 0.8900 |
I1—Na1 | 3.419 (6) | N1—H1B | 0.8900 |
I2—Na1 | 3.205 (5) | N2—H2A | 0.8900 |
I3—Na1 | 3.381 (5) | N2—H2B | 0.8900 |
I3—Na1i | 3.456 (5) | N3—H3A | 0.8900 |
I4—Na1 | 3.515 (6) | N3—H3B | 0.8900 |
I5—Na1 | 3.180 (5) | N4—H4A | 0.8900 |
Na1—I3ii | 3.456 (5) | N4—H4B | 0.8900 |
C1—H1C | 0.9700 | N5—H5A | 0.8900 |
C1—H1D | 0.9700 | N5—H5B | 0.8900 |
C2—H2C | 0.9700 | N6—H6A | 0.8900 |
C2—H2D | 0.9700 | N6—H6B | 0.8900 |
C3—H3C | 0.9700 | O1—H1 | 0.849 (10) |
C3—H3D | 0.9700 | O1—H2 | 0.850 (10) |
C4—H4C | 0.9700 | ||
C10—N6—C12 | 111.1 (9) | H6C—C6—H6D | 108.6 |
C10—C9—N5 | 110.8 (10) | N3—C7—H7A | 109.5 |
C11—N5—C9 | 110.5 (8) | C8—C7—H7A | 109.5 |
C2—C1—N1 | 111.0 (10) | N3—C7—H7B | 109.5 |
C3—N1—C1 | 109.5 (10) | C8—C7—H7B | 109.5 |
C4—N2—C2 | 114.6 (12) | H7A—C7—H7B | 108.1 |
C5—N3—C7 | 112.7 (10) | N4—C8—H8A | 110.7 |
C6—N4—C8 | 111.8 (10) | C7—C8—H8A | 110.7 |
I1—Na1—I4 | 178.20 (17) | N4—C8—H8B | 110.7 |
I1—Na1—I3ii | 91.40 (13) | C7—C8—H8B | 110.7 |
I2—Na1—I4 | 84.32 (12) | H8A—C8—H8B | 108.8 |
I2—Na1—I3ii | 89.46 (12) | C10—C9—H9A | 109.5 |
I2—Na1—I1 | 94.56 (14) | N5—C9—H9A | 109.5 |
I2—Na1—I3 | 89.12 (13) | C10—C9—H9B | 109.5 |
I3ii—Na1—I4 | 90.00 (12) | N5—C9—H9B | 109.5 |
I3—Na1—I4 | 87.19 (13) | H9A—C9—H9B | 108.1 |
I3—Na1—I3ii | 176.97 (18) | N6—C10—H10A | 109.5 |
I3—Na1—I1 | 91.38 (13) | C9—C10—H10A | 109.5 |
I5—Na1—I4 | 94.12 (14) | N6—C10—H10B | 109.5 |
I5—Na1—I3ii | 92.63 (13) | C9—C10—H10B | 109.5 |
I5—Na1—I1 | 86.95 (13) | H10A—C10—H10B | 108.1 |
I5—Na1—I3 | 88.73 (12) | N5—C11—H11A | 109.4 |
I5—Na1—I2 | 177.4 (2) | C12—C11—H11A | 109.4 |
N1—C3—C4 | 113.1 (10) | N5—C11—H11B | 109.4 |
N2—C4—C3 | 109.0 (11) | C12—C11—H11B | 109.4 |
N2—C2—C1 | 108.3 (11) | H11A—C11—H11B | 108.0 |
N3—C7—C8 | 110.8 (10) | N6—C12—H12A | 109.9 |
N3—C5—C6 | 110.7 (10) | C11—C12—H12A | 109.9 |
N4—C8—C7 | 105.3 (11) | N6—C12—H12B | 109.9 |
N4—C6—C5 | 106.4 (10) | C11—C12—H12B | 109.9 |
N5—C11—C12 | 111.3 (10) | H12A—C12—H12B | 108.3 |
N6—C12—C11 | 109.0 (10) | C3—N1—H1A | 109.8 |
N6—C10—C9 | 110.8 (10) | C1—N1—H1A | 109.8 |
Na1—I3—Na1i | 176.87 (7) | C3—N1—H1B | 109.8 |
C2—C1—H1C | 109.4 | C1—N1—H1B | 109.8 |
N1—C1—H1C | 109.4 | H1A—N1—H1B | 108.2 |
C2—C1—H1D | 109.4 | C4—N2—H2A | 108.6 |
N1—C1—H1D | 109.4 | C2—N2—H2A | 108.6 |
H1C—C1—H1D | 108.0 | C4—N2—H2B | 108.6 |
N2—C2—H2C | 110.0 | C2—N2—H2B | 108.6 |
C1—C2—H2C | 110.0 | H2A—N2—H2B | 107.6 |
N2—C2—H2D | 110.0 | C5—N3—H3A | 109.1 |
C1—C2—H2D | 110.0 | C7—N3—H3A | 109.1 |
H2C—C2—H2D | 108.4 | C5—N3—H3B | 109.1 |
N1—C3—H3C | 108.9 | C7—N3—H3B | 109.1 |
C4—C3—H3C | 108.9 | H3A—N3—H3B | 107.8 |
N1—C3—H3D | 108.9 | C6—N4—H4A | 109.3 |
C4—C3—H3D | 108.9 | C8—N4—H4A | 109.3 |
H3C—C3—H3D | 107.8 | C6—N4—H4B | 109.3 |
N2—C4—H4C | 109.9 | C8—N4—H4B | 109.3 |
C3—C4—H4C | 109.9 | H4A—N4—H4B | 107.9 |
N2—C4—H4D | 109.9 | C11—N5—H5A | 109.6 |
C3—C4—H4D | 109.9 | C9—N5—H5A | 109.6 |
H4C—C4—H4D | 108.3 | C11—N5—H5B | 109.6 |
N3—C5—H5C | 109.5 | C9—N5—H5B | 109.6 |
C6—C5—H5C | 109.5 | H5A—N5—H5B | 108.1 |
N3—C5—H5D | 109.5 | C10—N6—H6A | 109.4 |
C6—C5—H5D | 109.5 | C12—N6—H6A | 109.4 |
H5C—C5—H5D | 108.1 | C10—N6—H6B | 109.4 |
N4—C6—H6C | 110.5 | C12—N6—H6B | 109.4 |
C5—C6—H6C | 110.5 | H6A—N6—H6B | 108.0 |
N4—C6—H6D | 110.5 | H1—O1—H2 | 82 (10) |
C5—C6—H6D | 110.5 | ||
N1—C1—C2—N2 | −57.7 (15) | C1—C2—N2—C4 | 60.1 (16) |
N1—C3—C4—N2 | 53.3 (17) | C6—C5—N3—C7 | 54.3 (14) |
N3—C5—C6—N4 | −57.8 (13) | C8—C7—N3—C5 | −54.8 (14) |
N3—C7—C8—N4 | 57.5 (13) | C5—C6—N4—C8 | 66.0 (14) |
N5—C9—C10—N6 | −58.0 (14) | C7—C8—N4—C6 | −65.9 (13) |
N5—C11—C12—N6 | 56.2 (13) | C12—C11—N5—C9 | −56.9 (13) |
C4—C3—N1—C1 | −53.5 (15) | C10—C9—N5—C11 | 57.2 (14) |
C2—C1—N1—C3 | 55.7 (14) | C9—C10—N6—C12 | 58.3 (14) |
C3—C4—N2—C2 | −57.2 (16) | C11—C12—N6—C10 | −56.7 (13) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6viiii—H6B···I6viiii | 0.89 | 2.99 | 3.626 (11) | 130 |
N6viiii—H6A···O1iiiiv | 0.89 | 1.97 | 2.856 (16) | 175 |
N5viiii—H5B···O1iiv | 0.89 | 1.99 | 2.878 (15) | 178 |
N5viiii—H5A···I7xiiiii | 0.89 | 2.83 | 3.557 (10) | 140 |
N4vvi—H4B···I6xiiivii | 0.89 | 2.55 | 3.440 (12) | 175 |
N4vvi—H4A···I5viiviii | 0.89 | 2.99 | 3.663 (13) | 134 |
N4vvi—H4A···I1viiviii | 0.89 | 3.25 | 3.881 (14) | 130 |
N3vvi—H3B···I4ivix | 0.89 | 3.22 | 3.748 (11) | 121 |
N3vvi—H3B···I3ixix | 0.89 | 3.22 | 3.767 (12) | 122 |
N3vvi—H3B···I2ixix | 0.89 | 3.04 | 3.610 (11) | 124 |
N3vvi—H3A···I7xiiiii | 0.89 | 2.68 | 3.543 (12) | 165 |
N2ivix—H2B···I2ixix | 0.89 | 3.14 | 3.867 (16) | 140 |
N2ivix—H2A···I3ixix | 0.89 | 2.70 | 3.405 (13) | 138 |
N1ivix—H1B···I6xix | 0.89 | 2.62 | 3.496 (11) | 169 |
N1ivix—H1A···I7xiiiii | 0.89 | 2.92 | 3.613 (11) | 136 |
N1ivix—H1A···I1viiixi | 0.89 | 3.32 | 3.804 (11) | 117 |
O1ixii—H2···I2ixix | 0.85 (1) | 2.68 (9) | 3.471 (12) | 155 (18) |
O1ixii—H1···I5iiv | 0.85 (1) | 2.69 (4) | 3.501 (11) | 161 (11) |
Symmetry codes: (iii) x−2, y+1, z; (iv) −x, −y+2, −z+1; (v) −x−1/2, y+1/2, −z+1/2; (vi) x−3/2, −y+1/2, z+1/2; (vii) x−3/2, −y+3/2, z+1/2; (viii) −x−1/2, y+1/2, −z+3/2; (ix) −x−1, −y+1, −z+1; (x) x−5/2, −y+3/2, z−1/2; (xi) x−3/2, −y+1/2, z−1/2; (xii) x+2, y, z. |
Acknowledgements
The authors thank the College of Chemistry and Chemical Engineering, Southeast University, China, for support.
Funding information
Funding for this research was provided by: National Natural Science Foundation of China (award No. 21703033); Natural Science Foundation of Jaingsu Province (award No. BK20170658).
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Galkowski, K., Mitioglu, A., Miyata, A., Plochocka, P., Portugall, O., Eperon, G. E., Wang, J. T. W., Stergiopoulos, T., Stranks, S. D., Snaith, H. J. & Nicholas, R. J. (2016). Energy Environ. Sci. 9, 962–970. CrossRef Google Scholar
Glazer, A. M. (1972). Acta Cryst. B28, 3384–3392. CrossRef CAS IUCr Journals Web of Science Google Scholar
Glazer, A. M. (1975). Acta Cryst. A31, 756–762. CrossRef CAS IUCr Journals Web of Science Google Scholar
Jin, H. H., Sang, H. I., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., Yong, H. L., Kim, H. J., Sarkar, A. & Nazeeruddin, M. K. (2009). Nat. Photonics, 7, 486–491. Google Scholar
Jodlowski, A. D., Yépez, A., Luque, R., Camacho, L. & De, M. G. (2016). Angew. Chem. Int. Ed. 55, 14972–14977. CrossRef Google Scholar
Lee, Y., Mitzi, D. B., Barnes, P. W. & Vogt, T. (2003). Phys. Rev. B, 68, 366–369. Google Scholar
Liao, W. Q., Tang, Y. Y., Li, P. F., You, Y. M. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 18071–18077. CrossRef Google Scholar
Liao, W. Q., Zhao, D. W., Yu, Y., Grice, C. R., Wang, C. L., Cimaroli, A. J., Schulz, P., Meng, W. W., Zhu, K., Xiong, R. G. & Yan, Y. Y. (2016a). Adv. Mater. 28, 9333–9340. CrossRef Google Scholar
Liao, W. Q., Zhao, D. W., Yu, Y., Shrestha, N., Ghimire, K., Grice, C. R., Wang, C. L., Xiao, Y. Q., Cimaroli, A. J., Eiiingson, R. J., Podraza, N. J., Zhu, K., Xiong, R. G. & Yan, Y. Y. (2016b). J. Am. Chem. Soc. 138, 12360–12363. CrossRef Google Scholar
Pan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954–3957. CrossRef Google Scholar
Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7850–7853. CrossRef Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Saparov, B. & Mitzi, D. B. (2016). Chem. Rev. 116, 4558–4596. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Z., Guo, J., Chen, Y., Li, Q., Pan, Y., Zhang, H., Xia, Y. & Huang, W. (2017). Adv. Mater. 29, 1605005–1605033. CrossRef Google Scholar
Veldhuis, S. A., Boix, P. P., Yantara, N., Li, M., Sum, T. C., Mathews, N. & Mhaisalkar, S. G. (2016). Adv. Mater. 28, 6804–6834. CrossRef Google Scholar
Xu, W. J., Li, P. F., Tang, Y. Y., Zhang, W. X., Xiong, R. G. & Chen, X. M. (2017). J. Am. Chem. Soc. 139, 6369–6375. CrossRef Google Scholar
Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J. & Seok, S. I. (2015). Science, 348, 1234–1237. CrossRef Google Scholar
You, Y. M., Liao, W. Q., Zhao, D., Ye, H. Y., Zhang, Y., Zhou, Q., Niu, X., Wang, J., Li, P. F., Fu, D. W., Wang, Z., Gao, S., Yang, K., Liu, J. M., Li, J., Yan, Y. & Xiong, R. G. (2017). Science, 357, 306–309. CrossRef Google Scholar
Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897–10902. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.