polyoxometalates\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Iron(II) and copper(II) paratungstates B: a single-crystal X-ray diffraction study

CROSSMARK_Color_square_no_text.svg

aUniversität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, Wien 1090, Austria, and bUniversität Wien, Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, Währinger Strasse 42, Wien 1090, Austria
*Correspondence e-mail: annette.rompel@univie.ac.at

Edited by J. R. Galán-Mascarós, Institute of Chemical Research of Catalonia (ICIQ), Spain (Received 17 May 2018; accepted 11 July 2018; online 16 October 2018)

Paratungstate B is a common isopolytungstate (IPOT) built of the [W12O40(OH)2]10− anion and exhibits a cluster-like construction of 12 W-centred distorted octa­hedra. Due to a high surface charge density, the paratungstate anion acts as a multidentate ligand forming high-dimensional extended structures, which exhibit unique catalytic and magnetic properties. Two new paradodeca­tungstate B compounds decorated by iron(II) or cop­per(II), namely Na5Fe2.5[W12O40(OH)2]·36H2O (Na5Fe2.5paraB) and Na4Cu3[W12O40(OH)2]·28H2O (Na4Cu3paraB), have been synthesized by a convenient aqueous solution method, and structurally characterized by single-crystal and powder X-ray diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis. Both compounds crystallize in the triclinic P[\overline{1}] space group. In both compounds, the [W12O40(OH)2]10− polyanion acts as a multidentate ligand that links transition-metal and sodium cations, forming a three-dimensional framework.

1. Introduction

The structural diversity of polyoxometalates (Pope, 1983[Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.]) and their proven applications in catalysis (Wang & Yang, 2015[Wang, S.-S. & Yang, G.-Y. (2015). Chem. Rev. 115, 4893-4962.]), nanotechnology (Yamase & Pope, 2002[Yamase, T. & Pope, M. (2002). Editors. Polyoxometalate Chemistry for Nano-Composite Design. Springer Science & Business Media.]), electrochemistry (Sadakane & Steckhan, 1998[Sadakane, M. & Steckhan, E. (1998). Chem. Rev. 98, 219-238.]), materials science (Proust et al., 2008[Proust, A., Thouvenot, R. & Gouzerh, P. (2008). Chem. Commun. pp. 1837-1852.]), mol­ecular magnetism (Clemente-Juan et al., 2012[Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. (2012). Chem. Soc. Rev. 41, 7464-7478.]), macromolecular crystallography (Bijelic & Rompel, 2015[Bijelic, A. & Rompel, A. (2015). Coord. Chem. Rev. 299, 22-38.], 2017[Bijelic, A. & Rompel, A. (2017). Acc. Chem. Res. 50, 1441-1448.]; Molitor et al., 2017[Molitor, C., Bijelic, A. & Rompel, A. (2017). IUCrJ, 4, 734-740.]) and medicine (Fu et al., 2015[Fu, L., Gao, H., Yan, M., Li, S., Li, X., Dai, Z. & Liu, S. (2015). Small, 11, 2938-2945.]; Bijelic et al., 2018a[Bijelic, A., Aureliano, M. & Rompel, A. (2018a). Angew. Chem. Int. Ed. In the press. doi:10.1002/anie.201803868 and doi:10.1002/ange.201803868.],b[Bijelic, A., Aureliano, M. & Rompel, A. (2018b). Chem. Commun. 54, 1153-1169.]) have encouraged the synthesis of novel polyanions with promising properties. One of the most common isopolytungstates (IPOTs) is paratungstate B, built of the [W12O40(OH)2]10− anion that is stable in aqueous acidic solution and exhibits a cluster-like construction of 12 W-cen­tred distorted octa­hedra (Evans & Rollins, 1976[Evans, H. T. & Rollins, O. W. (1976). Acta Cryst. B32, 1565-1567.]; Pope, 1983[Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.]). Due to a high surface charge density, the paratungstate anion acts as a multidentate ligand, which can coordinate alkaline (Peresypkina et al., 2014[Peresypkina, E. V., Virovets, A. V., Adonin, S. A., Abramov, P. A., Rogachev, A. V., Sinkevich, P. L., Korenev, V. S. & Sokolov, M. N. (2014). J. Struct. Chem. 55, 295-298.]) and transition-metal cations (Radio et al., 2010[Radio, S. V., Kryuchkov, M. A., Zavialova, E. G., Baumer, V. N., Shishkin, O. V. & Rozantsev, G. M. (2010). J. Coord. Chem. 63, 1678-1689.], 2011[Radio, S. V., Rozantsev, G. M., Baumer, V. N. & Shishkin, O. V. (2011). J. Struct. Chem. 52, 111-117.]; Gumerova et al., 2015[Gumerova, N. I., Kasyanova, K. V., Rozantsev, G. M., Baumer, V. N. & Radio, S. V. (2015). J. Cluster Sci. 26, 1171-1186.]), and also act as a precursor (Sokolov et al., 2012[Sokolov, M. N., Adonin, S. A., Abramov, P. A., Mainichev, D. A., Zakharchuk, N. F. & Fedin, V. P. (2012). Chem. Commun. 48, 6666-6668.]). By coordinating transition-metal cations, paratungstates can form high-dimensional extended structures, which exhibit unique catalytic (He et al., 2008[He, L.-W., Lin, B.-Z., Liu, X.-Z., Huang, X.-F. & Feng, Y.-L. (2008). Solid State Sci. 10, 237-243.]; Chen et al., 2017[Chen, Y., Zhang, C., Zhang, J., Ye, Z., Zheng, K., Fang, Q. & Li, G. (2017). Inorg. Chem. Front. 4, 1917-1922.]) and magnetic properties (Li et al., 2008[Li, B., Bi, B., Li, W. & Wu, L. (2008). J. Solid State Chem. 181, 3337-3343.], 2009[Li, Y.-W., Wang, Y.-H., Li, Y.-G., Wang, E.-B., Chen, W.-L., Wu, Q. & Shi, Q. (2009). Inorg. Chim. Acta, 362, 1078-1082.]). So far, three paratungstates B with FeII and nine with CuII as counter-cations have been successfully synthesized and characterized by X-ray diffraction (Table 1[link]). We present herein two novel paratungstates B, one with FeII and one with CuII, namely the double sodium–iron(II) paratungstate Na5Fe2.5[W12O40(OH)2]·36H2O (denoted Na5Fe2.5paraB) and the double sodium–copper(II) paratungstate Na4Cu3[W12O40(OH)2]·28H2O (denoted Na4Cu3paraB), which were synthesized by a convenient aqueous solution method.

Table 1
FeII- and CuII-containing paratungstates B [based on the Inorganic Crystal Structure Database (FIZ, Karlsruhe; https://www.fiz-informationsdienste.de/DB/icsd/www-recherche.html) and the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])]

Compounds Unit-cell parameters a, b and c (Å), and α, β and γ (°) Volume (Å3), Z and space group Synthesis details (source of W; W:MII ratio, with M = Fe, Cu; pH) Reference
FeII        
K6[{Fe(H2O)4}2(H2W12O42)]·15H2O 14.9967 (5), 10.3872 (3), 18.8237 (6); 90, 93.407 (1), 90 2927.1 (2), 2, P21/n K2WO4; 12:1.4; – Yang et al. (2003[Yang, W.-B., Lu, C.-Z., Lin, X. & Zhuang, H.-H. (2003). Z. Anorg. Allg. Chem. 629, 2046-2052.])
(H3O)2[{Fe(H2O)4Fe(H2O)3}2(H2W12O42)]·20H2O 12.1794 (4), 22.4938 (4), 11.6941 (3); 90, 105.731 (2), 90 3083.7 (1), 2, P21/c Li2WO4; 12:1.4; – Yang et al. (2003[Yang, W.-B., Lu, C.-Z., Lin, X. & Zhuang, H.-H. (2003). Z. Anorg. Allg. Chem. 629, 2046-2052.])
Na5[{Fe(H2O)3}2{Fe(H2O)4}0.5(H2W12O42)]·30H2O 12.121 (2), 12.426 (3), 13.247 (3); 68.33 (3), 71.33 (3), 71.44 (3) 1710.7 (6), 1, P[\overline{1}] Na2WO4; 12:1.4; – Yang et al. (2003[Yang, W.-B., Lu, C.-Z., Lin, X. & Zhuang, H.-H. (2003). Z. Anorg. Allg. Chem. 629, 2046-2052.])
         
CuII        
Na8[Cu(H2O)2(H2W12O42)]·30H2O 13.081 (4), 13.160 (6), 20.127 (6); 78.294 (12), 78.524 (11), 72.593 (11) 3201.7 (17), 2, P[\overline{1}] Na2WO4; 12:2.4; 4.8 Li et al. (2008[Li, B., Bi, B., Li, W. & Wu, L. (2008). J. Solid State Chem. 181, 3337-3343.])
KNa3[Cu(H2O)2{Cu(H2O)3}2(H2W12O42)]·16H2O 10.799 (2), 11.914 (2), 13.377 (3); 70.18 (3), 68.07 (3), 64.80 (3) 1410.9 (5), 1, P[\overline{1}] Na2[W12O40(OH)2]; 12:2; 3.5 Li et al. (2009[Li, Y.-W., Wang, Y.-H., Li, Y.-G., Wang, E.-B., Chen, W.-L., Wu, Q. & Shi, Q. (2009). Inorg. Chim. Acta, 362, 1078-1082.])
[{Na2(μ-H2O)2(H2O)6}{Cu(H2O)2}{Cu(H2O)4}2{Cu2(μ-OH)2(H2O)6}(H2W12O42)]·10H2O 10.697 (5), 12.921 (5), 13.653 (5); 73.608 (5), 75.671 (5), 67.748 (5) 1654.4 (12), 1, P[\overline{1}] (NH4)6[W12O40]; 12:0.4; 6.2 Kong et al. (2010[Kong, Q.-J., Zhang, C.-J. & Chen, Y.-G. (2010). J. Mol. Struct. 964, 82-87.])
[{Na(H2O)4}2{Cu0.5(H2O)}4{Cu0.5(H2O)1.5}2(H4W12O42)]·3H2O 10.7060 (11), 12.7124 (14), 13.1664 (14); 113.7600 (10), 90.8230 (10), 111.8290 (10) 1493.8 (3), 1, P[\overline{1}] Na2WO4; 12:3; 6.5 Gao et al. (2011[Gao, S., Zhao, J., Zhou, B., Yu, K., Su, Z., Wang, L., Yin, Y., Zhao, Z., Yu, Y. & Chen, Y. (2011). Inorg. Chim. Acta, 379, 151-157.])
[Na2(H2O)10][Cu4(H2O)12(H2W12O42)]·15H2O 10.1535 (2), 13.2118 (3), 13.7049 (5); 112.692 (3), 94.771 (3), 102.969 (2) 1623.15 (8), 1, P[\overline{1}] Na2WO4; 12:36; 4 Qu et al. (2012[Qu, X., Yang, Y., Zhang, F. & Yu, X. (2012). Struct. Chem. 23, 1867-1872.])
Cu3(H2O)8[H6W12O42] 10.6753 (5), 12.7814 (5), 13.0976 (5); 113.737 (4), 90.433 (3), 112.560 (4) 1482.73 (12), 2, P[\overline{1}] (NH4)6[W12O40]; 12:36; – Chen et al. (2017[Chen, Y., Zhang, C., Zhang, J., Ye, Z., Zheng, K., Fang, Q. & Li, G. (2017). Inorg. Chem. Front. 4, 1917-1922.])
(NH4)8[Cu(H2O)2H2W12O42]·10H2O 14.278 (5), 15.435 (5), 24.881 (5); 90, 90, 90 5483 (3), 2, Pbcn (NH4)6[W12O40]; 12:2.5; 4.8 Zhang (2012[Zhang, Z. (2012). J. Chem. Crystallogr. 42, 333-337.])
Na2Cu3(CuOH)2[W12O40(OH)2]·32H2O 10.6836 (4), 12.9066 (6), 13.6475 (5); 73.561 (4), 75.685 (3), 67.666 (4) 1648.68 (12), 1, P[\overline{1}] Na2WO4; 12:7.5; – Radio et al. (2014[Radio, S. V., Melnik, N. A., Ivantsova, E. S. & Baumer, V. N. (2014). J. Struct. Chem. 55, 879-886.])
Na2Cu5(H2O)24(OH)2[H2W12O42]·10H2O 10.7140 (8), 12.9476 (9), 13.6696 (10); 73.56, 75.73, 67.69 1661.8 (2), 1, P[\overline{1}] Na2WO4; 12:20; 3.8 Qu et al. (2015)[Qu, X., Yang, Y., Yu, X., Lv, Z., Ji, M. & Feng, S. (2015). Inorg. Chem. Commun. 60, 126-130.]

2. Experimental

2.1. Synthesis and crystallization

The reagents were used as purchased from Sigma–Aldrich without further purification.

2.1.1. Synthesis of Na5Fe2.5paraB

Iron powder (0.112 g, 2 mmol) was added to a solution (15 ml) of Na2WO4·2H2O (3.96 g, 12 mmol), which was acidified to pH = 2.5 with HCl (1 M). The mixture was stirred in an ultrasonic bath, giving a deep-blue solution, which was left to stand closed at room temperature. The pale-red–brown crystals which grew on the beaker walls were collected after three weeks (yield ∼2 g, ∼53%, based on W). Elemental analysis found (calculated) for Fe2.5H74Na5O78W12 (%): Na 3.13 (3.03), Fe 3.71 (3.69), W 56.8 (58.32).

2.1.2. Synthesis of Na4Cu3paraB

Sodium orthotungstate Na2WO4·2H2O (5.5 g, 16.7 mmol) was dissolved in water (25 ml) and the pH was adjusted to 8 by adding dilute HNO3 (1 M). An aqueous solution (10 ml) of Cu(NO3)2·3H2O (0.5 g, 2.1 mmol) was then added dropwise, while the pH was maintained between 3.0 and 4.5 with HNO3 (1 M). The final mixture was filtered (pH = 4.2) and allowed to stand closed at room temperature. Light-blue crystals formed within two months (yield ∼3.5 g, 69% based on W). Elemental analysis found (calculated) for Cu3H58Na4O70W12 (%): Na 2.62 (2.51), Cu 5.13 (5.20), W 59.1 (60.16).

2.2. IR spectroscopy

The title compounds were identified by IR measurements on a Bruker Vertex70 IR Spectrometer equipped with a single-reflection diamond-ATR unit (ATR is attenuated total reflectance) in the range 4000–400 cm−1.

2.3. TGA measurements

Thermogravimetric analysis (TGA) was performed on a Mettler SDTA851e Thermogravimetric Analyzer under a nitro­gen flow with a heating rate of 5 K min−1 in the region from 298 to 973 K.

2.4. Elemental analysis

Elemental analysis was conducted using inductive-coupled plasma–mass spectrometry (PerkinElmer Elan 6000 ICP MS) and atomic absorption spectroscopy (PerkinElmer 1100 Flame AAS) in aqueous solutions containing 2% HNO3. Standards were prepared from single-element standard solutions of concentration 1000 mg l−1 (from Merck, Ultra Scientific and Analytika Prague).

2.5. Powder X-ray diffraction

Powder X-ray diffraction (PXRD) was performed on a Bruker D8 Advance diffractometer, with Cu Kα radiation (λ = 1.54056 Å), a Lynxeye silicon strip detector, a SolX energy dispersive detector and a variable slit aperture of 12 mm. The 2θ range was 8–50°.

2.6. Refinement

In Table 2[link], the crystallographic characteristics of the two new paratungstates B and the experimental conditions of the data collection and refinement are reported. The positions of the independent H atoms were obtained by difference Fourier techniques and were refined with free isotropic displacement parameters.

Table 2
Experimental details

  Na4Cu3paraBM Na5Fe2.5paraB
Crystal data
Chemical formula Na4Cu3[W12O40(OH)2]·28H2O Na5Fe2.5[W12O40(OH)2]·36H2O
Mr 3621.13 3771.27
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 10.6516 (5), 12.7532 (6), 13.0730 (5) 12.3758 (6), 14.7752 (7), 18.8919 (8)
α, β, γ (°) 113.771 (1), 90.443 (1), 112.502 (1) 92.9341 (14), 100.6938 (14), 94.1698 (15)
V3) 1473.65 (11) 3378.1 (3)
Z 1 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 24.53 21.02
Crystal size (mm) 0.13 × 0.07 × 0.02 0.37 × 0.07 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.004, 0.023 0.012, 0.044
No. of measured, independent and observed [I > 2σ(I)] reflections 11292, 5321, 4720 38068, 12318, 10876
Rint 0.048 0.032
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.05 0.022, 0.058, 1.09
No. of reflections 5321 12318
No. of parameters 463 980
No. of restraints 100 405
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.15, −1.63 1.57, −1.25
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Fixed isotropic displacement parameters for all H atoms with a value equal to 1.5Ueq of the corresponding O—H group atom were assigned. Restrained distances for D—H bonds were applied to avoid short D—H⋯H—D interactions. To force correct bonds, specified bonds were added to or removed from the connectivity list.

The disordered water molecules in the coordination spheres of atom Na1 in Na4Cu3paraB and of atoms Na4 and Na5 in Na5Fe2.5paraB were refined with two positions with fixed occupancy factors of 0.5.

In Na4Cu3paraB, part of the disordered water molecules were not modelled and the disordered density was considered using the OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) implementation of BYPASS (a.k.a. SQUEEZE; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The modelled electron density is consistent with approximately four water molecules per unit cell.

The structures have been deposited with the Inorganic Crystal Structure Database (ICSD) (https://www2.fiz-karlsruhe.de/icsd_home.html) under collection numbers 434558 and 434559.

3. Results and discussion

The syntheses of Na5Fe2.5paraB and Na4Cu3paraB were carried out with WVI-to-MII ratios of W:Fe = 12:2 and W:Cu = 12:1.5, and a pH of 2.5 for Na5Fe2.5paraB and 4.2 for Na4Cu3paraB, which are different from previously reported conditions (Table 1[link]) and made it possible to obtain com­pounds with new Fe–Na and Cu–Na compositions. The presence of NaI as counter-cation in paratungstates B, together with CuII or FeII, have been observed previously both in excess and in deficiency of the transition-metal ion in the reaction mixture, which had a pH in the range 3.5–6.5 (Table 1[link]). This allows one to conclude that crystallization of paratungstates B as double-alkali–transition-metal salts is more preferable than crystallization of pure transition-metal paratungstates B, regardless of the starting molar ratios of the components and the pH of the reaction system.

The main structural elements of Na5Fe2.5paraB and Na4Cu3paraB are shown in Fig. 1[link]. Both compounds consist of paradodeca­tungstate B [W12O40(OH)2]10− polyanions (Evans & Rollins, 1976[Evans, H. T. & Rollins, O. W. (1976). Acta Cryst. B32, 1565-1567.]; Pope, 1983[Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.]), sodium and transition-metal cations, and additional water mol­ecules (Fig. 1[link]). The paratungstate B units observed in Na5Fe2.5paraB and Na4Cu3­paraB are structurally identical to previously reported units (Table 1[link]).

[Figure 1]
Figure 1
Structural elements in Na5Fe2.5paraB and Na4Cu3paraB. (a) The [W12O40(OH)2]10− anion in Na5Fe2.5paraB connected to four Na+ and six Fe2+ ions via terminal O atoms. (b) A fragment of the infinite 1D chain in Na5Fe2.5paraB consisting of Na and Fe polyhedra. (c) The [W12O40(OH)2]10− anion in Na4Cu3paraB connected to six Na+ and six Cu2+ ions via terminal O atoms. (d) A fragment of the infinite 1D chain in Na4Cu3paraB consisting of Na and Cu polyhedra. Colour code: {WO6} are light-blue or violet octa­hedra, {W3O14} are blue octa­hedra and {W3O13} are violet octa­hedra, and Na atoms are green, Fe orange, Cu blue and O red.

In Na4Cu3­paraB, there is one-half unit of the POM, which lies on an inversion centre, in the asymmetric unit. For Na5Fe2.5paraB, there are two independent half-POM units in the asymmetric unit.

The centrosymmetric [W12O40(OH)2]10− anion consists of four corner-sharing groups: two {W3O13} (violet octa­hedra in Figs. 1[link]a and 1c) and two {W3O14} (blue octa­hedra in Figs. 1[link]a and 1c) units. Each {W3O13} fragment is formed by three edge-sharing {WO6} octa­hedra with a common O atom, while in the {W3O14} triads, the three edge-sharing {WO6} octa­hedra are linearly connected with no common O atom to the three W atoms. In the {W3O13} groups, each octa­hedron has one terminal O atom, while in the {W3O14} units, each octa­hedron has two unshared O atoms (Figs. 1[link]a and 1c). The O atoms connected to the W centres can be classified into three groups. The first group is comprised of terminal O atoms (Ot), each bonded to one W atom. The second group consists of bridging O atoms (Odb), each connected to two W atoms. There are two types of Odb, one bridges two W atoms within the same {W3O13} or {W3O14} fragment (Odb1), while the other bridges two W atoms between the different {W3O13} and {W3O14} units (Odb2). The third group contains triply bridging O atoms, linked by three W atoms. The triply bridging O atoms exclusively from {W3O13} are labelled Otb1, whereas the O atoms bridging three W atoms between {W3O13} and {W3O14} units are labelled as Otb2.

The exact positions of the two protons in [W12O40(OH)2]10− were located previously on triply bridging O atoms of {W3O13} by neutron diffraction (Evans & Prince, 1983[Evans, H. T. & Prince, E. (1983). J. Am. Chem. Soc. 105, 4838-4839.]). Selected bond lengths and angles are presented in Table 3[link]. All the W atoms in [W12O40(OH)2]10− exhibit the +VI oxidation state, when applying the bond valence sum (BVS) calculations of Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For Na5Fe2.5paraB and Na4Cu3paraB, we got average values of 6.01 and 6.09, respectively. BVS calculations for Fe and Cu sites show that both ions exhibit the +II oxidation state, with a value of 2.12 for Fe and 2.08 for Cu.

Table 3
Selected bond length and angles (Å, °) in Na5Fe2.5paraB and Na4Cu3paraB

  Na5Fe2.5paraB Na4Cu3paraB
W=Ot 1.719 (4)–1.797 (4) 1.710 (8)–1.780 (7)
W—Odb1 1.888 (4)–2.050 (2) 1.872 (7)–2.103 (7)
W—Odb2 1.826 (3)–2.166 (3) 1.805 (7)–2.098 (7)
W—Otb1 2.201 (3)–2.297 (3) 2.207 (7)–2.273 (7)
W—Otb2 1.895 (4)–2.259 (4) 1.882 (8)–2.287 (7)
W⋯W (between corner-sharing WO6) 3.649 (4)–3.878 (5) 3.377 (4)–3.688 (2)
W⋯W (between edge-sharing WO6) 3.273 (4)–3.352 (4) 3.306 (2)–3.377 (3)
MII—O (M = Fe or Cu) 2.087 (4)–2.169 (4) 1.918 (7)–2.366 (8)
NaI—O 2.302 (11)–2.606 (11) 2.345 (9)–2.519 (13)
O—W—O 70.73 (14)–104.38 (17) 154.94 (15)–177.56 (16)
  70.2 (3)–105.6 (3) 152.8 (3)–178.1 (3)

In the crystal structure of Na5Fe2.5paraB, the paratungstate anions act as decadentate ligands, which are linked via terminal O atoms to six Fe2+ and four Na+ cations. There are two crystallographically unique iron centres with different coordination modes (Figs. 1[link]a and 1b). The coordination sphere of one type of Fe2+ atom (Fe2) is formed by two Ot from the belt unit {W3O14} of one [W12O40(OH)2]10−, one Ot from the capping {W3O13} group of a neighbouring polyanion and completed by three H2O mol­ecules. The octa­hedrally coordinated second Fe2+ atom (Fe1) is linked by two Ot from the {W3O13} units of two neighbouring polyanions, two Na+ bridging O atoms and two lattice H2O mol­ecules. The Fe1 octa­hedron and three Na(H2O)6 units from the infinite one-dimensional (1D) chain share a corner, thereby forming a two-dimensional sheet (2D) in the ab plane (Fig. 1[link]b). Neighbouring sheets are connected to each other by Fe2 cations, giving rise to a complicated three-dimensional structure (Figs. 2[link] and 3[link]). It should be noted that the double sodium–iron(II) paratungstate B Na5Fe2.5[W12O40(OH)2]·36H2O reported in this work has the same cationic composition as reported in Na5[{Fe(H2O)3}2{Fe(H2O)4}0.5(H2W12O42)]·30H2O (Yang et al., 2003[Yang, W.-B., Lu, C.-Z., Lin, X. & Zhuang, H.-H. (2003). Z. Anorg. Allg. Chem. 629, 2046-2052.]) (Table 1[link]). However, the minor difference with respect to the water content in these two structures leads to a significant change in the unit-cell parameters (Tables 1[link] and 2[link]) and the motif of crystal packing (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
The crystal packing of Na5Fe2.5paraB, viewed along the b axis. Colour code: {WO6} are light-blue octa­hedra and Na atoms are green, Fe yellow and O red.
[Figure 3]
Figure 3
The crystal packing of Na5Fe2.5paraB, viewed along the a axis. Colour code: {WO6} are light-blue octa­hedra and Na atoms are green, Fe yellow and O red.

In the crystal structure of Na4Cu3­paraB, each paratungstate B anion is coordinated to six Cu2+ and six Na+ via Ot and therefore acts as a dodecadentate ligand (Figs. 1[link]c and 1d). There are three crystallographically unique copper centres with different coordination modes. Two (Cu1 and Cu2) out of three Cu2+ cations take part in the formation of infinite chains with alternating Na and Cu polyhedra connected by a common edge (Figs. 1[link]d and 4) and have different coordination environments. The Cu2 atoms are linked by four Ot atoms of the belt-fragment {W3O14} from two neighbouring [W12O40(OH)2]10− anions and two Na+ bridging H2O mol­ecules. The coordination sphere of Cu3 consists of two Ot of the capping {W3O13} group of a neighbouring polyanion and is completed by four bridging H2O mol­ecules. The third Cu1 atom coordinates to four Ot atoms of the belt units {W3O14} from two neighbouring [W12O40(OH)2]10− anions and two H2O mol­ecules. The Cu2+ ions exhibit a distorted square–bipyramidal coordination geometry with elongated axial distances [2.365 (7)–2.520 (8) Å]. The three-dimensional (3D) structure of Na4Cu3-paraB consists of 2D sheets formed by two chains, namely {[(Na(H2O)2)2W12O40(OH)2]8−}n and {[Na(H2O)2–Cu(H2O)2–Na(H2O)2–Cu(H2O)4]6+}n parallel to the ab plane (Fig. 4[link]). The 2D sheets are connected along the c axis by [Cu(H2O)4]2+ cations (Fig. 5[link]). The two [Na(H2O)5]+ cations, which are connected to Ot of one polyanion and do not participate in the formation of sodium–copper chains, are located in 1D tunnels in the structure of Na4Cu3-paraB.

[Figure 4]
Figure 4
The crystal packing of Na4Cu3paraB, viewed along the c axis. Colour code: {WO6} are light-blue octa­hedra and Na atoms are green, Cu blue and O red.
[Figure 5]
Figure 5
The crystal packing of Na4Cu3paraB, viewed along the a axis. Colour code: {WO6} are light-blue octa­hedra and Na atoms are green, Cu blue and O red.

The results of the powder XRD patterns of Na5Fe2.5paraB and Na4Cu3paraB have been investigated in the solid state at room temperature (Fig. 6[link]). The simulated powder diffraction pattern was based on the single-crystal structural data. The simulated peak positions are in good agreement with those observed. A comparison of the experimental and simulated powder diffraction patterns confirms that the POTs structures had been solved accurately and that both products consist of a single phase.

[Figure 6]
Figure 6
Experimental (blue) and simulated (black) X-ray diffraction patterns of (a) Na4Cu3paraB and (b) Na5Fe2.5paraB.

In the IR spectra of Na5Fe2.5paraB and Na4Cu3paraB, the characteristic peaks at 975, 950, 932, 867, 676 and 488 cm−1, and at 972, 937, 926, 872, 675 and 493 cm−1, respectively, are attributed to the W=Ot and W—O—W vibrations in the paratungstate anion, which are in agreement with previously reported data (Table 1[link]; Qu et al., 2012[Qu, X., Yang, Y., Zhang, F. & Yu, X. (2012). Struct. Chem. 23, 1867-1872.]). The slight peak displacements are due to the effects of different coordination modes of paratungstate B. The peaks at ∼1600 and 3400 cm−1 are attributed to the vibration of water mol­ecules.

The disordered water mol­ecules in Na4Cu3paraB were treated with SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) and the exact number of water mol­ecules was determined by TGA. The TG curve shows a three-step weight-loss process (Fig. 7[link]). The first weight loss of 7.48% in the temperature range 25–125 °C corresponds to all lattice H2O and water mol­ecules from coordinating Na+ and Cu2+. The second (2.72%) and third (3.61%) steps in the range 125–500 °C correspond to 13 H2O mol­ecules coordinating Na+ and Cu2+. The total weight loss is 13.83%, which results in the formula Na4Cu3[W12O40(OH)2]·28H2O.

[Figure 7]
Figure 7
Thermogravimetric curve of Na4Cu3paraB.

The success in synthesizing Na5Fe2.5paraB and Na4Cu3paraB shows that paratungstate B is a versatile building block, which can be modified by metal sites into high-dimensional architectures and the different connection principle of the transition metals has a big impact on the dimensionalities of the frameworks.

Supporting information


Computing details top

For both structures, data collection: APEX3; cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and shelXle (Hübschle et al., 2011) for ando209_p-1; SHELXS97 (Sheldrick, 2008) for mo_ando241_p-1. Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for ando209_p-1; SHELXL2016 (Sheldrick, 2015) for mo_ando241_p-1. Molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2006) for ando209_p-1; OLEX2 (Dolomanov et al., 2009) for mo_ando241_p-1. For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(ando209_p-1) top
Crystal data top
Na4Cu3[W12O40(OH)2]·28H2OZ = 1
Mr = 3621.13F(000) = 1607
Triclinic, P1Dx = 4.080 Mg m3
a = 10.6516 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7532 (6) ÅCell parameters from 6027 reflections
c = 13.0730 (5) Åθ = 3.0–30.0°
α = 113.771 (1)°µ = 24.53 mm1
β = 90.443 (1)°T = 100 K
γ = 112.502 (1)°Plate, blue
V = 1473.65 (11) Å30.13 × 0.07 × 0.02 mm
Data collection top
Bruker APEX-II CCD
diffractometer
4720 reflections with I > 2σ(I)
Radiation source: sealed xray tube, Incoatec IuSRint = 0.048
φ and ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.004, Tmax = 0.023k = 1514
11292 measured reflectionsl = 1115
5321 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0463P)2 + 6.2838P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.05Δρmax = 2.15 e Å3
5321 reflectionsΔρmin = 1.63 e Å3
463 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
100 restraintsExtinction coefficient: 0.00022 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. _olex2_refinement_description

1. Fixed Uiso At 1.5 times of: All O(H,H) groups 2. Restrained distances Na2-H31A 2.8 with sigma of 0.05 H34B-H25A 2.2 with sigma of 0.02 H34A-H25A 2.2 with sigma of 0.03 H34B_$2-H31B 2.2 with sigma of 0.02 H34A_$4-H31B_$3 2.2 with sigma of 0.02 Cu3-H25A 2.7 with sigma of 0.05 Cu3-H25B 2.3 with sigma of 0.02 H35A-O24 1.8 with sigma of 0.06 H35B-O19 2 with sigma of 0.06 Na1-H27B 2.8 with sigma of 0.05 Na1-H27C = Na1-H27A = Na1-H27D 2.8 with sigma of 0.05 H33B-Na1 2.8 with sigma of 0.02 H33B-O27 2.4 with sigma of 0.05 Na1-H28A 2.7 with sigma of 0.04 H33B-H28A 2.4 with sigma of 0.04 H32A_$3-O26 1.8 with sigma of 0.04 Na2-H31B = Na2-H32B 2.8 with sigma of 0.075 O32-H27B_$5 2.3 with sigma of 0.04 H29A_$1-H22A 2.2 with sigma of 0.02 O31-H31A = O31-H31B = O26-H26B = O26-H26A = O29-H29B = O29-H29A = O30-H30A = O30-H30B = O32-H32A = O32-H32B = O27-H27A = O27-H27B = O22-H22A = O22-H22B = O25-H25A = O25-H25B = O28-H28A = O28-H28B = O33-H33A = O33-H33B 0.87 with sigma of 0.015 Na1_$5-H29A_$5 2.7 with sigma of 0.04 H31A-H31B ~ H32B-H32A ~ H29A-H29B ~ H30A-H30B ~ H26B-H26A ~ H27A-H27B ~ H22A- H22B ~ H25A-H25B ~ H28A-H28B ~ H33A-H33B with sigma of 0.01 3. Uiso/Uaniso restraints and constraints Uanis(O3) ~ Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02 Uanis(O35) ~ Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02 Uanis(O27) = Uanis(O27B) = Uanis(O33) 4. Others Fixed Sof: O27(0.5) H27A(0.5) H27B(0.5) O27B(0.5) H27C(0.5) H27D(0.5) O33(0.2) H33A(0.2) H33B(0.2) O34(0.8) H34A(0.8) H34B(0.8) 5.a Free rotating group: O27B(H27C,H27D), O35(H35A,H35B), O34(H34A,H34B) 5.b Rotating group: O26(H26A,H26B), O30(H30A,H30B)

_smtbx_masks_special_details ? loop_ _smtbx_masks_void_nr _smtbx_masks_void_average_x _smtbx_masks_void_average_y _smtbx_masks_void_average_z _smtbx_masks_void_volume _smtbx_masks_void_count_electrons _smtbx_masks_void_content 1 0.500 0.000 0.000 42.5 50.5 ?

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.40078 (5)0.59904 (4)0.70077 (4)0.02587 (13)
W20.29232 (5)0.29326 (4)0.70980 (4)0.02647 (13)
W30.11342 (5)0.30259 (4)0.50852 (4)0.02644 (13)
W40.36784 (5)0.55467 (4)0.25109 (4)0.02598 (13)
W50.25460 (5)0.24015 (4)0.24532 (4)0.02651 (13)
W60.44888 (5)0.25037 (4)0.45361 (4)0.02571 (13)
Cu10.50000.50000.00000.0295 (4)
Cu20.50000.00000.50000.0318 (4)
Cu30.00000.00000.50000.0292 (4)
Na10.1011 (5)0.6455 (5)0.8881 (4)0.0388 (11)
Na20.2217 (6)0.0459 (5)0.6480 (4)0.0453 (12)
O10.4360 (8)0.7354 (7)0.6568 (6)0.0307 (17)
O20.2961 (8)0.6304 (7)0.7964 (6)0.0321 (18)
O30.2806 (8)0.4797 (7)0.5682 (6)0.0274 (16)
O40.4464 (8)0.4809 (7)0.7296 (6)0.0287 (17)
O50.2953 (7)0.3510 (7)0.8548 (6)0.0278 (16)
O60.1920 (8)0.1290 (7)0.6530 (7)0.0311 (17)
O70.4689 (7)0.2862 (7)0.7099 (6)0.0265 (16)
O80.1595 (8)0.3407 (7)0.6693 (6)0.0280 (17)
O90.3000 (7)0.2617 (7)0.5253 (6)0.0256 (16)
O100.0060 (8)0.1394 (7)0.4742 (6)0.0283 (17)
O110.1443 (7)0.2788 (7)0.3603 (6)0.0273 (16)
O120.0075 (8)0.3650 (7)0.5232 (6)0.0303 (17)
O130.3723 (8)0.5048 (7)0.1034 (6)0.0303 (17)
O140.2479 (8)0.6201 (7)0.2670 (6)0.0292 (17)
O150.2601 (8)0.3979 (7)0.2454 (6)0.0285 (17)
O160.4167 (8)0.2715 (7)0.1837 (6)0.0277 (17)
O170.1273 (8)0.1263 (7)0.1285 (6)0.0321 (18)
O180.4261 (8)0.3860 (7)0.3991 (6)0.0270 (16)
O190.2939 (8)0.1433 (7)0.3058 (6)0.0278 (16)
O200.4522 (8)0.1175 (7)0.4616 (6)0.0308 (17)
O210.5820 (8)0.3799 (7)0.5722 (6)0.0278 (17)
O220.5004 (8)0.6562 (7)0.0030 (7)0.0322 (18)
H22A0.484 (6)0.641 (10)0.074 (3)0.048*
H22B0.572 (9)0.722 (8)0.045 (6)0.048*
O230.2659 (9)0.1426 (8)0.4500 (7)0.039 (2)
O240.5333 (8)0.0689 (7)0.3444 (7)0.0329 (18)
O250.1090 (9)0.0398 (7)0.3744 (7)0.039 (2)
H25A0.110 (4)0.105 (2)0.3192 (19)0.059*
H25B0.166 (10)0.037 (2)0.392 (8)0.059*
O260.0069 (9)0.5944 (8)0.7000 (7)0.0376 (19)
H26A0.07580.60590.69430.056*
H26B0.01750.50900.64770.056*
O280.0711 (10)0.6370 (10)1.0034 (8)0.053 (3)
H28A0.148 (3)0.585 (9)0.954 (3)0.080*
H28B0.056 (11)0.635 (12)1.068 (7)0.080*
O290.2535 (9)0.6809 (10)1.0510 (8)0.047 (2)
H29A0.310 (7)0.654 (10)1.013 (4)0.070*
H29B0.282 (10)0.757 (6)1.107 (9)0.070*
O300.0122 (9)0.4225 (8)0.8273 (7)0.039 (2)
H30A0.04980.37330.76120.058*
H30B0.09160.36960.79000.058*
O310.2749 (14)0.1008 (11)0.8572 (10)0.072 (3)
H31A0.306 (13)0.060 (8)0.883 (4)0.107*
H31B0.196 (6)0.105 (11)0.867 (7)0.107*
O320.2210 (10)0.1857 (9)0.7127 (9)0.051 (2)
H32A0.150 (6)0.252 (9)0.712 (13)0.077*
H32B0.305 (4)0.174 (11)0.736 (14)0.077*
O270.158 (3)0.860 (3)0.922 (2)0.057 (5)0.5
H27A0.246 (5)0.904 (6)0.946 (10)0.086*0.5
H27B0.113 (6)0.858 (6)0.865 (4)0.086*0.5
O27B0.119 (3)0.853 (3)0.960 (2)0.057 (5)0.5
H27C0.06940.86260.91580.086*0.5
H27D0.20080.90670.96750.086*0.5
O350.3779 (17)0.0594 (14)0.1911 (10)0.097 (5)
H35A0.41250.06150.24880.145*
H35B0.33750.01050.21260.145*
O330.004 (6)0.884 (4)1.035 (4)0.057 (5)0.2
H33A0.07 (5)0.951 (12)1.09 (4)0.086*0.2
H33B0.012 (17)0.808 (8)1.027 (16)0.086*0.2
O340.0162 (12)0.1184 (11)0.1541 (9)0.050 (3)0.8
H34A0.01670.04720.21260.075*0.8
H34B0.05540.17690.17460.075*0.8
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0266 (2)0.0247 (2)0.0263 (2)0.01145 (19)0.00481 (18)0.01057 (19)
W20.0264 (2)0.0259 (2)0.0273 (2)0.01121 (19)0.00467 (18)0.01163 (19)
W30.0264 (2)0.0253 (2)0.0273 (2)0.01089 (19)0.00448 (18)0.01138 (19)
W40.0262 (2)0.0257 (2)0.0260 (2)0.01136 (19)0.00429 (18)0.01098 (19)
W50.0270 (2)0.0250 (2)0.0265 (2)0.01085 (19)0.00361 (18)0.01049 (19)
W60.0266 (2)0.0245 (2)0.0259 (2)0.01144 (19)0.00433 (18)0.01039 (19)
Cu10.0326 (10)0.0310 (10)0.0286 (10)0.0162 (9)0.0076 (8)0.0138 (8)
Cu20.0351 (11)0.0298 (10)0.0326 (10)0.0152 (9)0.0068 (8)0.0142 (9)
Cu30.0302 (10)0.0274 (10)0.0319 (10)0.0130 (8)0.0059 (8)0.0140 (8)
Na10.037 (3)0.042 (3)0.039 (3)0.019 (2)0.008 (2)0.017 (2)
Na20.045 (3)0.037 (3)0.052 (3)0.015 (2)0.004 (2)0.021 (2)
O10.027 (4)0.029 (4)0.031 (4)0.009 (3)0.002 (3)0.011 (3)
O20.032 (4)0.038 (4)0.032 (4)0.017 (4)0.004 (3)0.019 (4)
O30.028 (4)0.028 (4)0.028 (4)0.009 (3)0.009 (3)0.016 (3)
O40.031 (4)0.025 (4)0.035 (4)0.015 (3)0.009 (3)0.014 (3)
O50.023 (4)0.030 (4)0.030 (4)0.010 (3)0.004 (3)0.014 (3)
O60.031 (4)0.029 (4)0.036 (4)0.015 (3)0.005 (3)0.015 (4)
O70.024 (4)0.028 (4)0.029 (4)0.012 (3)0.002 (3)0.012 (3)
O80.026 (4)0.033 (4)0.026 (4)0.011 (3)0.005 (3)0.015 (3)
O90.026 (4)0.028 (4)0.021 (4)0.009 (3)0.004 (3)0.012 (3)
O100.028 (4)0.023 (4)0.030 (4)0.007 (3)0.002 (3)0.011 (3)
O110.023 (4)0.031 (4)0.031 (4)0.013 (3)0.004 (3)0.016 (3)
O120.032 (4)0.037 (4)0.029 (4)0.017 (4)0.011 (3)0.018 (4)
O130.028 (4)0.035 (4)0.029 (4)0.013 (3)0.007 (3)0.014 (3)
O140.031 (4)0.026 (4)0.030 (4)0.011 (3)0.007 (3)0.013 (3)
O150.029 (4)0.025 (4)0.030 (4)0.009 (3)0.006 (3)0.013 (3)
O160.034 (4)0.030 (4)0.020 (4)0.015 (3)0.006 (3)0.010 (3)
O170.039 (5)0.032 (4)0.028 (4)0.017 (4)0.006 (3)0.014 (3)
O180.028 (4)0.021 (4)0.029 (4)0.008 (3)0.002 (3)0.010 (3)
O190.025 (4)0.028 (4)0.032 (4)0.012 (3)0.007 (3)0.013 (3)
O200.033 (4)0.033 (4)0.030 (4)0.016 (4)0.010 (3)0.015 (4)
O210.024 (4)0.030 (4)0.025 (4)0.008 (3)0.006 (3)0.011 (3)
O220.033 (5)0.032 (4)0.029 (4)0.017 (4)0.002 (3)0.008 (4)
O230.037 (5)0.034 (4)0.040 (5)0.016 (4)0.002 (4)0.009 (4)
O240.032 (4)0.029 (4)0.034 (4)0.013 (4)0.003 (3)0.010 (3)
O250.043 (5)0.024 (4)0.042 (5)0.010 (4)0.012 (4)0.011 (4)
O260.036 (5)0.042 (5)0.038 (5)0.020 (4)0.007 (4)0.017 (4)
O280.043 (6)0.082 (7)0.036 (5)0.032 (5)0.011 (4)0.023 (5)
O290.044 (5)0.062 (6)0.045 (5)0.031 (5)0.016 (4)0.026 (5)
O300.036 (5)0.051 (5)0.029 (4)0.021 (4)0.009 (4)0.014 (4)
O310.102 (10)0.065 (7)0.054 (6)0.043 (7)0.005 (6)0.025 (6)
O320.039 (5)0.052 (6)0.070 (7)0.021 (5)0.012 (5)0.033 (5)
O270.070 (15)0.047 (7)0.062 (16)0.028 (10)0.021 (9)0.027 (10)
O27B0.070 (15)0.047 (7)0.062 (16)0.028 (10)0.021 (9)0.027 (10)
O350.126 (11)0.088 (9)0.065 (7)0.078 (8)0.027 (7)0.007 (6)
O330.070 (15)0.047 (7)0.062 (16)0.028 (10)0.021 (9)0.027 (10)
O340.047 (7)0.041 (6)0.030 (6)0.005 (5)0.010 (5)0.008 (5)
Geometric parameters (Å, º) top
W1—O11.951 (7)Cu1—O222.007 (8)
W1—O21.710 (8)Cu1—O22iv2.007 (8)
W1—O31.818 (7)Cu2—Na23.542 (6)
W1—O41.914 (7)Cu2—Na2v3.542 (6)
W1—O16i2.067 (8)Cu2—O201.985 (8)
W1—O18i2.260 (8)Cu2—O20v1.985 (8)
W2—O42.230 (7)Cu2—O232.345 (8)
W2—O51.730 (7)Cu2—O23v2.345 (8)
W2—O61.762 (8)Cu2—O241.961 (8)
W2—O71.917 (7)Cu2—O24v1.961 (8)
W2—O81.884 (8)Cu3—Na23.400 (5)
W2—O92.287 (7)Cu3—Na2ii3.400 (5)
W3—Na2ii3.632 (5)Cu3—O62.366 (8)
W3—O32.088 (7)Cu3—O6ii2.366 (8)
W3—O81.968 (7)Cu3—O101.918 (7)
W3—O92.268 (8)Cu3—O10ii1.918 (7)
W3—O101.805 (7)Cu3—O25ii2.027 (8)
W3—O111.888 (7)Cu3—O252.027 (8)
W3—O121.730 (8)Na1—O22.439 (9)
W4—O4i2.226 (8)Na1—O262.376 (9)
W4—O7i1.963 (7)Na1—O282.380 (10)
W4—O131.780 (7)Na1—O292.446 (11)
W4—O141.747 (8)Na1—O302.392 (10)
W4—O151.855 (7)Na1—O272.41 (3)
W4—O21i2.098 (7)Na1—O27B2.35 (3)
W5—O111.938 (7)Na2—W3ii3.632 (5)
W5—O151.990 (7)Na2—O62.345 (9)
W5—O161.882 (8)Na2—O10ii2.459 (9)
W5—O171.718 (8)Na2—O232.516 (10)
W5—O182.273 (7)Na2—O24v2.432 (10)
W5—O191.872 (7)Na2—O312.519 (13)
W6—O1i1.920 (8)Na2—O322.260 (10)
W6—O91.872 (7)O1—W6i1.920 (8)
W6—O182.207 (7)O4—W4i2.226 (8)
W6—O192.103 (7)O5—Cu1vi2.413 (7)
W6—O201.753 (8)O7—W4i1.963 (7)
W6—O211.803 (7)O10—Na2ii2.459 (9)
Cu1—O5iii2.413 (7)O16—W1i2.067 (7)
Cu1—O5i2.413 (7)O18—W1i2.260 (8)
Cu1—O131.926 (8)O21—W4i2.098 (7)
Cu1—O13iv1.926 (8)O24—Na2v2.432 (10)
O1—W1—O16i82.4 (3)O24—Cu2—Na2v41.1 (2)
O1—W1—O18i70.2 (3)O24v—Cu2—Na2v138.9 (2)
O2—W1—O199.5 (3)O24v—Cu2—Na241.1 (2)
O2—W1—O3104.1 (4)O24—Cu2—O2087.1 (3)
O2—W1—O4102.2 (3)O24—Cu2—O20v92.9 (3)
O2—W1—O16i94.8 (3)O24v—Cu2—O20v87.1 (3)
O2—W1—O18i164.6 (3)O24v—Cu2—O2092.9 (3)
O3—W1—O193.2 (3)O24—Cu2—O2393.9 (3)
O3—W1—O494.1 (3)O24v—Cu2—O23v93.9 (3)
O3—W1—O16i161.1 (3)O24—Cu2—O23v86.1 (3)
O3—W1—O18i88.3 (3)O24v—Cu2—O2386.1 (3)
O4—W1—O1154.6 (3)O24v—Cu2—O24180.0
O4—W1—O16i82.8 (3)Na2—Cu3—Na2ii180.0
O4—W1—O18i85.7 (3)O6ii—Cu3—Na2ii43.6 (2)
O16i—W1—O18i72.9 (3)O6—Cu3—Na243.6 (2)
O4—W2—O977.3 (3)O6—Cu3—Na2ii136.4 (2)
O5—W2—O491.7 (3)O6ii—Cu3—Na2136.4 (2)
O5—W2—O6105.6 (3)O6—Cu3—O6ii180.0 (3)
O5—W2—O798.5 (3)O10—Cu3—Na2134.8 (2)
O5—W2—O898.8 (3)O10—Cu3—Na2ii45.2 (2)
O5—W2—O9167.4 (3)O10ii—Cu3—Na2ii134.8 (2)
O6—W2—O4161.2 (3)O10ii—Cu3—Na245.2 (2)
O6—W2—O796.2 (3)O10ii—Cu3—O686.7 (3)
O6—W2—O899.2 (3)O10ii—Cu3—O6ii93.3 (3)
O6—W2—O986.2 (3)O10—Cu3—O693.3 (3)
O7—W2—O473.6 (3)O10—Cu3—O6ii86.7 (3)
O7—W2—O984.4 (3)O10—Cu3—O10ii180.0
O8—W2—O485.1 (3)O10—Cu3—O2589.1 (3)
O8—W2—O7152.8 (3)O10—Cu3—O25ii90.9 (3)
O8—W2—O974.4 (3)O10ii—Cu3—O2590.9 (3)
O3—W3—Na2ii159.2 (2)O10ii—Cu3—O25ii89.1 (3)
O3—W3—O976.3 (3)O25—Cu3—Na285.0 (3)
O8—W3—Na2ii115.9 (2)O25ii—Cu3—Na2ii85.0 (3)
O8—W3—O379.4 (3)O25—Cu3—Na2ii95.0 (3)
O8—W3—O973.4 (3)O25ii—Cu3—Na295.0 (3)
O9—W3—Na2ii120.3 (2)O25ii—Cu3—O6ii96.9 (3)
O10—W3—Na2ii37.5 (3)O25ii—Cu3—O683.1 (3)
O10—W3—O3163.0 (3)O25—Cu3—O696.9 (3)
O10—W3—O890.7 (3)O25—Cu3—O6ii83.1 (3)
O10—W3—O987.7 (3)O25—Cu3—O25ii180.0 (4)
O10—W3—O1197.4 (3)O2—Na1—O2981.7 (3)
O11—W3—Na2ii82.2 (2)O26—Na1—O280.5 (3)
O11—W3—O387.2 (3)O26—Na1—O28111.0 (4)
O11—W3—O8157.1 (3)O26—Na1—O29161.9 (4)
O11—W3—O985.5 (3)O26—Na1—O3086.2 (3)
O12—W3—Na2ii71.8 (3)O26—Na1—O2784.4 (8)
O12—W3—O393.1 (3)O28—Na1—O2165.5 (4)
O12—W3—O897.5 (3)O28—Na1—O2986.1 (3)
O12—W3—O9167.0 (3)O28—Na1—O3084.9 (4)
O12—W3—O10101.9 (4)O28—Na1—O2794.3 (6)
O12—W3—O11101.7 (3)O30—Na1—O287.1 (3)
O7i—W4—O4i72.8 (3)O30—Na1—O2989.7 (4)
O7i—W4—O21i79.7 (3)O30—Na1—O27169.6 (9)
O13—W4—O4i88.2 (3)O27—Na1—O295.8 (7)
O13—W4—O7i91.2 (3)O27—Na1—O29100.6 (9)
O13—W4—O1598.3 (3)O27B—Na1—O2110.2 (7)
O13—W4—O21i164.6 (3)O27B—Na1—O2692.8 (8)
O14—W4—O4i164.9 (3)O27B—Na1—O2878.9 (6)
O14—W4—O7i95.4 (3)O27B—Na1—O2996.3 (9)
O14—W4—O13101.8 (3)O27B—Na1—O30162.2 (8)
O14—W4—O15101.3 (3)Cu2—Na2—W3ii118.32 (15)
O14—W4—O21i91.5 (3)Cu3—Na2—W3ii60.12 (9)
O15—W4—O4i88.2 (3)Cu3—Na2—Cu2100.18 (13)
O15—W4—O7i158.6 (3)O6—Na2—W3ii101.7 (3)
O15—W4—O21i86.6 (3)O6—Na2—Cu293.5 (2)
O21i—W4—O4i77.3 (3)O6—Na2—Cu344.0 (2)
O11—W5—O1581.1 (3)O6—Na2—O10ii76.0 (3)
O11—W5—O1880.1 (3)O6—Na2—O23102.4 (3)
O15—W5—O1880.2 (3)O6—Na2—O24v87.4 (3)
O16—W5—O11154.7 (3)O6—Na2—O3176.2 (4)
O16—W5—O1586.7 (3)O10ii—Na2—W3ii26.54 (17)
O16—W5—O1876.0 (3)O10ii—Na2—Cu2113.4 (2)
O17—W5—O11100.9 (3)O10ii—Na2—Cu333.59 (18)
O17—W5—O15101.6 (3)O10ii—Na2—O2376.4 (3)
O17—W5—O16103.2 (3)O10ii—Na2—O31123.3 (4)
O17—W5—O18178.1 (3)O23—Na2—W3ii77.0 (2)
O17—W5—O19102.1 (3)O23—Na2—Cu241.4 (2)
O19—W5—O1189.2 (3)O23—Na2—Cu379.5 (2)
O19—W5—O15155.7 (3)O23—Na2—O31158.1 (4)
O19—W5—O1693.1 (3)O24v—Na2—W3ii150.1 (3)
O19—W5—O1876.2 (3)O24v—Na2—Cu232.0 (2)
O1i—W6—O1872.0 (3)O24v—Na2—Cu3115.8 (2)
O1i—W6—O1981.2 (3)O24v—Na2—O10ii141.2 (3)
O9—W6—O1i154.3 (3)O24v—Na2—O2373.3 (3)
O9—W6—O1884.3 (3)O24v—Na2—O3184.8 (4)
O9—W6—O1982.9 (3)O31—Na2—W3ii125.0 (4)
O19—W6—O1873.4 (3)O31—Na2—Cu2116.7 (4)
O20—W6—O1i100.5 (3)O31—Na2—Cu3111.2 (3)
O20—W6—O9100.5 (3)O32—Na2—W3ii80.5 (3)
O20—W6—O18166.0 (3)O32—Na2—Cu2106.6 (3)
O20—W6—O1994.0 (3)O32—Na2—Cu3139.6 (3)
O20—W6—O21102.8 (4)O32—Na2—O6156.0 (4)
O21—W6—O1i93.7 (3)O32—Na2—O10ii106.6 (4)
O21—W6—O995.7 (3)O32—Na2—O23101.3 (4)
O21—W6—O1889.6 (3)O32—Na2—O24v102.6 (4)
O21—W6—O19163.0 (3)O32—Na2—O3183.0 (4)
O5i—Cu1—O5iii180.0 (4)W6i—O1—W1119.2 (4)
O13iv—Cu1—O5iii95.3 (3)W1—O2—Na1165.1 (4)
O13—Cu1—O5iii84.7 (3)W1—O3—W3138.3 (4)
O13—Cu1—O5i95.3 (3)W1—O4—W2124.5 (4)
O13iv—Cu1—O5i84.7 (3)W1—O4—W4i138.3 (4)
O13—Cu1—O13iv180.0W4i—O4—W295.7 (3)
O13iv—Cu1—O22iv89.8 (3)W2—O5—Cu1vi124.8 (4)
O13—Cu1—O22iv90.2 (3)W2—O6—Cu3128.5 (4)
O13iv—Cu1—O2290.2 (3)W2—O6—Na2136.6 (4)
O13—Cu1—O2289.8 (3)Na2—O6—Cu392.4 (3)
O22—Cu1—O5iii96.7 (3)W2—O7—W4i116.8 (4)
O22iv—Cu1—O5i96.7 (3)W2—O8—W3118.1 (4)
O22—Cu1—O5i83.3 (3)W3—O9—W293.0 (3)
O22iv—Cu1—O5iii83.3 (3)W6—O9—W2124.6 (4)
O22—Cu1—O22iv180.0W6—O9—W3140.5 (4)
Na2v—Cu2—Na2180.0W3—O10—Cu3142.8 (4)
O20—Cu2—Na2v89.6 (2)W3—O10—Na2ii116.0 (4)
O20—Cu2—Na290.4 (2)Cu3—O10—Na2ii101.2 (3)
O20v—Cu2—Na2v90.4 (2)W3—O11—W5147.9 (4)
O20v—Cu2—Na289.6 (2)W4—O13—Cu1141.2 (5)
O20—Cu2—O20v180.00 (15)W4—O15—W5147.1 (4)
O20—Cu2—O2390.5 (3)W5—O16—W1i115.9 (3)
O20—Cu2—O23v89.5 (3)W1i—O18—W595.2 (3)
O20v—Cu2—O2389.5 (3)W6—O18—W1i96.7 (3)
O20v—Cu2—O23v90.5 (3)W6—O18—W596.3 (3)
O23v—Cu2—Na2v45.2 (2)W5—O19—W6114.1 (4)
O23v—Cu2—Na2134.8 (2)W6—O20—Cu2165.2 (5)
O23—Cu2—Na245.2 (2)W6—O21—W4i138.5 (4)
O23—Cu2—Na2v134.8 (2)Cu2—O23—Na293.5 (3)
O23v—Cu2—O23180.0Cu2—O24—Na2v107.0 (4)
O24—Cu2—Na2138.9 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z; (v) x+1, y, z+1; (vi) x, y, z+1.
(mo_ando241_p-1) top
Crystal data top
Na5Fe2.5[W12O40(OH)2]·36H2OZ = 2
Mr = 3771.27F(000) = 3388
Triclinic, P1Dx = 3.708 Mg m3
a = 12.3758 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.7752 (7) ÅCell parameters from 9822 reflections
c = 18.8919 (8) Åθ = 2.2–25.5°
α = 92.9341 (14)°µ = 21.02 mm1
β = 100.6938 (14)°T = 100 K
γ = 94.1698 (15)°Needle, clear light orange
V = 3378.1 (3) Å30.37 × 0.07 × 0.04 mm
Data collection top
Bruker D8 Venture
diffractometer
10876 reflections with I > 2σ(I)
Radiation source: sealed xray tube, Incoatec IuSRint = 0.032
φ and ω scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1414
Tmin = 0.012, Tmax = 0.044k = 1717
38068 measured reflectionsl = 2222
12318 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0176P)2 + 7.2977P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.005
S = 1.09Δρmax = 1.57 e Å3
12318 reflectionsΔρmin = 1.25 e Å3
980 parametersExtinction correction: SHELXL2016 (Sheldrick, 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
405 restraintsExtinction coefficient: 0.000312 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. _olex2_refinement_description

1. Fixed Uiso At 1.5 times of: All O(H,H) groups 2. Restrained distances H64A-H61B_$1 2.2 with sigma of 0.02 H59B-H63B 2.2 with sigma of 0.02 H63B_$2-H71A 2.2 with sigma of 0.02 H71A-H63B_$2 2.2 with sigma of 0.05 H49B-Na1 2.7 with sigma of 0.01 H51B-O35_$4 2.3 with sigma of 0.04 H51A-H51B 1.41 with sigma of 0.01 O51-H51A = O51-H51B 0.87 with sigma of 0.01 H52A-Na3 2.7 with sigma of 0.01 O52-H52B = O52-H52A 0.87 with sigma of 0.01 H52A-H52B 1.41 with sigma of 0.01 H53A-O36 2 with sigma of 0.04 H53A-H53B 1.41 with sigma of 0.01 O53-H53A = O53-H53B 0.87 with sigma of 0.01 H77B-H28A 2.2 with sigma of 0.02 H77A-H28A 2.2 with sigma of 0.02 O77-H77A = O77-H77B = O28-H28B = O28-H28A 0.87 with sigma of 0.01 H77A-H77B = H28B-H28A 1.41 with sigma of 0.01 H49B-Na2 2.7 with sigma of 0.01 Na2-H49A 2.7 with sigma of 0.02 O50-H50A ~ O50-H50B ~ O51-H51A ~ O51-H51B ~ O48-H48A ~ O48-H48B ~ O47-H47B O47-H47A ~ O65-H65B ~ O65-H65A ~ O64-H64A ~ O64-H64B ~ O74-H74A ~ O74-H74B O63-H63A ~ O63-H63B ~ O60-H60B ~ O60-H60A ~ O167-H16B ~ O167-H16A ~ O67-H67B O67-H67A ~ O27-H27B ~ O27-H27A ~ O28-H28A ~ O28-H28B ~ O77-H77A ~ O77-H77B with sigma of 0.02 3. Others Fixed Sof: O66(0.5) O67(0.5) H67A(0.5) H67B(0.5) O166(0.5) O167(0.5) H16A(0.5) H16B(0.5) 4.a Free rotating group: O49(H49A,H49B), O62(H62A,H62B), O57(H57A,H57B), O68(H68A,H68B), O69(H69A, H69B), O70(H70A,H70B), O71(H71A,H71B), O72(H72A,H72B), O73(H73A,H73B) 4.b Rotating group: O22(H22A,H22B), O23(H23A,H23B), O24(H24A,H24B), O27(H27A,H27B), O29(H29A, H29B), O47(H47A,H47B), O48(H48A,H48B), O50(H50A,H50B), O54(H54A,H54B), O55(H55A,H55B), O56(H56A,H56B), O58(H58A,H58B), O59(H59A,H59B), O60(H60A,H60B), O61(H61A,H61B), O63(H63A,H63B), O64(H64A,H64B), O65(H65A,H65B), O74(H74A, H74B), O67(H67A,H67B), O167(H16A,H16B)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.43982 (2)0.96245 (2)1.17681 (2)0.01193 (6)
W20.25947 (2)0.81700 (2)1.03223 (2)0.01230 (6)
W30.39839 (2)0.69804 (2)0.93379 (2)0.01231 (6)
W40.61176 (2)0.80885 (2)0.88516 (2)0.01207 (6)
W50.34632 (2)0.93167 (2)0.87838 (2)0.01145 (5)
W60.41877 (2)1.15417 (2)0.92471 (2)0.01161 (6)
W70.09965 (2)0.79501 (2)0.57766 (2)0.01183 (6)
W80.24036 (2)0.68517 (2)0.47575 (2)0.01201 (6)
W90.15423 (2)0.56265 (2)0.62612 (2)0.01127 (5)
W100.08150 (2)0.34469 (2)0.56793 (2)0.01140 (6)
W110.06153 (2)0.45282 (2)0.67587 (2)0.01177 (6)
W120.11444 (2)0.68342 (2)0.62245 (2)0.01181 (6)
Fe10.0000001.0000000.5000000.0146 (2)
Fe20.07450 (6)0.82233 (5)0.76386 (4)0.01358 (16)
Fe30.42245 (6)0.66855 (5)0.74623 (4)0.01375 (16)
Na10.5000000.0000000.5000000.0205 (7)
Na20.28394 (19)0.13921 (14)0.60840 (11)0.0213 (5)
Na30.50905 (19)0.63218 (14)0.41748 (11)0.0193 (5)
Na40.00109 (19)1.11946 (14)0.90833 (12)0.0205 (5)
Na50.19312 (19)1.34276 (14)0.89244 (12)0.0216 (5)
Na60.0000001.5000001.0000000.0270 (7)
O750.1001 (3)0.8950 (2)0.53226 (19)0.0156 (8)
O770.0108 (3)1.0403 (3)0.6088 (2)0.0216 (9)
H77A0.022 (3)1.079 (2)0.634 (2)0.032*
H77B0.0826 (10)1.056 (3)0.6221 (19)0.032*
O10.3979 (3)0.9495 (2)1.25833 (19)0.0168 (8)
O780.2529 (3)0.7055 (2)0.60234 (19)0.0157 (8)
O20.5723 (3)1.0360 (2)1.20459 (19)0.0141 (8)
O760.1546 (3)1.0778 (2)0.49860 (19)0.0167 (8)
O30.5139 (3)0.8592 (2)1.16577 (18)0.0141 (8)
O40.3706 (3)1.0748 (2)1.14768 (19)0.0149 (8)
O50.5025 (3)0.9800 (2)1.07220 (18)0.0127 (7)
O60.3153 (3)0.9044 (2)1.10875 (19)0.0137 (8)
O70.2386 (3)0.7250 (2)1.08414 (19)0.0177 (8)
O80.4370 (3)0.7922 (2)1.03049 (18)0.0138 (8)
O90.3135 (3)0.9243 (2)0.96673 (19)0.0144 (8)
O100.1258 (3)0.8510 (2)1.00611 (19)0.0162 (8)
O110.2618 (3)0.7439 (2)0.94416 (18)0.0140 (8)
O120.3941 (3)0.6005 (2)0.98167 (19)0.0165 (8)
O130.5521 (3)0.7084 (2)0.93601 (19)0.0145 (8)
O140.3535 (3)0.6564 (2)0.84180 (18)0.0142 (8)
O150.7498 (3)0.7843 (2)0.90512 (19)0.0163 (8)
O160.5632 (3)0.7473 (2)0.80024 (19)0.0154 (8)
O170.4373 (3)0.8345 (2)0.88711 (19)0.0148 (8)
O180.3123 (3)1.0590 (2)0.87348 (18)0.0135 (7)
O190.2265 (3)0.8848 (2)0.82087 (19)0.0157 (8)
O200.3779 (3)1.1284 (2)1.00996 (18)0.0135 (8)
O210.3490 (3)1.2486 (2)0.90007 (19)0.0162 (8)
O220.4906 (3)0.5437 (2)0.7766 (2)0.0176 (8)
H22A0.4719210.5258960.8181590.026*
H22B0.5651190.5495900.7834090.026*
O230.4817 (3)0.6504 (2)0.6488 (2)0.0189 (8)
H23A0.5340970.6109230.6533090.028*
H23B0.5114490.7032540.6364780.028*
O240.3712 (3)0.7970 (2)0.71232 (19)0.0170 (8)
H24A0.4009700.8127520.6748600.026*
H24B0.3922320.8400870.7477030.026*
O250.2710 (3)0.6072 (2)0.68784 (19)0.0145 (8)
O260.1417 (3)0.8342 (2)0.67012 (19)0.0163 (8)
O270.0118 (3)0.8350 (2)0.85913 (19)0.0175 (8)
H27A0.0193500.7808610.8706170.026*
H27B0.0418580.8749140.8555580.026*
O280.0044 (3)0.9491 (2)0.73617 (19)0.0171 (8)
H28A0.025 (4)0.961 (3)0.6950 (14)0.026*
H28B0.025 (5)0.999 (2)0.7650 (19)0.026*
O290.1294 (3)0.6937 (2)0.7944 (2)0.0171 (8)
H29A0.1208450.6545210.7557980.026*
H29B0.0908380.6700870.8254490.026*
O300.0686 (3)0.7429 (2)0.70806 (19)0.0173 (8)
O310.0565 (3)0.7844 (2)0.57317 (19)0.0130 (7)
O320.0612 (3)0.6594 (2)0.62006 (19)0.0152 (8)
O330.0626 (3)0.7070 (2)0.47893 (19)0.0138 (8)
O340.1905 (3)0.5774 (2)0.53939 (19)0.0158 (8)
O350.2371 (3)0.7542 (2)0.56669 (18)0.0149 (8)
O360.2569 (3)0.7839 (2)0.42933 (19)0.0150 (8)
O370.3757 (3)0.6545 (2)0.49892 (19)0.0163 (8)
O380.1295 (3)0.5646 (2)0.65250 (19)0.0146 (8)
O390.1851 (3)0.3951 (2)0.60394 (19)0.0137 (7)
O400.1030 (3)0.4288 (2)0.7553 (2)0.0177 (8)
O410.0140 (3)0.3492 (2)0.65924 (18)0.0134 (7)
O420.0032 (3)0.4785 (2)0.57249 (18)0.0134 (8)
O430.0721 (3)0.5233 (2)0.70755 (19)0.0143 (8)
O440.1231 (3)0.6218 (2)0.51595 (18)0.0128 (7)
O450.1879 (3)0.4362 (2)0.62501 (18)0.0134 (7)
O460.1513 (3)0.2498 (2)0.58872 (19)0.0157 (8)
O470.3478 (3)0.2254 (2)0.7211 (2)0.0203 (9)
H47A0.3761480.2811080.7141490.030*
H47B0.4003730.1976780.7489890.030*
O480.2635 (4)0.0174 (3)0.6787 (2)0.0340 (11)
H48A0.3291020.0039690.7028250.051*
H48B0.2321930.0320500.6511180.051*
O490.4680 (4)0.0895 (3)0.6048 (2)0.0229 (9)
H49A0.5051300.1355770.6310420.034*
H49B0.4666320.0464770.6344520.034*
O500.7003 (3)0.0214 (2)0.5578 (2)0.0216 (9)
H50A0.7098870.0094120.6049860.032*
H50B0.7270300.0804480.5596990.032*
O510.5203 (4)0.1320 (3)0.4330 (2)0.0265 (9)
H51A0.478 (4)0.139 (4)0.3902 (16)0.040*
H51B0.5888 (17)0.150 (4)0.427 (3)0.040*
O520.6197 (4)0.7649 (2)0.4778 (2)0.0215 (9)
H52A0.663 (3)0.7394 (10)0.5110 (18)0.032*
H52B0.577 (4)0.797 (4)0.499 (2)0.032*
O530.4156 (3)0.7413 (3)0.3450 (2)0.0232 (9)
H53A0.355 (2)0.745 (4)0.362 (2)0.035*
H53B0.397 (4)0.728 (4)0.2988 (8)0.035*
O540.6019 (3)0.6050 (2)0.32011 (19)0.0185 (8)
H54A0.5693160.5567280.2920400.028*
H54B0.6719690.5948650.3364550.028*
O550.6443 (3)0.5476 (2)0.4892 (2)0.0193 (8)
H55A0.7131150.5728580.4907110.029*
H55B0.6408270.4896510.4707390.029*
O560.4026 (3)0.4899 (2)0.3769 (2)0.0205 (8)
H56A0.3515940.4970920.3382630.031*
H56B0.3691010.4693940.4113580.031*
O580.1426 (3)1.0451 (2)0.9812 (2)0.0220 (9)
H58A0.2080951.0694370.9766340.033*
H58B0.1371720.9865970.9673120.033*
O590.1030 (3)1.0982 (2)0.8154 (2)0.0196 (8)
H59A0.1729241.0822900.8333070.029*
H59B0.1113171.1503600.7916370.029*
O600.1092 (3)0.9738 (2)0.8820 (2)0.0231 (9)
H60A0.1660900.9779930.8466580.035*
H60B0.1340220.9568330.9206540.035*
O610.3140 (3)1.4191 (2)0.9940 (2)0.0229 (9)
H61A0.3690861.4585270.9807170.034*
H61B0.3520701.3789251.0252270.034*
O620.1017 (4)1.2528 (3)0.9709 (2)0.0218 (9)
H62A0.1457601.2295231.0053330.033*
H62B0.0606401.2851120.9931120.033*
O630.1595 (3)1.2692 (2)0.7723 (2)0.0204 (8)
H63A0.2149111.2863410.7440700.031*
H63B0.0900441.2820580.7425110.031*
O640.1812 (4)1.4738 (3)0.9349 (2)0.0286 (10)
H64A0.2348361.5157140.9491550.043*
H64B0.2182631.4122640.9382460.043*
O650.0222 (4)1.3617 (3)1.0594 (2)0.0269 (9)
H65A0.0923831.3505121.0649550.040*
H65B0.0212781.3650541.1034500.040*
O740.2373 (4)1.4742 (3)0.8282 (2)0.0339 (11)
H74A0.2770541.4590420.7959940.051*
H74B0.2752561.5169540.8590080.051*
O660.0455 (9)1.4372 (6)0.8932 (6)0.025 (2)0.5
O670.0980 (10)1.2057 (8)0.8245 (6)0.040 (3)0.5
H67A0.1722971.2230600.8344400.061*0.5
H67B0.1189221.1769660.7728750.061*0.5
O1660.0109 (11)1.3927 (8)0.8881 (6)0.036 (3)0.5
O1670.1337 (10)1.1537 (9)0.8069 (7)0.047 (3)0.5
H16A0.1200911.2180360.7832180.070*0.5
H16B0.2193531.1579150.8132130.070*0.5
O570.3650 (4)0.6621 (3)0.2063 (2)0.0269 (9)
H57A0.4266750.6500880.1936050.040*
H57B0.3226560.6847980.1706480.040*
O680.8504 (4)0.6607 (2)0.8242 (2)0.0222 (9)
H68A0.8747530.6865760.7892310.033*
H68B0.8110520.6974430.8438190.033*
O690.6958 (3)0.5233 (3)0.7662 (2)0.0230 (9)
H69A0.7066010.4677550.7772400.034*
H69B0.7490600.5602250.7908970.034*
O700.4874 (4)0.4128 (3)0.8762 (2)0.0258 (9)
H70A0.5266300.4112880.9192880.039*
H70B0.4222320.3853670.8746130.039*
O710.9183 (3)0.1787 (2)0.6740 (2)0.0227 (9)
H71A0.9450970.2315660.6640010.034*
H71B0.8512490.1674530.6497250.034*
O720.7852 (4)0.9728 (3)0.7021 (2)0.0282 (10)
H72A0.7414680.9231750.6971010.042*
H72B0.7512101.0181930.7155890.042*
O730.6434 (4)0.8229 (2)0.6820 (2)0.0211 (9)
H73A0.6145400.8028040.7174470.032*
H73B0.6811980.7815100.6662410.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01172 (12)0.01254 (10)0.01175 (11)0.00075 (8)0.00268 (8)0.00154 (8)
W20.01205 (12)0.01225 (10)0.01259 (11)0.00030 (8)0.00248 (8)0.00132 (8)
W30.01267 (12)0.01148 (10)0.01268 (11)0.00047 (8)0.00234 (8)0.00094 (8)
W40.01198 (12)0.01195 (10)0.01232 (11)0.00099 (8)0.00236 (8)0.00104 (8)
W50.01123 (12)0.01134 (10)0.01177 (10)0.00078 (8)0.00211 (8)0.00128 (8)
W60.01164 (12)0.01129 (10)0.01178 (10)0.00095 (8)0.00183 (8)0.00125 (8)
W70.01197 (12)0.01111 (10)0.01233 (10)0.00082 (8)0.00213 (8)0.00099 (8)
W80.01164 (12)0.01182 (10)0.01258 (11)0.00048 (8)0.00245 (8)0.00124 (8)
W90.01105 (12)0.01091 (10)0.01184 (10)0.00080 (8)0.00205 (8)0.00127 (8)
W100.01133 (12)0.01107 (10)0.01177 (10)0.00089 (8)0.00202 (8)0.00114 (8)
W110.01170 (12)0.01198 (10)0.01187 (11)0.00078 (8)0.00277 (8)0.00146 (8)
W120.01179 (12)0.01161 (10)0.01209 (11)0.00098 (8)0.00230 (8)0.00121 (8)
Fe10.0158 (6)0.0140 (5)0.0141 (5)0.0019 (4)0.0030 (4)0.0021 (4)
Fe20.0130 (4)0.0142 (3)0.0132 (4)0.0001 (3)0.0022 (3)0.0005 (3)
Fe30.0133 (4)0.0137 (3)0.0140 (4)0.0001 (3)0.0023 (3)0.0005 (3)
Na10.0215 (18)0.0183 (15)0.0213 (16)0.0016 (13)0.0035 (13)0.0010 (12)
Na20.0235 (13)0.0208 (10)0.0191 (11)0.0053 (10)0.0010 (9)0.0018 (9)
Na30.0198 (13)0.0191 (10)0.0198 (11)0.0021 (9)0.0057 (9)0.0023 (9)
Na40.0204 (13)0.0220 (11)0.0208 (11)0.0027 (9)0.0074 (9)0.0044 (9)
Na50.0222 (13)0.0223 (11)0.0206 (11)0.0046 (10)0.0032 (9)0.0024 (9)
Na60.0214 (19)0.0287 (17)0.0322 (19)0.0043 (15)0.0050 (15)0.0118 (14)
O750.014 (2)0.0130 (17)0.0200 (19)0.0037 (15)0.0038 (15)0.0025 (14)
O770.019 (2)0.025 (2)0.020 (2)0.0053 (17)0.0017 (17)0.0017 (16)
O10.017 (2)0.0177 (18)0.0156 (19)0.0001 (16)0.0028 (15)0.0009 (15)
O780.014 (2)0.0158 (17)0.0178 (19)0.0008 (15)0.0033 (15)0.0003 (14)
O20.013 (2)0.0142 (17)0.0142 (18)0.0001 (15)0.0011 (15)0.0016 (14)
O760.017 (2)0.0150 (17)0.0184 (19)0.0002 (15)0.0045 (16)0.0013 (15)
O30.016 (2)0.0140 (17)0.0128 (18)0.0000 (15)0.0045 (15)0.0042 (14)
O40.015 (2)0.0136 (17)0.0171 (19)0.0022 (15)0.0052 (15)0.0009 (14)
O50.013 (2)0.0111 (16)0.0135 (18)0.0014 (15)0.0024 (15)0.0003 (14)
O60.012 (2)0.0143 (17)0.0159 (18)0.0033 (15)0.0039 (15)0.0011 (14)
O70.021 (2)0.0144 (17)0.0174 (19)0.0015 (16)0.0046 (16)0.0022 (15)
O80.014 (2)0.0127 (17)0.0147 (18)0.0021 (15)0.0019 (15)0.0028 (14)
O90.016 (2)0.0135 (17)0.0138 (18)0.0016 (15)0.0025 (15)0.0016 (14)
O100.015 (2)0.0137 (17)0.0184 (19)0.0022 (15)0.0012 (15)0.0007 (14)
O110.011 (2)0.0149 (17)0.0148 (18)0.0024 (15)0.0003 (15)0.0010 (14)
O120.018 (2)0.0147 (17)0.0169 (19)0.0038 (16)0.0033 (16)0.0023 (14)
O130.012 (2)0.0163 (17)0.0146 (18)0.0023 (15)0.0002 (15)0.0003 (14)
O140.015 (2)0.0183 (18)0.0095 (17)0.0022 (15)0.0027 (14)0.0003 (14)
O150.014 (2)0.0161 (18)0.0182 (19)0.0009 (15)0.0013 (15)0.0007 (15)
O160.016 (2)0.0160 (17)0.0133 (18)0.0009 (15)0.0020 (15)0.0003 (14)
O170.014 (2)0.0129 (17)0.0180 (19)0.0029 (15)0.0039 (15)0.0044 (14)
O180.013 (2)0.0138 (17)0.0147 (18)0.0038 (15)0.0028 (15)0.0027 (14)
O190.018 (2)0.0138 (17)0.0160 (19)0.0027 (15)0.0029 (15)0.0021 (14)
O200.014 (2)0.0128 (17)0.0136 (18)0.0009 (15)0.0037 (15)0.0009 (14)
O210.016 (2)0.0149 (17)0.0171 (19)0.0007 (15)0.0018 (15)0.0016 (15)
O220.013 (2)0.0175 (18)0.021 (2)0.0005 (16)0.0000 (16)0.0004 (15)
O230.017 (2)0.0179 (18)0.023 (2)0.0025 (16)0.0065 (16)0.0014 (15)
O240.022 (2)0.0154 (18)0.0125 (18)0.0026 (16)0.0007 (16)0.0007 (14)
O250.016 (2)0.0141 (17)0.0139 (18)0.0022 (15)0.0029 (15)0.0005 (14)
O260.014 (2)0.0159 (17)0.0192 (19)0.0007 (15)0.0035 (15)0.0003 (15)
O270.017 (2)0.0180 (18)0.0181 (19)0.0028 (16)0.0035 (16)0.0023 (15)
O280.020 (2)0.0147 (17)0.0152 (19)0.0001 (16)0.0015 (16)0.0009 (15)
O290.020 (2)0.0152 (18)0.0157 (19)0.0030 (16)0.0017 (16)0.0011 (14)
O300.018 (2)0.0194 (18)0.0145 (19)0.0013 (16)0.0019 (15)0.0023 (15)
O310.0106 (19)0.0127 (16)0.0159 (18)0.0025 (15)0.0019 (14)0.0028 (14)
O320.017 (2)0.0133 (17)0.0163 (19)0.0012 (15)0.0047 (15)0.0034 (14)
O330.014 (2)0.0131 (17)0.0152 (18)0.0025 (15)0.0036 (15)0.0031 (14)
O340.018 (2)0.0128 (17)0.0180 (19)0.0031 (15)0.0075 (16)0.0005 (14)
O350.012 (2)0.0174 (18)0.0143 (18)0.0024 (15)0.0029 (15)0.0012 (14)
O360.018 (2)0.0109 (17)0.0161 (18)0.0002 (15)0.0039 (15)0.0011 (14)
O370.014 (2)0.0140 (17)0.0188 (19)0.0014 (15)0.0003 (15)0.0019 (14)
O380.011 (2)0.0153 (17)0.0182 (19)0.0011 (15)0.0034 (15)0.0029 (14)
O390.013 (2)0.0149 (17)0.0137 (18)0.0044 (15)0.0017 (15)0.0020 (14)
O400.016 (2)0.0197 (18)0.0183 (19)0.0029 (16)0.0049 (16)0.0037 (15)
O410.014 (2)0.0143 (17)0.0115 (17)0.0004 (15)0.0025 (15)0.0025 (14)
O420.016 (2)0.0116 (16)0.0119 (17)0.0014 (15)0.0004 (15)0.0010 (14)
O430.013 (2)0.0158 (17)0.0140 (18)0.0013 (15)0.0023 (15)0.0011 (14)
O440.0098 (19)0.0121 (16)0.0155 (18)0.0009 (14)0.0016 (14)0.0020 (14)
O450.012 (2)0.0141 (17)0.0145 (18)0.0036 (15)0.0038 (15)0.0017 (14)
O460.015 (2)0.0143 (17)0.0172 (19)0.0001 (15)0.0023 (15)0.0014 (14)
O470.023 (2)0.0176 (18)0.020 (2)0.0025 (17)0.0021 (17)0.0033 (15)
O480.032 (3)0.027 (2)0.035 (3)0.010 (2)0.013 (2)0.0112 (19)
O490.029 (3)0.0205 (19)0.019 (2)0.0028 (18)0.0034 (17)0.0034 (16)
O500.023 (2)0.0148 (18)0.026 (2)0.0003 (17)0.0049 (18)0.0003 (16)
O510.026 (2)0.027 (2)0.027 (2)0.0014 (19)0.0041 (18)0.0060 (18)
O520.023 (2)0.0185 (19)0.021 (2)0.0062 (17)0.0009 (17)0.0043 (16)
O530.021 (2)0.030 (2)0.021 (2)0.0054 (18)0.0070 (17)0.0020 (18)
O540.019 (2)0.0185 (18)0.0167 (19)0.0018 (16)0.0011 (16)0.0002 (15)
O550.019 (2)0.0170 (18)0.022 (2)0.0009 (16)0.0042 (17)0.0041 (16)
O560.020 (2)0.0204 (19)0.021 (2)0.0001 (17)0.0053 (17)0.0002 (16)
O580.022 (2)0.0171 (19)0.030 (2)0.0059 (17)0.0077 (18)0.0077 (16)
O590.020 (2)0.0163 (18)0.022 (2)0.0026 (16)0.0018 (17)0.0020 (15)
O600.021 (2)0.023 (2)0.024 (2)0.0038 (17)0.0026 (17)0.0005 (17)
O610.027 (2)0.0155 (18)0.026 (2)0.0017 (17)0.0041 (18)0.0049 (16)
O620.021 (2)0.021 (2)0.023 (2)0.0034 (17)0.0019 (17)0.0039 (16)
O630.019 (2)0.0216 (19)0.020 (2)0.0010 (17)0.0016 (16)0.0040 (16)
O640.027 (3)0.018 (2)0.042 (3)0.0026 (18)0.009 (2)0.0024 (18)
O650.026 (2)0.030 (2)0.025 (2)0.0000 (19)0.0054 (18)0.0091 (18)
O740.044 (3)0.026 (2)0.026 (2)0.008 (2)0.003 (2)0.0047 (18)
O660.024 (6)0.024 (5)0.025 (5)0.003 (4)0.001 (4)0.002 (5)
O670.030 (7)0.075 (9)0.028 (6)0.033 (6)0.017 (5)0.027 (6)
O1660.050 (8)0.043 (7)0.021 (5)0.025 (6)0.011 (5)0.011 (5)
O1670.029 (7)0.079 (9)0.042 (7)0.013 (6)0.021 (6)0.033 (7)
O570.034 (3)0.027 (2)0.019 (2)0.008 (2)0.0013 (18)0.0053 (17)
O680.025 (2)0.0220 (19)0.022 (2)0.0006 (18)0.0110 (17)0.0005 (16)
O690.017 (2)0.0207 (19)0.029 (2)0.0010 (17)0.0008 (17)0.0005 (17)
O700.025 (3)0.031 (2)0.020 (2)0.0015 (19)0.0007 (17)0.0079 (18)
O710.023 (2)0.0154 (18)0.028 (2)0.0029 (17)0.0007 (18)0.0046 (16)
O720.024 (3)0.021 (2)0.041 (3)0.0019 (18)0.011 (2)0.0005 (19)
O730.026 (2)0.0209 (19)0.019 (2)0.0026 (18)0.0106 (17)0.0032 (16)
Geometric parameters (Å, º) top
W1—O11.729 (4)Fe1—O77iii2.087 (4)
W1—O21.873 (4)Fe1—O772.087 (4)
W1—O31.859 (3)Fe1—O76iii2.165 (4)
W1—O41.979 (3)Fe1—O762.165 (4)
W1—O52.273 (3)Fe2—O192.108 (4)
W1—O61.930 (4)Fe2—O262.101 (4)
W2—O61.882 (3)Fe2—O272.093 (4)
W2—O71.748 (3)Fe2—O282.169 (4)
W2—O82.259 (4)Fe2—O292.136 (4)
W2—O92.201 (3)Fe2—O302.122 (4)
W2—O101.754 (4)Fe3—O142.145 (3)
W2—O111.943 (3)Fe3—O162.087 (4)
W3—O82.195 (3)Fe3—O222.145 (4)
W3—O111.905 (4)Fe3—O232.116 (4)
W3—O121.743 (3)Fe3—O242.136 (3)
W3—O131.890 (4)Fe3—O252.106 (4)
W3—O141.786 (3)Na1—O492.434 (4)
W3—O172.297 (3)Na1—O49iv2.434 (4)
W4—O4i1.869 (3)Na1—O502.507 (4)
W4—O131.980 (3)Na1—O50iv2.507 (4)
W4—O151.748 (4)Na1—O51iv2.402 (4)
W4—O161.782 (3)Na1—O512.402 (4)
W4—O172.226 (4)Na2—Na3v4.194 (3)
W4—O20i2.122 (3)Na2—O76vi2.460 (4)
W5—O2i2.071 (4)Na2—O462.394 (4)
W5—O5i2.224 (4)Na2—O472.395 (4)
W5—O91.796 (3)Na2—O482.317 (4)
W5—O171.883 (3)Na2—O492.456 (5)
W5—O181.960 (3)Na2—O52v2.606 (4)
W5—O191.743 (4)Na3—Na2v4.194 (3)
W6—O3i2.043 (3)Na3—O372.484 (4)
W6—O5i2.271 (3)Na3—O522.412 (4)
W6—O8i1.923 (4)Na3—O532.392 (5)
W6—O181.942 (4)Na3—O542.375 (4)
W6—O201.826 (3)Na3—O552.416 (4)
W6—O211.732 (4)Na3—O562.408 (4)
W7—O751.746 (3)Na4—Na53.996 (3)
W7—O261.781 (4)Na4—O10vii2.477 (4)
W7—O311.913 (4)Na4—O582.407 (5)
W7—O322.247 (3)Na4—O592.383 (4)
W7—O332.174 (3)Na4—O602.427 (4)
W7—O351.888 (4)Na4—O622.395 (4)
W8—O332.258 (4)Na4—O672.302 (11)
W8—O342.166 (3)Na4—O1672.382 (13)
W8—O351.961 (3)Na5—Na64.167 (2)
W8—O361.759 (3)Na5—O212.447 (4)
W8—O371.750 (4)Na5—O612.380 (4)
W8—O39ii1.860 (3)Na5—O622.418 (4)
W9—O251.743 (4)Na5—O632.416 (4)
W9—O321.895 (4)Na5—O742.424 (4)
W9—O341.797 (4)Na5—O662.379 (11)
W9—O422.213 (4)Na5—O1662.412 (12)
W9—O432.079 (4)Na6—Na5viii4.167 (2)
W9—O451.943 (3)Na6—O64viii2.344 (4)
W10—O33ii1.922 (4)Na6—O642.344 (4)
W10—O412.052 (3)Na6—O652.404 (4)
W10—O422.268 (3)Na6—O65viii2.404 (4)
W10—O44ii1.835 (3)Na6—O662.358 (11)
W10—O451.947 (4)Na6—O66viii2.358 (11)
W10—O461.724 (4)Na6—O166viii2.606 (11)
W11—O381.942 (3)Na6—O1662.606 (11)
W11—O391.958 (4)O2—W5i2.071 (3)
W11—O401.719 (4)O76—Na2ix2.460 (4)
W11—O411.892 (3)O3—W6i2.043 (3)
W11—O422.283 (3)O4—W4i1.869 (3)
W11—O431.870 (4)O5—W5i2.224 (3)
W12—O781.743 (4)O5—W6i2.271 (3)
W12—O301.775 (4)O8—W6i1.923 (4)
W12—O311.960 (3)O10—Na4vii2.477 (4)
W12—O322.237 (4)O20—W4i2.122 (3)
W12—O381.879 (3)O33—W10ii1.922 (4)
W12—O442.146 (3)O39—W8ii1.860 (3)
Fe1—O75iii2.100 (3)O44—W10ii1.835 (3)
Fe1—O752.100 (3)O52—Na2v2.606 (4)
O67a—Na4—Na572.3 (3)O38—W12—O4486.63 (14)
O167b—Na4—Na591.8 (3)O44—W12—O3276.83 (13)
O67a—Na4—O10vii91.4 (3)O75iii—Fe1—O75180.00 (17)
O1—W1—O2102.23 (16)O75—Fe1—O7684.52 (14)
O1—W1—O3102.82 (16)O75iii—Fe1—O76iii84.51 (14)
O1—W1—O4100.36 (16)O75—Fe1—O76iii95.48 (14)
O1—W1—O5177.56 (16)O75iii—Fe1—O7695.49 (14)
O1—W1—O6102.08 (16)O77—Fe1—O7588.54 (15)
O167b—Na4—O10vii92.8 (3)O77iii—Fe1—O75iii88.54 (15)
O167b—Na4—O58160.3 (3)O77iii—Fe1—O7591.46 (15)
O67a—Na4—O58164.0 (3)O77—Fe1—O75iii91.46 (15)
O167b—Na4—O5980.4 (3)O77iii—Fe1—O77180.0 (2)
O67a—Na4—O5982.0 (3)O77—Fe1—O76iii89.27 (15)
O67a—Na4—O60100.9 (3)O77iii—Fe1—O76iii90.73 (15)
O167b—Na4—O6079.8 (3)O77iii—Fe1—O7689.27 (15)
O67a—Na4—O6291.2 (3)O77—Fe1—O7690.73 (15)
O167b—Na4—O62112.6 (3)O76iii—Fe1—O76180.0
O66a—Na5—Na491.9 (2)O19—Fe2—O2894.86 (14)
O2—W1—O486.64 (15)O19—Fe2—O2988.73 (14)
O2—W1—O575.66 (14)O19—Fe2—O30172.37 (14)
O2—W1—O6154.94 (15)O26—Fe2—O1986.58 (14)
O166b—Na5—Na474.3 (3)O26—Fe2—O2884.95 (14)
O66a—Na5—Na628.3 (3)O26—Fe2—O2999.31 (14)
O166b—Na5—Na635.4 (3)O26—Fe2—O3093.00 (14)
O166b—Na5—O21163.0 (3)O27—Fe2—O1988.57 (15)
O3—W1—O292.10 (16)O27—Fe2—O26170.10 (14)
O3—W1—O4156.51 (14)O27—Fe2—O2886.87 (14)
O3—W1—O576.16 (13)O27—Fe2—O2989.20 (14)
O3—W1—O688.40 (15)O27—Fe2—O3092.94 (15)
O4—W1—O580.82 (13)O29—Fe2—O28174.61 (15)
O6—W1—O483.09 (15)O30—Fe2—O2892.69 (14)
O6—W1—O580.15 (14)O30—Fe2—O2983.82 (14)
O6—W2—O886.58 (14)O16—Fe3—O1493.57 (14)
O6—W2—O982.77 (14)O16—Fe3—O2292.74 (14)
O6—W2—O11155.70 (15)O16—Fe3—O2394.67 (15)
O7—W2—O697.75 (16)O16—Fe3—O2483.16 (14)
O7—W2—O893.99 (16)O16—Fe3—O25171.65 (14)
O7—W2—O9170.19 (16)O22—Fe3—O1483.38 (14)
O7—W2—O10102.74 (17)O23—Fe3—O14167.85 (14)
O7—W2—O1195.65 (15)O23—Fe3—O2287.31 (14)
O66a—Na5—O21176.3 (3)O23—Fe3—O2488.30 (14)
O66a—Na5—O6196.4 (3)O24—Fe3—O14101.55 (14)
O166b—Na5—O6271.7 (3)O24—Fe3—O22173.74 (15)
O66a—Na5—O6284.3 (3)O25—Fe3—O1487.26 (14)
O66a—Na5—O63105.1 (3)O25—Fe3—O2295.61 (14)
O166b—Na5—O6397.0 (3)O25—Fe3—O2385.89 (14)
O166b—Na5—O7488.6 (3)O25—Fe3—O2488.53 (14)
O66a—Na5—O7474.2 (3)O49—Na1—O49iv180.0
O66aviii—Na6—Na5viii28.5 (3)O49—Na1—O50iv94.06 (13)
O166b—Na6—Na5viii147.6 (3)O49iv—Na1—O50iv85.94 (13)
O66a—Na6—Na5viii151.5 (3)O49iv—Na1—O5094.06 (13)
O166bviii—Na6—Na5147.6 (3)O49—Na1—O5085.94 (13)
O66aviii—Na6—Na5151.5 (3)O50iv—Na1—O50180.0
O166bviii—Na6—Na5viii32.4 (3)O51—Na1—O49iv87.15 (13)
O166b—Na6—Na532.4 (3)O51—Na1—O4992.85 (13)
O9—W2—O876.25 (13)O51iv—Na1—O4987.15 (13)
O10—W2—O6100.05 (16)O51iv—Na1—O49iv92.85 (13)
O10—W2—O8160.90 (15)O51iv—Na1—O50iv90.54 (14)
O10—W2—O986.76 (15)O51—Na1—O50iv89.46 (14)
O10—W2—O1196.62 (16)O51iv—Na1—O5089.46 (14)
O11—W2—O872.31 (14)O51—Na1—O5090.54 (14)
O11—W2—O980.65 (13)O51—Na1—O51iv180.0
O8—W3—O1777.47 (13)O76vi—Na2—Na3v115.31 (11)
O11—W3—O874.48 (14)O76vi—Na2—O52v85.72 (14)
O11—W3—O1785.82 (14)O46—Na2—Na3v80.08 (10)
O12—W3—O894.71 (15)O46—Na2—O76vi76.13 (14)
O12—W3—O11100.68 (16)O46—Na2—O4783.98 (14)
O12—W3—O1397.09 (16)O46—Na2—O49151.08 (16)
O12—W3—O14103.75 (16)O46—Na2—O52v83.19 (14)
O12—W3—O17168.24 (16)O47—Na2—Na3v69.12 (11)
O13—W3—O885.38 (14)O47—Na2—O76vi158.13 (17)
O13—W3—O11154.04 (14)O47—Na2—O4992.49 (15)
O13—W3—O1773.75 (14)O47—Na2—O52v101.02 (15)
O14—W3—O8160.44 (14)O48—Na2—Na3v144.46 (14)
O14—W3—O1195.49 (16)O48—Na2—O76vi97.84 (16)
O14—W3—O1398.50 (16)O48—Na2—O46122.29 (18)
O14—W3—O1785.19 (14)O48—Na2—O4785.06 (16)
O4i—W4—O13158.70 (15)O48—Na2—O4985.78 (16)
O4i—W4—O1787.50 (14)O48—Na2—O52v154.45 (18)
O4i—W4—O20i87.80 (14)O49—Na2—Na3v71.91 (11)
O13—W4—O1773.81 (14)O49—Na2—O76vi109.31 (15)
O13—W4—O20i78.33 (13)O49—Na2—O52v69.29 (14)
O15—W4—O4i99.78 (16)O52v—Na2—Na3v31.89 (9)
O15—W4—O1396.69 (16)O37—Na3—Na2v116.60 (11)
O15—W4—O16102.35 (17)O52—Na3—Na2v34.80 (10)
O15—W4—O17166.45 (15)O52—Na3—O3788.80 (14)
O15—W4—O20i91.54 (16)O52—Na3—O5585.00 (15)
O16—W4—O4i98.64 (16)O53—Na3—Na2v66.75 (11)
O16—W4—O1390.86 (15)O53—Na3—O3786.52 (14)
O16—W4—O1787.68 (16)O53—Na3—O5283.44 (15)
O16—W4—O20i163.37 (16)O53—Na3—O55165.38 (17)
O20i—W4—O1777.24 (14)O53—Na3—O56104.30 (16)
O2i—W5—O5i73.17 (13)O54—Na3—Na2v69.01 (10)
O9—W5—O2i161.79 (16)O54—Na3—O37167.68 (17)
O9—W5—O5i88.63 (15)O54—Na3—O52100.05 (16)
O9—W5—O1794.60 (16)O54—Na3—O5386.01 (15)
O9—W5—O1892.85 (15)O54—Na3—O5587.22 (15)
O17—W5—O2i83.63 (14)O54—Na3—O5686.22 (14)
O17—W5—O5i86.14 (15)O55—Na3—Na2v98.71 (11)
O66a—Na6—Na528.5 (3)O55—Na3—O37102.18 (14)
O66a—Na6—O65viii81.5 (3)O56—Na3—Na2v153.79 (12)
O66aviii—Na6—O65viii98.5 (3)O56—Na3—O3786.15 (14)
O66aviii—Na6—O6581.5 (3)O56—Na3—O52170.45 (16)
O66a—Na6—O6598.5 (3)O56—Na3—O5588.15 (15)
O66a—Na6—O66viii180.0O10vii—Na4—Na5110.91 (11)
O166b—Na6—O166viii180.0O58—Na4—Na594.56 (12)
Na5—O166b—Na6112.2 (5)O58—Na4—O10vii102.18 (15)
Na6—O66a—Na5123.2 (5)O58—Na4—O6089.00 (15)
O17—W5—O18156.21 (16)O59—Na4—Na568.57 (10)
O18—W5—O2i82.29 (14)O59—Na4—O10vii173.18 (17)
O18—W5—O5i71.47 (14)O59—Na4—O5884.62 (15)
O19—W5—O2i94.39 (15)O59—Na4—O6095.17 (15)
O19—W5—O5i163.66 (14)O59—Na4—O6298.88 (15)
O19—W5—O9103.63 (17)O60—Na4—Na5162.87 (13)
O19—W5—O17103.30 (16)O60—Na4—O10vii84.57 (14)
O19—W5—O1896.82 (16)O62—Na4—Na534.07 (10)
O3i—W6—O5i72.91 (13)O62—Na4—O10vii82.69 (14)
O8i—W6—O3i84.52 (15)O62—Na4—O5882.18 (15)
O8i—W6—O5i85.68 (14)O62—Na4—O60162.60 (16)
O8i—W6—O18155.62 (15)Na4—Na5—Na690.45 (5)
O18—W6—O3i82.76 (14)O21—Na5—Na488.71 (11)
O18—W6—O5i70.73 (14)O21—Na5—Na6148.08 (11)
O20—W6—O3i160.28 (14)O61—Na5—Na4122.47 (12)
O20—W6—O5i87.38 (14)O61—Na5—Na673.42 (11)
O20—W6—O8i94.35 (16)O61—Na5—O2180.23 (14)
O20—W6—O1890.72 (15)O61—Na5—O6290.73 (15)
O21—W6—O3i96.16 (15)O61—Na5—O63151.18 (18)
O21—W6—O5i165.95 (15)O61—Na5—O7485.58 (15)
O21—W6—O8i102.36 (16)O61—Na5—O166108.6 (3)
O21—W6—O1899.63 (16)O62—Na5—Na433.69 (10)
O21—W6—O20103.29 (16)O62—Na5—Na668.87 (11)
O75—W7—O26103.42 (16)O62—Na5—O2194.18 (15)
O75—W7—O3194.64 (16)O62—Na5—O74157.62 (18)
O75—W7—O32167.01 (16)O63—Na5—Na476.45 (11)
O75—W7—O3393.94 (15)O63—Na5—Na6131.93 (13)
O75—W7—O35100.95 (16)O63—Na5—O2178.65 (14)
O26—W7—O3198.53 (16)O63—Na5—O62110.12 (15)
O26—W7—O3285.41 (14)O63—Na5—O7482.05 (15)
O26—W7—O33161.89 (14)O74—Na5—Na4150.39 (14)
O26—W7—O3595.91 (16)O74—Na5—Na688.95 (13)
O31—W7—O3274.41 (14)O74—Na5—O21106.88 (17)
O31—W7—O3384.98 (14)Na5viii—Na6—Na5180.0
O33—W7—O3278.40 (13)O64—Na6—Na5106.43 (10)
O35—W7—O31155.66 (14)O64viii—Na6—Na5viii106.43 (11)
O35—W7—O3287.39 (14)O64—Na6—Na5viii73.57 (10)
O35—W7—O3375.47 (14)O64viii—Na6—Na573.57 (11)
O34—W8—O3376.31 (13)O64—Na6—O64viii180.0
O35—W8—O3372.16 (14)O64—Na6—O65viii89.83 (14)
O35—W8—O3479.27 (14)O64—Na6—O6590.17 (15)
O36—W8—O3392.20 (15)O64viii—Na6—O6589.83 (14)
O36—W8—O34167.70 (15)O64viii—Na6—O65viii90.17 (15)
O36—W8—O3593.19 (15)O64viii—Na6—O6696.6 (3)
O36—W8—O39ii97.99 (15)O64—Na6—O6683.4 (3)
O37—W8—O33162.25 (15)O64—Na6—O66viii96.6 (3)
O37—W8—O3488.05 (15)O64viii—Na6—O66viii83.4 (3)
O37—W8—O3597.00 (16)O64—Na6—O166viii105.8 (3)
O37—W8—O36102.61 (17)O64—Na6—O16674.2 (3)
O37—W8—O39ii101.14 (16)O64viii—Na6—O166viii74.2 (3)
O39ii—W8—O3386.20 (15)O64viii—Na6—O166105.8 (3)
O39ii—W8—O3485.75 (14)O65—Na6—Na581.74 (11)
O39ii—W8—O35156.00 (15)O65viii—Na6—Na5viii81.74 (11)
O25—W9—O32103.17 (16)O65—Na6—Na5viii98.26 (11)
O25—W9—O34104.38 (17)O65viii—Na6—Na598.26 (11)
O25—W9—O42163.37 (14)O65—Na6—O65viii180.0
O25—W9—O4392.49 (15)O65—Na6—O166viii95.1 (3)
O25—W9—O4597.59 (16)O65viii—Na6—O166viii84.9 (3)
O32—W9—O4284.68 (14)O65viii—Na6—O16695.1 (3)
O32—W9—O4384.03 (14)O65—Na6—O16684.9 (3)
O32—W9—O45155.61 (16)W7—O75—Fe1141.2 (2)
O34—W9—O3294.46 (15)W1—O2—W5i115.40 (17)
O34—W9—O4289.37 (15)Fe1—O76—Na2ix123.52 (16)
O34—W9—O43162.93 (16)W1—O3—W6i116.84 (17)
O34—W9—O4592.62 (15)W4i—O4—W1147.3 (2)
O43—W9—O4273.56 (13)W5i—O5—W195.76 (13)
O45—W9—O4272.07 (14)W5i—O5—W6i97.18 (14)
O45—W9—O4382.42 (14)W6i—O5—W194.06 (12)
O33ii—W10—O4184.49 (14)W2—O6—W1149.1 (2)
O33ii—W10—O4285.99 (14)W3—O8—W295.05 (14)
O33ii—W10—O45155.71 (15)W6i—O8—W2137.59 (17)
O41—W10—O4272.95 (13)W6i—O8—W3125.95 (18)
O44ii—W10—O33ii94.56 (15)W5—O9—W2137.20 (18)
O44ii—W10—O41160.62 (14)W2—O10—Na4vii123.67 (18)
O44ii—W10—O4287.67 (14)W3—O11—W2117.26 (18)
O44ii—W10—O4591.49 (15)W3—O13—W4117.31 (18)
O45—W10—O4182.10 (14)W3—O14—Fe3133.7 (2)
O45—W10—O4270.76 (13)W4—O16—Fe3138.8 (2)
O46—W10—O33ii102.68 (16)W4—O17—W393.90 (13)
O46—W10—O4195.21 (15)W5—O17—W3125.71 (18)
O46—W10—O42164.79 (15)W5—O17—W4139.11 (18)
O46—W10—O44ii103.85 (16)W6—O18—W5119.54 (18)
O46—W10—O4598.64 (16)W5—O19—Fe2172.3 (2)
O38—W11—O3984.45 (15)W6—O20—W4i138.94 (18)
O38—W11—O4281.24 (14)W6—O21—Na5154.0 (2)
O39—W11—O4279.88 (14)W9—O25—Fe3169.9 (2)
O40—W11—O38102.46 (16)W7—O26—Fe2135.4 (2)
O40—W11—O39101.77 (16)W12—O30—Fe2137.9 (2)
O40—W11—O41100.97 (16)W7—O31—W12116.06 (17)
O40—W11—O42176.04 (16)W9—O32—W7124.93 (18)
O40—W11—O43102.78 (17)W9—O32—W12139.49 (18)
O41—W11—O38156.18 (15)W12—O32—W794.25 (13)
O41—W11—O3986.64 (15)W7—O33—W895.16 (14)
O41—W11—O4275.46 (13)W10ii—O33—W7125.80 (18)
O43—W11—O3887.92 (15)W10ii—O33—W8137.86 (18)
O43—W11—O39155.33 (15)W9—O34—W8139.68 (18)
O43—W11—O4191.09 (15)W7—O35—W8116.42 (18)
O43—W11—O4275.78 (14)W8—O37—Na3127.58 (19)
O78—W12—O30102.32 (17)W12—O38—W11147.9 (2)
O78—W12—O3197.07 (15)W8ii—O39—W11150.9 (2)
O78—W12—O32166.24 (15)W11—O41—W10116.54 (16)
O78—W12—O3899.83 (16)W9—O42—W1096.86 (14)
O78—W12—O4491.39 (15)W9—O42—W1195.65 (13)
O30—W12—O3191.54 (15)W10—O42—W1195.01 (12)
O30—W12—O3288.42 (16)W11—O43—W9114.98 (17)
O30—W12—O3899.13 (16)W10ii—O44—W12136.52 (18)
O30—W12—O44163.89 (16)W9—O45—W10119.05 (18)
O31—W12—O3273.79 (13)W10—O46—Na2166.1 (2)
O31—W12—O4478.25 (13)Na1—O49—Na2120.25 (17)
O38—W12—O31157.54 (15)Na3—O52—Na2v113.31 (16)
O38—W12—O3286.74 (14)Na4—O62—Na5112.24 (17)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y+2, z+1; (iv) x+1, y, z+1; (v) x+1, y+1, z+1; (vi) x, y1, z; (vii) x, y+2, z+2; (viii) x, y+3, z+2; (ix) x, y+1, z.
FeII and CuII containing paratungstates B [based on the Inorganic Crystal Structure Database (FIZ, Karlsruhe; https://www.fiz-informationsdienste.de/DB/icsd/www-recherche.html) and the Cambridge Structural Database (CSD; Groom et al., 2016)] top
CompoundsUnit-cell parameters a, b and c (Å) and α, β and γ (°)Volume (Å3), Z and space groupSynthesis details (source of W; W:MII ratio; M= Fe, Cu; pH)Reference
FeII
K6[{Fe(H2O)4}2(H2W12O42)]·15H2O14.9967 (5), 10.3872 (3), 18.8237 (6); 90, 93.407 (1), 902927.1 (2), 2, P21/nK2WO4; 12:1.4; ?Yang et al. (2003)
(H3O)2[{Fe(H2O)4Fe(H2O)3}2(H2W12O42)]·20H2O12.1794 (4), 22.4938 (4), 11.6941 (3); 90, 105.731 (2), 903083.7 (1), 2, P21/cLi2WO4; 12:1.4; ?Yang et al. (2003)
Na5[{Fe(H2O)3}2{Fe(H2O)4}0.5(H2W12O42)]·30H2O12.121 (2), 12.426 (3), 13.247 (3); 68.33 (3), 71.33 (3), 71.44 (3)1710.7 (6), 1, P1Na2WO4; 12:1.4; –Yang et al. (2003)
CuII
Na8[Cu(H2O)2(H2W12O42)].30H2O13.081 (4), 13.160 (6), 20.127 (6); 78.294 (12), 78.524 (11), 72.593 (11)3201.7 (17), 2, P1Na2WO4; 12:2.4; 4.8Li et al. (2008)
KNa3[Cu(H2O)2{Cu(H2O)3}2(H2W12O42)]·16H2O10.799 (2), 11.914 (2), 13.377 (3); 70.18 (3), 68.07 (3), 64.80 (3)1410.9 (5), 1, P1Na2[W12O40(OH)2]; 12:2; 3.5Li et al. (2009)
\ [{Na2(µ-H2O)2(H2O)6}{Cu(H2O)2}{Cu(H2O)4}2\ {Cu2(µ-OH)2(H2O)6}(H2W12O42)]·10H2O10.697 (5), 12.921 (5), 13.653 (5); 73.608 (5), 75.671 (5), 67.748 (5)1654.4 (12), 1, P1(NH4)6[W12O40]; 12:0.4; 6.2Kong et al. (2010)
\ [{Na(H2O)4}2{Cu0.5(H2O)}4{Cu0.5(H2O)1.5}2\ (H4W12O42)]?3H2O10.7060 (11), 12.7124 (14), 13.1664 (14); 113.7600 (10), 90.8230 (10), 111.8290 (10)1493.8 (3), 1, P1Na2WO4; 12:3; 6.5Gao et al. (2011)
[Na2(H2O)10][Cu4(H2O)12(H2W12O42)]·15H2O10.1535 (2), 13.2118 (3), 13.7049 (5); 112.692 (3), 94.771 (3), 102.969 (2)1623.15 (8), 1, P1Na2WO4; 12:36; 4Qu et al. (2012)
Cu3(H2O)8[H6W12O42]10.6753 (5), 12.7814 (5), 13.0976 (5); 113.737 (4), 90.433 (3), 112.560 (4)1482.73 (12), 2, P1(NH4)6[W12O40]; 12:36; –Chen et al. (2017)
(NH4)8[Cu(H2O)2H2W12O42]·10H2O14.278 (5), 15.435 (5), 24.881 (5); 90, 90, 905483 (3), 2, Pbcn(NH4)6[W12O40]; 12:2.5; 4.8Zhang (2012)
Na2Cu3(CuOH)2[W12O40(OH)2].32H2O10.6836 (4), 12.9066 (6), 13.6475 (5); 73.561 (4), 67.666 (4)1648.68 (12), 1, P1Na2WO4; 12:7.5; –Radio et al. (2014)
Na2Cu5(H2O)24(OH)2[H2W12O42]·10H2O10.7140 (8), 12.9476 (9), 13.6696 (10); 73.56, 75.73, 67.691661.8 (2), 1, P1Na2WO4; 12:20; 3.8Qu et al., 2015
Selected bond length and angles (Å, °) in Na5Fe2.5paraB and Na3Cu4paraBM top
Na5Fe2.5paraBNa3Cu4paraB
WOt1.719 (4)-1.797 (4)1.710 (8)–1.780 (7)
W—Odb11.888 (4)–2.050 (2)1.872 (7)–2.103 (7)
W—Odb21.826 (3)–2.166 (3)1.805 (7)–2.098 (7)
W—Otb12.201 (3)–2.297 (3)2.207 (7)–2.273 (7)
W—Otb21.895 (4)–2.259 (4)1.882 (8)–2.287 (7)
W···W (between corner-sharing WO6)3.649 (4)–3.878 (5)3.377 (4)–3.688 (2)
W···W (between edge-sharing WO6)3.273 (4)–3.352 (4)3.306 (2)–3.377 (3)
MII—O (M = Fe or Cu)2.087 (4)–2.169 (4)1.918 (7)–2.366 (8)
NaI—O2.302 (11)–2.606 (11)2.345 (9)–2.519 (13)
O—W—O70.73 (14)–104.38 (17)154.94 (15)–177.56 (16)
70.2 (3)–105.6 (3)152.8 (3)–178.1 (3)
 

Acknowledgements

The authors are grateful to Assistant Professor Dr P. Unfried for support with the TGA and to Associate Professor K. Richter and M. Andraghetti for help with PXRD measurements at the Department of Inorganic Chemistry, University of Vienna. We thank RNDr Marek Bujdoš, PhD, for support with the ICP–MS and AAS analysis at the Institute of Laboratory Research on Geomaterials, Comenius Univiversity in Bratislava. We wish to thank E. Al-Sayed, MSc, and Dr J. Breibeck for valuable discussions regarding this work.

Funding information

Funding for this research was provided by: Austrian Science Fund (award No. M2203 to N. Gumerova; award No. P27534 to A. Rompel).

References

First citationBijelic, A., Aureliano, M. & Rompel, A. (2018a). Angew. Chem. Int. Ed. In the press. doi:10.1002/anie.201803868 and doi:10.1002/ange.201803868Google Scholar
First citationBijelic, A., Aureliano, M. & Rompel, A. (2018b). Chem. Commun. 54, 1153–1169.  Web of Science CrossRef Google Scholar
First citationBijelic, A. & Rompel, A. (2015). Coord. Chem. Rev. 299, 22–38.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBijelic, A. & Rompel, A. (2017). Acc. Chem. Res. 50, 1441–1448.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Zhang, C., Zhang, J., Ye, Z., Zheng, K., Fang, Q. & Li, G. (2017). Inorg. Chem. Front. 4, 1917–1922.  Web of Science CrossRef Google Scholar
First citationClemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. (2012). Chem. Soc. Rev. 41, 7464–7478.  Web of Science CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, H. T. & Prince, E. (1983). J. Am. Chem. Soc. 105, 4838–4839.  CrossRef Web of Science Google Scholar
First citationEvans, H. T. & Rollins, O. W. (1976). Acta Cryst. B32, 1565–1567.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFu, L., Gao, H., Yan, M., Li, S., Li, X., Dai, Z. & Liu, S. (2015). Small, 11, 2938–2945.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGao, S., Zhao, J., Zhou, B., Yu, K., Su, Z., Wang, L., Yin, Y., Zhao, Z., Yu, Y. & Chen, Y. (2011). Inorg. Chim. Acta, 379, 151–157.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumerova, N. I., Kasyanova, K. V., Rozantsev, G. M., Baumer, V. N. & Radio, S. V. (2015). J. Cluster Sci. 26, 1171–1186.  Web of Science CrossRef Google Scholar
First citationHe, L.-W., Lin, B.-Z., Liu, X.-Z., Huang, X.-F. & Feng, Y.-L. (2008). Solid State Sci. 10, 237–243.  Web of Science CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKong, Q.-J., Zhang, C.-J. & Chen, Y.-G. (2010). J. Mol. Struct. 964, 82–87.  Web of Science CrossRef Google Scholar
First citationLi, B., Bi, B., Li, W. & Wu, L. (2008). J. Solid State Chem. 181, 3337–3343.  Web of Science CrossRef Google Scholar
First citationLi, Y.-W., Wang, Y.-H., Li, Y.-G., Wang, E.-B., Chen, W.-L., Wu, Q. & Shi, Q. (2009). Inorg. Chim. Acta, 362, 1078–1082.  Web of Science CrossRef Google Scholar
First citationMolitor, C., Bijelic, A. & Rompel, A. (2017). IUCrJ, 4, 734–740.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationPeresypkina, E. V., Virovets, A. V., Adonin, S. A., Abramov, P. A., Rogachev, A. V., Sinkevich, P. L., Korenev, V. S. & Sokolov, M. N. (2014). J. Struct. Chem. 55, 295–298.  Web of Science CrossRef Google Scholar
First citationPope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.  Google Scholar
First citationProust, A., Thouvenot, R. & Gouzerh, P. (2008). Chem. Commun. pp. 1837–1852.  Web of Science CrossRef Google Scholar
First citationQu, X., Yang, Y., Yu, X., Lv, Z., Ji, M. & Feng, S. (2015). Inorg. Chem. Commun. 60, 126–130.  Web of Science CrossRef Google Scholar
First citationQu, X., Yang, Y., Zhang, F. & Yu, X. (2012). Struct. Chem. 23, 1867–1872.  Web of Science CrossRef Google Scholar
First citationRadio, S. V., Kryuchkov, M. A., Zavialova, E. G., Baumer, V. N., Shishkin, O. V. & Rozantsev, G. M. (2010). J. Coord. Chem. 63, 1678–1689.  Web of Science CrossRef Google Scholar
First citationRadio, S. V., Melnik, N. A., Ivantsova, E. S. & Baumer, V. N. (2014). J. Struct. Chem. 55, 879–886.  Web of Science CrossRef Google Scholar
First citationRadio, S. V., Rozantsev, G. M., Baumer, V. N. & Shishkin, O. V. (2011). J. Struct. Chem. 52, 111–117.  CrossRef Google Scholar
First citationSadakane, M. & Steckhan, E. (1998). Chem. Rev. 98, 219–238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSokolov, M. N., Adonin, S. A., Abramov, P. A., Mainichev, D. A., Zakharchuk, N. F. & Fedin, V. P. (2012). Chem. Commun. 48, 6666–6668.  Web of Science CrossRef Google Scholar
First citationWang, S.-S. & Yang, G.-Y. (2015). Chem. Rev. 115, 4893–4962.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYamase, T. & Pope, M. (2002). Editors. Polyoxometalate Chemistry for Nano-Composite Design. Springer Science & Business Media.  Google Scholar
First citationYang, W.-B., Lu, C.-Z., Lin, X. & Zhuang, H.-H. (2003). Z. Anorg. Allg. Chem. 629, 2046–2052.  Web of Science CrossRef Google Scholar
First citationZhang, Z. (2012). J. Chem. Crystallogr. 42, 333–337.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds