research papers
The role of π–π stacking and hydrogen-bonding interactions in the assembly of a series of isostructural group IIB coordination compounds
aDepartment of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993891176, Tehran, Iran, bSchool of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Science Institute, Trinity College Dublin, The University of Dublin, 152–160 Pearse Street, Dublin 2, Ireland, and cDepartment of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
*Correspondence e-mail: t.hajiashrafi@alzahra.ac.ir, sengem@tcd.ie
The supramolecular chemistry of coordination compounds has become an important research domain of modern inorganic chemistry. Herein, six isostructural group IIB coordination compounds containing a 2-{[(2-methoxyphenyl)imino]methyl}phenol ligand, namely dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II), [ZnCl2(C28H26N2O4)], 1, diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II), [ZnI2(C28H26N2O4)], 2, dibromidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)cadmium(II), [CdBr2(C28H26N2O4)], 3, diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)cadmium(II), [CdI2(C28H26N2O4)], 4, dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II), [HgCl2(C28H26N2O4)], 5, and diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II), [HgI2(C28H26N2O4)], 6, were synthesized and characterized by X-ray crystallography and spectroscopic techniques. All six compounds exhibit an infinite one-dimensional ladder in the solid state governed by the formation of hydrogen-bonding and π–π stacking interactions. The crystal structures of these compounds were studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06-2X/def2-TZVP calculations and Bader's theory of `atoms in molecules'. The energies associated with the interactions, including the contribution of the different forces, have been evaluated. In general, the π–π stacking interactions are stronger than those reported for conventional π–π complexes, which is attributed to the influence of the metal coordination, which is stronger for Zn than either Cd or Hg. The results reported herein might be useful for understanding the solid-state architecture of metal-containing materials that contain MIIX2 subunits and aromatic organic ligands.
1. Introduction
Over the last two decades, the supramolecular chemistry of metal-containing compounds has attracted intense attention, due not only to their fascinating structures (Holliday & Mirkin, 2001; Brammer, 2004), but also their potential applications in diverse fields such as medicine (McKinlay et al., 2010; Reedijk, 2009), ion and molecular recognition (Custelcean et al., 2012; Busschaert et al., 2015) and catalysis (Wang et al., 2013; Wiester et al., 2011).
The ultimate goal of supramolecular chemistry is to understand the inherent complexities of the association mechanisms of molecular and ionic building blocks organized through noncovalent intermolecular interactions with prescribed properties and functions (Lehn, 1995; Steed & Atwood, 2013). In the context of metallosupramolecular chemistry (Braga & Grepioni, 2000; Braga et al., 1998), hydrogen bonding (Reedijk, 2013; Azhdari Tehrani et al., 2016) and halogen bonding (Khavasi et al., 2015; Khavasi & Azhdari Tehrani, 2013; Li et al., 2016) have been widely used so far to drive the self-assembly of coordination compounds, because of their directionality and versatility (Politzer et al., 2010; Desiraju, 1998). However, there are some reports that provide evidence suggesting the crucial role of nondirectional intermolecular interactions, such as π–π stacking (Khavasi & Azizpoor Fard, 2010; Janiak, 2000; Khavasi & Sadegh, 2014; Semeniuc et al., 2010), for designing the supramolecular architecture of metal-containing species in the solid state. In this regard, supramolecular chemists and crystal engineers have explored and studied the use of noncovalent interactions as a key tool for constructing supramolecular architectures of metal-containing building units in the solid state in which X-ray crystallography could provide a detailed picture of the supramolecular structure (Desiraju, 2014; Blake et al., 1999; Đaković et al., 2018). These studies reveal an undeniable contribution of such noncovalent interactions to the organization and stabilization of the ultimate crystal structures. These studies also revealed that the ultimate supramolecular architecture of self-assembled metal-containing compounds could be affected by various factors, such as ligand and metal geometries (Khavasi et al., 2012; Hajiashrafi et al., 2013), counter-ions (Schottel et al., 2006; Zeng et al., 2010) and reaction conditions (Khavasi & Mohammad Sadegh, 2010; Mahata et al., 2009).
In continuation of our research aimed at understanding the role of noncovalent interactions in the fabrication and self-assembly of metal-containing building blocks (Hajiashrafi et al., 2013, 2016; Kielmann & Senge, 2018), a series of coordination compounds, namely [ZnL2Cl2] (1), [ZnL2I2] (2), [CdL2Br2] (3), [CdL2I2] (4), [HgL2Cl2] (5) and [HgL2I2] (6), where L is 2-{[(2-methoxyphenyl)azaniumylidene]methyl}phenolate, have been synthesized and characterized using X-ray crystallography and different spectroscopic techniques (see Scheme 1). Geometrical, Hirshfeld surface analysis and theoretical calculations reveal the importance of π–π stacking interactions, as well as hydrogen bonding, in governing the crystal packing of this series of isostructural metal-containing compounds.
2. Experimental
2.1. Materials and apparatus
Chemicals and reagents were purchased from commercial sources. 2-Hydroxybenzaldehyde, 2-methoxyaniline and anhydrous MII halides, where M is Zn, Cd and Hg, were purchased from Sigma–Aldrich and Merck, and used as received. The Schiff base ligand 2-{[(2-methoxyphenyl)imino]methyl}phenol (L) was prepared according to a previously reported method (Song et al., 2013). The IR spectra were recorded on a Nicolet FT–IR 100 spectrometer in the range 500–4000 cm−1 using the KBr disk technique. Elemental analyses (C, H and N) were performed using an ECS 4010 CHN-O made in Costech, Italy. Melting points were measured by an Electrothermal 9100 melting-point apparatus and corrected. The measurements were carried out using 10 mg of a powdered sample sealed in aluminium pans with a mechanical crimp.
2.2. Computational methods
The geometries of the complexes included in this study were computed at the M06-2X/def2-TZVP level of theory using the crystallographic coordinates within TURBOMOLE 7.0 (Ahlrichs et al., 1989). We have used the crystallographic coordinates instead of the optimized complexes because we are interested in estimating the binding energies of several assemblies as they stand in the instead of investigating the most favourable geometry for a given complex. The interaction energies were calculated with correction for the basis set superposition error (BSSE) by using the Boys–Bernardi counterpoise technique (Boys & Bernardi, 1970). The `atoms-in-molecules' (AIM) analysis of the electron density was performed at the same level of theory using the AIMAll program (Keith, 2013).
2.3. Synthesis and crystallization
The ligand 2-{[(2-methoxyphenyl)imino]methyl}phenol (L) was utilized previously for the preparation of a number of coordination compounds (Song et al., 2013; Gong et al., 2014; Reddy et al., 2003a,b; Li & Yuan, 2012). L was synthesized by reacting 2-hydroxybenzaldehyde (0.53 ml, 5 mmol) with 2-methoxyaniline (0.56 ml, 5 mmol) in ethanol. After stirring for 30 min at 323 K, the ligand precipitated from the reaction mixture as an orange powder which was filtered off, washed several times with cold ethanol and normal hexane, and then dried under vacuum.
The six coordination compounds [ZnL2Cl2] (1), [ZnL2I2] (2), [CdL2Br2] (3), [CdL2I2] (4), [HgL2Cl2] (5) and [HgL2I2] (6) were synthesized by combining a solution of MX2 (0.1 mmol; M = Zn, Cd or Hg and X = Cl, Br or I) in methanol (5 ml) and a solution of L (0.2 mmol) in methanol (5 ml) with stirring. Each mixture was heated at 333 K for about 30 min. Reduction of the solvent volume resulted in the formation of a yellow-to-orange precipitate. The precipitate was filtered off, washed with methanol (3 × 2 ml) and then dried in vacuo. The solid was subsequently dissolved in boiling methanol, ethanol or acetonitrile (10 ml) and filtered. Upon slow evaporation of the filtrate at room temperature, crystals of complexes 1–6 suitable for X-ray crystallography were obtained (Hope, 1994; Senge, 2000). The coordination compounds were characterized using X-ray crystallography, FT–IR spectroscopy and elemental analysis.
2.3.1. Analytical data for L
M.p. 330 K. FT–IR (KBr, ν/cm−1, selected bands): 3445 (w, broad), 1246 (s), 3061 (w), 1615 (s), 792 (s), 849 (m).
2.3.2. Analytical data for 1
Yield 52%. M.p. 505–507 K. FT–IR (KBr, ν/cm−1, selected bands): 3679 (w), 3447 (w), 1637 (s), 1525 (m), 1382 (s), 1025 (m), 800 (m), 750 (m). Analysis calculated for C28H26Cl2N2O4Zn (%): C 56.92, H 4.44, N 4.74; found: C 56.86, H 4.42, N 4.70.
2.3.3. Analytical data for 2
Yield 70%. M.p. 520–522 K. FT–IR (KBr, ν/cm−1, selected bands): 3676 (w), 3447 (w), 1614 (s), 1542 (m), 1385 (s), 1019 (m), 805 (m), 754 (m). Analysis calculated for C28H26I2N2O4Zn (%): C 43.47, H 3.39, N 3.62; found: C 43.36, H 3.42, N 3.58.
2.3.4. Analytical data for 3
Yield 54%. M.p. 543–545 K. FT–IR (KBr, ν/cm−1, selected bands): 3674 (w), 3445 (m), 1620 (s), 1530 (m), 1484 (m), 1383 (s), 1020 (m), 794 (m), 753 (m). Analysis calculated for C28H26Br2CdN2O4 (%): C 46.28, H 3.61, N 3.85; found: C 46.24, H 3.40, N 3.82.
2.3.5. Analytical data for 4
Yield 46%. M.p. 461–463 K. FT–IR (KBr, ν/cm−1, selected bands): 3679 (w), 3447 (m), 1637 (s), 1520 (m), 1380 (m), 1025 (m), 796 (m), 741 (m). Analysis calculated for C28H26CdI2N2O4 (%): C 40.98, H 3.19, N 3.41; found: C 40.88, H 3.12, N 3.44.
2.4. Refinement
Crystal data, data collection and structure . C- and N-bound H atoms were placed in their expected calculated positions and refined as riding, with N—H = 0.88 Å and C—H = 0.95–0.99 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) otherwise. In the structure of 2, the C and N atoms were restrained to have similar isotropic displacement parameters. Atoms N1A, N1B and C14B were restrained to have close to isotropic displacement parameters. The structure was solved as a rotational twin rotated from the first domain by 179.8° about the reciprocal axis 0.002 1.000 0.001 and the real axis 0.434 1.000 0.197. The to convert hkl from the first to this domain (SHELXL TWIN matrix) was −0.999 0.004 −0.001, 0.866 0.998 0.395, 0.007 0.003 −0.999. The structure of 3 was solved as a rotational twin rotated from the first domain by 179.7° about the reciprocal axis −0.003 −0.997 1.000 and the real axis 0.311 1.000 −0.257. The to convert hkl from the first to this domain (SHELXL TWIN matrix) was −1.001 0.001 −0.004, 0.498 0.590 −0.407, −0.487 −1.593 −0.589. The structure of 5 was solved as a rotational twin rotated from the first domain by 179.9° about the reciprocal axis −0.001 1.000 −0.999 and the real axis 0.345 1.000 −0.274. The to convert hkl from the first to this domain (SHELXL TWIN matrix) was −1.000 −0.001 0.001, 0.541 0.570 −0.431, −0.543 −1.570 −0.570. The structure of 6 was solved as a rotational twin rotated from the first domain by 149.8° about the reciprocal axis 1.000 0.235 0.787 and the real axis 1.000 0.533 0.319. The to convert hkl from the first to this domain (SHELXL TWIN matrix) was 0.534 0.949 0.308, 0.116 −0.693 0.359, 1.269 −0.145 −0.569.
details are summarized in Table 13. Results and discussion
3.1. analysis
X-ray crystallography revealed that compounds 1–6 are isostructural and crystallize in the triclinic P (Fig. 1 and Table 1). The asymmetric units of these structures contain two L ligands, two halide ions and a metal ion of group IIB. analysis reveals that in compounds 1–6, the MII ion is in a distorted trigonal pyramidal geometry, with four-coordinate geometry indices, τ4 (Yang et al., 2007), of 0.83, 0.85, 0.83, 0.84, 0.75, and 0.77, respectively. Selected bond lengths and angles are listed in Table 2 and are in agreement with the values reported for similar compounds (Shkol'nikova et al., 1970; Gong et al., 2014). The trigonal pyramidal geometry around MII is made up of two halide ions and two phenolate O atoms from two different L ligands. It should be noted that N-salicylideneanilines may exist in different tautomeric forms and the tautomeric isomerization reaction between the enol and keto forms is accompanied by intra- and intermolecular proton transfer (Dürr & Bouas-Laurent, 2003; Cohen & Schmidt, 1962; Cohen et al., 1964; Tsuchimoto et al., 2016). The Schiff base ligand L shows a self-isomerization induced by an intramolecular proton transfer from the hydroxy O to the imine N atom through an O—H⋯N hydrogen bond (Hoshino et al., 1988; Alarcón et al., 1999). Thus, the ligand is a zwitterion with the negative and positive charges located at atoms O1B and N1B, respectively (Charland et al., 1989; Redshaw et al., 2013; Tsuchimoto et al., 2016; Kargili et al., 2014). This is supported by the geometry of the ligand and the unambiguous location of the H atom attached to atom N1B. The ligand almost keeps it coplanarity upon coordination; the dihedral angles between the planes of the two aromatic rings of ligand L lie in the range 4.10–10.68° for compounds 1–6 (see supporting information), which is a consequence of intramolecular N—H⋯O hydrogen bonding. In this form, L can act as a monodentate ligand, where it is coordinated to the metal ion via the phenolate O atom. It should be noted that at basic pH, the L ligand may act as a tridentate ligand through the imine N, phenolate O and methoxy O atoms (Gong et al., 2014; Song et al., 2013; Reddy et al., 2003a).
|
As shown in Fig. 2, the crystal packing of compounds 1–6 consists of mononuclear units which are connected in the crystallographic a direction through a combination of π–π stacking interactions involving the C=N group of the ligand and C—H⋯π interactions. These units are then linked to other units via C—H⋯X (X = Cl, Br and I) hydrogen-bonding interactions in the bc plane. The intermolecular contacts involved in the crystal packing of compounds 1–6 can be quantified via Hirshfeld surface analysis (Spackman & Jayatilaka, 2009; Mackenzie et al., 2017). The analysis shows that in compounds 1–6, the H⋯H interactions have the highest priority (the highest contribution to the Hirshfeld surface) and the C—H⋯π, M—X⋯H and π–π interactions have the next highest priorities, respectively. Also, it has been found that the probability of hydrogen-bonding M—X⋯H interactions involving metal-bound halogen increases for a given metal on going from a lighter to a heavier halogen atom. Selected contribution percentages are shown as a histogram in Fig. 3.
3.2. Theoretical study
Six ML2X2 (M = Zn, Cd or Hg and X = Cl, Br or I) complexes have been synthesized and characterized by X-ray (see Fig. 1). The ligand is monocoordinated to the metal centre and presents an extended π-system that comprises two phenyl rings and an imino group that connects both aromatic moieties.
The solid-state architecture of all six structures is governed by the formation of π-stacking interactions between the aromatic ligands. In particular, each ligand forms infinite one-dimensional (1D) ladders in the crystal packing, as detailed for compounds 1, 3 and 5 in Fig. 4 as representative systems.
We have focused the theoretical study on a comparison of the energetic features shown by the π-stacking and hydrogen-bonding interactions (depending on the type of metal) observed in the crystal packing of compounds 1–6 described above. In particular, we have analyzed the π–π and C—H⋯X noncovalent interactions that are crucial to understanding their solid-state architectures. First of all, in order to study the donor–acceptor ability of the ML2X2 complexes, we have computed the molecular electrostatic potential (MEP) surface of a model system (compound 1), which is shown in Fig. 5. As expected, the most negative electrostatic potential corresponds to the region of the Cl ligands (−75 kcal mol−1). The MEP surface also reveals that the N—H group is totally inaccessible since it is involved in an intramolecular hydrogen bond with the O atom of the ligand. Consequently, the most positive part is located in the region of the exocyclic C—H group at the molecular plane, also influenced by the aromatic C—H groups (40 kcal mol−1). Therefore, hydrogen-bonding interactions between these groups (C—H⋯X) should be electrostatically favoured. Furthermore, perpendicular to the molecular plane, we found that each aromatic ring presents negative MEP values (−17 and −8 kcal mol−1); therefore, face-to-face π–π stacking interactions are not electrostatically favoured (electrostatic repulsion). Remarkably, the electrostatic potential over the π-system of the linker (C=N) is positive, thus explaining the large displacement observed in the antiparallel π-stacking interactions highlighted in Fig. 4 and further discussed below.
In isostructural Zn compounds 1–3, we have computed the interaction energies of the self-assembled π-stacked dimers (shown in Fig. 6a) that are responsible for the formation of the 1D ladders shown in Fig. 3. The self-assembled dimers are stabilized by a combination of hydrogen bonds and π–π stacking interactions involving the C=N group of the ligand. The dimerization energies in 1 and 2 (ΔE1 = −33.0 kcal mol−1 and ΔE2 = −31.4 kcal mol−1, respectively) are very large due to the contribution of both hydrogen-bonding (red dashed lines in Fig. 6) and π–π interactions (blue dashed lines in Fig. 6), where the former involves the most positive (C—H groups, see Fig. 5) and the most negative (belts of the halide ligands) potential regions of the metal compound. In an effort to calculate the contribution of the different forces that govern the formation of the self-assembled dimers, we have computed additional theoretical models where the halide ligands that establish the hydrogen bonds have been replaced by hydride ligands (see Fig. 6b) and consequently the hydrogen-bonding interactions between the halide ligands and the C—H groups are not formed. As a result, the interaction energies are reduced to ΔE3 = −24.8 kcal mol−1 and ΔE4 = −22.5 kcal mol−1 in 1 and 2, respectively. Therefore, the contribution of both symmetrically equivalent hydrogen-bonding interactions can be roughly estimated by the difference (they are −8.2 and 8.9 kcal mol−1 for 1 and 2, respectively) and it is similar in both compounds. Furthermore, we have used additional dimers where the ZnCl2 group in 1 or the ZnI2 group in 2 has been removed (see Fig. 6c) in order to evaluate the influence of the metal coordination on the interaction energy. The resulting interaction energies are almost identical for both complexes (ΔE5 = −14.0 kcal mol−1 and ΔE6 = −14.1 kcal mol−1 for 1 and 2, respectively) and reveal the strong influence of the metal coordination on the π–π stacking interaction. This is likely due to the stronger dipole–dipole interaction in the antiparallel arrangement of the assembly. It is also worthy to mention that the π–π interaction energy computed for these compounds is large compared to other π-stacking interactions (i.e. benzene dimer). This is due to the special arrangement of the two π-systems where the C=N bond is located over the aromatic ring (see the on-top representation in Fig. 6). This fact is in very good agreement with the MEP surface represented in Fig. 5 and explains the large interaction energy since two electrostatically enhanced π(CN)⋯π interactions are established.
In Cd compounds 3 and 4, the π-stacking binding mode is very similar to that described before for 1 and 2. As mentioned above, hydrogen-bonding and π–π interactions control the dimer formation (see Fig. 7a). The computed interaction energies of the self-assembled dimers are almost identical (ΔE7 = −30.9 kcal mol−1 and ΔE8 = −29.9 kcal mol−1 for 3 and 4, respectively), indicating that the halide (Br or I) has a minimal influence on the binding energy. Compared to 1 and 2, the interaction energies are less favourable, thus revealing a larger influence of the Zn ion on the binding energy of the assembly compared to Cd. Also, in both compounds, we have computed theoretical models where the Br or I ligands have been replaced by H atoms and consequently the hydrogen bonds are not formed (see Fig. 7b). As a result, the interaction energies are reduced to ΔE9 = −22.7 kcal mol−1 and ΔE10 = −21.6 kcal mol−1 in 3 and 4, respectively. Therefore, this contribution (both hydrogen bonds) can be roughly estimated by the difference (−8.2 and −8.3 kcal mol−1 for 3 and 4, respectively). These values are very close to those found for compounds 1 and 2, thus indicating that the contribution of the hydrogen bonds is not influenced by the type of transition metal (Zn or Cd). Furthermore, we have used an additional dimer, where the CdBr2 and CdI2 groups have been removed. The interaction energies are further reduced to ΔE9 = −13.3 kcal mol−1 and ΔE6 = −13.6 kcal mol−1 for 3 and 4, respectively, which is in agreement with the Zn complexes, revealing a strong influence of the metal coordination on the strength of the π-stacking interaction.
For Hg compounds 5 and 6, we have performed an equivalent study (see Fig. 8). The computed interaction energies of the self-assembled dimers are almost identical (ΔE13 = −28.3 kcal mol−1 and ΔE14 = −25.1 kcal mol−1 for 5 and 6, respectively), indicating that Hg has a smaller effect on the interaction energy than Cd and Zn. Also, in both Hg compounds, we have computed theoretical models where the Cl− or I− ligands have been replaced by H− ligands and consequently the hydrogen bonds are not formed (see Fig. 8b). As a result, the interaction energies are reduced to ΔE15 = −19.9 kcal mol−1 and ΔE16 = −17.5 kcal mol−1 in 5 and 6, respectively. Therefore, this contribution (both hydrogen bonds) can be roughly estimated as −8.4 and −7.6 kcal mol−1 for 5 and 6, respectively. These values are in agreement with those found for compounds 1–4, thus confirming that the interaction energy of the hydrogen bonds is not influenced by the type of transition metal (Zn/Cd/Hg). Furthermore, we have used an additional dimer, where the HgCl2 and HgI2 groups have been eliminated. Consequently, the interaction energies are further reduced to ΔE17 = −13.0 kcal mol−1 and ΔE18 = −12.7 kcal mol−1 for 5 and 6, respectively; which is in agreement to the rest of complexes commented on above and confirms the strong influence of the metal coordination on the strength of the π-stacking interaction.
In order to provide additional evidence for the existence of the C—H⋯X hydrogen-bond and π–π stacking interactions, we have analyzed the self-assembled π-stacked dimer of compound 3 (as an exemplifying model) using Bader's theory of `atoms in molecules' (AIM) (Bader, 1991), which provides an unambiguous definition of chemical bonding. The AIM theory has been successfully used to characterize and understand a great variety of interactions, including those described herein. In Fig. 9 we show the AIM analysis of compound 3. It can be observed that the π–π interaction is characterized by the presence of three bond critical points that interconnect three C atoms of each aromatic ligand. The interaction is further characterized by several ring and cage critical points. Furthermore, the distribution of critical points reveals the existence of two symmetrically disposed sets of C—H⋯Br hydrogen-bonding interactions. Each one is characterized by a bond and a bond path connecting one H atom of the C—H groups with the Br− ligand, thus confirming the formation of the trifurcated hydrogen bonds. The value of the Laplacian at the bond critical points is positive, as is common in closed-shell interactions.
4. Conclusion
We herein reported the syntheses and structural characterization of six new metal complexes based on the 2-{[(2-methoxyphenyl)imino]methyl}phenol ligand. All compounds exhibited an infinite 1D ladder in the solid state governed by the formation of hydrogen-bonding and π–π stacking interactions in the solid state. The of these compounds was studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06-2X/def2-TZVP calculations and Bader's theory of `atoms in molecules'. The energies associated with the interactions, including the contribution of the different forces, have been evaluated. In general, the π–π stacking interactions are stronger than those reported for conventional π–π complexes, that is attributed to the influence of the metal coordination, which is stronger for Zn than for either Cd or Hg. The results reported herein might be useful for understanding the solid-state architecture of metal-containing materials that contain MIIX2 subunits and organic aromatic ligands.
Supporting information
https://doi.org/10.1107/S2053229618018314/sk3704sup1.cif
contains datablocks Compound_1, Compound_2, Compound_3, Compound_4, Compound_5, Compound_6, global. DOI:Structure factors: contains datablock Compound_1. DOI: https://doi.org/10.1107/S2053229618018314/sk3704Compound_1sup2.hkl
Structure factors: contains datablock Compound_2. DOI: https://doi.org/10.1107/S2053229618018314/sk3704Compound_2sup3.hkl
Structure factors: contains datablock Compound_3. DOI: https://doi.org/10.1107/S2053229618018314/sk3704Compound_3sup4.hkl
Structure factors: contains datablock Compound_4. DOI: https://doi.org/10.1107/S2053229618018314/sk3704Compound_4sup5.hkl
Structure factors: contains datablock Compound_5. DOI: https://doi.org/10.1107/S2053229618018314/sk3704Compound_5sup6.hkl
Structure factors: contains datablock Compound_6. DOI: https://doi.org/10.1107/S2053229618018314/sk3704Compound_6sup7.hkl
For all structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[ZnCl2(C28H26N2O4)] | Z = 2 |
Mr = 590.78 | F(000) = 608 |
Triclinic, P1 | Dx = 1.521 Mg m−3 |
a = 9.1926 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.6101 (2) Å | Cell parameters from 9828 reflections |
c = 14.8057 (3) Å | θ = 2.5–34.0° |
α = 94.188 (1)° | µ = 1.20 mm−1 |
β = 97.716 (1)° | T = 100 K |
γ = 114.409 (1)° | Block, yellow |
V = 1289.80 (5) Å3 | 0.26 × 0.12 × 0.11 mm |
Bruker SMART APEXII area detector diffractometer | 11965 independent reflections |
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 9331 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 7.9 pixels mm-1 | θmax = 35.7°, θmin = 2.1° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −17→17 |
Tmin = 0.691, Tmax = 0.747 | l = −24→24 |
93163 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.037P)2 + 0.6038P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
11965 reflections | Δρmax = 0.77 e Å−3 |
336 parameters | Δρmin = −0.71 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.78269 (2) | 0.33923 (2) | 0.71660 (2) | 0.01225 (4) | |
Cl1 | 0.58971 (4) | 0.39395 (3) | 0.64597 (2) | 0.01828 (6) | |
Cl2 | 1.05003 (4) | 0.46074 (3) | 0.72121 (2) | 0.01983 (6) | |
O1A | 0.75873 (12) | 0.35079 (10) | 0.84784 (6) | 0.01486 (16) | |
O1B | 0.73799 (11) | 0.15246 (9) | 0.65301 (6) | 0.01458 (16) | |
O2B | 1.01441 (12) | 0.27418 (10) | 0.49592 (7) | 0.01827 (18) | |
O2A | 0.63225 (13) | 0.63174 (11) | 0.84985 (7) | 0.02096 (19) | |
N1B | 0.78530 (13) | 0.02994 (11) | 0.50462 (7) | 0.01276 (17) | |
H1B | 0.8193 | 0.1044 | 0.5463 | 0.015* | |
N1A | 0.73008 (13) | 0.51596 (11) | 0.97988 (8) | 0.01443 (18) | |
H1A | 0.7160 | 0.4892 | 0.9204 | 0.017* | |
C1B | 0.60814 (15) | 0.03742 (12) | 0.65300 (8) | 0.01257 (19) | |
C1A | 0.81909 (14) | 0.29733 (12) | 0.91128 (8) | 0.01229 (19) | |
C6A | 0.83502 (15) | 0.34584 (12) | 1.00664 (8) | 0.01243 (19) | |
C6B | 0.56362 (15) | −0.08101 (12) | 0.58464 (8) | 0.01256 (19) | |
C7B | 0.65395 (15) | −0.07798 (13) | 0.51344 (8) | 0.0135 (2) | |
H7B | 0.6165 | −0.1596 | 0.4695 | 0.016* | |
C2A | 0.87012 (16) | 0.19149 (13) | 0.89030 (9) | 0.0161 (2) | |
H2A | 0.8635 | 0.1585 | 0.8278 | 0.019* | |
C2B | 0.50596 (15) | 0.02403 (13) | 0.71897 (9) | 0.0149 (2) | |
H2B | 0.5319 | 0.1006 | 0.7653 | 0.018* | |
C7A | 0.79231 (15) | 0.45396 (13) | 1.03586 (8) | 0.0141 (2) | |
H7A | 0.8099 | 0.4833 | 1.1001 | 0.017* | |
C5B | 0.42209 (15) | −0.20542 (13) | 0.58441 (9) | 0.0150 (2) | |
H5B | 0.3934 | −0.2833 | 0.5386 | 0.018* | |
C9B | 0.85462 (16) | −0.07663 (14) | 0.37295 (9) | 0.0168 (2) | |
H9B | 0.7741 | −0.1668 | 0.3771 | 0.020* | |
C5A | 0.89772 (16) | 0.28629 (14) | 1.07591 (9) | 0.0168 (2) | |
H5A | 0.9085 | 0.3192 | 1.1390 | 0.020* | |
C10B | 0.95009 (17) | −0.05883 (16) | 0.30531 (9) | 0.0210 (3) | |
H10B | 0.9365 | −0.1372 | 0.2639 | 0.025* | |
C13B | 0.99865 (15) | 0.17174 (14) | 0.42983 (8) | 0.0152 (2) | |
C8B | 0.87793 (15) | 0.03839 (13) | 0.43438 (8) | 0.0137 (2) | |
C3B | 0.36930 (16) | −0.09889 (14) | 0.71670 (9) | 0.0159 (2) | |
H3B | 0.3030 | −0.1051 | 0.7617 | 0.019* | |
C9A | 0.68435 (16) | 0.66509 (15) | 1.09870 (9) | 0.0191 (2) | |
H9A | 0.7179 | 0.6228 | 1.1467 | 0.023* | |
C4B | 0.32585 (15) | −0.21493 (13) | 0.64943 (9) | 0.0157 (2) | |
H4B | 0.2314 | −0.2986 | 0.6489 | 0.019* | |
C8A | 0.68327 (16) | 0.62282 (13) | 1.00706 (9) | 0.0156 (2) | |
C12A | 0.58437 (17) | 0.79013 (15) | 0.95712 (11) | 0.0212 (3) | |
H12A | 0.5507 | 0.8329 | 0.9095 | 0.025* | |
C12B | 1.09137 (17) | 0.18984 (16) | 0.36023 (9) | 0.0190 (2) | |
H12B | 1.1710 | 0.2799 | 0.3551 | 0.023* | |
C4A | 0.94279 (18) | 0.18186 (15) | 1.05275 (10) | 0.0200 (2) | |
H4A | 0.9826 | 0.1412 | 1.0994 | 0.024* | |
C11B | 1.06531 (17) | 0.07378 (17) | 0.29848 (9) | 0.0212 (3) | |
H11B | 1.1275 | 0.0856 | 0.2508 | 0.025* | |
C13A | 0.63154 (16) | 0.68325 (14) | 0.93594 (9) | 0.0171 (2) | |
C14B | 1.1425 (2) | 0.41087 (15) | 0.49745 (11) | 0.0254 (3) | |
H14A | 1.1247 | 0.4457 | 0.4394 | 0.038* | |
H14B | 1.2472 | 0.4054 | 0.5051 | 0.038* | |
H14C | 1.1428 | 0.4747 | 0.5489 | 0.038* | |
C3A | 0.92945 (18) | 0.13554 (14) | 0.95946 (10) | 0.0197 (2) | |
H3A | 0.9620 | 0.0640 | 0.9435 | 0.024* | |
C11A | 0.58748 (18) | 0.83271 (16) | 1.04881 (11) | 0.0243 (3) | |
H11A | 0.5563 | 0.9055 | 1.0636 | 0.029* | |
C14A | 0.54557 (19) | 0.66647 (16) | 0.77481 (10) | 0.0231 (3) | |
H14D | 0.5446 | 0.6152 | 0.7167 | 0.035* | |
H14E | 0.5994 | 0.7672 | 0.7726 | 0.035* | |
H14F | 0.4337 | 0.6407 | 0.7839 | 0.035* | |
C10A | 0.63522 (18) | 0.77081 (16) | 1.11873 (11) | 0.0244 (3) | |
H10A | 0.6347 | 0.8003 | 1.1808 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01434 (7) | 0.01084 (6) | 0.01021 (6) | 0.00409 (5) | 0.00255 (5) | 0.00064 (4) |
Cl1 | 0.02136 (14) | 0.01873 (13) | 0.01582 (13) | 0.01077 (12) | 0.00027 (10) | 0.00101 (10) |
Cl2 | 0.01624 (13) | 0.02080 (14) | 0.01455 (12) | 0.00027 (11) | 0.00358 (10) | 0.00072 (10) |
O1A | 0.0187 (4) | 0.0185 (4) | 0.0116 (4) | 0.0114 (3) | 0.0037 (3) | 0.0040 (3) |
O1B | 0.0136 (4) | 0.0111 (4) | 0.0169 (4) | 0.0030 (3) | 0.0049 (3) | −0.0005 (3) |
O2B | 0.0204 (5) | 0.0149 (4) | 0.0175 (4) | 0.0043 (3) | 0.0078 (3) | 0.0018 (3) |
O2A | 0.0278 (5) | 0.0268 (5) | 0.0172 (4) | 0.0195 (4) | 0.0053 (4) | 0.0057 (4) |
N1B | 0.0133 (4) | 0.0133 (4) | 0.0120 (4) | 0.0061 (4) | 0.0028 (3) | 0.0009 (3) |
N1A | 0.0143 (5) | 0.0150 (4) | 0.0158 (4) | 0.0079 (4) | 0.0033 (4) | 0.0015 (4) |
C1B | 0.0127 (5) | 0.0121 (5) | 0.0132 (5) | 0.0058 (4) | 0.0018 (4) | 0.0015 (4) |
C1A | 0.0118 (5) | 0.0129 (5) | 0.0123 (5) | 0.0052 (4) | 0.0029 (4) | 0.0020 (4) |
C6A | 0.0133 (5) | 0.0133 (5) | 0.0120 (5) | 0.0068 (4) | 0.0024 (4) | 0.0021 (4) |
C6B | 0.0132 (5) | 0.0108 (4) | 0.0131 (5) | 0.0048 (4) | 0.0018 (4) | 0.0010 (4) |
C7B | 0.0142 (5) | 0.0130 (5) | 0.0130 (5) | 0.0060 (4) | 0.0016 (4) | 0.0012 (4) |
C2A | 0.0188 (6) | 0.0161 (5) | 0.0157 (5) | 0.0101 (4) | 0.0034 (4) | 0.0001 (4) |
C2B | 0.0147 (5) | 0.0153 (5) | 0.0152 (5) | 0.0068 (4) | 0.0037 (4) | 0.0008 (4) |
C7A | 0.0140 (5) | 0.0144 (5) | 0.0138 (5) | 0.0060 (4) | 0.0030 (4) | 0.0007 (4) |
C5B | 0.0147 (5) | 0.0122 (5) | 0.0158 (5) | 0.0041 (4) | 0.0010 (4) | 0.0021 (4) |
C9B | 0.0158 (5) | 0.0206 (6) | 0.0147 (5) | 0.0096 (5) | 0.0010 (4) | −0.0012 (4) |
C5A | 0.0198 (6) | 0.0176 (5) | 0.0136 (5) | 0.0089 (5) | 0.0016 (4) | 0.0035 (4) |
C10B | 0.0192 (6) | 0.0312 (7) | 0.0146 (5) | 0.0143 (5) | 0.0016 (4) | −0.0030 (5) |
C13B | 0.0143 (5) | 0.0192 (5) | 0.0132 (5) | 0.0082 (4) | 0.0028 (4) | 0.0029 (4) |
C8B | 0.0129 (5) | 0.0187 (5) | 0.0112 (5) | 0.0085 (4) | 0.0022 (4) | 0.0020 (4) |
C3B | 0.0143 (5) | 0.0183 (5) | 0.0173 (5) | 0.0080 (4) | 0.0056 (4) | 0.0056 (4) |
C9A | 0.0158 (6) | 0.0238 (6) | 0.0177 (6) | 0.0104 (5) | 0.0012 (4) | −0.0054 (5) |
C4B | 0.0134 (5) | 0.0139 (5) | 0.0188 (5) | 0.0043 (4) | 0.0029 (4) | 0.0050 (4) |
C8A | 0.0139 (5) | 0.0150 (5) | 0.0185 (5) | 0.0073 (4) | 0.0026 (4) | −0.0005 (4) |
C12A | 0.0190 (6) | 0.0178 (6) | 0.0290 (7) | 0.0099 (5) | 0.0053 (5) | 0.0019 (5) |
C12B | 0.0176 (6) | 0.0262 (6) | 0.0154 (5) | 0.0103 (5) | 0.0058 (4) | 0.0064 (5) |
C4A | 0.0253 (7) | 0.0199 (6) | 0.0188 (6) | 0.0141 (5) | 0.0008 (5) | 0.0057 (5) |
C11B | 0.0182 (6) | 0.0344 (7) | 0.0134 (5) | 0.0137 (6) | 0.0041 (4) | 0.0020 (5) |
C13A | 0.0157 (5) | 0.0161 (5) | 0.0205 (6) | 0.0075 (4) | 0.0048 (4) | 0.0018 (4) |
C14B | 0.0284 (7) | 0.0163 (6) | 0.0260 (7) | 0.0018 (5) | 0.0122 (6) | 0.0035 (5) |
C3A | 0.0240 (6) | 0.0175 (6) | 0.0222 (6) | 0.0137 (5) | 0.0030 (5) | 0.0025 (5) |
C11A | 0.0191 (6) | 0.0202 (6) | 0.0334 (8) | 0.0105 (5) | 0.0020 (5) | −0.0050 (5) |
C14A | 0.0273 (7) | 0.0262 (7) | 0.0217 (6) | 0.0167 (6) | 0.0044 (5) | 0.0074 (5) |
C10A | 0.0199 (6) | 0.0273 (7) | 0.0247 (7) | 0.0124 (6) | −0.0001 (5) | −0.0094 (5) |
Zn1—Cl1 | 2.2404 (4) | C9B—C10B | 1.3912 (19) |
Zn1—Cl2 | 2.2427 (4) | C9B—C8B | 1.3899 (18) |
Zn1—O1A | 1.9854 (9) | C5A—H5A | 0.9500 |
Zn1—O1B | 1.9832 (9) | C5A—C4A | 1.3707 (19) |
O1A—C1A | 1.3076 (14) | C10B—H10B | 0.9500 |
O1B—C1B | 1.3078 (15) | C10B—C11B | 1.389 (2) |
O2B—C13B | 1.3550 (16) | C13B—C8B | 1.4050 (18) |
O2B—C14B | 1.4376 (17) | C13B—C12B | 1.3981 (18) |
O2A—C13A | 1.3516 (16) | C3B—H3B | 0.9500 |
O2A—C14A | 1.4387 (17) | C3B—C4B | 1.4053 (18) |
N1B—H1B | 0.8800 | C9A—H9A | 0.9500 |
N1B—C7B | 1.3067 (16) | C9A—C8A | 1.3949 (18) |
N1B—C8B | 1.4152 (16) | C9A—C10A | 1.399 (2) |
N1A—H1A | 0.8800 | C4B—H4B | 0.9500 |
N1A—C7A | 1.3077 (16) | C8A—C13A | 1.4008 (19) |
N1A—C8A | 1.4197 (16) | C12A—H12A | 0.9500 |
C1B—C6B | 1.4314 (17) | C12A—C13A | 1.4012 (19) |
C1B—C2B | 1.4187 (17) | C12A—C11A | 1.392 (2) |
C1A—C6A | 1.4338 (17) | C12B—H12B | 0.9500 |
C1A—C2A | 1.4147 (17) | C12B—C11B | 1.394 (2) |
C6A—C7A | 1.4151 (17) | C4A—H4A | 0.9500 |
C6A—C5A | 1.4213 (17) | C4A—C3A | 1.404 (2) |
C6B—C7B | 1.4212 (17) | C11B—H11B | 0.9500 |
C6B—C5B | 1.4191 (17) | C14B—H14A | 0.9800 |
C7B—H7B | 0.9500 | C14B—H14B | 0.9800 |
C2A—H2A | 0.9500 | C14B—H14C | 0.9800 |
C2A—C3A | 1.3802 (19) | C3A—H3A | 0.9500 |
C2B—H2B | 0.9500 | C11A—H11A | 0.9500 |
C2B—C3B | 1.3814 (18) | C11A—C10A | 1.382 (2) |
C7A—H7A | 0.9500 | C14A—H14D | 0.9800 |
C5B—H5B | 0.9500 | C14A—H14E | 0.9800 |
C5B—C4B | 1.3742 (18) | C14A—H14F | 0.9800 |
C9B—H9B | 0.9500 | C10A—H10A | 0.9500 |
Cl1—Zn1—Cl2 | 124.837 (14) | O2B—C13B—C12B | 125.28 (12) |
O1A—Zn1—Cl1 | 103.90 (3) | C12B—C13B—C8B | 119.56 (12) |
O1A—Zn1—Cl2 | 104.04 (3) | C9B—C8B—N1B | 123.25 (12) |
O1B—Zn1—Cl1 | 105.46 (3) | C9B—C8B—C13B | 120.69 (11) |
O1B—Zn1—Cl2 | 102.79 (3) | C13B—C8B—N1B | 116.05 (11) |
O1B—Zn1—O1A | 116.75 (4) | C2B—C3B—H3B | 119.2 |
C1A—O1A—Zn1 | 125.54 (8) | C2B—C3B—C4B | 121.66 (12) |
C1B—O1B—Zn1 | 125.06 (8) | C4B—C3B—H3B | 119.2 |
C13B—O2B—C14B | 117.28 (11) | C8A—C9A—H9A | 120.6 |
C13A—O2A—C14A | 117.02 (11) | C8A—C9A—C10A | 118.83 (14) |
C7B—N1B—H1B | 116.9 | C10A—C9A—H9A | 120.6 |
C7B—N1B—C8B | 126.13 (11) | C5B—C4B—C3B | 118.97 (12) |
C8B—N1B—H1B | 116.9 | C5B—C4B—H4B | 120.5 |
C7A—N1A—H1A | 117.3 | C3B—C4B—H4B | 120.5 |
C7A—N1A—C8A | 125.41 (11) | C9A—C8A—N1A | 122.96 (12) |
C8A—N1A—H1A | 117.3 | C9A—C8A—C13A | 120.83 (12) |
O1B—C1B—C6B | 120.27 (11) | C13A—C8A—N1A | 116.19 (11) |
O1B—C1B—C2B | 122.41 (11) | C13A—C12A—H12A | 120.5 |
C2B—C1B—C6B | 117.32 (11) | C11A—C12A—H12A | 120.5 |
O1A—C1A—C6A | 119.79 (11) | C11A—C12A—C13A | 119.10 (14) |
O1A—C1A—C2A | 122.76 (11) | C13B—C12B—H12B | 120.5 |
C2A—C1A—C6A | 117.45 (11) | C11B—C12B—C13B | 119.03 (13) |
C7A—C6A—C1A | 122.46 (11) | C11B—C12B—H12B | 120.5 |
C7A—C6A—C5A | 117.50 (11) | C5A—C4A—H4A | 120.3 |
C5A—C6A—C1A | 120.04 (11) | C5A—C4A—C3A | 119.33 (12) |
C7B—C6B—C1B | 122.20 (11) | C3A—C4A—H4A | 120.3 |
C5B—C6B—C1B | 120.17 (11) | C10B—C11B—C12B | 121.24 (13) |
C5B—C6B—C7B | 117.60 (11) | C10B—C11B—H11B | 119.4 |
N1B—C7B—C6B | 124.13 (11) | C12B—C11B—H11B | 119.4 |
N1B—C7B—H7B | 117.9 | O2A—C13A—C8A | 115.56 (11) |
C6B—C7B—H7B | 117.9 | O2A—C13A—C12A | 124.76 (13) |
C1A—C2A—H2A | 119.6 | C8A—C13A—C12A | 119.68 (13) |
C3A—C2A—C1A | 120.85 (12) | O2B—C14B—H14A | 109.5 |
C3A—C2A—H2A | 119.6 | O2B—C14B—H14B | 109.5 |
C1B—C2B—H2B | 119.6 | O2B—C14B—H14C | 109.5 |
C3B—C2B—C1B | 120.87 (12) | H14A—C14B—H14B | 109.5 |
C3B—C2B—H2B | 119.6 | H14A—C14B—H14C | 109.5 |
N1A—C7A—C6A | 124.08 (11) | H14B—C14B—H14C | 109.5 |
N1A—C7A—H7A | 118.0 | C2A—C3A—C4A | 121.56 (12) |
C6A—C7A—H7A | 118.0 | C2A—C3A—H3A | 119.2 |
C6B—C5B—H5B | 119.5 | C4A—C3A—H3A | 119.2 |
C4B—C5B—C6B | 121.01 (12) | C12A—C11A—H11A | 119.4 |
C4B—C5B—H5B | 119.5 | C10A—C11A—C12A | 121.10 (13) |
C10B—C9B—H9B | 120.2 | C10A—C11A—H11A | 119.4 |
C8B—C9B—H9B | 120.2 | O2A—C14A—H14D | 109.5 |
C8B—C9B—C10B | 119.53 (13) | O2A—C14A—H14E | 109.5 |
C6A—C5A—H5A | 119.6 | O2A—C14A—H14F | 109.5 |
C4A—C5A—C6A | 120.74 (12) | H14D—C14A—H14E | 109.5 |
C4A—C5A—H5A | 119.6 | H14D—C14A—H14F | 109.5 |
C9B—C10B—H10B | 120.1 | H14E—C14A—H14F | 109.5 |
C11B—C10B—C9B | 119.87 (13) | C9A—C10A—H10A | 119.8 |
C11B—C10B—H10B | 120.1 | C11A—C10A—C9A | 120.43 (14) |
O2B—C13B—C8B | 115.16 (11) | C11A—C10A—H10A | 119.8 |
Zn1—O1A—C1A—C6A | 161.78 (9) | C2B—C1B—C6B—C5B | 0.11 (17) |
Zn1—O1A—C1A—C2A | −18.43 (17) | C2B—C3B—C4B—C5B | 0.01 (19) |
Zn1—O1B—C1B—C6B | 161.25 (9) | C7A—N1A—C8A—C9A | −6.4 (2) |
Zn1—O1B—C1B—C2B | −18.45 (16) | C7A—N1A—C8A—C13A | 174.92 (12) |
O1A—C1A—C6A—C7A | −2.03 (18) | C7A—C6A—C5A—C4A | −179.52 (13) |
O1A—C1A—C6A—C5A | 178.83 (11) | C5B—C6B—C7B—N1B | 179.18 (12) |
O1A—C1A—C2A—C3A | −178.39 (13) | C9B—C10B—C11B—C12B | 2.1 (2) |
O1B—C1B—C6B—C7B | −1.78 (18) | C5A—C6A—C7A—N1A | −178.46 (12) |
O1B—C1B—C6B—C5B | −179.60 (11) | C5A—C4A—C3A—C2A | −0.8 (2) |
O1B—C1B—C2B—C3B | 179.73 (12) | C10B—C9B—C8B—N1B | 179.37 (12) |
O2B—C13B—C8B—N1B | 2.38 (16) | C10B—C9B—C8B—C13B | −1.12 (19) |
O2B—C13B—C8B—C9B | −177.17 (11) | C13B—C12B—C11B—C10B | −0.4 (2) |
O2B—C13B—C12B—C11B | 177.94 (12) | C8B—N1B—C7B—C6B | −179.17 (11) |
N1A—C8A—C13A—O2A | 0.17 (17) | C8B—C9B—C10B—C11B | −1.3 (2) |
N1A—C8A—C13A—C12A | −179.56 (12) | C8B—C13B—C12B—C11B | −2.06 (19) |
C1B—C6B—C7B—N1B | 1.32 (19) | C9A—C8A—C13A—O2A | −178.54 (12) |
C1B—C6B—C5B—C4B | −0.20 (18) | C9A—C8A—C13A—C12A | 1.7 (2) |
C1B—C2B—C3B—C4B | −0.1 (2) | C8A—N1A—C7A—C6A | 178.78 (12) |
C1A—C6A—C7A—N1A | 2.4 (2) | C8A—C9A—C10A—C11A | −0.4 (2) |
C1A—C6A—C5A—C4A | −0.3 (2) | C12A—C11A—C10A—C9A | 1.1 (2) |
C1A—C2A—C3A—C4A | −0.5 (2) | C12B—C13B—C8B—N1B | −177.62 (11) |
C6A—C1A—C2A—C3A | 1.40 (19) | C12B—C13B—C8B—C9B | 2.83 (19) |
C6A—C5A—C4A—C3A | 1.2 (2) | C13A—C12A—C11A—C10A | −0.4 (2) |
C6B—C1B—C2B—C3B | 0.03 (18) | C14B—O2B—C13B—C8B | 176.51 (12) |
C6B—C5B—C4B—C3B | 0.14 (19) | C14B—O2B—C13B—C12B | −3.48 (19) |
C7B—N1B—C8B—C9B | −10.54 (19) | C11A—C12A—C13A—O2A | 179.28 (13) |
C7B—N1B—C8B—C13B | 169.93 (12) | C11A—C12A—C13A—C8A | −1.0 (2) |
C7B—C6B—C5B—C4B | −178.11 (12) | C14A—O2A—C13A—C8A | 165.83 (12) |
C2A—C1A—C6A—C7A | 178.17 (12) | C14A—O2A—C13A—C12A | −14.5 (2) |
C2A—C1A—C6A—C5A | −0.96 (18) | C10A—C9A—C8A—N1A | −179.64 (13) |
C2B—C1B—C6B—C7B | 177.93 (11) | C10A—C9A—C8A—C13A | −1.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H1B···O1B | 0.88 | 1.96 | 2.6481 (14) | 134 |
N1A—H1A···O1A | 0.88 | 1.96 | 2.6424 (14) | 134 |
C7B—H7B···Cl1i | 0.95 | 2.70 | 3.6118 (13) | 160 |
C7A—H7A···Cl2ii | 0.95 | 2.69 | 3.5913 (13) | 159 |
C14B—H14C···Cl2 | 0.98 | 2.79 | 3.5845 (16) | 138 |
C14A—H14D···Cl1 | 0.98 | 2.71 | 3.5406 (16) | 143 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+2. |
[ZnI2(C28H26N2O4)] | Z = 2 |
Mr = 773.68 | F(000) = 752 |
Triclinic, P1 | Dx = 1.894 Mg m−3 |
a = 9.2709 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.020 (2) Å | Cell parameters from 4135 reflections |
c = 16.248 (4) Å | θ = 4.4–51.3° |
α = 98.56 (4)° | µ = 3.22 mm−1 |
β = 100.50 (4)° | T = 100 K |
γ = 110.09 (3)° | Plate, yellow |
V = 1356.7 (6) Å3 | 0.14 × 0.07 × 0.03 mm |
Bruker APEXII area detector diffractometer | 7281 independent reflections |
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 4608 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.116 |
Detector resolution: 7.9 pixels mm-1 | θmax = 25.5°, θmin = 2.2° |
ω and φ scans | h = −10→10 |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | k = −12→12 |
Tmin = 0.612, Tmax = 0.746 | l = −19→19 |
7281 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.195 | w = 1/[σ2(Fo2) + (0.1055P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
7281 reflections | Δρmax = 2.19 e Å−3 |
337 parameters | Δρmin = −1.18 e Å−3 |
174 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The carbon and nitrogen atoms were fixed using the similarity restraint for Uij (SIMU). Atoms N1A, N1B, and C14B were fixed using the ISOR restraint. The structure was solved as a rotational twin rotated from first domain by 179.8 degrees about reciprocal axis 0.002 1.000 0.001 and real axis 0.434 1.000 0.197. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix): -0.999 0.004 -0.001, 0.866 0.998 0.395, 0.007 0.003 -0.999. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.334 (2) | 0.3133 (16) | 0.8865 (11) | 0.0165 (17) | |
C1B | 0.130 (2) | 0.0695 (17) | 0.6410 (10) | 0.0129 (15) | |
C2A | 0.396 (2) | 0.2136 (16) | 0.8566 (11) | 0.0167 (17) | |
H2A | 0.3964 | 0.1941 | 0.7976 | 0.020* | |
C2B | 0.035 (2) | 0.0640 (17) | 0.7007 (10) | 0.0131 (16) | |
H2B | 0.0540 | 0.1491 | 0.7425 | 0.016* | |
C3A | 0.457 (2) | 0.1434 (17) | 0.9096 (11) | 0.0166 (17) | |
H3A | 0.4988 | 0.0757 | 0.8867 | 0.020* | |
C3B | −0.086 (2) | −0.0684 (17) | 0.6971 (10) | 0.0129 (16) | |
H3B | −0.1476 | −0.0722 | 0.7380 | 0.015* | |
C4A | 0.461 (2) | 0.1669 (17) | 0.9945 (12) | 0.0164 (17) | |
H4A | 0.5043 | 0.1156 | 1.0299 | 0.020* | |
C4B | −0.120 (2) | −0.1964 (18) | 0.6350 (10) | 0.0125 (16) | |
H4B | −0.2036 | −0.2844 | 0.6340 | 0.015* | |
C5A | 0.402 (2) | 0.2647 (16) | 1.0300 (11) | 0.0165 (17) | |
H5A | 0.4031 | 0.2802 | 1.0893 | 0.020* | |
C5B | −0.030 (2) | −0.1933 (18) | 0.5759 (10) | 0.0126 (15) | |
H5B | −0.0511 | −0.2793 | 0.5342 | 0.015* | |
C6A | 0.339 (2) | 0.3415 (16) | 0.9766 (11) | 0.0164 (16) | |
C6B | 0.095 (2) | −0.0591 (17) | 0.5779 (10) | 0.0127 (15) | |
C7A | 0.286 (2) | 0.4453 (16) | 1.0157 (12) | 0.0165 (18) | |
H7A | 0.2929 | 0.4567 | 1.0755 | 0.020* | |
C7B | 0.179 (2) | −0.0640 (17) | 0.5121 (10) | 0.0127 (17) | |
H7B | 0.1475 | −0.1546 | 0.4723 | 0.015* | |
C8A | 0.172 (2) | 0.6273 (19) | 1.0156 (12) | 0.0191 (17) | |
C8B | 0.373 (2) | 0.0414 (18) | 0.4378 (11) | 0.0155 (17) | |
C9A | 0.165 (2) | 0.6426 (19) | 1.1017 (11) | 0.0191 (17) | |
H9A | 0.1964 | 0.5837 | 1.1361 | 0.023* | |
C9B | 0.347 (2) | −0.0865 (18) | 0.3801 (11) | 0.0156 (17) | |
H9B | 0.2717 | −0.1770 | 0.3831 | 0.019* | |
C10A | 0.110 (2) | 0.7469 (18) | 1.1353 (12) | 0.0195 (17) | |
H10A | 0.0986 | 0.7564 | 1.1925 | 0.023* | |
C10B | 0.430 (2) | −0.0809 (17) | 0.3198 (11) | 0.0158 (17) | |
H10B | 0.4100 | −0.1677 | 0.2791 | 0.019* | |
C11A | 0.073 (2) | 0.8366 (19) | 1.0856 (11) | 0.0193 (17) | |
H11A | 0.0415 | 0.9105 | 1.1105 | 0.023* | |
C11B | 0.544 (2) | 0.0498 (17) | 0.3160 (11) | 0.0155 (17) | |
H11B | 0.6030 | 0.0498 | 0.2740 | 0.019* | |
C12A | 0.081 (2) | 0.8227 (18) | 1.0019 (12) | 0.0193 (17) | |
H12A | 0.0504 | 0.8825 | 0.9680 | 0.023* | |
C12B | 0.573 (2) | 0.1793 (17) | 0.3719 (10) | 0.0154 (17) | |
H12B | 0.6483 | 0.2691 | 0.3679 | 0.018* | |
C13A | 0.137 (2) | 0.7151 (18) | 0.9662 (11) | 0.0193 (17) | |
C13B | 0.489 (2) | 0.1732 (17) | 0.4339 (10) | 0.0153 (17) | |
C14A | 0.098 (3) | 0.776 (2) | 0.8298 (12) | 0.037 (6) | |
H14A | 0.1086 | 0.7446 | 0.7719 | 0.056* | |
H14B | 0.1618 | 0.8807 | 0.8517 | 0.056* | |
H14C | −0.0139 | 0.7584 | 0.8274 | 0.056* | |
C14B | 0.637 (2) | 0.4251 (17) | 0.5024 (11) | 0.017 (4) | |
H14D | 0.6157 | 0.4646 | 0.4518 | 0.026* | |
H14E | 0.7343 | 0.4063 | 0.5057 | 0.026* | |
H14F | 0.6489 | 0.4959 | 0.5544 | 0.026* | |
I1 | 0.06551 (14) | 0.45980 (12) | 0.65185 (7) | 0.0183 (3) | |
I2 | 0.58382 (14) | 0.53025 (12) | 0.73369 (7) | 0.0185 (3) | |
N1A | 0.2297 (17) | 0.5259 (14) | 0.9761 (9) | 0.015 (3) | |
H1A | 0.2267 | 0.5179 | 0.9211 | 0.018* | |
N1B | 0.2921 (16) | 0.0437 (13) | 0.5033 (8) | 0.010 (3) | |
H1B | 0.3227 | 0.1268 | 0.5411 | 0.012* | |
O1A | 0.2721 (14) | 0.3821 (12) | 0.8366 (8) | 0.017 (3) | |
O1B | 0.2479 (14) | 0.1894 (12) | 0.6433 (7) | 0.015 (3) | |
O2A | 0.1519 (15) | 0.6952 (12) | 0.8862 (8) | 0.021 (3) | |
O2B | 0.5048 (13) | 0.2897 (11) | 0.4952 (7) | 0.014 (3) | |
Zn1 | 0.2884 (3) | 0.38214 (19) | 0.71687 (14) | 0.0131 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.021 (4) | 0.006 (3) | 0.021 (4) | 0.002 (3) | 0.008 (3) | 0.004 (3) |
C1B | 0.011 (4) | 0.015 (3) | 0.013 (3) | 0.006 (3) | 0.001 (3) | 0.001 (3) |
C2A | 0.021 (4) | 0.006 (3) | 0.022 (4) | 0.002 (3) | 0.008 (3) | 0.004 (3) |
C2B | 0.011 (4) | 0.015 (3) | 0.013 (3) | 0.006 (3) | 0.001 (3) | 0.001 (3) |
C3A | 0.021 (4) | 0.006 (3) | 0.022 (4) | 0.002 (3) | 0.008 (3) | 0.005 (3) |
C3B | 0.011 (4) | 0.015 (3) | 0.012 (3) | 0.006 (3) | 0.002 (3) | 0.001 (3) |
C4A | 0.021 (4) | 0.006 (3) | 0.022 (4) | 0.002 (3) | 0.009 (3) | 0.004 (3) |
C4B | 0.011 (4) | 0.014 (3) | 0.012 (3) | 0.006 (3) | 0.002 (3) | 0.002 (3) |
C5A | 0.021 (4) | 0.006 (3) | 0.021 (4) | 0.002 (3) | 0.009 (3) | 0.004 (3) |
C5B | 0.011 (4) | 0.014 (3) | 0.012 (3) | 0.006 (3) | 0.002 (3) | 0.001 (3) |
C6A | 0.021 (4) | 0.006 (3) | 0.021 (4) | 0.002 (3) | 0.009 (3) | 0.005 (3) |
C6B | 0.011 (4) | 0.014 (3) | 0.013 (3) | 0.006 (3) | 0.001 (3) | 0.001 (3) |
C7A | 0.021 (4) | 0.007 (3) | 0.021 (4) | 0.002 (3) | 0.008 (3) | 0.005 (3) |
C7B | 0.011 (4) | 0.014 (3) | 0.013 (3) | 0.006 (3) | 0.001 (3) | 0.001 (3) |
C8A | 0.011 (4) | 0.023 (4) | 0.022 (4) | 0.010 (3) | 0.002 (3) | −0.001 (3) |
C8B | 0.016 (4) | 0.017 (3) | 0.014 (4) | 0.007 (3) | 0.005 (3) | 0.004 (3) |
C9A | 0.011 (4) | 0.023 (4) | 0.022 (4) | 0.010 (3) | 0.002 (3) | −0.002 (3) |
C9B | 0.016 (4) | 0.017 (3) | 0.014 (4) | 0.006 (3) | 0.005 (3) | 0.004 (3) |
C10A | 0.012 (4) | 0.024 (4) | 0.023 (4) | 0.010 (3) | 0.002 (3) | −0.002 (3) |
C10B | 0.017 (4) | 0.017 (3) | 0.014 (4) | 0.007 (3) | 0.005 (3) | 0.003 (3) |
C11A | 0.012 (4) | 0.023 (4) | 0.023 (4) | 0.010 (3) | 0.002 (3) | −0.002 (3) |
C11B | 0.016 (4) | 0.017 (3) | 0.014 (4) | 0.007 (3) | 0.005 (3) | 0.004 (3) |
C12A | 0.012 (4) | 0.023 (4) | 0.023 (4) | 0.010 (3) | 0.002 (3) | −0.001 (3) |
C12B | 0.016 (4) | 0.017 (3) | 0.014 (4) | 0.007 (3) | 0.005 (3) | 0.004 (3) |
C13A | 0.012 (4) | 0.023 (4) | 0.023 (4) | 0.010 (3) | 0.002 (3) | −0.001 (3) |
C13B | 0.016 (4) | 0.017 (3) | 0.013 (4) | 0.007 (3) | 0.005 (3) | 0.004 (3) |
C14A | 0.063 (17) | 0.032 (11) | 0.027 (11) | 0.026 (12) | 0.016 (12) | 0.009 (9) |
C14B | 0.018 (4) | 0.016 (4) | 0.018 (4) | 0.007 (3) | 0.005 (3) | 0.002 (3) |
I1 | 0.0170 (7) | 0.0182 (6) | 0.0184 (7) | 0.0077 (5) | 0.0005 (6) | 0.0024 (5) |
I2 | 0.0132 (7) | 0.0233 (7) | 0.0141 (6) | 0.0012 (5) | 0.0029 (5) | 0.0044 (5) |
N1A | 0.015 (3) | 0.014 (3) | 0.015 (3) | 0.0062 (17) | 0.0030 (15) | 0.0032 (14) |
N1B | 0.009 (3) | 0.010 (3) | 0.009 (3) | 0.0029 (16) | 0.0028 (14) | 0.0020 (14) |
O1A | 0.011 (7) | 0.013 (6) | 0.027 (7) | 0.008 (5) | 0.000 (6) | 0.002 (5) |
O1B | 0.010 (7) | 0.013 (6) | 0.016 (6) | 0.003 (5) | 0.002 (5) | −0.004 (5) |
O2A | 0.029 (8) | 0.016 (6) | 0.020 (7) | 0.008 (6) | 0.007 (6) | 0.008 (5) |
O2B | 0.015 (7) | 0.007 (5) | 0.020 (6) | 0.000 (5) | 0.013 (6) | 0.001 (5) |
Zn1 | 0.0137 (10) | 0.0132 (10) | 0.0115 (9) | 0.0043 (9) | 0.0032 (7) | 0.0021 (7) |
C1A—C2A | 1.39 (2) | C8B—N1B | 1.41 (2) |
C1A—C6A | 1.44 (2) | C9A—H9A | 0.9500 |
C1A—O1A | 1.31 (2) | C9A—C10A | 1.39 (2) |
C1B—C2B | 1.42 (2) | C9B—H9B | 0.9500 |
C1B—C6B | 1.42 (2) | C9B—C10B | 1.35 (2) |
C1B—O1B | 1.307 (19) | C10A—H10A | 0.9500 |
C2A—H2A | 0.9500 | C10A—C11A | 1.38 (2) |
C2A—C3A | 1.35 (2) | C10B—H10B | 0.9500 |
C2B—H2B | 0.9500 | C10B—C11B | 1.39 (2) |
C2B—C3B | 1.40 (2) | C11A—H11A | 0.9500 |
C3A—H3A | 0.9500 | C11A—C12A | 1.36 (2) |
C3A—C4A | 1.36 (2) | C11B—H11B | 0.9500 |
C3B—H3B | 0.9500 | C11B—C12B | 1.38 (2) |
C3B—C4B | 1.41 (2) | C12A—H12A | 0.9500 |
C4A—H4A | 0.9500 | C12A—C13A | 1.44 (2) |
C4A—C5A | 1.38 (2) | C12B—H12B | 0.9500 |
C4B—H4B | 0.9500 | C12B—C13B | 1.38 (2) |
C4B—C5B | 1.38 (2) | C13A—O2A | 1.32 (2) |
C5A—H5A | 0.9500 | C13B—O2B | 1.362 (18) |
C5A—C6A | 1.42 (2) | C14A—H14A | 0.9800 |
C5B—H5B | 0.9500 | C14A—H14B | 0.9800 |
C5B—C6B | 1.43 (2) | C14A—H14C | 0.9800 |
C6A—C7A | 1.41 (2) | C14A—O2A | 1.44 (2) |
C6B—C7B | 1.44 (2) | C14B—H14D | 0.9800 |
C7A—H7A | 0.9500 | C14B—H14E | 0.9800 |
C7A—N1A | 1.29 (2) | C14B—H14F | 0.9800 |
C7B—H7B | 0.9500 | C14B—O2B | 1.453 (18) |
C7B—N1B | 1.27 (2) | I1—Zn1 | 2.558 (3) |
C8A—C9A | 1.40 (2) | I2—Zn1 | 2.568 (3) |
C8A—C13A | 1.35 (2) | N1A—H1A | 0.8800 |
C8A—N1A | 1.43 (2) | N1B—H1B | 0.8800 |
C8B—C9B | 1.39 (2) | O1A—Zn1 | 1.979 (12) |
C8B—C13B | 1.41 (2) | O1B—Zn1 | 1.988 (11) |
C2A—C1A—C6A | 117.4 (16) | C10B—C9B—H9B | 120.4 |
O1A—C1A—C2A | 123.1 (16) | C9A—C10A—H10A | 120.0 |
O1A—C1A—C6A | 119.4 (15) | C11A—C10A—C9A | 120.1 (17) |
C2B—C1B—C6B | 118.5 (15) | C11A—C10A—H10A | 120.0 |
O1B—C1B—C2B | 121.5 (15) | C9B—C10B—H10B | 119.4 |
O1B—C1B—C6B | 120.0 (14) | C9B—C10B—C11B | 121.1 (16) |
C1A—C2A—H2A | 119.2 | C11B—C10B—H10B | 119.4 |
C3A—C2A—C1A | 121.5 (17) | C10A—C11A—H11A | 118.9 |
C3A—C2A—H2A | 119.2 | C12A—C11A—C10A | 122.1 (17) |
C1B—C2B—H2B | 120.5 | C12A—C11A—H11A | 118.9 |
C3B—C2B—C1B | 119.1 (15) | C10B—C11B—H11B | 119.3 |
C3B—C2B—H2B | 120.5 | C12B—C11B—C10B | 121.5 (16) |
C2A—C3A—H3A | 119.0 | C12B—C11B—H11B | 119.3 |
C2A—C3A—C4A | 121.9 (17) | C11A—C12A—H12A | 120.8 |
C4A—C3A—H3A | 119.0 | C11A—C12A—C13A | 118.4 (16) |
C2B—C3B—H3B | 118.8 | C13A—C12A—H12A | 120.8 |
C2B—C3B—C4B | 122.3 (16) | C11B—C12B—H12B | 121.4 |
C4B—C3B—H3B | 118.8 | C11B—C12B—C13B | 117.3 (15) |
C3A—C4A—H4A | 119.7 | C13B—C12B—H12B | 121.4 |
C3A—C4A—C5A | 120.6 (17) | C8A—C13A—C12A | 118.6 (16) |
C5A—C4A—H4A | 119.7 | O2A—C13A—C8A | 118.3 (15) |
C3B—C4B—H4B | 120.2 | O2A—C13A—C12A | 123.0 (16) |
C5B—C4B—C3B | 119.6 (16) | C12B—C13B—C8B | 121.4 (15) |
C5B—C4B—H4B | 120.2 | O2B—C13B—C8B | 113.5 (14) |
C4A—C5A—H5A | 120.5 | O2B—C13B—C12B | 125.1 (14) |
C4A—C5A—C6A | 119.0 (16) | H14A—C14A—H14B | 109.5 |
C6A—C5A—H5A | 120.5 | H14A—C14A—H14C | 109.5 |
C4B—C5B—H5B | 120.3 | H14B—C14A—H14C | 109.5 |
C4B—C5B—C6B | 119.4 (15) | O2A—C14A—H14A | 109.5 |
C6B—C5B—H5B | 120.3 | O2A—C14A—H14B | 109.5 |
C5A—C6A—C1A | 119.5 (15) | O2A—C14A—H14C | 109.5 |
C7A—C6A—C1A | 123.0 (16) | H14D—C14B—H14E | 109.5 |
C7A—C6A—C5A | 117.5 (16) | H14D—C14B—H14F | 109.5 |
C1B—C6B—C5B | 121.1 (15) | H14E—C14B—H14F | 109.5 |
C1B—C6B—C7B | 123.0 (15) | O2B—C14B—H14D | 109.5 |
C5B—C6B—C7B | 115.9 (15) | O2B—C14B—H14E | 109.5 |
C6A—C7A—H7A | 117.6 | O2B—C14B—H14F | 109.5 |
N1A—C7A—C6A | 124.8 (17) | C7A—N1A—C8A | 124.4 (15) |
N1A—C7A—H7A | 117.6 | C7A—N1A—H1A | 117.8 |
C6B—C7B—H7B | 117.5 | C8A—N1A—H1A | 117.8 |
N1B—C7B—C6B | 124.9 (16) | C7B—N1B—C8B | 125.5 (14) |
N1B—C7B—H7B | 117.5 | C7B—N1B—H1B | 117.2 |
C9A—C8A—N1A | 121.8 (15) | C8B—N1B—H1B | 117.2 |
C13A—C8A—C9A | 122.8 (16) | C1A—O1A—Zn1 | 124.5 (11) |
C13A—C8A—N1A | 115.1 (15) | C1B—O1B—Zn1 | 123.4 (10) |
C9B—C8B—C13B | 119.5 (15) | C13A—O2A—C14A | 118.8 (13) |
C9B—C8B—N1B | 122.4 (14) | C13B—O2B—C14B | 116.2 (12) |
C13B—C8B—N1B | 118.1 (15) | I1—Zn1—I2 | 123.65 (7) |
C8A—C9A—H9A | 121.1 | O1A—Zn1—I1 | 104.0 (4) |
C10A—C9A—C8A | 117.8 (17) | O1A—Zn1—I2 | 103.6 (4) |
C10A—C9A—H9A | 121.1 | O1A—Zn1—O1B | 115.8 (4) |
C8B—C9B—H9B | 120.4 | O1B—Zn1—I1 | 106.2 (4) |
C10B—C9B—C8B | 119.2 (16) | O1B—Zn1—I2 | 104.2 (3) |
C1A—C2A—C3A—C4A | 0 (3) | C9A—C8A—C13A—O2A | 177.8 (17) |
C1A—C6A—C7A—N1A | 0 (3) | C9A—C8A—N1A—C7A | −3 (3) |
C1B—C2B—C3B—C4B | −1 (2) | C9A—C10A—C11A—C12A | 3 (3) |
C1B—C6B—C7B—N1B | 0 (3) | C9B—C8B—C13B—C12B | 2 (3) |
C2A—C1A—C6A—C5A | −2 (2) | C9B—C8B—C13B—O2B | −178.7 (15) |
C2A—C1A—C6A—C7A | 176.9 (16) | C9B—C8B—N1B—C7B | −7 (3) |
C2A—C1A—O1A—Zn1 | −11 (2) | C9B—C10B—C11B—C12B | −2 (3) |
C2A—C3A—C4A—C5A | 0 (3) | C10A—C11A—C12A—C13A | −3 (3) |
C2B—C1B—C6B—C5B | −2 (2) | C10B—C11B—C12B—C13B | 2 (3) |
C2B—C1B—C6B—C7B | 177.3 (16) | C11A—C12A—C13A—C8A | 3 (3) |
C2B—C1B—O1B—Zn1 | −9 (2) | C11A—C12A—C13A—O2A | −178.6 (17) |
C2B—C3B—C4B—C5B | 1 (2) | C11B—C12B—C13B—C8B | −2 (3) |
C3A—C4A—C5A—C6A | −1 (3) | C11B—C12B—C13B—O2B | 178.6 (16) |
C3B—C4B—C5B—C6B | −1 (2) | C12A—C13A—O2A—C14A | −5 (3) |
C4A—C5A—C6A—C1A | 2 (2) | C12B—C13B—O2B—C14B | −9 (2) |
C4A—C5A—C6A—C7A | −177.2 (15) | C13A—C8A—C9A—C10A | 4 (3) |
C4B—C5B—C6B—C1B | 2 (2) | C13A—C8A—N1A—C7A | 171.6 (17) |
C4B—C5B—C6B—C7B | −178.0 (15) | C13B—C8B—C9B—C10B | −2 (3) |
C5A—C6A—C7A—N1A | 178.4 (16) | C13B—C8B—N1B—C7B | 175.7 (16) |
C5B—C6B—C7B—N1B | 179.6 (16) | N1A—C8A—C9A—C10A | 178.3 (16) |
C6A—C1A—C2A—C3A | 1 (3) | N1A—C8A—C13A—C12A | −178.6 (16) |
C6A—C1A—O1A—Zn1 | 169.1 (11) | N1A—C8A—C13A—O2A | 3 (2) |
C6A—C7A—N1A—C8A | 177.8 (16) | N1B—C8B—C9B—C10B | −179.3 (16) |
C6B—C1B—C2B—C3B | 2 (2) | N1B—C8B—C13B—C12B | 179.8 (16) |
C6B—C1B—O1B—Zn1 | 170.6 (11) | N1B—C8B—C13B—O2B | −1 (2) |
C6B—C7B—N1B—C8B | −178.3 (16) | O1A—C1A—C2A—C3A | −179.1 (16) |
C8A—C9A—C10A—C11A | −4 (3) | O1A—C1A—C6A—C5A | 178.3 (15) |
C8A—C13A—O2A—C14A | 172.8 (17) | O1A—C1A—C6A—C7A | −3 (3) |
C8B—C9B—C10B—C11B | 2 (3) | O1B—C1B—C2B—C3B | −177.9 (15) |
C8B—C13B—O2B—C14B | 171.9 (14) | O1B—C1B—C6B—C5B | 177.7 (15) |
C9A—C8A—C13A—C12A | −4 (3) | O1B—C1B—C6B—C7B | −3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2B—H2B···O1A | 0.95 | 2.54 | 3.34 (2) | 143 |
N1A—H1A···O1A | 0.88 | 1.99 | 2.666 (18) | 133 |
N1B—H1B···O1B | 0.88 | 2.01 | 2.690 (16) | 133 |
[CdBr2(C28H26N2O4)] | Z = 2 |
Mr = 726.73 | F(000) = 716 |
Triclinic, P1 | Dx = 1.789 Mg m−3 |
a = 9.2772 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0935 (3) Å | Cell parameters from 9888 reflections |
c = 16.1021 (5) Å | θ = 4.4–53.3° |
α = 97.699 (2)° | µ = 3.81 mm−1 |
β = 100.586 (2)° | T = 100 K |
γ = 111.149 (2)° | Fragment, orange |
V = 1348.92 (8) Å3 | 0.27 × 0.13 × 0.10 mm |
Bruker APEXII area detector diffractometer | 10130 independent reflections |
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 8342 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.8°, θmin = 2.2° |
ω and φ scans | h = −11→11 |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | k = −12→12 |
Tmin = 0.538, Tmax = 0.745 | l = −20→20 |
10130 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0861P)2 + 0.1296P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
10130 reflections | Δρmax = 1.04 e Å−3 |
337 parameters | Δρmin = −0.70 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved as a rotational twin. Rotated from first domain by 179.7 degrees about reciprocal axis -0.003 -0.997 1.000 and real axis 0.311 1.000 -0.257. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix) -1.001 0.001 -0.004, 0.498 0.590 -0.407, -0.487 -1.593 -0.589. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.29206 (5) | 0.39716 (4) | 0.71100 (3) | 0.01298 (12) | |
Br2 | 0.59152 (7) | 0.53416 (7) | 0.73453 (4) | 0.02186 (16) | |
Br1 | 0.06225 (7) | 0.45851 (6) | 0.64168 (4) | 0.01971 (15) | |
O1B | 0.2700 (5) | 0.3889 (4) | 0.8457 (2) | 0.0146 (8) | |
O1A | 0.2436 (5) | 0.1800 (4) | 0.6336 (3) | 0.0147 (8) | |
O2A | 0.5041 (5) | 0.2829 (4) | 0.4950 (3) | 0.0171 (8) | |
O2B | 0.1460 (5) | 0.6818 (4) | 0.8836 (3) | 0.0218 (9) | |
N1A | 0.2869 (5) | 0.0342 (5) | 0.4984 (3) | 0.0124 (9) | |
H1A | 0.3168 | 0.1169 | 0.5359 | 0.015* | |
N1B | 0.2287 (5) | 0.5245 (5) | 0.9842 (3) | 0.0133 (9) | |
H1B | 0.2207 | 0.5120 | 0.9281 | 0.016* | |
C13A | 0.4882 (6) | 0.1700 (6) | 0.4328 (3) | 0.0141 (11) | |
C13B | 0.1329 (7) | 0.7125 (6) | 0.9656 (4) | 0.0183 (12) | |
C6A | 0.0867 (6) | −0.0710 (6) | 0.5738 (3) | 0.0139 (11) | |
C7B | 0.2879 (7) | 0.4445 (6) | 1.0253 (4) | 0.0156 (11) | |
H7B | 0.2977 | 0.4569 | 1.0859 | 0.019* | |
C1B | 0.3292 (7) | 0.3179 (6) | 0.8939 (3) | 0.0131 (11) | |
C7A | 0.1681 (6) | −0.0769 (6) | 0.5082 (3) | 0.0133 (11) | |
H7A | 0.1344 | −0.1673 | 0.4687 | 0.016* | |
C3A | −0.0890 (7) | −0.0731 (6) | 0.6974 (4) | 0.0172 (12) | |
H3A | −0.1492 | −0.0739 | 0.7393 | 0.021* | |
C6B | 0.3379 (6) | 0.3411 (6) | 0.9855 (3) | 0.0144 (11) | |
C5A | −0.0396 (7) | −0.2009 (6) | 0.5771 (4) | 0.0152 (11) | |
H5A | −0.0644 | −0.2882 | 0.5363 | 0.018* | |
C4B | 0.4565 (7) | 0.1660 (6) | 1.0034 (4) | 0.0195 (12) | |
H4B | 0.4980 | 0.1138 | 1.0391 | 0.023* | |
C8B | 0.1770 (7) | 0.6279 (6) | 1.0205 (4) | 0.0164 (11) | |
C9B | 0.1653 (7) | 0.6496 (6) | 1.1060 (4) | 0.0182 (12) | |
H9B | 0.1929 | 0.5919 | 1.1429 | 0.022* | |
C8A | 0.3719 (6) | 0.0354 (6) | 0.4343 (3) | 0.0146 (11) | |
C2A | 0.0323 (7) | 0.0545 (6) | 0.6965 (4) | 0.0156 (11) | |
H2A | 0.0543 | 0.1403 | 0.7378 | 0.019* | |
C4A | −0.1254 (7) | −0.2027 (6) | 0.6372 (4) | 0.0172 (12) | |
H4A | −0.2091 | −0.2904 | 0.6386 | 0.021* | |
C12B | 0.0820 (8) | 0.8187 (6) | 0.9980 (4) | 0.0224 (13) | |
H12B | 0.0537 | 0.8771 | 0.9619 | 0.027* | |
C11A | 0.5502 (7) | 0.0530 (7) | 0.3122 (4) | 0.0208 (13) | |
H11A | 0.6087 | 0.0586 | 0.2693 | 0.025* | |
C10A | 0.4388 (7) | −0.0804 (6) | 0.3155 (4) | 0.0193 (12) | |
H10A | 0.4241 | −0.1658 | 0.2760 | 0.023* | |
C9A | 0.3486 (7) | −0.0901 (6) | 0.3759 (4) | 0.0165 (11) | |
H9A | 0.2714 | −0.1817 | 0.3776 | 0.020* | |
C5B | 0.4009 (7) | 0.2633 (6) | 1.0369 (4) | 0.0178 (12) | |
H5B | 0.4047 | 0.2792 | 1.0969 | 0.021* | |
C2B | 0.3900 (6) | 0.2169 (6) | 0.8608 (4) | 0.0146 (11) | |
H2B | 0.3884 | 0.1993 | 0.8011 | 0.017* | |
C11B | 0.0733 (8) | 0.8379 (7) | 1.0833 (4) | 0.0256 (14) | |
H11B | 0.0385 | 0.9102 | 1.1052 | 0.031* | |
C12A | 0.5773 (7) | 0.1788 (6) | 0.3712 (3) | 0.0173 (12) | |
H12A | 0.6556 | 0.2696 | 0.3695 | 0.021* | |
C1A | 0.1259 (6) | 0.0609 (5) | 0.6349 (3) | 0.0123 (10) | |
C14B | 0.0889 (8) | 0.7543 (7) | 0.8220 (4) | 0.0242 (13) | |
H14A | 0.1000 | 0.7187 | 0.7648 | 0.036* | |
H14B | 0.1516 | 0.8595 | 0.8404 | 0.036* | |
H14C | −0.0238 | 0.7339 | 0.8189 | 0.036* | |
C3B | 0.4512 (7) | 0.1445 (6) | 0.9144 (4) | 0.0183 (12) | |
H3B | 0.4912 | 0.0777 | 0.8906 | 0.022* | |
C14A | 0.6346 (7) | 0.4188 (6) | 0.5035 (4) | 0.0210 (12) | |
H14D | 0.6140 | 0.4601 | 0.4531 | 0.032* | |
H14E | 0.7334 | 0.4026 | 0.5071 | 0.032* | |
H14F | 0.6456 | 0.4865 | 0.5563 | 0.032* | |
C10B | 0.1136 (7) | 0.7551 (7) | 1.1377 (4) | 0.0218 (13) | |
H10B | 0.1061 | 0.7699 | 1.1960 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0152 (2) | 0.0125 (2) | 0.0107 (2) | 0.00478 (16) | 0.00380 (14) | 0.00165 (14) |
Br2 | 0.0161 (3) | 0.0281 (3) | 0.0152 (3) | 0.0012 (3) | 0.0051 (2) | 0.0049 (2) |
Br1 | 0.0196 (3) | 0.0194 (3) | 0.0196 (3) | 0.0099 (2) | 0.0008 (2) | 0.0017 (2) |
O1B | 0.019 (2) | 0.0186 (19) | 0.0107 (19) | 0.0105 (17) | 0.0059 (16) | 0.0051 (15) |
O1A | 0.015 (2) | 0.0108 (18) | 0.018 (2) | 0.0044 (16) | 0.0058 (16) | 0.0015 (15) |
O2A | 0.016 (2) | 0.0156 (19) | 0.016 (2) | 0.0007 (16) | 0.0073 (17) | 0.0018 (16) |
O2B | 0.030 (2) | 0.025 (2) | 0.016 (2) | 0.0160 (19) | 0.0051 (18) | 0.0050 (17) |
N1A | 0.014 (2) | 0.014 (2) | 0.010 (2) | 0.0072 (19) | 0.0032 (19) | −0.0014 (18) |
N1B | 0.014 (2) | 0.017 (2) | 0.010 (2) | 0.0059 (19) | 0.0056 (18) | 0.0033 (18) |
C13A | 0.012 (3) | 0.017 (3) | 0.011 (3) | 0.007 (2) | −0.001 (2) | −0.001 (2) |
C13B | 0.017 (3) | 0.021 (3) | 0.014 (3) | 0.007 (2) | 0.002 (2) | −0.001 (2) |
C6A | 0.015 (3) | 0.014 (3) | 0.013 (3) | 0.007 (2) | 0.002 (2) | 0.002 (2) |
C7B | 0.015 (3) | 0.018 (3) | 0.013 (3) | 0.004 (2) | 0.007 (2) | 0.003 (2) |
C1B | 0.014 (3) | 0.012 (2) | 0.013 (3) | 0.003 (2) | 0.006 (2) | 0.004 (2) |
C7A | 0.012 (3) | 0.014 (3) | 0.014 (3) | 0.006 (2) | 0.000 (2) | 0.002 (2) |
C3A | 0.016 (3) | 0.021 (3) | 0.017 (3) | 0.008 (2) | 0.010 (2) | 0.005 (2) |
C6B | 0.010 (3) | 0.016 (3) | 0.015 (3) | 0.004 (2) | 0.002 (2) | 0.002 (2) |
C5A | 0.014 (3) | 0.011 (3) | 0.018 (3) | 0.004 (2) | 0.001 (2) | 0.003 (2) |
C4B | 0.024 (3) | 0.014 (3) | 0.021 (3) | 0.008 (2) | 0.006 (3) | 0.005 (2) |
C8B | 0.013 (3) | 0.018 (3) | 0.020 (3) | 0.009 (2) | 0.006 (2) | 0.002 (2) |
C9B | 0.014 (3) | 0.025 (3) | 0.016 (3) | 0.010 (2) | 0.002 (2) | 0.000 (2) |
C8A | 0.013 (3) | 0.022 (3) | 0.011 (3) | 0.009 (2) | 0.004 (2) | 0.003 (2) |
C2A | 0.019 (3) | 0.016 (3) | 0.014 (3) | 0.008 (2) | 0.008 (2) | 0.002 (2) |
C4A | 0.014 (3) | 0.012 (3) | 0.021 (3) | 0.000 (2) | 0.005 (2) | 0.003 (2) |
C12B | 0.024 (3) | 0.019 (3) | 0.025 (3) | 0.010 (3) | 0.006 (3) | 0.002 (3) |
C11A | 0.017 (3) | 0.030 (3) | 0.016 (3) | 0.011 (3) | 0.005 (2) | 0.002 (3) |
C10A | 0.020 (3) | 0.025 (3) | 0.014 (3) | 0.013 (3) | 0.002 (2) | −0.002 (2) |
C9A | 0.016 (3) | 0.018 (3) | 0.017 (3) | 0.007 (2) | 0.006 (2) | 0.001 (2) |
C5B | 0.022 (3) | 0.018 (3) | 0.012 (3) | 0.006 (2) | 0.004 (2) | 0.004 (2) |
C2B | 0.013 (3) | 0.018 (3) | 0.012 (3) | 0.006 (2) | 0.004 (2) | 0.000 (2) |
C11B | 0.024 (3) | 0.023 (3) | 0.033 (4) | 0.017 (3) | 0.007 (3) | −0.002 (3) |
C12A | 0.017 (3) | 0.020 (3) | 0.014 (3) | 0.005 (2) | 0.006 (2) | 0.007 (2) |
C1A | 0.014 (3) | 0.012 (2) | 0.013 (3) | 0.008 (2) | 0.004 (2) | 0.002 (2) |
C14B | 0.035 (4) | 0.024 (3) | 0.022 (3) | 0.020 (3) | 0.006 (3) | 0.010 (3) |
C3B | 0.016 (3) | 0.015 (3) | 0.026 (3) | 0.007 (2) | 0.006 (3) | 0.005 (2) |
C14A | 0.024 (3) | 0.015 (3) | 0.020 (3) | 0.002 (2) | 0.008 (3) | 0.003 (2) |
C10B | 0.017 (3) | 0.029 (3) | 0.017 (3) | 0.011 (3) | 0.002 (2) | −0.005 (2) |
Cd1—Br2 | 2.5445 (7) | C5A—C4A | 1.361 (7) |
Cd1—Br1 | 2.5374 (7) | C4B—H4B | 0.9500 |
Cd1—O1B | 2.225 (4) | C4B—C5B | 1.360 (8) |
Cd1—O1A | 2.216 (4) | C4B—C3B | 1.410 (8) |
O1B—C1B | 1.302 (6) | C8B—C9B | 1.394 (8) |
O1A—C1A | 1.306 (6) | C9B—H9B | 0.9500 |
O2A—C13A | 1.358 (6) | C9B—C10B | 1.392 (8) |
O2A—C14A | 1.434 (6) | C8A—C9A | 1.394 (8) |
O2B—C13B | 1.354 (7) | C2A—H2A | 0.9500 |
O2B—C14B | 1.441 (6) | C2A—C1A | 1.426 (7) |
N1A—H1A | 0.8800 | C4A—H4A | 0.9500 |
N1A—C7A | 1.310 (7) | C12B—H12B | 0.9500 |
N1A—C8A | 1.409 (7) | C12B—C11B | 1.383 (9) |
N1B—H1B | 0.8800 | C11A—H11A | 0.9500 |
N1B—C7B | 1.312 (7) | C11A—C10A | 1.385 (8) |
N1B—C8B | 1.400 (7) | C11A—C12A | 1.391 (8) |
C13A—C8A | 1.403 (8) | C10A—H10A | 0.9500 |
C13A—C12A | 1.397 (7) | C10A—C9A | 1.387 (8) |
C13B—C8B | 1.414 (8) | C9A—H9A | 0.9500 |
C13B—C12B | 1.397 (8) | C5B—H5B | 0.9500 |
C6A—C7A | 1.414 (7) | C2B—H2B | 0.9500 |
C6A—C5A | 1.423 (7) | C2B—C3B | 1.374 (8) |
C6A—C1A | 1.429 (7) | C11B—H11B | 0.9500 |
C7B—H7B | 0.9500 | C11B—C10B | 1.381 (9) |
C7B—C6B | 1.413 (7) | C12A—H12A | 0.9500 |
C1B—C6B | 1.444 (7) | C14B—H14A | 0.9800 |
C1B—C2B | 1.422 (7) | C14B—H14B | 0.9800 |
C7A—H7A | 0.9500 | C14B—H14C | 0.9800 |
C3A—H3A | 0.9500 | C3B—H3B | 0.9500 |
C3A—C2A | 1.375 (8) | C14A—H14D | 0.9800 |
C3A—C4A | 1.409 (8) | C14A—H14E | 0.9800 |
C6B—C5B | 1.404 (8) | C14A—H14F | 0.9800 |
C5A—H5A | 0.9500 | C10B—H10B | 0.9500 |
Br1—Cd1—Br2 | 130.04 (2) | C9A—C8A—N1A | 122.9 (5) |
O1B—Cd1—Br2 | 101.88 (11) | C9A—C8A—C13A | 120.1 (5) |
O1B—Cd1—Br1 | 104.78 (10) | C3A—C2A—H2A | 119.2 |
O1A—Cd1—Br2 | 103.56 (10) | C3A—C2A—C1A | 121.5 (5) |
O1A—Cd1—Br1 | 104.40 (10) | C1A—C2A—H2A | 119.2 |
O1A—Cd1—O1B | 111.99 (12) | C3A—C4A—H4A | 120.3 |
C1B—O1B—Cd1 | 124.1 (3) | C5A—C4A—C3A | 119.3 (5) |
C1A—O1A—Cd1 | 123.5 (3) | C5A—C4A—H4A | 120.3 |
C13A—O2A—C14A | 116.8 (4) | C13B—C12B—H12B | 120.4 |
C13B—O2B—C14B | 117.8 (4) | C11B—C12B—C13B | 119.2 (6) |
C7A—N1A—H1A | 116.5 | C11B—C12B—H12B | 120.4 |
C7A—N1A—C8A | 127.0 (5) | C10A—C11A—H11A | 119.6 |
C8A—N1A—H1A | 116.5 | C10A—C11A—C12A | 120.8 (5) |
C7B—N1B—H1B | 116.7 | C12A—C11A—H11A | 119.6 |
C7B—N1B—C8B | 126.6 (5) | C11A—C10A—H10A | 119.8 |
C8B—N1B—H1B | 116.7 | C11A—C10A—C9A | 120.5 (5) |
O2A—C13A—C8A | 114.6 (5) | C9A—C10A—H10A | 119.8 |
O2A—C13A—C12A | 125.5 (5) | C8A—C9A—H9A | 120.3 |
C12A—C13A—C8A | 119.9 (5) | C10A—C9A—C8A | 119.5 (5) |
O2B—C13B—C8B | 114.9 (5) | C10A—C9A—H9A | 120.3 |
O2B—C13B—C12B | 125.3 (5) | C6B—C5B—H5B | 119.0 |
C12B—C13B—C8B | 119.8 (5) | C4B—C5B—C6B | 122.0 (5) |
C7A—C6A—C5A | 118.1 (5) | C4B—C5B—H5B | 119.0 |
C7A—C6A—C1A | 121.9 (5) | C1B—C2B—H2B | 119.7 |
C5A—C6A—C1A | 119.9 (5) | C3B—C2B—C1B | 120.5 (5) |
N1B—C7B—H7B | 117.8 | C3B—C2B—H2B | 119.7 |
N1B—C7B—C6B | 124.4 (5) | C12B—C11B—H11B | 119.0 |
C6B—C7B—H7B | 117.8 | C10B—C11B—C12B | 122.0 (6) |
O1B—C1B—C6B | 120.5 (5) | C10B—C11B—H11B | 119.0 |
O1B—C1B—C2B | 122.7 (5) | C13A—C12A—H12A | 120.4 |
C2B—C1B—C6B | 116.8 (5) | C11A—C12A—C13A | 119.2 (5) |
N1A—C7A—C6A | 124.3 (5) | C11A—C12A—H12A | 120.4 |
N1A—C7A—H7A | 117.8 | O1A—C1A—C6A | 120.4 (5) |
C6A—C7A—H7A | 117.8 | O1A—C1A—C2A | 122.8 (5) |
C2A—C3A—H3A | 119.5 | C2A—C1A—C6A | 116.8 (5) |
C2A—C3A—C4A | 121.0 (5) | O2B—C14B—H14A | 109.5 |
C4A—C3A—H3A | 119.5 | O2B—C14B—H14B | 109.5 |
C7B—C6B—C1B | 121.0 (5) | O2B—C14B—H14C | 109.5 |
C5B—C6B—C7B | 118.9 (5) | H14A—C14B—H14B | 109.5 |
C5B—C6B—C1B | 120.1 (5) | H14A—C14B—H14C | 109.5 |
C6A—C5A—H5A | 119.3 | H14B—C14B—H14C | 109.5 |
C4A—C5A—C6A | 121.4 (5) | C4B—C3B—H3B | 118.9 |
C4A—C5A—H5A | 119.3 | C2B—C3B—C4B | 122.2 (5) |
C5B—C4B—H4B | 120.8 | C2B—C3B—H3B | 118.9 |
C5B—C4B—C3B | 118.4 (5) | O2A—C14A—H14D | 109.5 |
C3B—C4B—H4B | 120.8 | O2A—C14A—H14E | 109.5 |
N1B—C8B—C13B | 116.8 (5) | O2A—C14A—H14F | 109.5 |
C9B—C8B—N1B | 123.8 (5) | H14D—C14A—H14E | 109.5 |
C9B—C8B—C13B | 119.3 (5) | H14D—C14A—H14F | 109.5 |
C8B—C9B—H9B | 119.7 | H14E—C14A—H14F | 109.5 |
C10B—C9B—C8B | 120.6 (5) | C9B—C10B—H10B | 120.4 |
C10B—C9B—H9B | 119.7 | C11B—C10B—C9B | 119.1 (6) |
C13A—C8A—N1A | 116.9 (5) | C11B—C10B—H10B | 120.4 |
Cd1—O1B—C1B—C6B | 167.5 (4) | C3A—C2A—C1A—O1A | −178.7 (5) |
Cd1—O1B—C1B—C2B | −11.5 (7) | C3A—C2A—C1A—C6A | 0.6 (8) |
Cd1—O1A—C1A—C6A | 170.3 (4) | C6B—C1B—C2B—C3B | 1.0 (8) |
Cd1—O1A—C1A—C2A | −10.4 (7) | C5A—C6A—C7A—N1A | −179.5 (5) |
O1B—C1B—C6B—C7B | −2.2 (8) | C5A—C6A—C1A—O1A | 178.6 (5) |
O1B—C1B—C6B—C5B | 179.5 (5) | C5A—C6A—C1A—C2A | −0.7 (8) |
O1B—C1B—C2B—C3B | −179.9 (5) | C8B—N1B—C7B—C6B | 179.8 (5) |
O2A—C13A—C8A—N1A | 0.4 (7) | C8B—C13B—C12B—C11B | −1.0 (9) |
O2A—C13A—C8A—C9A | −177.4 (5) | C8B—C9B—C10B—C11B | 0.2 (9) |
O2A—C13A—C12A—C11A | 178.7 (5) | C8A—N1A—C7A—C6A | −179.6 (5) |
O2B—C13B—C8B—N1B | 0.2 (7) | C8A—C13A—C12A—C11A | −0.5 (8) |
O2B—C13B—C8B—C9B | −179.0 (5) | C2A—C3A—C4A—C5A | −0.4 (9) |
O2B—C13B—C12B—C11B | 179.6 (6) | C4A—C3A—C2A—C1A | 0.0 (9) |
N1A—C8A—C9A—C10A | −179.0 (5) | C12B—C13B—C8B—N1B | −179.3 (5) |
N1B—C7B—C6B—C1B | 1.1 (9) | C12B—C13B—C8B—C9B | 1.5 (8) |
N1B—C7B—C6B—C5B | 179.3 (5) | C12B—C11B—C10B—C9B | 0.3 (9) |
N1B—C8B—C9B—C10B | 179.7 (5) | C11A—C10A—C9A—C8A | −0.7 (9) |
C13A—C8A—C9A—C10A | −1.3 (8) | C10A—C11A—C12A—C13A | −1.4 (9) |
C13B—C8B—C9B—C10B | −1.1 (9) | C5B—C4B—C3B—C2B | −0.9 (9) |
C13B—C12B—C11B—C10B | 0.0 (10) | C2B—C1B—C6B—C7B | 176.9 (5) |
C6A—C5A—C4A—C3A | 0.2 (8) | C2B—C1B—C6B—C5B | −1.4 (8) |
C7B—N1B—C8B—C13B | 173.6 (5) | C12A—C13A—C8A—N1A | 179.7 (5) |
C7B—N1B—C8B—C9B | −7.2 (9) | C12A—C13A—C8A—C9A | 1.9 (8) |
C7B—C6B—C5B—C4B | −177.6 (5) | C12A—C11A—C10A—C9A | 2.1 (9) |
C1B—C6B—C5B—C4B | 0.6 (9) | C1A—C6A—C7A—N1A | 1.7 (8) |
C1B—C2B—C3B—C4B | 0.1 (9) | C1A—C6A—C5A—C4A | 0.3 (8) |
C7A—N1A—C8A—C13A | 175.8 (5) | C14B—O2B—C13B—C8B | 174.3 (5) |
C7A—N1A—C8A—C9A | −6.4 (9) | C14B—O2B—C13B—C12B | −6.2 (8) |
C7A—C6A—C5A—C4A | −178.6 (5) | C3B—C4B—C5B—C6B | 0.5 (9) |
C7A—C6A—C1A—O1A | −2.5 (8) | C14A—O2A—C13A—C8A | 172.3 (5) |
C7A—C6A—C1A—C2A | 178.1 (5) | C14A—O2A—C13A—C12A | −7.0 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1A | 0.88 | 1.94 | 2.638 (5) | 135 |
N1B—H1B···O1B | 0.88 | 1.93 | 2.621 (5) | 135 |
[CdI2(C28H26N2O4)] | Z = 2 |
Mr = 820.71 | F(000) = 788 |
Triclinic, P1 | Dx = 1.942 Mg m−3 |
a = 9.3200 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0498 (3) Å | Cell parameters from 9951 reflections |
c = 16.6239 (5) Å | θ = 2.3–35.6° |
α = 99.140 (1)° | µ = 3.01 mm−1 |
β = 100.528 (1)° | T = 100 K |
γ = 109.332 (1)° | Block, yellow |
V = 1403.58 (8) Å3 | 0.40 × 0.26 × 0.14 mm |
Bruker SMART APEXII area detector diffractometer | 13807 independent reflections |
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 10917 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
Detector resolution: 7.9 pixels mm-1 | θmax = 36.6°, θmin = 2.2° |
ω and φ scans | h = −15→15 |
Absorption correction: numerical (SADABS; Bruker, 2016) | k = −16→16 |
Tmin = 0.416, Tmax = 0.667 | l = −27→27 |
110757 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0166P)2 + 3.1202P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.003 |
13807 reflections | Δρmax = 1.04 e Å−3 |
336 parameters | Δρmin = −1.33 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.61219 (2) | 0.54498 (2) | 0.73702 (2) | 0.02004 (3) | |
I2 | 0.05336 (2) | 0.47473 (2) | 0.64793 (2) | 0.01951 (3) | |
Cd1 | 0.29815 (2) | 0.40341 (2) | 0.71415 (2) | 0.01333 (3) | |
O1A | 0.25028 (19) | 0.18582 (17) | 0.63597 (10) | 0.0163 (3) | |
O1B | 0.27608 (19) | 0.39367 (18) | 0.84469 (9) | 0.0159 (3) | |
O2A | 0.5029 (2) | 0.28450 (17) | 0.49378 (10) | 0.0180 (3) | |
O2B | 0.1482 (2) | 0.6984 (2) | 0.89037 (11) | 0.0228 (3) | |
N1A | 0.2908 (2) | 0.03889 (19) | 0.49969 (11) | 0.0131 (3) | |
H1A | 0.3210 | 0.1219 | 0.5369 | 0.016* | |
N1B | 0.2263 (2) | 0.5284 (2) | 0.98053 (12) | 0.0165 (3) | |
H1B | 0.2193 | 0.5175 | 0.9262 | 0.020* | |
C1B | 0.3350 (2) | 0.3223 (2) | 0.89094 (13) | 0.0137 (3) | |
C6B | 0.3388 (3) | 0.3444 (2) | 0.97888 (13) | 0.0142 (3) | |
C3A | −0.0776 (3) | −0.0639 (2) | 0.69293 (13) | 0.0167 (4) | |
H3A | −0.1377 | −0.0639 | 0.7334 | 0.020* | |
C1A | 0.1349 (2) | 0.0682 (2) | 0.63543 (12) | 0.0130 (3) | |
C2A | 0.0430 (3) | 0.0625 (2) | 0.69497 (13) | 0.0156 (4) | |
H2A | 0.0649 | 0.1474 | 0.7371 | 0.019* | |
C7B | 0.2850 (3) | 0.4472 (2) | 1.01879 (13) | 0.0159 (4) | |
H7B | 0.2922 | 0.4578 | 1.0774 | 0.019* | |
C2B | 0.3980 (3) | 0.2205 (2) | 0.85860 (13) | 0.0162 (4) | |
H2B | 0.3978 | 0.2028 | 0.8007 | 0.019* | |
C6A | 0.0955 (2) | −0.0632 (2) | 0.57291 (12) | 0.0129 (3) | |
C13A | 0.4846 (3) | 0.1676 (2) | 0.43338 (13) | 0.0146 (3) | |
C12A | 0.5678 (3) | 0.1712 (3) | 0.37140 (14) | 0.0181 (4) | |
H12A | 0.6428 | 0.2604 | 0.3687 | 0.022* | |
C4B | 0.4605 (3) | 0.1683 (3) | 0.99513 (15) | 0.0194 (4) | |
H4B | 0.5016 | 0.1155 | 1.0293 | 0.023* | |
C8A | 0.3722 (2) | 0.0350 (2) | 0.43590 (13) | 0.0140 (3) | |
C4A | −0.1135 (3) | −0.1924 (2) | 0.63230 (14) | 0.0181 (4) | |
H4A | −0.1955 | −0.2790 | 0.6324 | 0.022* | |
C8B | 0.1726 (3) | 0.6332 (2) | 1.01955 (14) | 0.0174 (4) | |
C11A | 0.5404 (3) | 0.0439 (3) | 0.31378 (14) | 0.0195 (4) | |
H11A | 0.5967 | 0.0467 | 0.2715 | 0.023* | |
C9B | 0.1589 (3) | 0.6470 (3) | 1.10236 (14) | 0.0196 (4) | |
H9B | 0.1849 | 0.5850 | 1.1351 | 0.024* | |
C5B | 0.4016 (3) | 0.2664 (3) | 1.02921 (14) | 0.0186 (4) | |
H5B | 0.4031 | 0.2818 | 1.0873 | 0.022* | |
C13B | 0.1315 (3) | 0.7227 (3) | 0.97039 (14) | 0.0195 (4) | |
C10A | 0.4318 (3) | −0.0876 (3) | 0.31701 (14) | 0.0198 (4) | |
H10A | 0.4154 | −0.1741 | 0.2776 | 0.024* | |
C9A | 0.3468 (3) | −0.0925 (2) | 0.37816 (13) | 0.0166 (4) | |
H9A | 0.2722 | −0.1822 | 0.3804 | 0.020* | |
C5A | −0.0285 (3) | −0.1913 (2) | 0.57292 (13) | 0.0165 (4) | |
H5A | −0.0532 | −0.2776 | 0.5313 | 0.020* | |
C7A | 0.1750 (2) | −0.0698 (2) | 0.50829 (13) | 0.0145 (3) | |
H7A | 0.1416 | −0.1598 | 0.4684 | 0.017* | |
C14A | 0.6310 (3) | 0.4168 (3) | 0.49940 (15) | 0.0205 (4) | |
H14A | 0.6113 | 0.4513 | 0.4481 | 0.031* | |
H14B | 0.7290 | 0.3987 | 0.5056 | 0.031* | |
H14C | 0.6399 | 0.4906 | 0.5483 | 0.031* | |
C3B | 0.4596 (3) | 0.1470 (2) | 0.90986 (14) | 0.0180 (4) | |
H3B | 0.5022 | 0.0805 | 0.8867 | 0.022* | |
C10B | 0.1064 (3) | 0.7531 (3) | 1.13657 (16) | 0.0249 (5) | |
H10B | 0.0978 | 0.7643 | 1.1931 | 0.030* | |
C12B | 0.0790 (3) | 0.8278 (3) | 1.00523 (17) | 0.0250 (5) | |
H12B | 0.0517 | 0.8893 | 0.9726 | 0.030* | |
C14B | 0.1026 (4) | 0.7842 (3) | 0.83660 (17) | 0.0271 (5) | |
H14D | 0.1236 | 0.7587 | 0.7817 | 0.041* | |
H14E | 0.1630 | 0.8874 | 0.8624 | 0.041* | |
H14F | −0.0098 | 0.7649 | 0.8291 | 0.041* | |
C11B | 0.0670 (3) | 0.8420 (3) | 1.08820 (17) | 0.0272 (5) | |
H11B | 0.0313 | 0.9137 | 1.1119 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01512 (6) | 0.02635 (7) | 0.01340 (6) | 0.00091 (5) | 0.00337 (5) | 0.00530 (5) |
I2 | 0.01838 (7) | 0.01849 (6) | 0.01998 (6) | 0.00879 (5) | 0.00003 (5) | 0.00123 (5) |
Cd1 | 0.01452 (6) | 0.01302 (6) | 0.01137 (6) | 0.00434 (5) | 0.00314 (5) | 0.00176 (4) |
O1A | 0.0159 (7) | 0.0135 (6) | 0.0174 (7) | 0.0031 (5) | 0.0065 (5) | 0.0002 (5) |
O1B | 0.0183 (7) | 0.0204 (7) | 0.0127 (6) | 0.0104 (6) | 0.0054 (5) | 0.0049 (5) |
O2A | 0.0198 (7) | 0.0154 (7) | 0.0171 (7) | 0.0040 (6) | 0.0080 (6) | 0.0010 (5) |
O2B | 0.0323 (10) | 0.0245 (8) | 0.0160 (7) | 0.0171 (8) | 0.0047 (7) | 0.0040 (6) |
N1A | 0.0129 (7) | 0.0136 (7) | 0.0133 (7) | 0.0058 (6) | 0.0045 (6) | 0.0012 (6) |
N1B | 0.0166 (8) | 0.0190 (8) | 0.0156 (7) | 0.0091 (7) | 0.0049 (6) | 0.0023 (6) |
C1B | 0.0132 (8) | 0.0145 (8) | 0.0130 (8) | 0.0044 (7) | 0.0043 (6) | 0.0030 (6) |
C6B | 0.0161 (9) | 0.0159 (8) | 0.0117 (8) | 0.0070 (7) | 0.0046 (7) | 0.0027 (6) |
C3A | 0.0154 (9) | 0.0200 (9) | 0.0154 (8) | 0.0060 (8) | 0.0064 (7) | 0.0050 (7) |
C1A | 0.0119 (8) | 0.0138 (8) | 0.0128 (8) | 0.0047 (7) | 0.0027 (6) | 0.0026 (6) |
C2A | 0.0154 (9) | 0.0178 (9) | 0.0145 (8) | 0.0070 (7) | 0.0057 (7) | 0.0027 (7) |
C7B | 0.0174 (9) | 0.0173 (9) | 0.0138 (8) | 0.0077 (7) | 0.0046 (7) | 0.0019 (7) |
C2B | 0.0176 (9) | 0.0178 (9) | 0.0130 (8) | 0.0074 (7) | 0.0044 (7) | 0.0009 (7) |
C6A | 0.0124 (8) | 0.0127 (8) | 0.0131 (8) | 0.0046 (6) | 0.0030 (6) | 0.0022 (6) |
C13A | 0.0151 (9) | 0.0160 (9) | 0.0128 (8) | 0.0063 (7) | 0.0033 (7) | 0.0028 (7) |
C12A | 0.0188 (10) | 0.0213 (10) | 0.0166 (9) | 0.0081 (8) | 0.0075 (7) | 0.0057 (7) |
C4B | 0.0254 (11) | 0.0167 (9) | 0.0185 (9) | 0.0102 (8) | 0.0059 (8) | 0.0048 (7) |
C8A | 0.0131 (8) | 0.0173 (9) | 0.0119 (8) | 0.0065 (7) | 0.0036 (6) | 0.0022 (6) |
C4A | 0.0181 (10) | 0.0162 (9) | 0.0186 (9) | 0.0031 (8) | 0.0061 (7) | 0.0054 (7) |
C8B | 0.0155 (9) | 0.0190 (9) | 0.0173 (9) | 0.0074 (8) | 0.0042 (7) | 0.0009 (7) |
C11A | 0.0192 (10) | 0.0253 (11) | 0.0157 (9) | 0.0092 (9) | 0.0072 (8) | 0.0036 (8) |
C9B | 0.0164 (9) | 0.0274 (11) | 0.0152 (9) | 0.0108 (8) | 0.0039 (7) | −0.0006 (8) |
C5B | 0.0251 (11) | 0.0189 (10) | 0.0126 (8) | 0.0102 (8) | 0.0035 (7) | 0.0032 (7) |
C13B | 0.0212 (10) | 0.0206 (10) | 0.0164 (9) | 0.0094 (8) | 0.0037 (8) | 0.0008 (7) |
C10A | 0.0203 (10) | 0.0234 (10) | 0.0160 (9) | 0.0094 (8) | 0.0063 (8) | 0.0001 (8) |
C9A | 0.0148 (9) | 0.0174 (9) | 0.0163 (9) | 0.0061 (7) | 0.0041 (7) | −0.0003 (7) |
C5A | 0.0182 (9) | 0.0139 (8) | 0.0155 (8) | 0.0041 (7) | 0.0046 (7) | 0.0020 (7) |
C7A | 0.0147 (8) | 0.0147 (8) | 0.0134 (8) | 0.0057 (7) | 0.0030 (7) | 0.0017 (6) |
C14A | 0.0188 (10) | 0.0172 (9) | 0.0190 (9) | −0.0003 (8) | 0.0057 (8) | 0.0004 (7) |
C3B | 0.0201 (10) | 0.0153 (9) | 0.0190 (9) | 0.0093 (8) | 0.0039 (8) | 0.0008 (7) |
C10B | 0.0219 (11) | 0.0342 (13) | 0.0184 (10) | 0.0142 (10) | 0.0050 (8) | −0.0025 (9) |
C12B | 0.0284 (12) | 0.0239 (11) | 0.0252 (11) | 0.0160 (10) | 0.0053 (9) | 0.0003 (9) |
C14B | 0.0340 (14) | 0.0258 (12) | 0.0226 (11) | 0.0139 (11) | 0.0030 (10) | 0.0071 (9) |
C11B | 0.0278 (12) | 0.0309 (13) | 0.0236 (11) | 0.0174 (11) | 0.0040 (9) | −0.0028 (9) |
I1—Cd1 | 2.7202 (2) | C12A—H12A | 0.9500 |
I2—Cd1 | 2.7104 (2) | C12A—C11A | 1.387 (3) |
Cd1—O1A | 2.2157 (15) | C4B—H4B | 0.9500 |
Cd1—O1B | 2.2312 (15) | C4B—C5B | 1.374 (3) |
O1A—C1A | 1.306 (3) | C4B—C3B | 1.397 (3) |
O1B—C1B | 1.299 (3) | C8A—C9A | 1.395 (3) |
O2A—C13A | 1.359 (3) | C4A—H4A | 0.9500 |
O2A—C14A | 1.439 (3) | C4A—C5A | 1.373 (3) |
O2B—C13B | 1.361 (3) | C8B—C9B | 1.395 (3) |
O2B—C14B | 1.440 (3) | C8B—C13B | 1.404 (3) |
N1A—H1A | 0.8800 | C11A—H11A | 0.9500 |
N1A—C8A | 1.415 (3) | C11A—C10A | 1.389 (3) |
N1A—C7A | 1.306 (3) | C9B—H9B | 0.9500 |
N1B—H1B | 0.8800 | C9B—C10B | 1.398 (3) |
N1B—C7B | 1.305 (3) | C5B—H5B | 0.9500 |
N1B—C8B | 1.426 (3) | C13B—C12B | 1.393 (3) |
C1B—C6B | 1.435 (3) | C10A—H10A | 0.9500 |
C1B—C2B | 1.421 (3) | C10A—C9A | 1.395 (3) |
C6B—C7B | 1.416 (3) | C9A—H9A | 0.9500 |
C6B—C5B | 1.411 (3) | C5A—H5A | 0.9500 |
C3A—H3A | 0.9500 | C7A—H7A | 0.9500 |
C3A—C2A | 1.380 (3) | C14A—H14A | 0.9800 |
C3A—C4A | 1.405 (3) | C14A—H14B | 0.9800 |
C1A—C2A | 1.418 (3) | C14A—H14C | 0.9800 |
C1A—C6A | 1.436 (3) | C3B—H3B | 0.9500 |
C2A—H2A | 0.9500 | C10B—H10B | 0.9500 |
C7B—H7B | 0.9500 | C10B—C11B | 1.385 (4) |
C2B—H2B | 0.9500 | C12B—H12B | 0.9500 |
C2B—C3B | 1.379 (3) | C12B—C11B | 1.393 (4) |
C6A—C5A | 1.418 (3) | C14B—H14D | 0.9800 |
C6A—C7A | 1.417 (3) | C14B—H14E | 0.9800 |
C13A—C12A | 1.396 (3) | C14B—H14F | 0.9800 |
C13A—C8A | 1.409 (3) | C11B—H11B | 0.9500 |
I2—Cd1—I1 | 130.043 (8) | C5A—C4A—C3A | 119.2 (2) |
O1A—Cd1—I1 | 103.73 (4) | C5A—C4A—H4A | 120.4 |
O1A—Cd1—I2 | 104.76 (4) | C9B—C8B—N1B | 122.4 (2) |
O1A—Cd1—O1B | 111.56 (6) | C9B—C8B—C13B | 120.6 (2) |
O1B—Cd1—I1 | 102.91 (4) | C13B—C8B—N1B | 116.9 (2) |
O1B—Cd1—I2 | 103.54 (4) | C12A—C11A—H11A | 119.5 |
C1A—O1A—Cd1 | 124.04 (13) | C12A—C11A—C10A | 121.0 (2) |
C1B—O1B—Cd1 | 125.04 (13) | C10A—C11A—H11A | 119.5 |
C13A—O2A—C14A | 116.36 (17) | C8B—C9B—H9B | 120.4 |
C13B—O2B—C14B | 117.4 (2) | C8B—C9B—C10B | 119.2 (2) |
C8A—N1A—H1A | 117.1 | C10B—C9B—H9B | 120.4 |
C7A—N1A—H1A | 117.1 | C6B—C5B—H5B | 119.6 |
C7A—N1A—C8A | 125.77 (18) | C4B—C5B—C6B | 120.7 (2) |
C7B—N1B—H1B | 117.3 | C4B—C5B—H5B | 119.6 |
C7B—N1B—C8B | 125.34 (19) | O2B—C13B—C8B | 115.4 (2) |
C8B—N1B—H1B | 117.3 | O2B—C13B—C12B | 125.1 (2) |
O1B—C1B—C6B | 120.25 (19) | C12B—C13B—C8B | 119.6 (2) |
O1B—C1B—C2B | 122.92 (19) | C11A—C10A—H10A | 120.0 |
C2B—C1B—C6B | 116.83 (19) | C11A—C10A—C9A | 120.0 (2) |
C7B—C6B—C1B | 121.86 (19) | C9A—C10A—H10A | 120.0 |
C5B—C6B—C1B | 120.45 (19) | C8A—C9A—C10A | 119.6 (2) |
C5B—C6B—C7B | 117.66 (19) | C8A—C9A—H9A | 120.2 |
C2A—C3A—H3A | 119.3 | C10A—C9A—H9A | 120.2 |
C2A—C3A—C4A | 121.4 (2) | C6A—C5A—H5A | 119.6 |
C4A—C3A—H3A | 119.3 | C4A—C5A—C6A | 120.9 (2) |
O1A—C1A—C2A | 122.80 (19) | C4A—C5A—H5A | 119.6 |
O1A—C1A—C6A | 120.39 (18) | N1A—C7A—C6A | 124.70 (19) |
C2A—C1A—C6A | 116.81 (19) | N1A—C7A—H7A | 117.7 |
C3A—C2A—C1A | 121.3 (2) | C6A—C7A—H7A | 117.7 |
C3A—C2A—H2A | 119.3 | O2A—C14A—H14A | 109.5 |
C1A—C2A—H2A | 119.3 | O2A—C14A—H14B | 109.5 |
N1B—C7B—C6B | 124.4 (2) | O2A—C14A—H14C | 109.5 |
N1B—C7B—H7B | 117.8 | H14A—C14A—H14B | 109.5 |
C6B—C7B—H7B | 117.8 | H14A—C14A—H14C | 109.5 |
C1B—C2B—H2B | 119.5 | H14B—C14A—H14C | 109.5 |
C3B—C2B—C1B | 121.10 (19) | C2B—C3B—C4B | 121.4 (2) |
C3B—C2B—H2B | 119.5 | C2B—C3B—H3B | 119.3 |
C5A—C6A—C1A | 120.41 (18) | C4B—C3B—H3B | 119.3 |
C7A—C6A—C1A | 122.09 (19) | C9B—C10B—H10B | 119.9 |
C7A—C6A—C5A | 117.49 (18) | C11B—C10B—C9B | 120.1 (2) |
O2A—C13A—C12A | 125.0 (2) | C11B—C10B—H10B | 119.9 |
O2A—C13A—C8A | 115.48 (18) | C13B—C12B—H12B | 120.2 |
C12A—C13A—C8A | 119.57 (19) | C11B—C12B—C13B | 119.6 (2) |
C13A—C12A—H12A | 120.2 | C11B—C12B—H12B | 120.2 |
C11A—C12A—C13A | 119.6 (2) | O2B—C14B—H14D | 109.5 |
C11A—C12A—H12A | 120.2 | O2B—C14B—H14E | 109.5 |
C5B—C4B—H4B | 120.2 | O2B—C14B—H14F | 109.5 |
C5B—C4B—C3B | 119.5 (2) | H14D—C14B—H14E | 109.5 |
C3B—C4B—H4B | 120.2 | H14D—C14B—H14F | 109.5 |
C13A—C8A—N1A | 116.80 (18) | H14E—C14B—H14F | 109.5 |
C9A—C8A—N1A | 122.9 (2) | C10B—C11B—C12B | 120.9 (2) |
C9A—C8A—C13A | 120.26 (19) | C10B—C11B—H11B | 119.6 |
C3A—C4A—H4A | 120.4 | C12B—C11B—H11B | 119.6 |
Cd1—O1A—C1A—C2A | −10.7 (3) | C2B—C1B—C6B—C7B | 177.5 (2) |
Cd1—O1A—C1A—C6A | 169.28 (14) | C2B—C1B—C6B—C5B | −0.5 (3) |
Cd1—O1B—C1B—C6B | 168.58 (15) | C6A—C1A—C2A—C3A | 0.4 (3) |
Cd1—O1B—C1B—C2B | −11.4 (3) | C13A—C12A—C11A—C10A | −0.4 (4) |
O1A—C1A—C2A—C3A | −179.6 (2) | C13A—C8A—C9A—C10A | −1.0 (3) |
O1A—C1A—C6A—C5A | 179.2 (2) | C12A—C13A—C8A—N1A | −179.4 (2) |
O1A—C1A—C6A—C7A | −2.2 (3) | C12A—C13A—C8A—C9A | 1.5 (3) |
O1B—C1B—C6B—C7B | −2.5 (3) | C12A—C11A—C10A—C9A | 0.9 (4) |
O1B—C1B—C6B—C5B | 179.5 (2) | C8A—N1A—C7A—C6A | 179.9 (2) |
O1B—C1B—C2B—C3B | 180.0 (2) | C8A—C13A—C12A—C11A | −0.9 (3) |
O2A—C13A—C12A—C11A | 179.0 (2) | C4A—C3A—C2A—C1A | 0.6 (3) |
O2A—C13A—C8A—N1A | 0.7 (3) | C8B—N1B—C7B—C6B | −179.5 (2) |
O2A—C13A—C8A—C9A | −178.4 (2) | C8B—C9B—C10B—C11B | 0.7 (4) |
O2B—C13B—C12B—C11B | −180.0 (3) | C8B—C13B—C12B—C11B | −0.5 (4) |
N1A—C8A—C9A—C10A | −180.0 (2) | C11A—C10A—C9A—C8A | −0.2 (4) |
N1B—C8B—C9B—C10B | 179.5 (2) | C9B—C8B—C13B—O2B | −179.4 (2) |
N1B—C8B—C13B—O2B | −0.1 (3) | C9B—C8B—C13B—C12B | 1.1 (4) |
N1B—C8B—C13B—C12B | −179.6 (2) | C9B—C10B—C11B—C12B | −0.1 (4) |
C1B—C6B—C7B—N1B | 1.0 (4) | C5B—C6B—C7B—N1B | 179.0 (2) |
C1B—C6B—C5B—C4B | 0.2 (4) | C5B—C4B—C3B—C2B | −1.2 (4) |
C1B—C2B—C3B—C4B | 0.8 (4) | C13B—C8B—C9B—C10B | −1.2 (4) |
C6B—C1B—C2B—C3B | 0.0 (3) | C13B—C12B—C11B—C10B | 0.0 (4) |
C3A—C4A—C5A—C6A | 0.9 (3) | C5A—C6A—C7A—N1A | 179.7 (2) |
C1A—C6A—C5A—C4A | 0.2 (3) | C7A—N1A—C8A—C13A | 174.5 (2) |
C1A—C6A—C7A—N1A | 1.2 (3) | C7A—N1A—C8A—C9A | −6.4 (3) |
C2A—C3A—C4A—C5A | −1.2 (4) | C7A—C6A—C5A—C4A | −178.4 (2) |
C2A—C1A—C6A—C5A | −0.8 (3) | C14A—O2A—C13A—C12A | −7.9 (3) |
C2A—C1A—C6A—C7A | 177.7 (2) | C14A—O2A—C13A—C8A | 172.1 (2) |
C7B—N1B—C8B—C9B | −8.5 (4) | C3B—C4B—C5B—C6B | 0.6 (4) |
C7B—N1B—C8B—C13B | 172.3 (2) | C14B—O2B—C13B—C8B | 178.0 (2) |
C7B—C6B—C5B—C4B | −177.9 (2) | C14B—O2B—C13B—C12B | −2.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1A | 0.88 | 1.98 | 2.660 (2) | 134 |
N1B—H1B···O1B | 0.88 | 1.96 | 2.641 (2) | 134 |
C7B—H7B···I1i | 0.95 | 3.06 | 3.979 (2) | 164 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
[HgCl2(C28H26N2O4)] | Z = 2 |
Mr = 726.00 | F(000) = 708 |
Triclinic, P1 | Dx = 1.818 Mg m−3 |
a = 9.2456 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.1510 (4) Å | Cell parameters from 9113 reflections |
c = 15.8499 (6) Å | θ = 2.2–28.3° |
α = 96.5447 (15)° | µ = 6.04 mm−1 |
β = 99.7441 (15)° | T = 100 K |
γ = 112.6735 (14)° | Block, yellow |
V = 1326.25 (9) Å3 | 0.17 × 0.14 × 0.08 mm |
Bruker APEXII area detector diffractometer | 22779 independent reflections |
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 21098 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
Detector resolution: 7.9 pixels mm-1 | θmax = 28.4°, θmin = 2.2° |
ω and φ scans | h = −12→12 |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | k = −13→13 |
Tmin = 0.630, Tmax = 0.746 | l = −21→21 |
22779 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0276P)2 + 0.8324P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
22779 reflections | Δρmax = 1.29 e Å−3 |
337 parameters | Δρmin = −0.60 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved as a rotational twin. Rotated from first domain by 179.9 degrees about reciprocal axis -0.001 1.000 -0.999 and real axis 0.345 1.000 -0.274. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix): -1.000 -0.001 0.001 0.541 0.570 -0.431 -0.543 -1.570 -0.570. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.30358 (2) | 0.41553 (2) | 0.70492 (2) | 0.01398 (4) | |
Cl2 | 0.06386 (10) | 0.43743 (9) | 0.64325 (5) | 0.02133 (17) | |
Cl1 | 0.58885 (10) | 0.51131 (10) | 0.73464 (5) | 0.02286 (18) | |
O2A | 0.5129 (3) | 0.2848 (2) | 0.49846 (15) | 0.0175 (5) | |
O1B | 0.2698 (3) | 0.3921 (2) | 0.84731 (14) | 0.0150 (4) | |
O1A | 0.2471 (3) | 0.1792 (2) | 0.63192 (14) | 0.0147 (4) | |
O2B | 0.1477 (3) | 0.6740 (3) | 0.87712 (15) | 0.0214 (5) | |
N1A | 0.2871 (3) | 0.0338 (3) | 0.49857 (16) | 0.0123 (5) | |
H1A | 0.3172 | 0.1153 | 0.5364 | 0.015* | |
N1B | 0.2302 (3) | 0.5248 (3) | 0.98489 (17) | 0.0135 (5) | |
H1B | 0.2219 | 0.5096 | 0.9281 | 0.016* | |
C6A | 0.0819 (4) | −0.0724 (3) | 0.57465 (19) | 0.0119 (6) | |
C8A | 0.3768 (3) | 0.0384 (3) | 0.43409 (19) | 0.0130 (6) | |
C2A | 0.0318 (4) | 0.0563 (3) | 0.69823 (19) | 0.0146 (6) | |
H2A | 0.0564 | 0.1423 | 0.7392 | 0.018* | |
C7A | 0.1641 (4) | −0.0786 (3) | 0.50788 (19) | 0.0126 (6) | |
H7A | 0.1287 | −0.1683 | 0.4681 | 0.015* | |
C9A | 0.3520 (4) | −0.0831 (4) | 0.3737 (2) | 0.0161 (6) | |
H9A | 0.2712 | −0.1757 | 0.3741 | 0.019* | |
C1A | 0.1262 (3) | 0.0614 (3) | 0.63542 (19) | 0.0122 (6) | |
C13A | 0.4973 (4) | 0.1755 (3) | 0.43428 (19) | 0.0140 (6) | |
C12A | 0.5898 (4) | 0.1900 (4) | 0.3723 (2) | 0.0175 (6) | |
H12A | 0.6704 | 0.2823 | 0.3713 | 0.021* | |
C6B | 0.3353 (4) | 0.3439 (3) | 0.98874 (19) | 0.0128 (6) | |
C4A | −0.1357 (4) | −0.2007 (3) | 0.6417 (2) | 0.0158 (6) | |
H4A | −0.2226 | −0.2875 | 0.6448 | 0.019* | |
C5A | −0.0490 (4) | −0.2005 (3) | 0.5798 (2) | 0.0148 (6) | |
H5A | −0.0771 | −0.2881 | 0.5394 | 0.018* | |
C2B | 0.3820 (4) | 0.2177 (3) | 0.8629 (2) | 0.0153 (6) | |
H2B | 0.3789 | 0.1999 | 0.8023 | 0.018* | |
C10A | 0.4462 (4) | −0.0686 (4) | 0.3128 (2) | 0.0195 (7) | |
H10A | 0.4308 | −0.1516 | 0.2719 | 0.023* | |
C7B | 0.2878 (4) | 0.4476 (3) | 1.0288 (2) | 0.0150 (6) | |
H7B | 0.2982 | 0.4616 | 1.0902 | 0.018* | |
C11A | 0.5626 (4) | 0.0670 (4) | 0.3116 (2) | 0.0199 (7) | |
H11A | 0.6247 | 0.0763 | 0.2688 | 0.024* | |
C1B | 0.3269 (3) | 0.3208 (3) | 0.89657 (19) | 0.0126 (6) | |
C3A | −0.0941 (4) | −0.0702 (4) | 0.7008 (2) | 0.0150 (6) | |
H3A | −0.1548 | −0.0699 | 0.7435 | 0.018* | |
C8B | 0.1798 (4) | 0.6305 (3) | 1.0193 (2) | 0.0156 (6) | |
C9B | 0.1697 (4) | 0.6556 (4) | 1.1058 (2) | 0.0194 (7) | |
H9B | 0.1983 | 0.6011 | 1.1452 | 0.023* | |
C3B | 0.4400 (4) | 0.1430 (4) | 0.9168 (2) | 0.0186 (7) | |
H3B | 0.4768 | 0.0752 | 0.8925 | 0.022* | |
C5B | 0.3953 (4) | 0.2647 (3) | 1.0420 (2) | 0.0174 (6) | |
H5B | 0.4005 | 0.2810 | 1.1029 | 0.021* | |
C13B | 0.1358 (4) | 0.7097 (4) | 0.9603 (2) | 0.0176 (6) | |
C4B | 0.4460 (4) | 0.1646 (4) | 1.0069 (2) | 0.0204 (7) | |
H4B | 0.4846 | 0.1108 | 1.0428 | 0.024* | |
C10B | 0.1178 (4) | 0.7604 (4) | 1.1341 (2) | 0.0246 (8) | |
H10B | 0.1101 | 0.7776 | 1.1930 | 0.029* | |
C14A | 0.6461 (4) | 0.4226 (4) | 0.5090 (2) | 0.0246 (8) | |
H14A | 0.6325 | 0.4646 | 0.4570 | 0.037* | |
H14B | 0.7465 | 0.4090 | 0.5165 | 0.037* | |
H14C | 0.6505 | 0.4885 | 0.5605 | 0.037* | |
C12B | 0.0854 (4) | 0.8158 (4) | 0.9899 (2) | 0.0228 (7) | |
H12B | 0.0568 | 0.8710 | 0.9510 | 0.027* | |
C11B | 0.0772 (4) | 0.8402 (4) | 1.0765 (3) | 0.0254 (8) | |
H11B | 0.0432 | 0.9128 | 1.0966 | 0.030* | |
C14B | 0.0805 (5) | 0.7343 (4) | 0.8123 (2) | 0.0246 (7) | |
H14D | 0.0861 | 0.6931 | 0.7546 | 0.037* | |
H14E | 0.1414 | 0.8403 | 0.8245 | 0.037* | |
H14F | −0.0323 | 0.7110 | 0.8134 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.01692 (6) | 0.01312 (6) | 0.01094 (6) | 0.00545 (5) | 0.00344 (4) | 0.00119 (4) |
Cl2 | 0.0208 (4) | 0.0204 (4) | 0.0215 (4) | 0.0104 (3) | 0.0002 (3) | −0.0001 (3) |
Cl1 | 0.0166 (4) | 0.0301 (4) | 0.0151 (4) | 0.0023 (3) | 0.0043 (3) | 0.0045 (3) |
O2A | 0.0194 (12) | 0.0133 (11) | 0.0176 (11) | 0.0030 (9) | 0.0098 (9) | −0.0001 (9) |
O1B | 0.0189 (11) | 0.0184 (11) | 0.0122 (10) | 0.0115 (9) | 0.0051 (8) | 0.0041 (8) |
O1A | 0.0141 (10) | 0.0109 (10) | 0.0167 (11) | 0.0028 (8) | 0.0056 (8) | −0.0009 (8) |
O2B | 0.0288 (13) | 0.0255 (13) | 0.0175 (12) | 0.0180 (11) | 0.0066 (10) | 0.0067 (10) |
N1A | 0.0127 (12) | 0.0130 (12) | 0.0108 (12) | 0.0058 (10) | 0.0030 (9) | −0.0007 (9) |
N1B | 0.0153 (12) | 0.0159 (13) | 0.0112 (12) | 0.0085 (10) | 0.0043 (10) | 0.0006 (10) |
C6A | 0.0123 (14) | 0.0123 (14) | 0.0111 (13) | 0.0053 (11) | 0.0025 (11) | 0.0015 (11) |
C8A | 0.0107 (13) | 0.0192 (15) | 0.0110 (13) | 0.0080 (12) | 0.0034 (11) | 0.0028 (11) |
C2A | 0.0149 (14) | 0.0160 (15) | 0.0126 (14) | 0.0065 (12) | 0.0037 (11) | 0.0004 (11) |
C7A | 0.0140 (14) | 0.0118 (14) | 0.0117 (13) | 0.0062 (11) | 0.0016 (11) | 0.0001 (11) |
C9A | 0.0129 (14) | 0.0191 (15) | 0.0148 (14) | 0.0066 (12) | 0.0021 (11) | −0.0004 (12) |
C1A | 0.0116 (13) | 0.0135 (14) | 0.0121 (13) | 0.0060 (11) | 0.0020 (11) | 0.0025 (11) |
C13A | 0.0142 (14) | 0.0169 (15) | 0.0121 (14) | 0.0083 (12) | 0.0022 (11) | 0.0013 (11) |
C12A | 0.0153 (15) | 0.0217 (16) | 0.0173 (15) | 0.0082 (13) | 0.0061 (12) | 0.0051 (12) |
C6B | 0.0116 (13) | 0.0147 (14) | 0.0131 (14) | 0.0056 (11) | 0.0048 (11) | 0.0038 (11) |
C4A | 0.0138 (14) | 0.0146 (15) | 0.0170 (15) | 0.0034 (12) | 0.0042 (12) | 0.0043 (12) |
C5A | 0.0142 (14) | 0.0118 (14) | 0.0155 (15) | 0.0035 (12) | 0.0021 (12) | 0.0004 (11) |
C2B | 0.0167 (15) | 0.0161 (15) | 0.0131 (14) | 0.0068 (12) | 0.0052 (12) | 0.0008 (11) |
C10A | 0.0192 (16) | 0.0261 (17) | 0.0136 (15) | 0.0118 (14) | 0.0034 (12) | −0.0027 (13) |
C7B | 0.0146 (14) | 0.0182 (15) | 0.0106 (13) | 0.0055 (12) | 0.0032 (11) | 0.0010 (11) |
C11A | 0.0186 (16) | 0.0299 (19) | 0.0145 (15) | 0.0130 (14) | 0.0063 (12) | 0.0029 (13) |
C1B | 0.0110 (13) | 0.0127 (14) | 0.0134 (14) | 0.0041 (11) | 0.0035 (11) | 0.0020 (11) |
C3A | 0.0152 (15) | 0.0194 (16) | 0.0124 (14) | 0.0081 (13) | 0.0046 (12) | 0.0045 (12) |
C8B | 0.0133 (14) | 0.0163 (15) | 0.0172 (15) | 0.0075 (12) | 0.0032 (12) | −0.0011 (12) |
C9B | 0.0155 (15) | 0.0248 (17) | 0.0165 (15) | 0.0098 (13) | 0.0018 (12) | −0.0033 (13) |
C3B | 0.0209 (16) | 0.0155 (15) | 0.0212 (17) | 0.0100 (13) | 0.0051 (13) | 0.0016 (13) |
C5B | 0.0194 (16) | 0.0177 (15) | 0.0138 (15) | 0.0061 (13) | 0.0036 (12) | 0.0043 (12) |
C13B | 0.0144 (15) | 0.0178 (16) | 0.0204 (16) | 0.0070 (13) | 0.0045 (12) | 0.0012 (12) |
C4B | 0.0248 (17) | 0.0180 (16) | 0.0218 (16) | 0.0120 (14) | 0.0037 (13) | 0.0085 (13) |
C10B | 0.0193 (17) | 0.0309 (19) | 0.0206 (17) | 0.0121 (15) | 0.0022 (13) | −0.0087 (14) |
C14A | 0.0262 (18) | 0.0151 (16) | 0.0260 (18) | −0.0002 (14) | 0.0126 (15) | 0.0010 (13) |
C12B | 0.0191 (17) | 0.0186 (17) | 0.0302 (19) | 0.0097 (14) | 0.0031 (14) | 0.0003 (14) |
C11B | 0.0204 (17) | 0.0234 (18) | 0.0296 (19) | 0.0108 (15) | 0.0028 (14) | −0.0073 (15) |
C14B | 0.0303 (19) | 0.0247 (18) | 0.0235 (18) | 0.0152 (15) | 0.0054 (14) | 0.0105 (14) |
Hg1—Cl2 | 2.3693 (8) | C4A—H4A | 0.9500 |
Hg1—Cl1 | 2.3709 (8) | C4A—C5A | 1.369 (4) |
Hg1—O1B | 2.356 (2) | C4A—C3A | 1.407 (4) |
Hg1—O1A | 2.359 (2) | C5A—H5A | 0.9500 |
O2A—C13A | 1.363 (4) | C2B—H2B | 0.9500 |
O2A—C14A | 1.432 (4) | C2B—C1B | 1.421 (4) |
O1B—C1B | 1.302 (4) | C2B—C3B | 1.377 (4) |
O1A—C1A | 1.299 (4) | C10A—H10A | 0.9500 |
O2B—C13B | 1.361 (4) | C10A—C11A | 1.387 (5) |
O2B—C14B | 1.427 (4) | C7B—H7B | 0.9500 |
N1A—H1A | 0.8800 | C11A—H11A | 0.9500 |
N1A—C8A | 1.415 (4) | C3A—H3A | 0.9500 |
N1A—C7A | 1.308 (4) | C8B—C9B | 1.391 (4) |
N1B—H1B | 0.8800 | C8B—C13B | 1.406 (5) |
N1B—C7B | 1.305 (4) | C9B—H9B | 0.9500 |
N1B—C8B | 1.416 (4) | C9B—C10B | 1.387 (5) |
C6A—C7A | 1.413 (4) | C3B—H3B | 0.9500 |
C6A—C1A | 1.442 (4) | C3B—C4B | 1.409 (5) |
C6A—C5A | 1.417 (4) | C5B—H5B | 0.9500 |
C8A—C9A | 1.389 (4) | C5B—C4B | 1.374 (5) |
C8A—C13A | 1.407 (4) | C13B—C12B | 1.394 (4) |
C2A—H2A | 0.9500 | C4B—H4B | 0.9500 |
C2A—C1A | 1.424 (4) | C10B—H10B | 0.9500 |
C2A—C3A | 1.372 (4) | C10B—C11B | 1.385 (6) |
C7A—H7A | 0.9500 | C14A—H14A | 0.9800 |
C9A—H9A | 0.9500 | C14A—H14B | 0.9800 |
C9A—C10A | 1.389 (4) | C14A—H14C | 0.9800 |
C13A—C12A | 1.393 (4) | C12B—H12B | 0.9500 |
C12A—H12A | 0.9500 | C12B—C11B | 1.386 (5) |
C12A—C11A | 1.397 (5) | C11B—H11B | 0.9500 |
C6B—C7B | 1.415 (4) | C14B—H14D | 0.9800 |
C6B—C1B | 1.437 (4) | C14B—H14E | 0.9800 |
C6B—C5B | 1.417 (4) | C14B—H14F | 0.9800 |
Cl2—Hg1—Cl1 | 148.23 (3) | C11A—C10A—C9A | 120.1 (3) |
O1B—Hg1—Cl2 | 100.65 (6) | C11A—C10A—H10A | 119.9 |
O1B—Hg1—Cl1 | 98.78 (6) | N1B—C7B—C6B | 122.7 (3) |
O1B—Hg1—O1A | 105.56 (7) | N1B—C7B—H7B | 118.6 |
O1A—Hg1—Cl2 | 100.40 (6) | C6B—C7B—H7B | 118.6 |
O1A—Hg1—Cl1 | 98.27 (6) | C12A—C11A—H11A | 119.5 |
C13A—O2A—C14A | 117.3 (3) | C10A—C11A—C12A | 120.9 (3) |
C1B—O1B—Hg1 | 125.42 (19) | C10A—C11A—H11A | 119.5 |
C1A—O1A—Hg1 | 124.97 (19) | O1B—C1B—C6B | 120.3 (3) |
C13B—O2B—C14B | 117.0 (3) | O1B—C1B—C2B | 122.5 (3) |
C8A—N1A—H1A | 116.5 | C2B—C1B—C6B | 117.1 (3) |
C7A—N1A—H1A | 116.5 | C2A—C3A—C4A | 121.7 (3) |
C7A—N1A—C8A | 126.9 (3) | C2A—C3A—H3A | 119.2 |
C7B—N1B—H1B | 116.7 | C4A—C3A—H3A | 119.2 |
C7B—N1B—C8B | 126.6 (3) | C9B—C8B—N1B | 123.3 (3) |
C8B—N1B—H1B | 116.7 | C9B—C8B—C13B | 120.3 (3) |
C7A—C6A—C1A | 121.4 (3) | C13B—C8B—N1B | 116.3 (3) |
C7A—C6A—C5A | 118.5 (3) | C8B—C9B—H9B | 120.2 |
C5A—C6A—C1A | 120.1 (3) | C10B—C9B—C8B | 119.7 (3) |
C9A—C8A—N1A | 123.5 (3) | C10B—C9B—H9B | 120.2 |
C9A—C8A—C13A | 120.4 (3) | C2B—C3B—H3B | 119.1 |
C13A—C8A—N1A | 116.1 (3) | C2B—C3B—C4B | 121.7 (3) |
C1A—C2A—H2A | 119.3 | C4B—C3B—H3B | 119.1 |
C3A—C2A—H2A | 119.3 | C6B—C5B—H5B | 119.5 |
C3A—C2A—C1A | 121.3 (3) | C4B—C5B—C6B | 120.9 (3) |
N1A—C7A—C6A | 122.8 (3) | C4B—C5B—H5B | 119.5 |
N1A—C7A—H7A | 118.6 | O2B—C13B—C8B | 115.2 (3) |
C6A—C7A—H7A | 118.6 | O2B—C13B—C12B | 125.5 (3) |
C8A—C9A—H9A | 120.2 | C12B—C13B—C8B | 119.3 (3) |
C10A—C9A—C8A | 119.6 (3) | C3B—C4B—H4B | 120.5 |
C10A—C9A—H9A | 120.2 | C5B—C4B—C3B | 119.0 (3) |
O1A—C1A—C6A | 120.6 (3) | C5B—C4B—H4B | 120.5 |
O1A—C1A—C2A | 122.8 (3) | C9B—C10B—H10B | 120.0 |
C2A—C1A—C6A | 116.7 (3) | C11B—C10B—C9B | 120.0 (3) |
O2A—C13A—C8A | 114.7 (3) | C11B—C10B—H10B | 120.0 |
O2A—C13A—C12A | 125.5 (3) | O2A—C14A—H14A | 109.5 |
C12A—C13A—C8A | 119.8 (3) | O2A—C14A—H14B | 109.5 |
C13A—C12A—H12A | 120.4 | O2A—C14A—H14C | 109.5 |
C13A—C12A—C11A | 119.1 (3) | H14A—C14A—H14B | 109.5 |
C11A—C12A—H12A | 120.4 | H14A—C14A—H14C | 109.5 |
C7B—C6B—C1B | 121.3 (3) | H14B—C14A—H14C | 109.5 |
C7B—C6B—C5B | 118.4 (3) | C13B—C12B—H12B | 120.2 |
C5B—C6B—C1B | 120.3 (3) | C11B—C12B—C13B | 119.6 (3) |
C5A—C4A—H4A | 120.5 | C11B—C12B—H12B | 120.2 |
C5A—C4A—C3A | 119.0 (3) | C10B—C11B—C12B | 121.0 (3) |
C3A—C4A—H4A | 120.5 | C10B—C11B—H11B | 119.5 |
C6A—C5A—H5A | 119.4 | C12B—C11B—H11B | 119.5 |
C4A—C5A—C6A | 121.3 (3) | O2B—C14B—H14D | 109.5 |
C4A—C5A—H5A | 119.4 | O2B—C14B—H14E | 109.5 |
C1B—C2B—H2B | 119.5 | O2B—C14B—H14F | 109.5 |
C3B—C2B—H2B | 119.5 | H14D—C14B—H14E | 109.5 |
C3B—C2B—C1B | 120.9 (3) | H14D—C14B—H14F | 109.5 |
C9A—C10A—H10A | 119.9 | H14E—C14B—H14F | 109.5 |
Hg1—O1B—C1B—C6B | 164.0 (2) | C5A—C6A—C1A—C2A | −0.5 (4) |
Hg1—O1B—C1B—C2B | −16.4 (4) | C5A—C4A—C3A—C2A | −0.6 (5) |
Hg1—O1A—C1A—C6A | 166.7 (2) | C2B—C3B—C4B—C5B | −1.1 (5) |
Hg1—O1A—C1A—C2A | −13.6 (4) | C7B—N1B—C8B—C9B | −7.0 (5) |
O2A—C13A—C12A—C11A | 178.4 (3) | C7B—N1B—C8B—C13B | 174.3 (3) |
O2B—C13B—C12B—C11B | 179.3 (3) | C7B—C6B—C1B—O1B | −2.3 (4) |
N1A—C8A—C9A—C10A | −179.8 (3) | C7B—C6B—C1B—C2B | 178.0 (3) |
N1A—C8A—C13A—O2A | 1.4 (4) | C7B—C6B—C5B—C4B | −178.8 (3) |
N1A—C8A—C13A—C12A | −179.2 (3) | C1B—C6B—C7B—N1B | 1.9 (5) |
N1B—C8B—C9B—C10B | −179.4 (3) | C1B—C6B—C5B—C4B | −0.1 (5) |
N1B—C8B—C13B—O2B | −0.1 (4) | C1B—C2B—C3B—C4B | 0.5 (5) |
N1B—C8B—C13B—C12B | −179.8 (3) | C3A—C2A—C1A—O1A | −179.3 (3) |
C8A—N1A—C7A—C6A | −179.9 (3) | C3A—C2A—C1A—C6A | 0.5 (4) |
C8A—C9A—C10A—C11A | −0.9 (5) | C3A—C4A—C5A—C6A | 0.5 (5) |
C8A—C13A—C12A—C11A | −0.9 (5) | C8B—N1B—C7B—C6B | 180.0 (3) |
C7A—N1A—C8A—C9A | −4.8 (5) | C8B—C9B—C10B—C11B | −0.4 (5) |
C7A—N1A—C8A—C13A | 175.9 (3) | C8B—C13B—C12B—C11B | −0.9 (5) |
C7A—C6A—C1A—O1A | −2.3 (4) | C9B—C8B—C13B—O2B | −178.8 (3) |
C7A—C6A—C1A—C2A | 178.0 (3) | C9B—C8B—C13B—C12B | 1.4 (5) |
C7A—C6A—C5A—C4A | −178.5 (3) | C9B—C10B—C11B—C12B | 0.9 (6) |
C9A—C8A—C13A—O2A | −177.9 (3) | C3B—C2B—C1B—O1B | −179.3 (3) |
C9A—C8A—C13A—C12A | 1.5 (5) | C3B—C2B—C1B—C6B | 0.4 (4) |
C9A—C10A—C11A—C12A | 1.4 (5) | C5B—C6B—C7B—N1B | −179.5 (3) |
C1A—C6A—C7A—N1A | 2.1 (5) | C5B—C6B—C1B—O1B | 179.1 (3) |
C1A—C6A—C5A—C4A | 0.0 (5) | C5B—C6B—C1B—C2B | −0.5 (4) |
C1A—C2A—C3A—C4A | 0.1 (5) | C13B—C8B—C9B—C10B | −0.8 (5) |
C13A—C8A—C9A—C10A | −0.6 (5) | C13B—C12B—C11B—C10B | −0.2 (5) |
C13A—C12A—C11A—C10A | −0.5 (5) | C14A—O2A—C13A—C8A | 172.4 (3) |
C6B—C5B—C4B—C3B | 1.0 (5) | C14A—O2A—C13A—C12A | −6.9 (5) |
C5A—C6A—C7A—N1A | −179.4 (3) | C14B—O2B—C13B—C8B | 170.3 (3) |
C5A—C6A—C1A—O1A | 179.2 (3) | C14B—O2B—C13B—C12B | −9.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1A | 0.88 | 1.89 | 2.599 (3) | 137 |
N1B—H1B···O1B | 0.88 | 1.87 | 2.585 (3) | 137 |
C7A—H7A···Cl2i | 0.95 | 2.80 | 3.719 (3) | 163 |
C7B—H7B···Cl1ii | 0.95 | 2.74 | 3.656 (3) | 163 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+2. |
[HgI2(C28H26N2O4)] | Z = 2 |
Mr = 908.90 | F(000) = 852 |
Triclinic, P1 | Dx = 2.155 Mg m−3 |
a = 9.2783 (14) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0060 (15) Å | Cell parameters from 9897 reflections |
c = 16.695 (3) Å | θ = 4.4–54.9° |
α = 98.777 (1)° | µ = 7.74 mm−1 |
β = 100.296 (1)° | T = 100 K |
γ = 109.396 (1)° | Block, orange |
V = 1400.4 (4) Å3 | 0.38 × 0.19 × 0.13 mm |
Bruker APEXII area detector diffractometer | 11185 independent reflections |
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 10132 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 7.9 pixels mm-1 | θmax = 27.5°, θmin = 2.2° |
ω and φ scans | h = −12→12 |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | k = −12→12 |
Tmin = 0.441, Tmax = 0.746 | l = −21→21 |
11185 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0782P)2 + 0.6965P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
11185 reflections | Δρmax = 1.48 e Å−3 |
337 parameters | Δρmin = −1.78 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved as a rotational twin. Rotated from first domain by 149.8 degrees about reciprocal axis 1.000 0.235 0.787 and real axis 1.000 0.533 0.319. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix) 0.534 0.949 0.308, 0.116 -0.693 0.359, 1.269 -0.145 -0.569. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.6673 (8) | 0.6731 (7) | 0.1093 (4) | 0.0127 (13) | |
C1B | 0.8585 (8) | 0.9260 (7) | 0.3661 (4) | 0.0125 (13) | |
C2A | 0.6036 (9) | 0.7737 (8) | 0.1421 (4) | 0.0174 (14) | |
H2A | 0.6028 | 0.7890 | 0.1996 | 0.021* | |
C2B | 0.9490 (8) | 0.9298 (8) | 0.3052 (4) | 0.0149 (13) | |
H2B | 0.9249 | 0.8450 | 0.2630 | 0.018* | |
C3A | 0.5431 (8) | 0.8495 (8) | 0.0928 (4) | 0.0169 (15) | |
H3A | 0.5022 | 0.9168 | 0.1171 | 0.020* | |
C3B | 1.0718 (8) | 1.0564 (8) | 0.3071 (4) | 0.0152 (14) | |
H3B | 1.1330 | 1.0555 | 0.2672 | 0.018* | |
C4A | 0.5396 (9) | 0.8304 (8) | 0.0060 (5) | 0.0190 (16) | |
H4A | 0.4963 | 0.8832 | −0.0274 | 0.023* | |
C4B | 1.1086 (9) | 1.1864 (8) | 0.3666 (5) | 0.0171 (16) | |
H4B | 1.1906 | 1.2730 | 0.3654 | 0.020* | |
C5A | 0.5999 (9) | 0.7349 (8) | −0.0278 (4) | 0.0180 (15) | |
H5A | 0.5998 | 0.7224 | −0.0854 | 0.022* | |
C5B | 1.0261 (8) | 1.1863 (7) | 0.4251 (4) | 0.0142 (14) | |
H5B | 1.0525 | 1.2735 | 0.4659 | 0.017* | |
C6A | 0.6634 (8) | 0.6528 (8) | 0.0212 (4) | 0.0143 (14) | |
C6B | 0.9001 (8) | 1.0591 (7) | 0.4277 (4) | 0.0135 (13) | |
C7A | 0.7163 (8) | 0.5513 (7) | −0.0189 (4) | 0.0134 (13) | |
H7A | 0.7096 | 0.5419 | −0.0770 | 0.016* | |
C7B | 0.8215 (8) | 1.0664 (7) | 0.4921 (4) | 0.0124 (13) | |
H7B | 0.8552 | 1.1565 | 0.5315 | 0.015* | |
C8A | 0.8298 (8) | 0.3650 (8) | −0.0185 (4) | 0.0156 (14) | |
C8B | 0.6225 (8) | 0.9598 (8) | 0.5647 (4) | 0.0129 (13) | |
C9A | 0.8442 (8) | 0.3500 (8) | −0.1012 (4) | 0.0165 (14) | |
H9A | 0.8185 | 0.4122 | −0.1340 | 0.020* | |
C9B | 0.6492 (8) | 1.0855 (8) | 0.6224 (4) | 0.0165 (14) | |
H9B | 0.7256 | 1.1750 | 0.6203 | 0.020* | |
C10A | 0.8962 (9) | 0.2439 (9) | −0.1351 (5) | 0.0247 (17) | |
H10A | 0.9060 | 0.2333 | −0.1912 | 0.030* | |
C10B | 0.5643 (9) | 1.0816 (8) | 0.6839 (4) | 0.0179 (15) | |
H10B | 0.5808 | 1.1681 | 0.7230 | 0.022* | |
C11A | 0.9336 (10) | 0.1536 (9) | −0.0865 (5) | 0.0259 (18) | |
H11A | 0.9694 | 0.0815 | −0.1099 | 0.031* | |
C11B | 0.4558 (9) | 0.9494 (8) | 0.6866 (4) | 0.0179 (15) | |
H11B | 0.4002 | 0.9453 | 0.7293 | 0.022* | |
C12A | 0.9197 (9) | 0.1665 (9) | −0.0045 (5) | 0.0225 (16) | |
H12A | 0.9452 | 0.1034 | 0.0278 | 0.027* | |
C12B | 0.4262 (9) | 0.8216 (8) | 0.6279 (5) | 0.0183 (15) | |
H12B | 0.3498 | 0.7323 | 0.6303 | 0.022* | |
C13A | 0.8680 (8) | 0.2727 (8) | 0.0302 (5) | 0.0156 (14) | |
C13B | 0.5088 (8) | 0.8260 (8) | 0.5663 (4) | 0.0150 (14) | |
C14A | 0.8940 (10) | 0.2095 (8) | 0.1624 (5) | 0.0227 (17) | |
H14A | 0.8269 | 0.1069 | 0.1389 | 0.034* | |
H14B | 0.8797 | 0.2400 | 0.2182 | 0.034* | |
H14C | 1.0046 | 0.2219 | 0.1667 | 0.034* | |
C14B | 0.3629 (9) | 0.5751 (8) | 0.5007 (5) | 0.0227 (16) | |
H14D | 0.2643 | 0.5922 | 0.4983 | 0.034* | |
H14E | 0.3874 | 0.5375 | 0.5502 | 0.034* | |
H14F | 0.3513 | 0.5040 | 0.4503 | 0.034* | |
Hg1 | 0.69274 (3) | 0.57222 (3) | 0.28950 (2) | 0.01351 (9) | |
I1 | 0.38080 (6) | 0.46487 (6) | 0.26379 (3) | 0.01957 (13) | |
I2 | 0.95749 (6) | 0.53212 (5) | 0.34679 (3) | 0.01950 (13) | |
N1A | 0.7749 (7) | 0.4679 (6) | 0.0195 (4) | 0.0150 (12) | |
H1A | 0.7800 | 0.4773 | 0.0734 | 0.018* | |
N1B | 0.7048 (7) | 0.9565 (6) | 0.5009 (4) | 0.0136 (11) | |
H1B | 0.6748 | 0.8735 | 0.4641 | 0.016* | |
O1A | 0.7251 (6) | 0.5993 (5) | 0.1535 (3) | 0.0156 (10) | |
O1B | 0.7437 (6) | 0.8100 (5) | 0.3671 (3) | 0.0162 (10) | |
O2A | 0.8515 (7) | 0.2962 (6) | 0.1094 (3) | 0.0223 (12) | |
O2B | 0.4891 (6) | 0.7101 (5) | 0.5057 (3) | 0.0186 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.008 (3) | 0.012 (3) | 0.018 (3) | 0.004 (3) | 0.002 (3) | 0.004 (3) |
C1B | 0.012 (3) | 0.012 (3) | 0.017 (3) | 0.006 (3) | 0.005 (3) | 0.007 (3) |
C2A | 0.019 (4) | 0.018 (3) | 0.016 (3) | 0.009 (3) | 0.005 (3) | 0.000 (3) |
C2B | 0.017 (3) | 0.017 (3) | 0.014 (3) | 0.010 (3) | 0.006 (3) | 0.003 (3) |
C3A | 0.015 (3) | 0.012 (3) | 0.018 (3) | 0.005 (3) | −0.001 (3) | −0.007 (3) |
C3B | 0.012 (3) | 0.022 (4) | 0.013 (3) | 0.007 (3) | 0.005 (3) | 0.005 (3) |
C4A | 0.017 (4) | 0.012 (3) | 0.022 (4) | 0.003 (3) | 0.000 (3) | 0.001 (3) |
C4B | 0.019 (4) | 0.017 (4) | 0.021 (4) | 0.008 (3) | 0.012 (3) | 0.012 (3) |
C5A | 0.024 (4) | 0.016 (3) | 0.014 (3) | 0.007 (3) | 0.006 (3) | 0.004 (3) |
C5B | 0.017 (3) | 0.010 (3) | 0.011 (3) | 0.003 (3) | 0.001 (3) | 0.000 (3) |
C6A | 0.016 (3) | 0.014 (3) | 0.013 (3) | 0.006 (3) | 0.001 (3) | 0.005 (3) |
C6B | 0.015 (3) | 0.012 (3) | 0.010 (3) | 0.004 (3) | −0.002 (3) | 0.001 (2) |
C7A | 0.013 (3) | 0.013 (3) | 0.013 (3) | 0.001 (3) | 0.006 (3) | 0.002 (3) |
C7B | 0.009 (3) | 0.009 (3) | 0.015 (3) | 0.001 (3) | −0.001 (3) | 0.001 (3) |
C8A | 0.018 (4) | 0.016 (3) | 0.014 (3) | 0.008 (3) | 0.005 (3) | 0.000 (3) |
C8B | 0.011 (3) | 0.015 (3) | 0.015 (3) | 0.007 (3) | 0.005 (3) | 0.004 (3) |
C9A | 0.010 (3) | 0.023 (4) | 0.015 (3) | 0.006 (3) | 0.001 (3) | 0.003 (3) |
C9B | 0.014 (3) | 0.019 (4) | 0.015 (3) | 0.005 (3) | 0.004 (3) | 0.002 (3) |
C10A | 0.014 (4) | 0.035 (5) | 0.017 (4) | 0.009 (3) | −0.003 (3) | −0.009 (3) |
C10B | 0.017 (4) | 0.019 (4) | 0.017 (3) | 0.010 (3) | 0.003 (3) | −0.004 (3) |
C11A | 0.026 (4) | 0.025 (4) | 0.028 (4) | 0.019 (4) | 0.001 (3) | −0.003 (3) |
C11B | 0.016 (4) | 0.021 (4) | 0.017 (3) | 0.008 (3) | 0.004 (3) | 0.003 (3) |
C12A | 0.023 (4) | 0.022 (4) | 0.024 (4) | 0.013 (3) | 0.002 (3) | 0.002 (3) |
C12B | 0.016 (4) | 0.028 (4) | 0.014 (3) | 0.009 (3) | 0.007 (3) | 0.008 (3) |
C13A | 0.013 (3) | 0.014 (3) | 0.023 (4) | 0.011 (3) | 0.002 (3) | 0.003 (3) |
C13B | 0.016 (3) | 0.018 (3) | 0.010 (3) | 0.008 (3) | 0.000 (3) | 0.001 (3) |
C14A | 0.030 (4) | 0.022 (4) | 0.020 (4) | 0.014 (3) | 0.002 (3) | 0.009 (3) |
C14B | 0.024 (4) | 0.016 (4) | 0.023 (4) | 0.000 (3) | 0.008 (3) | 0.003 (3) |
Hg1 | 0.01544 (14) | 0.01255 (14) | 0.01221 (14) | 0.00467 (11) | 0.00395 (9) | 0.00241 (10) |
I1 | 0.0150 (2) | 0.0260 (3) | 0.0142 (2) | 0.0019 (2) | 0.00385 (18) | 0.0070 (2) |
I2 | 0.0182 (3) | 0.0166 (2) | 0.0215 (3) | 0.0077 (2) | 0.00010 (19) | 0.00114 (19) |
N1A | 0.017 (3) | 0.013 (3) | 0.016 (3) | 0.007 (3) | 0.005 (2) | 0.004 (2) |
N1B | 0.016 (3) | 0.013 (3) | 0.013 (3) | 0.009 (2) | 0.004 (2) | −0.002 (2) |
O1A | 0.019 (3) | 0.017 (3) | 0.015 (2) | 0.010 (2) | 0.006 (2) | 0.004 (2) |
O1B | 0.017 (3) | 0.011 (2) | 0.021 (3) | 0.005 (2) | 0.010 (2) | 0.002 (2) |
O2A | 0.032 (3) | 0.023 (3) | 0.017 (3) | 0.015 (2) | 0.007 (2) | 0.009 (2) |
O2B | 0.021 (3) | 0.016 (2) | 0.017 (3) | 0.004 (2) | 0.008 (2) | 0.001 (2) |
C1A—C2A | 1.417 (10) | C8B—N1B | 1.418 (9) |
C1A—C6A | 1.446 (9) | C9A—H9A | 0.9500 |
C1A—O1A | 1.290 (8) | C9A—C10A | 1.391 (11) |
C1B—C2B | 1.427 (9) | C9B—H9B | 0.9500 |
C1B—C6B | 1.442 (9) | C9B—C10B | 1.398 (10) |
C1B—O1B | 1.294 (8) | C10A—H10A | 0.9500 |
C2A—H2A | 0.9500 | C10A—C11A | 1.388 (12) |
C2A—C3A | 1.370 (10) | C10B—H10B | 0.9500 |
C2B—H2B | 0.9500 | C10B—C11B | 1.384 (10) |
C2B—C3B | 1.385 (10) | C11A—H11A | 0.9500 |
C3A—H3A | 0.9500 | C11A—C12A | 1.390 (12) |
C3A—C4A | 1.426 (11) | C11B—H11B | 0.9500 |
C3B—H3B | 0.9500 | C11B—C12B | 1.400 (11) |
C3B—C4B | 1.409 (11) | C12A—H12A | 0.9500 |
C4A—H4A | 0.9500 | C12A—C13A | 1.395 (10) |
C4A—C5A | 1.359 (11) | C12B—H12B | 0.9500 |
C4B—H4B | 0.9500 | C12B—C13B | 1.386 (10) |
C4B—C5B | 1.343 (10) | C13A—O2A | 1.352 (9) |
C5A—H5A | 0.9500 | C13B—O2B | 1.355 (8) |
C5A—C6A | 1.430 (9) | C14A—H14A | 0.9800 |
C5B—H5B | 0.9500 | C14A—H14B | 0.9800 |
C5B—C6B | 1.427 (9) | C14A—H14C | 0.9800 |
C6A—C7A | 1.401 (10) | C14A—O2A | 1.424 (8) |
C6B—C7B | 1.408 (10) | C14B—H14D | 0.9800 |
C7A—H7A | 0.9500 | C14B—H14E | 0.9800 |
C7A—N1A | 1.320 (9) | C14B—H14F | 0.9800 |
C7B—H7B | 0.9500 | C14B—O2B | 1.443 (8) |
C7B—N1B | 1.312 (9) | Hg1—I1 | 2.6580 (7) |
C8A—C9A | 1.400 (10) | Hg1—I2 | 2.6536 (7) |
C8A—C13A | 1.408 (10) | Hg1—O1A | 2.387 (5) |
C8A—N1A | 1.410 (9) | Hg1—O1B | 2.378 (5) |
C8B—C9B | 1.382 (10) | N1A—H1A | 0.8800 |
C8B—C13B | 1.411 (10) | N1B—H1B | 0.8800 |
C2A—C1A—C6A | 116.8 (6) | C10B—C9B—H9B | 119.8 |
O1A—C1A—C2A | 123.4 (6) | C9A—C10A—H10A | 120.2 |
O1A—C1A—C6A | 119.8 (6) | C11A—C10A—C9A | 119.5 (7) |
C2B—C1B—C6B | 116.9 (6) | C11A—C10A—H10A | 120.2 |
O1B—C1B—C2B | 122.7 (6) | C9B—C10B—H10B | 120.6 |
O1B—C1B—C6B | 120.5 (6) | C11B—C10B—C9B | 118.7 (7) |
C1A—C2A—H2A | 119.3 | C11B—C10B—H10B | 120.6 |
C3A—C2A—C1A | 121.5 (7) | C10A—C11A—H11A | 119.3 |
C3A—C2A—H2A | 119.3 | C10A—C11A—C12A | 121.4 (7) |
C1B—C2B—H2B | 119.7 | C12A—C11A—H11A | 119.3 |
C3B—C2B—C1B | 120.5 (7) | C10B—C11B—H11B | 119.3 |
C3B—C2B—H2B | 119.7 | C10B—C11B—C12B | 121.5 (7) |
C2A—C3A—H3A | 119.1 | C12B—C11B—H11B | 119.3 |
C2A—C3A—C4A | 121.9 (7) | C11A—C12A—H12A | 120.2 |
C4A—C3A—H3A | 119.1 | C11A—C12A—C13A | 119.5 (7) |
C2B—C3B—H3B | 119.1 | C13A—C12A—H12A | 120.2 |
C2B—C3B—C4B | 121.8 (7) | C11B—C12B—H12B | 120.1 |
C4B—C3B—H3B | 119.1 | C13B—C12B—C11B | 119.7 (7) |
C3A—C4A—H4A | 120.8 | C13B—C12B—H12B | 120.1 |
C5A—C4A—C3A | 118.4 (7) | C12A—C13A—C8A | 119.6 (7) |
C5A—C4A—H4A | 120.8 | O2A—C13A—C8A | 115.7 (6) |
C3B—C4B—H4B | 120.5 | O2A—C13A—C12A | 124.7 (7) |
C5B—C4B—C3B | 119.1 (7) | C12B—C13B—C8B | 118.9 (7) |
C5B—C4B—H4B | 120.5 | O2B—C13B—C8B | 116.1 (6) |
C4A—C5A—H5A | 119.2 | O2B—C13B—C12B | 125.0 (7) |
C4A—C5A—C6A | 121.6 (7) | H14A—C14A—H14B | 109.5 |
C6A—C5A—H5A | 119.2 | H14A—C14A—H14C | 109.5 |
C4B—C5B—H5B | 119.0 | H14B—C14A—H14C | 109.5 |
C4B—C5B—C6B | 122.0 (7) | O2A—C14A—H14A | 109.5 |
C6B—C5B—H5B | 119.0 | O2A—C14A—H14B | 109.5 |
C5A—C6A—C1A | 119.8 (6) | O2A—C14A—H14C | 109.5 |
C7A—C6A—C1A | 121.8 (6) | H14D—C14B—H14E | 109.5 |
C7A—C6A—C5A | 118.4 (6) | H14D—C14B—H14F | 109.5 |
C5B—C6B—C1B | 119.7 (6) | H14E—C14B—H14F | 109.5 |
C7B—C6B—C1B | 121.6 (6) | O2B—C14B—H14D | 109.5 |
C7B—C6B—C5B | 118.7 (6) | O2B—C14B—H14E | 109.5 |
C6A—C7A—H7A | 118.1 | O2B—C14B—H14F | 109.5 |
N1A—C7A—C6A | 123.8 (6) | I2—Hg1—I1 | 145.097 (18) |
N1A—C7A—H7A | 118.1 | O1A—Hg1—I1 | 102.05 (12) |
C6B—C7B—H7B | 118.0 | O1A—Hg1—I2 | 98.69 (12) |
N1B—C7B—C6B | 124.1 (6) | O1B—Hg1—I1 | 98.64 (12) |
N1B—C7B—H7B | 118.0 | O1B—Hg1—I2 | 102.36 (13) |
C9A—C8A—C13A | 120.0 (7) | O1B—Hg1—O1A | 105.74 (16) |
C9A—C8A—N1A | 123.2 (6) | C7A—N1A—C8A | 125.4 (6) |
C13A—C8A—N1A | 116.8 (6) | C7A—N1A—H1A | 117.3 |
C9B—C8B—C13B | 120.7 (6) | C8A—N1A—H1A | 117.3 |
C9B—C8B—N1B | 123.1 (6) | C7B—N1B—C8B | 125.7 (6) |
C13B—C8B—N1B | 116.2 (6) | C7B—N1B—H1B | 117.2 |
C8A—C9A—H9A | 120.0 | C8B—N1B—H1B | 117.2 |
C10A—C9A—C8A | 120.0 (7) | C1A—O1A—Hg1 | 125.7 (4) |
C10A—C9A—H9A | 120.0 | C1B—O1B—Hg1 | 124.7 (4) |
C8B—C9B—H9B | 119.8 | C13A—O2A—C14A | 118.1 (6) |
C8B—C9B—C10B | 120.4 (7) | C13B—O2B—C14B | 117.2 (6) |
C1A—C2A—C3A—C4A | 0.6 (11) | C9A—C8A—C13A—O2A | 179.5 (6) |
C1A—C6A—C7A—N1A | −0.8 (11) | C9A—C8A—N1A—C7A | 7.1 (11) |
C1B—C2B—C3B—C4B | −2.3 (10) | C9A—C10A—C11A—C12A | 0.2 (12) |
C1B—C6B—C7B—N1B | −1.2 (10) | C9B—C8B—C13B—C12B | −1.3 (10) |
C2A—C1A—C6A—C5A | 1.2 (10) | C9B—C8B—C13B—O2B | 178.4 (6) |
C2A—C1A—C6A—C7A | −177.0 (6) | C9B—C8B—N1B—C7B | 5.1 (10) |
C2A—C1A—O1A—Hg1 | 13.7 (9) | C9B—C10B—C11B—C12B | −2.1 (11) |
C2A—C3A—C4A—C5A | −0.6 (11) | C10A—C11A—C12A—C13A | −0.4 (12) |
C2B—C1B—C6B—C5B | 0.4 (9) | C10B—C11B—C12B—C13B | 1.2 (11) |
C2B—C1B—C6B—C7B | −178.1 (6) | C11A—C12A—C13A—C8A | 0.3 (11) |
C2B—C1B—O1B—Hg1 | 13.4 (9) | C11A—C12A—C13A—O2A | −179.3 (7) |
C2B—C3B—C4B—C5B | 2.6 (11) | C11B—C12B—C13B—C8B | 0.5 (10) |
C3A—C4A—C5A—C6A | 1.0 (11) | C11B—C12B—C13B—O2B | −179.2 (7) |
C3B—C4B—C5B—C6B | −1.4 (11) | C12A—C13A—O2A—C14A | 1.9 (11) |
C4A—C5A—C6A—C1A | −1.3 (11) | C12B—C13B—O2B—C14B | 5.8 (10) |
C4A—C5A—C6A—C7A | 176.9 (7) | C13A—C8A—C9A—C10A | 0.0 (11) |
C4B—C5B—C6B—C1B | −0.1 (10) | C13A—C8A—N1A—C7A | −171.6 (7) |
C4B—C5B—C6B—C7B | 178.5 (7) | C13B—C8B—C9B—C10B | 0.4 (11) |
C5A—C6A—C7A—N1A | −179.0 (7) | C13B—C8B—N1B—C7B | −175.2 (6) |
C5B—C6B—C7B—N1B | −179.7 (6) | N1A—C8A—C9A—C10A | −178.6 (7) |
C6A—C1A—C2A—C3A | −0.8 (10) | N1A—C8A—C13A—C12A | 178.6 (7) |
C6A—C1A—O1A—Hg1 | −165.2 (5) | N1A—C8A—C13A—O2A | −1.8 (9) |
C6A—C7A—N1A—C8A | −179.7 (6) | N1B—C8B—C9B—C10B | −179.9 (6) |
C6B—C1B—C2B—C3B | 0.8 (10) | N1B—C8B—C13B—C12B | 179.0 (6) |
C6B—C1B—O1B—Hg1 | −166.9 (5) | N1B—C8B—C13B—O2B | −1.3 (9) |
C6B—C7B—N1B—C8B | −179.7 (6) | O1A—C1A—C2A—C3A | −179.8 (7) |
C8A—C9A—C10A—C11A | −0.1 (11) | O1A—C1A—C6A—C5A | −179.8 (6) |
C8A—C13A—O2A—C14A | −177.7 (6) | O1A—C1A—C6A—C7A | 2.1 (10) |
C8B—C9B—C10B—C11B | 1.3 (11) | O1B—C1B—C2B—C3B | −179.4 (6) |
C8B—C13B—O2B—C14B | −174.0 (6) | O1B—C1B—C6B—C5B | −179.4 (6) |
C9A—C8A—C13A—C12A | −0.1 (10) | O1B—C1B—C6B—C7B | 2.1 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1A | 0.88 | 1.92 | 2.611 (8) | 134 |
N1B—H1B···O1B | 0.88 | 1.94 | 2.629 (7) | 134 |
Compound | 1 | 2 | 3 | 4 | 5 | 6 | |
Bond length | M1—X1 | 2.240 (4) | 2.588 (3) | 2.537 (1) | 2.720 (1) | 2.371 (1) | 2.658 (1) |
M1—X2 | 2.243 (4) | 2.568 (3) | 2.545 (1) | 2.710 (1) | 2.369 (1) | 2.654 (1) | |
M1—O2A | 1.985 (1) | 1.990 (10) | 2.216 (4) | 2.231 (2) | 2.259 (2) | 2.387 (5) | |
M1—O2B | 1.983 (1) | 1.990 (10) | 2.225 (4) | 2.216 (2) | 2.356 (2) | 2.378 (5) | |
Bond angles | X1—M1—X2 | 124.8 (2) | 123.7 (1) | 130.0 (1) | 130.1 (1) | 148.2 (1) | 145.1 (1) |
O1A—M1—X1 | 103.9 (3) | 104.0 (4) | 104.4 (1) | 103.7 (1) | 98.3 (1) | 102.0 (1) | |
O1A—M1—X2 | 104.0 (3) | 103.6 (4) | 103.6 (1) | 104.8 (1) | 100.4 (1) | 98.7 (1) | |
O1B—M1—X1 | 105.5 (3) | 106.2 (4) | 104.8 (1) | 102.9 (1) | 98.8 (1) | 98.6 (1) | |
O1B—M1—X2 | 102.8 (3) | 104.2 (4) | 101.9 (1) | 103.5 (1) | 100.7 (1) | 102.3 (1) | |
O1A—M1—O1B | 116.8 (4) | 115.8 (5) | 112.0 (2) | 111.6 (1) | 105.6 (1) | 105.8 (2) |
Compound | H···H | C···H | M—X···H | O···H | C···C | N···C |
1 | 46.2 | 20.2 | 15.7 | 6.0 | 7.9 | 3.0 |
2 | 43.4 | 20.4 | 18.7 | 6.3 | 7.1 | 2.8 |
3 | 42.9 | 20.2 | 18.2 | 6.8 | 7.1 | 2.8 |
4 | 43.5 | 20.1 | 19.2 | 6.8 | 6.9 | 2.8 |
5 | 43.5 | 20.5 | 16.5 | 6.7 | 7.2 | 2.9 |
6 | 41.3 | 20.2 | 18.3 | 6.9 | 6.9 | 2.8 |
Plane A consists of atoms C1–C6 and plane B consists of atoms C8–C13. |
Structure | Ligand A | Ligand B |
1 | 4.34 | 10.68 |
2 | 8.76 | 5.17 |
3 | 4.10 | 7.07 |
4 | 5.86 | 8.20 |
5 | 3.62 | 5.23 |
6 | 8.83 | 5.31 |
Acknowledgements
The authors gratefully acknowledge financial support from the Research Council of Alzahra University, and the Centre de Tecnologies de la Informació (CTI) at the UIB for computational facilities.
Funding information
Funding for this research was provided by: Research Council of Alzahra University; Science Foundation Ireland (SFI grant No. IvP 13/IA/1894); MINECO/AEI of Spain (project No. CTQ2017-85821-R, FEDER funds, to AF and AB).
References
Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. (1989). Chem. Phys. Lett. 162, 165–169. CrossRef CAS Web of Science Google Scholar
Alarcón, S., Pagani, D., Bacigalupo, J. & Olivieri, A. (1999). J. Mol. Struct. 475, 233–240. Google Scholar
Azhdari Tehrani, A., Abedi, S. & Morsali, A. (2016). Cryst. Growth Des. 17, 255–261. CrossRef Google Scholar
Bader, R. F. (1991). Chem. Rev. 91, 893–928. CrossRef CAS Google Scholar
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138. Web of Science CrossRef CAS Google Scholar
Boys, S. F. & Bernardi, F. D. (1970). Mol. Phys. 19, 553–566. CrossRef CAS Google Scholar
Braga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601–608. Web of Science CrossRef PubMed CAS Google Scholar
Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406. Web of Science CrossRef PubMed CAS Google Scholar
Brammer, L. (2004). Chem. Soc. Rev. 33, 476–489. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Busschaert, N., Caltagirone, C., Van Rossom, W. & Gale, P. A. (2015). Chem. Rev. 115, 8038–8155. CrossRef CAS Google Scholar
Charland, J., Gabe, E., Khoo, L. & Smith, F. (1989). Polyhedron, 8, 1897–1901. CrossRef CAS Google Scholar
Cohen, M. & Schmidt, G. (1962). J. Phys. Chem. 66, 2442–2446. CrossRef CAS Google Scholar
Cohen, M., Schmidt, G. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051. CrossRef Google Scholar
Custelcean, R., Bonnesen, P. V., Duncan, N. C., Zhang, X., Watson, L. A., Van Berkel, G., Parson, W. B. & Hay, B. P. (2012). J. Am. Chem. Soc. 134, 8525–8534. CrossRef CAS Google Scholar
Đaković, M., Soldin, Ž., Kukovec, B.-M., Kodrin, I., Aakeröy, C. B., Baus, N. & Rinkovec, T. (2018). IUCrJ, 5, 13–21. CrossRef IUCr Journals Google Scholar
Desiraju, G. (1998). Chem. Commun. pp. 891–892. Google Scholar
Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 604–605. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dürr, H. & Bouas-Laurent, H. (2003). In Photochromism: Molecules and Systems. Amsterdam: Elsevier. Google Scholar
Gong, D., Wang, B., Jia, X. & Zhang, X. (2014). Dalton Trans. 43, 4169–4178. CrossRef CAS Google Scholar
Hajiashrafi, T., Kharat, A. N., Love, J. A. & Patrick, B. O. (2013). Polyhedron, 60, 30–38. CrossRef CAS Google Scholar
Hajiashrafi, T., Ziarani, G. M., Kubicki, M., Fadaei, F. T. & Schenk, K. J. (2016). Polyhedron, 119, 260–266. CrossRef CAS Google Scholar
Holliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. 40, 2022–2043. CrossRef CAS Google Scholar
Hope, H. (1994). Prog. Inorg. Chem. 41, 1–19. CrossRef CAS Web of Science Google Scholar
Hoshino, N., Inabe, T., Mitani, T. & Maruyama, Y. (1988). Bull. Chem. Soc. Jpn, 61, 4207–4214. CrossRef CAS Web of Science Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kargili, H., Alpaslan, G., Macit, M., Erdönmez, A. & Büyükgüngör, O. (2014). Opt. Spectrosc. 116, 179–186. CrossRef CAS Google Scholar
Keith, T. A. (2013). AIMAll. Version 13.05.06. TK Gristmill Software, Overland Park, KS, USA. Google Scholar
Khavasi, H. R. & Azhdari Tehrani, A. (2013). Inorg. Chem. 52, 2891–2905. CrossRef CAS PubMed Google Scholar
Khavasi, H. R. & Azizpoor Fard, M. (2010). Cryst. Growth Des. 10, 1892–1896. CrossRef CAS Google Scholar
Khavasi, H. R., Barforoush, M. M. & Fard, M. A. (2012). CrystEngComm, 14, 7236–7244. CrossRef CAS Google Scholar
Khavasi, H. R. & Mohammad Sadegh, B. M. (2010). Inorg. Chem. 49, 5356–5358. CrossRef CAS Google Scholar
Khavasi, H. R., Norouzi, F. & Azhdari Tehrani, A. (2015). Cryst. Growth Des. 15, 2579–2583. CrossRef CAS Google Scholar
Khavasi, H. R. & Sadegh, B. M. M. (2014). Dalton Trans. 43, 5564–5573. CrossRef CAS Google Scholar
Kielmann, M. & Senge, M. O. (2018). Angew. Chem. Int. Ed. 58, 418–441. CrossRef Google Scholar
Lehn, J.-M. (1995). In Supramolecular Chemistry. Weinheim: VCH. Google Scholar
Li, B., Zang, S.-Q., Wang, L.-Y. & Mak, T. C. (2016). Coord. Chem. Rev. 308, 1–21. CrossRef CAS Google Scholar
Li, L. & Yuan, F. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 994–998. Web of Science CrossRef CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mahata, P., Prabu, M. & Natarajan, S. (2009). Cryst. Growth Des. 9, 3683–3691. Web of Science CrossRef CAS Google Scholar
McKinlay, A. C., Morris, R. E., Horcajada, P., Férey, G., Gref, R., Couvreur, P. & Serre, C. (2010). Angew. Chem. Int. Ed. 49, 6260–6266. Web of Science CrossRef CAS Google Scholar
Politzer, P., Murray, J. S. & Clark, T. (2010). Phys. Chem. Chem. Phys. 12, 7748–7757. Web of Science CrossRef CAS PubMed Google Scholar
Reddy, P. A., Nethaji, M. & Chakravarty, A. R. (2003a). Eur. J. Inorg. Chem. pp. 2318–2324. CrossRef Google Scholar
Reddy, P. A., Nethaji, M. & Chakravarty, A. R. (2003b). Inorg. Chem. Commun. 6, 698–701. CrossRef CAS Google Scholar
Redshaw, C., Walton, M., Clowes, L., Hughes, D. L., Fuller, A. M., Chao, Y., Walton, A., Sumerin, V., Elo, P. & Soshnikov, I. (2013). Chem. Eur. J. 19, 8884–8899. CrossRef CAS Google Scholar
Reedijk, J. (2009). Eur. J. Inorg. Chem. pp. 1303–1312. Web of Science CrossRef Google Scholar
Reedijk, J. (2013). Chem. Soc. Rev. 42, 1776–1783. CrossRef CAS Google Scholar
Schottel, B. L., Chifotides, H. T., Shatruk, M., Chouai, A., Pérez, L. M., Bacsa, J. & Dunbar, K. R. (2006). J. Am. Chem. Soc. 128, 5895–5912. Web of Science CrossRef PubMed CAS Google Scholar
Semeniuc, R. F., Reamer, T. J. & Smith, M. D. (2010). New J. Chem. 34, 439–452. CrossRef CAS Google Scholar
Senge, M. O. (2000). Z. Naturforsch. Teil B, 55, 336–344. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shkol'nikova, L., Obodovskaya, A. & Shugam, E. (1970). J. Struct. Chem. 11, 47–53. Google Scholar
Song, X., Wang, Z., Zhao, J. & Hor, T. A. (2013). Chem. Commun. 49, 4992–4994. CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Steed, J. W. & Atwood, J. L. (2013). In Supramolecular Chemistry. London: John Wiley & Sons. Google Scholar
Tsuchimoto, M., Yoshida, N., Sugimoto, A., Teramoto, N. & Nakajima, K. (2016). J. Mol. Struct. 1105, 152–158. CrossRef CAS Google Scholar
Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. (2013). Nat. Chem. 5, 100–103. CrossRef CAS Google Scholar
Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. (2011). Angew. Chem. Int. Ed. 50, 114–137. CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zeng, F., Ni, J., Wang, Q., Ding, Y., Ng, S. W., Zhu, W. & Xie, Y. (2010). Cryst. Growth Des. 10, 1611–1622. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.