research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Solid-state conformations of linear depsipeptide amides with an alternating sequence of α,α-disubstituted α-amino acid and α-hy­dr­oxy acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
*Correspondence e-mail: anthony.linden@chem.uzh.ch

Edited by A. R. Kennedy, University of Strathclyde, Scotland (Received 15 November 2019; accepted 28 November 2019; online 6 December 2019)

Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α-disubstituted α-amino acid and an α-hy­droxy acid are reported. The mol­ecules in the linear hexa­depsipeptide amide in (S)-Pms-Acp-(S)-Pms-Acp-(S)-Pms-Acp-NMe2 aceto­nitrile solvate, C47H58N4O9·C2H3N, (3b), as well as in the related linear tetra­depsipeptide amide (S)-Pms-Aib-(S)-Pms-Aib-NMe2, C28H37N3O6, (5a), the diastereoisomeric mixture (S,R)-Pms-Acp-(R,S)-Pms-Acp-NMe2/(R,S)-Pms-Acp-(R,S)-Pms-Acp-NMe2 (1:1), C32H41N3O6, (5b), and (R,S)-Mns-Acp-(S,R)-Mns-Acp-NMe2, C30H37N3O6, (5c) (Pms is phenyl­lactic acid, Acp is 1-amino­cyclo­pentane­carb­oxy­lic acid and Mns is mandelic acid), generally adopt a β-turn conformation in the solid state, which is stabilized by intra­molecular N—H⋯O hydrogen bonds. Whereas β-turns of type I (or I′) are formed in the cases of (3b), (5a) and (5b), which contain phenyl­lactic acid, the torsion angles for (5c), which incorporates mandelic acid, indicate a β-turn in between type I and type III. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules of (3a) and (5b) into extended chains, and those of (5a) and (5c) into two-dimensional networks.

1. Introduction

Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions, i.e. amino acids are replaced by hy­droxy acids. In particular, cyclic depsipeptides are still of broad chemical, biological and medicinal inter­est, which is reflected in a large number of recent review articles [e.g. structure and isolation (Wang et al., 2018[Wang, X., Gong, X., Li, P., Lai, D. & Zhou, L. (2018). Molecules, 23, 169.]; Ding et al., 2016[Ding, L.-J., Yuan, W., Liao, X.-J., Han, B.-N., Wang, S.-P., Li, Z.-Y., Xu, S.-H., Zhang, W. & Lin, H.-W. (2016). J. Nat. Prod. 79, 2045-2052.]; Tarsis et al., 2015[Tarsis, E. M., Rastelli, E. J., Wengryniuk, S. E. & Coltart, D. M. (2015). Tetrahedron, 71, 5029-5044.]; Pelay-Gimeno et al., 2013[Pelay-Gimeno, M., Tulla-Puche, J. & Albericio, F. (2013). Marine Drugs, 11, 1693-1717.]), synthesis (Köcher et al., 2017[Köcher, S., Rey, J., Bongard, J., Tiaden, A. N., Meltzer, M., Richards, P. J., Ehrmann, M. & Kaiser, M. (2017). Angew. Chem. Int. Ed. 56, 8555-8558.]; Qi et al., 2016[Qi, N., Wang, Z., Allu, S. R., Liu, Q., Guo, J. & He, Y. (2016). J. Org. Chem. 81, 12466-12471.]; Boecker et al., 2016[Boecker, S., Zobel, S., Meyer, V. & Süssmuth, R. D. (2016). Fungal Genet. Biol. 89, 89-101.]; Weiss et al., 2013[Weiss, C., Sammet, B. & Sewald, N. (2013). Nat. Prod. Rep. 30, 924-940.]; Xu et al., 2013[Xu, Y.-Y., Liu, C. & Liu, Z.-P. (2013). Curr. Org. Synth. 10, 67-89.]) and biological activity (Wang et al., 2018[Wang, X., Gong, X., Li, P., Lai, D. & Zhou, L. (2018). Molecules, 23, 169.]; Weiss et al., 2017[Weiss, C., Figueras, E., Borbely, A. N. & Sewald, N. (2017). J. Pept. Sci. 23, 514-531.]; Kitagaki et al., 2015[Kitagaki, J., Shi, G., Miyauchi, S., Murakami, S. & Yang, Y. (2015). Anticancer Drugs, 26, 259-271.]; Sivanathan & Scherkenbeck, 2014[Sivanathan, S. & Scherkenbeck, J. (2014). Molecules, 19, 12368-12420.]; Smelcerovic et al., 2014[Smelcerovic, A., Dzodic, P., Pavlovic, V., Cherneva, E. & Yancheva, D. (2014). Amino Acids, 46, 825-840.])]. Their general structures can be assigned to different classes, containing, besides α-amino acids, a simple hy­droxy acid, like in solon­amide A (Kitir et al. 2014[Kitir, B., Baldry, M., Ingmer, H. & Olsen, C. A. (2014). Tetrahedron, 70, 7721-7732.]), or a com­plex hy­droxy acid, as in calcaripeptide A (Silber et al., 2013[Silber, J., Ohlendorf, B., Labes, A., Näther, C. & Imhoff, J. F. (2013). J. Nat. Prod. 76, 1461-1467.]), being characterized by a head-to-side-chain lactonization, as in kahalalide A (Bourel-Bonnet et al., 2005[Bourel-Bonnet, L., Rao, K. V., Hamann, M. T. & Ganesan, A. (2005). J. Med. Chem. 48, 1330-1335.]), or with an alternating sequence of α-amino and α-hy­droxy acids. Two well-known examples of the last type are the 18-membered enniatin A (Shemyakin et al., 1965[Shemyakin, M. M., Ovchinnikov, Yu. A., Kiryushkin, A. A. & Ivanov, V. T. (1965). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1623-1630.]; Quitt et al., 1963[Quitt, P., Studer, R. O. & Vogler, A. (1963). Helv. Chim. Acta, 46, 1715-1720.]) and the 36-membered valinomycin (Neupert-Laves & Dobler, 1975[Neupert-Laves, K. & Dobler, M. (1975). Helv. Chim. Acta, 58, 432-442.]; Shemyakin et al., 1963[Shemyakin, M. M., Aldanova, N. A., Vinogradova, E. I. & Feigina, M. Yu. (1963). Tetrahedron Lett. 4, 1921-1925.]), which are of considerable inter­est as natural ionophores, enabling the transport of monovalent cations across mem­branes (Ovchinnikov et al., 1974[Ovchinnikov, Yu. A., Ivanov, V. T., Evstratov, A. V., Mikhaleva, I. I., Bystrov, V. F., Portnova, S. L., Balashova, T. A., Meshcheryakova, E. N. & Tulchinsky, V. M. (1974). Int. J. Pept. Prot. Res. 6, 465-498.]; Dobler et al., 1969[Dobler, M., Dunitz, J. D. & Krajewski, J. (1969). J. Mol. Biol. 42, 603-606.]).

Our studies on the use of 2,2-disubstituted 3-amino-2H-azirines in the synthesis of heterocycles and peptides (Heimgartner, 1981[Heimgartner, H. (1981). Isr. J. Chem. 21, 151-156.], 1986[Heimgartner, H. (1986). Isr. J. Chem. 27, 3-15.], 1991[Heimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238-264.]) have shown them to be suitable building blocks for α,α-disubstituted α-amino acids in peptide synthesis (`azirine/oxazolone method'; Arnhold et al., 2014[Arnhold, F. S., Linden, A. & Heimgartner, H. (2014). Helv. Chim. Acta, 97, 619-645.]; Pradeille et al., 2012[Pradeille, N., Tzouros, M., Möhle, K., Linden, A. & Heimgartner, H. (2012). Chem. Biodivers. 9, 2528-2558.]; Altherr et al., 2007[Altherr, W., Linden, A. & Heimgartner, H. (2007). Chem. Biodivers. 4, 1144-1169.]; Stamm & Heimgartner, 2004[Stamm, S. & Heimgartner, H. (2004). Eur. J. Org. Chem. 2004, 3820-3827.]; Wipf & Heimgartner, 1990[Wipf, P. & Heimgartner, H. (1990). Helv. Chim. Acta, 73, 13-24.]; Obrecht & Heimgartner, 1987a[Obrecht, D. & Heimgartner, H. (1987a). Helv. Chim. Acta, 70, 102-115.]). Furthermore, peptide and depsipeptide amides prepared by this method have been cyclized via `direct amide cyclization' to give cyclic peptides (Arnhold et al., 2015[Arnhold, F. S., Linden, A. & Heimgartner, H. (2015). Helv. Chim. Acta, 98, 232-244.]; Dannecker-Dörig et al., 2009[Dannecker-Dörig, I., Linden, A. & Heimgartner, H. (2009). Collect. Czech. Chem. Commun. 74, 901-925.]; Jeremic et al., 2005[Jeremic, T., Linden, A., Moehle, K. & Heimgartner, H. (2005). Tetrahedron, 61, 1871-1883.]) and cyclo­depsipeptides (Koch et al., 2000[Koch, K. N., Linden, A. & Heimgartner, H. (2000). Helv. Chim. Acta, 83, 233-257.], 2001[Koch, K. N., Linden, A. & Heimgartner, H. (2001). Tetrahedron, 57, 2311-2326.]; Obrecht & Heimgartner, 1984[Obrecht, D. & Heimgartner, H. (1984). Helv. Chim. Acta, 67, 526-533.], 1987b[Obrecht, D. & Heimgartner, H. (1987b). Helv. Chim. Acta, 70, 329-338.], 1990[Obrecht, D. & Heimgartner, H. (1990). Helv. Chim. Acta, 73, 221-228.]), respectively, which contain α,α-di­substituted α-amino acids. The studies toward the synthesis of such cyclic depsipeptides with enniatin-like structures via `direct amide cyclization' of the linear depsipeptides of type (3a), prepared from azirine (1a) and α-hy­droxy acid (2a), gave the corresponding cyclic depsipeptide (Scheme 1[link]). The structure of the latter has been established by X-ray crystallography as the 18-membered (R,S,S)-isomer (4a) (Köttgen et al., 2006[Köttgen, P., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 731-746.]). Similar results were obtained with analogous hexa­depsipeptides (Köttgen et al., 2006[Köttgen, P., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 731-746.]), as well as with a homologue of (3a) to give the corresponding 24-membered cyclo­depsipeptide (Köttgen et al., 2009[Köttgen, P., Linden, A. & Heimgartner, H. (2009). Z. Naturforsch. Teil B, 64, 689-698.]). Unexpectedly, both (4a) and the 24-membered homologue were formed stereoselectively as epimers of the expected products. This fact was explained by a likely reaction mechanism (Köttgen et al., 2006[Köttgen, P., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 731-746.]).

[Scheme 1]

These surprising results prompted us to study the detailed structure and conformation of the linear hexa­depsipeptide amide (S)-Pms-Acp-(S)-Pms-Acp-(S)-Pms-Acp-NMe2, (3b), by X-ray crystallography. In addition, the structures of three related linear tetra­depsipeptide amides, namely, (S)-Pms-Aib-(S)-Pms-Aib-NMe2, (5a), the diastereoisomeric mixture (S,R)-Pms-Acp-(R,S)-Pms-Acp-NMe2/(R,S)-Pms-Acp-(R,S)-Pms-Acp-NMe2 (1:1), (5b), and (R,S)-Mns-Acp-(S,R)-Mns-Acp-NMe2, (5c), were examined (Pms is phenyl­lactic acid, Acp is 1-amino­cyclo­pentanecarb­oxy­lic acid and Mns is mandelic acid). These com­pounds all contain an alternating sequence of an α,α-disubstituted α-amino acid and an α-hy­droxy acid.

[Scheme 4]

The syntheses of (5b) and (5c) were carried out according to Scheme 2[link] in analogy to previously reported methods (Obrecht & Heimgartner, 1984[Obrecht, D. & Heimgartner, H. (1984). Helv. Chim. Acta, 67, 526-533.], 1990[Obrecht, D. & Heimgartner, H. (1990). Helv. Chim. Acta, 73, 221-228.]).

[Scheme 2]

2. Experimental

2.1. Synthesis and crystallization

The enanti­omerically pure hexa­depsipeptide amide (3b), with an alternating sequence of 1-amino­cyclo­pentanecarb­oxy­lic acid (Acp) and (S)-phenyl­lactic acid [Pms, (2a)], was prepared via the `azirine/oxazolone method' starting with 2-di­methyl­amino-1-aza­spiro­[2.4]hept-1-ene, i.e. (1b), and (2a) (Magi­rius, 1995[Magirius, J. E. F. (1995). PhD thesis, University of Zurich, Switzerland.]; Köttgen et al., 2006[Köttgen, P., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 731-746.]). In an analogous manner, the tetra­depsipeptide amide (5a) was synthesized using 3-di­methyl­amino-2,2-dimethyl-2H-azirine, i.e. (1a), as the synthon for 2-amino­isobutyric acid (Aib) (Obrecht & Heimgartner, 1990[Obrecht, D. & Heimgartner, H. (1990). Helv. Chim. Acta, 73, 221-228.]; Köttgen et al., 2009[Köttgen, P., Linden, A. & Heimgartner, H. (2009). Z. Naturforsch. Teil B, 64, 689-698.]). Similarly, reaction of racemic mandelic acid [Mns, (2b), 3.16 g] with an equimolar amount of (1b) (2.87 g) in 120 ml of aceto­nitrile after 1.5 h at room temperature gave the di­amide (6) (R = Ph, 5.55 g) in 92% yield (Magirius, 1995[Magirius, J. E. F. (1995). PhD thesis, University of Zurich, Switzerland.]). Selective hydrolysis of the terminal amide function by treatment of 4.90 g of (6) (R = Ph) in 170 ml of 3 N HCl [tetra­hydro­furan (THF)/H2O, 1:1 v/v] at 308 K for 15 h led to the corresponding acid (yield 3.59 g, 82%). Subsequent protection of the hy­droxy group by reaction of 526 mg of the acid with an excess of 3,4-di­hydro-2H-pyran and HCl in aceto­nitrile (10 ml) and 3 drops of HCl-saturated aceto­nitrile for 60 min at room temperature yielded crude (7) (R = Ph) as a colourless oil. Coupling of the latter with (6) (R = Ph, 580 mg) by using 1,1′-carbonyl­diimidazole (324 mg) and 0.5 ml of a sodium imidazolide suspension in THF gave, after 20 min at 308 K and chromatographic separation (SiO2, Et2O/AcOEt, 10:1 v/v), 810 mg (65%) of the tetra­hydro­pyranyl-protected tetra­depsipeptide amide. Finally, deprotection of 795 mg of the latter by treatment with pyridinium p-toluene­sulfonate in ethanol and chromatographic purification (SiO2, Et2O/AcOEt, 30:1 v/v) gave (5c) (yield 589 mg) as a racemic mixture of diastereoisomers in 86% yield, although the studied crystal only contained a single diastereoisomer as its racemate. The analogous reaction starting with racemic phenyl­lactic acid (2a′) led to (5b), also as a racemic mixture of diastereoisomers (Magirius, 1995[Magirius, J. E. F. (1995). PhD thesis, University of Zurich, Switzerland.]), which persisted in the chosen crystal. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvents, i.e. aceto­nitrile in the cases of (3b) and (5c), diethyl ether in the case of (5a) and di­chloro­methane/diethyl ether/hexane in the case of (5b).

2.2. Analytical and spectroscopic data

The data for (3b) and (5a) have been published previously (Köttgen et al., 2006[Köttgen, P., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 731-746.], 2009[Köttgen, P., Linden, A. & Heimgartner, H. (2009). Z. Naturforsch. Teil B, 64, 689-698.], respectively). Compound (5b) was obtained as a crude mixture of diastereoisomers from racemic (2a′) and (1b) in a preliminary experiment (Magirius, 1995[Magirius, J. E. F. (1995). PhD thesis, University of Zurich, Switzerland.]). Compound (5c) (mixture of diastereoisomers): m.p. 371–373 K; IR (CHCl3): 3400 (m), 3300 (m), 2995 (m), 2960 (m), 2870 (m), 1740 (s) (C=O ester), 1665 (s), 1630 (s) (C=O amide), 1525 (m), 1520 (m), 1495 (m), 1450 (m), 1395 (m), 1165 (m) cm−1; 1H NMR (CDCl3): δ 7.96, 7.76, 7.75, 7.73 (4s, 2 NH), 7.4–7.3, 7.3–7.15 (2m, 9 arom. H), 7.05 (d, J = 7, 1 arom. H), 5.86, 5.73 (2s, PhCHO), 5.12, 5.10 (2s, PhCHOH), 2.71, 2.62, 2.59 (3 broad s, Me2N), 2.5–2.35, 2.3–2.25, 2.2–1.85, 1.8–1.65, 1.6–1.35 (5m, 8 CH2); 13C NMR (CDCl3): δ 172.7, 172.0, 171.7, 171.6, 171.5 (5s, 3 C=O amide); 166.5 (s, C=O ester); 138.7, 138.5, 134.0, 133.6 (4s, 2 arom. C); 128.5, 128.4, 128.3, 128.2, 128.1, 127.7, 127.2, 126.9, 126.7 (9d, 10 arom. CH); 76.7, 76.3 (2d, PhCHO); 74.1, 74.0 (2d, PhCHOH); 65.3, 65.0, 64.5, 64.1 (4s, 2 cyclo­pentyl-C1); 39.0, 38.1, 37.3, 37.0, 36.9, 36.5, 35.9, 35.7, 24.4, 24.3, 24.2, 24.1, 24.0 (13t, 8 CH2); 37.6, 37.3 (2q, Me2N); ESI–MS: 574 (18, [M + K]+), 568 (100, [M + Na]+), 536 (4, M + 1]+); analysis calculated (%) for C30H37N3O6: C 67.27, H 6.96, N 7.84; found: C 66.99, H 6.95, N 7.67. The single crystal selected after crystallization from aceto­nitrile con­tained only the single racemic diastereoisomer (5c).

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Equivalent reflections, other than Friedel pairs in the noncentrosymmetric structures of (3b), (5a) and (5c), were merged. A correction for secondary extinction was applied only in the case of (3b).

Table 1
Experimental details

  (3b) (5a) (5b) (5c)
Crystal data
Chemical formula C47H58N4O9·C2H3N C28H37N3O6 C32H41N3O6 C30H37N3O6
Mr 864.02 511.60 563.68 535.62
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21/n Orthorhombic, Pna21
Temperature (K) 173 173 173 173
a, b, c (Å) 10.645 (3), 19.161 (9), 11.503 (3) 10.388 (4), 12.756 (6), 21.624 (5) 9.937 (5), 18.319 (7), 16.436 (3) 18.922 (5), 18.300 (3), 8.072 (6)
α, β, γ (°) 90, 93.75 (2), 90 90, 93.55 (3), 90 90, 90.19 (3), 90 90, 90, 90
V3) 2341.5 (15) 2859.7 (18) 2992 (2) 2795 (2)
Z 2 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.08 0.09 0.09
Crystal size (mm) 0.48 × 0.33 × 0.23 0.42 × 0.35 × 0.35 0.40 × 0.40 × 0.25 0.30 × 0.23 × 0.20
 
Data collection
Diffractometer Rigaku AFC-5R Rigaku AFC-5R Rigaku AFC-5R Rigaku AFC-5R
No. of measured, independent and observed [I > 2σ(I)] reflections 5821, 5527, 3617 7056, 6868, 4297 7311, 6855, 4077 4363, 3889, 2106
Rint 0.066 0.033 0.027 0.043
(sin θ/λ)max−1) 0.650 0.650 0.650 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.218, 1.04 0.052, 0.149, 1.04 0.070, 0.205, 1.04 0.055, 0.161, 1.01
No. of reflections 5527 6868 6855 3889
No. of parameters 632 703 509 394
No. of restraints 229 1 540 98
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.28 0.33, −0.23 0.66, −0.66 0.32, −0.25
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991[Molecular Structure Corporation (1991). TEXSAN. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.]), TEXSAN (Molecular Structure Corporation, 1989[Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.]), SHELXS86 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In (5a), there are two symmetry-independent mol­ecules in the asymmetric unit. The atomic coordinates of the two mol­ecules were tested carefully for a relationship from a higher symmetry space group using the program PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), but none could be found. In (3b), the asymmetric unit contains one mol­ecule of the peptide and one mol­ecule of aceto­nitrile. Two five-membered rings and the terminal –NMe2 group are disordered. Two sets of positions were defined for two of the –CH2– groups in two of the five-membered rings and for the –NMe2 methyl groups. The site-occupation factors of the major conformations of these groups refined to 0.597 (18), 0.59 (2) and 0.880 (18), respectively. For this and the other disordered structures described below, similarity restraints were applied to the chemically equivalent bond lengths involving all disordered C atoms, while neighbouring atoms within and between each conformation of the disordered com­ponents were restrained to have similar atomic displacement parameters and all non-H atoms were refined anisotropically. In (5b), both benzyl substituents exhibit disorder. Two orientations were defined for just the phenyl ring of the central benzyl group and for the entire terminal benzyl group, including the stereogenic C atom, C12, and the site-occupation factors of the major sites of these groups refined to 0.505 (7) and 0.520 (3), respectively. As the disorder inverts the chirality at C12, the crystal contains a mixture of diastereoisomers in the ratio 0.520 (3):0.480 (3) for (S,R)-Pms-Acp-(R,S)-Pms-Acp-NMe2 and (R,S)-Pms-Acp-(R,S)-Pms-Acp-NMe2, respectively. In (5c), one of the five-membered rings exhibits significant conformational disorder and two positions were refined for three of the ring atoms. The site-occupation factor of the major conformation of the ring refined to 0.658 (12). Models for disorder are rarely perfect and there remained a few reflections with significant discrepancies between their observed and calculated intensities. These reflections were omitted from the final refinements, i.e. 1 for (3b) and (5b), 7 for (5a) and 4 for (5c).

In general, except for (3b) and the two positions of the disordered hy­droxy H atom of (5b), the amide and hy­droxy H atoms were placed in the positions indicated by a difference electron-density map and their positions were allowed to refine together with individual isotropic displacement parameters. For (5c), the N—H and O—H distances were restrained to 0.86 (2) and 0.84 (2) Å, respectively. The methyl H atoms in all structures and the hy­droxy H atoms in (3b) and (5b) were constrained to an ideal geometry (C—H = 0.98 Å and O—H = 0.84 Å), with Uiso(H) = 1.5Ueq(C,O), while each group was allowed to rotate freely about its parent C—C or C—O bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 (aromatic), 0.99 (methyl­ene) and 1.00 Å (methine), and with Uiso(H) = 1.2Ueq(C).

3. Results and discussion

The asymmetric unit of (3b) contains one mol­ecule of the hexa­depsipeptide (Fig. 1[link]) and one mol­ecule of aceto­nitrile. Two of the five-membered rings and the terminal –NMe2 group are disordered. The space group permits the com­pound in the crystal to be enanti­omerically pure, but the absolute configuration of the mol­ecule has not been determined. The enanti­omer used in the refinement was based on the known S-configuration of the stereogenic centres of the hy­droxy acids. The terminal hy­droxy group and all amide N—H groups act as donors for hydrogen bonds. N4—H is involved in an intra­molecular inter­action with the central amide O atom, O40 (Table 2[link]), to give a loop with a graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) of S(10), i.e. a β-turn. N10—H forms a similar intra­molecular inter­action with amide atom O27 at the hy­droxy end of the mol­ecule to give another graph-set motif of S(10). These two intra­molecular hydrogen bonds stabilize the hexa­depsipeptide backbone in a distorted 310-helical conformation com­parable with that of the hexa-Aib peptide Z-(Aib)6-N(Me)Ph (Dannecker-Dörig et al., 2011[Dannecker-Dörig, I., Linden, A. & Heimgartner, H. (2011). Helv. Chim. Acta, 94, 993-1011.]) and also the deca­peptide Z-(Aib)10-OH (Gessmann et al., 2016[Gessmann, R., Brückner, H. & Petratos, K. (2016). J. Pept. Sci. 22, 76-81.]). The torsion angles of Acp(2) and Acp(4), i.e. ϕ2/ψ2 and ϕ4/ψ4, respectively, are close to the characteristic values of −60/−30° (β-turn of type III) of a right-handed 310-helix (Table 3[link]). On the other hand, the corresponding torsion angles of the phenyl­lactic acids Pms(3) and Pms(5) deviate significantly from the expected values in a 310-helical structure. The com­bination of the torsion angles ϕ2/ψ2; ϕ3/ψ3 and ϕ4/ψ4; ϕ5/ψ5, respectively, are in good agreement for two consecutive β-turns of type I, whereas in poly(Aib)-peptides, β-turns of type III dominate. The amide group at the hy­droxy end of the mol­ecule, N16—H, forms an inter­molecular hydrogen bond with amide atom O53i near the –NMe2 end of an adjacent mol­ecule (in this discussion, the symmetry codes are as defined in the relevant table). This inter­action links the mol­ecules into extended chains, which run parallel to the [001] direction and can be described by a graph-set motif of C(14). Hy­droxy group O19—H forms an inter­molecular hydrogen bond with ester carbonyl atom O45i near the opposite end of the same neighbouring mol­ecule. This inter­action reinforces the chain described above to give a double-bridged chain and can also be described by a graph-set motif of C(14) (Fig. 2[link]). Double-bridges produce rings within the chain links that have a graph-set motif of R22(12).

Table 2
Hydrogen-bond geometry (Å, °) for (3b), (5a), (5b) and (5c)

  D—H⋯A D—H H⋯A DA D—H⋯A
(3b) O19—H419⋯O45i 0.84 2.11 2.814 (6) 142
  N4—H4⋯O40 0.88 2.19 3.019 (7) 156
  N10—H10⋯O27 0.88 2.07 3.882 (7) 154
  N16—H16⋯O53i 0.88 2.23 3.052 (6) 156
(5a) O13—H13⋯O35ii 0.90 (6) 1.79 (6) 2.670 (5) 169 (5)
  N4—H4⋯O21 0.90 (6) 1.99 (6) 2.881 (5) 171 (5)
  N10—H10⋯O53iii 0.81 (5) 2.36 (5) 3.124 (5) 157 (4)
  O53—H53⋯O75iv 0.86 (6) 1.83 (6) 2.684 (5) 171 (6)
  N44—H44⋯O61 0.85 (5) 2.01 (5) 2.824 (5) 159 (5)
  N50—H50⋯O13v 0.84 (5) 2.40 (5) 3.185 (5) 156 (4)
(5b) O13—H131⋯O34vi 0.84 2.00 2.753 (3) 149
  O13—H132⋯O34vi 0.84 1.92 2.753 (3) 172
  N4—H4⋯O21 0.87 (3) 2.06 (3) 2.920 (3) 170 (3)
  N10—H10⋯O39vi 0.84 (3) 2.34 (3) 3.161 (3) 164 (3)
(5c) O13—H13⋯O32vii 0.86 (2) 1.87 (3) 2.713 (6) 166 (8)
  N4—H4⋯O20 0.84 (2) 2.09 (3) 2.907 (5) 164 (6)
  N10—H10⋯O37viii 0.85 (2) 2.17 (3) 2.970 (6) 155 (5)
Symmetry codes: (i) x, y, z − 1; (ii) −x + 1, y − [{1\over 2}], −z; (iii) −x + 1, y − [{1\over 2}], −z + 1; (iv) −x, y + [{1\over 2}], −z + 1; (v) −x + 1, y + [{1\over 2}], −z + 1; (vi) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vii) −x + [{1\over 2}], y − [{1\over 2}], z + [{1\over 2}]; (viii) −x + [{1\over 2}], y − [{1\over 2}], z − [{1\over 2}].
†Two symmetry-independent mol­ecules; the atom numbers of mol­ecule B correspond with those of mol­ecule A + 40.
‡The hy­droxy group is disordered.

Table 3
Torsion angles ω, ϕ and ψ (°) of the backbone of the depsipeptide mol­ecules in the structures of (3b), (5a), (5b) and (5c)

[Scheme 3]
  Amino/hy­droxy acid   Atoms Torsion angles
(3b) Pms(1) ψ1 O19—C18—C17—N16 −9.6 (9)
    ω1 C18—C17—N16—C15 179.0 (6)
  Acp(2) ϕ2 C17—N16—C15—C14 −49.1 (8)
    ψ2 N16—C15—C14—O13 −34.2 (7)
    ω2 C15—C14—O13—C12 −171.3 (5)
  Pms(3) ϕ3 C14—O13—C12—C11 −77.1 (6)
    ψ3 O13—C12—C11—N10 −17.0 (8)
    ω3 C12—C11—N10—C9 179.0 (5)
  Acp(4) ϕ4 C11—N10—C9—C8 −49.7 (7)
    ψ4 N10—C9—C8—O7 −35.2 (7)
    ω4 C9—C8—O7—C6 −167.0 (5)
  Pms(5) ϕ5 C8—O7—C6—C5 −93.5 (6)
    ψ5 O7—C6—C5—N4 −5.5 (7)
    ω5 C6—C5—N4—C3 178.9 (6)
  Acp(6) ϕ6 C5—N4—C3—C2 51.6 (8)
    ψ6 N4—C3—C2—N1 43.6 (10)
         
(5a) Pms(1) ψ1 O13—C12—C11—N10 −18.9 (6); −17.2 (5)
    ω1 C12—C11—N10—C9 −173.3 (4); −171.1 (4)
  Aib(2) ϕ2 C11—N10—C9—C8 −51.5 (6); −50.9 (6)
    ψ2 N10—C9—C8—O7 −33.1 (6); −33.8 (6)
    ω2 C9—C8—O7—C6 −169.9 (3); −173.1 (4)
  Pms(3) ϕ3 C8—O7—C6—C5 −98.6 (4); −96.0 (5)
    ψ3 O7—C6—C5—N4 −2.1 (6); −6.9 (6)
    ω3 C6—C5—N4—C3 178.5 (4); −179.4 (4)
  Aib(4) ϕ4 C5—N4—C3—C2 −48.8 (6); −49.1 (5)
    ψ4 N4—C3—C2—N1 −43.2 (6); −44.3 (5)
         
(5b) Pms(1) ψ1 O13—C12a—C11—N10§ 22.1 (8)
      O13—C12b—C11—N10 −13.0 (8)
    ω1 C12a—C11—N10—C9§ 166.4 (4)
      C12b—C11—N10—C9 −174.9 (4)
  Acp(2) ϕ2 C11—N10—C9—C8 51.3 (4)
    ψ2 N10—C9—C8—O7 37.3 (3)
    ω2 C9—C8—O7—C6 169.0 (2)
  Pms(3) ϕ3 C8—O7—C6—C5 84.6 (3)
    ψ3 O7—C6—C5—N4 2.5 (4)
    ω3 C6—C5—N4—C3 175.7 (2)
  Acp(4) ϕ4 C5—N4—C3—C2 46.8 (3)
    ψ4 N4—C3—C2—N1 54.9 (3)
         
(5c) Mns(1) ψ1 O13—C12—C11—N10 15.3 (7)
    ω1 C12—C11—N10—C9 −170.0 (5)
  Acp(2) ϕ2 C11—N10—C9—C8 −64.2 (7)
    ψ2 N10—C9—C8—O7 −15.9 (7)
    ω2 C9—C8—O7—C6 179.8 (4)
  Mns(3) ϕ3 C8—O7—C6—C5 −76.1 (5)
    ψ3 O7—C6—C5—N4 −13.2 (6)
    ω3 C6—C5—N4—C3 179.7 (5)
  Acp(4) ϕ4 C5—N4—C3—C2 54.5 (6)
    ψ4 N4—C3—C2—N1 48.3 (7)
†Acp is 1-amino­cyclo­pentane­carb­oxy­lic acid, Pms is phenyl­lactic acid, Aib is amino­isobutyric acid and Mns is mandelic acid.
‡Two symmetry-independent mol­ecules. The atom numbers for mol­ecule A are given and those of mol­ecule B are obtained by adding 40; the torsion angles for mol­ecule B are listed second.
§S,R-isomer.
R,R-isomer.
[Figure 1]
Figure 1
View of the depsipeptide mol­ecule of (3b), showing the atom-labelling scheme for the peptide backbone. Displacement ellipsoids are drawn at the 50% probability level. Most H atoms and the minor-disorder conformations of the five-membered rings have been omitted for clarity.
[Figure 2]
Figure 2
The crystal packing of (3b) projected down the a axis and showing the hydrogen-bonded chains progressing parallel to the [001] direction. H atoms not involved in hydrogen-bonding inter­actions and the minor-disorder conformations have been omitted for clarity.

The crystals of the tetra­depsipeptide (5a) are enanti­omerically pure, but the absolute configuration of the mol­ecule has not been determined. The enanti­omer used in the refinement was based on the known S-configuration at C6 and C12. There are two independent mol­ecules, denoted A and B, in the asymmetric unit (Figs. 3[link]a and 3b). These mol­ecules have very similar geometries and are of the same enanti­omer, the main differences being in the orientations of the phenyl rings. The conformation of mol­ecule B is attained when the phenyl rings of the benzyl groups at C6 and C12 of mol­ecule A are twisted by approximately 40 and 21°, respectively, about their axes. The hy­droxy and all amide groups act as donors for hydrogen bonds. Mol­ecules A and B each form one intra­molecular hydrogen bond between the amide group near the –NMe2 end of the mol­ecule (N4—H or N44—H) and the amide O atom (O21 or O61) at the hy­droxy end of the mol­ecule (Table 2[link]). These inter­actions give loops with a graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) of S(10); the mol­ecules form β-turns analogous to those in the hexa­depsipeptide (3b). Again, the torsion angles of Aib(2), i.e. ϕ2/ψ2, are close to the characteristic values of −60/−30° of a right-handed 310-helix (Table 3[link]), but those of Pms(3) involved in the β-turn deviate clearly from these ideal values, while being in good agreement with those of β-turns of type I. The hy­droxy group of mol­ecule A, O13—H, forms an inter­molecular hydrogen bond with atom O35ii of the terminal amide group at the opposite end of a neighbouring mol­ecule A, thus forming extended chains, which run parallel to the [010] direction and have a graph-set motif of C(14). Identical chains, also running parallel to the [010] direction, are formed among the type B mol­ecules (O53—H⋯O75iv). The remaining amide group of mol­ecule A, N10—H, forms an inter­molecular hydrogen bond with hy­droxy atom O53iii of a neighbouring mol­ecule B, and the corresponding amide group of mol­ecule B, N50—H, hydrogen bonds back to hy­droxy atom O13v of the same mol­ecule A, thus forming a closed dimeric system with a graph-set motif of R22(10). The combination of all inter­molecular hydrogen bonds links the mol­ecules into two-dimensional (2D) networks, which lie parallel to the (10[\overline{1}]) plane (Fig. 4[link]).

[Figure 3]
Figure 3
View of the symmetry-independent mol­ecules of (5a), showing the atom-labelling scheme of (a) mol­ecule A and (b) mol­ecule B. Displacement ellipsoids are drawn at the 50% probability level. Most H atoms have been omitted for clarity.
[Figure 4]
Figure 4
The crystal packing of (5a) projected down the a axis and showing one of the 2D hydrogen-bonded layers. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.

Since the space group of (5b) is centrosymmetric, the com­pound in the crystal is racemic. Both benzyl substituents exhibit disorder. Two approximately equally occupied orientations were modelled for just the phenyl ring of the central benzyl group and for the entire terminal benzyl group, including the stereogenic C atom, C12 (Figs. 5[link]a and 5b). The disorder at C12 is a consequence of inversion at that atom and indicates that the com­pound actually contains almost equal qu­anti­ties of two racemic diastereoisomers, which crystallize disordered over the same crystallographic site. Each amide and hy­droxy group of the mol­ecule acts as a donor for hydrogen bonds, thereby forming one intra­molecular and two inter­molecular inter­actions. The two N—H groups in the mol­ecule form hydrogen bonds to amide O atoms. N4—H is involved in an intra­molecular inter­action with amide atom O21 at the hy­droxy end of the mol­ecule (Table 2[link]) to give a β-turn with a graph-set motif of S(10). Similar to (3b) and (5a), the torsion angles ϕ2/ψ2 of Acp(2) with values of 51.3 (4) and 37.3 (3)°, and ϕ3/ψ3 of Pms(3) with values of 84.6 (3) and 2.5 (4)°, respectively, correspond well with those of a β-turn of type I′ (Table 3[link]). As (5b) is racemic, an equal number of mol­ecules with the corresponding type I turn are also present. N10—H forms an inter­molecular hydrogen bond with the secondary amide O atom, O39vi, at the opposite end of a neighbouring mol­ecule. This inter­action links the mol­ecules into chains, which run parallel to the [010] direction and can be described by a graph-set motif of C(11). Hy­droxy group O13—H forms an inter­molecular hydrogen bond with the primary amide O atom, O34vi, near the –NMe2 end of the same adjacent mol­ecule. This inter­action reinforces the chain described above to give a double-bridged chain and can also be described by a graph-set motif of C(11). Double-bridges produce rings within the chain links that have a graph-set motif of R22(12). The inter­molecular inter­actions link the mol­ecules into extended chains, which run parallel to the [010] direction (Fig. 6[link]).

[Figure 5]
Figure 5
Views of the two diastereoisomers of (5b) disordered over the same crystallographic site with almost equal occupation. The atom-labelling scheme is shown for (a) the 6R,12S diastereoisomer and (b) the 6R,12R diastereoisomer (the enanti­omers of these mol­ecules are also present in this centrosymmetric structure). Displacement ellipsoids are drawn at the 50% probability level. Most H atoms and the minor-disorder conformations of the benzyl groups have been omitted for clarity.
[Figure 6]
Figure 6
A partial packing diagram for (5b) projected down the c axis and showing the hydrogen-bonded chains progressing parallel to the [010] direction. The inversion-related chain that runs between the two chains shown has been excluded, while H atoms not involved in hydrogen-bonding inter­actions and the minor-disorder com­ponents have been omitted for clarity.

Finally, the space group of (5c) is noncentrosymmetric, but the presence of glide planes indicates that the com­pound in the crystal is racemic. The absolute structure could not be confirmed by refinement of the absolute structure parameter and was chosen arbitrarily. One of the five-membered rings of the mol­ecule exhibits conformational disorder, which appears to correspond with a different atom forming the flap of the envelope conformation of the five-membered ring (Fig. 7[link]). The two amide groups in the mol­ecule act as hydrogen-bond donors. N4—H is involved in an intra­molecular inter­action with amide atom O20 at the hy­droxy end of the mol­ecule (Table 2[link]) to give a loop with a graph-set motif of S(10). The values of the torsion angles ϕ2/ψ2 of Acp(2) with values of −64.2 (7) and −15.9 (7)°, and ϕ3/ψ3 of Mns(3) with values of −76.1 (5) and −13.2 (6)°, respectively, are in between the typical values for β-turns of type I and type III (Table 3[link]). N10—H forms an inter­molecular hydrogen bond with amide atom O37viii at the opposite end of a neighbouring mol­ecule. This inter­action links the mol­ecules into extended chains, which run parallel to the [011] direction and can be described by a graph-set motif of C(11). Hy­droxy group O13—H forms an inter­molecular hydrogen bond with amide ­atom O32vii near the –NMe2 end of a different adjacent mol­ecule. This inter­action links the mol­ecules into chains, which run parallel to the [0[\overline{1}]1] direction and can also be described by a graph-set motif of C(11). The combination of all inter­molecular hydrogen bonds links the mol­ecules into 2D networks, which lie parallel to the (100) plane (Fig. 8[link]).

[Figure 7]
Figure 7
View of the mol­ecule of (5c), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Most H atoms and one conformation of the disordered five-membered ring have been omitted for clarity.
[Figure 8]
Figure 8
A partial packing diagram for (5c) projected down the a axis and showing one of the 2D hydrogen-bonded layers. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.

In summary, all of the studied depsipeptides with an alternating sequence of an α,α-disubstituted α-amino acid and an α-hy­droxy acid exist in the crystal in a β-turn conformation. Whereas β-turns of type I (or I′) are formed in the cases of (3b), (5a) and (5b), which contain phenyl­lactic acid [Pms, (2a)], the torsion angles for (5c), which incorporates mandelic acid [Mns, (2b)], indicate a β-turn in between type I and type III. Crystal structures of linear depsipeptides are rare. The only detailed studies have been carried out by Katakai and co-workers on Boc-(Leu-Leu-Ala)2-(Leu-Leu-Lac)3-OEt (Ohyama et al., 2000[Ohyama, T., Oku, H., Hiroki, A., Maekawa, Y., Yoshida, M. & Katakai, R. (2000). Biopolymers, 54, 375-378.]), Boc-(Leu-Leu-Lac)3-Leu-Leu-OEt (Ohyama et al., 2001[Ohyama, T., Oku, H., Yoshida, M. & Katakai, R. (2001). Biopolymers, 58, 636-642.]) and Boc-Leu-Leu-Ala-(Leu-Leu-Lac)3-Leu-Leu-OEt (Oku et al., 2004[Oku, H., Ohyama, T., Hiroki, A., Yamada, K., Fukuyama, K., Kawaguchi, H. & Katakai, R. (2004). Biopolymers, 75, 242-254.]) (Lac is lactic acid). In the first case, the crystal structure can be described as an α-helix with two 310-helical segments located at the N-terminus and in the middle of the chain, between the peptide and the depsipeptide units, whereas in the second case, an almost ideal α-helical conformation was found. The conformation of the third depsipeptide, which has been prepared by condensation of the tripeptide segment Boc-Leu-Leu-Ala-OH with the α-helical depsipeptide sequence H-(Leu-Leu-Lac)3-Leu-Leu-OEt, was described as an `α/310-conjugated helix with a kink at the junction of the peptide and depsipeptide segments'.

Theoretical conformational analysis of polydepsipeptides poly(Ala-Lac) with an alternating sequence of L-alanine and L-lactic acid showed that a helical structure similar to a right-handed α-helix of a polypeptide is energetically preferred (Ingwall & Goodman, 1974[Ingwall, R. T. & Goodman, M. (1974). Macromolecules, 7, 598-605.]; Goodman, 1985[Goodman, M. (1985). Biopolymers, 24, 137-155.]). The 310-helix was identified as the second low-energy conformation. Experimentally, on the basis of circular dichroism (CD), IR and NMR measurements, the 310-helical conformation, i.e. the formation of β-turns of type I/II, was found as the dominant structure (Ingwall et al., 1976[Ingwall, R. T., Gilon, C. & Goodman, M. (1976). Macromolecules, 9, 802-808.]). These and other studies in solution confirm that the conformational stability of depsipeptides is significantly lower than that of related peptides as a result of the smaller number of intra­molecular hydrogen bonds (Wouters et al., 1982[Wouters, G., Katakai, R., Becktel, W. J. & Goodman, M. (1982). Macromolecules, 15, 31-35.]; Becktel et al., 1985[Becktel, W. J., Wouters, G., Simmons, D. M. & Goodman, M. (1985). Macromolecules, 18, 630-634.]; Arad & Goodman, 1990[Arad, O. & Goodman, M. (1990). Biopolymers, 29, 1651-1668.]; Katakai et al., 1996[Katakai, R., Kobayashi, K., Yonezawa, N. & Yoshida, M. (1996). Biopolymers, 38, 285-290.]).

Supporting information


Computing details top

For all structures, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPII (Johnson, 1976) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(S)-Pms-Acp-(S)-Pms-Acp-(S)-Pms-Acp-NMe2 (3b) top
Crystal data top
C47H58N4O9·C2H3NF(000) = 924
Mr = 864.02Dx = 1.226 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.645 (3) ÅCell parameters from 20 reflections
b = 19.161 (9) Åθ = 10.0–12.5°
c = 11.503 (3) ŵ = 0.09 mm1
β = 93.75 (2)°T = 173 K
V = 2341.5 (15) Å3Prism, colourless
Z = 20.48 × 0.33 × 0.23 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.066
Radiation source: Rigaku RU200 rotating anode generatorθmax = 27.5°, θmin = 2.5°
Graphite monochromatorh = 013
ω–2θ scansk = 024
5821 measured reflectionsl = 1414
5527 independent reflections3 standard reflections every 150 reflections
3617 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0906P)2 + 3.1019P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.075(Δ/σ)max < 0.001
wR(F2) = 0.218Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.28 e Å3
5527 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
632 parametersExtinction coefficient: 0.009 (2)
229 restraintsAbsolute structure: No quotients, so Flack parameter determined by classical intensity fit
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (2)
Hydrogen site location: inferred from neighbouring sites
Special details top

Experimental. Solvent used: MeCN

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The asymmetric unit contains one molecule of the peptide and one molecule of MeCN. Two five-membered rings and the terminal -NMe2 group are disordered. Two sets of positions were defined for two of the -CH2- groups in two of the five-membered rings and for the -NMe2 methyl groups. The site occupation factors of the major conformations of these groups refined to 0.597 (18), 0.59 (2) and 0.880 (18), respectively. Similarity restraints were applied to the chemically equivalent bond lengths and angles involving all disordered C-atoms, while neighbouring atoms within and between each conformation of the disordered groups were restrained to have similar atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O70.8591 (4)0.5444 (3)0.7255 (3)0.0263 (9)
O130.9280 (4)0.6485 (3)0.3926 (3)0.0288 (9)
O190.7833 (5)0.5572 (4)0.0570 (4)0.0494 (14)
H190.72320.55920.00600.074*
O270.8268 (4)0.5100 (3)0.3529 (3)0.0351 (11)
O321.0631 (4)0.5925 (3)0.5188 (3)0.0358 (11)
O400.7911 (4)0.6893 (3)0.6611 (3)0.0332 (10)
O450.6831 (4)0.5534 (3)0.8246 (4)0.0451 (13)
O531.0616 (4)0.5672 (3)0.9855 (3)0.0384 (11)
O581.2172 (5)0.7160 (4)1.0466 (4)0.0549 (15)
N11.2599 (6)0.6696 (5)0.8749 (5)0.068 (2)
N40.9841 (5)0.6441 (3)0.8501 (4)0.0329 (12)
H40.94160.64930.78250.040*
N100.7488 (4)0.6005 (3)0.5350 (4)0.0290 (11)
H100.75910.58290.46560.035*
N160.9577 (5)0.5538 (3)0.2256 (4)0.0297 (11)
H160.96810.56580.15300.036*
C21.1778 (8)0.6977 (5)0.9482 (6)0.050 (2)
C31.0395 (7)0.7056 (4)0.9112 (6)0.0419 (18)
C50.9978 (6)0.5811 (4)0.8964 (5)0.0303 (14)
C60.9344 (5)0.5204 (4)0.8268 (5)0.0262 (13)
H60.88050.49310.87840.031*
C80.7356 (6)0.5559 (4)0.7345 (5)0.0316 (14)
C90.6667 (5)0.5644 (4)0.6146 (5)0.0300 (13)
C110.8073 (6)0.6595 (4)0.5681 (5)0.0313 (14)
C120.8925 (6)0.6941 (4)0.4841 (5)0.0322 (14)
H120.97110.70920.52950.039*
C141.0192 (5)0.6003 (4)0.4211 (5)0.0279 (13)
C151.0631 (5)0.5627 (4)0.3139 (5)0.0260 (12)
C170.8484 (6)0.5284 (4)0.2525 (5)0.0290 (13)
C180.7437 (6)0.5220 (4)0.1568 (5)0.0336 (15)
H180.66760.54640.18310.040*
C200.7098 (7)0.4457 (4)0.1344 (7)0.0454 (18)
H2010.78490.42100.10890.055*
H2020.68720.42430.20850.055*
C210.6026 (7)0.4351 (4)0.0442 (6)0.0411 (16)
C220.6134 (9)0.3935 (6)0.0518 (8)0.062 (2)
H220.69140.37090.06190.075*
C230.5132 (9)0.3833 (6)0.1353 (8)0.071 (3)
H230.52310.35340.20000.085*
C240.4015 (9)0.4164 (6)0.1231 (8)0.066 (3)
H240.33330.41090.17990.079*
C250.3895 (8)0.4575 (6)0.0282 (8)0.067 (3)
H250.31070.47910.01780.080*
C260.4875 (7)0.4690 (6)0.0530 (7)0.061 (3)
H260.47690.50020.11580.073*
C281.1662 (6)0.6094 (4)0.2632 (5)0.0301 (14)
H2811.12960.63850.19830.036*
H2821.20530.64040.32410.036*
C291.2641 (6)0.5580 (4)0.2192 (6)0.0383 (15)
H2911.27530.56580.13550.046*
H2921.34640.56420.26320.046*
C301.2121 (7)0.4844 (4)0.2391 (6)0.0425 (17)
H3011.16200.46760.16910.051*
H3021.28120.45100.25850.051*
C311.1294 (6)0.4935 (4)0.3414 (6)0.0334 (14)
H3111.06810.45490.34500.040*
H3121.18080.49600.41610.040*
C330.8301 (6)0.7593 (4)0.4276 (6)0.0366 (15)
H3310.81400.79370.48900.044*
H3320.88820.78080.37420.044*
C340.7080 (6)0.7414 (4)0.3609 (5)0.0318 (14)
C350.5952 (7)0.7561 (5)0.4082 (7)0.050 (2)
H350.59590.77820.48220.060*
C360.4816 (8)0.7395 (6)0.3506 (8)0.064 (3)
H360.40470.74950.38470.077*
C370.4813 (8)0.7072 (5)0.2389 (9)0.066 (3)
H370.40410.69430.19870.079*
C380.5913 (8)0.6952 (5)0.1909 (8)0.063 (3)
H380.59100.67450.11580.076*
C390.7061 (7)0.7128 (5)0.2501 (6)0.0464 (18)
H390.78280.70510.21430.056*
C410.5396 (6)0.6037 (5)0.6198 (6)0.0446 (15)
H4110.50930.60100.69920.054*0.597 (18)
H4120.54990.65340.59930.054*0.597 (18)
H4130.55050.65490.61630.054*0.403 (18)
H4140.49560.59120.69010.054*0.403 (18)
C42A0.4448 (10)0.5678 (8)0.5311 (12)0.0503 (19)0.597 (18)
H4210.41570.60110.46930.060*0.597 (18)
H4220.37070.55090.57050.060*0.597 (18)
C43A0.5150 (10)0.5057 (7)0.4779 (11)0.0478 (18)0.597 (18)
H4310.46000.46410.47030.057*0.597 (18)
H4320.54310.51800.40010.057*0.597 (18)
C42B0.4712 (19)0.5743 (8)0.5069 (11)0.0474 (19)0.403 (18)
H4230.51310.58890.43640.057*0.403 (18)
H4240.38160.58840.49930.057*0.403 (18)
C43B0.4864 (8)0.4949 (9)0.531 (2)0.0487 (19)0.403 (18)
H4330.43570.47930.59490.058*0.403 (18)
H4340.46400.46680.46000.058*0.403 (18)
C440.6296 (6)0.4919 (5)0.5652 (6)0.0428 (15)
H4410.60630.46020.62820.051*0.597 (18)
H4420.70000.47090.52520.051*0.597 (18)
H4430.64780.45540.62480.051*0.403 (18)
H4440.67730.48130.49640.051*0.403 (18)
C461.0330 (6)0.4724 (4)0.7782 (6)0.0347 (15)
H4611.08630.49950.72720.042*
H4621.08790.45310.84310.042*
C470.9702 (5)0.4133 (4)0.7094 (5)0.0278 (13)
C480.9559 (6)0.4160 (4)0.5875 (5)0.0352 (15)
H480.98930.45440.54740.042*
C490.8936 (7)0.3632 (4)0.5247 (6)0.0394 (16)
H490.88650.36490.44200.047*
C500.8422 (7)0.3083 (4)0.5820 (6)0.0422 (17)
H500.79860.27250.53870.051*
C510.8535 (7)0.3048 (4)0.7009 (6)0.0426 (17)
H510.81840.26650.73990.051*
C520.9163 (6)0.3572 (4)0.7650 (5)0.0340 (14)
H520.92250.35480.84760.041*
C541.0241 (9)0.7699 (5)0.8276 (7)0.067 (2)
H5411.10610.79240.81600.080*0.59 (2)
H5420.98330.75670.75100.080*0.59 (2)
H5431.09680.80190.84010.080*0.41 (2)
H5441.01870.75450.74530.080*0.41 (2)
C55A0.9380 (16)0.8178 (7)0.8965 (16)0.070 (2)0.59 (2)
H5510.88960.85070.84450.085*0.59 (2)
H5520.98670.84430.95800.085*0.59 (2)
C56A0.8513 (12)0.7625 (8)0.9489 (16)0.068 (2)0.59 (2)
H5610.79170.78321.00180.081*0.59 (2)
H5620.80510.73390.88850.081*0.59 (2)
C55B0.9008 (17)0.8070 (14)0.8570 (19)0.069 (2)0.41 (2)
H5530.83250.79600.79730.083*0.41 (2)
H5540.91330.85820.85870.083*0.41 (2)
C56B0.866 (2)0.7807 (12)0.9782 (17)0.068 (2)0.41 (2)
H5630.87190.81931.03560.082*0.41 (2)
H5640.77840.76260.97370.082*0.41 (2)
C570.9598 (8)0.7219 (5)1.0151 (7)0.0610 (19)
H5711.00610.75121.07450.073*0.59 (2)
H5720.92950.67891.05200.073*0.59 (2)
H5731.01500.73701.08300.073*0.41 (2)
H5740.91350.67961.03740.073*0.41 (2)
C59A1.2331 (11)0.6496 (9)0.7517 (6)0.067 (3)0.880 (18)
H5911.22980.59870.74540.100*0.880 (18)
H5921.29970.66760.70500.100*0.880 (18)
H5931.15200.66940.72310.100*0.880 (18)
C60A1.3921 (8)0.6580 (8)0.9182 (8)0.072 (3)0.880 (18)
H6011.43720.70260.92090.107*0.880 (18)
H6021.43250.62580.86580.107*0.880 (18)
H6031.39420.63780.99660.107*0.880 (18)
C59B1.195 (7)0.673 (7)0.758 (3)0.068 (3)0.120 (18)
H5941.13540.63440.74740.102*0.120 (18)
H5951.25670.67060.69850.102*0.120 (18)
H5961.14870.71760.74930.102*0.120 (18)
C60B1.363 (6)0.717 (4)0.915 (6)0.070 (3)0.120 (18)
H6041.32760.76250.93560.105*0.120 (18)
H6051.42010.72380.85230.105*0.120 (18)
H6061.40960.69720.98320.105*0.120 (18)
N630.3687 (16)0.8031 (9)0.6648 (12)0.150 (6)
C610.5884 (13)0.8022 (9)0.7855 (15)0.127 (5)
H6110.57700.81870.86470.190*
H6120.64970.83200.74930.190*
H6130.61920.75400.78840.190*
C620.4663 (13)0.8050 (7)0.7159 (12)0.095 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.025 (2)0.034 (3)0.0193 (18)0.0008 (18)0.0000 (15)0.0000 (17)
O130.030 (2)0.036 (3)0.0197 (19)0.001 (2)0.0024 (15)0.0010 (18)
O190.051 (3)0.069 (4)0.028 (2)0.023 (3)0.002 (2)0.010 (3)
O270.042 (3)0.043 (3)0.020 (2)0.001 (2)0.0004 (18)0.0017 (19)
O320.037 (2)0.047 (3)0.022 (2)0.008 (2)0.0031 (17)0.004 (2)
O400.038 (2)0.035 (3)0.026 (2)0.007 (2)0.0006 (18)0.0058 (19)
O450.036 (2)0.079 (4)0.021 (2)0.002 (3)0.0027 (17)0.001 (2)
O530.035 (2)0.055 (3)0.024 (2)0.007 (2)0.0065 (18)0.002 (2)
O580.057 (3)0.075 (4)0.031 (2)0.034 (3)0.011 (2)0.002 (3)
N10.051 (3)0.119 (6)0.035 (3)0.027 (4)0.008 (2)0.009 (3)
N40.033 (3)0.040 (3)0.024 (2)0.016 (2)0.007 (2)0.001 (2)
N100.028 (3)0.041 (3)0.017 (2)0.002 (2)0.0002 (18)0.002 (2)
N160.034 (3)0.040 (3)0.015 (2)0.001 (2)0.0002 (18)0.000 (2)
C20.060 (5)0.058 (5)0.031 (3)0.039 (4)0.006 (3)0.001 (3)
C30.066 (5)0.030 (4)0.029 (3)0.019 (3)0.010 (3)0.001 (3)
C50.029 (3)0.039 (4)0.023 (3)0.006 (3)0.003 (2)0.002 (3)
C60.021 (3)0.039 (4)0.019 (3)0.008 (3)0.003 (2)0.001 (2)
C80.031 (3)0.044 (4)0.020 (3)0.003 (3)0.000 (2)0.004 (3)
C90.029 (3)0.040 (4)0.020 (3)0.002 (3)0.003 (2)0.001 (3)
C110.032 (3)0.036 (4)0.026 (3)0.006 (3)0.000 (2)0.001 (3)
C120.032 (3)0.037 (4)0.027 (3)0.001 (3)0.000 (2)0.007 (3)
C140.026 (3)0.033 (3)0.024 (3)0.003 (3)0.000 (2)0.001 (3)
C150.026 (3)0.030 (3)0.022 (3)0.002 (3)0.000 (2)0.005 (2)
C170.035 (3)0.024 (3)0.028 (3)0.003 (3)0.003 (2)0.002 (2)
C180.036 (3)0.045 (4)0.021 (3)0.009 (3)0.009 (2)0.000 (3)
C200.049 (4)0.040 (4)0.046 (4)0.003 (3)0.001 (3)0.009 (3)
C210.043 (4)0.032 (4)0.047 (4)0.009 (3)0.000 (3)0.006 (3)
C220.062 (5)0.067 (6)0.056 (5)0.006 (5)0.003 (4)0.026 (5)
C230.073 (6)0.075 (7)0.064 (6)0.012 (5)0.003 (5)0.045 (5)
C240.057 (5)0.073 (7)0.064 (6)0.019 (5)0.016 (4)0.022 (5)
C250.040 (4)0.089 (8)0.071 (6)0.005 (5)0.001 (4)0.034 (5)
C260.041 (4)0.084 (7)0.059 (5)0.005 (4)0.005 (4)0.038 (5)
C280.034 (3)0.032 (3)0.025 (3)0.011 (3)0.001 (2)0.001 (3)
C290.032 (3)0.045 (4)0.038 (3)0.002 (3)0.008 (3)0.002 (3)
C300.047 (4)0.033 (4)0.049 (4)0.004 (3)0.013 (3)0.000 (3)
C310.042 (4)0.024 (3)0.034 (3)0.001 (3)0.001 (3)0.002 (3)
C330.036 (4)0.034 (4)0.039 (3)0.005 (3)0.000 (3)0.001 (3)
C340.039 (3)0.030 (3)0.027 (3)0.003 (3)0.001 (2)0.012 (3)
C350.044 (4)0.065 (6)0.041 (4)0.007 (4)0.005 (3)0.012 (4)
C360.042 (4)0.081 (7)0.071 (6)0.012 (4)0.008 (4)0.033 (5)
C370.045 (5)0.064 (6)0.084 (7)0.013 (4)0.026 (4)0.032 (5)
C380.059 (5)0.065 (6)0.063 (5)0.020 (5)0.021 (4)0.008 (5)
C390.044 (4)0.056 (5)0.038 (4)0.008 (4)0.005 (3)0.004 (3)
C410.031 (3)0.068 (4)0.033 (3)0.000 (3)0.003 (2)0.004 (3)
C42A0.035 (3)0.071 (4)0.044 (3)0.003 (3)0.003 (3)0.003 (3)
C43A0.035 (3)0.070 (4)0.038 (3)0.006 (3)0.001 (3)0.004 (3)
C42B0.032 (3)0.070 (4)0.040 (4)0.005 (3)0.001 (3)0.001 (3)
C43B0.036 (3)0.069 (4)0.040 (4)0.007 (3)0.002 (3)0.004 (3)
C440.035 (3)0.063 (4)0.030 (3)0.013 (3)0.003 (2)0.004 (3)
C460.028 (3)0.042 (4)0.033 (3)0.002 (3)0.001 (3)0.002 (3)
C470.026 (3)0.030 (3)0.027 (3)0.004 (2)0.000 (2)0.003 (3)
C480.045 (4)0.029 (4)0.031 (3)0.004 (3)0.003 (3)0.005 (3)
C490.044 (4)0.038 (4)0.035 (3)0.007 (3)0.004 (3)0.000 (3)
C500.048 (4)0.038 (4)0.041 (4)0.005 (3)0.004 (3)0.006 (3)
C510.054 (4)0.035 (4)0.040 (4)0.004 (3)0.008 (3)0.006 (3)
C520.040 (3)0.037 (4)0.025 (3)0.010 (3)0.002 (3)0.006 (3)
C540.094 (5)0.051 (4)0.052 (4)0.012 (4)0.023 (4)0.002 (3)
C55A0.096 (5)0.053 (4)0.059 (4)0.002 (4)0.022 (4)0.004 (4)
C56A0.094 (5)0.050 (4)0.056 (4)0.001 (4)0.018 (4)0.011 (3)
C55B0.096 (5)0.051 (4)0.055 (4)0.004 (4)0.024 (4)0.006 (4)
C56B0.093 (5)0.052 (4)0.056 (4)0.001 (4)0.020 (4)0.009 (4)
C570.086 (5)0.046 (4)0.048 (4)0.001 (4)0.016 (3)0.012 (3)
C59A0.051 (4)0.117 (7)0.034 (3)0.026 (4)0.012 (3)0.014 (4)
C60A0.049 (4)0.123 (7)0.043 (4)0.022 (4)0.005 (3)0.007 (4)
C59B0.052 (5)0.118 (7)0.035 (4)0.027 (5)0.011 (4)0.012 (5)
C60B0.051 (5)0.121 (7)0.040 (4)0.025 (5)0.007 (4)0.008 (5)
N630.169 (13)0.131 (12)0.140 (11)0.028 (11)0.071 (10)0.018 (10)
C610.086 (9)0.100 (11)0.191 (16)0.005 (8)0.022 (10)0.027 (11)
C620.098 (9)0.074 (8)0.111 (10)0.009 (7)0.012 (8)0.020 (7)
Geometric parameters (Å, º) top
O7—C81.344 (7)C37—H370.9500
O7—C61.445 (7)C38—C391.401 (11)
O13—C141.364 (7)C38—H380.9500
O13—C121.438 (7)C39—H390.9500
O19—C181.418 (7)C41—C42A1.548 (6)
O19—H190.8400C41—C42B1.552 (6)
O27—C171.243 (7)C41—H4110.9900
O32—C141.198 (7)C41—H4120.9900
O40—C111.235 (7)C41—H4130.9900
O45—C81.210 (7)C41—H4140.9900
O53—C51.221 (7)C42A—C43A1.552 (6)
O58—C21.231 (8)C42A—H4210.9900
N1—C21.365 (11)C42A—H4220.9900
N1—C59A1.477 (7)C43A—C441.551 (6)
N1—C60B1.477 (8)C43A—H4310.9900
N1—C59B1.478 (8)C43A—H4320.9900
N1—C60A1.478 (8)C42B—C43B1.553 (6)
N4—C51.322 (9)C42B—H4230.9900
N4—C31.475 (8)C42B—H4240.9900
N4—H40.8800C43B—C441.551 (6)
N10—C111.335 (9)C43B—H4330.9900
N10—C91.478 (8)C43B—H4340.9900
N10—H100.8800C44—H4410.9900
N16—C171.317 (8)C44—H4420.9900
N16—C151.473 (7)C44—H4430.9900
N16—H160.8800C44—H4440.9900
C2—C31.514 (11)C46—C471.511 (9)
C3—C571.542 (12)C46—H4610.9900
C3—C541.565 (11)C46—H4620.9900
C5—C61.542 (9)C47—C521.393 (9)
C6—C461.530 (9)C47—C481.402 (8)
C6—H61.0000C48—C491.387 (10)
C8—C91.528 (8)C48—H480.9500
C9—C441.542 (10)C49—C501.374 (10)
C9—C411.552 (9)C49—H490.9500
C11—C121.520 (9)C50—C511.367 (10)
C12—C331.539 (10)C50—H500.9500
C12—H121.0000C51—C521.391 (11)
C14—C151.527 (8)C51—H510.9500
C15—C311.525 (9)C52—H520.9500
C15—C281.559 (8)C54—C55B1.549 (6)
C17—C181.520 (9)C54—C55A1.551 (6)
C18—C201.524 (10)C54—H5410.9900
C18—H181.0000C54—H5420.9900
C20—C211.506 (10)C54—H5430.9900
C20—H2010.9900C54—H5440.9900
C20—H2020.9900C55A—C56A1.553 (6)
C21—C221.372 (11)C55A—H5510.9900
C21—C261.396 (11)C55A—H5520.9900
C22—C231.402 (12)C56A—C571.551 (6)
C22—H220.9500C56A—H5610.9900
C23—C241.363 (14)C56A—H5620.9900
C23—H230.9500C55B—C56B1.551 (6)
C24—C251.359 (12)C55B—H5530.9900
C24—H240.9500C55B—H5540.9900
C25—C261.371 (12)C56B—C571.550 (6)
C25—H250.9500C56B—H5630.9900
C26—H260.9500C56B—H5640.9900
C28—C291.543 (9)C57—H5710.9900
C28—H2810.9900C57—H5720.9900
C28—H2820.9900C57—H5730.9900
C29—C301.537 (11)C57—H5740.9900
C29—H2910.9900C59A—H5910.9800
C29—H2920.9900C59A—H5920.9800
C30—C311.525 (9)C59A—H5930.9800
C30—H3010.9900C60A—H6010.9800
C30—H3020.9900C60A—H6020.9800
C31—H3110.9900C60A—H6030.9800
C31—H3120.9900C59B—H5940.9800
C33—C341.506 (9)C59B—H5950.9800
C33—H3310.9900C59B—H5960.9800
C33—H3320.9900C60B—H6040.9800
C34—C351.380 (10)C60B—H6050.9800
C34—C391.386 (10)C60B—H6060.9800
C35—C361.377 (12)N63—C621.160 (16)
C35—H350.9500C61—C621.482 (18)
C36—C371.426 (15)C61—H6110.9800
C36—H360.9500C61—H6120.9800
C37—C381.347 (13)C61—H6130.9800
C8—O7—C6118.9 (4)C42A—C41—H412110.3
C14—O13—C12116.9 (4)C9—C41—H412110.3
C18—O19—H19109.5H411—C41—H412108.6
C2—N1—C59A127.1 (7)C9—C41—H413112.0
C2—N1—C60B93 (3)C42B—C41—H413112.0
C2—N1—C59B105 (4)C9—C41—H414112.0
C60B—N1—C59B123 (5)C42B—C41—H414112.0
C2—N1—C60A119.0 (7)H413—C41—H414109.7
C59A—N1—C60A113.9 (8)C41—C42A—C43A106.9 (8)
C5—N4—C3120.4 (5)C41—C42A—H421110.3
C5—N4—H4119.8C43A—C42A—H421110.3
C3—N4—H4119.8C41—C42A—H422110.3
C11—N10—C9120.2 (5)C43A—C42A—H422110.3
C11—N10—H10119.9H421—C42A—H422108.6
C9—N10—H10119.9C44—C43A—C42A104.7 (8)
C17—N16—C15121.6 (5)C44—C43A—H431110.8
C17—N16—H16119.2C42A—C43A—H431110.8
C15—N16—H16119.2C44—C43A—H432110.8
O58—C2—N1119.1 (7)C42A—C43A—H432110.8
O58—C2—C3119.8 (8)H431—C43A—H432108.9
N1—C2—C3121.1 (6)C41—C42B—C43B99.8 (11)
N4—C3—C2113.9 (6)C41—C42B—H423111.8
N4—C3—C57107.9 (6)C43B—C42B—H423111.8
C2—C3—C57112.1 (6)C41—C42B—H424111.8
N4—C3—C54108.3 (5)C43B—C42B—H424111.8
C2—C3—C54108.2 (6)H423—C42B—H424109.5
C57—C3—C54106.0 (7)C44—C43B—C42B99.8 (12)
O53—C5—N4125.3 (6)C44—C43B—H433111.8
O53—C5—C6118.1 (6)C42B—C43B—H433111.8
N4—C5—C6116.5 (5)C44—C43B—H434111.8
O7—C6—C46104.7 (4)C42B—C43B—H434111.8
O7—C6—C5112.3 (5)H433—C43B—H434109.5
C46—C6—C5110.9 (5)C9—C44—C43B106.6 (9)
O7—C6—H6109.6C9—C44—C43A104.9 (7)
C46—C6—H6109.6C9—C44—H441110.8
C5—C6—H6109.6C43A—C44—H441110.8
O45—C8—O7124.6 (5)C9—C44—H442110.8
O45—C8—C9123.8 (5)C43A—C44—H442110.8
O7—C8—C9111.3 (5)H441—C44—H442108.8
N10—C9—C8109.9 (5)C9—C44—H443110.4
N10—C9—C44109.9 (5)C43B—C44—H443110.4
C8—C9—C44109.4 (6)C9—C44—H444110.4
N10—C9—C41110.5 (6)C43B—C44—H444110.4
C8—C9—C41112.7 (5)H443—C44—H444108.6
C44—C9—C41104.4 (5)C47—C46—C6110.6 (5)
O40—C11—N10123.4 (6)C47—C46—H461109.5
O40—C11—C12118.1 (6)C6—C46—H461109.5
N10—C11—C12118.4 (5)C47—C46—H462109.5
O13—C12—C11113.4 (5)C6—C46—H462109.5
O13—C12—C33108.1 (5)H461—C46—H462108.1
C11—C12—C33111.3 (5)C52—C47—C48117.7 (6)
O13—C12—H12107.9C52—C47—C46121.3 (5)
C11—C12—H12107.9C48—C47—C46120.8 (6)
C33—C12—H12107.9C49—C48—C47120.8 (6)
O32—C14—O13122.5 (6)C49—C48—H48119.6
O32—C14—C15125.3 (6)C47—C48—H48119.6
O13—C14—C15112.1 (5)C50—C49—C48120.0 (6)
N16—C15—C31111.4 (5)C50—C49—H49120.0
N16—C15—C14110.6 (5)C48—C49—H49120.0
C31—C15—C14113.9 (5)C51—C50—C49120.4 (7)
N16—C15—C28109.3 (5)C51—C50—H50119.8
C31—C15—C28104.4 (5)C49—C50—H50119.8
C14—C15—C28106.9 (5)C50—C51—C52120.2 (7)
O27—C17—N16122.9 (6)C50—C51—H51119.9
O27—C17—C18118.6 (5)C52—C51—H51119.9
N16—C17—C18118.5 (5)C51—C52—C47120.8 (6)
O19—C18—C17107.8 (5)C51—C52—H52119.6
O19—C18—C20113.5 (6)C47—C52—H52119.6
C17—C18—C20110.8 (6)C55B—C54—C3106.5 (10)
O19—C18—H18108.2C55A—C54—C3101.2 (9)
C17—C18—H18108.2C55A—C54—H541111.5
C20—C18—H18108.2C3—C54—H541111.5
C21—C20—C18114.0 (6)C55A—C54—H542111.5
C21—C20—H201108.8C3—C54—H542111.5
C18—C20—H201108.8H541—C54—H542109.4
C21—C20—H202108.8C55B—C54—H543110.4
C18—C20—H202108.8C3—C54—H543110.4
H201—C20—H202107.7C55B—C54—H544110.4
C22—C21—C26116.7 (7)C3—C54—H544110.4
C22—C21—C20122.2 (7)H543—C54—H544108.6
C26—C21—C20121.1 (7)C54—C55A—C56A100.4 (11)
C21—C22—C23122.1 (8)C54—C55A—H551111.7
C21—C22—H22118.9C56A—C55A—H551111.7
C23—C22—H22118.9C54—C55A—H552111.7
C24—C23—C22119.6 (8)C56A—C55A—H552111.7
C24—C23—H23120.2H551—C55A—H552109.5
C22—C23—H23120.2C57—C56A—C55A95.2 (11)
C25—C24—C23118.7 (8)C57—C56A—H561112.7
C25—C24—H24120.6C55A—C56A—H561112.7
C23—C24—H24120.6C57—C56A—H562112.7
C24—C25—C26122.2 (9)C55A—C56A—H562112.7
C24—C25—H25118.9H561—C56A—H562110.2
C26—C25—H25118.9C54—C55B—C56B107.8 (13)
C25—C26—C21120.5 (8)C54—C55B—H553110.2
C25—C26—H26119.7C56B—C55B—H553110.2
C21—C26—H26119.7C54—C55B—H554110.2
C29—C28—C15105.3 (5)C56B—C55B—H554110.2
C29—C28—H281110.7H553—C55B—H554108.5
C15—C28—H281110.7C57—C56B—C55B107.0 (13)
C29—C28—H282110.7C57—C56B—H563110.3
C15—C28—H282110.7C55B—C56B—H563110.3
H281—C28—H282108.8C57—C56B—H564110.3
C30—C29—C28106.2 (5)C55B—C56B—H564110.3
C30—C29—H291110.5H563—C56B—H564108.6
C28—C29—H291110.5C3—C57—C56B108.3 (9)
C30—C29—H292110.5C3—C57—C56A98.6 (9)
C28—C29—H292110.5C3—C57—H571112.0
H291—C29—H292108.7C56A—C57—H571112.0
C31—C30—C29104.0 (6)C3—C57—H572112.0
C31—C30—H301111.0C56A—C57—H572112.0
C29—C30—H301111.0H571—C57—H572109.7
C31—C30—H302111.0C3—C57—H573110.0
C29—C30—H302111.0C56B—C57—H573110.0
H301—C30—H302109.0C3—C57—H574110.0
C15—C31—C30102.9 (5)C56B—C57—H574110.0
C15—C31—H311111.2H573—C57—H574108.4
C30—C31—H311111.2N1—C59A—H591109.5
C15—C31—H312111.2N1—C59A—H592109.5
C30—C31—H312111.2H591—C59A—H592109.5
H311—C31—H312109.1N1—C59A—H593109.5
C34—C33—C12111.4 (6)H591—C59A—H593109.5
C34—C33—H331109.3H592—C59A—H593109.5
C12—C33—H331109.3N1—C60A—H601109.5
C34—C33—H332109.3N1—C60A—H602109.5
C12—C33—H332109.3H601—C60A—H602109.5
H331—C33—H332108.0N1—C60A—H603109.5
C35—C34—C39118.9 (7)H601—C60A—H603109.5
C35—C34—C33119.8 (6)H602—C60A—H603109.5
C39—C34—C33121.3 (6)N1—C59B—H594109.5
C36—C35—C34121.5 (8)N1—C59B—H595109.5
C36—C35—H35119.3H594—C59B—H595109.5
C34—C35—H35119.3N1—C59B—H596109.5
C35—C36—C37118.9 (8)H594—C59B—H596109.5
C35—C36—H36120.5H595—C59B—H596109.5
C37—C36—H36120.5N1—C60B—H604109.5
C38—C37—C36119.6 (8)N1—C60B—H605109.5
C38—C37—H37120.2H604—C60B—H605109.5
C36—C37—H37120.2N1—C60B—H606109.5
C37—C38—C39120.9 (9)H604—C60B—H606109.5
C37—C38—H38119.6H605—C60B—H606109.5
C39—C38—H38119.6C62—C61—H611109.5
C34—C39—C38120.1 (7)C62—C61—H612109.5
C34—C39—H39119.9H611—C61—H612109.5
C38—C39—H39119.9C62—C61—H613109.5
C42A—C41—C9107.0 (6)H611—C61—H613109.5
C9—C41—C42B98.9 (9)H612—C61—H613109.5
C42A—C41—H411110.3N63—C62—C61175.4 (18)
C9—C41—H411110.3
C59A—N1—C2—O58175.0 (11)C22—C21—C26—C253.2 (14)
C60B—N1—C2—O5838 (3)C20—C21—C26—C25178.4 (9)
C59B—N1—C2—O58163 (5)N16—C15—C28—C2997.1 (6)
C60A—N1—C2—O583.6 (14)C31—C15—C28—C2922.1 (6)
C59A—N1—C2—C36.0 (15)C14—C15—C28—C29143.1 (5)
C60B—N1—C2—C3143 (3)C15—C28—C29—C303.1 (7)
C59B—N1—C2—C318 (5)C28—C29—C30—C3127.1 (7)
C60A—N1—C2—C3175.3 (9)N16—C15—C31—C3078.9 (6)
C5—N4—C3—C251.6 (8)C14—C15—C31—C30155.2 (5)
C5—N4—C3—C5773.6 (8)C28—C15—C31—C3038.9 (6)
C5—N4—C3—C54172.0 (6)C29—C30—C31—C1540.9 (7)
O58—C2—C3—N4135.4 (7)O13—C12—C33—C3465.6 (7)
N1—C2—C3—N443.6 (10)C11—C12—C33—C3459.6 (7)
O58—C2—C3—C5712.4 (10)C12—C33—C34—C35102.9 (8)
N1—C2—C3—C57166.5 (8)C12—C33—C34—C3979.7 (8)
O58—C2—C3—C54104.1 (8)C39—C34—C35—C363.6 (12)
N1—C2—C3—C5476.9 (9)C33—C34—C35—C36179.0 (7)
C3—N4—C5—O535.2 (10)C34—C35—C36—C370.8 (13)
C3—N4—C5—C6178.9 (6)C35—C36—C37—C381.7 (14)
C8—O7—C6—C46146.1 (5)C36—C37—C38—C391.2 (14)
C8—O7—C6—C593.5 (6)C35—C34—C39—C384.0 (12)
O53—C5—C6—O7178.3 (5)C33—C34—C39—C38178.6 (7)
N4—C5—C6—O75.5 (7)C37—C38—C39—C341.6 (14)
O53—C5—C6—C4664.9 (7)N10—C9—C41—C42A95.3 (9)
N4—C5—C6—C46111.3 (6)C8—C9—C41—C42A141.3 (9)
C6—O7—C8—O456.5 (10)C44—C9—C41—C42A22.7 (10)
C6—O7—C8—C9167.0 (5)N10—C9—C41—C42B81.3 (9)
C11—N10—C9—C849.7 (7)C8—C9—C41—C42B155.3 (9)
C11—N10—C9—C44170.1 (5)C44—C9—C41—C42B36.7 (9)
C11—N10—C9—C4175.3 (6)C9—C41—C42A—C43A2.3 (15)
O45—C8—C9—N10151.2 (7)C41—C42A—C43A—C4418.8 (17)
O7—C8—C9—N1035.2 (8)C9—C41—C42B—C43B53.8 (15)
O45—C8—C9—C4488.1 (8)C41—C42B—C43B—C4449.5 (19)
O7—C8—C9—C4485.5 (7)N10—C9—C44—C43B112.0 (11)
O45—C8—C9—C4127.5 (10)C8—C9—C44—C43B127.2 (10)
O7—C8—C9—C41158.9 (6)C41—C9—C44—C43B6.4 (11)
C9—N10—C11—O404.6 (9)N10—C9—C44—C43A83.9 (8)
C9—N10—C11—C12179.0 (5)C8—C9—C44—C43A155.3 (7)
C14—O13—C12—C1177.1 (6)C41—C9—C44—C43A34.5 (8)
C14—O13—C12—C33159.0 (5)C42B—C43B—C44—C926.5 (16)
O40—C11—C12—O13166.4 (5)C42A—C43A—C44—C933.1 (14)
N10—C11—C12—O1317.0 (8)O7—C6—C46—C4758.2 (6)
O40—C11—C12—C3371.4 (7)C5—C6—C46—C47179.6 (5)
N10—C11—C12—C33105.2 (6)C6—C46—C47—C5275.6 (7)
C12—O13—C14—O324.6 (8)C6—C46—C47—C4899.4 (7)
C12—O13—C14—C15171.3 (5)C52—C47—C48—C492.1 (9)
C17—N16—C15—C3178.6 (7)C46—C47—C48—C49177.3 (6)
C17—N16—C15—C1449.1 (8)C47—C48—C49—C501.7 (10)
C17—N16—C15—C28166.6 (6)C48—C49—C50—C510.9 (11)
O32—C14—C15—N16150.1 (6)C49—C50—C51—C520.6 (12)
O13—C14—C15—N1634.2 (7)C50—C51—C52—C471.0 (11)
O32—C14—C15—C3123.8 (9)C48—C47—C52—C511.8 (9)
O13—C14—C15—C31160.5 (5)C46—C47—C52—C51176.9 (6)
O32—C14—C15—C2891.0 (7)N4—C3—C54—C55B94.0 (13)
O13—C14—C15—C2884.8 (6)C2—C3—C54—C55B142.0 (13)
C15—N16—C17—O270.4 (10)C57—C3—C54—C55B21.6 (14)
C15—N16—C17—C18179.0 (6)N4—C3—C54—C55A117.1 (10)
O27—C17—C18—O19169.8 (6)C2—C3—C54—C55A118.9 (10)
N16—C17—C18—O199.6 (9)C57—C3—C54—C55A1.5 (11)
O27—C17—C18—C2065.4 (8)C3—C54—C55A—C56A37.1 (15)
N16—C17—C18—C20115.2 (7)C54—C55A—C56A—C5758.7 (18)
O19—C18—C20—C2161.2 (8)C3—C54—C55B—C56B17 (3)
C17—C18—C20—C21177.4 (6)C54—C55B—C56B—C576 (3)
C18—C20—C21—C22125.1 (8)N4—C3—C57—C56B97.9 (14)
C18—C20—C21—C2653.2 (10)C2—C3—C57—C56B135.9 (14)
C26—C21—C22—C232.1 (14)C54—C3—C57—C56B18.0 (15)
C20—C21—C22—C23179.5 (9)N4—C3—C57—C56A81.4 (9)
C21—C22—C23—C241.3 (17)C2—C3—C57—C56A152.3 (8)
C22—C23—C24—C251.5 (16)C54—C3—C57—C56A34.5 (9)
C23—C24—C25—C262.7 (17)C55B—C56B—C57—C38 (3)
C24—C25—C26—C213.7 (17)C55A—C56A—C57—C356.2 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O19—H19···O45i0.842.112.814 (6)142
N4—H4···O400.882.193.019 (7)156
N10—H10···O270.882.072.882 (7)154
N16—H16···O53i0.882.233.052 (6)156
Symmetry code: (i) x, y, z1.
(S)-Pms-Aib-(S)-Pms-Aib-NMe2 (5a) top
Crystal data top
C28H37N3O6F(000) = 1096
Mr = 511.60Dx = 1.188 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.388 (4) ÅCell parameters from 25 reflections
b = 12.756 (6) Åθ = 17.5–19.5°
c = 21.624 (5) ŵ = 0.08 mm1
β = 93.55 (3)°T = 173 K
V = 2859.7 (18) Å3Irregular prism, colourless
Z = 40.42 × 0.35 × 0.35 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.033
Radiation source: Rigaku RU200 rotating anode generatorθmax = 27.5°, θmin = 2.5°
Graphite monochromatorh = 1313
ω–2θ scansk = 160
7056 measured reflectionsl = 280
6868 independent reflections3 standard reflections every 150 reflections
4297 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0559P)2 + 1.181P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.33 e Å3
6868 reflectionsΔρmin = 0.23 e Å3
703 parametersAbsolute structure: No quotients, so Flack parameter determined by classical intensity fit
1 restraintAbsolute structure parameter: 0.0 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Solvent used: diethyl ether

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Two molecules in the asymmetric unit.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.6610 (3)0.5360 (2)0.12783 (13)0.0346 (7)
O130.6470 (3)0.1953 (3)0.19026 (16)0.0484 (9)
H130.684 (5)0.163 (5)0.159 (3)0.063 (18)*
O210.4396 (3)0.4102 (3)0.14925 (13)0.0402 (8)
O240.5569 (4)0.6639 (3)0.17617 (16)0.0551 (9)
O320.5683 (3)0.6415 (3)0.02233 (15)0.0511 (9)
O350.2719 (3)0.5974 (3)0.09069 (15)0.0562 (10)
N10.2739 (4)0.6597 (4)0.0063 (2)0.0492 (11)
N40.4842 (4)0.5082 (3)0.03249 (18)0.0375 (9)
H40.480 (5)0.479 (5)0.070 (3)0.066 (18)*
N100.6122 (4)0.3962 (4)0.21722 (18)0.0402 (9)
H100.653 (4)0.353 (4)0.238 (2)0.029 (12)*
C20.3049 (4)0.5873 (4)0.0349 (2)0.0409 (11)
C30.3780 (4)0.4862 (4)0.0143 (2)0.0405 (11)
C50.5698 (4)0.5855 (4)0.0236 (2)0.0360 (10)
C60.6743 (4)0.6041 (4)0.07540 (19)0.0347 (10)
H60.66750.67830.08980.042*
C80.6024 (4)0.5776 (4)0.1761 (2)0.0391 (11)
C90.6128 (5)0.5074 (4)0.2346 (2)0.0464 (13)
C110.5214 (4)0.3549 (4)0.1777 (2)0.0373 (11)
C120.5236 (4)0.2380 (4)0.1696 (2)0.0386 (11)
H120.50560.22080.12480.046*
C140.4218 (5)0.1856 (4)0.2073 (2)0.0512 (14)
H1410.42890.10890.20160.061*
H1420.44360.20060.25160.061*
C150.2826 (5)0.2163 (4)0.1929 (2)0.0434 (12)
C160.2232 (5)0.2002 (4)0.1338 (2)0.0461 (12)
H160.27320.17760.10100.055*
C170.0921 (5)0.2170 (5)0.1228 (3)0.0562 (14)
H170.05330.20630.08230.067*
C180.0168 (6)0.2489 (5)0.1698 (3)0.0636 (16)
H180.07370.25750.16220.076*
C190.0748 (6)0.2684 (5)0.2280 (3)0.0631 (16)
H190.02430.29240.26030.076*
C200.2067 (6)0.2528 (5)0.2393 (2)0.0559 (14)
H200.24560.26720.27930.067*
C220.5005 (7)0.5328 (5)0.2745 (2)0.0713 (18)
H2210.41890.51530.25170.107*
H2220.50170.60770.28470.107*
H2230.50890.49170.31290.107*
C230.7432 (6)0.5333 (5)0.2670 (3)0.0704 (19)
H2310.75290.49540.30640.106*
H2320.74860.60890.27480.106*
H2330.81210.51230.24060.106*
C250.8093 (4)0.5879 (4)0.0527 (2)0.0433 (11)
H2510.81510.51680.03460.052*
H2520.82440.63950.01970.052*
C260.9124 (4)0.6002 (4)0.1049 (2)0.0442 (12)
C270.9936 (5)0.5178 (5)0.1217 (3)0.0603 (15)
H270.98760.45460.09850.072*
C281.0826 (6)0.5253 (5)0.1710 (3)0.075 (2)
H281.13850.46800.18110.089*
C291.0914 (5)0.6162 (5)0.2063 (3)0.0654 (17)
H291.15040.62040.24150.078*
C301.0133 (5)0.7005 (5)0.1895 (3)0.0576 (15)
H301.02030.76370.21280.069*
C310.9246 (4)0.6935 (4)0.1388 (2)0.0457 (12)
H310.87220.75210.12710.055*
C330.2828 (5)0.4091 (4)0.0134 (2)0.0505 (13)
H3310.32710.34290.02350.076*
H3320.21040.39620.01680.076*
H3330.25060.43930.05110.076*
C340.4343 (5)0.4347 (5)0.0701 (2)0.0573 (15)
H3410.49110.48450.08960.086*
H3420.36410.41400.10000.086*
H3430.48380.37250.05660.086*
C360.2952 (5)0.6555 (5)0.0734 (2)0.0537 (14)
H3610.30700.58240.08660.081*
H3620.22040.68520.09270.081*
H3630.37250.69590.08620.081*
C370.2188 (6)0.7596 (5)0.0161 (3)0.0753 (19)
H3710.27910.81660.00490.113*
H3720.13700.77200.00300.113*
H3730.20360.75690.06120.113*
O470.0451 (3)0.4527 (2)0.64513 (13)0.0356 (7)
O530.2356 (3)0.7840 (3)0.67259 (14)0.0415 (8)
H530.165 (6)0.818 (5)0.664 (3)0.061 (18)*
O610.2545 (3)0.5468 (3)0.58551 (13)0.0369 (7)
O640.1722 (3)0.3097 (3)0.64854 (19)0.0578 (10)
O720.1299 (3)0.3545 (3)0.50820 (15)0.0516 (9)
O750.0157 (3)0.3802 (3)0.36654 (14)0.0412 (8)
N410.1294 (4)0.3169 (3)0.43905 (18)0.0425 (10)
N440.0280 (3)0.4770 (3)0.51904 (17)0.0361 (9)
H440.084 (5)0.512 (4)0.541 (2)0.041 (14)*
N500.2471 (4)0.5744 (3)0.68817 (18)0.0374 (9)
H500.256 (4)0.619 (4)0.717 (2)0.025 (12)*
C420.0477 (4)0.3928 (4)0.41641 (19)0.0344 (10)
C430.0361 (4)0.4959 (4)0.4517 (2)0.0379 (11)
C450.0539 (4)0.4068 (4)0.5411 (2)0.0398 (11)
C460.0562 (4)0.3936 (4)0.6116 (2)0.0365 (10)
H460.04750.31760.62250.044*
C480.1549 (4)0.3994 (4)0.6620 (2)0.0368 (10)
C490.2512 (5)0.4624 (4)0.7039 (2)0.0457 (12)
C510.2558 (4)0.6074 (4)0.62956 (19)0.0317 (10)
C520.2706 (4)0.7252 (4)0.6204 (2)0.0328 (10)
H520.21350.74690.58370.039*
C540.4098 (4)0.7512 (4)0.6074 (2)0.0405 (11)
H5410.41650.82790.60140.049*
H5420.46570.73280.64460.049*
C550.4624 (4)0.6970 (4)0.5519 (2)0.0346 (10)
C560.4328 (4)0.7354 (4)0.4924 (2)0.0451 (12)
H560.37840.79490.48660.054*
C570.4824 (5)0.6872 (5)0.4417 (2)0.0556 (15)
H570.46260.71440.40130.067*
C580.5604 (5)0.5998 (5)0.4493 (3)0.0586 (16)
H580.59390.56690.41430.070*
C590.5894 (5)0.5606 (4)0.5080 (2)0.0481 (13)
H590.64270.50050.51370.058*
C600.5404 (4)0.6094 (4)0.5582 (2)0.0434 (12)
H600.56090.58200.59850.052*
C620.2094 (7)0.4486 (6)0.7695 (3)0.078 (2)
H6210.26830.48730.79840.118*
H6220.21150.37390.78040.118*
H6230.12160.47550.77210.118*
C630.3868 (5)0.4185 (5)0.6979 (3)0.0711 (19)
H6310.41080.42610.65500.107*
H6320.38820.34410.70930.107*
H6330.44830.45700.72560.107*
C650.1860 (4)0.4350 (4)0.6317 (2)0.0458 (12)
H6510.18990.51150.62410.055*
H6520.25620.40200.60540.055*
C660.2097 (4)0.4148 (4)0.6988 (2)0.0455 (12)
C670.1530 (7)0.4779 (5)0.7455 (3)0.0712 (18)
H670.09660.53280.73490.085*
C680.1773 (10)0.4620 (6)0.8070 (3)0.099 (3)
H680.13630.50480.83830.119*
C690.2588 (8)0.3863 (8)0.8223 (4)0.090 (3)
H690.27580.37700.86460.108*
C700.3182 (6)0.3219 (7)0.7786 (4)0.089 (3)
H700.37680.26910.78990.107*
C710.2899 (5)0.3363 (5)0.7160 (3)0.0668 (18)
H710.32730.29040.68530.080*
C730.0861 (5)0.5530 (5)0.4267 (2)0.0612 (16)
H7310.16050.50610.42860.092*
H7320.07650.57380.38360.092*
H7330.09950.61550.45180.092*
C740.1521 (5)0.5662 (4)0.4413 (2)0.0526 (14)
H7410.14000.63450.46080.079*
H7420.16000.57590.39670.079*
H7430.23080.53330.45960.079*
C760.2228 (5)0.3228 (5)0.4917 (2)0.0546 (14)
H7610.24310.39650.50080.082*
H7620.30160.28580.48200.082*
H7630.18670.29030.52780.082*
C770.1273 (6)0.2154 (4)0.4068 (3)0.0592 (15)
H7710.05420.21350.37590.089*
H7720.11840.15880.43690.089*
H7730.20790.20620.38620.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0334 (15)0.0385 (17)0.0310 (16)0.0017 (14)0.0054 (12)0.0038 (14)
O130.0488 (19)0.061 (2)0.0342 (18)0.0094 (18)0.0121 (15)0.0085 (18)
O210.0389 (16)0.052 (2)0.0279 (15)0.0077 (15)0.0080 (13)0.0125 (15)
O240.072 (2)0.052 (2)0.042 (2)0.020 (2)0.0058 (17)0.0010 (18)
O320.0487 (19)0.065 (2)0.0384 (19)0.0080 (18)0.0073 (15)0.0198 (18)
O350.050 (2)0.078 (3)0.0381 (19)0.0114 (19)0.0166 (15)0.0151 (19)
N10.044 (2)0.053 (3)0.048 (3)0.006 (2)0.0153 (19)0.000 (2)
N40.037 (2)0.046 (2)0.028 (2)0.0034 (18)0.0057 (16)0.0045 (18)
N100.045 (2)0.041 (2)0.031 (2)0.007 (2)0.0166 (17)0.0045 (19)
C20.035 (2)0.055 (3)0.032 (2)0.007 (2)0.0063 (19)0.007 (2)
C30.042 (2)0.055 (3)0.024 (2)0.003 (2)0.0050 (18)0.002 (2)
C50.033 (2)0.042 (3)0.032 (2)0.002 (2)0.0010 (18)0.003 (2)
C60.036 (2)0.037 (3)0.031 (2)0.004 (2)0.0021 (18)0.006 (2)
C80.037 (2)0.044 (3)0.035 (2)0.004 (2)0.0068 (19)0.003 (2)
C90.066 (3)0.042 (3)0.029 (2)0.009 (2)0.013 (2)0.001 (2)
C110.039 (2)0.047 (3)0.025 (2)0.008 (2)0.0026 (19)0.008 (2)
C120.042 (2)0.047 (3)0.025 (2)0.003 (2)0.0095 (18)0.000 (2)
C140.057 (3)0.051 (3)0.044 (3)0.019 (3)0.017 (2)0.013 (3)
C150.049 (3)0.042 (3)0.039 (3)0.016 (2)0.001 (2)0.009 (2)
C160.045 (3)0.053 (3)0.039 (3)0.005 (2)0.004 (2)0.000 (2)
C170.048 (3)0.059 (4)0.060 (3)0.001 (3)0.005 (3)0.001 (3)
C180.052 (3)0.064 (4)0.076 (4)0.003 (3)0.011 (3)0.015 (3)
C190.077 (4)0.055 (4)0.061 (4)0.006 (3)0.031 (3)0.006 (3)
C200.077 (4)0.055 (4)0.036 (3)0.015 (3)0.007 (3)0.004 (3)
C220.119 (5)0.063 (4)0.034 (3)0.001 (4)0.020 (3)0.004 (3)
C230.095 (5)0.046 (3)0.063 (4)0.024 (3)0.044 (3)0.016 (3)
C250.036 (2)0.043 (3)0.050 (3)0.003 (2)0.000 (2)0.004 (2)
C260.027 (2)0.044 (3)0.061 (3)0.006 (2)0.002 (2)0.004 (3)
C270.047 (3)0.041 (3)0.091 (4)0.000 (3)0.011 (3)0.006 (3)
C280.054 (3)0.049 (4)0.115 (6)0.002 (3)0.033 (4)0.024 (4)
C290.047 (3)0.066 (4)0.080 (4)0.021 (3)0.020 (3)0.016 (3)
C300.043 (3)0.053 (3)0.075 (4)0.019 (3)0.010 (3)0.006 (3)
C310.038 (2)0.045 (3)0.054 (3)0.000 (2)0.002 (2)0.003 (3)
C330.053 (3)0.055 (3)0.041 (3)0.010 (3)0.014 (2)0.001 (3)
C340.060 (3)0.072 (4)0.037 (3)0.004 (3)0.009 (2)0.009 (3)
C360.047 (3)0.068 (4)0.046 (3)0.001 (3)0.001 (2)0.009 (3)
C370.072 (4)0.069 (4)0.082 (5)0.019 (3)0.024 (3)0.004 (4)
O470.0326 (15)0.0390 (17)0.0347 (16)0.0058 (14)0.0030 (13)0.0016 (14)
O530.0399 (19)0.051 (2)0.0321 (18)0.0102 (17)0.0078 (14)0.0102 (16)
O610.0332 (15)0.0441 (19)0.0334 (16)0.0119 (14)0.0016 (12)0.0074 (15)
O640.044 (2)0.051 (2)0.076 (3)0.0011 (17)0.0185 (18)0.010 (2)
O720.0383 (18)0.069 (3)0.046 (2)0.0211 (18)0.0079 (15)0.0071 (19)
O750.0403 (17)0.049 (2)0.0330 (17)0.0070 (15)0.0049 (13)0.0084 (15)
N410.037 (2)0.050 (3)0.041 (2)0.0055 (19)0.0047 (17)0.001 (2)
N440.0325 (19)0.042 (2)0.033 (2)0.0037 (18)0.0063 (16)0.0030 (18)
N500.044 (2)0.041 (2)0.026 (2)0.0081 (19)0.0088 (16)0.0020 (18)
C420.025 (2)0.049 (3)0.029 (2)0.004 (2)0.0015 (16)0.005 (2)
C430.038 (2)0.040 (3)0.034 (2)0.001 (2)0.0052 (19)0.006 (2)
C450.031 (2)0.053 (3)0.034 (2)0.007 (2)0.0004 (19)0.007 (2)
C460.031 (2)0.043 (3)0.036 (2)0.009 (2)0.0027 (17)0.000 (2)
C480.039 (2)0.041 (3)0.030 (2)0.008 (2)0.0042 (18)0.002 (2)
C490.048 (3)0.048 (3)0.039 (3)0.013 (2)0.017 (2)0.007 (2)
C510.0204 (19)0.044 (3)0.029 (2)0.0033 (18)0.0091 (16)0.002 (2)
C520.029 (2)0.041 (3)0.028 (2)0.0003 (19)0.0066 (16)0.0020 (19)
C540.038 (2)0.044 (3)0.039 (3)0.009 (2)0.004 (2)0.003 (2)
C550.0224 (19)0.038 (3)0.043 (3)0.0047 (19)0.0016 (18)0.006 (2)
C560.034 (2)0.052 (3)0.049 (3)0.005 (2)0.003 (2)0.008 (2)
C570.043 (3)0.084 (4)0.039 (3)0.008 (3)0.007 (2)0.005 (3)
C580.040 (3)0.082 (4)0.053 (3)0.005 (3)0.003 (2)0.018 (3)
C590.039 (3)0.047 (3)0.058 (3)0.010 (2)0.003 (2)0.002 (3)
C600.032 (2)0.046 (3)0.051 (3)0.002 (2)0.007 (2)0.010 (2)
C620.119 (5)0.068 (4)0.044 (3)0.043 (4)0.027 (3)0.009 (3)
C630.050 (3)0.050 (4)0.108 (5)0.004 (3)0.040 (3)0.010 (3)
C650.034 (2)0.059 (3)0.044 (3)0.001 (2)0.003 (2)0.014 (3)
C660.037 (2)0.046 (3)0.054 (3)0.016 (2)0.012 (2)0.019 (3)
C670.115 (5)0.035 (3)0.067 (4)0.012 (3)0.025 (4)0.000 (3)
C680.179 (9)0.063 (5)0.060 (4)0.046 (5)0.039 (5)0.002 (4)
C690.085 (5)0.113 (7)0.077 (5)0.051 (5)0.042 (4)0.044 (5)
C700.034 (3)0.123 (7)0.112 (6)0.013 (4)0.015 (3)0.080 (6)
C710.031 (2)0.085 (5)0.084 (4)0.004 (3)0.000 (3)0.042 (4)
C730.073 (4)0.067 (4)0.042 (3)0.029 (3)0.013 (3)0.007 (3)
C740.070 (3)0.046 (3)0.040 (3)0.018 (3)0.006 (2)0.006 (2)
C760.053 (3)0.058 (4)0.051 (3)0.020 (3)0.010 (2)0.005 (3)
C770.084 (4)0.036 (3)0.058 (3)0.008 (3)0.005 (3)0.001 (3)
Geometric parameters (Å, º) top
O7—C81.350 (6)O47—C481.358 (5)
O7—C61.442 (5)O47—C461.452 (5)
O13—C121.438 (5)O53—C521.421 (5)
O13—H130.90 (6)O53—H530.86 (6)
O21—C111.238 (5)O61—C511.227 (5)
O24—C81.198 (6)O64—C481.198 (6)
O32—C51.222 (5)O72—C451.226 (5)
O35—C21.239 (5)O75—C421.239 (5)
N1—C21.336 (7)N41—C421.359 (6)
N1—C361.457 (6)N41—C761.451 (6)
N1—C371.466 (7)N41—C771.470 (7)
N4—C51.350 (6)N44—C451.343 (6)
N4—C31.476 (5)N44—C431.483 (6)
N4—H40.90 (6)N44—H440.85 (5)
N10—C111.341 (6)N50—C511.344 (6)
N10—C91.467 (7)N50—C491.468 (7)
N10—H100.81 (5)N50—H500.84 (5)
C2—C31.549 (7)C42—C431.529 (7)
C3—C341.522 (7)C43—C741.531 (7)
C3—C331.541 (7)C43—C731.533 (7)
C5—C61.530 (6)C45—C461.535 (6)
C6—C251.528 (6)C46—C651.536 (6)
C6—H61.0000C46—H461.0000
C8—C91.547 (7)C48—C491.534 (6)
C9—C231.522 (7)C49—C621.521 (8)
C9—C221.529 (8)C49—C631.529 (8)
C11—C121.502 (7)C51—C521.524 (7)
C12—C141.528 (7)C52—C541.527 (6)
C12—H121.0000C52—H521.0000
C14—C151.512 (7)C54—C551.516 (7)
C14—H1410.9900C54—H5410.9900
C14—H1420.9900C54—H5420.9900
C15—C201.394 (8)C55—C601.383 (7)
C15—C161.399 (6)C55—C561.393 (7)
C16—C171.384 (7)C56—C571.383 (8)
C16—H160.9500C56—H560.9500
C17—C181.381 (8)C57—C581.381 (8)
C17—H170.9500C57—H570.9500
C18—C191.384 (9)C58—C591.381 (8)
C18—H180.9500C58—H580.9500
C19—C201.391 (8)C59—C601.375 (7)
C19—H190.9500C59—H590.9500
C20—H200.9500C60—H600.9500
C22—H2210.9800C62—H6210.9800
C22—H2220.9800C62—H6220.9800
C22—H2230.9800C62—H6230.9800
C23—H2310.9800C63—H6310.9800
C23—H2320.9800C63—H6320.9800
C23—H2330.9800C63—H6330.9800
C25—C261.515 (6)C65—C661.509 (7)
C25—H2510.9900C65—H6510.9900
C25—H2520.9900C65—H6520.9900
C26—C271.382 (7)C66—C711.369 (7)
C26—C311.399 (7)C66—C671.393 (8)
C27—C281.371 (8)C67—C681.384 (9)
C27—H270.9500C67—H670.9500
C28—C291.388 (9)C68—C691.338 (12)
C28—H280.9500C68—H680.9500
C29—C301.382 (8)C69—C701.371 (11)
C29—H290.9500C69—H690.9500
C30—C311.391 (7)C70—C711.413 (9)
C30—H300.9500C70—H700.9500
C31—H310.9500C71—H710.9500
C33—H3310.9800C73—H7310.9800
C33—H3320.9800C73—H7320.9800
C33—H3330.9800C73—H7330.9800
C34—H3410.9800C74—H7410.9800
C34—H3420.9800C74—H7420.9800
C34—H3430.9800C74—H7430.9800
C36—H3610.9800C76—H7610.9800
C36—H3620.9800C76—H7620.9800
C36—H3630.9800C76—H7630.9800
C37—H3710.9800C77—H7710.9800
C37—H3720.9800C77—H7720.9800
C37—H3730.9800C77—H7730.9800
C8—O7—C6116.2 (4)C48—O47—C46116.4 (4)
C12—O13—H13111 (4)C52—O53—H53110 (4)
C2—N1—C36127.7 (4)C42—N41—C76128.1 (4)
C2—N1—C37119.1 (4)C42—N41—C77117.8 (4)
C36—N1—C37113.1 (5)C76—N41—C77114.1 (4)
C5—N4—C3120.8 (4)C45—N44—C43122.2 (4)
C5—N4—H4120 (4)C45—N44—H44125 (3)
C3—N4—H4118 (4)C43—N44—H44113 (3)
C11—N10—C9122.3 (4)C51—N50—C49121.4 (4)
C11—N10—H10114 (3)C51—N50—H50118 (3)
C9—N10—H10121 (3)C49—N50—H50119 (3)
O35—C2—N1120.9 (5)O75—C42—N41120.5 (4)
O35—C2—C3117.9 (5)O75—C42—C43119.5 (4)
N1—C2—C3121.1 (4)N41—C42—C43120.0 (4)
N4—C3—C34108.5 (4)N44—C43—C42111.2 (4)
N4—C3—C33109.0 (4)N44—C43—C74109.5 (4)
C34—C3—C33108.7 (4)C42—C43—C74110.1 (4)
N4—C3—C2111.8 (4)N44—C43—C73109.2 (4)
C34—C3—C2109.6 (4)C42—C43—C73108.8 (4)
C33—C3—C2109.2 (4)C74—C43—C73108.2 (5)
O32—C5—N4124.6 (4)O72—C45—N44123.8 (4)
O32—C5—C6118.5 (4)O72—C45—C46117.8 (4)
N4—C5—C6116.9 (4)N44—C45—C46118.3 (4)
O7—C6—C25107.8 (3)O47—C46—C45112.6 (4)
O7—C6—C5112.6 (3)O47—C46—C65107.5 (4)
C25—C6—C5111.6 (4)C45—C46—C65108.1 (4)
O7—C6—H6108.3O47—C46—H46109.5
C25—C6—H6108.3C45—C46—H46109.5
C5—C6—H6108.3C65—C46—H46109.5
O24—C8—O7124.0 (4)O64—C48—O47123.3 (4)
O24—C8—C9122.6 (4)O64—C48—C49122.8 (4)
O7—C8—C9113.1 (4)O47—C48—C49113.7 (4)
N10—C9—C23108.5 (5)N50—C49—C62108.8 (5)
N10—C9—C22111.0 (5)N50—C49—C63110.6 (4)
C23—C9—C22112.5 (5)C62—C49—C63110.7 (5)
N10—C9—C8110.6 (4)N50—C49—C48111.4 (4)
C23—C9—C8105.4 (4)C62—C49—C48106.1 (4)
C22—C9—C8108.8 (4)C63—C49—C48109.2 (5)
O21—C11—N10121.8 (5)O61—C51—N50122.4 (4)
O21—C11—C12121.5 (4)O61—C51—C52121.1 (4)
N10—C11—C12116.7 (4)N50—C51—C52116.4 (4)
O13—C12—C11111.1 (4)O53—C52—C51112.6 (4)
O13—C12—C14107.6 (4)O53—C52—C54108.8 (3)
C11—C12—C14110.9 (4)C51—C52—C54110.0 (4)
O13—C12—H12109.1O53—C52—H52108.4
C11—C12—H12109.1C51—C52—H52108.4
C14—C12—H12109.1C54—C52—H52108.4
C15—C14—C12117.5 (4)C55—C54—C52116.0 (4)
C15—C14—H141107.9C55—C54—H541108.3
C12—C14—H141107.9C52—C54—H541108.3
C15—C14—H142107.9C55—C54—H542108.3
C12—C14—H142107.9C52—C54—H542108.3
H141—C14—H142107.2H541—C54—H542107.4
C20—C15—C16118.0 (5)C60—C55—C56118.0 (5)
C20—C15—C14121.0 (5)C60—C55—C54121.8 (4)
C16—C15—C14120.8 (5)C56—C55—C54120.2 (4)
C17—C16—C15120.5 (5)C57—C56—C55120.3 (5)
C17—C16—H16119.7C57—C56—H56119.9
C15—C16—H16119.7C55—C56—H56119.9
C18—C17—C16121.0 (5)C58—C57—C56120.6 (5)
C18—C17—H17119.5C58—C57—H57119.7
C16—C17—H17119.5C56—C57—H57119.7
C17—C18—C19119.2 (5)C59—C58—C57119.6 (5)
C17—C18—H18120.4C59—C58—H58120.2
C19—C18—H18120.4C57—C58—H58120.2
C18—C19—C20120.2 (5)C60—C59—C58119.4 (5)
C18—C19—H19119.9C60—C59—H59120.3
C20—C19—H19119.9C58—C59—H59120.3
C19—C20—C15121.0 (5)C59—C60—C55122.1 (5)
C19—C20—H20119.5C59—C60—H60119.0
C15—C20—H20119.5C55—C60—H60119.0
C9—C22—H221109.5C49—C62—H621109.5
C9—C22—H222109.5C49—C62—H622109.5
H221—C22—H222109.5H621—C62—H622109.5
C9—C22—H223109.5C49—C62—H623109.5
H221—C22—H223109.5H621—C62—H623109.5
H222—C22—H223109.5H622—C62—H623109.5
C9—C23—H231109.5C49—C63—H631109.5
C9—C23—H232109.5C49—C63—H632109.5
H231—C23—H232109.5H631—C63—H632109.5
C9—C23—H233109.5C49—C63—H633109.5
H231—C23—H233109.5H631—C63—H633109.5
H232—C23—H233109.5H632—C63—H633109.5
C26—C25—C6111.5 (4)C66—C65—C46114.3 (4)
C26—C25—H251109.3C66—C65—H651108.7
C6—C25—H251109.3C46—C65—H651108.7
C26—C25—H252109.3C66—C65—H652108.7
C6—C25—H252109.3C46—C65—H652108.7
H251—C25—H252108.0H651—C65—H652107.6
C27—C26—C31118.4 (5)C71—C66—C67117.6 (5)
C27—C26—C25120.6 (5)C71—C66—C65121.7 (5)
C31—C26—C25121.0 (4)C67—C66—C65120.7 (5)
C28—C27—C26121.5 (6)C68—C67—C66121.1 (7)
C28—C27—H27119.2C68—C67—H67119.4
C26—C27—H27119.2C66—C67—H67119.4
C27—C28—C29120.2 (6)C69—C68—C67119.9 (8)
C27—C28—H28119.9C69—C68—H68120.0
C29—C28—H28119.9C67—C68—H68120.0
C30—C29—C28119.3 (5)C68—C69—C70121.8 (7)
C30—C29—H29120.4C68—C69—H69119.1
C28—C29—H29120.4C70—C69—H69119.1
C29—C30—C31120.4 (6)C69—C70—C71118.0 (7)
C29—C30—H30119.8C69—C70—H70121.0
C31—C30—H30119.8C71—C70—H70121.0
C30—C31—C26120.1 (5)C66—C71—C70121.5 (7)
C30—C31—H31119.9C66—C71—H71119.3
C26—C31—H31119.9C70—C71—H71119.3
C3—C33—H331109.5C43—C73—H731109.5
C3—C33—H332109.5C43—C73—H732109.5
H331—C33—H332109.5H731—C73—H732109.5
C3—C33—H333109.5C43—C73—H733109.5
H331—C33—H333109.5H731—C73—H733109.5
H332—C33—H333109.5H732—C73—H733109.5
C3—C34—H341109.5C43—C74—H741109.5
C3—C34—H342109.5C43—C74—H742109.5
H341—C34—H342109.5H741—C74—H742109.5
C3—C34—H343109.5C43—C74—H743109.5
H341—C34—H343109.5H741—C74—H743109.5
H342—C34—H343109.5H742—C74—H743109.5
N1—C36—H361109.5N41—C76—H761109.5
N1—C36—H362109.5N41—C76—H762109.5
H361—C36—H362109.5H761—C76—H762109.5
N1—C36—H363109.5N41—C76—H763109.5
H361—C36—H363109.5H761—C76—H763109.5
H362—C36—H363109.5H762—C76—H763109.5
N1—C37—H371109.5N41—C77—H771109.5
N1—C37—H372109.5N41—C77—H772109.5
H371—C37—H372109.5H771—C77—H772109.5
N1—C37—H373109.5N41—C77—H773109.5
H371—C37—H373109.5H771—C77—H773109.5
H372—C37—H373109.5H772—C77—H773109.5
C36—N1—C2—O35174.2 (5)C76—N41—C42—O75171.2 (5)
C37—N1—C2—O359.9 (7)C77—N41—C42—O757.7 (6)
C36—N1—C2—C33.2 (7)C76—N41—C42—C437.2 (7)
C37—N1—C2—C3172.7 (5)C77—N41—C42—C43173.9 (4)
C5—N4—C3—C3472.2 (6)C45—N44—C43—C4249.1 (5)
C5—N4—C3—C33169.6 (4)C45—N44—C43—C74170.9 (4)
C5—N4—C3—C248.8 (6)C45—N44—C43—C7370.9 (6)
O35—C2—C3—N4139.3 (4)O75—C42—C43—N44137.3 (4)
N1—C2—C3—N443.2 (6)N41—C42—C43—N4444.3 (5)
O35—C2—C3—C3419.0 (6)O75—C42—C43—C74101.3 (5)
N1—C2—C3—C34163.6 (4)N41—C42—C43—C7477.2 (5)
O35—C2—C3—C33100.0 (5)O75—C42—C43—C7317.1 (6)
N1—C2—C3—C3377.5 (5)N41—C42—C43—C73164.5 (4)
C3—N4—C5—O320.8 (7)C43—N44—C45—O721.5 (7)
C3—N4—C5—C6178.5 (4)C43—N44—C45—C46179.4 (4)
C8—O7—C6—C25137.9 (4)C48—O47—C46—C4596.0 (5)
C8—O7—C6—C598.6 (4)C48—O47—C46—C65145.0 (4)
O32—C5—C6—O7177.3 (4)O72—C45—C46—O47175.1 (4)
N4—C5—C6—O72.1 (6)N44—C45—C46—O476.9 (6)
O32—C5—C6—C2561.4 (6)O72—C45—C46—C6566.2 (6)
N4—C5—C6—C25119.3 (4)N44—C45—C46—C65111.8 (5)
C6—O7—C8—O243.8 (6)C46—O47—C48—O642.9 (6)
C6—O7—C8—C9169.9 (3)C46—O47—C48—C49173.1 (4)
C11—N10—C9—C23166.7 (5)C51—N50—C49—C62167.4 (4)
C11—N10—C9—C2269.3 (6)C51—N50—C49—C6370.7 (5)
C11—N10—C9—C851.5 (6)C51—N50—C49—C4850.9 (6)
O24—C8—C9—N10153.1 (5)O64—C48—C49—N50150.2 (5)
O7—C8—C9—N1033.1 (6)O47—C48—C49—N5033.8 (6)
O24—C8—C9—C2389.8 (6)O64—C48—C49—C6291.5 (6)
O7—C8—C9—C2384.0 (5)O47—C48—C49—C6284.4 (5)
O24—C8—C9—C2230.9 (6)O64—C48—C49—C6327.8 (7)
O7—C8—C9—C22155.2 (4)O47—C48—C49—C63156.2 (4)
C9—N10—C11—O216.7 (7)C49—N50—C51—O617.5 (6)
C9—N10—C11—C12173.3 (4)C49—N50—C51—C52171.1 (4)
O21—C11—C12—O13161.2 (4)O61—C51—C52—O53164.1 (3)
N10—C11—C12—O1318.9 (6)N50—C51—C52—O5317.2 (5)
O21—C11—C12—C1479.3 (5)O61—C51—C52—C5474.3 (5)
N10—C11—C12—C14100.7 (5)N50—C51—C52—C54104.4 (4)
O13—C12—C14—C15178.7 (4)O53—C52—C54—C55178.6 (4)
C11—C12—C14—C1559.6 (6)C51—C52—C54—C5557.7 (5)
C12—C14—C15—C20125.4 (5)C52—C54—C55—C6099.9 (5)
C12—C14—C15—C1660.2 (7)C52—C54—C55—C5680.3 (6)
C20—C15—C16—C172.1 (8)C60—C55—C56—C570.9 (7)
C14—C15—C16—C17172.5 (5)C54—C55—C56—C57178.9 (5)
C15—C16—C17—C180.6 (9)C55—C56—C57—C580.8 (8)
C16—C17—C18—C192.6 (9)C56—C57—C58—C590.2 (8)
C17—C18—C19—C201.9 (9)C57—C58—C59—C600.2 (8)
C18—C19—C20—C150.8 (9)C58—C59—C60—C550.1 (7)
C16—C15—C20—C192.7 (8)C56—C55—C60—C590.5 (7)
C14—C15—C20—C19171.8 (5)C54—C55—C60—C59179.3 (4)
O7—C6—C25—C2652.6 (5)O47—C46—C65—C6665.5 (5)
C5—C6—C25—C26176.7 (4)C45—C46—C65—C66172.6 (4)
C6—C25—C26—C27119.1 (5)C46—C65—C66—C71102.5 (5)
C6—C25—C26—C3158.5 (6)C46—C65—C66—C6779.2 (6)
C31—C26—C27—C281.4 (9)C71—C66—C67—C680.3 (9)
C25—C26—C27—C28176.3 (6)C65—C66—C67—C68178.0 (6)
C26—C27—C28—C291.3 (10)C66—C67—C68—C691.4 (11)
C27—C28—C29—C302.8 (10)C67—C68—C69—C701.1 (11)
C28—C29—C30—C311.6 (9)C68—C69—C70—C710.9 (11)
C29—C30—C31—C261.0 (8)C67—C66—C71—C702.4 (8)
C27—C26—C31—C302.5 (8)C65—C66—C71—C70175.9 (5)
C25—C26—C31—C30175.1 (5)C69—C70—C71—C662.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O35i0.90 (6)1.79 (6)2.670 (5)169 (5)
N4—H4···O210.90 (6)1.99 (6)2.881 (5)171 (5)
N10—H10···O53ii0.81 (5)2.36 (5)3.124 (5)157 (4)
O53—H53···O75iii0.86 (6)1.83 (6)2.684 (5)171 (6)
N44—H44···O610.85 (5)2.01 (5)2.824 (5)159 (5)
N50—H50···O13iv0.84 (5)2.40 (5)3.185 (5)156 (4)
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1.
(S,R)-Pms-Acp-(R,S)-Pms-Acp-NMe2/(R,S)-Pms-Acp-(R,S)-Pms-Acp-NMe2 (1:1) (5b) top
Crystal data top
C32H41N3O6F(000) = 1208
Mr = 563.68Dx = 1.251 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.937 (5) ÅCell parameters from 24 reflections
b = 18.319 (7) Åθ = 15–20°
c = 16.436 (3) ŵ = 0.09 mm1
β = 90.19 (3)°T = 173 K
V = 2992 (2) Å3Prism, colourless
Z = 40.40 × 0.40 × 0.25 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.027
Radiation source: Rigaku RU200 rotating anode generatorθmax = 27.5°, θmin = 2.6°
Graphite monochromatorh = 1212
ω–2θ scansk = 230
7311 measured reflectionsl = 021
6855 independent reflections3 standard reflections every 150 reflections
4077 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.0805P)2 + 2.67P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6855 reflectionsΔρmax = 0.66 e Å3
509 parametersΔρmin = 0.66 e Å3
540 restraints
Special details top

Experimental. Solvent used: MeCN

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The molecule contains disorder of both benzyl substituents. Two orientations of just the phenyl ring of the central benzyl group and the entire terminal benzyl group, including the stereogenic C-atom, were defined and the site occupation factors of the major sites of these groups refined to 0.507 (7) and 0.532 (4), respectively. Similarity restraints were applied to the chemically equivalent bond lengths and angles involving all disordered C-atoms, while neighbouring atoms within and between each disordered arrangement were restrained to have similar atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O70.16539 (19)0.80427 (10)0.32978 (11)0.0355 (5)
O130.4674 (2)0.99111 (12)0.27404 (13)0.0451 (5)
H1310.4432331.0348430.2788380.068*0.532 (4)
H1320.4266401.0309600.2681710.068*0.468 (4)
O210.2127 (2)0.88066 (11)0.17927 (12)0.0467 (6)
O260.0453 (2)0.81105 (12)0.28006 (14)0.0473 (5)
O340.1704 (2)0.61769 (10)0.26113 (11)0.0409 (5)
O390.1900 (2)0.56239 (10)0.07656 (11)0.0356 (4)
N10.0170 (2)0.64103 (13)0.08740 (14)0.0384 (6)
N40.2153 (2)0.72171 (12)0.19238 (12)0.0294 (5)
H40.220 (3)0.7692 (17)0.1946 (17)0.032 (8)*
N100.2112 (3)0.94402 (13)0.29672 (16)0.0400 (6)
H100.253 (3)0.9732 (18)0.3274 (19)0.039 (9)*
C20.1490 (3)0.62417 (14)0.09297 (15)0.0294 (6)
C30.2512 (3)0.68470 (13)0.11537 (15)0.0296 (6)
C50.1808 (3)0.68462 (14)0.25869 (15)0.0309 (6)
C60.1545 (3)0.72606 (15)0.33766 (16)0.0343 (6)
H60.0622680.7136720.3574960.041*
C80.0553 (3)0.84091 (16)0.30291 (16)0.0354 (6)
C90.0725 (3)0.92330 (15)0.31334 (17)0.0367 (7)
C110.2708 (3)0.92252 (15)0.22782 (18)0.0410 (7)
C12A0.4022 (5)0.9594 (4)0.2049 (3)0.0509 (15)0.532 (4)
H1210.3784661.0006070.1676100.061*0.532 (4)
C14A0.4994 (7)0.9125 (4)0.1604 (4)0.0604 (12)0.532 (4)
H1410.4483360.8817430.1216020.072*0.532 (4)
H1420.5429360.8793330.2001820.072*0.532 (4)
C15A0.6073 (6)0.9514 (4)0.1146 (6)0.0634 (11)0.532 (4)
C16A0.6167 (7)1.0265 (3)0.1034 (5)0.0813 (14)0.532 (4)
H1610.5489351.0581900.1237080.098*0.532 (4)
C17A0.7284 (7)1.0548 (4)0.0613 (5)0.0858 (15)0.532 (4)
H1710.7401531.1060890.0565780.103*0.532 (4)
C18A0.8223 (8)1.0070 (4)0.0265 (6)0.0781 (14)0.532 (4)
H1810.8844151.0236150.0132720.094*0.532 (4)
C19A0.8217 (7)0.9346 (4)0.0520 (6)0.0725 (13)0.532 (4)
H1910.8964980.9042230.0397930.087*0.532 (4)
C20A0.7137 (7)0.9059 (4)0.0948 (5)0.0693 (12)0.532 (4)
H2010.7128650.8559270.1103930.083*0.532 (4)
C12B0.4176 (5)0.9397 (4)0.2165 (3)0.0487 (16)0.468 (4)
H1220.4693130.8932830.2238640.058*0.468 (4)
C14B0.4420 (5)0.9665 (4)0.1310 (3)0.0460 (12)0.468 (4)
H1430.3888300.9351940.0937440.055*0.468 (4)
H1440.4044111.0163790.1269850.055*0.468 (4)
C15B0.5767 (6)0.9689 (4)0.1009 (6)0.0660 (12)0.468 (4)
C16B0.6590 (7)0.9088 (4)0.1153 (5)0.0694 (13)0.468 (4)
H1620.6235200.8693350.1460630.083*0.468 (4)
C17B0.7906 (7)0.9033 (5)0.0870 (6)0.0759 (15)0.468 (4)
H1720.8447030.8621010.0998060.091*0.468 (4)
C18B0.8405 (8)0.9600 (5)0.0394 (7)0.0778 (14)0.468 (4)
H1820.9275830.9563510.0160000.093*0.468 (4)
C19B0.7623 (8)1.0222 (5)0.0261 (7)0.0858 (14)0.468 (4)
H1920.7989561.0627540.0021020.103*0.468 (4)
C20B0.6302 (8)1.0246 (5)0.0545 (6)0.0814 (13)0.468 (4)
H2020.5756311.0655620.0415000.098*0.468 (4)
C220.0308 (3)0.96537 (18)0.26110 (19)0.0475 (8)
H2210.0117131.0088290.2362500.057*
H2220.0660070.9337670.2170620.057*
C230.1440 (4)0.9883 (2)0.3178 (2)0.0618 (10)
H2310.1437371.0418760.3252220.074*
H2320.2321700.9735660.2948450.074*
C240.1194 (3)0.9502 (2)0.39842 (19)0.0543 (9)
H2410.1646510.9020770.3998110.065*
H2420.1524370.9802030.4442930.065*
C250.0324 (3)0.94154 (16)0.40240 (17)0.0380 (7)
H2510.0580630.9014490.4397450.046*
H2520.0759490.9872420.4209160.046*
C270.2572 (3)0.70386 (18)0.40233 (17)0.0448 (7)
H2710.2445140.7351840.4507800.054*0.507 (7)
H2720.2387860.6528710.4188710.054*0.507 (7)
H2730.2355210.7286210.4541940.054*0.493 (7)
H2740.2515080.6505350.4114950.054*0.493 (7)
C28A0.4026 (8)0.7093 (5)0.3756 (11)0.0515 (13)0.507 (7)
C29A0.4673 (7)0.7764 (5)0.3641 (5)0.0566 (13)0.507 (7)
H2910.4192170.8204120.3736240.068*0.507 (7)
C30A0.6009 (8)0.7799 (5)0.3389 (5)0.0606 (14)0.507 (7)
H3010.6445920.8257420.3339250.073*0.507 (7)
C31A0.6693 (7)0.7165 (6)0.3214 (5)0.0608 (15)0.507 (7)
H3110.7581270.7190810.3004250.073*0.507 (7)
C32A0.6093 (7)0.6481 (5)0.3340 (5)0.0618 (14)0.507 (7)
H3210.6579150.6042700.3247740.074*0.507 (7)
C33A0.4765 (7)0.6464 (5)0.3605 (5)0.0558 (13)0.507 (7)
H3310.4346390.6003790.3685280.067*0.507 (7)
C28B0.3974 (8)0.7234 (5)0.3775 (12)0.0516 (13)0.493 (7)
C29B0.4428 (7)0.7955 (5)0.3809 (5)0.0531 (13)0.493 (7)
H2920.3862010.8323730.4027210.064*0.493 (7)
C30B0.5705 (8)0.8139 (5)0.3525 (5)0.0593 (15)0.493 (7)
H3020.6007990.8630200.3549630.071*0.493 (7)
C31B0.6524 (7)0.7604 (6)0.3208 (5)0.0594 (14)0.493 (7)
H3120.7385230.7732950.3003130.071*0.493 (7)
C32B0.6110 (7)0.6873 (6)0.3181 (5)0.0621 (13)0.493 (7)
H3220.6688960.6501820.2981370.075*0.493 (7)
C33B0.4823 (7)0.6709 (5)0.3457 (5)0.0574 (13)0.493 (7)
H3320.4516740.6218580.3426730.069*0.493 (7)
C350.3942 (3)0.65298 (16)0.12363 (18)0.0371 (6)
H3510.4109670.6355090.1797580.045*
H3520.4075850.6119140.0853490.045*
C360.4868 (4)0.71660 (19)0.1029 (2)0.0542 (9)
H3610.4924800.7519660.1482840.065*
H3620.5784880.6994070.0892230.065*
C370.4171 (4)0.7498 (2)0.0291 (2)0.0567 (9)
H3710.4410300.7228340.0210110.068*
H3720.4431830.8016080.0223840.068*
C380.2658 (3)0.74319 (15)0.04646 (16)0.0380 (7)
H3810.2167280.7275000.0030710.046*
H3820.2289150.7906890.0644990.046*
C400.0437 (3)0.71224 (19)0.1009 (2)0.0508 (8)
H4010.0269060.7495670.1027280.076*
H4020.0924560.7119210.1526040.076*
H4030.1064030.7232160.0563940.076*
C410.0762 (3)0.5825 (2)0.0640 (2)0.0566 (9)
H4110.0815520.5795620.0045100.085*
H4120.1656960.5928980.0860180.085*
H4130.0436770.5358880.0857450.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0440 (11)0.0297 (10)0.0329 (10)0.0095 (9)0.0073 (8)0.0065 (8)
O130.0428 (12)0.0430 (12)0.0495 (13)0.0021 (10)0.0088 (10)0.0100 (10)
O210.0672 (14)0.0349 (11)0.0380 (11)0.0159 (10)0.0186 (10)0.0114 (9)
O260.0483 (13)0.0410 (12)0.0525 (13)0.0128 (10)0.0001 (10)0.0115 (10)
O340.0644 (14)0.0269 (10)0.0314 (10)0.0057 (9)0.0023 (9)0.0015 (8)
O390.0468 (11)0.0261 (10)0.0340 (10)0.0026 (8)0.0044 (8)0.0048 (8)
N10.0393 (13)0.0397 (14)0.0363 (13)0.0009 (11)0.0034 (10)0.0045 (10)
N40.0428 (13)0.0218 (11)0.0236 (10)0.0029 (9)0.0038 (9)0.0026 (8)
N100.0493 (15)0.0314 (13)0.0394 (13)0.0142 (11)0.0187 (11)0.0136 (11)
C20.0369 (14)0.0306 (14)0.0207 (11)0.0019 (11)0.0018 (10)0.0005 (10)
C30.0410 (15)0.0240 (13)0.0237 (12)0.0010 (11)0.0031 (10)0.0018 (10)
C50.0375 (14)0.0297 (14)0.0253 (12)0.0051 (11)0.0020 (11)0.0013 (10)
C60.0461 (16)0.0305 (14)0.0263 (13)0.0104 (12)0.0073 (11)0.0026 (11)
C80.0445 (16)0.0364 (15)0.0254 (13)0.0081 (13)0.0120 (11)0.0058 (11)
C90.0467 (17)0.0307 (14)0.0330 (14)0.0084 (12)0.0143 (12)0.0078 (11)
C110.0535 (18)0.0282 (14)0.0415 (16)0.0067 (13)0.0162 (14)0.0071 (12)
C12A0.053 (3)0.050 (3)0.049 (2)0.010 (2)0.021 (2)0.019 (2)
C14A0.062 (2)0.061 (2)0.059 (2)0.009 (2)0.0259 (19)0.013 (2)
C15A0.058 (2)0.074 (2)0.059 (2)0.017 (2)0.022 (2)0.015 (2)
C16A0.072 (3)0.097 (3)0.075 (3)0.013 (2)0.026 (2)0.006 (3)
C17A0.076 (3)0.099 (3)0.083 (3)0.015 (3)0.025 (3)0.001 (3)
C18A0.060 (3)0.090 (3)0.084 (3)0.013 (3)0.028 (2)0.005 (3)
C19A0.061 (2)0.084 (3)0.073 (2)0.024 (2)0.023 (2)0.007 (2)
C20A0.058 (3)0.083 (2)0.067 (2)0.027 (2)0.024 (2)0.018 (2)
C12B0.052 (3)0.050 (3)0.045 (3)0.006 (2)0.018 (2)0.017 (2)
C14B0.047 (2)0.049 (2)0.042 (2)0.010 (2)0.016 (2)0.012 (2)
C15B0.060 (2)0.078 (2)0.060 (2)0.021 (2)0.021 (2)0.017 (2)
C16B0.059 (3)0.082 (3)0.067 (2)0.021 (2)0.022 (2)0.021 (2)
C17B0.066 (3)0.089 (3)0.073 (3)0.024 (3)0.021 (3)0.020 (3)
C18B0.063 (3)0.092 (3)0.079 (3)0.021 (3)0.025 (2)0.009 (3)
C19B0.076 (3)0.097 (3)0.085 (3)0.019 (3)0.030 (3)0.000 (2)
C20B0.072 (2)0.094 (3)0.078 (3)0.014 (2)0.024 (2)0.003 (2)
C220.061 (2)0.0433 (18)0.0383 (16)0.0010 (15)0.0120 (15)0.0005 (14)
C230.047 (2)0.083 (3)0.056 (2)0.0033 (19)0.0089 (16)0.0020 (19)
C240.0493 (19)0.075 (2)0.0383 (17)0.0112 (17)0.0120 (14)0.0142 (16)
C250.0463 (17)0.0365 (15)0.0314 (14)0.0094 (13)0.0114 (12)0.0096 (12)
C270.062 (2)0.0490 (18)0.0238 (13)0.0088 (15)0.0020 (13)0.0005 (13)
C28A0.052 (2)0.078 (3)0.025 (2)0.020 (2)0.0040 (19)0.001 (3)
C29A0.054 (2)0.083 (3)0.033 (2)0.020 (2)0.0090 (18)0.001 (2)
C30A0.057 (2)0.085 (3)0.039 (2)0.022 (2)0.007 (2)0.003 (2)
C31A0.054 (3)0.085 (4)0.043 (2)0.029 (3)0.003 (2)0.005 (3)
C32A0.056 (2)0.086 (4)0.043 (2)0.024 (3)0.002 (2)0.003 (3)
C33A0.053 (2)0.082 (3)0.033 (2)0.021 (2)0.0032 (19)0.003 (2)
C28B0.051 (2)0.079 (3)0.025 (2)0.018 (2)0.0050 (19)0.002 (3)
C29B0.051 (2)0.079 (3)0.029 (2)0.019 (2)0.009 (2)0.001 (2)
C30B0.055 (3)0.085 (4)0.038 (2)0.016 (3)0.008 (2)0.001 (3)
C31B0.052 (3)0.086 (4)0.040 (2)0.017 (3)0.004 (2)0.003 (3)
C32B0.057 (2)0.087 (3)0.043 (2)0.018 (3)0.001 (2)0.004 (2)
C33B0.054 (2)0.084 (3)0.035 (2)0.016 (2)0.0020 (19)0.002 (2)
C350.0354 (15)0.0388 (16)0.0372 (15)0.0025 (12)0.0040 (12)0.0031 (12)
C360.0478 (19)0.051 (2)0.064 (2)0.0145 (16)0.0042 (16)0.0016 (17)
C370.068 (2)0.050 (2)0.052 (2)0.0196 (17)0.0148 (17)0.0051 (16)
C380.0597 (19)0.0288 (14)0.0257 (13)0.0033 (13)0.0058 (12)0.0003 (11)
C400.0469 (18)0.061 (2)0.0446 (17)0.0185 (16)0.0067 (14)0.0088 (16)
C410.0433 (18)0.065 (2)0.061 (2)0.0105 (17)0.0129 (16)0.0024 (18)
Geometric parameters (Å, º) top
O7—C81.356 (4)C19B—C20B1.395 (4)
O7—C61.443 (3)C19B—H1920.9500
O13—C12B1.423 (5)C20B—H2020.9500
O13—C12A1.429 (5)C22—C231.522 (5)
O13—H1310.8400C22—H2210.9900
O13—H1320.8400C22—H2220.9900
O21—C111.247 (4)C23—C241.517 (5)
O26—C81.198 (3)C23—H2310.9900
O34—C51.231 (3)C23—H2320.9900
O39—C21.233 (3)C24—C251.518 (4)
N1—C21.351 (4)C24—H2410.9900
N1—C401.455 (4)C24—H2420.9900
N1—C411.468 (4)C25—H2510.9900
N4—C51.330 (3)C25—H2520.9900
N4—C31.481 (3)C27—C28B1.497 (5)
N4—H40.87 (3)C27—C28A1.516 (5)
N10—C111.339 (4)C27—H2710.9900
N10—C91.457 (4)C27—H2720.9900
N10—H100.84 (3)C27—H2730.9900
C2—C31.547 (4)C27—H2740.9900
C3—C351.541 (4)C28A—C33A1.389 (7)
C3—C381.566 (4)C28A—C29A1.400 (7)
C5—C61.527 (4)C29A—C30A1.393 (7)
C6—C271.526 (4)C29A—H2910.9500
C6—H61.0000C30A—C31A1.376 (10)
C8—C91.529 (4)C30A—H3010.9500
C9—C221.542 (5)C31A—C32A1.403 (10)
C9—C251.555 (4)C31A—H3110.9500
C11—C12B1.505 (5)C32A—C33A1.391 (7)
C11—C12A1.519 (5)C32A—H3210.9500
C12A—C14A1.488 (7)C33A—H3310.9500
C12A—H1211.0000C28B—C33B1.382 (7)
C14A—C15A1.494 (5)C28B—C29B1.398 (7)
C14A—H1410.9900C29B—C30B1.395 (7)
C14A—H1420.9900C29B—H2920.9500
C15A—C20A1.386 (4)C30B—C31B1.377 (10)
C15A—C16A1.393 (4)C30B—H3020.9500
C16A—C17A1.408 (4)C31B—C32B1.402 (10)
C16A—H1610.9500C31B—H3120.9500
C17A—C18A1.403 (4)C32B—C33B1.391 (7)
C17A—H1710.9500C32B—H3220.9500
C18A—C19A1.391 (4)C33B—H3320.9500
C18A—H1810.9500C35—C361.525 (4)
C19A—C20A1.390 (4)C35—H3510.9900
C19A—H1910.9500C35—H3520.9900
C20A—H2010.9500C36—C371.521 (5)
C12B—C14B1.508 (6)C36—H3610.9900
C12B—H1221.0000C36—H3620.9900
C14B—C15B1.430 (4)C37—C381.536 (5)
C14B—H1430.9900C37—H3710.9900
C14B—H1440.9900C37—H3720.9900
C15B—C20B1.382 (4)C38—H3810.9900
C15B—C16B1.391 (4)C38—H3820.9900
C16B—C17B1.393 (4)C40—H4010.9800
C16B—H1620.9500C40—H4020.9800
C17B—C18B1.393 (4)C40—H4030.9800
C17B—H1720.9500C41—H4110.9800
C18B—C19B1.395 (4)C41—H4120.9800
C18B—H1820.9500C41—H4130.9800
C8—O7—C6117.4 (2)C9—C22—H221110.4
C12A—O13—H131109.5C23—C22—H222110.4
C12B—O13—H132109.5C9—C22—H222110.4
C2—N1—C40126.7 (2)H221—C22—H222108.6
C2—N1—C41117.6 (2)C24—C23—C22106.9 (3)
C40—N1—C41115.7 (3)C24—C23—H231110.3
C5—N4—C3122.0 (2)C22—C23—H231110.3
C5—N4—H4119.2 (19)C24—C23—H232110.3
C3—N4—H4118.7 (19)C22—C23—H232110.3
C11—N10—C9120.2 (3)H231—C23—H232108.6
C11—N10—H10118 (2)C23—C24—C25104.1 (3)
C9—N10—H10121 (2)C23—C24—H241110.9
O39—C2—N1121.1 (2)C25—C24—H241110.9
O39—C2—C3119.5 (2)C23—C24—H242110.9
N1—C2—C3119.3 (2)C25—C24—H242110.9
N4—C3—C35108.8 (2)H241—C24—H242109.0
N4—C3—C2111.8 (2)C24—C25—C9103.9 (2)
C35—C3—C2110.8 (2)C24—C25—H251111.0
N4—C3—C38109.2 (2)C9—C25—H251111.0
C35—C3—C38103.6 (2)C24—C25—H252111.0
C2—C3—C38112.4 (2)C9—C25—H252111.0
O34—C5—N4123.9 (2)H251—C25—H252109.0
O34—C5—C6116.9 (2)C28B—C27—C6111.5 (8)
N4—C5—C6119.2 (2)C28A—C27—C6114.6 (8)
O7—C6—C27106.1 (2)C28A—C27—H271108.6
O7—C6—C5113.9 (2)C6—C27—H271108.6
C27—C6—C5110.1 (2)C28A—C27—H272108.6
O7—C6—H6108.9C6—C27—H272108.6
C27—C6—H6108.9H271—C27—H272107.6
C5—C6—H6108.9C28B—C27—H273109.3
O26—C8—O7123.2 (3)C6—C27—H273109.3
O26—C8—C9125.4 (3)C28B—C27—H274109.3
O7—C8—C9111.3 (2)C6—C27—H274109.3
N10—C9—C8110.0 (2)H273—C27—H274108.0
N10—C9—C22113.2 (2)C33A—C28A—C29A117.5 (5)
C8—C9—C22110.9 (3)C33A—C28A—C27120.1 (6)
N10—C9—C25111.5 (2)C29A—C28A—C27122.4 (6)
C8—C9—C25106.8 (2)C30A—C29A—C28A121.2 (6)
C22—C9—C25104.2 (2)C30A—C29A—H291119.4
O21—C11—N10121.2 (3)C28A—C29A—H291119.4
O21—C11—C12B119.7 (3)C31A—C30A—C29A119.7 (7)
N10—C11—C12B118.3 (3)C31A—C30A—H301120.1
O21—C11—C12A120.8 (3)C29A—C30A—H301120.1
N10—C11—C12A117.5 (3)C30A—C31A—C32A120.8 (5)
O13—C12A—C14A109.4 (5)C30A—C31A—H311119.6
O13—C12A—C11111.8 (3)C32A—C31A—H311119.6
C14A—C12A—C11115.1 (5)C33A—C32A—C31A118.1 (7)
O13—C12A—H121106.7C33A—C32A—H321121.0
C14A—C12A—H121106.7C31A—C32A—H321121.0
C11—C12A—H121106.7C28A—C33A—C32A122.7 (6)
C12A—C14A—C15A116.2 (5)C28A—C33A—H331118.7
C12A—C14A—H141108.2C32A—C33A—H331118.7
C15A—C14A—H141108.2C33B—C28B—C29B118.4 (5)
C12A—C14A—H142108.2C33B—C28B—C27120.5 (6)
C15A—C14A—H142108.2C29B—C28B—C27121.1 (6)
H141—C14A—H142107.4C30B—C29B—C28B120.6 (6)
C20A—C15A—C16A120.8 (5)C30B—C29B—H292119.7
C20A—C15A—C14A112.4 (5)C28B—C29B—H292119.7
C16A—C15A—C14A125.9 (5)C31B—C30B—C29B119.7 (7)
C15A—C16A—C17A118.8 (4)C31B—C30B—H302120.2
C15A—C16A—H161120.6C29B—C30B—H302120.2
C17A—C16A—H161120.6C30B—C31B—C32B121.2 (6)
C18A—C17A—C16A119.8 (5)C30B—C31B—H312119.4
C18A—C17A—H171120.1C32B—C31B—H312119.4
C16A—C17A—H171120.1C33B—C32B—C31B117.8 (7)
C19A—C18A—C17A117.9 (6)C33B—C32B—H322121.1
C19A—C18A—H181121.0C31B—C32B—H322121.1
C17A—C18A—H181121.0C28B—C33B—C32B122.4 (6)
C20A—C19A—C18A121.2 (6)C28B—C33B—H332118.8
C20A—C19A—H191119.4C32B—C33B—H332118.8
C18A—C19A—H191119.4C36—C35—C3104.4 (3)
C15A—C20A—C19A118.8 (5)C36—C35—H351110.9
C15A—C20A—H201120.6C3—C35—H351110.9
C19A—C20A—H201120.6C36—C35—H352110.9
O13—C12B—C11113.0 (4)C3—C35—H352110.9
O13—C12B—C14B110.3 (5)H351—C35—H352108.9
C11—C12B—C14B110.0 (5)C37—C36—C35102.1 (3)
O13—C12B—H122107.8C37—C36—H361111.3
C11—C12B—H122107.8C35—C36—H361111.3
C14B—C12B—H122107.8C37—C36—H362111.3
C15B—C14B—C12B119.1 (5)C35—C36—H362111.3
C15B—C14B—H143107.5H361—C36—H362109.2
C12B—C14B—H143107.5C36—C37—C38105.3 (3)
C15B—C14B—H144107.5C36—C37—H371110.7
C12B—C14B—H144107.5C38—C37—H371110.7
H143—C14B—H144107.0C36—C37—H372110.7
C20B—C15B—C16B116.9 (5)C38—C37—H372110.7
C20B—C15B—C14B125.2 (6)H371—C37—H372108.8
C16B—C15B—C14B117.8 (4)C37—C38—C3106.3 (2)
C15B—C16B—C17B123.5 (6)C37—C38—H381110.5
C15B—C16B—H162118.3C3—C38—H381110.5
C17B—C16B—H162118.3C37—C38—H382110.5
C18B—C17B—C16B118.1 (6)C3—C38—H382110.5
C18B—C17B—H172121.0H381—C38—H382108.7
C16B—C17B—H172121.0N1—C40—H401109.5
C17B—C18B—C19B119.8 (6)N1—C40—H402109.5
C17B—C18B—H182120.1H401—C40—H402109.5
C19B—C18B—H182120.1N1—C40—H403109.5
C20B—C19B—C18B119.9 (6)H401—C40—H403109.5
C20B—C19B—H192120.1H402—C40—H403109.5
C18B—C19B—H192120.1N1—C41—H411109.5
C15B—C20B—C19B121.7 (6)N1—C41—H412109.5
C15B—C20B—H202119.2H411—C41—H412109.5
C19B—C20B—H202119.2N1—C41—H413109.5
C23—C22—C9106.8 (3)H411—C41—H413109.5
C23—C22—H221110.4H412—C41—H413109.5
C40—N1—C2—O39176.7 (3)O13—C12B—C14B—C15B69.8 (8)
C41—N1—C2—O392.1 (4)C11—C12B—C14B—C15B164.8 (6)
C40—N1—C2—C30.3 (4)C12B—C14B—C15B—C20B138.8 (10)
C41—N1—C2—C3178.5 (2)C12B—C14B—C15B—C16B44.9 (12)
C5—N4—C3—C3575.9 (3)C20B—C15B—C16B—C17B1.4 (15)
C5—N4—C3—C246.8 (3)C14B—C15B—C16B—C17B177.9 (9)
C5—N4—C3—C38171.8 (2)C15B—C16B—C17B—C18B2.3 (15)
O39—C2—C3—N4128.7 (2)C16B—C17B—C18B—C19B4.4 (16)
N1—C2—C3—N454.9 (3)C17B—C18B—C19B—C20B5.7 (18)
O39—C2—C3—C357.1 (3)C16B—C15B—C20B—C19B2.6 (16)
N1—C2—C3—C35176.5 (2)C14B—C15B—C20B—C19B178.8 (10)
O39—C2—C3—C38108.2 (3)C18B—C19B—C20B—C15B4.8 (18)
N1—C2—C3—C3868.2 (3)N10—C9—C22—C23135.8 (3)
C3—N4—C5—O343.1 (4)C8—C9—C22—C23100.0 (3)
C3—N4—C5—C6175.7 (2)C25—C9—C22—C2314.6 (3)
C8—O7—C6—C27154.2 (2)C9—C22—C23—C248.8 (4)
C8—O7—C6—C584.6 (3)C22—C23—C24—C2529.3 (4)
O34—C5—C6—O7178.6 (2)C23—C24—C25—C938.1 (3)
N4—C5—C6—O72.5 (4)N10—C9—C25—C24154.9 (3)
O34—C5—C6—C2762.4 (3)C8—C9—C25—C2485.0 (3)
N4—C5—C6—C27116.5 (3)C22—C9—C25—C2432.5 (3)
C6—O7—C8—O265.7 (4)O7—C6—C27—C28B61.0 (5)
C6—O7—C8—C9169.0 (2)C5—C6—C27—C28B62.6 (5)
C11—N10—C9—C851.3 (4)O7—C6—C27—C28A71.4 (5)
C11—N10—C9—C2273.4 (3)C5—C6—C27—C28A52.2 (5)
C11—N10—C9—C25169.6 (3)C6—C27—C28A—C33A107.8 (14)
O26—C8—C9—N10148.1 (3)C6—C27—C28A—C29A71.4 (15)
O7—C8—C9—N1037.3 (3)C33A—C28A—C29A—C30A0.4 (19)
O26—C8—C9—C2222.2 (4)C27—C28A—C29A—C30A179.6 (11)
O7—C8—C9—C22163.3 (2)C28A—C29A—C30A—C31A3.0 (14)
O26—C8—C9—C2590.7 (3)C29A—C30A—C31A—C32A4.6 (12)
O7—C8—C9—C2583.8 (3)C30A—C31A—C32A—C33A3.5 (11)
C9—N10—C11—O214.8 (5)C29A—C28A—C33A—C32A1 (2)
C9—N10—C11—C12B174.8 (4)C27—C28A—C33A—C32A178.5 (10)
C9—N10—C11—C12A166.4 (4)C31A—C32A—C33A—C28A0.8 (14)
O21—C11—C12A—O13166.6 (4)C6—C27—C28B—C33B100.3 (14)
N10—C11—C12A—O1322.1 (8)C6—C27—C28B—C29B75.6 (15)
O21—C11—C12A—C14A40.9 (8)C33B—C28B—C29B—C30B0 (2)
N10—C11—C12A—C14A147.8 (5)C27—C28B—C29B—C30B175.7 (11)
O13—C12A—C14A—C15A71.9 (8)C28B—C29B—C30B—C31B0.0 (14)
C11—C12A—C14A—C15A161.2 (7)C29B—C30B—C31B—C32B1.4 (12)
C12A—C14A—C15A—C20A162.7 (7)C30B—C31B—C32B—C33B2.4 (12)
C12A—C14A—C15A—C16A6.7 (13)C29B—C28B—C33B—C32B1 (2)
C20A—C15A—C16A—C17A8.7 (15)C27—C28B—C33B—C32B176.7 (11)
C14A—C15A—C16A—C17A177.3 (9)C31B—C32B—C33B—C28B2.1 (15)
C15A—C16A—C17A—C18A4.7 (14)N4—C3—C35—C3684.3 (3)
C16A—C17A—C18A—C19A16.3 (14)C2—C3—C35—C36152.4 (2)
C17A—C18A—C19A—C20A15.1 (15)C38—C3—C35—C3631.7 (3)
C16A—C15A—C20A—C19A10.0 (14)C3—C35—C36—C3743.1 (3)
C14A—C15A—C20A—C19A180.0 (8)C35—C36—C37—C3837.4 (3)
C18A—C19A—C20A—C15A2.1 (14)C36—C37—C38—C317.8 (3)
O21—C11—C12B—O13176.8 (4)N4—C3—C38—C37107.3 (3)
N10—C11—C12B—O1313.0 (8)C35—C3—C38—C378.5 (3)
O21—C11—C12B—C14B53.1 (7)C2—C3—C38—C37128.1 (3)
N10—C11—C12B—C14B136.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H131···O34i0.842.002.753 (3)149
O13—H132···O34i0.841.922.753 (3)172
N4—H4···O210.87 (3)2.06 (3)2.920 (3)170 (3)
N10—H10···O39i0.84 (3)2.34 (3)3.161 (3)164 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(R,S)-Mns-Acp-(S,R)-Mns-Acp-NMe2 (5c) top
Crystal data top
C30H37N3O6Dx = 1.273 Mg m3
Mr = 535.62Melting point: 372 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 18.922 (5) ÅCell parameters from 23 reflections
b = 18.300 (3) Åθ = 18–20°
c = 8.072 (6) ŵ = 0.09 mm1
V = 2795 (2) Å3T = 173 K
Z = 4Prism, colourless
F(000) = 11440.30 × 0.23 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.043
Radiation source: Rigaku RU200 rotating anode generatorθmax = 27.5°, θmin = 2.8°
Graphite monochromatorh = 124
ω–2θ scansk = 023
4363 measured reflectionsl = 101
3889 independent reflections3 standard reflections every 150 reflections
2106 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.4867P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.161(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.32 e Å3
3889 reflectionsΔρmin = 0.24 e Å3
394 parametersAbsolute structure: Flack x determined using 231 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
98 restraintsAbsolute structure parameter: 3.2 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Solvent used: dichloromethane/diethyl ether/hexane

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One of the five-membered rings exhibits significant conformational disorder and two positions were refined for three of the ring-atoms. The site occupation factor of the major conformation of the ring refined to 0.658 (12). Similarity restraints were applied to the chemically equivalent bond lengths involving all disordered C atoms, while neighbouring atoms within and between each conformation of the disordered components were restrained to have similar atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O70.27446 (16)0.65935 (17)0.3454 (5)0.0299 (8)
O130.3236 (2)0.4369 (2)0.6595 (7)0.0529 (12)
H130.308 (4)0.403 (3)0.725 (8)0.08 (3)*
O200.33321 (19)0.62869 (18)0.6795 (6)0.0381 (9)
O250.36813 (19)0.7228 (2)0.2567 (7)0.0532 (13)
O320.21090 (18)0.84238 (19)0.4054 (6)0.0419 (10)
O370.2006 (2)0.9229 (2)0.7711 (6)0.0499 (11)
N10.1471 (2)0.8140 (2)0.7832 (7)0.0463 (13)
N40.2682 (2)0.7657 (2)0.5800 (6)0.0311 (10)
H40.292 (2)0.7272 (18)0.592 (8)0.035 (16)*
N100.3518 (2)0.5493 (2)0.4666 (7)0.0347 (11)
H100.347 (3)0.5065 (16)0.426 (7)0.036 (15)*
C20.2041 (3)0.8557 (3)0.7550 (8)0.0385 (14)
C30.2765 (3)0.8207 (3)0.7111 (7)0.0345 (13)
C50.2375 (3)0.7814 (3)0.4359 (7)0.0313 (12)
C60.2312 (2)0.7213 (3)0.3053 (7)0.0313 (12)
H60.24620.74130.19560.038*
C80.3444 (2)0.6681 (3)0.3171 (7)0.0330 (13)
C90.3889 (3)0.6022 (3)0.3607 (7)0.0364 (13)
C110.3308 (3)0.5661 (3)0.6214 (8)0.0326 (13)
C120.3037 (3)0.5028 (3)0.7310 (9)0.0453 (17)
H120.32790.50660.84080.054*
C140.2250 (3)0.5116 (3)0.7606 (8)0.0335 (13)
C150.1775 (4)0.4822 (4)0.6556 (11)0.064 (2)
H150.19370.45640.56070.077*
C160.1048 (5)0.4890 (5)0.6834 (14)0.087 (3)
H160.07140.46800.60960.104*
C170.0832 (4)0.5272 (4)0.8217 (16)0.090 (4)
H170.03400.53340.83980.108*
C180.1298 (5)0.5571 (4)0.9357 (15)0.082 (3)
H180.11370.58181.03220.099*
C190.2010 (4)0.5490 (3)0.9010 (10)0.0585 (19)
H190.23470.56950.97490.070*
C210.4590 (2)0.6277 (3)0.4484 (9)0.0472 (17)
H2110.47140.67890.42140.057*0.342 (12)
H2120.45720.62110.57010.057*0.342 (12)
H2130.46190.68170.44410.057*0.658 (12)
H2140.45750.61300.56640.057*0.658 (12)
C22A0.5083 (10)0.5727 (10)0.364 (2)0.059 (2)0.342 (12)
H2210.55770.59030.36620.071*0.342 (12)
H2220.50600.52470.42070.071*0.342 (12)
C23A0.4812 (8)0.5667 (12)0.186 (3)0.060 (2)0.342 (12)
H2310.49780.52050.13590.072*0.342 (12)
H2320.49950.60790.11940.072*0.342 (12)
C24A0.4003 (9)0.5685 (17)0.1894 (19)0.058 (2)0.342 (12)
H2410.38080.59970.10020.070*0.342 (12)
H2420.37970.51890.18140.070*0.342 (12)
C22B0.5250 (4)0.5954 (6)0.3684 (17)0.060 (2)0.658 (12)
H2230.55870.57720.45270.072*0.658 (12)
H2240.54910.63140.29640.072*0.658 (12)
C23B0.4934 (4)0.5328 (5)0.2677 (17)0.0573 (19)0.658 (12)
H2330.48750.48850.33670.069*0.658 (12)
H2340.52360.52080.17130.069*0.658 (12)
C24B0.4218 (5)0.5629 (8)0.2120 (12)0.057 (2)0.658 (12)
H2430.39080.52250.17490.068*0.658 (12)
H2440.42810.59740.11870.068*0.658 (12)
C260.1547 (2)0.6970 (3)0.2940 (7)0.0334 (12)
C270.1078 (3)0.7397 (3)0.2043 (9)0.0446 (16)
H270.12460.78170.14730.054*
C280.0370 (3)0.7219 (3)0.1972 (10)0.0518 (18)
H280.00550.75130.13440.062*
C290.0121 (3)0.6626 (4)0.2794 (10)0.0565 (19)
H290.03670.65050.27390.068*
C300.0578 (3)0.6197 (4)0.3712 (10)0.066 (2)
H300.04030.57860.43020.079*
C310.1294 (3)0.6370 (4)0.3772 (10)0.0547 (18)
H310.16080.60710.43900.066*
C330.3102 (3)0.7855 (3)0.8668 (8)0.0452 (15)
H3310.29500.81160.96810.054*
H3320.29600.73360.87630.054*
C340.3901 (3)0.7917 (4)0.8443 (11)0.070 (2)
H3410.41160.74280.83050.085*
H3420.41190.81580.94150.085*
C350.4008 (3)0.8379 (4)0.6881 (11)0.066 (2)
H3510.44020.87280.70350.079*
H3520.41150.80630.59180.079*
C360.3313 (3)0.8784 (3)0.6619 (9)0.0426 (14)
H3610.32550.89340.54480.051*
H3620.32820.92210.73390.051*
C380.1422 (4)0.7336 (3)0.7716 (10)0.061 (2)
H3810.12720.71980.65970.092*
H3820.10770.71570.85240.092*
H3830.18850.71200.79500.092*
C390.0805 (3)0.8526 (4)0.8168 (12)0.072 (2)
H3910.08290.87570.92620.107*
H3920.04120.81760.81460.107*
H3930.07290.89010.73210.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0282 (17)0.0290 (17)0.033 (2)0.0035 (15)0.0015 (17)0.0000 (17)
O130.063 (3)0.036 (2)0.059 (3)0.010 (2)0.027 (3)0.014 (2)
O200.050 (2)0.0253 (18)0.039 (2)0.0087 (16)0.001 (2)0.0017 (19)
O250.035 (2)0.046 (2)0.078 (4)0.0047 (17)0.001 (2)0.032 (3)
O320.050 (2)0.032 (2)0.044 (3)0.0000 (17)0.016 (2)0.010 (2)
O370.061 (2)0.030 (2)0.058 (3)0.0079 (17)0.005 (2)0.002 (2)
N10.048 (3)0.041 (3)0.050 (3)0.003 (2)0.007 (3)0.005 (3)
N40.038 (2)0.026 (2)0.029 (3)0.004 (2)0.006 (2)0.002 (2)
N100.041 (3)0.020 (2)0.043 (3)0.002 (2)0.008 (2)0.001 (2)
C20.047 (3)0.028 (3)0.040 (4)0.005 (2)0.000 (3)0.003 (3)
C30.041 (3)0.031 (3)0.032 (3)0.003 (2)0.003 (3)0.001 (2)
C50.029 (3)0.032 (3)0.032 (3)0.005 (2)0.001 (3)0.011 (3)
C60.028 (2)0.038 (3)0.028 (3)0.003 (2)0.001 (2)0.005 (3)
C80.026 (3)0.039 (3)0.034 (3)0.004 (2)0.004 (3)0.004 (3)
C90.034 (3)0.031 (3)0.044 (4)0.001 (2)0.014 (3)0.003 (3)
C110.027 (3)0.035 (3)0.036 (3)0.008 (2)0.008 (3)0.011 (3)
C120.057 (3)0.027 (3)0.053 (5)0.007 (3)0.019 (3)0.009 (3)
C140.045 (3)0.022 (2)0.034 (3)0.003 (2)0.005 (3)0.008 (3)
C150.069 (5)0.060 (4)0.062 (5)0.007 (4)0.009 (4)0.015 (4)
C160.086 (6)0.083 (6)0.092 (8)0.018 (5)0.021 (6)0.036 (6)
C170.065 (5)0.058 (5)0.146 (11)0.014 (4)0.047 (7)0.049 (6)
C180.086 (6)0.036 (4)0.125 (9)0.007 (4)0.061 (6)0.005 (5)
C190.070 (5)0.043 (4)0.063 (5)0.005 (3)0.023 (4)0.007 (4)
C210.030 (3)0.043 (3)0.068 (5)0.003 (2)0.006 (3)0.016 (4)
C22A0.039 (4)0.052 (5)0.086 (5)0.002 (4)0.022 (4)0.001 (4)
C23A0.044 (4)0.051 (4)0.084 (5)0.001 (4)0.024 (4)0.003 (4)
C24A0.046 (5)0.049 (4)0.080 (5)0.000 (4)0.025 (4)0.004 (4)
C22B0.040 (4)0.051 (4)0.087 (5)0.000 (3)0.023 (4)0.000 (4)
C23B0.041 (3)0.049 (4)0.082 (5)0.003 (3)0.023 (4)0.005 (4)
C24B0.044 (4)0.049 (4)0.077 (5)0.000 (4)0.022 (4)0.006 (4)
C260.027 (3)0.048 (3)0.025 (3)0.004 (2)0.001 (2)0.005 (3)
C270.033 (3)0.044 (3)0.057 (4)0.005 (3)0.006 (3)0.016 (3)
C280.037 (3)0.049 (4)0.069 (5)0.008 (3)0.014 (4)0.023 (4)
C290.030 (3)0.080 (5)0.059 (5)0.002 (3)0.002 (3)0.028 (4)
C300.051 (4)0.083 (5)0.064 (5)0.027 (4)0.000 (4)0.012 (5)
C310.038 (3)0.071 (4)0.055 (5)0.014 (3)0.004 (3)0.020 (4)
C330.057 (4)0.048 (3)0.031 (3)0.016 (3)0.012 (3)0.001 (3)
C340.052 (4)0.097 (6)0.062 (5)0.013 (4)0.022 (4)0.005 (5)
C350.046 (4)0.085 (5)0.066 (5)0.012 (4)0.006 (4)0.006 (5)
C360.045 (3)0.039 (3)0.043 (4)0.009 (3)0.007 (3)0.008 (3)
C380.078 (5)0.043 (4)0.062 (5)0.018 (3)0.025 (4)0.010 (4)
C390.041 (3)0.074 (5)0.099 (7)0.008 (3)0.012 (4)0.005 (5)
Geometric parameters (Å, º) top
O7—C81.352 (6)C21—H2140.9900
O7—C61.436 (6)C22A—C23A1.529 (6)
O13—C121.389 (7)C22A—H2210.9900
O13—H130.86 (2)C22A—H2220.9900
O20—C111.238 (6)C23A—C24A1.533 (6)
O25—C81.200 (6)C23A—H2310.9900
O32—C51.248 (6)C23A—H2320.9900
O37—C21.238 (6)C24A—H2410.9900
N1—C21.341 (7)C24A—H2420.9900
N1—C391.470 (7)C22B—C23B1.526 (6)
N1—C381.477 (7)C22B—H2230.9900
N4—C51.331 (7)C22B—H2240.9900
N4—C31.468 (7)C23B—C24B1.529 (6)
N4—H40.84 (2)C23B—H2330.9900
N10—C111.347 (8)C23B—H2340.9900
N10—C91.469 (7)C24B—H2430.9900
N10—H100.85 (2)C24B—H2440.9900
C2—C31.554 (8)C26—C311.374 (8)
C3—C361.533 (7)C26—C271.387 (8)
C3—C331.549 (8)C27—C281.381 (8)
C5—C61.528 (7)C27—H270.9500
C6—C261.516 (7)C28—C291.356 (9)
C6—H61.0000C28—H280.9500
C8—C91.512 (7)C29—C301.381 (10)
C9—C24A1.529 (6)C29—H290.9500
C9—C24B1.532 (6)C30—C311.392 (8)
C9—C211.575 (8)C30—H300.9500
C11—C121.545 (7)C31—H310.9500
C12—C141.516 (7)C33—C341.528 (9)
C12—H121.0000C33—H3310.9900
C14—C151.347 (9)C33—H3320.9900
C14—C191.401 (9)C34—C351.531 (11)
C15—C161.400 (11)C34—H3410.9900
C15—H150.9500C34—H3420.9900
C16—C171.379 (13)C35—C361.524 (8)
C16—H160.9500C35—H3510.9900
C17—C181.387 (15)C35—H3520.9900
C17—H170.9500C36—H3610.9900
C18—C191.384 (9)C36—H3620.9900
C18—H180.9500C38—H3810.9800
C19—H190.9500C38—H3820.9800
C21—C22B1.525 (6)C38—H3830.9800
C21—C22A1.530 (6)C39—H3910.9800
C21—H2110.9900C39—H3920.9800
C21—H2120.9900C39—H3930.9800
C21—H2130.9900
C8—O7—C6115.3 (4)H221—C22A—H222108.8
C12—O13—H13106 (5)C22A—C23A—C24A108.5 (15)
C2—N1—C39116.6 (5)C22A—C23A—H231110.0
C2—N1—C38127.4 (5)C24A—C23A—H231110.0
C39—N1—C38115.8 (5)C22A—C23A—H232110.0
C5—N4—C3121.9 (4)C24A—C23A—H232110.0
C5—N4—H4121 (4)H231—C23A—H232108.4
C3—N4—H4116 (4)C9—C24A—C23A99.4 (11)
C11—N10—C9122.0 (4)C9—C24A—H241111.9
C11—N10—H10122 (4)C23A—C24A—H241111.9
C9—N10—H10116 (4)C9—C24A—H242111.9
O37—C2—N1120.3 (5)C23A—C24A—H242111.9
O37—C2—C3118.8 (5)H241—C24A—H242109.6
N1—C2—C3120.8 (4)C21—C22B—C23B101.3 (6)
N4—C3—C36111.0 (5)C21—C22B—H223111.5
N4—C3—C33110.2 (4)C23B—C22B—H223111.5
C36—C3—C33102.6 (4)C21—C22B—H224111.5
N4—C3—C2110.6 (4)C23B—C22B—H224111.5
C36—C3—C2111.8 (4)H223—C22B—H224109.3
C33—C3—C2110.5 (5)C22B—C23B—C24B103.6 (8)
O32—C5—N4122.8 (5)C22B—C23B—H233111.1
O32—C5—C6118.4 (5)C24B—C23B—H233111.1
N4—C5—C6118.8 (4)C22B—C23B—H234111.1
O7—C6—C26109.0 (4)C24B—C23B—H234111.1
O7—C6—C5111.6 (4)H233—C23B—H234109.0
C26—C6—C5109.1 (4)C23B—C24B—C9107.4 (7)
O7—C6—H6109.0C23B—C24B—H243110.2
C26—C6—H6109.0C9—C24B—H243110.2
C5—C6—H6109.0C23B—C24B—H244110.2
O25—C8—O7122.2 (5)C9—C24B—H244110.2
O25—C8—C9123.5 (4)H243—C24B—H244108.5
O7—C8—C9114.3 (4)C31—C26—C27118.8 (5)
N10—C9—C8113.2 (4)C31—C26—C6122.6 (5)
N10—C9—C24A109.1 (12)C27—C26—C6118.4 (5)
C8—C9—C24A100.9 (12)C28—C27—C26120.6 (6)
N10—C9—C24B110.0 (7)C28—C27—H27119.7
C8—C9—C24B114.7 (7)C26—C27—H27119.7
N10—C9—C21109.7 (5)C29—C28—C27120.4 (6)
C8—C9—C21109.7 (4)C29—C28—H28119.8
C24A—C9—C21114.0 (8)C27—C28—H28119.8
C24B—C9—C2198.5 (5)C28—C29—C30119.9 (6)
O20—C11—N10123.5 (5)C28—C29—H29120.0
O20—C11—C12119.3 (5)C30—C29—H29120.0
N10—C11—C12117.3 (5)C29—C30—C31119.9 (7)
O13—C12—C14115.1 (5)C29—C30—H30120.0
O13—C12—C11108.8 (5)C31—C30—H30120.0
C14—C12—C11109.7 (4)C26—C31—C30120.3 (6)
O13—C12—H12107.7C26—C31—H31119.9
C14—C12—H12107.7C30—C31—H31119.9
C11—C12—H12107.7C34—C33—C3106.3 (6)
C15—C14—C19119.2 (6)C34—C33—H331110.5
C15—C14—C12120.9 (6)C3—C33—H331110.5
C19—C14—C12119.9 (6)C34—C33—H332110.5
C14—C15—C16121.3 (9)C3—C33—H332110.5
C14—C15—H15119.3H331—C33—H332108.7
C16—C15—H15119.3C33—C34—C35105.6 (5)
C17—C16—C15117.7 (9)C33—C34—H341110.6
C17—C16—H16121.1C35—C34—H341110.6
C15—C16—H16121.1C33—C34—H342110.6
C16—C17—C18123.3 (8)C35—C34—H342110.6
C16—C17—H17118.3H341—C34—H342108.7
C18—C17—H17118.3C36—C35—C34105.6 (6)
C19—C18—C17116.2 (9)C36—C35—H351110.6
C19—C18—H18121.9C34—C35—H351110.6
C17—C18—H18121.9C36—C35—H352110.6
C18—C19—C14122.2 (8)C34—C35—H352110.6
C18—C19—H19118.9H351—C35—H352108.8
C14—C19—H19118.9C35—C36—C3102.3 (5)
C22B—C21—C9112.6 (6)C35—C36—H361111.3
C22A—C21—C996.8 (10)C3—C36—H361111.3
C22A—C21—H211112.4C35—C36—H362111.3
C9—C21—H211112.4C3—C36—H362111.3
C22A—C21—H212112.4H361—C36—H362109.2
C9—C21—H212112.4N1—C38—H381109.5
H211—C21—H212110.0N1—C38—H382109.5
C22B—C21—H213109.1H381—C38—H382109.5
C9—C21—H213109.1N1—C38—H383109.5
C22B—C21—H214109.1H381—C38—H383109.5
C9—C21—H214109.1H382—C38—H383109.5
H213—C21—H214107.8N1—C39—H391109.5
C23A—C22A—C21105.1 (13)N1—C39—H392109.5
C23A—C22A—H221110.7H391—C39—H392109.5
C21—C22A—H221110.7N1—C39—H393109.5
C23A—C22A—H222110.7H391—C39—H393109.5
C21—C22A—H222110.7H392—C39—H393109.5
C39—N1—C2—O375.9 (10)C12—C14—C15—C16178.9 (6)
C38—N1—C2—O37179.3 (7)C14—C15—C16—C170.4 (11)
C39—N1—C2—C3177.5 (6)C15—C16—C17—C181.9 (13)
C38—N1—C2—C32.7 (10)C16—C17—C18—C192.2 (12)
C5—N4—C3—C3670.1 (6)C17—C18—C19—C141.2 (10)
C5—N4—C3—C33177.0 (5)C15—C14—C19—C180.2 (9)
C5—N4—C3—C254.5 (6)C12—C14—C19—C18178.5 (6)
O37—C2—C3—N4135.0 (6)N10—C9—C21—C22B106.9 (7)
N1—C2—C3—N448.3 (7)C8—C9—C21—C22B128.2 (7)
O37—C2—C3—C3610.8 (8)C24B—C9—C21—C22B8.0 (10)
N1—C2—C3—C36172.5 (6)N10—C9—C21—C22A94.7 (10)
O37—C2—C3—C33102.7 (6)C8—C9—C21—C22A140.4 (10)
N1—C2—C3—C3373.9 (7)C24A—C9—C21—C22A28.1 (17)
C3—N4—C5—O323.5 (7)C9—C21—C22A—C23A37.9 (17)
C3—N4—C5—C6179.7 (5)C21—C22A—C23A—C24A39 (3)
C8—O7—C6—C26163.3 (5)N10—C9—C24A—C23A116.8 (17)
C8—O7—C6—C576.1 (5)C8—C9—C24A—C23A123.8 (17)
O32—C5—C6—O7169.9 (4)C21—C9—C24A—C23A6 (2)
N4—C5—C6—O713.2 (6)C22A—C23A—C24A—C919 (3)
O32—C5—C6—C2669.6 (6)C9—C21—C22B—C23B16.6 (12)
N4—C5—C6—C26107.4 (5)C21—C22B—C23B—C24B34.5 (13)
C6—O7—C8—O252.8 (8)C22B—C23B—C24B—C942.9 (14)
C6—O7—C8—C9179.8 (4)N10—C9—C24B—C23B84.5 (10)
C11—N10—C9—C864.2 (7)C8—C9—C24B—C23B146.5 (8)
C11—N10—C9—C24A175.7 (9)C21—C9—C24B—C23B30.1 (10)
C11—N10—C9—C24B166.0 (6)O7—C6—C26—C3125.7 (8)
C11—N10—C9—C2158.7 (6)C5—C6—C26—C3196.4 (6)
O25—C8—C9—N10166.8 (6)O7—C6—C26—C27158.4 (5)
O7—C8—C9—N1015.9 (7)C5—C6—C26—C2779.4 (6)
O25—C8—C9—C24A76.7 (11)C31—C26—C27—C280.7 (9)
O7—C8—C9—C24A100.6 (10)C6—C26—C27—C28176.7 (6)
O25—C8—C9—C24B65.8 (9)C26—C27—C28—C290.7 (10)
O7—C8—C9—C24B111.5 (7)C27—C28—C29—C300.1 (10)
O25—C8—C9—C2143.9 (8)C28—C29—C30—C310.9 (11)
O7—C8—C9—C21138.7 (5)C27—C26—C31—C300.1 (10)
C9—N10—C11—O208.9 (8)C6—C26—C31—C30175.8 (6)
C9—N10—C11—C12170.0 (5)C29—C30—C31—C260.9 (12)
O20—C11—C12—O13163.6 (5)N4—C3—C33—C3488.4 (6)
N10—C11—C12—O1315.3 (7)C36—C3—C33—C3429.7 (6)
O20—C11—C12—C1469.7 (7)C2—C3—C33—C34149.0 (5)
N10—C11—C12—C14111.4 (6)C3—C33—C34—C356.5 (7)
O13—C12—C14—C1534.0 (8)C33—C34—C35—C3619.6 (7)
C11—C12—C14—C1589.1 (6)C34—C35—C36—C338.2 (7)
O13—C12—C14—C19144.3 (5)N4—C3—C36—C3576.3 (6)
C11—C12—C14—C1992.6 (7)C33—C3—C36—C3541.3 (6)
C19—C14—C15—C160.6 (10)C2—C3—C36—C35159.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O32i0.86 (2)1.87 (3)2.713 (6)166 (8)
N4—H4···O200.84 (2)2.09 (3)2.907 (5)164 (6)
N10—H10···O37ii0.85 (2)2.17 (3)2.970 (6)155 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, °) for (3b), (5a), (5b) and (5c) top
CompoundD—H···AD—HH···AD···AD—H···A
(3b)O19—H419···O45i0.842.112.814 (6)142
N4—H4···O400.882.193.019 (7)156
N10—H10···O270.882.073.882 (7)154
N16—H16···O53i0.882.233.052 (6)156
(5a)†O13—H13···O35ii0.90 (6)1.79 (6)2.670 (5)169 (5)
N4—H4···O210.90 (6)1.99 (6)2.881 (5)171 (5)
N10—H10···O53iii0.81 (5)2.36 (5)3.124 (5)157 (4)
O53—H53···O75iv0.86 (6)1.83 (6)2.684 (5)171 (6)
N44—H44···O610.85 (5)2.01 (5)2.824 (5)159 (5)
N50—H50···O13v0.84 (5)2.40 (5)3.185 (5)156 (4)
(5b)‡O13—H131···O34vi0.842.002.753 (3)149
O13—H132···O34vi0.841.922.753 (3)172
N4—H4···O210.87 (3)2.06 (3)2.920 (3)170 (3)
N10—H10···O39vi0.84 (3)2.34 (3)3.161 (3)164 (3)
(5c)O13—H13···O32vii0.86 (2)1.87 (3)2.713 (6)166 (8)
N4—H4···O200.84 (2)2.09 (3)2.907 (5)164 (6)
N10—H10···O37viii0.85 (2)2.17 (3)2.970 (6)155 (5)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, y-1/2, -z; (iii) -x+1, y-1/2, -z+1; (iv) -x, y+1/2, -z+1; (v) -x+1, y+1/2, -z+1; (vi) -x+1/2, y+1/2, -z+1/2; (vii) -x+1/2, y-1/2, z+1/2; (viii) -x+1/2, y-1/2, z-1/2. † Two symmetry-independent molecules; the atom numbers of molecule B correspond with those of molecule A + 40. ‡ The hydroxy group is disordered.
Torsion angles ω, φ and ψ (°) of the backbone of the depsipeptide molecules in the structures of (3b), (5a), (5b) and (5c) top
Scheme 3
CompoundAmino/hydroxy acid†AtomsTorsion angles
(3b)Pms(1)ψ1O19—C18—C17—N16-9.6 (9)
ω1C18—C17—N16—C15179.0 (6)
Acp(2)'φ2C17—N16—C15—C14-49.1 (8)
ψ2N16—C15—C14—O13-34.2 (7)
w2C15—C14—O13—C12-171.3 (5)
Pms(3)φ3C14—O13—C12—C11-77.1 (6)
ψ3O13—C12—C11—N10-17.0 (8)
ω3C12—C11—N10—C9179.0 (5)
Acp(4)φ4C11—N10—C9—C8-49.7 (7)
ψ4N10—C9—C8—O7-35.2 (7)
ω4C9—C8—O7—C6-167.0 (5)
Pms(5)φ5C8—O7—C6—C5-93.5 (6)
ψ5O7—C6—C5—N4-5.5 (7)
ω5C6—C5—N4—C3178.9 (6)
Acp(6)φ6C5—N4—C3—C251.6 (8)
ψ6N4—C3—C2—N143.6 (10)
(5a)‡Pms(1)ψ1O13—C12—C11—N10-18.9 (6); -17.2 (5)
ω1C12—C11—N10—C9-173.3 (4); -171.1 (4)
Aib(2)φ2C11—N10—C9—C8-51.5 (6); -50.9 (6)
ψ2N10—C9—C8—O7-33.1 (6); -33.8 (6)
ω2C9—C8—O7—C6-169.9 (3); -173.1 (4)
Pms(3)φ3C8—O7—C6—C5-98.6 (4); -96.0 (5)
ψ3O7—C6—C5—N4-2.1 (6); -6.9 (6)
ω3C6—C5—N4—C3178.5 (4); -179.4 (4)
Aib(4)?4C5—N4—C3—C2-48.8 (6); -49.1 (5)
?4N4—C3—C2—N1-43.2 (6); -44.3 (5)
(5b)Pms(1)ψ1O13—C12a—C11—N10§22.1 (8)
O13—C12b—C11—N10§§-13.0 (8)
ω1C12a—C11—N10—C9§166.4 (4)
C12b—C11—N10—C9§§-174.9 (4)
Acp(2)φ2C11—N10—C9—C851.3 (4)
ψ2N10—C9—C8—O737.3 (3)
ω2C9—C8—O7—C6169.0 (2)
Pms(3)φ3C8—O7—C6—C584.6 (3)
ψ3O7—C6—C5—N42.5 (4)
ω3C6—C5—N4—C3175.7 (2)
Acp(4)φ4C5—N4—C3—C246.8 (3)
ψ4N4—C3—C2—N154.9 (3)
(5c)Mns(1)ψ1O13—C12—C11—N1015.3 (7)
ω1C12—C11—N10—C9-170.0 (5)
Acp(2)φ2C11—N10—C9—C8-64.2 (7)
ψ2N10—C9—C8—O7-15.9 (7)
ω2C9—C8—O7—C6179.8 (4)
Mns(3)φ3C8—O7—C6—C5-76.1 (5)
ψ3O7—C6—C5—N4-13.2 (6)
ω3C6—C5—N4—C3179.7 (5)
Acp(4)φ4C5—N4—C3—C254.5 (6)
ψ4N4—C3—C2—N148.3 (7)
Notes: Acp is 1-aminocyclopentane carboxylic acid, Pms is phenyllactic acid, Aib is aminoisobutyric acid and Mns is mandelic acid. ‡ Two symmetry-independent molecules. The atom numbers for molecule A are given and those of molecule B are obtained by adding 40; the torsion angles for molecule B are listed second. § S,R-isomer. §§ R,R-isomer.
 

Acknowledgements

Financial support of the work by the Stipendienfonds der Basler Chemischen Industrie (scholarship to JEFM), the Swiss National Science Foundation (grant to HH) and F. Hoffmann–La Roche AG, Basel (grant to HH), is gratefully acknowledged.

References

First citationAltherr, W., Linden, A. & Heimgartner, H. (2007). Chem. Biodivers. 4, 1144–1169.  CSD CrossRef PubMed CAS Google Scholar
First citationArad, O. & Goodman, M. (1990). Biopolymers, 29, 1651–1668.  CrossRef CAS Google Scholar
First citationArnhold, F. S., Linden, A. & Heimgartner, H. (2014). Helv. Chim. Acta, 97, 619–645.  CSD CrossRef CAS Google Scholar
First citationArnhold, F. S., Linden, A. & Heimgartner, H. (2015). Helv. Chim. Acta, 98, 232–244.  CSD CrossRef CAS Google Scholar
First citationBecktel, W. J., Wouters, G., Simmons, D. M. & Goodman, M. (1985). Macromolecules, 18, 630–634.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoecker, S., Zobel, S., Meyer, V. & Süssmuth, R. D. (2016). Fungal Genet. Biol. 89, 89–101.  CrossRef CAS PubMed Google Scholar
First citationBourel-Bonnet, L., Rao, K. V., Hamann, M. T. & Ganesan, A. (2005). J. Med. Chem. 48, 1330–1335.  PubMed CAS Google Scholar
First citationDannecker-Dörig, I., Linden, A. & Heimgartner, H. (2009). Collect. Czech. Chem. Commun. 74, 901–925.  Google Scholar
First citationDannecker-Dörig, I., Linden, A. & Heimgartner, H. (2011). Helv. Chim. Acta, 94, 993–1011.  Google Scholar
First citationDing, L.-J., Yuan, W., Liao, X.-J., Han, B.-N., Wang, S.-P., Li, Z.-Y., Xu, S.-H., Zhang, W. & Lin, H.-W. (2016). J. Nat. Prod. 79, 2045–2052.  CSD CrossRef CAS PubMed Google Scholar
First citationDobler, M., Dunitz, J. D. & Krajewski, J. (1969). J. Mol. Biol. 42, 603–606.  CSD CrossRef CAS PubMed Google Scholar
First citationGessmann, R., Brückner, H. & Petratos, K. (2016). J. Pept. Sci. 22, 76–81.  CSD CrossRef CAS PubMed Google Scholar
First citationGoodman, M. (1985). Biopolymers, 24, 137–155.  CrossRef CAS PubMed Google Scholar
First citationHeimgartner, H. (1981). Isr. J. Chem. 21, 151–156.  CrossRef CAS Google Scholar
First citationHeimgartner, H. (1986). Isr. J. Chem. 27, 3–15.  CrossRef CAS Google Scholar
First citationHeimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238–264.  CrossRef Web of Science Google Scholar
First citationIngwall, R. T., Gilon, C. & Goodman, M. (1976). Macromolecules, 9, 802–808.  CrossRef CAS PubMed Google Scholar
First citationIngwall, R. T. & Goodman, M. (1974). Macromolecules, 7, 598–605.  CrossRef CAS PubMed Google Scholar
First citationJeremic, T., Linden, A., Moehle, K. & Heimgartner, H. (2005). Tetrahedron, 61, 1871–1883.  CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKatakai, R., Kobayashi, K., Yonezawa, N. & Yoshida, M. (1996). Biopolymers, 38, 285–290.  CrossRef CAS PubMed Google Scholar
First citationKitagaki, J., Shi, G., Miyauchi, S., Murakami, S. & Yang, Y. (2015). Anticancer Drugs, 26, 259–271.  CrossRef CAS PubMed Google Scholar
First citationKitir, B., Baldry, M., Ingmer, H. & Olsen, C. A. (2014). Tetrahedron, 70, 7721–7732.  CrossRef CAS Google Scholar
First citationKoch, K. N., Linden, A. & Heimgartner, H. (2000). Helv. Chim. Acta, 83, 233–257.  CrossRef CAS Google Scholar
First citationKoch, K. N., Linden, A. & Heimgartner, H. (2001). Tetrahedron, 57, 2311–2326.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöcher, S., Rey, J., Bongard, J., Tiaden, A. N., Meltzer, M., Richards, P. J., Ehrmann, M. & Kaiser, M. (2017). Angew. Chem. Int. Ed. 56, 8555–8558.  Google Scholar
First citationKöttgen, P., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 731–746.  Google Scholar
First citationKöttgen, P., Linden, A. & Heimgartner, H. (2009). Z. Naturforsch. Teil B, 64, 689–698.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagirius, J. E. F. (1995). PhD thesis, University of Zurich, Switzerland.  Google Scholar
First citationMolecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.  Google Scholar
First citationMolecular Structure Corporation (1991). TEXSAN. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.  Google Scholar
First citationNeupert-Laves, K. & Dobler, M. (1975). Helv. Chim. Acta, 58, 432–442.  PubMed CAS Web of Science Google Scholar
First citationObrecht, D. & Heimgartner, H. (1984). Helv. Chim. Acta, 67, 526–533.  CrossRef CAS Web of Science Google Scholar
First citationObrecht, D. & Heimgartner, H. (1987a). Helv. Chim. Acta, 70, 102–115.  CrossRef CAS Google Scholar
First citationObrecht, D. & Heimgartner, H. (1987b). Helv. Chim. Acta, 70, 329–338.  CrossRef CAS Google Scholar
First citationObrecht, D. & Heimgartner, H. (1990). Helv. Chim. Acta, 73, 221–228.  CrossRef CAS Web of Science Google Scholar
First citationOhyama, T., Oku, H., Hiroki, A., Maekawa, Y., Yoshida, M. & Katakai, R. (2000). Biopolymers, 54, 375–378.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhyama, T., Oku, H., Yoshida, M. & Katakai, R. (2001). Biopolymers, 58, 636–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOku, H., Ohyama, T., Hiroki, A., Yamada, K., Fukuyama, K., Kawaguchi, H. & Katakai, R. (2004). Biopolymers, 75, 242–254.  CSD CrossRef PubMed CAS Google Scholar
First citationOvchinnikov, Yu. A., Ivanov, V. T., Evstratov, A. V., Mikhaleva, I. I., Bystrov, V. F., Portnova, S. L., Balashova, T. A., Meshcheryakova, E. N. & Tulchinsky, V. M. (1974). Int. J. Pept. Prot. Res. 6, 465–498.  CrossRef CAS Google Scholar
First citationPelay-Gimeno, M., Tulla-Puche, J. & Albericio, F. (2013). Marine Drugs, 11, 1693–1717.  CAS PubMed Google Scholar
First citationPradeille, N., Tzouros, M., Möhle, K., Linden, A. & Heimgartner, H. (2012). Chem. Biodivers. 9, 2528–2558.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationQi, N., Wang, Z., Allu, S. R., Liu, Q., Guo, J. & He, Y. (2016). J. Org. Chem. 81, 12466–12471.  CrossRef CAS PubMed Google Scholar
First citationQuitt, P., Studer, R. O. & Vogler, A. (1963). Helv. Chim. Acta, 46, 1715–1720.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShemyakin, M. M., Aldanova, N. A., Vinogradova, E. I. & Feigina, M. Yu. (1963). Tetrahedron Lett. 4, 1921–1925.  CrossRef Google Scholar
First citationShemyakin, M. M., Ovchinnikov, Yu. A., Kiryushkin, A. A. & Ivanov, V. T. (1965). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1623–1630.  Google Scholar
First citationSilber, J., Ohlendorf, B., Labes, A., Näther, C. & Imhoff, J. F. (2013). J. Nat. Prod. 76, 1461–1467.  CSD CrossRef CAS PubMed Google Scholar
First citationSivanathan, S. & Scherkenbeck, J. (2014). Molecules, 19, 12368–12420.  CrossRef PubMed Google Scholar
First citationSmelcerovic, A., Dzodic, P., Pavlovic, V., Cherneva, E. & Yancheva, D. (2014). Amino Acids, 46, 825–840.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamm, S. & Heimgartner, H. (2004). Eur. J. Org. Chem. 2004, 3820–3827.  CrossRef Google Scholar
First citationTarsis, E. M., Rastelli, E. J., Wengryniuk, S. E. & Coltart, D. M. (2015). Tetrahedron, 71, 5029–5044.  CrossRef CAS Google Scholar
First citationWang, X., Gong, X., Li, P., Lai, D. & Zhou, L. (2018). Molecules, 23, 169.  CrossRef Google Scholar
First citationWeiss, C., Figueras, E., Borbely, A. N. & Sewald, N. (2017). J. Pept. Sci. 23, 514–531.  CrossRef CAS PubMed Google Scholar
First citationWeiss, C., Sammet, B. & Sewald, N. (2013). Nat. Prod. Rep. 30, 924–940.  CrossRef CAS PubMed Google Scholar
First citationWipf, P. & Heimgartner, H. (1990). Helv. Chim. Acta, 73, 13–24.  CrossRef CAS Web of Science Google Scholar
First citationWouters, G., Katakai, R., Becktel, W. J. & Goodman, M. (1982). Macromolecules, 15, 31–35.  CrossRef CAS Google Scholar
First citationXu, Y.-Y., Liu, C. & Liu, Z.-P. (2013). Curr. Org. Synth. 10, 67–89.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds