research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

The role of ππ stacking and hydrogen-bonding inter­actions in the assembly of a series of isostructural group IIB coordination compounds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993891176, Tehran, Iran, bSchool of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Science Institute, Trinity College Dublin, The University of Dublin, 152–160 Pearse Street, Dublin 2, Ireland, and cDepartment of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
*Correspondence e-mail: t.hajiashrafi@alzahra.ac.ir, sengem@tcd.ie

Edited by A. L. Spek, Utrecht University, The Netherlands (Received 23 August 2018; accepted 24 December 2018; online 25 January 2019)

The supra­molecular chemistry of coordination compounds has become an im­portant research domain of modern inorganic chemistry. Herein, six iso­structural group IIB coordination compounds containing a 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol ligand, namely di­chlorido­bis­(2-{(E)-[(2-meth­oxy­phen­yl)aza­niumyl­idene]meth­yl}pheno­lato-κO)zinc(II), [ZnCl2(C28H26N2O4)], 1, di­iodido­bis­(2-{(E)-[(2-meth­oxy­phen­yl)aza­niumyl­idene]meth­yl}pheno­lato-κO)zinc(II), [ZnI2(C28H26N2O4)], 2, di­bromido­bis­(2-{(E)-[(2-meth­oxy­phen­yl)aza­n­iumyl­idene]meth­yl}pheno­lato-κO)cadmium(II), [CdBr2(C28H26N2O4)], 3, di­iodido­bis­(2-{(E)-[(2-meth­oxy­phen­yl)aza­niumyl­idene]meth­yl}pheno­lato-κO)cadmium(II), [CdI2(C28H26N2O4)], 4, di­chlorido­bis­(2-{(E)-[(2-meth­oxy­phen­yl)aza­niumyl­idene]meth­yl}pheno­lato-κO)mercury(II), [HgCl2(C28H26N2O4)], 5, and di­iodido­bis­(2-{(E)-[(2-meth­oxy­phen­yl)aza­niumyl­idene]meth­yl}pheno­lato-κO)mercury(II), [HgI2(C28H26N2O4)], 6, were synthesized and characterized by X-ray crystallography and spectroscopic techniques. All six compounds exhibit an infinite one-dimensional ladder in the solid state governed by the formation of hydrogen-bonding and ππ stacking inter­actions. The crystal structures of these compounds were studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06-2X/def2-TZVP calculations and Bader's theory of `atoms in mol­ecules'. The energies associated with the inter­actions, including the contribution of the different forces, have been evaluated. In general, the ππ stacking inter­actions are stronger than those reported for conventional ππ complexes, which is attributed to the influence of the metal coordination, which is stronger for Zn than either Cd or Hg. The results reported herein might be useful for understanding the solid-state architecture of metal-containing materials that contain MIIX2 subunits and aromatic organic ligands.

1. Introduction

Over the last two decades, the supra­molecular chemistry of metal-containing compounds has attracted intense attention, due not only to their fascinating structures (Holliday & Mirkin, 2001[Holliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. 40, 2022-2043.]; Brammer, 2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]), but also their potential applications in diverse fields such as medicine (McKinlay et al., 2010[McKinlay, A. C., Morris, R. E., Horcajada, P., Férey, G., Gref, R., Couvreur, P. & Serre, C. (2010). Angew. Chem. Int. Ed. 49, 6260-6266.]; Reedijk, 2009[Reedijk, J. (2009). Eur. J. Inorg. Chem. pp. 1303-1312.]), ion and mol­ecular recognition (Custelcean et al., 2012[Custelcean, R., Bonnesen, P. V., Duncan, N. C., Zhang, X., Watson, L. A., Van Berkel, G., Parson, W. B. & Hay, B. P. (2012). J. Am. Chem. Soc. 134, 8525-8534.]; Busschaert et al., 2015[Busschaert, N., Caltagirone, C., Van Rossom, W. & Gale, P. A. (2015). Chem. Rev. 115, 8038-8155.]) and catalysis (Wang et al., 2013[Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. (2013). Nat. Chem. 5, 100-103.]; Wiester et al., 2011[Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. (2011). Angew. Chem. Int. Ed. 50, 114-137.]).

The ultimate goal of supra­molecular chemistry is to understand the inherent complexities of the association mechanisms of mol­ecular and ionic building blocks organized through noncovalent inter­molecular inter­actions with pre­scribed properties and functions (Lehn, 1995[Lehn, J.-M. (1995). In Supramolecular Chemistry. Weinheim: VCH.]; Steed & Atwood, 2013[Steed, J. W. & Atwood, J. L. (2013). In Supramolecular Chemistry. London: John Wiley & Sons.]). In the context of metallo­supra­molecular chemistry (Braga & Grepioni, 2000[Braga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.]; Braga et al., 1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1406.]), hydrogen bonding (Reedijk, 2013[Reedijk, J. (2013). Chem. Soc. Rev. 42, 1776-1783.]; Azhdari Tehrani et al., 2016[Azhdari Tehrani, A., Abedi, S. & Morsali, A. (2016). Cryst. Growth Des. 17, 255-261.]) and halogen bonding (Khavasi et al., 2015[Khavasi, H. R., Norouzi, F. & Azhdari Tehrani, A. (2015). Cryst. Growth Des. 15, 2579-2583.]; Khavasi & Azhdari Tehrani, 2013[Khavasi, H. R. & Azhdari Tehrani, A. (2013). Inorg. Chem. 52, 2891-2905.]; Li et al., 2016[Li, B., Zang, S.-Q., Wang, L.-Y. & Mak, T. C. (2016). Coord. Chem. Rev. 308, 1-21.]) have been widely used so far to drive the self-assembly of coordination compounds, because of their directionality and versatility (Politzer et al., 2010[Politzer, P., Murray, J. S. & Clark, T. (2010). Phys. Chem. Chem. Phys. 12, 7748-7757.]; Desiraju, 1998[Desiraju, G. (1998). Chem. Commun. pp. 891-892.]). However, there are some reports that provide evidence suggesting the crucial role of nondirectional inter­molecular inter­actions, such as ππ stacking (Khavasi & Azizpoor Fard, 2010[Khavasi, H. R. & Azizpoor Fard, M. (2010). Cryst. Growth Des. 10, 1892-1896.]; Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]; Khavasi & Sadegh, 2014[Khavasi, H. R. & Sadegh, B. M. M. (2014). Dalton Trans. 43, 5564-5573.]; Semeniuc et al., 2010[Semeniuc, R. F., Reamer, T. J. & Smith, M. D. (2010). New J. Chem. 34, 439-452.]), for designing the supra­molecular architecture of metal-containing species in the solid state. In this regard, supra­molecular chemists and crystal engineers have explored and studied the use of noncovalent inter­actions as a key tool for constructing supra­molecular architectures of metal-containing building units in the solid state in which X-ray crystallography could provide a detailed picture of the supra­molecular structure (Desiraju, 2014[Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 604-605.]; Blake et al., 1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]; Đaković et al., 2018[Đaković, M., Soldin, Ž., Kukovec, B.-M., Kodrin, I., Aakeröy, C. B., Baus, N. & Rinkovec, T. (2018). IUCrJ, 5, 13-21.]). These studies reveal an undeniable contribution of such noncovalent inter­actions to the organization and stabilization of the ultimate crystal structures. These studies also revealed that the ultimate supra­molecular architecture of self-assembled metal-containing compounds could be affected by various factors, such as ligand and metal geometries (Khavasi et al., 2012[Khavasi, H. R., Barforoush, M. M. & Fard, M. A. (2012). CrystEngComm, 14, 7236-7244.]; Hajiashrafi et al., 2013[Hajiashrafi, T., Kharat, A. N., Love, J. A. & Patrick, B. O. (2013). Polyhedron, 60, 30-38.]), counter-ions (Schottel et al., 2006[Schottel, B. L., Chifotides, H. T., Shatruk, M., Chouai, A., Pérez, L. M., Bacsa, J. & Dunbar, K. R. (2006). J. Am. Chem. Soc. 128, 5895-5912.]; Zeng et al., 2010[Zeng, F., Ni, J., Wang, Q., Ding, Y., Ng, S. W., Zhu, W. & Xie, Y. (2010). Cryst. Growth Des. 10, 1611-1622.]) and reaction conditions (Khavasi & Mohammad Sadegh, 2010[Khavasi, H. R. & Mohammad Sadegh, B. M. (2010). Inorg. Chem. 49, 5356-5358.]; Mahata et al., 2009[Mahata, P., Prabu, M. & Natarajan, S. (2009). Cryst. Growth Des. 9, 3683-3691.]).

In continuation of our research aimed at understanding the role of noncovalent inter­actions in the fabrication and self-assembly of metal-containing building blocks (Hajiashrafi et al., 2013[Hajiashrafi, T., Kharat, A. N., Love, J. A. & Patrick, B. O. (2013). Polyhedron, 60, 30-38.], 2016[Hajiashrafi, T., Ziarani, G. M., Kubicki, M., Fadaei, F. T. & Schenk, K. J. (2016). Polyhedron, 119, 260-266.]; Kielmann & Senge, 2018[Kielmann, M. & Senge, M. O. (2018). Angew. Chem. Int. Ed. 58, 418-441.]), a series of coordination compounds, namely [ZnL2Cl2] (1), [ZnL2I2] (2), [CdL2Br2] (3), [CdL2I2] (4), [HgL2Cl2] (5) and [HgL2I2] (6), where L is 2-{[(2-meth­oxy­phen­yl)azaniumylidene]­meth­yl}phe­nolate, have been synthesized and characterized using X-ray crystallography and different spectroscopic techniques (see Scheme 1[link]). Geometrical, Hirshfeld surface analysis and theoretical calculations reveal the importance of ππ stacking inter­actions, as well as hydrogen bonding, in governing the crystal packing of this series of isostructural metal-containing compounds.

2. Experimental

2.1. Materials and apparatus

Chemicals and reagents were purchased from commercial sources. 2-Hy­droxy­benzaldehyde, 2-meth­oxy­aniline and an­hydrous MII halides, where M is Zn, Cd and Hg, were pur­chased from Sigma–Aldrich and Merck, and used as received. The Schiff base ligand 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol (L) was prepared according to a previously reported method (Song et al., 2013[Song, X., Wang, Z., Zhao, J. & Hor, T. A. (2013). Chem. Commun. 49, 4992-4994.]). The IR spectra were recorded on a Nicolet FT–IR 100 spectrometer in the range 500–4000 cm−1 using the KBr disk technique. Elemental analyses (C, H and N) were performed using an ECS 4010 CHN-O made in Costech, Italy. Melting points were measured by an Electrothermal 9100 melting-point apparatus and corrected. The measurements were carried out using 10 mg of a powdered sample sealed in aluminium pans with a mechanical crimp.

2.2. Computational methods

The geometries of the complexes included in this study were computed at the M06-2X/def2-TZVP level of theory using the crystallographic coordinates within TURBOMOLE 7.0 (Ahlrichs et al., 1989[Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. (1989). Chem. Phys. Lett. 162, 165-169.]). We have used the crystallographic coordinates instead of the optimized complexes because we are inter­ested in estimating the binding energies of several assemblies as they stand in the crystal structure, instead of investigating the most favourable geometry for a given complex. The inter­action energies were calculated with correction for the basis set superposition error (BSSE) by using the Boys–Bernardi counterpoise technique (Boys & Bernardi, 1970[Boys, S. F. & Bernardi, F. D. (1970). Mol. Phys. 19, 553-566.]). The `atoms-in-mol­ecules' (AIM) analysis of the electron density was performed at the same level of theory using the AIMAll program (Keith, 2013[Keith, T. A. (2013). AIMAll. Version 13.05.06. TK Gristmill Software, Overland Park, KS, USA.]).

[Scheme 1]

2.3. Synthesis and crystallization

The ligand 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol (L) was utilized previously for the preparation of a number of coordination compounds (Song et al., 2013[Song, X., Wang, Z., Zhao, J. & Hor, T. A. (2013). Chem. Commun. 49, 4992-4994.]; Gong et al., 2014[Gong, D., Wang, B., Jia, X. & Zhang, X. (2014). Dalton Trans. 43, 4169-4178.]; Reddy et al., 2003a[Reddy, P. A., Nethaji, M. & Chakravarty, A. R. (2003a). Eur. J. Inorg. Chem. pp. 2318-2324.],b[Reddy, P. A., Nethaji, M. & Chakravarty, A. R. (2003b). Inorg. Chem. Commun. 6, 698-701.]; Li & Yuan, 2012[Li, L. & Yuan, F. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 994-998.]). L was syn­thesized by reacting 2-hy­droxy­benzaldehyde (0.53 ml, 5 mmol) with 2-meth­oxy­aniline (0.56 ml, 5 mmol) in ethanol. After stirring for 30 min at 323 K, the ligand precipitated from the reaction mixture as an orange powder which was filtered off, washed several times with cold ethanol and normal hexane, and then dried under vacuum.

The six coordination compounds [ZnL2Cl2] (1), [ZnL2I2] (2), [CdL2Br2] (3), [CdL2I2] (4), [HgL2Cl2] (5) and [HgL2I2] (6) were synthesized by combining a solution of MX2 (0.1 mmol; M = Zn, Cd or Hg and X = Cl, Br or I) in methanol (5 ml) and a solution of L (0.2 mmol) in methanol (5 ml) with stirring. Each mixture was heated at 333 K for about 30 min. Reduction of the solvent volume resulted in the formation of a yellow-to-orange precipitate. The precipitate was filtered off, washed with methanol (3 × 2 ml) and then dried in vacuo. The solid was subsequently dissolved in boiling methanol, ethanol or aceto­nitrile (10 ml) and filtered. Upon slow evaporation of the filtrate at room temperature, crystals of complexes 16 suitable for X-ray crystallography were obtained (Hope, 1994[Hope, H. (1994). Prog. Inorg. Chem. 41, 1-19.]; Senge, 2000[Senge, M. O. (2000). Z. Naturforsch. Teil B, 55, 336-344.]). The coordination compounds were characterized using X-ray crystallography, FT–IR spectroscopy and elemental analysis.

2.3.1. Analytical data for L

M.p. 330 K. FT–IR (KBr, ν/cm−1, selected bands): 3445 (w, broad), 1246 (s), 3061 (w), 1615 (s), 792 (s), 849 (m).

2.3.2. Analytical data for 1

Yield 52%. M.p. 505–507 K. FT–IR (KBr, ν/cm−1, selected bands): 3679 (w), 3447 (w), 1637 (s), 1525 (m), 1382 (s), 1025 (m), 800 (m), 750 (m). Analysis calculated for C28H26Cl2N2O4Zn (%): C 56.92, H 4.44, N 4.74; found: C 56.86, H 4.42, N 4.70.

2.3.3. Analytical data for 2

Yield 70%. M.p. 520–522 K. FT–IR (KBr, ν/cm−1, selected bands): 3676 (w), 3447 (w), 1614 (s), 1542 (m), 1385 (s), 1019 (m), 805 (m), 754 (m). Analysis calculated for C28H26I2N2O4Zn (%): C 43.47, H 3.39, N 3.62; found: C 43.36, H 3.42, N 3.58.

2.3.4. Analytical data for 3

Yield 54%. M.p. 543–545 K. FT–IR (KBr, ν/cm−1, selected bands): 3674 (w), 3445 (m), 1620 (s), 1530 (m), 1484 (m), 1383 (s), 1020 (m), 794 (m), 753 (m). Analysis calculated for C28H26Br2CdN2O4 (%): C 46.28, H 3.61, N 3.85; found: C 46.24, H 3.40, N 3.82.

2.3.5. Analytical data for 4

Yield 46%. M.p. 461–463 K. FT–IR (KBr, ν/cm−1, selected bands): 3679 (w), 3447 (m), 1637 (s), 1520 (m), 1380 (m), 1025 (m), 796 (m), 741 (m). Analysis calculated for C28H26CdI2N2O4 (%): C 40.98, H 3.19, N 3.41; found: C 40.88, H 3.12, N 3.44.

2.3.6. Analytical data for 5

Yield 65%. M.p. 438–440 K. FT–IR (KBr, ν/cm−1, selected bands): 3675 (w), 3435 (m), 1622 (s), 1534 (m), 1378 (m), 1028 (m), 794 (m), 750 (m). Analysis calculated for C28H26Cl2HgN2O4 (%): C 46.32, H 3.61, N 3.86; found: C 46.28, H 3.62, N 3.92.

2.3.7. Analytical data for 6

Yield 70%. M.p. 383–385 K. FT–IR (KBr, ν/cm−1, selected bands): 3675 (w), 3446 (m), 1630 (s), 1523 (m), 1382 (m), 1018 (m), 796 (m), 738 (w). Analysis calculated for C28H26HgI2N2O4 (%): C 37.00, H 2.88, N 3.08; found: C 36.94, H 2.80, N 3.10.

2.4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. C- and N-bound H atoms were placed in their expected calculated positions and refined as riding, with N—H = 0.88 Å and C—H = 0.95–0.99 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) otherwise. In the structure of 2, the C and N atoms were restrained to have similar isotropic displacement parameters. Atoms N1A, N1B and C14B were restrained to have close to isotropic displacement parameters. The structure was solved as a rotational twin rotated from the first domain by 179.8° about the reciprocal axis 0.002 1.000 0.001 and the real axis 0.434 1.000 0.197. The twin law to convert hkl from the first to this domain (SHELXL TWIN matrix) was −0.999 0.004 −0.001, 0.866 0.998 0.395, 0.007 0.003 −0.999. The structure of 3 was solved as a rotational twin rotated from the first domain by 179.7° about the reciprocal axis −0.003 −0.997 1.000 and the real axis 0.311 1.000 −0.257. The twin law to convert hkl from the first to this domain (SHELXL TWIN matrix) was −1.001 0.001 −0.004, 0.498 0.590 −0.407, −0.487 −1.593 −0.589. The structure of 5 was solved as a rotational twin rotated from the first domain by 179.9° about the reciprocal axis −0.001 1.000 −0.999 and the real axis 0.345 1.000 −0.274. The twin law to convert hkl from the first to this domain (SHELXL TWIN matrix) was −1.000 −0.001 0.001, 0.541 0.570 −0.431, −0.543 −1.570 −0.570. The structure of 6 was solved as a rotational twin rotated from the first domain by 149.8° about the reciprocal axis 1.000 0.235 0.787 and the real axis 1.000 0.533 0.319. The twin law to convert hkl from the first to this domain (SHELXL TWIN matrix) was 0.534 0.949 0.308, 0.116 −0.693 0.359, 1.269 −0.145 −0.569.

Table 1
Experimental details

  1 2 3
Crystal data
Chemical formula [ZnCl2(C28H26N2O4)] [ZnI2(C28H26N2O4)] [CdBr2(C28H26N2O4)]
Mr 590.78 773.68 726.73
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 9.1926 (2), 10.6101 (2), 14.8057 (3) 9.2709 (19), 10.020 (2), 16.248 (4) 9.2772 (3), 10.0935 (3), 16.1021 (5)
α, β, γ (°) 94.188 (1), 97.716 (1), 114.409 (1) 98.56 (4), 100.50 (4), 110.09 (3) 97.699 (2), 100.586 (2), 111.149 (2)
V3) 1289.80 (5) 1356.7 (6) 1348.92 (8)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.20 3.22 3.81
Crystal size (mm) 0.26 × 0.12 × 0.11 0.14 × 0.07 × 0.03 0.27 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII area detector Bruker APEXII area detector Bruker APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.747 0.612, 0.746 0.538, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 93163, 11965, 9331 7281, 7281, 4608 10130, 10130, 8342
Rint 0.053 0.116 0.020
(sin θ/λ)max−1) 0.822 0.606 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.02 0.067, 0.195, 0.99 0.040, 0.126, 1.03
No. of reflections 11965 7281 10130
No. of parameters 336 337 337
No. of restraints 0 174 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.71 2.19, −1.18 1.04, −0.70
  4 5 6
Crystal data
Chemical formula [CdI2(C28H26N2O4)] [HgCl2(C28H26N2O4)] [HgI2(C28H26N2O4)]
Mr 820.71 726.00 908.90
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 9.3200 (3), 10.0498 (3), 16.6239 (5) 9.2456 (4), 10.1510 (4), 15.8499 (6) 9.2783 (14), 10.0060 (15), 16.695 (3)
α, β, γ (°) 99.140 (1), 100.528 (1), 109.332 (1) 96.5447 (15), 99.7441 (15), 112.6735 (14) 98.777 (1), 100.296 (1), 109.396 (1)
V3) 1403.58 (8) 1326.25 (9) 1400.4 (4)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.01 6.04 7.74
Crystal size (mm) 0.40 × 0.26 × 0.14 0.17 × 0.14 × 0.08 0.38 × 0.19 × 0.13
 
Data collection
Diffractometer Bruker SMART APEXII area detector Bruker APEXII area detector Bruker APEXII area detector
Absorption correction Numerical (SADABS; Bruker, 2016[Bruker (2016). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.416, 0.667 0.630, 0.746 0.441, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 110757, 13807, 10917 22779, 22779, 21098 11185, 11185, 10132
Rint 0.055 0.012 0.071
(sin θ/λ)max−1) 0.838 0.668 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.067, 1.03 0.022, 0.052, 1.03 0.032, 0.112, 1.08
No. of reflections 13807 22779 11185
No. of parameters 336 337 337
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.04, −1.33 1.29, −0.60 1.48, −1.78
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

3.1. Crystal structure analysis

X-ray crystallography revealed that compounds 16 are isostructural and crystallize in the triclinic space group P[\overline{1}] (Fig. 1[link] and Table 1[link]). The asymmetric units of these structures contain two L ligands, two halide ions and a metal ion of group IIB. Crystal structure analysis reveals that in compounds 16, the MII ion is in a distorted trigonal pyramidal geometry, with four-coordinate geometry indices, τ4 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), of 0.83, 0.85, 0.83, 0.84, 0.75, and 0.77, respectively. Selected bond lengths and angles are listed in Table 2[link] and are in agreement with the values reported for similar compounds (Shkol'nikova et al., 1970[Shkol'nikova, L., Obodovskaya, A. & Shugam, E. (1970). J. Struct. Chem. 11, 47-53.]; Gong et al., 2014[Gong, D., Wang, B., Jia, X. & Zhang, X. (2014). Dalton Trans. 43, 4169-4178.]). The trigonal pyramidal geometry around MII is made up of two halide ions and two phenolate O atoms from two different L ligands. It should be noted that N-salicylideneanilines may exist in different tautomeric forms and the tautomeric isomerization reaction between the enol and keto forms is accompanied by intra- and inter­molecular proton transfer (Dürr & Bouas-Laurent, 2003[Dürr, H. & Bouas-Laurent, H. (2003). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.]; Cohen & Schmidt, 1962[Cohen, M. & Schmidt, G. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M., Schmidt, G. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]; Tsuchimoto et al., 2016[Tsuchimoto, M., Yoshida, N., Sugimoto, A., Teramoto, N. & Nakajima, K. (2016). J. Mol. Struct. 1105, 152-158.]). The Schiff base ligand L shows a self-isomerization induced by an intra­molecular proton transfer from the hy­droxy O to the imine N atom through an O—H⋯N hydrogen bond (Hoshino et al., 1988[Hoshino, N., Inabe, T., Mitani, T. & Maruyama, Y. (1988). Bull. Chem. Soc. Jpn, 61, 4207-4214.]; Alarcón et al., 1999[Alarcón, S., Pagani, D., Bacigalupo, J. & Olivieri, A. (1999). J. Mol. Struct. 475, 233-240.]). Thus, the ligand is a zwitterion with the negative and positive charges located at atoms O1B and N1B, respectively (Charland et al., 1989[Charland, J., Gabe, E., Khoo, L. & Smith, F. (1989). Polyhedron, 8, 1897-1901.]; Redshaw et al., 2013[Redshaw, C., Walton, M., Clowes, L., Hughes, D. L., Fuller, A. M., Chao, Y., Walton, A., Sumerin, V., Elo, P. & Soshnikov, I. (2013). Chem. Eur. J. 19, 8884-8899.]; Tsuchimoto et al., 2016[Tsuchimoto, M., Yoshida, N., Sugimoto, A., Teramoto, N. & Nakajima, K. (2016). J. Mol. Struct. 1105, 152-158.]; Kargili et al., 2014[Kargili, H., Alpaslan, G., Macit, M., Erdönmez, A. & Büyükgüngör, O. (2014). Opt. Spectrosc. 116, 179-186.]). This is supported by the geometry of the ligand and the unambiguous location of the H atom attached to atom N1B. The ligand almost keeps it coplanarity upon coordination; the dihedral angles between the planes of the two aromatic rings of ligand L lie in the range 4.10–10.68° for compounds 16 (see supporting information), which is a consequence of intra­molecular N—H⋯O hydrogen bonding. In this form, L can act as a monodentate ligand, where it is coordinated to the metal ion via the phenolate O atom. It should be noted that at basic pH, the L ligand may act as a tridentate ligand through the imine N, phenolate O and meth­oxy O atoms (Gong et al., 2014[Gong, D., Wang, B., Jia, X. & Zhang, X. (2014). Dalton Trans. 43, 4169-4178.]; Song et al., 2013[Song, X., Wang, Z., Zhao, J. & Hor, T. A. (2013). Chem. Commun. 49, 4992-4994.]; Reddy et al., 2003a[Reddy, P. A., Nethaji, M. & Chakravarty, A. R. (2003a). Eur. J. Inorg. Chem. pp. 2318-2324.]).

Table 2
Selected bond lengths (Å) and angles (°) for compounds 16

Compound   1 2 3 4 5 6
Bond lengths M1—X1 2.240 (4) 2.588 (3) 2.537 (1) 2.720 (1) 2.371 (1) 2.658 (1)
  M1—X2 2.243 (4) 2.568 (3) 2.545 (1) 2.710 (1) 2.369 (1) 2.654 (1)
  M1—O2A 1.985 (1) 1.990 (10) 2.216 (4) 2.231 (2) 2.259 (2) 2.387 (5)
  M1—O2B 1.983 (1) 1.990 (10) 2.225 (4) 2.216 (2) 2.356 (2) 2.378 (5)
Bond angles X1—M1—X2 124.8 (2) 123.7 (1) 130.0 (1) 130.1 (1) 148.2 (1) 145.1 (1)
  O1AM1—X1 103.9 (3) 104.0 (4) 104.4 (1) 103.7 (1) 98.3 (1) 102.0 (1)
  O1AM1—X2 104.0 (3) 103.6 (4) 103.6 (1) 104.8 (1) 100.4 (1) 98.7 (1)
  O1BM1—X1 105.5 (3) 106.2 (4) 104.8 (1) 102.9 (1) 98.8 (1) 98.6 (1)
  O1BM1—X2 102.8 (3) 104.2 (4) 101.9 (1) 103.5 (1) 100.7 (1) 102.3 (1)
  O1AM1—O1B 116.8 (4) 115.8 (5) 112.0 (2) 111.6 (1) 105.6 (1) 105.8 (2)
[Figure 1]
Figure 1
(a)–(f) The mol­ecular structures of compounds 16, respectively, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

As shown in Fig. 2[link], the crystal packing of compounds 16 consists of mononuclear units which are connected in the crystallographic a direction through a combination of ππ stacking inter­actions involving the C=N group of the ligand and C—H⋯π inter­actions. These units are then linked to other units via C—H⋯X (X = Cl, Br and I) hydrogen-bonding inter­actions in the bc plane. The inter­molecular contacts involved in the crystal packing of compounds 16 can be qu­anti­fied via Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The analysis shows that in compounds 16, the H⋯H inter­actions have the highest priority (the highest contribution to the Hirshfeld surface) and the C—H⋯π, MX⋯H and ππ inter­actions have the next highest priorities, respectively. Also, it has been found that the probability of hydrogen-bonding MX⋯H inter­actions involving metal-bound halogen increases for a given metal on going from a lighter to a heavier halogen atom. Selected contribution percentages are shown as a histogram in Fig. 3[link].

[Figure 2]
Figure 2
Representation of the self-assembly of compounds 16, showing the association of discrete units through ππ stacking inter­actions in the crystallographic a direction and C—H⋯X (X = Cl, Br and I) hydrogen bonding in the bc plane.
[Figure 3]
Figure 3
Relative contributions of the various noncovalent contacts to the Hirshfeld surface area in complexes 16.

3.2. Theoretical study

Six ML2X2 (M = Zn, Cd or Hg and X = Cl, Br or I) complexes have been synthesized and characterized by X-ray diffraction analysis (see Fig. 1[link]). The ligand is monocoordinated to the metal centre and presents an extended π-system that comprises two phenyl rings and an imino group that connects both aromatic moieties.

The solid-state architecture of all six structures is governed by the formation of π-stacking inter­actions between the aromatic ligands. In particular, each ligand forms infinite one-dimensional (1D) ladders in the crystal packing, as detailed for compounds 1, 3 and 5 in Fig. 4[link] as representative systems.

[Figure 4]
Figure 4
Partial view of the X-ray crystal structures in compounds (a) 1 (Zn), (b) 3 (Cd) and (c) 5 (Hg).

We have focused the theoretical study on a comparison of the energetic features shown by the π-stacking and hydrogen-bonding inter­actions (depending on the type of metal) observed in the crystal packing of compounds 16 described above. In particular, we have analyzed the ππ and C—H⋯X noncovalent inter­actions that are crucial to understanding their solid-state architectures. First of all, in order to study the donor–acceptor ability of the ML2X2 complexes, we have computed the mol­ecular electrostatic potential (MEP) surface of a model system (compound 1), which is shown in Fig. 5[link]. As expected, the most negative electrostatic potential corresponds to the region of the Cl ligands (−75 kcal mol−1). The MEP surface also reveals that the N—H group is totally inaccessible since it is involved in an intra­molecular hydrogen bond with the O atom of the ligand. Consequently, the most positive part is located in the region of the exocyclic C—H group at the mol­ecular plane, also influenced by the aromatic C—H groups (40 kcal mol−1). Therefore, hydrogen-bonding inter­actions between these groups (C—H⋯X) should be electrostatically favoured. Furthermore, perpendicular to the mol­ecular plane, we found that each aromatic ring presents negative MEP values (−17 and −8 kcal mol−1); therefore, face-to-face ππ stacking inter­actions are not electrostatically favoured (electrostatic repulsion). Remarkably, the electrostatic potential over the π-system of the linker (C=N) is positive, thus explaining the large displacement observed in the anti­parallel π-stacking inter­actions highlighted in Fig. 4[link] and further discussed below.

[Figure 5]
Figure 5
MEP surface of compound 1. The MEP values at selected points are given in kcal mol−1.

In isostructural Zn compounds 13, we have computed the inter­action energies of the self-assembled π-stacked dimers (shown in Fig. 6[link]a) that are responsible for the formation of the 1D ladders shown in Fig. 3[link]. The self-assembled dimers are stabilized by a combination of hydrogen bonds and ππ stacking inter­actions involving the C=N group of the ligand. The dimerization energies in 1 and 2 (ΔE1 = −33.0 kcal mol−1 and ΔE2 = −31.4 kcal mol−1, respectively) are very large due to the contribution of both hydrogen-bonding (red dashed lines in Fig. 6[link]) and ππ inter­actions (blue dashed lines in Fig. 6[link]), where the former involves the most positive (C—H groups, see Fig. 5[link]) and the most negative (belts of the halide ligands) potential regions of the metal compound. In an effort to calculate the contribution of the different forces that govern the formation of the self-assembled dimers, we have computed additional theoretical models where the halide ligands that establish the hydrogen bonds have been replaced by hydride ligands (see Fig. 6[link]b) and consequently the hydrogen-bonding inter­actions between the halide ligands and the C—H groups are not formed. As a result, the inter­action energies are reduced to ΔE3 = −24.8 kcal mol−1 and ΔE4 = −22.5 kcal mol−1 in 1 and 2, respectively. Therefore, the contribution of both symmetrically equivalent hydrogen-bonding inter­actions can be roughly estimated by the difference (they are −8.2 and 8.9 kcal mol−1 for 1 and 2, respectively) and it is similar in both compounds. Furthermore, we have used additional dimers where the ZnCl2 group in 1 or the ZnI2 group in 2 has been removed (see Fig. 6[link]c) in order to evaluate the influence of the metal coordination on the inter­action energy. The resulting inter­action energies are almost identical for both complexes (ΔE5 = −14.0 kcal mol−1 and ΔE6 = −14.1 kcal mol−1 for 1 and 2, respectively) and reveal the strong influence of the metal coordination on the ππ stacking inter­action. This is likely due to the stronger dipole–dipole inter­action in the anti­parallel arrangement of the assembly. It is also worthy to mention that the ππ inter­action energy computed for these compounds is large compared to other π-stacking inter­actions (i.e. benzene dimer). This is due to the special arrangement of the two π-systems where the C=N bond is located over the aromatic ring (see the on-top representation in Fig. 6[link]). This fact is in very good agreement with the MEP surface represented in Fig. 5[link] and explains the large inter­action energy since two electrostatically enhanced π(CN)⋯π inter­actions are established.

[Figure 6]
Figure 6
(a) Inter­action energies of the self-assembled π-stacked dimers observed in the solid state of compounds 1 and 2. (b)/(c) Inter­action energies in several theoretical models of 1 and 2. (d) On-top representation of the π-stacking inter­action. All distances are in Å.

In Cd compounds 3 and 4, the π-stacking binding mode is very similar to that described before for 1 and 2. As mentioned above, hydrogen-bonding and ππ inter­actions control the dimer formation (see Fig. 7[link]a). The computed inter­action energies of the self-assembled dimers are almost identical (ΔE7 = −30.9 kcal mol−1 and ΔE8 = −29.9 kcal mol−1 for 3 and 4, respectively), indicating that the halide (Br or I) has a minimal influence on the binding energy. Compared to 1 and 2, the inter­action energies are less favourable, thus revealing a larger influence of the Zn ion on the binding energy of the assembly compared to Cd. Also, in both compounds, we have computed theoretical models where the Br or I ligands have been replaced by H atoms and consequently the hydrogen bonds are not formed (see Fig. 7[link]b). As a result, the inter­action energies are reduced to ΔE9 = −22.7 kcal mol−1 and ΔE10 = −21.6 kcal mol−1 in 3 and 4, respectively. Therefore, this contribution (both hydrogen bonds) can be roughly estimated by the difference (−8.2 and −8.3 kcal mol−1 for 3 and 4, respectively). These values are very close to those found for compounds 1 and 2, thus indicating that the contribution of the hydrogen bonds is not influenced by the type of transition metal (Zn or Cd). Furthermore, we have used an additional dimer, where the CdBr2 and CdI2 groups have been removed. The inter­action energies are further reduced to ΔE9 = −13.3 kcal mol−1 and ΔE6 = −13.6 kcal mol−1 for 3 and 4, respectively, which is in agreement with the Zn complexes, revealing a strong influence of the metal coordination on the strength of the π-stacking inter­action.

[Figure 7]
Figure 7
(a) Inter­action energies of the self-assembled π-stacked dimers observed in the solid state of compounds 3 and 4. (b)/(c) Inter­action energies in several theoretical models of 3 and 4. All distances are in Å.

For Hg compounds 5 and 6, we have performed an equivalent study (see Fig. 8[link]). The computed inter­action energies of the self-assembled dimers are almost identical (ΔE13 = −28.3 kcal mol−1 and ΔE14 = −25.1 kcal mol−1 for 5 and 6, respectively), indicating that Hg has a smaller effect on the inter­action energy than Cd and Zn. Also, in both Hg compounds, we have computed theoretical models where the Cl or I ligands have been replaced by H ligands and consequently the hydrogen bonds are not formed (see Fig. 8[link]b). As a result, the inter­action energies are reduced to ΔE15 = −19.9 kcal mol−1 and ΔE16 = −17.5 kcal mol−1 in 5 and 6, respectively. Therefore, this contribution (both hydrogen bonds) can be roughly estimated as −8.4 and −7.6 kcal mol−1 for 5 and 6, respectively. These values are in agreement with those found for compounds 14, thus confirming that the inter­action energy of the hydrogen bonds is not influenced by the type of transition metal (Zn/Cd/Hg). Furthermore, we have used an additional dimer, where the HgCl2 and HgI2 groups have been eliminated. Consequently, the inter­action energies are further reduced to ΔE17 = −13.0 kcal mol−1 and ΔE18 = −12.7 kcal mol−1 for 5 and 6, respectively; which is in agreement to the rest of complexes commented on above and confirms the strong influence of the metal coordination on the strength of the π-stacking inter­action.

[Figure 8]
Figure 8
(a) Inter­action energies of the self-assembled π-stacked dimers observed in the solid state of compounds 5 and 6. (b)/(c) Inter­action energies in several theoretical models of 5 and 6. All distances are in Å.

In order to provide additional evidence for the existence of the C—H⋯X hydrogen-bond and ππ stacking inter­actions, we have analyzed the self-assembled π-stacked dimer of compound 3 (as an exemplifying model) using Bader's theory of `atoms in mol­ecules' (AIM) (Bader, 1991[Bader, R. F. (1991). Chem. Rev. 91, 893-928.]), which provides an unambiguous definition of chemical bonding. The AIM theory has been successfully used to characterize and understand a great variety of inter­actions, including those described herein. In Fig. 9[link] we show the AIM analysis of compound 3. It can be observed that the ππ inter­action is characterized by the presence of three bond critical points that inter­connect three C atoms of each aromatic ligand. The inter­action is further characterized by several ring and cage critical points. Furthermore, the distribution of critical points reveals the existence of two symmetrically disposed sets of C—H⋯Br hydrogen-bonding inter­actions. Each one is characterized by a bond critical point and a bond path connecting one H atom of the C—H groups with the Br ligand, thus confirming the formation of the trifurcated hydrogen bonds. The value of the Laplacian at the bond critical points is positive, as is common in closed-shell inter­actions.

[Figure 9]
Figure 9
AIM analysis of the self-assembled dimers retrieved from the X-ray structure of compound 3. Bond, ring and cage critical points are represented by red, yellow and green spheres, respectively. The bond paths connecting bond critical points are also represented by dashed lines.

4. Conclusion

We herein reported the syntheses and structural characterization of six new metal complexes based on the 2-{[(2-meth­oxy­phen­yl)imino]­meth­yl}phenol ligand. All compounds exhibited an infinite 1D ladder in the solid state governed by the formation of hydrogen-bonding and ππ stacking inter­actions in the solid state. The crystal structure of these compounds was studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06-2X/def2-TZVP calculations and Bader's theory of `atoms in mol­ecules'. The energies associated with the inter­actions, including the contribution of the different forces, have been evaluated. In general, the ππ stacking inter­actions are stronger than those reported for conventional ππ complexes, that is attributed to the influence of the metal coordination, which is stronger for Zn than for either Cd or Hg. The results reported herein might be useful for understanding the solid-state architecture of metal-containing materials that contain MIIX2 subunits and organic aromatic ligands.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II) (Compound_1) top
Crystal data top
[ZnCl2(C28H26N2O4)]Z = 2
Mr = 590.78F(000) = 608
Triclinic, P1Dx = 1.521 Mg m3
a = 9.1926 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6101 (2) ÅCell parameters from 9828 reflections
c = 14.8057 (3) Åθ = 2.5–34.0°
α = 94.188 (1)°µ = 1.20 mm1
β = 97.716 (1)°T = 100 K
γ = 114.409 (1)°Block, yellow
V = 1289.80 (5) Å30.26 × 0.12 × 0.11 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
11965 independent reflections
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C9331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 7.9 pixels mm-1θmax = 35.7°, θmin = 2.1°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1717
Tmin = 0.691, Tmax = 0.747l = 2424
93163 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.037P)2 + 0.6038P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
11965 reflectionsΔρmax = 0.77 e Å3
336 parametersΔρmin = 0.71 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.78269 (2)0.33923 (2)0.71660 (2)0.01225 (4)
Cl10.58971 (4)0.39395 (3)0.64597 (2)0.01828 (6)
Cl21.05003 (4)0.46074 (3)0.72121 (2)0.01983 (6)
O1A0.75873 (12)0.35079 (10)0.84784 (6)0.01486 (16)
O1B0.73799 (11)0.15246 (9)0.65301 (6)0.01458 (16)
O2B1.01441 (12)0.27418 (10)0.49592 (7)0.01827 (18)
O2A0.63225 (13)0.63174 (11)0.84985 (7)0.02096 (19)
N1B0.78530 (13)0.02994 (11)0.50462 (7)0.01276 (17)
H1B0.81930.10440.54630.015*
N1A0.73008 (13)0.51596 (11)0.97988 (8)0.01443 (18)
H1A0.71600.48920.92040.017*
C1B0.60814 (15)0.03742 (12)0.65300 (8)0.01257 (19)
C1A0.81909 (14)0.29733 (12)0.91128 (8)0.01229 (19)
C6A0.83502 (15)0.34584 (12)1.00664 (8)0.01243 (19)
C6B0.56362 (15)0.08101 (12)0.58464 (8)0.01256 (19)
C7B0.65395 (15)0.07798 (13)0.51344 (8)0.0135 (2)
H7B0.61650.15960.46950.016*
C2A0.87012 (16)0.19149 (13)0.89030 (9)0.0161 (2)
H2A0.86350.15850.82780.019*
C2B0.50596 (15)0.02403 (13)0.71897 (9)0.0149 (2)
H2B0.53190.10060.76530.018*
C7A0.79231 (15)0.45396 (13)1.03586 (8)0.0141 (2)
H7A0.80990.48331.10010.017*
C5B0.42209 (15)0.20542 (13)0.58441 (9)0.0150 (2)
H5B0.39340.28330.53860.018*
C9B0.85462 (16)0.07663 (14)0.37295 (9)0.0168 (2)
H9B0.77410.16680.37710.020*
C5A0.89772 (16)0.28629 (14)1.07591 (9)0.0168 (2)
H5A0.90850.31921.13900.020*
C10B0.95009 (17)0.05883 (16)0.30531 (9)0.0210 (3)
H10B0.93650.13720.26390.025*
C13B0.99865 (15)0.17174 (14)0.42983 (8)0.0152 (2)
C8B0.87793 (15)0.03839 (13)0.43438 (8)0.0137 (2)
C3B0.36930 (16)0.09889 (14)0.71670 (9)0.0159 (2)
H3B0.30300.10510.76170.019*
C9A0.68435 (16)0.66509 (15)1.09870 (9)0.0191 (2)
H9A0.71790.62281.14670.023*
C4B0.32585 (15)0.21493 (13)0.64943 (9)0.0157 (2)
H4B0.23140.29860.64890.019*
C8A0.68327 (16)0.62282 (13)1.00706 (9)0.0156 (2)
C12A0.58437 (17)0.79013 (15)0.95712 (11)0.0212 (3)
H12A0.55070.83290.90950.025*
C12B1.09137 (17)0.18984 (16)0.36023 (9)0.0190 (2)
H12B1.17100.27990.35510.023*
C4A0.94279 (18)0.18186 (15)1.05275 (10)0.0200 (2)
H4A0.98260.14121.09940.024*
C11B1.06531 (17)0.07378 (17)0.29848 (9)0.0212 (3)
H11B1.12750.08560.25080.025*
C13A0.63154 (16)0.68325 (14)0.93594 (9)0.0171 (2)
C14B1.1425 (2)0.41087 (15)0.49745 (11)0.0254 (3)
H14A1.12470.44570.43940.038*
H14B1.24720.40540.50510.038*
H14C1.14280.47470.54890.038*
C3A0.92945 (18)0.13554 (14)0.95946 (10)0.0197 (2)
H3A0.96200.06400.94350.024*
C11A0.58748 (18)0.83271 (16)1.04881 (11)0.0243 (3)
H11A0.55630.90551.06360.029*
C14A0.54557 (19)0.66647 (16)0.77481 (10)0.0231 (3)
H14D0.54460.61520.71670.035*
H14E0.59940.76720.77260.035*
H14F0.43370.64070.78390.035*
C10A0.63522 (18)0.77081 (16)1.11873 (11)0.0244 (3)
H10A0.63470.80031.18080.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01434 (7)0.01084 (6)0.01021 (6)0.00409 (5)0.00255 (5)0.00064 (4)
Cl10.02136 (14)0.01873 (13)0.01582 (13)0.01077 (12)0.00027 (10)0.00101 (10)
Cl20.01624 (13)0.02080 (14)0.01455 (12)0.00027 (11)0.00358 (10)0.00072 (10)
O1A0.0187 (4)0.0185 (4)0.0116 (4)0.0114 (3)0.0037 (3)0.0040 (3)
O1B0.0136 (4)0.0111 (4)0.0169 (4)0.0030 (3)0.0049 (3)0.0005 (3)
O2B0.0204 (5)0.0149 (4)0.0175 (4)0.0043 (3)0.0078 (3)0.0018 (3)
O2A0.0278 (5)0.0268 (5)0.0172 (4)0.0195 (4)0.0053 (4)0.0057 (4)
N1B0.0133 (4)0.0133 (4)0.0120 (4)0.0061 (4)0.0028 (3)0.0009 (3)
N1A0.0143 (5)0.0150 (4)0.0158 (4)0.0079 (4)0.0033 (4)0.0015 (4)
C1B0.0127 (5)0.0121 (5)0.0132 (5)0.0058 (4)0.0018 (4)0.0015 (4)
C1A0.0118 (5)0.0129 (5)0.0123 (5)0.0052 (4)0.0029 (4)0.0020 (4)
C6A0.0133 (5)0.0133 (5)0.0120 (5)0.0068 (4)0.0024 (4)0.0021 (4)
C6B0.0132 (5)0.0108 (4)0.0131 (5)0.0048 (4)0.0018 (4)0.0010 (4)
C7B0.0142 (5)0.0130 (5)0.0130 (5)0.0060 (4)0.0016 (4)0.0012 (4)
C2A0.0188 (6)0.0161 (5)0.0157 (5)0.0101 (4)0.0034 (4)0.0001 (4)
C2B0.0147 (5)0.0153 (5)0.0152 (5)0.0068 (4)0.0037 (4)0.0008 (4)
C7A0.0140 (5)0.0144 (5)0.0138 (5)0.0060 (4)0.0030 (4)0.0007 (4)
C5B0.0147 (5)0.0122 (5)0.0158 (5)0.0041 (4)0.0010 (4)0.0021 (4)
C9B0.0158 (5)0.0206 (6)0.0147 (5)0.0096 (5)0.0010 (4)0.0012 (4)
C5A0.0198 (6)0.0176 (5)0.0136 (5)0.0089 (5)0.0016 (4)0.0035 (4)
C10B0.0192 (6)0.0312 (7)0.0146 (5)0.0143 (5)0.0016 (4)0.0030 (5)
C13B0.0143 (5)0.0192 (5)0.0132 (5)0.0082 (4)0.0028 (4)0.0029 (4)
C8B0.0129 (5)0.0187 (5)0.0112 (5)0.0085 (4)0.0022 (4)0.0020 (4)
C3B0.0143 (5)0.0183 (5)0.0173 (5)0.0080 (4)0.0056 (4)0.0056 (4)
C9A0.0158 (6)0.0238 (6)0.0177 (6)0.0104 (5)0.0012 (4)0.0054 (5)
C4B0.0134 (5)0.0139 (5)0.0188 (5)0.0043 (4)0.0029 (4)0.0050 (4)
C8A0.0139 (5)0.0150 (5)0.0185 (5)0.0073 (4)0.0026 (4)0.0005 (4)
C12A0.0190 (6)0.0178 (6)0.0290 (7)0.0099 (5)0.0053 (5)0.0019 (5)
C12B0.0176 (6)0.0262 (6)0.0154 (5)0.0103 (5)0.0058 (4)0.0064 (5)
C4A0.0253 (7)0.0199 (6)0.0188 (6)0.0141 (5)0.0008 (5)0.0057 (5)
C11B0.0182 (6)0.0344 (7)0.0134 (5)0.0137 (6)0.0041 (4)0.0020 (5)
C13A0.0157 (5)0.0161 (5)0.0205 (6)0.0075 (4)0.0048 (4)0.0018 (4)
C14B0.0284 (7)0.0163 (6)0.0260 (7)0.0018 (5)0.0122 (6)0.0035 (5)
C3A0.0240 (6)0.0175 (6)0.0222 (6)0.0137 (5)0.0030 (5)0.0025 (5)
C11A0.0191 (6)0.0202 (6)0.0334 (8)0.0105 (5)0.0020 (5)0.0050 (5)
C14A0.0273 (7)0.0262 (7)0.0217 (6)0.0167 (6)0.0044 (5)0.0074 (5)
C10A0.0199 (6)0.0273 (7)0.0247 (7)0.0124 (6)0.0001 (5)0.0094 (5)
Geometric parameters (Å, º) top
Zn1—Cl12.2404 (4)C9B—C10B1.3912 (19)
Zn1—Cl22.2427 (4)C9B—C8B1.3899 (18)
Zn1—O1A1.9854 (9)C5A—H5A0.9500
Zn1—O1B1.9832 (9)C5A—C4A1.3707 (19)
O1A—C1A1.3076 (14)C10B—H10B0.9500
O1B—C1B1.3078 (15)C10B—C11B1.389 (2)
O2B—C13B1.3550 (16)C13B—C8B1.4050 (18)
O2B—C14B1.4376 (17)C13B—C12B1.3981 (18)
O2A—C13A1.3516 (16)C3B—H3B0.9500
O2A—C14A1.4387 (17)C3B—C4B1.4053 (18)
N1B—H1B0.8800C9A—H9A0.9500
N1B—C7B1.3067 (16)C9A—C8A1.3949 (18)
N1B—C8B1.4152 (16)C9A—C10A1.399 (2)
N1A—H1A0.8800C4B—H4B0.9500
N1A—C7A1.3077 (16)C8A—C13A1.4008 (19)
N1A—C8A1.4197 (16)C12A—H12A0.9500
C1B—C6B1.4314 (17)C12A—C13A1.4012 (19)
C1B—C2B1.4187 (17)C12A—C11A1.392 (2)
C1A—C6A1.4338 (17)C12B—H12B0.9500
C1A—C2A1.4147 (17)C12B—C11B1.394 (2)
C6A—C7A1.4151 (17)C4A—H4A0.9500
C6A—C5A1.4213 (17)C4A—C3A1.404 (2)
C6B—C7B1.4212 (17)C11B—H11B0.9500
C6B—C5B1.4191 (17)C14B—H14A0.9800
C7B—H7B0.9500C14B—H14B0.9800
C2A—H2A0.9500C14B—H14C0.9800
C2A—C3A1.3802 (19)C3A—H3A0.9500
C2B—H2B0.9500C11A—H11A0.9500
C2B—C3B1.3814 (18)C11A—C10A1.382 (2)
C7A—H7A0.9500C14A—H14D0.9800
C5B—H5B0.9500C14A—H14E0.9800
C5B—C4B1.3742 (18)C14A—H14F0.9800
C9B—H9B0.9500C10A—H10A0.9500
Cl1—Zn1—Cl2124.837 (14)O2B—C13B—C12B125.28 (12)
O1A—Zn1—Cl1103.90 (3)C12B—C13B—C8B119.56 (12)
O1A—Zn1—Cl2104.04 (3)C9B—C8B—N1B123.25 (12)
O1B—Zn1—Cl1105.46 (3)C9B—C8B—C13B120.69 (11)
O1B—Zn1—Cl2102.79 (3)C13B—C8B—N1B116.05 (11)
O1B—Zn1—O1A116.75 (4)C2B—C3B—H3B119.2
C1A—O1A—Zn1125.54 (8)C2B—C3B—C4B121.66 (12)
C1B—O1B—Zn1125.06 (8)C4B—C3B—H3B119.2
C13B—O2B—C14B117.28 (11)C8A—C9A—H9A120.6
C13A—O2A—C14A117.02 (11)C8A—C9A—C10A118.83 (14)
C7B—N1B—H1B116.9C10A—C9A—H9A120.6
C7B—N1B—C8B126.13 (11)C5B—C4B—C3B118.97 (12)
C8B—N1B—H1B116.9C5B—C4B—H4B120.5
C7A—N1A—H1A117.3C3B—C4B—H4B120.5
C7A—N1A—C8A125.41 (11)C9A—C8A—N1A122.96 (12)
C8A—N1A—H1A117.3C9A—C8A—C13A120.83 (12)
O1B—C1B—C6B120.27 (11)C13A—C8A—N1A116.19 (11)
O1B—C1B—C2B122.41 (11)C13A—C12A—H12A120.5
C2B—C1B—C6B117.32 (11)C11A—C12A—H12A120.5
O1A—C1A—C6A119.79 (11)C11A—C12A—C13A119.10 (14)
O1A—C1A—C2A122.76 (11)C13B—C12B—H12B120.5
C2A—C1A—C6A117.45 (11)C11B—C12B—C13B119.03 (13)
C7A—C6A—C1A122.46 (11)C11B—C12B—H12B120.5
C7A—C6A—C5A117.50 (11)C5A—C4A—H4A120.3
C5A—C6A—C1A120.04 (11)C5A—C4A—C3A119.33 (12)
C7B—C6B—C1B122.20 (11)C3A—C4A—H4A120.3
C5B—C6B—C1B120.17 (11)C10B—C11B—C12B121.24 (13)
C5B—C6B—C7B117.60 (11)C10B—C11B—H11B119.4
N1B—C7B—C6B124.13 (11)C12B—C11B—H11B119.4
N1B—C7B—H7B117.9O2A—C13A—C8A115.56 (11)
C6B—C7B—H7B117.9O2A—C13A—C12A124.76 (13)
C1A—C2A—H2A119.6C8A—C13A—C12A119.68 (13)
C3A—C2A—C1A120.85 (12)O2B—C14B—H14A109.5
C3A—C2A—H2A119.6O2B—C14B—H14B109.5
C1B—C2B—H2B119.6O2B—C14B—H14C109.5
C3B—C2B—C1B120.87 (12)H14A—C14B—H14B109.5
C3B—C2B—H2B119.6H14A—C14B—H14C109.5
N1A—C7A—C6A124.08 (11)H14B—C14B—H14C109.5
N1A—C7A—H7A118.0C2A—C3A—C4A121.56 (12)
C6A—C7A—H7A118.0C2A—C3A—H3A119.2
C6B—C5B—H5B119.5C4A—C3A—H3A119.2
C4B—C5B—C6B121.01 (12)C12A—C11A—H11A119.4
C4B—C5B—H5B119.5C10A—C11A—C12A121.10 (13)
C10B—C9B—H9B120.2C10A—C11A—H11A119.4
C8B—C9B—H9B120.2O2A—C14A—H14D109.5
C8B—C9B—C10B119.53 (13)O2A—C14A—H14E109.5
C6A—C5A—H5A119.6O2A—C14A—H14F109.5
C4A—C5A—C6A120.74 (12)H14D—C14A—H14E109.5
C4A—C5A—H5A119.6H14D—C14A—H14F109.5
C9B—C10B—H10B120.1H14E—C14A—H14F109.5
C11B—C10B—C9B119.87 (13)C9A—C10A—H10A119.8
C11B—C10B—H10B120.1C11A—C10A—C9A120.43 (14)
O2B—C13B—C8B115.16 (11)C11A—C10A—H10A119.8
Zn1—O1A—C1A—C6A161.78 (9)C2B—C1B—C6B—C5B0.11 (17)
Zn1—O1A—C1A—C2A18.43 (17)C2B—C3B—C4B—C5B0.01 (19)
Zn1—O1B—C1B—C6B161.25 (9)C7A—N1A—C8A—C9A6.4 (2)
Zn1—O1B—C1B—C2B18.45 (16)C7A—N1A—C8A—C13A174.92 (12)
O1A—C1A—C6A—C7A2.03 (18)C7A—C6A—C5A—C4A179.52 (13)
O1A—C1A—C6A—C5A178.83 (11)C5B—C6B—C7B—N1B179.18 (12)
O1A—C1A—C2A—C3A178.39 (13)C9B—C10B—C11B—C12B2.1 (2)
O1B—C1B—C6B—C7B1.78 (18)C5A—C6A—C7A—N1A178.46 (12)
O1B—C1B—C6B—C5B179.60 (11)C5A—C4A—C3A—C2A0.8 (2)
O1B—C1B—C2B—C3B179.73 (12)C10B—C9B—C8B—N1B179.37 (12)
O2B—C13B—C8B—N1B2.38 (16)C10B—C9B—C8B—C13B1.12 (19)
O2B—C13B—C8B—C9B177.17 (11)C13B—C12B—C11B—C10B0.4 (2)
O2B—C13B—C12B—C11B177.94 (12)C8B—N1B—C7B—C6B179.17 (11)
N1A—C8A—C13A—O2A0.17 (17)C8B—C9B—C10B—C11B1.3 (2)
N1A—C8A—C13A—C12A179.56 (12)C8B—C13B—C12B—C11B2.06 (19)
C1B—C6B—C7B—N1B1.32 (19)C9A—C8A—C13A—O2A178.54 (12)
C1B—C6B—C5B—C4B0.20 (18)C9A—C8A—C13A—C12A1.7 (2)
C1B—C2B—C3B—C4B0.1 (2)C8A—N1A—C7A—C6A178.78 (12)
C1A—C6A—C7A—N1A2.4 (2)C8A—C9A—C10A—C11A0.4 (2)
C1A—C6A—C5A—C4A0.3 (2)C12A—C11A—C10A—C9A1.1 (2)
C1A—C2A—C3A—C4A0.5 (2)C12B—C13B—C8B—N1B177.62 (11)
C6A—C1A—C2A—C3A1.40 (19)C12B—C13B—C8B—C9B2.83 (19)
C6A—C5A—C4A—C3A1.2 (2)C13A—C12A—C11A—C10A0.4 (2)
C6B—C1B—C2B—C3B0.03 (18)C14B—O2B—C13B—C8B176.51 (12)
C6B—C5B—C4B—C3B0.14 (19)C14B—O2B—C13B—C12B3.48 (19)
C7B—N1B—C8B—C9B10.54 (19)C11A—C12A—C13A—O2A179.28 (13)
C7B—N1B—C8B—C13B169.93 (12)C11A—C12A—C13A—C8A1.0 (2)
C7B—C6B—C5B—C4B178.11 (12)C14A—O2A—C13A—C8A165.83 (12)
C2A—C1A—C6A—C7A178.17 (12)C14A—O2A—C13A—C12A14.5 (2)
C2A—C1A—C6A—C5A0.96 (18)C10A—C9A—C8A—N1A179.64 (13)
C2B—C1B—C6B—C7B177.93 (11)C10A—C9A—C8A—C13A1.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1B0.881.962.6481 (14)134
N1A—H1A···O1A0.881.962.6424 (14)134
C7B—H7B···Cl1i0.952.703.6118 (13)160
C7A—H7A···Cl2ii0.952.693.5913 (13)159
C14B—H14C···Cl20.982.793.5845 (16)138
C14A—H14D···Cl10.982.713.5406 (16)143
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+2.
Diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II) (Compound_2) top
Crystal data top
[ZnI2(C28H26N2O4)]Z = 2
Mr = 773.68F(000) = 752
Triclinic, P1Dx = 1.894 Mg m3
a = 9.2709 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.020 (2) ÅCell parameters from 4135 reflections
c = 16.248 (4) Åθ = 4.4–51.3°
α = 98.56 (4)°µ = 3.22 mm1
β = 100.50 (4)°T = 100 K
γ = 110.09 (3)°Plate, yellow
V = 1356.7 (6) Å30.14 × 0.07 × 0.03 mm
Data collection top
Bruker APEXII area detector
diffractometer
7281 independent reflections
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C4608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
Detector resolution: 7.9 pixels mm-1θmax = 25.5°, θmin = 2.2°
ω and φ scansh = 1010
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 1212
Tmin = 0.612, Tmax = 0.746l = 1919
7281 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1055P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
7281 reflectionsΔρmax = 2.19 e Å3
337 parametersΔρmin = 1.18 e Å3
174 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon and nitrogen atoms were fixed using the similarity restraint for Uij (SIMU). Atoms N1A, N1B, and C14B were fixed using the ISOR restraint. The structure was solved as a rotational twin rotated from first domain by 179.8 degrees about reciprocal axis 0.002 1.000 0.001 and real axis 0.434 1.000 0.197. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix): -0.999 0.004 -0.001, 0.866 0.998 0.395, 0.007 0.003 -0.999.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.334 (2)0.3133 (16)0.8865 (11)0.0165 (17)
C1B0.130 (2)0.0695 (17)0.6410 (10)0.0129 (15)
C2A0.396 (2)0.2136 (16)0.8566 (11)0.0167 (17)
H2A0.39640.19410.79760.020*
C2B0.035 (2)0.0640 (17)0.7007 (10)0.0131 (16)
H2B0.05400.14910.74250.016*
C3A0.457 (2)0.1434 (17)0.9096 (11)0.0166 (17)
H3A0.49880.07570.88670.020*
C3B0.086 (2)0.0684 (17)0.6971 (10)0.0129 (16)
H3B0.14760.07220.73800.015*
C4A0.461 (2)0.1669 (17)0.9945 (12)0.0164 (17)
H4A0.50430.11561.02990.020*
C4B0.120 (2)0.1964 (18)0.6350 (10)0.0125 (16)
H4B0.20360.28440.63400.015*
C5A0.402 (2)0.2647 (16)1.0300 (11)0.0165 (17)
H5A0.40310.28021.08930.020*
C5B0.030 (2)0.1933 (18)0.5759 (10)0.0126 (15)
H5B0.05110.27930.53420.015*
C6A0.339 (2)0.3415 (16)0.9766 (11)0.0164 (16)
C6B0.095 (2)0.0591 (17)0.5779 (10)0.0127 (15)
C7A0.286 (2)0.4453 (16)1.0157 (12)0.0165 (18)
H7A0.29290.45671.07550.020*
C7B0.179 (2)0.0640 (17)0.5121 (10)0.0127 (17)
H7B0.14750.15460.47230.015*
C8A0.172 (2)0.6273 (19)1.0156 (12)0.0191 (17)
C8B0.373 (2)0.0414 (18)0.4378 (11)0.0155 (17)
C9A0.165 (2)0.6426 (19)1.1017 (11)0.0191 (17)
H9A0.19640.58371.13610.023*
C9B0.347 (2)0.0865 (18)0.3801 (11)0.0156 (17)
H9B0.27170.17700.38310.019*
C10A0.110 (2)0.7469 (18)1.1353 (12)0.0195 (17)
H10A0.09860.75641.19250.023*
C10B0.430 (2)0.0809 (17)0.3198 (11)0.0158 (17)
H10B0.41000.16770.27910.019*
C11A0.073 (2)0.8366 (19)1.0856 (11)0.0193 (17)
H11A0.04150.91051.11050.023*
C11B0.544 (2)0.0498 (17)0.3160 (11)0.0155 (17)
H11B0.60300.04980.27400.019*
C12A0.081 (2)0.8227 (18)1.0019 (12)0.0193 (17)
H12A0.05040.88250.96800.023*
C12B0.573 (2)0.1793 (17)0.3719 (10)0.0154 (17)
H12B0.64830.26910.36790.018*
C13A0.137 (2)0.7151 (18)0.9662 (11)0.0193 (17)
C13B0.489 (2)0.1732 (17)0.4339 (10)0.0153 (17)
C14A0.098 (3)0.776 (2)0.8298 (12)0.037 (6)
H14A0.10860.74460.77190.056*
H14B0.16180.88070.85170.056*
H14C0.01390.75840.82740.056*
C14B0.637 (2)0.4251 (17)0.5024 (11)0.017 (4)
H14D0.61570.46460.45180.026*
H14E0.73430.40630.50570.026*
H14F0.64890.49590.55440.026*
I10.06551 (14)0.45980 (12)0.65185 (7)0.0183 (3)
I20.58382 (14)0.53025 (12)0.73369 (7)0.0185 (3)
N1A0.2297 (17)0.5259 (14)0.9761 (9)0.015 (3)
H1A0.22670.51790.92110.018*
N1B0.2921 (16)0.0437 (13)0.5033 (8)0.010 (3)
H1B0.32270.12680.54110.012*
O1A0.2721 (14)0.3821 (12)0.8366 (8)0.017 (3)
O1B0.2479 (14)0.1894 (12)0.6433 (7)0.015 (3)
O2A0.1519 (15)0.6952 (12)0.8862 (8)0.021 (3)
O2B0.5048 (13)0.2897 (11)0.4952 (7)0.014 (3)
Zn10.2884 (3)0.38214 (19)0.71687 (14)0.0131 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.021 (4)0.006 (3)0.021 (4)0.002 (3)0.008 (3)0.004 (3)
C1B0.011 (4)0.015 (3)0.013 (3)0.006 (3)0.001 (3)0.001 (3)
C2A0.021 (4)0.006 (3)0.022 (4)0.002 (3)0.008 (3)0.004 (3)
C2B0.011 (4)0.015 (3)0.013 (3)0.006 (3)0.001 (3)0.001 (3)
C3A0.021 (4)0.006 (3)0.022 (4)0.002 (3)0.008 (3)0.005 (3)
C3B0.011 (4)0.015 (3)0.012 (3)0.006 (3)0.002 (3)0.001 (3)
C4A0.021 (4)0.006 (3)0.022 (4)0.002 (3)0.009 (3)0.004 (3)
C4B0.011 (4)0.014 (3)0.012 (3)0.006 (3)0.002 (3)0.002 (3)
C5A0.021 (4)0.006 (3)0.021 (4)0.002 (3)0.009 (3)0.004 (3)
C5B0.011 (4)0.014 (3)0.012 (3)0.006 (3)0.002 (3)0.001 (3)
C6A0.021 (4)0.006 (3)0.021 (4)0.002 (3)0.009 (3)0.005 (3)
C6B0.011 (4)0.014 (3)0.013 (3)0.006 (3)0.001 (3)0.001 (3)
C7A0.021 (4)0.007 (3)0.021 (4)0.002 (3)0.008 (3)0.005 (3)
C7B0.011 (4)0.014 (3)0.013 (3)0.006 (3)0.001 (3)0.001 (3)
C8A0.011 (4)0.023 (4)0.022 (4)0.010 (3)0.002 (3)0.001 (3)
C8B0.016 (4)0.017 (3)0.014 (4)0.007 (3)0.005 (3)0.004 (3)
C9A0.011 (4)0.023 (4)0.022 (4)0.010 (3)0.002 (3)0.002 (3)
C9B0.016 (4)0.017 (3)0.014 (4)0.006 (3)0.005 (3)0.004 (3)
C10A0.012 (4)0.024 (4)0.023 (4)0.010 (3)0.002 (3)0.002 (3)
C10B0.017 (4)0.017 (3)0.014 (4)0.007 (3)0.005 (3)0.003 (3)
C11A0.012 (4)0.023 (4)0.023 (4)0.010 (3)0.002 (3)0.002 (3)
C11B0.016 (4)0.017 (3)0.014 (4)0.007 (3)0.005 (3)0.004 (3)
C12A0.012 (4)0.023 (4)0.023 (4)0.010 (3)0.002 (3)0.001 (3)
C12B0.016 (4)0.017 (3)0.014 (4)0.007 (3)0.005 (3)0.004 (3)
C13A0.012 (4)0.023 (4)0.023 (4)0.010 (3)0.002 (3)0.001 (3)
C13B0.016 (4)0.017 (3)0.013 (4)0.007 (3)0.005 (3)0.004 (3)
C14A0.063 (17)0.032 (11)0.027 (11)0.026 (12)0.016 (12)0.009 (9)
C14B0.018 (4)0.016 (4)0.018 (4)0.007 (3)0.005 (3)0.002 (3)
I10.0170 (7)0.0182 (6)0.0184 (7)0.0077 (5)0.0005 (6)0.0024 (5)
I20.0132 (7)0.0233 (7)0.0141 (6)0.0012 (5)0.0029 (5)0.0044 (5)
N1A0.015 (3)0.014 (3)0.015 (3)0.0062 (17)0.0030 (15)0.0032 (14)
N1B0.009 (3)0.010 (3)0.009 (3)0.0029 (16)0.0028 (14)0.0020 (14)
O1A0.011 (7)0.013 (6)0.027 (7)0.008 (5)0.000 (6)0.002 (5)
O1B0.010 (7)0.013 (6)0.016 (6)0.003 (5)0.002 (5)0.004 (5)
O2A0.029 (8)0.016 (6)0.020 (7)0.008 (6)0.007 (6)0.008 (5)
O2B0.015 (7)0.007 (5)0.020 (6)0.000 (5)0.013 (6)0.001 (5)
Zn10.0137 (10)0.0132 (10)0.0115 (9)0.0043 (9)0.0032 (7)0.0021 (7)
Geometric parameters (Å, º) top
C1A—C2A1.39 (2)C8B—N1B1.41 (2)
C1A—C6A1.44 (2)C9A—H9A0.9500
C1A—O1A1.31 (2)C9A—C10A1.39 (2)
C1B—C2B1.42 (2)C9B—H9B0.9500
C1B—C6B1.42 (2)C9B—C10B1.35 (2)
C1B—O1B1.307 (19)C10A—H10A0.9500
C2A—H2A0.9500C10A—C11A1.38 (2)
C2A—C3A1.35 (2)C10B—H10B0.9500
C2B—H2B0.9500C10B—C11B1.39 (2)
C2B—C3B1.40 (2)C11A—H11A0.9500
C3A—H3A0.9500C11A—C12A1.36 (2)
C3A—C4A1.36 (2)C11B—H11B0.9500
C3B—H3B0.9500C11B—C12B1.38 (2)
C3B—C4B1.41 (2)C12A—H12A0.9500
C4A—H4A0.9500C12A—C13A1.44 (2)
C4A—C5A1.38 (2)C12B—H12B0.9500
C4B—H4B0.9500C12B—C13B1.38 (2)
C4B—C5B1.38 (2)C13A—O2A1.32 (2)
C5A—H5A0.9500C13B—O2B1.362 (18)
C5A—C6A1.42 (2)C14A—H14A0.9800
C5B—H5B0.9500C14A—H14B0.9800
C5B—C6B1.43 (2)C14A—H14C0.9800
C6A—C7A1.41 (2)C14A—O2A1.44 (2)
C6B—C7B1.44 (2)C14B—H14D0.9800
C7A—H7A0.9500C14B—H14E0.9800
C7A—N1A1.29 (2)C14B—H14F0.9800
C7B—H7B0.9500C14B—O2B1.453 (18)
C7B—N1B1.27 (2)I1—Zn12.558 (3)
C8A—C9A1.40 (2)I2—Zn12.568 (3)
C8A—C13A1.35 (2)N1A—H1A0.8800
C8A—N1A1.43 (2)N1B—H1B0.8800
C8B—C9B1.39 (2)O1A—Zn11.979 (12)
C8B—C13B1.41 (2)O1B—Zn11.988 (11)
C2A—C1A—C6A117.4 (16)C10B—C9B—H9B120.4
O1A—C1A—C2A123.1 (16)C9A—C10A—H10A120.0
O1A—C1A—C6A119.4 (15)C11A—C10A—C9A120.1 (17)
C2B—C1B—C6B118.5 (15)C11A—C10A—H10A120.0
O1B—C1B—C2B121.5 (15)C9B—C10B—H10B119.4
O1B—C1B—C6B120.0 (14)C9B—C10B—C11B121.1 (16)
C1A—C2A—H2A119.2C11B—C10B—H10B119.4
C3A—C2A—C1A121.5 (17)C10A—C11A—H11A118.9
C3A—C2A—H2A119.2C12A—C11A—C10A122.1 (17)
C1B—C2B—H2B120.5C12A—C11A—H11A118.9
C3B—C2B—C1B119.1 (15)C10B—C11B—H11B119.3
C3B—C2B—H2B120.5C12B—C11B—C10B121.5 (16)
C2A—C3A—H3A119.0C12B—C11B—H11B119.3
C2A—C3A—C4A121.9 (17)C11A—C12A—H12A120.8
C4A—C3A—H3A119.0C11A—C12A—C13A118.4 (16)
C2B—C3B—H3B118.8C13A—C12A—H12A120.8
C2B—C3B—C4B122.3 (16)C11B—C12B—H12B121.4
C4B—C3B—H3B118.8C11B—C12B—C13B117.3 (15)
C3A—C4A—H4A119.7C13B—C12B—H12B121.4
C3A—C4A—C5A120.6 (17)C8A—C13A—C12A118.6 (16)
C5A—C4A—H4A119.7O2A—C13A—C8A118.3 (15)
C3B—C4B—H4B120.2O2A—C13A—C12A123.0 (16)
C5B—C4B—C3B119.6 (16)C12B—C13B—C8B121.4 (15)
C5B—C4B—H4B120.2O2B—C13B—C8B113.5 (14)
C4A—C5A—H5A120.5O2B—C13B—C12B125.1 (14)
C4A—C5A—C6A119.0 (16)H14A—C14A—H14B109.5
C6A—C5A—H5A120.5H14A—C14A—H14C109.5
C4B—C5B—H5B120.3H14B—C14A—H14C109.5
C4B—C5B—C6B119.4 (15)O2A—C14A—H14A109.5
C6B—C5B—H5B120.3O2A—C14A—H14B109.5
C5A—C6A—C1A119.5 (15)O2A—C14A—H14C109.5
C7A—C6A—C1A123.0 (16)H14D—C14B—H14E109.5
C7A—C6A—C5A117.5 (16)H14D—C14B—H14F109.5
C1B—C6B—C5B121.1 (15)H14E—C14B—H14F109.5
C1B—C6B—C7B123.0 (15)O2B—C14B—H14D109.5
C5B—C6B—C7B115.9 (15)O2B—C14B—H14E109.5
C6A—C7A—H7A117.6O2B—C14B—H14F109.5
N1A—C7A—C6A124.8 (17)C7A—N1A—C8A124.4 (15)
N1A—C7A—H7A117.6C7A—N1A—H1A117.8
C6B—C7B—H7B117.5C8A—N1A—H1A117.8
N1B—C7B—C6B124.9 (16)C7B—N1B—C8B125.5 (14)
N1B—C7B—H7B117.5C7B—N1B—H1B117.2
C9A—C8A—N1A121.8 (15)C8B—N1B—H1B117.2
C13A—C8A—C9A122.8 (16)C1A—O1A—Zn1124.5 (11)
C13A—C8A—N1A115.1 (15)C1B—O1B—Zn1123.4 (10)
C9B—C8B—C13B119.5 (15)C13A—O2A—C14A118.8 (13)
C9B—C8B—N1B122.4 (14)C13B—O2B—C14B116.2 (12)
C13B—C8B—N1B118.1 (15)I1—Zn1—I2123.65 (7)
C8A—C9A—H9A121.1O1A—Zn1—I1104.0 (4)
C10A—C9A—C8A117.8 (17)O1A—Zn1—I2103.6 (4)
C10A—C9A—H9A121.1O1A—Zn1—O1B115.8 (4)
C8B—C9B—H9B120.4O1B—Zn1—I1106.2 (4)
C10B—C9B—C8B119.2 (16)O1B—Zn1—I2104.2 (3)
C1A—C2A—C3A—C4A0 (3)C9A—C8A—C13A—O2A177.8 (17)
C1A—C6A—C7A—N1A0 (3)C9A—C8A—N1A—C7A3 (3)
C1B—C2B—C3B—C4B1 (2)C9A—C10A—C11A—C12A3 (3)
C1B—C6B—C7B—N1B0 (3)C9B—C8B—C13B—C12B2 (3)
C2A—C1A—C6A—C5A2 (2)C9B—C8B—C13B—O2B178.7 (15)
C2A—C1A—C6A—C7A176.9 (16)C9B—C8B—N1B—C7B7 (3)
C2A—C1A—O1A—Zn111 (2)C9B—C10B—C11B—C12B2 (3)
C2A—C3A—C4A—C5A0 (3)C10A—C11A—C12A—C13A3 (3)
C2B—C1B—C6B—C5B2 (2)C10B—C11B—C12B—C13B2 (3)
C2B—C1B—C6B—C7B177.3 (16)C11A—C12A—C13A—C8A3 (3)
C2B—C1B—O1B—Zn19 (2)C11A—C12A—C13A—O2A178.6 (17)
C2B—C3B—C4B—C5B1 (2)C11B—C12B—C13B—C8B2 (3)
C3A—C4A—C5A—C6A1 (3)C11B—C12B—C13B—O2B178.6 (16)
C3B—C4B—C5B—C6B1 (2)C12A—C13A—O2A—C14A5 (3)
C4A—C5A—C6A—C1A2 (2)C12B—C13B—O2B—C14B9 (2)
C4A—C5A—C6A—C7A177.2 (15)C13A—C8A—C9A—C10A4 (3)
C4B—C5B—C6B—C1B2 (2)C13A—C8A—N1A—C7A171.6 (17)
C4B—C5B—C6B—C7B178.0 (15)C13B—C8B—C9B—C10B2 (3)
C5A—C6A—C7A—N1A178.4 (16)C13B—C8B—N1B—C7B175.7 (16)
C5B—C6B—C7B—N1B179.6 (16)N1A—C8A—C9A—C10A178.3 (16)
C6A—C1A—C2A—C3A1 (3)N1A—C8A—C13A—C12A178.6 (16)
C6A—C1A—O1A—Zn1169.1 (11)N1A—C8A—C13A—O2A3 (2)
C6A—C7A—N1A—C8A177.8 (16)N1B—C8B—C9B—C10B179.3 (16)
C6B—C1B—C2B—C3B2 (2)N1B—C8B—C13B—C12B179.8 (16)
C6B—C1B—O1B—Zn1170.6 (11)N1B—C8B—C13B—O2B1 (2)
C6B—C7B—N1B—C8B178.3 (16)O1A—C1A—C2A—C3A179.1 (16)
C8A—C9A—C10A—C11A4 (3)O1A—C1A—C6A—C5A178.3 (15)
C8A—C13A—O2A—C14A172.8 (17)O1A—C1A—C6A—C7A3 (3)
C8B—C9B—C10B—C11B2 (3)O1B—C1B—C2B—C3B177.9 (15)
C8B—C13B—O2B—C14B171.9 (14)O1B—C1B—C6B—C5B177.7 (15)
C9A—C8A—C13A—C12A4 (3)O1B—C1B—C6B—C7B3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···O1A0.952.543.34 (2)143
N1A—H1A···O1A0.881.992.666 (18)133
N1B—H1B···O1B0.882.012.690 (16)133
Dibromidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)cadmium(II) (Compound_3) top
Crystal data top
[CdBr2(C28H26N2O4)]Z = 2
Mr = 726.73F(000) = 716
Triclinic, P1Dx = 1.789 Mg m3
a = 9.2772 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0935 (3) ÅCell parameters from 9888 reflections
c = 16.1021 (5) Åθ = 4.4–53.3°
α = 97.699 (2)°µ = 3.81 mm1
β = 100.586 (2)°T = 100 K
γ = 111.149 (2)°Fragment, orange
V = 1348.92 (8) Å30.27 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII area detector
diffractometer
10130 independent reflections
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C8342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 7.9 pixels mm-1θmax = 26.8°, θmin = 2.2°
ω and φ scansh = 1111
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 1212
Tmin = 0.538, Tmax = 0.745l = 2020
10130 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.1296P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
10130 reflectionsΔρmax = 1.04 e Å3
337 parametersΔρmin = 0.70 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved as a rotational twin. Rotated from first domain by 179.7 degrees about reciprocal axis -0.003 -0.997 1.000 and real axis 0.311 1.000 -0.257. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix) -1.001 0.001 -0.004, 0.498 0.590 -0.407, -0.487 -1.593 -0.589.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.29206 (5)0.39716 (4)0.71100 (3)0.01298 (12)
Br20.59152 (7)0.53416 (7)0.73453 (4)0.02186 (16)
Br10.06225 (7)0.45851 (6)0.64168 (4)0.01971 (15)
O1B0.2700 (5)0.3889 (4)0.8457 (2)0.0146 (8)
O1A0.2436 (5)0.1800 (4)0.6336 (3)0.0147 (8)
O2A0.5041 (5)0.2829 (4)0.4950 (3)0.0171 (8)
O2B0.1460 (5)0.6818 (4)0.8836 (3)0.0218 (9)
N1A0.2869 (5)0.0342 (5)0.4984 (3)0.0124 (9)
H1A0.31680.11690.53590.015*
N1B0.2287 (5)0.5245 (5)0.9842 (3)0.0133 (9)
H1B0.22070.51200.92810.016*
C13A0.4882 (6)0.1700 (6)0.4328 (3)0.0141 (11)
C13B0.1329 (7)0.7125 (6)0.9656 (4)0.0183 (12)
C6A0.0867 (6)0.0710 (6)0.5738 (3)0.0139 (11)
C7B0.2879 (7)0.4445 (6)1.0253 (4)0.0156 (11)
H7B0.29770.45691.08590.019*
C1B0.3292 (7)0.3179 (6)0.8939 (3)0.0131 (11)
C7A0.1681 (6)0.0769 (6)0.5082 (3)0.0133 (11)
H7A0.13440.16730.46870.016*
C3A0.0890 (7)0.0731 (6)0.6974 (4)0.0172 (12)
H3A0.14920.07390.73930.021*
C6B0.3379 (6)0.3411 (6)0.9855 (3)0.0144 (11)
C5A0.0396 (7)0.2009 (6)0.5771 (4)0.0152 (11)
H5A0.06440.28820.53630.018*
C4B0.4565 (7)0.1660 (6)1.0034 (4)0.0195 (12)
H4B0.49800.11381.03910.023*
C8B0.1770 (7)0.6279 (6)1.0205 (4)0.0164 (11)
C9B0.1653 (7)0.6496 (6)1.1060 (4)0.0182 (12)
H9B0.19290.59191.14290.022*
C8A0.3719 (6)0.0354 (6)0.4343 (3)0.0146 (11)
C2A0.0323 (7)0.0545 (6)0.6965 (4)0.0156 (11)
H2A0.05430.14030.73780.019*
C4A0.1254 (7)0.2027 (6)0.6372 (4)0.0172 (12)
H4A0.20910.29040.63860.021*
C12B0.0820 (8)0.8187 (6)0.9980 (4)0.0224 (13)
H12B0.05370.87710.96190.027*
C11A0.5502 (7)0.0530 (7)0.3122 (4)0.0208 (13)
H11A0.60870.05860.26930.025*
C10A0.4388 (7)0.0804 (6)0.3155 (4)0.0193 (12)
H10A0.42410.16580.27600.023*
C9A0.3486 (7)0.0901 (6)0.3759 (4)0.0165 (11)
H9A0.27140.18170.37760.020*
C5B0.4009 (7)0.2633 (6)1.0369 (4)0.0178 (12)
H5B0.40470.27921.09690.021*
C2B0.3900 (6)0.2169 (6)0.8608 (4)0.0146 (11)
H2B0.38840.19930.80110.017*
C11B0.0733 (8)0.8379 (7)1.0833 (4)0.0256 (14)
H11B0.03850.91021.10520.031*
C12A0.5773 (7)0.1788 (6)0.3712 (3)0.0173 (12)
H12A0.65560.26960.36950.021*
C1A0.1259 (6)0.0609 (5)0.6349 (3)0.0123 (10)
C14B0.0889 (8)0.7543 (7)0.8220 (4)0.0242 (13)
H14A0.10000.71870.76480.036*
H14B0.15160.85950.84040.036*
H14C0.02380.73390.81890.036*
C3B0.4512 (7)0.1445 (6)0.9144 (4)0.0183 (12)
H3B0.49120.07770.89060.022*
C14A0.6346 (7)0.4188 (6)0.5035 (4)0.0210 (12)
H14D0.61400.46010.45310.032*
H14E0.73340.40260.50710.032*
H14F0.64560.48650.55630.032*
C10B0.1136 (7)0.7551 (7)1.1377 (4)0.0218 (13)
H10B0.10610.76991.19600.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0152 (2)0.0125 (2)0.0107 (2)0.00478 (16)0.00380 (14)0.00165 (14)
Br20.0161 (3)0.0281 (3)0.0152 (3)0.0012 (3)0.0051 (2)0.0049 (2)
Br10.0196 (3)0.0194 (3)0.0196 (3)0.0099 (2)0.0008 (2)0.0017 (2)
O1B0.019 (2)0.0186 (19)0.0107 (19)0.0105 (17)0.0059 (16)0.0051 (15)
O1A0.015 (2)0.0108 (18)0.018 (2)0.0044 (16)0.0058 (16)0.0015 (15)
O2A0.016 (2)0.0156 (19)0.016 (2)0.0007 (16)0.0073 (17)0.0018 (16)
O2B0.030 (2)0.025 (2)0.016 (2)0.0160 (19)0.0051 (18)0.0050 (17)
N1A0.014 (2)0.014 (2)0.010 (2)0.0072 (19)0.0032 (19)0.0014 (18)
N1B0.014 (2)0.017 (2)0.010 (2)0.0059 (19)0.0056 (18)0.0033 (18)
C13A0.012 (3)0.017 (3)0.011 (3)0.007 (2)0.001 (2)0.001 (2)
C13B0.017 (3)0.021 (3)0.014 (3)0.007 (2)0.002 (2)0.001 (2)
C6A0.015 (3)0.014 (3)0.013 (3)0.007 (2)0.002 (2)0.002 (2)
C7B0.015 (3)0.018 (3)0.013 (3)0.004 (2)0.007 (2)0.003 (2)
C1B0.014 (3)0.012 (2)0.013 (3)0.003 (2)0.006 (2)0.004 (2)
C7A0.012 (3)0.014 (3)0.014 (3)0.006 (2)0.000 (2)0.002 (2)
C3A0.016 (3)0.021 (3)0.017 (3)0.008 (2)0.010 (2)0.005 (2)
C6B0.010 (3)0.016 (3)0.015 (3)0.004 (2)0.002 (2)0.002 (2)
C5A0.014 (3)0.011 (3)0.018 (3)0.004 (2)0.001 (2)0.003 (2)
C4B0.024 (3)0.014 (3)0.021 (3)0.008 (2)0.006 (3)0.005 (2)
C8B0.013 (3)0.018 (3)0.020 (3)0.009 (2)0.006 (2)0.002 (2)
C9B0.014 (3)0.025 (3)0.016 (3)0.010 (2)0.002 (2)0.000 (2)
C8A0.013 (3)0.022 (3)0.011 (3)0.009 (2)0.004 (2)0.003 (2)
C2A0.019 (3)0.016 (3)0.014 (3)0.008 (2)0.008 (2)0.002 (2)
C4A0.014 (3)0.012 (3)0.021 (3)0.000 (2)0.005 (2)0.003 (2)
C12B0.024 (3)0.019 (3)0.025 (3)0.010 (3)0.006 (3)0.002 (3)
C11A0.017 (3)0.030 (3)0.016 (3)0.011 (3)0.005 (2)0.002 (3)
C10A0.020 (3)0.025 (3)0.014 (3)0.013 (3)0.002 (2)0.002 (2)
C9A0.016 (3)0.018 (3)0.017 (3)0.007 (2)0.006 (2)0.001 (2)
C5B0.022 (3)0.018 (3)0.012 (3)0.006 (2)0.004 (2)0.004 (2)
C2B0.013 (3)0.018 (3)0.012 (3)0.006 (2)0.004 (2)0.000 (2)
C11B0.024 (3)0.023 (3)0.033 (4)0.017 (3)0.007 (3)0.002 (3)
C12A0.017 (3)0.020 (3)0.014 (3)0.005 (2)0.006 (2)0.007 (2)
C1A0.014 (3)0.012 (2)0.013 (3)0.008 (2)0.004 (2)0.002 (2)
C14B0.035 (4)0.024 (3)0.022 (3)0.020 (3)0.006 (3)0.010 (3)
C3B0.016 (3)0.015 (3)0.026 (3)0.007 (2)0.006 (3)0.005 (2)
C14A0.024 (3)0.015 (3)0.020 (3)0.002 (2)0.008 (3)0.003 (2)
C10B0.017 (3)0.029 (3)0.017 (3)0.011 (3)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
Cd1—Br22.5445 (7)C5A—C4A1.361 (7)
Cd1—Br12.5374 (7)C4B—H4B0.9500
Cd1—O1B2.225 (4)C4B—C5B1.360 (8)
Cd1—O1A2.216 (4)C4B—C3B1.410 (8)
O1B—C1B1.302 (6)C8B—C9B1.394 (8)
O1A—C1A1.306 (6)C9B—H9B0.9500
O2A—C13A1.358 (6)C9B—C10B1.392 (8)
O2A—C14A1.434 (6)C8A—C9A1.394 (8)
O2B—C13B1.354 (7)C2A—H2A0.9500
O2B—C14B1.441 (6)C2A—C1A1.426 (7)
N1A—H1A0.8800C4A—H4A0.9500
N1A—C7A1.310 (7)C12B—H12B0.9500
N1A—C8A1.409 (7)C12B—C11B1.383 (9)
N1B—H1B0.8800C11A—H11A0.9500
N1B—C7B1.312 (7)C11A—C10A1.385 (8)
N1B—C8B1.400 (7)C11A—C12A1.391 (8)
C13A—C8A1.403 (8)C10A—H10A0.9500
C13A—C12A1.397 (7)C10A—C9A1.387 (8)
C13B—C8B1.414 (8)C9A—H9A0.9500
C13B—C12B1.397 (8)C5B—H5B0.9500
C6A—C7A1.414 (7)C2B—H2B0.9500
C6A—C5A1.423 (7)C2B—C3B1.374 (8)
C6A—C1A1.429 (7)C11B—H11B0.9500
C7B—H7B0.9500C11B—C10B1.381 (9)
C7B—C6B1.413 (7)C12A—H12A0.9500
C1B—C6B1.444 (7)C14B—H14A0.9800
C1B—C2B1.422 (7)C14B—H14B0.9800
C7A—H7A0.9500C14B—H14C0.9800
C3A—H3A0.9500C3B—H3B0.9500
C3A—C2A1.375 (8)C14A—H14D0.9800
C3A—C4A1.409 (8)C14A—H14E0.9800
C6B—C5B1.404 (8)C14A—H14F0.9800
C5A—H5A0.9500C10B—H10B0.9500
Br1—Cd1—Br2130.04 (2)C9A—C8A—N1A122.9 (5)
O1B—Cd1—Br2101.88 (11)C9A—C8A—C13A120.1 (5)
O1B—Cd1—Br1104.78 (10)C3A—C2A—H2A119.2
O1A—Cd1—Br2103.56 (10)C3A—C2A—C1A121.5 (5)
O1A—Cd1—Br1104.40 (10)C1A—C2A—H2A119.2
O1A—Cd1—O1B111.99 (12)C3A—C4A—H4A120.3
C1B—O1B—Cd1124.1 (3)C5A—C4A—C3A119.3 (5)
C1A—O1A—Cd1123.5 (3)C5A—C4A—H4A120.3
C13A—O2A—C14A116.8 (4)C13B—C12B—H12B120.4
C13B—O2B—C14B117.8 (4)C11B—C12B—C13B119.2 (6)
C7A—N1A—H1A116.5C11B—C12B—H12B120.4
C7A—N1A—C8A127.0 (5)C10A—C11A—H11A119.6
C8A—N1A—H1A116.5C10A—C11A—C12A120.8 (5)
C7B—N1B—H1B116.7C12A—C11A—H11A119.6
C7B—N1B—C8B126.6 (5)C11A—C10A—H10A119.8
C8B—N1B—H1B116.7C11A—C10A—C9A120.5 (5)
O2A—C13A—C8A114.6 (5)C9A—C10A—H10A119.8
O2A—C13A—C12A125.5 (5)C8A—C9A—H9A120.3
C12A—C13A—C8A119.9 (5)C10A—C9A—C8A119.5 (5)
O2B—C13B—C8B114.9 (5)C10A—C9A—H9A120.3
O2B—C13B—C12B125.3 (5)C6B—C5B—H5B119.0
C12B—C13B—C8B119.8 (5)C4B—C5B—C6B122.0 (5)
C7A—C6A—C5A118.1 (5)C4B—C5B—H5B119.0
C7A—C6A—C1A121.9 (5)C1B—C2B—H2B119.7
C5A—C6A—C1A119.9 (5)C3B—C2B—C1B120.5 (5)
N1B—C7B—H7B117.8C3B—C2B—H2B119.7
N1B—C7B—C6B124.4 (5)C12B—C11B—H11B119.0
C6B—C7B—H7B117.8C10B—C11B—C12B122.0 (6)
O1B—C1B—C6B120.5 (5)C10B—C11B—H11B119.0
O1B—C1B—C2B122.7 (5)C13A—C12A—H12A120.4
C2B—C1B—C6B116.8 (5)C11A—C12A—C13A119.2 (5)
N1A—C7A—C6A124.3 (5)C11A—C12A—H12A120.4
N1A—C7A—H7A117.8O1A—C1A—C6A120.4 (5)
C6A—C7A—H7A117.8O1A—C1A—C2A122.8 (5)
C2A—C3A—H3A119.5C2A—C1A—C6A116.8 (5)
C2A—C3A—C4A121.0 (5)O2B—C14B—H14A109.5
C4A—C3A—H3A119.5O2B—C14B—H14B109.5
C7B—C6B—C1B121.0 (5)O2B—C14B—H14C109.5
C5B—C6B—C7B118.9 (5)H14A—C14B—H14B109.5
C5B—C6B—C1B120.1 (5)H14A—C14B—H14C109.5
C6A—C5A—H5A119.3H14B—C14B—H14C109.5
C4A—C5A—C6A121.4 (5)C4B—C3B—H3B118.9
C4A—C5A—H5A119.3C2B—C3B—C4B122.2 (5)
C5B—C4B—H4B120.8C2B—C3B—H3B118.9
C5B—C4B—C3B118.4 (5)O2A—C14A—H14D109.5
C3B—C4B—H4B120.8O2A—C14A—H14E109.5
N1B—C8B—C13B116.8 (5)O2A—C14A—H14F109.5
C9B—C8B—N1B123.8 (5)H14D—C14A—H14E109.5
C9B—C8B—C13B119.3 (5)H14D—C14A—H14F109.5
C8B—C9B—H9B119.7H14E—C14A—H14F109.5
C10B—C9B—C8B120.6 (5)C9B—C10B—H10B120.4
C10B—C9B—H9B119.7C11B—C10B—C9B119.1 (6)
C13A—C8A—N1A116.9 (5)C11B—C10B—H10B120.4
Cd1—O1B—C1B—C6B167.5 (4)C3A—C2A—C1A—O1A178.7 (5)
Cd1—O1B—C1B—C2B11.5 (7)C3A—C2A—C1A—C6A0.6 (8)
Cd1—O1A—C1A—C6A170.3 (4)C6B—C1B—C2B—C3B1.0 (8)
Cd1—O1A—C1A—C2A10.4 (7)C5A—C6A—C7A—N1A179.5 (5)
O1B—C1B—C6B—C7B2.2 (8)C5A—C6A—C1A—O1A178.6 (5)
O1B—C1B—C6B—C5B179.5 (5)C5A—C6A—C1A—C2A0.7 (8)
O1B—C1B—C2B—C3B179.9 (5)C8B—N1B—C7B—C6B179.8 (5)
O2A—C13A—C8A—N1A0.4 (7)C8B—C13B—C12B—C11B1.0 (9)
O2A—C13A—C8A—C9A177.4 (5)C8B—C9B—C10B—C11B0.2 (9)
O2A—C13A—C12A—C11A178.7 (5)C8A—N1A—C7A—C6A179.6 (5)
O2B—C13B—C8B—N1B0.2 (7)C8A—C13A—C12A—C11A0.5 (8)
O2B—C13B—C8B—C9B179.0 (5)C2A—C3A—C4A—C5A0.4 (9)
O2B—C13B—C12B—C11B179.6 (6)C4A—C3A—C2A—C1A0.0 (9)
N1A—C8A—C9A—C10A179.0 (5)C12B—C13B—C8B—N1B179.3 (5)
N1B—C7B—C6B—C1B1.1 (9)C12B—C13B—C8B—C9B1.5 (8)
N1B—C7B—C6B—C5B179.3 (5)C12B—C11B—C10B—C9B0.3 (9)
N1B—C8B—C9B—C10B179.7 (5)C11A—C10A—C9A—C8A0.7 (9)
C13A—C8A—C9A—C10A1.3 (8)C10A—C11A—C12A—C13A1.4 (9)
C13B—C8B—C9B—C10B1.1 (9)C5B—C4B—C3B—C2B0.9 (9)
C13B—C12B—C11B—C10B0.0 (10)C2B—C1B—C6B—C7B176.9 (5)
C6A—C5A—C4A—C3A0.2 (8)C2B—C1B—C6B—C5B1.4 (8)
C7B—N1B—C8B—C13B173.6 (5)C12A—C13A—C8A—N1A179.7 (5)
C7B—N1B—C8B—C9B7.2 (9)C12A—C13A—C8A—C9A1.9 (8)
C7B—C6B—C5B—C4B177.6 (5)C12A—C11A—C10A—C9A2.1 (9)
C1B—C6B—C5B—C4B0.6 (9)C1A—C6A—C7A—N1A1.7 (8)
C1B—C2B—C3B—C4B0.1 (9)C1A—C6A—C5A—C4A0.3 (8)
C7A—N1A—C8A—C13A175.8 (5)C14B—O2B—C13B—C8B174.3 (5)
C7A—N1A—C8A—C9A6.4 (9)C14B—O2B—C13B—C12B6.2 (8)
C7A—C6A—C5A—C4A178.6 (5)C3B—C4B—C5B—C6B0.5 (9)
C7A—C6A—C1A—O1A2.5 (8)C14A—O2A—C13A—C8A172.3 (5)
C7A—C6A—C1A—C2A178.1 (5)C14A—O2A—C13A—C12A7.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1A0.881.942.638 (5)135
N1B—H1B···O1B0.881.932.621 (5)135
Diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]\ methyl}phenolato-κO)cadmium(II) (Compound_4) top
Crystal data top
[CdI2(C28H26N2O4)]Z = 2
Mr = 820.71F(000) = 788
Triclinic, P1Dx = 1.942 Mg m3
a = 9.3200 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0498 (3) ÅCell parameters from 9951 reflections
c = 16.6239 (5) Åθ = 2.3–35.6°
α = 99.140 (1)°µ = 3.01 mm1
β = 100.528 (1)°T = 100 K
γ = 109.332 (1)°Block, yellow
V = 1403.58 (8) Å30.40 × 0.26 × 0.14 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
13807 independent reflections
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C10917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 7.9 pixels mm-1θmax = 36.6°, θmin = 2.2°
ω and φ scansh = 1515
Absorption correction: numerical
(SADABS; Bruker, 2016)
k = 1616
Tmin = 0.416, Tmax = 0.667l = 2727
110757 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0166P)2 + 3.1202P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
13807 reflectionsΔρmax = 1.04 e Å3
336 parametersΔρmin = 1.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.61219 (2)0.54498 (2)0.73702 (2)0.02004 (3)
I20.05336 (2)0.47473 (2)0.64793 (2)0.01951 (3)
Cd10.29815 (2)0.40341 (2)0.71415 (2)0.01333 (3)
O1A0.25028 (19)0.18582 (17)0.63597 (10)0.0163 (3)
O1B0.27608 (19)0.39367 (18)0.84469 (9)0.0159 (3)
O2A0.5029 (2)0.28450 (17)0.49378 (10)0.0180 (3)
O2B0.1482 (2)0.6984 (2)0.89037 (11)0.0228 (3)
N1A0.2908 (2)0.03889 (19)0.49969 (11)0.0131 (3)
H1A0.32100.12190.53690.016*
N1B0.2263 (2)0.5284 (2)0.98053 (12)0.0165 (3)
H1B0.21930.51750.92620.020*
C1B0.3350 (2)0.3223 (2)0.89094 (13)0.0137 (3)
C6B0.3388 (3)0.3444 (2)0.97888 (13)0.0142 (3)
C3A0.0776 (3)0.0639 (2)0.69293 (13)0.0167 (4)
H3A0.13770.06390.73340.020*
C1A0.1349 (2)0.0682 (2)0.63543 (12)0.0130 (3)
C2A0.0430 (3)0.0625 (2)0.69497 (13)0.0156 (4)
H2A0.06490.14740.73710.019*
C7B0.2850 (3)0.4472 (2)1.01879 (13)0.0159 (4)
H7B0.29220.45781.07740.019*
C2B0.3980 (3)0.2205 (2)0.85860 (13)0.0162 (4)
H2B0.39780.20280.80070.019*
C6A0.0955 (2)0.0632 (2)0.57291 (12)0.0129 (3)
C13A0.4846 (3)0.1676 (2)0.43338 (13)0.0146 (3)
C12A0.5678 (3)0.1712 (3)0.37140 (14)0.0181 (4)
H12A0.64280.26040.36870.022*
C4B0.4605 (3)0.1683 (3)0.99513 (15)0.0194 (4)
H4B0.50160.11551.02930.023*
C8A0.3722 (2)0.0350 (2)0.43590 (13)0.0140 (3)
C4A0.1135 (3)0.1924 (2)0.63230 (14)0.0181 (4)
H4A0.19550.27900.63240.022*
C8B0.1726 (3)0.6332 (2)1.01955 (14)0.0174 (4)
C11A0.5404 (3)0.0439 (3)0.31378 (14)0.0195 (4)
H11A0.59670.04670.27150.023*
C9B0.1589 (3)0.6470 (3)1.10236 (14)0.0196 (4)
H9B0.18490.58501.13510.024*
C5B0.4016 (3)0.2664 (3)1.02921 (14)0.0186 (4)
H5B0.40310.28181.08730.022*
C13B0.1315 (3)0.7227 (3)0.97039 (14)0.0195 (4)
C10A0.4318 (3)0.0876 (3)0.31701 (14)0.0198 (4)
H10A0.41540.17410.27760.024*
C9A0.3468 (3)0.0925 (2)0.37816 (13)0.0166 (4)
H9A0.27220.18220.38040.020*
C5A0.0285 (3)0.1913 (2)0.57292 (13)0.0165 (4)
H5A0.05320.27760.53130.020*
C7A0.1750 (2)0.0698 (2)0.50829 (13)0.0145 (3)
H7A0.14160.15980.46840.017*
C14A0.6310 (3)0.4168 (3)0.49940 (15)0.0205 (4)
H14A0.61130.45130.44810.031*
H14B0.72900.39870.50560.031*
H14C0.63990.49060.54830.031*
C3B0.4596 (3)0.1470 (2)0.90986 (14)0.0180 (4)
H3B0.50220.08050.88670.022*
C10B0.1064 (3)0.7531 (3)1.13657 (16)0.0249 (5)
H10B0.09780.76431.19310.030*
C12B0.0790 (3)0.8278 (3)1.00523 (17)0.0250 (5)
H12B0.05170.88930.97260.030*
C14B0.1026 (4)0.7842 (3)0.83660 (17)0.0271 (5)
H14D0.12360.75870.78170.041*
H14E0.16300.88740.86240.041*
H14F0.00980.76490.82910.041*
C11B0.0670 (3)0.8420 (3)1.08820 (17)0.0272 (5)
H11B0.03130.91371.11190.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01512 (6)0.02635 (7)0.01340 (6)0.00091 (5)0.00337 (5)0.00530 (5)
I20.01838 (7)0.01849 (6)0.01998 (6)0.00879 (5)0.00003 (5)0.00123 (5)
Cd10.01452 (6)0.01302 (6)0.01137 (6)0.00434 (5)0.00314 (5)0.00176 (4)
O1A0.0159 (7)0.0135 (6)0.0174 (7)0.0031 (5)0.0065 (5)0.0002 (5)
O1B0.0183 (7)0.0204 (7)0.0127 (6)0.0104 (6)0.0054 (5)0.0049 (5)
O2A0.0198 (7)0.0154 (7)0.0171 (7)0.0040 (6)0.0080 (6)0.0010 (5)
O2B0.0323 (10)0.0245 (8)0.0160 (7)0.0171 (8)0.0047 (7)0.0040 (6)
N1A0.0129 (7)0.0136 (7)0.0133 (7)0.0058 (6)0.0045 (6)0.0012 (6)
N1B0.0166 (8)0.0190 (8)0.0156 (7)0.0091 (7)0.0049 (6)0.0023 (6)
C1B0.0132 (8)0.0145 (8)0.0130 (8)0.0044 (7)0.0043 (6)0.0030 (6)
C6B0.0161 (9)0.0159 (8)0.0117 (8)0.0070 (7)0.0046 (7)0.0027 (6)
C3A0.0154 (9)0.0200 (9)0.0154 (8)0.0060 (8)0.0064 (7)0.0050 (7)
C1A0.0119 (8)0.0138 (8)0.0128 (8)0.0047 (7)0.0027 (6)0.0026 (6)
C2A0.0154 (9)0.0178 (9)0.0145 (8)0.0070 (7)0.0057 (7)0.0027 (7)
C7B0.0174 (9)0.0173 (9)0.0138 (8)0.0077 (7)0.0046 (7)0.0019 (7)
C2B0.0176 (9)0.0178 (9)0.0130 (8)0.0074 (7)0.0044 (7)0.0009 (7)
C6A0.0124 (8)0.0127 (8)0.0131 (8)0.0046 (6)0.0030 (6)0.0022 (6)
C13A0.0151 (9)0.0160 (9)0.0128 (8)0.0063 (7)0.0033 (7)0.0028 (7)
C12A0.0188 (10)0.0213 (10)0.0166 (9)0.0081 (8)0.0075 (7)0.0057 (7)
C4B0.0254 (11)0.0167 (9)0.0185 (9)0.0102 (8)0.0059 (8)0.0048 (7)
C8A0.0131 (8)0.0173 (9)0.0119 (8)0.0065 (7)0.0036 (6)0.0022 (6)
C4A0.0181 (10)0.0162 (9)0.0186 (9)0.0031 (8)0.0061 (7)0.0054 (7)
C8B0.0155 (9)0.0190 (9)0.0173 (9)0.0074 (8)0.0042 (7)0.0009 (7)
C11A0.0192 (10)0.0253 (11)0.0157 (9)0.0092 (9)0.0072 (8)0.0036 (8)
C9B0.0164 (9)0.0274 (11)0.0152 (9)0.0108 (8)0.0039 (7)0.0006 (8)
C5B0.0251 (11)0.0189 (10)0.0126 (8)0.0102 (8)0.0035 (7)0.0032 (7)
C13B0.0212 (10)0.0206 (10)0.0164 (9)0.0094 (8)0.0037 (8)0.0008 (7)
C10A0.0203 (10)0.0234 (10)0.0160 (9)0.0094 (8)0.0063 (8)0.0001 (8)
C9A0.0148 (9)0.0174 (9)0.0163 (9)0.0061 (7)0.0041 (7)0.0003 (7)
C5A0.0182 (9)0.0139 (8)0.0155 (8)0.0041 (7)0.0046 (7)0.0020 (7)
C7A0.0147 (8)0.0147 (8)0.0134 (8)0.0057 (7)0.0030 (7)0.0017 (6)
C14A0.0188 (10)0.0172 (9)0.0190 (9)0.0003 (8)0.0057 (8)0.0004 (7)
C3B0.0201 (10)0.0153 (9)0.0190 (9)0.0093 (8)0.0039 (8)0.0008 (7)
C10B0.0219 (11)0.0342 (13)0.0184 (10)0.0142 (10)0.0050 (8)0.0025 (9)
C12B0.0284 (12)0.0239 (11)0.0252 (11)0.0160 (10)0.0053 (9)0.0003 (9)
C14B0.0340 (14)0.0258 (12)0.0226 (11)0.0139 (11)0.0030 (10)0.0071 (9)
C11B0.0278 (12)0.0309 (13)0.0236 (11)0.0174 (11)0.0040 (9)0.0028 (9)
Geometric parameters (Å, º) top
I1—Cd12.7202 (2)C12A—H12A0.9500
I2—Cd12.7104 (2)C12A—C11A1.387 (3)
Cd1—O1A2.2157 (15)C4B—H4B0.9500
Cd1—O1B2.2312 (15)C4B—C5B1.374 (3)
O1A—C1A1.306 (3)C4B—C3B1.397 (3)
O1B—C1B1.299 (3)C8A—C9A1.395 (3)
O2A—C13A1.359 (3)C4A—H4A0.9500
O2A—C14A1.439 (3)C4A—C5A1.373 (3)
O2B—C13B1.361 (3)C8B—C9B1.395 (3)
O2B—C14B1.440 (3)C8B—C13B1.404 (3)
N1A—H1A0.8800C11A—H11A0.9500
N1A—C8A1.415 (3)C11A—C10A1.389 (3)
N1A—C7A1.306 (3)C9B—H9B0.9500
N1B—H1B0.8800C9B—C10B1.398 (3)
N1B—C7B1.305 (3)C5B—H5B0.9500
N1B—C8B1.426 (3)C13B—C12B1.393 (3)
C1B—C6B1.435 (3)C10A—H10A0.9500
C1B—C2B1.421 (3)C10A—C9A1.395 (3)
C6B—C7B1.416 (3)C9A—H9A0.9500
C6B—C5B1.411 (3)C5A—H5A0.9500
C3A—H3A0.9500C7A—H7A0.9500
C3A—C2A1.380 (3)C14A—H14A0.9800
C3A—C4A1.405 (3)C14A—H14B0.9800
C1A—C2A1.418 (3)C14A—H14C0.9800
C1A—C6A1.436 (3)C3B—H3B0.9500
C2A—H2A0.9500C10B—H10B0.9500
C7B—H7B0.9500C10B—C11B1.385 (4)
C2B—H2B0.9500C12B—H12B0.9500
C2B—C3B1.379 (3)C12B—C11B1.393 (4)
C6A—C5A1.418 (3)C14B—H14D0.9800
C6A—C7A1.417 (3)C14B—H14E0.9800
C13A—C12A1.396 (3)C14B—H14F0.9800
C13A—C8A1.409 (3)C11B—H11B0.9500
I2—Cd1—I1130.043 (8)C5A—C4A—C3A119.2 (2)
O1A—Cd1—I1103.73 (4)C5A—C4A—H4A120.4
O1A—Cd1—I2104.76 (4)C9B—C8B—N1B122.4 (2)
O1A—Cd1—O1B111.56 (6)C9B—C8B—C13B120.6 (2)
O1B—Cd1—I1102.91 (4)C13B—C8B—N1B116.9 (2)
O1B—Cd1—I2103.54 (4)C12A—C11A—H11A119.5
C1A—O1A—Cd1124.04 (13)C12A—C11A—C10A121.0 (2)
C1B—O1B—Cd1125.04 (13)C10A—C11A—H11A119.5
C13A—O2A—C14A116.36 (17)C8B—C9B—H9B120.4
C13B—O2B—C14B117.4 (2)C8B—C9B—C10B119.2 (2)
C8A—N1A—H1A117.1C10B—C9B—H9B120.4
C7A—N1A—H1A117.1C6B—C5B—H5B119.6
C7A—N1A—C8A125.77 (18)C4B—C5B—C6B120.7 (2)
C7B—N1B—H1B117.3C4B—C5B—H5B119.6
C7B—N1B—C8B125.34 (19)O2B—C13B—C8B115.4 (2)
C8B—N1B—H1B117.3O2B—C13B—C12B125.1 (2)
O1B—C1B—C6B120.25 (19)C12B—C13B—C8B119.6 (2)
O1B—C1B—C2B122.92 (19)C11A—C10A—H10A120.0
C2B—C1B—C6B116.83 (19)C11A—C10A—C9A120.0 (2)
C7B—C6B—C1B121.86 (19)C9A—C10A—H10A120.0
C5B—C6B—C1B120.45 (19)C8A—C9A—C10A119.6 (2)
C5B—C6B—C7B117.66 (19)C8A—C9A—H9A120.2
C2A—C3A—H3A119.3C10A—C9A—H9A120.2
C2A—C3A—C4A121.4 (2)C6A—C5A—H5A119.6
C4A—C3A—H3A119.3C4A—C5A—C6A120.9 (2)
O1A—C1A—C2A122.80 (19)C4A—C5A—H5A119.6
O1A—C1A—C6A120.39 (18)N1A—C7A—C6A124.70 (19)
C2A—C1A—C6A116.81 (19)N1A—C7A—H7A117.7
C3A—C2A—C1A121.3 (2)C6A—C7A—H7A117.7
C3A—C2A—H2A119.3O2A—C14A—H14A109.5
C1A—C2A—H2A119.3O2A—C14A—H14B109.5
N1B—C7B—C6B124.4 (2)O2A—C14A—H14C109.5
N1B—C7B—H7B117.8H14A—C14A—H14B109.5
C6B—C7B—H7B117.8H14A—C14A—H14C109.5
C1B—C2B—H2B119.5H14B—C14A—H14C109.5
C3B—C2B—C1B121.10 (19)C2B—C3B—C4B121.4 (2)
C3B—C2B—H2B119.5C2B—C3B—H3B119.3
C5A—C6A—C1A120.41 (18)C4B—C3B—H3B119.3
C7A—C6A—C1A122.09 (19)C9B—C10B—H10B119.9
C7A—C6A—C5A117.49 (18)C11B—C10B—C9B120.1 (2)
O2A—C13A—C12A125.0 (2)C11B—C10B—H10B119.9
O2A—C13A—C8A115.48 (18)C13B—C12B—H12B120.2
C12A—C13A—C8A119.57 (19)C11B—C12B—C13B119.6 (2)
C13A—C12A—H12A120.2C11B—C12B—H12B120.2
C11A—C12A—C13A119.6 (2)O2B—C14B—H14D109.5
C11A—C12A—H12A120.2O2B—C14B—H14E109.5
C5B—C4B—H4B120.2O2B—C14B—H14F109.5
C5B—C4B—C3B119.5 (2)H14D—C14B—H14E109.5
C3B—C4B—H4B120.2H14D—C14B—H14F109.5
C13A—C8A—N1A116.80 (18)H14E—C14B—H14F109.5
C9A—C8A—N1A122.9 (2)C10B—C11B—C12B120.9 (2)
C9A—C8A—C13A120.26 (19)C10B—C11B—H11B119.6
C3A—C4A—H4A120.4C12B—C11B—H11B119.6
Cd1—O1A—C1A—C2A10.7 (3)C2B—C1B—C6B—C7B177.5 (2)
Cd1—O1A—C1A—C6A169.28 (14)C2B—C1B—C6B—C5B0.5 (3)
Cd1—O1B—C1B—C6B168.58 (15)C6A—C1A—C2A—C3A0.4 (3)
Cd1—O1B—C1B—C2B11.4 (3)C13A—C12A—C11A—C10A0.4 (4)
O1A—C1A—C2A—C3A179.6 (2)C13A—C8A—C9A—C10A1.0 (3)
O1A—C1A—C6A—C5A179.2 (2)C12A—C13A—C8A—N1A179.4 (2)
O1A—C1A—C6A—C7A2.2 (3)C12A—C13A—C8A—C9A1.5 (3)
O1B—C1B—C6B—C7B2.5 (3)C12A—C11A—C10A—C9A0.9 (4)
O1B—C1B—C6B—C5B179.5 (2)C8A—N1A—C7A—C6A179.9 (2)
O1B—C1B—C2B—C3B180.0 (2)C8A—C13A—C12A—C11A0.9 (3)
O2A—C13A—C12A—C11A179.0 (2)C4A—C3A—C2A—C1A0.6 (3)
O2A—C13A—C8A—N1A0.7 (3)C8B—N1B—C7B—C6B179.5 (2)
O2A—C13A—C8A—C9A178.4 (2)C8B—C9B—C10B—C11B0.7 (4)
O2B—C13B—C12B—C11B180.0 (3)C8B—C13B—C12B—C11B0.5 (4)
N1A—C8A—C9A—C10A180.0 (2)C11A—C10A—C9A—C8A0.2 (4)
N1B—C8B—C9B—C10B179.5 (2)C9B—C8B—C13B—O2B179.4 (2)
N1B—C8B—C13B—O2B0.1 (3)C9B—C8B—C13B—C12B1.1 (4)
N1B—C8B—C13B—C12B179.6 (2)C9B—C10B—C11B—C12B0.1 (4)
C1B—C6B—C7B—N1B1.0 (4)C5B—C6B—C7B—N1B179.0 (2)
C1B—C6B—C5B—C4B0.2 (4)C5B—C4B—C3B—C2B1.2 (4)
C1B—C2B—C3B—C4B0.8 (4)C13B—C8B—C9B—C10B1.2 (4)
C6B—C1B—C2B—C3B0.0 (3)C13B—C12B—C11B—C10B0.0 (4)
C3A—C4A—C5A—C6A0.9 (3)C5A—C6A—C7A—N1A179.7 (2)
C1A—C6A—C5A—C4A0.2 (3)C7A—N1A—C8A—C13A174.5 (2)
C1A—C6A—C7A—N1A1.2 (3)C7A—N1A—C8A—C9A6.4 (3)
C2A—C3A—C4A—C5A1.2 (4)C7A—C6A—C5A—C4A178.4 (2)
C2A—C1A—C6A—C5A0.8 (3)C14A—O2A—C13A—C12A7.9 (3)
C2A—C1A—C6A—C7A177.7 (2)C14A—O2A—C13A—C8A172.1 (2)
C7B—N1B—C8B—C9B8.5 (4)C3B—C4B—C5B—C6B0.6 (4)
C7B—N1B—C8B—C13B172.3 (2)C14B—O2B—C13B—C8B178.0 (2)
C7B—C6B—C5B—C4B177.9 (2)C14B—O2B—C13B—C12B2.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1A0.881.982.660 (2)134
N1B—H1B···O1B0.881.962.641 (2)134
C7B—H7B···I1i0.953.063.979 (2)164
Symmetry code: (i) x+1, y+1, z+2.
Dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II) (Compound_5) top
Crystal data top
[HgCl2(C28H26N2O4)]Z = 2
Mr = 726.00F(000) = 708
Triclinic, P1Dx = 1.818 Mg m3
a = 9.2456 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1510 (4) ÅCell parameters from 9113 reflections
c = 15.8499 (6) Åθ = 2.2–28.3°
α = 96.5447 (15)°µ = 6.04 mm1
β = 99.7441 (15)°T = 100 K
γ = 112.6735 (14)°Block, yellow
V = 1326.25 (9) Å30.17 × 0.14 × 0.08 mm
Data collection top
Bruker APEXII area detector
diffractometer
22779 independent reflections
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C21098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 7.9 pixels mm-1θmax = 28.4°, θmin = 2.2°
ω and φ scansh = 1212
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 1313
Tmin = 0.630, Tmax = 0.746l = 2121
22779 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.8324P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
22779 reflectionsΔρmax = 1.29 e Å3
337 parametersΔρmin = 0.60 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved as a rotational twin. Rotated from first domain by 179.9 degrees about reciprocal axis -0.001 1.000 -0.999 and real axis 0.345 1.000 -0.274. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix): -1.000 -0.001 0.001 0.541 0.570 -0.431 -0.543 -1.570 -0.570.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.30358 (2)0.41553 (2)0.70492 (2)0.01398 (4)
Cl20.06386 (10)0.43743 (9)0.64325 (5)0.02133 (17)
Cl10.58885 (10)0.51131 (10)0.73464 (5)0.02286 (18)
O2A0.5129 (3)0.2848 (2)0.49846 (15)0.0175 (5)
O1B0.2698 (3)0.3921 (2)0.84731 (14)0.0150 (4)
O1A0.2471 (3)0.1792 (2)0.63192 (14)0.0147 (4)
O2B0.1477 (3)0.6740 (3)0.87712 (15)0.0214 (5)
N1A0.2871 (3)0.0338 (3)0.49857 (16)0.0123 (5)
H1A0.31720.11530.53640.015*
N1B0.2302 (3)0.5248 (3)0.98489 (17)0.0135 (5)
H1B0.22190.50960.92810.016*
C6A0.0819 (4)0.0724 (3)0.57465 (19)0.0119 (6)
C8A0.3768 (3)0.0384 (3)0.43409 (19)0.0130 (6)
C2A0.0318 (4)0.0563 (3)0.69823 (19)0.0146 (6)
H2A0.05640.14230.73920.018*
C7A0.1641 (4)0.0786 (3)0.50788 (19)0.0126 (6)
H7A0.12870.16830.46810.015*
C9A0.3520 (4)0.0831 (4)0.3737 (2)0.0161 (6)
H9A0.27120.17570.37410.019*
C1A0.1262 (3)0.0614 (3)0.63542 (19)0.0122 (6)
C13A0.4973 (4)0.1755 (3)0.43428 (19)0.0140 (6)
C12A0.5898 (4)0.1900 (4)0.3723 (2)0.0175 (6)
H12A0.67040.28230.37130.021*
C6B0.3353 (4)0.3439 (3)0.98874 (19)0.0128 (6)
C4A0.1357 (4)0.2007 (3)0.6417 (2)0.0158 (6)
H4A0.22260.28750.64480.019*
C5A0.0490 (4)0.2005 (3)0.5798 (2)0.0148 (6)
H5A0.07710.28810.53940.018*
C2B0.3820 (4)0.2177 (3)0.8629 (2)0.0153 (6)
H2B0.37890.19990.80230.018*
C10A0.4462 (4)0.0686 (4)0.3128 (2)0.0195 (7)
H10A0.43080.15160.27190.023*
C7B0.2878 (4)0.4476 (3)1.0288 (2)0.0150 (6)
H7B0.29820.46161.09020.018*
C11A0.5626 (4)0.0670 (4)0.3116 (2)0.0199 (7)
H11A0.62470.07630.26880.024*
C1B0.3269 (3)0.3208 (3)0.89657 (19)0.0126 (6)
C3A0.0941 (4)0.0702 (4)0.7008 (2)0.0150 (6)
H3A0.15480.06990.74350.018*
C8B0.1798 (4)0.6305 (3)1.0193 (2)0.0156 (6)
C9B0.1697 (4)0.6556 (4)1.1058 (2)0.0194 (7)
H9B0.19830.60111.14520.023*
C3B0.4400 (4)0.1430 (4)0.9168 (2)0.0186 (7)
H3B0.47680.07520.89250.022*
C5B0.3953 (4)0.2647 (3)1.0420 (2)0.0174 (6)
H5B0.40050.28101.10290.021*
C13B0.1358 (4)0.7097 (4)0.9603 (2)0.0176 (6)
C4B0.4460 (4)0.1646 (4)1.0069 (2)0.0204 (7)
H4B0.48460.11081.04280.024*
C10B0.1178 (4)0.7604 (4)1.1341 (2)0.0246 (8)
H10B0.11010.77761.19300.029*
C14A0.6461 (4)0.4226 (4)0.5090 (2)0.0246 (8)
H14A0.63250.46460.45700.037*
H14B0.74650.40900.51650.037*
H14C0.65050.48850.56050.037*
C12B0.0854 (4)0.8158 (4)0.9899 (2)0.0228 (7)
H12B0.05680.87100.95100.027*
C11B0.0772 (4)0.8402 (4)1.0765 (3)0.0254 (8)
H11B0.04320.91281.09660.030*
C14B0.0805 (5)0.7343 (4)0.8123 (2)0.0246 (7)
H14D0.08610.69310.75460.037*
H14E0.14140.84030.82450.037*
H14F0.03230.71100.81340.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01692 (6)0.01312 (6)0.01094 (6)0.00545 (5)0.00344 (4)0.00119 (4)
Cl20.0208 (4)0.0204 (4)0.0215 (4)0.0104 (3)0.0002 (3)0.0001 (3)
Cl10.0166 (4)0.0301 (4)0.0151 (4)0.0023 (3)0.0043 (3)0.0045 (3)
O2A0.0194 (12)0.0133 (11)0.0176 (11)0.0030 (9)0.0098 (9)0.0001 (9)
O1B0.0189 (11)0.0184 (11)0.0122 (10)0.0115 (9)0.0051 (8)0.0041 (8)
O1A0.0141 (10)0.0109 (10)0.0167 (11)0.0028 (8)0.0056 (8)0.0009 (8)
O2B0.0288 (13)0.0255 (13)0.0175 (12)0.0180 (11)0.0066 (10)0.0067 (10)
N1A0.0127 (12)0.0130 (12)0.0108 (12)0.0058 (10)0.0030 (9)0.0007 (9)
N1B0.0153 (12)0.0159 (13)0.0112 (12)0.0085 (10)0.0043 (10)0.0006 (10)
C6A0.0123 (14)0.0123 (14)0.0111 (13)0.0053 (11)0.0025 (11)0.0015 (11)
C8A0.0107 (13)0.0192 (15)0.0110 (13)0.0080 (12)0.0034 (11)0.0028 (11)
C2A0.0149 (14)0.0160 (15)0.0126 (14)0.0065 (12)0.0037 (11)0.0004 (11)
C7A0.0140 (14)0.0118 (14)0.0117 (13)0.0062 (11)0.0016 (11)0.0001 (11)
C9A0.0129 (14)0.0191 (15)0.0148 (14)0.0066 (12)0.0021 (11)0.0004 (12)
C1A0.0116 (13)0.0135 (14)0.0121 (13)0.0060 (11)0.0020 (11)0.0025 (11)
C13A0.0142 (14)0.0169 (15)0.0121 (14)0.0083 (12)0.0022 (11)0.0013 (11)
C12A0.0153 (15)0.0217 (16)0.0173 (15)0.0082 (13)0.0061 (12)0.0051 (12)
C6B0.0116 (13)0.0147 (14)0.0131 (14)0.0056 (11)0.0048 (11)0.0038 (11)
C4A0.0138 (14)0.0146 (15)0.0170 (15)0.0034 (12)0.0042 (12)0.0043 (12)
C5A0.0142 (14)0.0118 (14)0.0155 (15)0.0035 (12)0.0021 (12)0.0004 (11)
C2B0.0167 (15)0.0161 (15)0.0131 (14)0.0068 (12)0.0052 (12)0.0008 (11)
C10A0.0192 (16)0.0261 (17)0.0136 (15)0.0118 (14)0.0034 (12)0.0027 (13)
C7B0.0146 (14)0.0182 (15)0.0106 (13)0.0055 (12)0.0032 (11)0.0010 (11)
C11A0.0186 (16)0.0299 (19)0.0145 (15)0.0130 (14)0.0063 (12)0.0029 (13)
C1B0.0110 (13)0.0127 (14)0.0134 (14)0.0041 (11)0.0035 (11)0.0020 (11)
C3A0.0152 (15)0.0194 (16)0.0124 (14)0.0081 (13)0.0046 (12)0.0045 (12)
C8B0.0133 (14)0.0163 (15)0.0172 (15)0.0075 (12)0.0032 (12)0.0011 (12)
C9B0.0155 (15)0.0248 (17)0.0165 (15)0.0098 (13)0.0018 (12)0.0033 (13)
C3B0.0209 (16)0.0155 (15)0.0212 (17)0.0100 (13)0.0051 (13)0.0016 (13)
C5B0.0194 (16)0.0177 (15)0.0138 (15)0.0061 (13)0.0036 (12)0.0043 (12)
C13B0.0144 (15)0.0178 (16)0.0204 (16)0.0070 (13)0.0045 (12)0.0012 (12)
C4B0.0248 (17)0.0180 (16)0.0218 (16)0.0120 (14)0.0037 (13)0.0085 (13)
C10B0.0193 (17)0.0309 (19)0.0206 (17)0.0121 (15)0.0022 (13)0.0087 (14)
C14A0.0262 (18)0.0151 (16)0.0260 (18)0.0002 (14)0.0126 (15)0.0010 (13)
C12B0.0191 (17)0.0186 (17)0.0302 (19)0.0097 (14)0.0031 (14)0.0003 (14)
C11B0.0204 (17)0.0234 (18)0.0296 (19)0.0108 (15)0.0028 (14)0.0073 (15)
C14B0.0303 (19)0.0247 (18)0.0235 (18)0.0152 (15)0.0054 (14)0.0105 (14)
Geometric parameters (Å, º) top
Hg1—Cl22.3693 (8)C4A—H4A0.9500
Hg1—Cl12.3709 (8)C4A—C5A1.369 (4)
Hg1—O1B2.356 (2)C4A—C3A1.407 (4)
Hg1—O1A2.359 (2)C5A—H5A0.9500
O2A—C13A1.363 (4)C2B—H2B0.9500
O2A—C14A1.432 (4)C2B—C1B1.421 (4)
O1B—C1B1.302 (4)C2B—C3B1.377 (4)
O1A—C1A1.299 (4)C10A—H10A0.9500
O2B—C13B1.361 (4)C10A—C11A1.387 (5)
O2B—C14B1.427 (4)C7B—H7B0.9500
N1A—H1A0.8800C11A—H11A0.9500
N1A—C8A1.415 (4)C3A—H3A0.9500
N1A—C7A1.308 (4)C8B—C9B1.391 (4)
N1B—H1B0.8800C8B—C13B1.406 (5)
N1B—C7B1.305 (4)C9B—H9B0.9500
N1B—C8B1.416 (4)C9B—C10B1.387 (5)
C6A—C7A1.413 (4)C3B—H3B0.9500
C6A—C1A1.442 (4)C3B—C4B1.409 (5)
C6A—C5A1.417 (4)C5B—H5B0.9500
C8A—C9A1.389 (4)C5B—C4B1.374 (5)
C8A—C13A1.407 (4)C13B—C12B1.394 (4)
C2A—H2A0.9500C4B—H4B0.9500
C2A—C1A1.424 (4)C10B—H10B0.9500
C2A—C3A1.372 (4)C10B—C11B1.385 (6)
C7A—H7A0.9500C14A—H14A0.9800
C9A—H9A0.9500C14A—H14B0.9800
C9A—C10A1.389 (4)C14A—H14C0.9800
C13A—C12A1.393 (4)C12B—H12B0.9500
C12A—H12A0.9500C12B—C11B1.386 (5)
C12A—C11A1.397 (5)C11B—H11B0.9500
C6B—C7B1.415 (4)C14B—H14D0.9800
C6B—C1B1.437 (4)C14B—H14E0.9800
C6B—C5B1.417 (4)C14B—H14F0.9800
Cl2—Hg1—Cl1148.23 (3)C11A—C10A—C9A120.1 (3)
O1B—Hg1—Cl2100.65 (6)C11A—C10A—H10A119.9
O1B—Hg1—Cl198.78 (6)N1B—C7B—C6B122.7 (3)
O1B—Hg1—O1A105.56 (7)N1B—C7B—H7B118.6
O1A—Hg1—Cl2100.40 (6)C6B—C7B—H7B118.6
O1A—Hg1—Cl198.27 (6)C12A—C11A—H11A119.5
C13A—O2A—C14A117.3 (3)C10A—C11A—C12A120.9 (3)
C1B—O1B—Hg1125.42 (19)C10A—C11A—H11A119.5
C1A—O1A—Hg1124.97 (19)O1B—C1B—C6B120.3 (3)
C13B—O2B—C14B117.0 (3)O1B—C1B—C2B122.5 (3)
C8A—N1A—H1A116.5C2B—C1B—C6B117.1 (3)
C7A—N1A—H1A116.5C2A—C3A—C4A121.7 (3)
C7A—N1A—C8A126.9 (3)C2A—C3A—H3A119.2
C7B—N1B—H1B116.7C4A—C3A—H3A119.2
C7B—N1B—C8B126.6 (3)C9B—C8B—N1B123.3 (3)
C8B—N1B—H1B116.7C9B—C8B—C13B120.3 (3)
C7A—C6A—C1A121.4 (3)C13B—C8B—N1B116.3 (3)
C7A—C6A—C5A118.5 (3)C8B—C9B—H9B120.2
C5A—C6A—C1A120.1 (3)C10B—C9B—C8B119.7 (3)
C9A—C8A—N1A123.5 (3)C10B—C9B—H9B120.2
C9A—C8A—C13A120.4 (3)C2B—C3B—H3B119.1
C13A—C8A—N1A116.1 (3)C2B—C3B—C4B121.7 (3)
C1A—C2A—H2A119.3C4B—C3B—H3B119.1
C3A—C2A—H2A119.3C6B—C5B—H5B119.5
C3A—C2A—C1A121.3 (3)C4B—C5B—C6B120.9 (3)
N1A—C7A—C6A122.8 (3)C4B—C5B—H5B119.5
N1A—C7A—H7A118.6O2B—C13B—C8B115.2 (3)
C6A—C7A—H7A118.6O2B—C13B—C12B125.5 (3)
C8A—C9A—H9A120.2C12B—C13B—C8B119.3 (3)
C10A—C9A—C8A119.6 (3)C3B—C4B—H4B120.5
C10A—C9A—H9A120.2C5B—C4B—C3B119.0 (3)
O1A—C1A—C6A120.6 (3)C5B—C4B—H4B120.5
O1A—C1A—C2A122.8 (3)C9B—C10B—H10B120.0
C2A—C1A—C6A116.7 (3)C11B—C10B—C9B120.0 (3)
O2A—C13A—C8A114.7 (3)C11B—C10B—H10B120.0
O2A—C13A—C12A125.5 (3)O2A—C14A—H14A109.5
C12A—C13A—C8A119.8 (3)O2A—C14A—H14B109.5
C13A—C12A—H12A120.4O2A—C14A—H14C109.5
C13A—C12A—C11A119.1 (3)H14A—C14A—H14B109.5
C11A—C12A—H12A120.4H14A—C14A—H14C109.5
C7B—C6B—C1B121.3 (3)H14B—C14A—H14C109.5
C7B—C6B—C5B118.4 (3)C13B—C12B—H12B120.2
C5B—C6B—C1B120.3 (3)C11B—C12B—C13B119.6 (3)
C5A—C4A—H4A120.5C11B—C12B—H12B120.2
C5A—C4A—C3A119.0 (3)C10B—C11B—C12B121.0 (3)
C3A—C4A—H4A120.5C10B—C11B—H11B119.5
C6A—C5A—H5A119.4C12B—C11B—H11B119.5
C4A—C5A—C6A121.3 (3)O2B—C14B—H14D109.5
C4A—C5A—H5A119.4O2B—C14B—H14E109.5
C1B—C2B—H2B119.5O2B—C14B—H14F109.5
C3B—C2B—H2B119.5H14D—C14B—H14E109.5
C3B—C2B—C1B120.9 (3)H14D—C14B—H14F109.5
C9A—C10A—H10A119.9H14E—C14B—H14F109.5
Hg1—O1B—C1B—C6B164.0 (2)C5A—C6A—C1A—C2A0.5 (4)
Hg1—O1B—C1B—C2B16.4 (4)C5A—C4A—C3A—C2A0.6 (5)
Hg1—O1A—C1A—C6A166.7 (2)C2B—C3B—C4B—C5B1.1 (5)
Hg1—O1A—C1A—C2A13.6 (4)C7B—N1B—C8B—C9B7.0 (5)
O2A—C13A—C12A—C11A178.4 (3)C7B—N1B—C8B—C13B174.3 (3)
O2B—C13B—C12B—C11B179.3 (3)C7B—C6B—C1B—O1B2.3 (4)
N1A—C8A—C9A—C10A179.8 (3)C7B—C6B—C1B—C2B178.0 (3)
N1A—C8A—C13A—O2A1.4 (4)C7B—C6B—C5B—C4B178.8 (3)
N1A—C8A—C13A—C12A179.2 (3)C1B—C6B—C7B—N1B1.9 (5)
N1B—C8B—C9B—C10B179.4 (3)C1B—C6B—C5B—C4B0.1 (5)
N1B—C8B—C13B—O2B0.1 (4)C1B—C2B—C3B—C4B0.5 (5)
N1B—C8B—C13B—C12B179.8 (3)C3A—C2A—C1A—O1A179.3 (3)
C8A—N1A—C7A—C6A179.9 (3)C3A—C2A—C1A—C6A0.5 (4)
C8A—C9A—C10A—C11A0.9 (5)C3A—C4A—C5A—C6A0.5 (5)
C8A—C13A—C12A—C11A0.9 (5)C8B—N1B—C7B—C6B180.0 (3)
C7A—N1A—C8A—C9A4.8 (5)C8B—C9B—C10B—C11B0.4 (5)
C7A—N1A—C8A—C13A175.9 (3)C8B—C13B—C12B—C11B0.9 (5)
C7A—C6A—C1A—O1A2.3 (4)C9B—C8B—C13B—O2B178.8 (3)
C7A—C6A—C1A—C2A178.0 (3)C9B—C8B—C13B—C12B1.4 (5)
C7A—C6A—C5A—C4A178.5 (3)C9B—C10B—C11B—C12B0.9 (6)
C9A—C8A—C13A—O2A177.9 (3)C3B—C2B—C1B—O1B179.3 (3)
C9A—C8A—C13A—C12A1.5 (5)C3B—C2B—C1B—C6B0.4 (4)
C9A—C10A—C11A—C12A1.4 (5)C5B—C6B—C7B—N1B179.5 (3)
C1A—C6A—C7A—N1A2.1 (5)C5B—C6B—C1B—O1B179.1 (3)
C1A—C6A—C5A—C4A0.0 (5)C5B—C6B—C1B—C2B0.5 (4)
C1A—C2A—C3A—C4A0.1 (5)C13B—C8B—C9B—C10B0.8 (5)
C13A—C8A—C9A—C10A0.6 (5)C13B—C12B—C11B—C10B0.2 (5)
C13A—C12A—C11A—C10A0.5 (5)C14A—O2A—C13A—C8A172.4 (3)
C6B—C5B—C4B—C3B1.0 (5)C14A—O2A—C13A—C12A6.9 (5)
C5A—C6A—C7A—N1A179.4 (3)C14B—O2B—C13B—C8B170.3 (3)
C5A—C6A—C1A—O1A179.2 (3)C14B—O2B—C13B—C12B9.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1A0.881.892.599 (3)137
N1B—H1B···O1B0.881.872.585 (3)137
C7A—H7A···Cl2i0.952.803.719 (3)163
C7B—H7B···Cl1ii0.952.743.656 (3)163
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2.
Diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II) (Compound_6) top
Crystal data top
[HgI2(C28H26N2O4)]Z = 2
Mr = 908.90F(000) = 852
Triclinic, P1Dx = 2.155 Mg m3
a = 9.2783 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0060 (15) ÅCell parameters from 9897 reflections
c = 16.695 (3) Åθ = 4.4–54.9°
α = 98.777 (1)°µ = 7.74 mm1
β = 100.296 (1)°T = 100 K
γ = 109.396 (1)°Block, orange
V = 1400.4 (4) Å30.38 × 0.19 × 0.13 mm
Data collection top
Bruker APEXII area detector
diffractometer
11185 independent reflections
Radiation source: standard sealed X-ray tube, Siemens, KFF Mo 2K -90 C10132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 7.9 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω and φ scansh = 1212
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 1212
Tmin = 0.441, Tmax = 0.746l = 2121
11185 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.6965P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
11185 reflectionsΔρmax = 1.48 e Å3
337 parametersΔρmin = 1.78 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved as a rotational twin. Rotated from first domain by 149.8 degrees about reciprocal axis 1.000 0.235 0.787 and real axis 1.000 0.533 0.319. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix) 0.534 0.949 0.308, 0.116 -0.693 0.359, 1.269 -0.145 -0.569.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.6673 (8)0.6731 (7)0.1093 (4)0.0127 (13)
C1B0.8585 (8)0.9260 (7)0.3661 (4)0.0125 (13)
C2A0.6036 (9)0.7737 (8)0.1421 (4)0.0174 (14)
H2A0.60280.78900.19960.021*
C2B0.9490 (8)0.9298 (8)0.3052 (4)0.0149 (13)
H2B0.92490.84500.26300.018*
C3A0.5431 (8)0.8495 (8)0.0928 (4)0.0169 (15)
H3A0.50220.91680.11710.020*
C3B1.0718 (8)1.0564 (8)0.3071 (4)0.0152 (14)
H3B1.13301.05550.26720.018*
C4A0.5396 (9)0.8304 (8)0.0060 (5)0.0190 (16)
H4A0.49630.88320.02740.023*
C4B1.1086 (9)1.1864 (8)0.3666 (5)0.0171 (16)
H4B1.19061.27300.36540.020*
C5A0.5999 (9)0.7349 (8)0.0278 (4)0.0180 (15)
H5A0.59980.72240.08540.022*
C5B1.0261 (8)1.1863 (7)0.4251 (4)0.0142 (14)
H5B1.05251.27350.46590.017*
C6A0.6634 (8)0.6528 (8)0.0212 (4)0.0143 (14)
C6B0.9001 (8)1.0591 (7)0.4277 (4)0.0135 (13)
C7A0.7163 (8)0.5513 (7)0.0189 (4)0.0134 (13)
H7A0.70960.54190.07700.016*
C7B0.8215 (8)1.0664 (7)0.4921 (4)0.0124 (13)
H7B0.85521.15650.53150.015*
C8A0.8298 (8)0.3650 (8)0.0185 (4)0.0156 (14)
C8B0.6225 (8)0.9598 (8)0.5647 (4)0.0129 (13)
C9A0.8442 (8)0.3500 (8)0.1012 (4)0.0165 (14)
H9A0.81850.41220.13400.020*
C9B0.6492 (8)1.0855 (8)0.6224 (4)0.0165 (14)
H9B0.72561.17500.62030.020*
C10A0.8962 (9)0.2439 (9)0.1351 (5)0.0247 (17)
H10A0.90600.23330.19120.030*
C10B0.5643 (9)1.0816 (8)0.6839 (4)0.0179 (15)
H10B0.58081.16810.72300.022*
C11A0.9336 (10)0.1536 (9)0.0865 (5)0.0259 (18)
H11A0.96940.08150.10990.031*
C11B0.4558 (9)0.9494 (8)0.6866 (4)0.0179 (15)
H11B0.40020.94530.72930.022*
C12A0.9197 (9)0.1665 (9)0.0045 (5)0.0225 (16)
H12A0.94520.10340.02780.027*
C12B0.4262 (9)0.8216 (8)0.6279 (5)0.0183 (15)
H12B0.34980.73230.63030.022*
C13A0.8680 (8)0.2727 (8)0.0302 (5)0.0156 (14)
C13B0.5088 (8)0.8260 (8)0.5663 (4)0.0150 (14)
C14A0.8940 (10)0.2095 (8)0.1624 (5)0.0227 (17)
H14A0.82690.10690.13890.034*
H14B0.87970.24000.21820.034*
H14C1.00460.22190.16670.034*
C14B0.3629 (9)0.5751 (8)0.5007 (5)0.0227 (16)
H14D0.26430.59220.49830.034*
H14E0.38740.53750.55020.034*
H14F0.35130.50400.45030.034*
Hg10.69274 (3)0.57222 (3)0.28950 (2)0.01351 (9)
I10.38080 (6)0.46487 (6)0.26379 (3)0.01957 (13)
I20.95749 (6)0.53212 (5)0.34679 (3)0.01950 (13)
N1A0.7749 (7)0.4679 (6)0.0195 (4)0.0150 (12)
H1A0.78000.47730.07340.018*
N1B0.7048 (7)0.9565 (6)0.5009 (4)0.0136 (11)
H1B0.67480.87350.46410.016*
O1A0.7251 (6)0.5993 (5)0.1535 (3)0.0156 (10)
O1B0.7437 (6)0.8100 (5)0.3671 (3)0.0162 (10)
O2A0.8515 (7)0.2962 (6)0.1094 (3)0.0223 (12)
O2B0.4891 (6)0.7101 (5)0.5057 (3)0.0186 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.008 (3)0.012 (3)0.018 (3)0.004 (3)0.002 (3)0.004 (3)
C1B0.012 (3)0.012 (3)0.017 (3)0.006 (3)0.005 (3)0.007 (3)
C2A0.019 (4)0.018 (3)0.016 (3)0.009 (3)0.005 (3)0.000 (3)
C2B0.017 (3)0.017 (3)0.014 (3)0.010 (3)0.006 (3)0.003 (3)
C3A0.015 (3)0.012 (3)0.018 (3)0.005 (3)0.001 (3)0.007 (3)
C3B0.012 (3)0.022 (4)0.013 (3)0.007 (3)0.005 (3)0.005 (3)
C4A0.017 (4)0.012 (3)0.022 (4)0.003 (3)0.000 (3)0.001 (3)
C4B0.019 (4)0.017 (4)0.021 (4)0.008 (3)0.012 (3)0.012 (3)
C5A0.024 (4)0.016 (3)0.014 (3)0.007 (3)0.006 (3)0.004 (3)
C5B0.017 (3)0.010 (3)0.011 (3)0.003 (3)0.001 (3)0.000 (3)
C6A0.016 (3)0.014 (3)0.013 (3)0.006 (3)0.001 (3)0.005 (3)
C6B0.015 (3)0.012 (3)0.010 (3)0.004 (3)0.002 (3)0.001 (2)
C7A0.013 (3)0.013 (3)0.013 (3)0.001 (3)0.006 (3)0.002 (3)
C7B0.009 (3)0.009 (3)0.015 (3)0.001 (3)0.001 (3)0.001 (3)
C8A0.018 (4)0.016 (3)0.014 (3)0.008 (3)0.005 (3)0.000 (3)
C8B0.011 (3)0.015 (3)0.015 (3)0.007 (3)0.005 (3)0.004 (3)
C9A0.010 (3)0.023 (4)0.015 (3)0.006 (3)0.001 (3)0.003 (3)
C9B0.014 (3)0.019 (4)0.015 (3)0.005 (3)0.004 (3)0.002 (3)
C10A0.014 (4)0.035 (5)0.017 (4)0.009 (3)0.003 (3)0.009 (3)
C10B0.017 (4)0.019 (4)0.017 (3)0.010 (3)0.003 (3)0.004 (3)
C11A0.026 (4)0.025 (4)0.028 (4)0.019 (4)0.001 (3)0.003 (3)
C11B0.016 (4)0.021 (4)0.017 (3)0.008 (3)0.004 (3)0.003 (3)
C12A0.023 (4)0.022 (4)0.024 (4)0.013 (3)0.002 (3)0.002 (3)
C12B0.016 (4)0.028 (4)0.014 (3)0.009 (3)0.007 (3)0.008 (3)
C13A0.013 (3)0.014 (3)0.023 (4)0.011 (3)0.002 (3)0.003 (3)
C13B0.016 (3)0.018 (3)0.010 (3)0.008 (3)0.000 (3)0.001 (3)
C14A0.030 (4)0.022 (4)0.020 (4)0.014 (3)0.002 (3)0.009 (3)
C14B0.024 (4)0.016 (4)0.023 (4)0.000 (3)0.008 (3)0.003 (3)
Hg10.01544 (14)0.01255 (14)0.01221 (14)0.00467 (11)0.00395 (9)0.00241 (10)
I10.0150 (2)0.0260 (3)0.0142 (2)0.0019 (2)0.00385 (18)0.0070 (2)
I20.0182 (3)0.0166 (2)0.0215 (3)0.0077 (2)0.00010 (19)0.00114 (19)
N1A0.017 (3)0.013 (3)0.016 (3)0.007 (3)0.005 (2)0.004 (2)
N1B0.016 (3)0.013 (3)0.013 (3)0.009 (2)0.004 (2)0.002 (2)
O1A0.019 (3)0.017 (3)0.015 (2)0.010 (2)0.006 (2)0.004 (2)
O1B0.017 (3)0.011 (2)0.021 (3)0.005 (2)0.010 (2)0.002 (2)
O2A0.032 (3)0.023 (3)0.017 (3)0.015 (2)0.007 (2)0.009 (2)
O2B0.021 (3)0.016 (2)0.017 (3)0.004 (2)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
C1A—C2A1.417 (10)C8B—N1B1.418 (9)
C1A—C6A1.446 (9)C9A—H9A0.9500
C1A—O1A1.290 (8)C9A—C10A1.391 (11)
C1B—C2B1.427 (9)C9B—H9B0.9500
C1B—C6B1.442 (9)C9B—C10B1.398 (10)
C1B—O1B1.294 (8)C10A—H10A0.9500
C2A—H2A0.9500C10A—C11A1.388 (12)
C2A—C3A1.370 (10)C10B—H10B0.9500
C2B—H2B0.9500C10B—C11B1.384 (10)
C2B—C3B1.385 (10)C11A—H11A0.9500
C3A—H3A0.9500C11A—C12A1.390 (12)
C3A—C4A1.426 (11)C11B—H11B0.9500
C3B—H3B0.9500C11B—C12B1.400 (11)
C3B—C4B1.409 (11)C12A—H12A0.9500
C4A—H4A0.9500C12A—C13A1.395 (10)
C4A—C5A1.359 (11)C12B—H12B0.9500
C4B—H4B0.9500C12B—C13B1.386 (10)
C4B—C5B1.343 (10)C13A—O2A1.352 (9)
C5A—H5A0.9500C13B—O2B1.355 (8)
C5A—C6A1.430 (9)C14A—H14A0.9800
C5B—H5B0.9500C14A—H14B0.9800
C5B—C6B1.427 (9)C14A—H14C0.9800
C6A—C7A1.401 (10)C14A—O2A1.424 (8)
C6B—C7B1.408 (10)C14B—H14D0.9800
C7A—H7A0.9500C14B—H14E0.9800
C7A—N1A1.320 (9)C14B—H14F0.9800
C7B—H7B0.9500C14B—O2B1.443 (8)
C7B—N1B1.312 (9)Hg1—I12.6580 (7)
C8A—C9A1.400 (10)Hg1—I22.6536 (7)
C8A—C13A1.408 (10)Hg1—O1A2.387 (5)
C8A—N1A1.410 (9)Hg1—O1B2.378 (5)
C8B—C9B1.382 (10)N1A—H1A0.8800
C8B—C13B1.411 (10)N1B—H1B0.8800
C2A—C1A—C6A116.8 (6)C10B—C9B—H9B119.8
O1A—C1A—C2A123.4 (6)C9A—C10A—H10A120.2
O1A—C1A—C6A119.8 (6)C11A—C10A—C9A119.5 (7)
C2B—C1B—C6B116.9 (6)C11A—C10A—H10A120.2
O1B—C1B—C2B122.7 (6)C9B—C10B—H10B120.6
O1B—C1B—C6B120.5 (6)C11B—C10B—C9B118.7 (7)
C1A—C2A—H2A119.3C11B—C10B—H10B120.6
C3A—C2A—C1A121.5 (7)C10A—C11A—H11A119.3
C3A—C2A—H2A119.3C10A—C11A—C12A121.4 (7)
C1B—C2B—H2B119.7C12A—C11A—H11A119.3
C3B—C2B—C1B120.5 (7)C10B—C11B—H11B119.3
C3B—C2B—H2B119.7C10B—C11B—C12B121.5 (7)
C2A—C3A—H3A119.1C12B—C11B—H11B119.3
C2A—C3A—C4A121.9 (7)C11A—C12A—H12A120.2
C4A—C3A—H3A119.1C11A—C12A—C13A119.5 (7)
C2B—C3B—H3B119.1C13A—C12A—H12A120.2
C2B—C3B—C4B121.8 (7)C11B—C12B—H12B120.1
C4B—C3B—H3B119.1C13B—C12B—C11B119.7 (7)
C3A—C4A—H4A120.8C13B—C12B—H12B120.1
C5A—C4A—C3A118.4 (7)C12A—C13A—C8A119.6 (7)
C5A—C4A—H4A120.8O2A—C13A—C8A115.7 (6)
C3B—C4B—H4B120.5O2A—C13A—C12A124.7 (7)
C5B—C4B—C3B119.1 (7)C12B—C13B—C8B118.9 (7)
C5B—C4B—H4B120.5O2B—C13B—C8B116.1 (6)
C4A—C5A—H5A119.2O2B—C13B—C12B125.0 (7)
C4A—C5A—C6A121.6 (7)H14A—C14A—H14B109.5
C6A—C5A—H5A119.2H14A—C14A—H14C109.5
C4B—C5B—H5B119.0H14B—C14A—H14C109.5
C4B—C5B—C6B122.0 (7)O2A—C14A—H14A109.5
C6B—C5B—H5B119.0O2A—C14A—H14B109.5
C5A—C6A—C1A119.8 (6)O2A—C14A—H14C109.5
C7A—C6A—C1A121.8 (6)H14D—C14B—H14E109.5
C7A—C6A—C5A118.4 (6)H14D—C14B—H14F109.5
C5B—C6B—C1B119.7 (6)H14E—C14B—H14F109.5
C7B—C6B—C1B121.6 (6)O2B—C14B—H14D109.5
C7B—C6B—C5B118.7 (6)O2B—C14B—H14E109.5
C6A—C7A—H7A118.1O2B—C14B—H14F109.5
N1A—C7A—C6A123.8 (6)I2—Hg1—I1145.097 (18)
N1A—C7A—H7A118.1O1A—Hg1—I1102.05 (12)
C6B—C7B—H7B118.0O1A—Hg1—I298.69 (12)
N1B—C7B—C6B124.1 (6)O1B—Hg1—I198.64 (12)
N1B—C7B—H7B118.0O1B—Hg1—I2102.36 (13)
C9A—C8A—C13A120.0 (7)O1B—Hg1—O1A105.74 (16)
C9A—C8A—N1A123.2 (6)C7A—N1A—C8A125.4 (6)
C13A—C8A—N1A116.8 (6)C7A—N1A—H1A117.3
C9B—C8B—C13B120.7 (6)C8A—N1A—H1A117.3
C9B—C8B—N1B123.1 (6)C7B—N1B—C8B125.7 (6)
C13B—C8B—N1B116.2 (6)C7B—N1B—H1B117.2
C8A—C9A—H9A120.0C8B—N1B—H1B117.2
C10A—C9A—C8A120.0 (7)C1A—O1A—Hg1125.7 (4)
C10A—C9A—H9A120.0C1B—O1B—Hg1124.7 (4)
C8B—C9B—H9B119.8C13A—O2A—C14A118.1 (6)
C8B—C9B—C10B120.4 (7)C13B—O2B—C14B117.2 (6)
C1A—C2A—C3A—C4A0.6 (11)C9A—C8A—C13A—O2A179.5 (6)
C1A—C6A—C7A—N1A0.8 (11)C9A—C8A—N1A—C7A7.1 (11)
C1B—C2B—C3B—C4B2.3 (10)C9A—C10A—C11A—C12A0.2 (12)
C1B—C6B—C7B—N1B1.2 (10)C9B—C8B—C13B—C12B1.3 (10)
C2A—C1A—C6A—C5A1.2 (10)C9B—C8B—C13B—O2B178.4 (6)
C2A—C1A—C6A—C7A177.0 (6)C9B—C8B—N1B—C7B5.1 (10)
C2A—C1A—O1A—Hg113.7 (9)C9B—C10B—C11B—C12B2.1 (11)
C2A—C3A—C4A—C5A0.6 (11)C10A—C11A—C12A—C13A0.4 (12)
C2B—C1B—C6B—C5B0.4 (9)C10B—C11B—C12B—C13B1.2 (11)
C2B—C1B—C6B—C7B178.1 (6)C11A—C12A—C13A—C8A0.3 (11)
C2B—C1B—O1B—Hg113.4 (9)C11A—C12A—C13A—O2A179.3 (7)
C2B—C3B—C4B—C5B2.6 (11)C11B—C12B—C13B—C8B0.5 (10)
C3A—C4A—C5A—C6A1.0 (11)C11B—C12B—C13B—O2B179.2 (7)
C3B—C4B—C5B—C6B1.4 (11)C12A—C13A—O2A—C14A1.9 (11)
C4A—C5A—C6A—C1A1.3 (11)C12B—C13B—O2B—C14B5.8 (10)
C4A—C5A—C6A—C7A176.9 (7)C13A—C8A—C9A—C10A0.0 (11)
C4B—C5B—C6B—C1B0.1 (10)C13A—C8A—N1A—C7A171.6 (7)
C4B—C5B—C6B—C7B178.5 (7)C13B—C8B—C9B—C10B0.4 (11)
C5A—C6A—C7A—N1A179.0 (7)C13B—C8B—N1B—C7B175.2 (6)
C5B—C6B—C7B—N1B179.7 (6)N1A—C8A—C9A—C10A178.6 (7)
C6A—C1A—C2A—C3A0.8 (10)N1A—C8A—C13A—C12A178.6 (7)
C6A—C1A—O1A—Hg1165.2 (5)N1A—C8A—C13A—O2A1.8 (9)
C6A—C7A—N1A—C8A179.7 (6)N1B—C8B—C9B—C10B179.9 (6)
C6B—C1B—C2B—C3B0.8 (10)N1B—C8B—C13B—C12B179.0 (6)
C6B—C1B—O1B—Hg1166.9 (5)N1B—C8B—C13B—O2B1.3 (9)
C6B—C7B—N1B—C8B179.7 (6)O1A—C1A—C2A—C3A179.8 (7)
C8A—C9A—C10A—C11A0.1 (11)O1A—C1A—C6A—C5A179.8 (6)
C8A—C13A—O2A—C14A177.7 (6)O1A—C1A—C6A—C7A2.1 (10)
C8B—C9B—C10B—C11B1.3 (11)O1B—C1B—C2B—C3B179.4 (6)
C8B—C13B—O2B—C14B174.0 (6)O1B—C1B—C6B—C5B179.4 (6)
C9A—C8A—C13A—C12A0.1 (10)O1B—C1B—C6B—C7B2.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1A0.881.922.611 (8)134
N1B—H1B···O1B0.881.942.629 (7)134
Selected bond lengths (Å) and angles (°) for compounds 16 top
Compound123456
Bond lengthM1—X12.240 (4)2.588 (3)2.537 (1)2.720 (1)2.371 (1)2.658 (1)
M1—X22.243 (4)2.568 (3)2.545 (1)2.710 (1)2.369 (1)2.654 (1)
M1—O2A1.985 (1)1.990 (10)2.216 (4)2.231 (2)2.259 (2)2.387 (5)
M1—O2B1.983 (1)1.990 (10)2.225 (4)2.216 (2)2.356 (2)2.378 (5)
Bond anglesX1—M1—X2124.8 (2)123.7 (1)130.0 (1)130.1 (1)148.2 (1)145.1 (1)
O1A—M1—X1103.9 (3)104.0 (4)104.4 (1)103.7 (1)98.3 (1)102.0 (1)
O1A—M1—X2104.0 (3)103.6 (4)103.6 (1)104.8 (1)100.4 (1)98.7 (1)
O1B—M1—X1105.5 (3)106.2 (4)104.8 (1)102.9 (1)98.8 (1)98.6 (1)
O1B—M1—X2102.8 (3)104.2 (4)101.9 (1)103.5 (1)100.7 (1)102.3 (1)
O1A—M1—O1B116.8 (4)115.8 (5)112.0 (2)111.6 (1)105.6 (1)105.8 (2)
Relative contributions (%) of various noncovalent contacts to the Hirshfeld surface area in complexes 16 top
CompoundH···HC···HMX···HO···HC···CN···C
146.220.215.76.07.93.0
243.420.418.76.37.12.8
342.920.218.26.87.12.8
443.520.119.26.86.92.8
543.520.516.56.77.22.9
641.320.218.36.96.92.8
Dihedral angles (°) between the two least-squares planes of the aromatic rings of ligand L top
Plane A consists of atoms C1–C6 and plane B consists of atoms C8–C13.
StructureLigand ALigand B
14.3410.68
28.765.17
34.107.07
45.868.20
53.625.23
68.835.31

Acknowledgements

The authors gratefully acknowledge financial support from the Research Council of Alzahra University, and the Centre de Tecnologies de la Informació (CTI) at the UIB for computational facilities.

Funding information

Funding for this research was provided by: Research Council of Alzahra University; Science Foundation Ireland (SFI grant No. IvP 13/IA/1894); MINECO/AEI of Spain (project No. CTQ2017-85821-R, FEDER funds, to AF and AB).

References

First citationAhlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. (1989). Chem. Phys. Lett. 162, 165–169.  CrossRef CAS Web of Science Google Scholar
First citationAlarcón, S., Pagani, D., Bacigalupo, J. & Olivieri, A. (1999). J. Mol. Struct. 475, 233–240.  Google Scholar
First citationAzhdari Tehrani, A., Abedi, S. & Morsali, A. (2016). Cryst. Growth Des. 17, 255–261.  CrossRef Google Scholar
First citationBader, R. F. (1991). Chem. Rev. 91, 893–928.  CrossRef CAS Google Scholar
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBoys, S. F. & Bernardi, F. D. (1970). Mol. Phys. 19, 553–566.  CrossRef CAS Google Scholar
First citationBraga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601–608.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusschaert, N., Caltagirone, C., Van Rossom, W. & Gale, P. A. (2015). Chem. Rev. 115, 8038–8155.  CrossRef CAS Google Scholar
First citationCharland, J., Gabe, E., Khoo, L. & Smith, F. (1989). Polyhedron, 8, 1897–1901.  CrossRef CAS Google Scholar
First citationCohen, M. & Schmidt, G. (1962). J. Phys. Chem. 66, 2442–2446.  CrossRef CAS Google Scholar
First citationCohen, M., Schmidt, G. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Google Scholar
First citationCustelcean, R., Bonnesen, P. V., Duncan, N. C., Zhang, X., Watson, L. A., Van Berkel, G., Parson, W. B. & Hay, B. P. (2012). J. Am. Chem. Soc. 134, 8525–8534.  CrossRef CAS Google Scholar
First citationĐaković, M., Soldin, Ž., Kukovec, B.-M., Kodrin, I., Aakeröy, C. B., Baus, N. & Rinkovec, T. (2018). IUCrJ, 5, 13–21.  CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. (1998). Chem. Commun. pp. 891–892.  Google Scholar
First citationDesiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 604–605.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDürr, H. & Bouas-Laurent, H. (2003). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.  Google Scholar
First citationGong, D., Wang, B., Jia, X. & Zhang, X. (2014). Dalton Trans. 43, 4169–4178.  CrossRef CAS Google Scholar
First citationHajiashrafi, T., Kharat, A. N., Love, J. A. & Patrick, B. O. (2013). Polyhedron, 60, 30–38.  CrossRef CAS Google Scholar
First citationHajiashrafi, T., Ziarani, G. M., Kubicki, M., Fadaei, F. T. & Schenk, K. J. (2016). Polyhedron, 119, 260–266.  CrossRef CAS Google Scholar
First citationHolliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. 40, 2022–2043.  CrossRef CAS Google Scholar
First citationHope, H. (1994). Prog. Inorg. Chem. 41, 1–19.  CrossRef CAS Web of Science Google Scholar
First citationHoshino, N., Inabe, T., Mitani, T. & Maruyama, Y. (1988). Bull. Chem. Soc. Jpn, 61, 4207–4214.  CrossRef CAS Web of Science Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKargili, H., Alpaslan, G., Macit, M., Erdönmez, A. & Büyükgüngör, O. (2014). Opt. Spectrosc. 116, 179–186.  CrossRef CAS Google Scholar
First citationKeith, T. A. (2013). AIMAll. Version 13.05.06. TK Gristmill Software, Overland Park, KS, USA.  Google Scholar
First citationKhavasi, H. R. & Azhdari Tehrani, A. (2013). Inorg. Chem. 52, 2891–2905.  CrossRef CAS PubMed Google Scholar
First citationKhavasi, H. R. & Azizpoor Fard, M. (2010). Cryst. Growth Des. 10, 1892–1896.  CrossRef CAS Google Scholar
First citationKhavasi, H. R., Barforoush, M. M. & Fard, M. A. (2012). CrystEngComm, 14, 7236–7244.  CrossRef CAS Google Scholar
First citationKhavasi, H. R. & Mohammad Sadegh, B. M. (2010). Inorg. Chem. 49, 5356–5358.  CrossRef CAS Google Scholar
First citationKhavasi, H. R., Norouzi, F. & Azhdari Tehrani, A. (2015). Cryst. Growth Des. 15, 2579–2583.  CrossRef CAS Google Scholar
First citationKhavasi, H. R. & Sadegh, B. M. M. (2014). Dalton Trans. 43, 5564–5573.  CrossRef CAS Google Scholar
First citationKielmann, M. & Senge, M. O. (2018). Angew. Chem. Int. Ed. 58, 418–441.  CrossRef Google Scholar
First citationLehn, J.-M. (1995). In Supramolecular Chemistry. Weinheim: VCH.  Google Scholar
First citationLi, B., Zang, S.-Q., Wang, L.-Y. & Mak, T. C. (2016). Coord. Chem. Rev. 308, 1–21.  CrossRef CAS Google Scholar
First citationLi, L. & Yuan, F. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 994–998.  Web of Science CrossRef CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMahata, P., Prabu, M. & Natarajan, S. (2009). Cryst. Growth Des. 9, 3683–3691.  Web of Science CrossRef CAS Google Scholar
First citationMcKinlay, A. C., Morris, R. E., Horcajada, P., Férey, G., Gref, R., Couvreur, P. & Serre, C. (2010). Angew. Chem. Int. Ed. 49, 6260–6266.  Web of Science CrossRef CAS Google Scholar
First citationPolitzer, P., Murray, J. S. & Clark, T. (2010). Phys. Chem. Chem. Phys. 12, 7748–7757.  Web of Science CrossRef CAS PubMed Google Scholar
First citationReddy, P. A., Nethaji, M. & Chakravarty, A. R. (2003a). Eur. J. Inorg. Chem. pp. 2318–2324.  CrossRef Google Scholar
First citationReddy, P. A., Nethaji, M. & Chakravarty, A. R. (2003b). Inorg. Chem. Commun. 6, 698–701.  CrossRef CAS Google Scholar
First citationRedshaw, C., Walton, M., Clowes, L., Hughes, D. L., Fuller, A. M., Chao, Y., Walton, A., Sumerin, V., Elo, P. & Soshnikov, I. (2013). Chem. Eur. J. 19, 8884–8899.  CrossRef CAS Google Scholar
First citationReedijk, J. (2009). Eur. J. Inorg. Chem. pp. 1303–1312.  Web of Science CrossRef Google Scholar
First citationReedijk, J. (2013). Chem. Soc. Rev. 42, 1776–1783.  CrossRef CAS Google Scholar
First citationSchottel, B. L., Chifotides, H. T., Shatruk, M., Chouai, A., Pérez, L. M., Bacsa, J. & Dunbar, K. R. (2006). J. Am. Chem. Soc. 128, 5895–5912.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSemeniuc, R. F., Reamer, T. J. & Smith, M. D. (2010). New J. Chem. 34, 439–452.  CrossRef CAS Google Scholar
First citationSenge, M. O. (2000). Z. Naturforsch. Teil B, 55, 336–344.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShkol'nikova, L., Obodovskaya, A. & Shugam, E. (1970). J. Struct. Chem. 11, 47–53.  Google Scholar
First citationSong, X., Wang, Z., Zhao, J. & Hor, T. A. (2013). Chem. Commun. 49, 4992–4994.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2013). In Supramolecular Chemistry. London: John Wiley & Sons.  Google Scholar
First citationTsuchimoto, M., Yoshida, N., Sugimoto, A., Teramoto, N. & Nakajima, K. (2016). J. Mol. Struct. 1105, 152–158.  CrossRef CAS Google Scholar
First citationWang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. (2013). Nat. Chem. 5, 100–103.  CrossRef CAS Google Scholar
First citationWiester, M. J., Ulmann, P. A. & Mirkin, C. A. (2011). Angew. Chem. Int. Ed. 50, 114–137.  CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZeng, F., Ni, J., Wang, Q., Ding, Y., Ng, S. W., Zhu, W. & Xie, Y. (2010). Cryst. Growth Des. 10, 1611–1622.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds