research papers
4N)[ReS4]
and structures of the twinned low-temperature phases of (EtaAnorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstrasse 20, Wuppertal 42119, Germany, and bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
*Correspondence e-mail: edbern@uni-wuppertal.de
The title compound, tetraethylammonium tetrathiorhenate, [(C2H5)4N][ReS4], has, at room temperature, a disordered structure in the P63mc (Z = 2, α-phase). A to the monoclinic P21 (Z = 2, γ-phase) at 285 K leads to a pseudo-merohedral twin. The high deviation from the hexagonal metric causes split reflections. However, the different orientations could not be separated, but were integrated using a large integration box. Rapid cooling to 110–170 K produces a metastable β-phase (P63, Z = 18) in addition to the γ-phase. All crystals of the β-phase are contaminated with the γ-phase. Additionally, the crystals of the β-phase are merohedrally twinned. In contrast to the α-phase, the β- and γ-phases do not show disorder.
Keywords: twinning; phase transition; thiorhenate; crystal structure.
1. Introduction
Salts with the ReS4− anion were synthesized for the first time in 1970 (Müller et al., 1970). So far, some syntheses of ReS4− salts with different cations, such as Me4N+ (Müller et al., 1970), Ph4P+ (Müller et al., 1970), Ph4As+ (Müller et al., 1970; Halbert et al., 1990; Wei et al., 1991), Bu4N+ (Do et al., 1985), Et4N+ (Müller et al., 1986, 1987; Halbert et al., 1990; Wei et al., 1991; Goodman & Rauchfuss, 2002), Pr4N+ (Scattergood et al., 1987) and (PhCH2)Et3N+ (Halbert et al., 1990; Wei et al., 1991), have been reported. There is a lack of reliable methods to prepare salts of the ReS4− anion with Na+, K+, Rb+ and Cs+ cations. The ReS4− anion is used in several organic chemistry reactions, such as addition reactions to carbon–carbon multiple bonds (Goodman et al., 1996; Goodman & Rauchfuss, 1998, 1999; Dopke et al., 2000) and the carbon–nitrogen triple bond of some (Goodman & Rauchfuss, 1997). Moreover, the reaction of the ReS4− anion with isonitriles has been described (Schwarz & Rauchfuss, 2000).
X-ray diffraction studies were published for Ph4PReS4 (Müller et al., 1970; Diemann & Müller, 1976), Ph4AsReS4 (Müller et al., 1970), Bu4NReS4 (Do et al., 1985) and Et4NReS4 (Müller et al., 1986, 1987). While the structures of Ph4PReS4, Ph4AsReS4 and Bu4NReS4 are ordered, the structure of Et4NReS4 [P6mm, a = 8.149 (2), c = 6.538 (1) Å, Z = 1, room temperature] is disordered. Superstructural reflections were observed, suggesting a larger The aim of this work was to verify that the of Et4NReS4 would be larger at room temperature. Another goal of this work was to investigate whether a to an ordered structure could be observed at lower temperatures.
2. Experimental
2.1. Synthesis and crystallization
Et4NReS4 was synthesized according to the literature method of Goodman & Rauchfuss (2002). Slow evaporation of an acetonitrile solution of Et4NReS4 in air afforded crystals suitable for X-ray diffraction analysis.
2.2. Refinement
Crystal data, data collection and structure . The phase designations Ia–Ic are analogous to that used for Et4NFeCl4 (Lutz et al., 2014).
details are summarized in Table 12.2.1. α-phase
The α-phase (denoted Ia) at 297 K was refined in the P63mc (Table 1) starting from the structure of Et4NFeCl4 at 290 K (Lutz et al., 2014). The ReS4− anion is completely ordered. The whole tetraethylammonium cation is disordered about special position b with 3m symmetry. A whole cation with an occupancy of 1/6 was modelled. Similarity distance restraints were applied for the ethyl groups. All the atoms of the cation were refined isotropically because of this severe disorder, whereas the atoms of the ordered anion were refined anisotropically (Fig. 1a). H atoms were attached to geometrically optimized positions and refined with the riding model. was considered. The fractional contribution of the minor domain refined to 0.14 (4). The C—H distances were fixed at 0.96 (CH3) or 0.97 Å (CH2). The Uiso(H) values were constrained to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.
of the2.2.2. γ-phase
Upon slow cooling (ca 5 K min−1) to 285 K, crystals of the α-phase (i.e. Ia) undergo a reversible to the γ-phase (denoted Ic). No further phase transitions could be observed between 110 and 300 K. The γ-phase crystallizes in the P21 as a pseudomerohedral twin (Table 1). Attempts to grow crystals at 273 and 253 K also led to the formation of twins. Data for the γ-phase were collected at 150 K. The high deviation from the hexagonal metric leads to split reflections and reflections of different domains close to each other (see Fig. S1 of the supporting information). However, the different orientations could not be separated. To take the into account, an HKLF5 file (Sevvana et al., 2019) was produced (SHELXL2018; Sheldrick, 2015) according to the transition from P63mc to P21 (Table 2). The normal procedure using the TWIN command was not possible, because in SHELXL, only one TWIN command is allowed, but here two twin operations, a threefold and a mirror, are needed. We checked for additional using now twelve components, but the fractional contributions of the additional six components refined to values close to zero (for details, see the supporting information). Both the tetrathioperrhenate anion (ReS4−) and the tetraethylammonium cation are completely ordered (Fig. 1b). However, to stabilize the distance restraints were used and the cation was only isotropically refined. H atoms were attached to geometrical optimized positions and refined with the riding model. The C—H distances were fixed at 0.98 (CH3) or 0.99 Å (CH2). The Uiso(H) values were constrained to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.
|
2.2.3. β-phase
Rapid cooling (>100 K s−1) of the α-phase (i.e. Ia) to 110–170 K leads to a mixture of the γ-phase (i.e. Ic) and the β-phase (denoted Ib) through a forming an A plot (see Fig. S2 in the supporting information) shows satellites for the reflections with h = 3n and k = 3m. With slow heating (ca 5 K min−1) to 200 K, the β-phase irreversibly changes to the γ-phase. We were not able to obtain crystals of the β-phase free from the γ-phase. Such a superposition of reflections of two phases was also found, for example, in Kautny et al. (2017). The a and b axes of the β-phase are enlarged by a factor of three compared to the γ-phase. Therefore, all hkl reflections with h = 3n and k = 3m of the β-phase are contaminated with reflections of the γ-phase. The data collection software (CrysAlis PRO; Oxford Diffraction, 2016) could not split the summed intensity into its two components. Therefore, the hkl reflections with h = 3n and k = 3m had to be removed from the data set. This lowers the completeness to only 88.8%. Including the contaminated reflections raises the R1 value from 0.0354 to 0.0548 and shows F2obs values for hkl reflections with h = 3n and k = 3m much bigger than the F2calc values (see Table S1 in the supporting information). Even with the ISOR restraint, where atoms are restrained with effective standard deviations so that their Uij components approximate to isotropic behaviour, the anisotropic displacement parameters refine to nonpositive definite values and the residual density increases to 3.45/−3.41 e Å−3. The C—H distances were fixed at 0.98 (CH3) or 0.99 Å (CH2). The Uiso(H) values were constrained to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.
The β-phase of Et4NReS4 is isostructural with Et4NFeCl4 at 230 K (Lutz et al., 2014). It crystallizes as a twin with the 010 100 001 and a fractional contribution of 0.5005 (15). This describes a mirror plane perpendicular to the face diagonal. To check for additional a with `TWIN 0 1 0 1 0 0 0 0 1 −4' was applied. The additional fractional contributions refined to −0.004 (7) and −0.007 (7). Therefore, could be excluded. All tetrathioperrhenate anions (ReS4−) and tetraethylammonium cations are completely ordered (Fig. 1c).
3. Results and discussion
At 297 K, Et4NReS4 is isostructural with Et4NFeCl4 (Lutz et al., 2014; Warnke et al., 2010; Evans et al., 1990; Navarro et al., 1988), Et4NFeBrCl3 (Evans et al., 1990), Et4NInCl4 (Trotter et al., 1969) and Et4NTlCl4 (Lenck et al., 1991). They crystallize in the P63mc. While the anion is ordered, the tetraethylammonium cation is disordered. The volume of the grows in the following series Et4NBF4 ≃ Et4NClO4 < Et4NMnO4 ≃ Et4NPO2F2 ≃ Et4NReOS3 < Et4NReS4 < Et4NFeCl4 < Et4NFeBrCl3 < Et4NTlCl4 ≃ Et4NInCl4. Accordingly, in the series Et4NClO4 (378.5 K) > Et4NBF4 (342 K) > Et4NPO2F2 (323 K) > Et4NReS4 (285 K) > Et4NFeCl4 (234.7 K) > Et4NTlCl4 (222 K), the transition temperature to an ordered structure decreases (Tables 3 and 4).
|
|
While Et4NFeCl4 at 234.7 K undergoes a from P63mc to P63 (Lutz et al., 2014; Navarro et al., 1988), a from P63mc to P21 is observed for Et4NReS4 at 285 K. The P63 phase is metastable for Et4NReS4, while the P21 phase is not observed for Et4NFeCl4. An additional low-temperature phase of Et4NFeCl4 crystallizes in the Pca21 [226.6 (1)–2.93 (3) K] (Lutz et al., 2014; Navarro et al., 1988). This phase is not observed for Et4NReS4. While the high-temperature phases of the compounds from Table 3 have the same structure, the low-temperature phases show different structures (Table 4). Tetraethylammonium salts with anions smaller than tetrathiorhenate crystallize at room temperature as the low-temperature phase of Et4NReS4. Whereas the tetraethylammonium cation in Et4NBF4, Et4NClO4, Et4NPO2F2, Et4NReS4, Et4NFeCl4, Et4NFeBrCl3 and Et4NTlCl4 has the tg–tg conformation (t is trans and g is gauche), it has the tt–tt conformation in Et4NReO3S and Et4NMnO4 (Naudin et al., 2000). Only the structures of Et4NReO3S, Et4NMnO4, Et4NBF4 (high-temperature phase) and Et4NClO4 (high-temperature phase) have an inversion centre. In these two compounds, the Et4N+ cation has a tg–tg conformation or is disordered.
At 297 K, Et4NReS4 crystallizes in the P63mc (Tables 1 and 4). Because of the special position of the Re atom (2a, 3m.; Arnold, 1983), all reflections with l = 2n + 1 are much weaker than those with l = 2n (Table 5). This could explain why Müller et al. (1986, 1987) found a smaller [P6mm, a = 8.149 (2), c = 6.538 (1) Å, Z = 1]. They observed weak superstructural reflections, suggesting a doubling of the [a = 8.149 (2), c = 13.076 (2) Å, Z = 2], which would be in good agreement with the one found here.
|
In Ib and Ic, the Re atom is displaced from the threefold axis. In Ic, reflections with k = 2n + 1 are as strong as the reflections with k = 2n, while for Ib (as also for Ia), reflections with l = 2n + 1 are much weaker than those with l = 2n (Table 5).
Structurally, Ib is closer to Ia than to Ic. Therefore, Ib is also formed by rapid cooling of Ia, although Ic is thermodynamically more stable. The energy barrier for the conversion of Ib to Ic is relatively large, so that rapid conversion occurs only above 200 K.
In the known structures with ReS4−, the Re—S bond length is independent of the cation (Table 6). The S—Re—S angle in the ReS4− anion is very close to the tetrahedral value (109.47°). The Re—S bond length in ReO3S− is very similar to that in ReS4−. For ReO3S−, the following Re—S bond lengths are known: RbReO3S with 2.126 (6) Å (Krebs & Kindler, 1969) and Et4NReO3S with 2.128 (5) and 2.143 (5) Å (Partyka & Holm, 2004).
|
In this article, we were able to show that the 4NReS4 is larger at room temperature than previously thought (Müller et al., 1986, 1987). In this structure, the Et4N+ cation is disordered, while the ReS4− anion is ordered. At 285 K, there is a to an ordered structure, where the changes from P63mc to P21. The omission of the threefold axis and the mirror plane creates a twin with six components. In addition to this low-temperature phase, a further metastable phase was formed when Ia was cooled rapidly to 110–170 K. This phase crystallizes in the P63 with a nine times bigger forming an with Ib.
of EtSupporting information
https://doi.org/10.1107/S205322961901725X/ef3002sup1.cif
contains datablocks Ia, Ib, Ic, global. DOI:Structure factors: contains datablock Ia. DOI: https://doi.org/10.1107/S205322961901725X/ef3002Iasup2.hkl
Structure factors: contains datablock Ib. DOI: https://doi.org/10.1107/S205322961901725X/ef3002Ibsup3.hkl
Structure factors: contains datablock Ic. DOI: https://doi.org/10.1107/S205322961901725X/ef3002Icsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205322961901725X/ef3002Iasup5.cml
Additional figures and table. DOI: https://doi.org/10.1107/S205322961901725X/ef3002sup6.pdf
For all structures, data collection: CrysAlis PRO (Oxford Diffraction, 2016); cell
CrysAlis PRO (Oxford Diffraction, 2016); data reduction: CrysAlis PRO (Oxford Diffraction, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).(C8H20N)[ReS4] | Dx = 1.961 Mg m−3 |
Mr = 444.69 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63mc | Cell parameters from 687 reflections |
a = 8.150 (2) Å | θ = 2.9–24.9° |
c = 13.092 (3) Å | µ = 8.59 mm−1 |
V = 753.1 (4) Å3 | T = 297 K |
Z = 2 | Prism, black |
F(000) = 428 | 0.32 × 0.03 × 0.03 mm |
Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD camera | 513 independent reflections |
Radiation source: fine-focus sealed tube Enhanced (Mo) | 392 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.2705 pixels mm-1 | θmax = 26.7°, θmin = 2.9° |
ω scans | h = −10→5 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)] | k = −7→10 |
Tmin = 0.599, Tmax = 0.829 | l = −8→16 |
1804 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.018P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.26 e Å−3 |
513 reflections | Δρmin = −0.42 e Å−3 |
44 parameters | Absolute structure: Refined as an inversion twin. |
34 restraints | Absolute structure parameter: 0.14 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. Suitable single crystals of Et4NReS4 were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the CrysAlisPro program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F2 (Sheldrick, 2015, 2008). The graphics were prepared with the program Diamond (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Re | 0.0000 | 0.0000 | 0.0550 (2) | 0.0597 (2) | |
S1 | 0.0000 | 0.0000 | 0.2173 (4) | 0.0829 (17) | |
S2 | −0.14196 (19) | 0.14196 (19) | 0.0010 (3) | 0.0930 (8) | |
N1 | 0.678 (4) | 0.331 (3) | 0.3103 (10) | 0.041 (3)* | 0.1667 |
C1 | 0.513 (4) | 0.139 (3) | 0.328 (2) | 0.065 (5)* | 0.1667 |
H1A | 0.4031 | 0.1402 | 0.3009 | 0.078* | 0.1667 |
H1B | 0.4953 | 0.1250 | 0.4018 | 0.078* | 0.1667 |
C2 | 0.506 (6) | −0.038 (3) | 0.290 (3) | 0.054 (5)* | 0.1667 |
H2A | 0.3881 | −0.1463 | 0.3092 | 0.082* | 0.1667 |
H2B | 0.6092 | −0.0478 | 0.3182 | 0.082* | 0.1667 |
H2C | 0.5163 | −0.0325 | 0.2164 | 0.082* | 0.1667 |
C3 | 0.850 (4) | 0.314 (4) | 0.293 (3) | 0.065 (5)* | 0.1667 |
H3A | 0.8878 | 0.2857 | 0.3581 | 0.078* | 0.1667 |
H3B | 0.8150 | 0.2056 | 0.2488 | 0.078* | 0.1667 |
C4 | 1.020 (5) | 0.480 (6) | 0.248 (3) | 0.054 (5)* | 0.1667 |
H4A | 1.1202 | 0.4522 | 0.2402 | 0.082* | 0.1667 |
H4B | 1.0604 | 0.5882 | 0.2914 | 0.082* | 0.1667 |
H4C | 0.9873 | 0.5078 | 0.1817 | 0.082* | 0.1667 |
C5 | 0.662 (5) | 0.428 (5) | 0.2172 (17) | 0.065 (5)* | 0.1667 |
H5A | 0.7897 | 0.5192 | 0.1956 | 0.078* | 0.1667 |
H5B | 0.6071 | 0.3336 | 0.1637 | 0.078* | 0.1667 |
C6 | 0.554 (6) | 0.529 (6) | 0.220 (3) | 0.054 (5)* | 0.1667 |
H6A | 0.5582 | 0.5822 | 0.1543 | 0.082* | 0.1667 |
H6B | 0.6084 | 0.6278 | 0.2702 | 0.082* | 0.1667 |
H6C | 0.4247 | 0.4411 | 0.2380 | 0.082* | 0.1667 |
C7 | 0.704 (7) | 0.451 (3) | 0.4029 (16) | 0.065 (5)* | 0.1667 |
H7A | 0.5927 | 0.4641 | 0.4088 | 0.078* | 0.1667 |
H7B | 0.8110 | 0.5760 | 0.3900 | 0.078* | 0.1667 |
C8 | 0.736 (3) | 0.386 (6) | 0.5047 (14) | 0.054 (5)* | 0.1667 |
H8A | 0.7497 | 0.4756 | 0.5563 | 0.082* | 0.1667 |
H8B | 0.8484 | 0.3766 | 0.5019 | 0.082* | 0.1667 |
H8C | 0.6292 | 0.2642 | 0.5209 | 0.082* | 0.1667 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re | 0.0630 (3) | 0.0630 (3) | 0.0530 (3) | 0.03152 (13) | 0.000 | 0.000 |
S1 | 0.097 (3) | 0.097 (3) | 0.054 (3) | 0.0486 (14) | 0.000 | 0.000 |
S2 | 0.1049 (17) | 0.1049 (17) | 0.0908 (15) | 0.069 (2) | −0.0080 (11) | 0.0080 (11) |
Re—S1 | 2.124 (5) | C3—H3B | 0.9700 |
Re—S2i | 2.125 (3) | C4—H4A | 0.9600 |
Re—S2ii | 2.125 (3) | C4—H4B | 0.9600 |
Re—S2 | 2.125 (3) | C4—H4C | 0.9600 |
N1—C1 | 1.485 (19) | C5—C6 | 1.47 (3) |
N1—C5 | 1.496 (19) | C5—H5A | 0.9700 |
N1—C3 | 1.496 (19) | C5—H5B | 0.9700 |
N1—C7 | 1.502 (18) | C6—H6A | 0.9600 |
C1—C2 | 1.51 (2) | C6—H6B | 0.9600 |
C1—H1A | 0.9700 | C6—H6C | 0.9600 |
C1—H1B | 0.9700 | C7—C8 | 1.50 (2) |
C2—H2A | 0.9600 | C7—H7A | 0.9700 |
C2—H2B | 0.9600 | C7—H7B | 0.9700 |
C2—H2C | 0.9600 | C8—H8A | 0.9600 |
C3—C4 | 1.49 (3) | C8—H8B | 0.9600 |
C3—H3A | 0.9700 | C8—H8C | 0.9600 |
S1—Re—S2i | 109.44 (14) | C3—C4—H4A | 109.5 |
S1—Re—S2ii | 109.44 (14) | C3—C4—H4B | 109.5 |
S2i—Re—S2ii | 109.51 (14) | H4A—C4—H4B | 109.5 |
S1—Re—S2 | 109.44 (14) | C3—C4—H4C | 109.5 |
S2i—Re—S2 | 109.50 (14) | H4A—C4—H4C | 109.5 |
S2ii—Re—S2 | 109.50 (14) | H4B—C4—H4C | 109.5 |
C1—N1—C5 | 114 (2) | C6—C5—N1 | 121 (2) |
C1—N1—C3 | 108.9 (18) | C6—C5—H5A | 107.2 |
C5—N1—C3 | 105.2 (19) | N1—C5—H5A | 107.2 |
C1—N1—C7 | 108.2 (18) | C6—C5—H5B | 107.2 |
C5—N1—C7 | 109.6 (17) | N1—C5—H5B | 107.2 |
C3—N1—C7 | 110 (3) | H5A—C5—H5B | 106.8 |
N1—C1—C2 | 122 (2) | C5—C6—H6A | 109.5 |
N1—C1—H1A | 106.7 | C5—C6—H6B | 109.5 |
C2—C1—H1A | 106.7 | H6A—C6—H6B | 109.5 |
N1—C1—H1B | 106.7 | C5—C6—H6C | 109.5 |
C2—C1—H1B | 106.7 | H6A—C6—H6C | 109.5 |
H1A—C1—H1B | 106.6 | H6B—C6—H6C | 109.5 |
C1—C2—H2A | 109.5 | N1—C7—C8 | 119 (2) |
C1—C2—H2B | 109.5 | N1—C7—H7A | 107.6 |
H2A—C2—H2B | 109.5 | C8—C7—H7A | 107.6 |
C1—C2—H2C | 109.5 | N1—C7—H7B | 107.6 |
H2A—C2—H2C | 109.5 | C8—C7—H7B | 107.6 |
H2B—C2—H2C | 109.5 | H7A—C7—H7B | 107.1 |
C4—C3—N1 | 117 (2) | C7—C8—H8A | 109.5 |
C4—C3—H3A | 108.0 | C7—C8—H8B | 109.5 |
N1—C3—H3A | 108.0 | H8A—C8—H8B | 109.5 |
C4—C3—H3B | 108.0 | C7—C8—H8C | 109.5 |
N1—C3—H3B | 108.0 | H8A—C8—H8C | 109.5 |
H3A—C3—H3B | 107.2 | H8B—C8—H8C | 109.5 |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z. |
(C8H20N)[ReS4] | Dx = 2.034 Mg m−3 |
Mr = 444.69 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63 | Cell parameters from 16453 reflections |
a = 24.170 (3) Å | θ = 2.9–29.3° |
c = 12.916 (2) Å | µ = 8.91 mm−1 |
V = 6534.5 (19) Å3 | T = 110 K |
Z = 18 | Prism, black |
F(000) = 3852 | 0.24 × 0.21 × 0.16 mm |
Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD camera | 9707 independent reflections |
Radiation source: fine-focus sealed tube Enhanced (Mo) | 8807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.2705 pixels mm-1 | θmax = 29.7°, θmin = 1.9° |
ω scans | h = −32→29 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)] | k = −30→27 |
Tmin = 0.253, Tmax = 0.351 | l = −17→17 |
44958 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.008P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max = 0.002 |
S = 1.05 | Δρmax = 0.87 e Å−3 |
9707 reflections | Δρmin = −1.08 e Å−3 |
380 parameters | Absolute structure: Twinning involves inversion, so Flack parameter cannot be determined |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. Suitable single crystals of Et4NReS4 were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the CrysAlisPro program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F2 (Sheldrick, 2015, 2008). The graphics were prepared with the program Diamond (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.000000 | 0.000000 | 0.35220 (11) | 0.0095 (2) | |
S1 | 0.000000 | 0.000000 | 0.5175 (4) | 0.0158 (12) | |
S2 | 0.03466 (11) | 0.09562 (11) | 0.2979 (2) | 0.0170 (5) | |
Re2 | 0.666667 | 0.333333 | 0.35177 (11) | 0.0096 (2) | |
S3 | 0.666667 | 0.333333 | 0.5165 (4) | 0.0165 (11) | |
S4 | 0.72698 (11) | 0.42896 (12) | 0.2975 (2) | 0.0178 (5) | |
Re3 | 0.333333 | 0.666667 | 0.35284 (11) | 0.0097 (2) | |
S5 | 0.333333 | 0.666667 | 0.5197 (4) | 0.0107 (11) | |
S6 | 0.39202 (11) | 0.76280 (12) | 0.2985 (2) | 0.0171 (5) | |
Re4 | 0.33152 (2) | 0.32944 (2) | 0.39300 (2) | 0.00888 (14) | |
S7 | 0.31787 (9) | 0.32427 (9) | 0.55692 (15) | 0.0152 (4) | |
S8 | 0.38743 (10) | 0.28632 (10) | 0.35143 (18) | 0.0150 (5) | |
S9 | 0.38027 (11) | 0.42763 (11) | 0.34619 (18) | 0.0154 (5) | |
S10 | 0.24045 (10) | 0.27951 (12) | 0.3185 (2) | 0.0159 (5) | |
Re5 | 0.66238 (2) | 0.66500 (2) | 0.38567 (2) | 0.0106 (2) | |
S11 | 0.65647 (9) | 0.65264 (10) | 0.55018 (16) | 0.0178 (5) | |
S12 | 0.70584 (12) | 0.61460 (11) | 0.31983 (18) | 0.0151 (5) | |
S13 | 0.71863 (11) | 0.76468 (10) | 0.3498 (2) | 0.0160 (5) | |
S14 | 0.56841 (11) | 0.62819 (12) | 0.32167 (18) | 0.0165 (5) | |
N1 | 0.2288 (5) | 0.1209 (4) | 0.1357 (17) | 0.016 (2) | |
C1 | 0.2347 (4) | 0.0831 (4) | 0.2256 (5) | 0.0139 (16) | |
H1A | 0.195518 | 0.040614 | 0.228117 | 0.017* | |
H1B | 0.271116 | 0.076230 | 0.211697 | 0.017* | |
C2 | 0.2444 (6) | 0.1145 (4) | 0.3303 (8) | 0.020 (2) | |
H2A | 0.247669 | 0.087276 | 0.383348 | 0.031* | |
H2B | 0.283761 | 0.156106 | 0.329500 | 0.031* | |
H2C | 0.208025 | 0.120425 | 0.345950 | 0.031* | |
C3 | 0.2216 (3) | 0.0835 (3) | 0.0367 (5) | 0.0129 (15) | |
H3A | 0.220731 | 0.109107 | −0.022482 | 0.015* | |
H3B | 0.260166 | 0.079511 | 0.028873 | 0.015* | |
C4 | 0.1635 (4) | 0.0173 (3) | 0.0288 (5) | 0.020 (2) | |
H4A | 0.164110 | −0.001845 | −0.037826 | 0.029* | |
H4B | 0.164196 | −0.009433 | 0.085252 | 0.029* | |
H4C | 0.124613 | 0.020274 | 0.033705 | 0.029* | |
C5 | 0.1699 (3) | 0.1264 (4) | 0.1529 (6) | 0.0149 (17) | |
H5A | 0.133393 | 0.083134 | 0.166333 | 0.018* | |
H5B | 0.176498 | 0.152166 | 0.216189 | 0.018* | |
C6 | 0.1520 (4) | 0.1554 (4) | 0.0670 (5) | 0.0205 (18) | |
H6A | 0.113364 | 0.156707 | 0.086097 | 0.031* | |
H6B | 0.186976 | 0.198975 | 0.054225 | 0.031* | |
H6C | 0.143741 | 0.129734 | 0.004219 | 0.031* | |
C7 | 0.2858 (3) | 0.1860 (3) | 0.1261 (6) | 0.0127 (16) | |
H7A | 0.287911 | 0.211108 | 0.187997 | 0.015* | |
H7B | 0.279841 | 0.207276 | 0.065088 | 0.015* | |
C8 | 0.3494 (5) | 0.1881 (4) | 0.1149 (7) | 0.021 (2) | |
H8A | 0.383880 | 0.232598 | 0.109143 | 0.031* | |
H8B | 0.356776 | 0.168417 | 0.175826 | 0.031* | |
H8C | 0.348687 | 0.164576 | 0.052619 | 0.031* | |
N2 | 0.2191 (3) | 0.4378 (5) | 0.1385 (18) | 0.015 (3) | |
C9 | 0.2538 (4) | 0.4319 (3) | 0.2279 (5) | 0.0135 (16) | |
H9A | 0.296381 | 0.470942 | 0.231879 | 0.016* | |
H9B | 0.260564 | 0.395301 | 0.215868 | 0.016* | |
C10 | 0.2202 (4) | 0.4225 (6) | 0.3320 (8) | 0.021 (2) | |
H10A | 0.246203 | 0.419085 | 0.386971 | 0.032* | |
H10B | 0.214278 | 0.459133 | 0.345867 | 0.032* | |
H10C | 0.178397 | 0.383357 | 0.329828 | 0.032* | |
C11 | 0.1531 (3) | 0.3811 (3) | 0.1254 (6) | 0.0160 (17) | |
H11A | 0.133278 | 0.388131 | 0.063544 | 0.019* | |
H11B | 0.127056 | 0.378589 | 0.186186 | 0.019* | |
C12 | 0.1506 (4) | 0.3168 (5) | 0.1135 (8) | 0.022 (2) | |
H12A | 0.106143 | 0.282752 | 0.105395 | 0.033* | |
H12B | 0.175213 | 0.318095 | 0.052290 | 0.033* | |
H12C | 0.168977 | 0.308533 | 0.175190 | 0.033* | |
C13 | 0.2127 (3) | 0.4978 (3) | 0.1536 (5) | 0.0131 (16) | |
H13A | 0.184222 | 0.490526 | 0.213448 | 0.016* | |
H13B | 0.255231 | 0.534329 | 0.170945 | 0.016* | |
C14 | 0.1863 (4) | 0.5160 (4) | 0.0596 (6) | 0.0201 (17) | |
H14A | 0.183867 | 0.554361 | 0.075788 | 0.030* | |
H14B | 0.214761 | 0.524662 | 0.000237 | 0.030* | |
H14C | 0.143610 | 0.480770 | 0.042825 | 0.030* | |
C15 | 0.2578 (3) | 0.4447 (3) | 0.0404 (5) | 0.0172 (16) | |
H15A | 0.262081 | 0.406278 | 0.033457 | 0.021* | |
H15B | 0.233415 | 0.446039 | −0.020227 | 0.021* | |
C16 | 0.3235 (4) | 0.5029 (4) | 0.0376 (6) | 0.023 (2) | |
H16A | 0.344677 | 0.503511 | −0.027391 | 0.034* | |
H16B | 0.319934 | 0.541502 | 0.042338 | 0.034* | |
H16C | 0.348662 | 0.501657 | 0.096135 | 0.034* | |
N3 | 0.5567 (3) | 0.4520 (4) | 0.1362 (16) | 0.013 (3) | |
C17 | 0.5148 (3) | 0.4158 (3) | 0.2259 (5) | 0.0132 (15) | |
H17A | 0.511407 | 0.373309 | 0.229175 | 0.016* | |
H17B | 0.471441 | 0.408995 | 0.213221 | 0.016* | |
C18 | 0.5382 (4) | 0.4486 (4) | 0.3301 (8) | 0.023 (2) | |
H18A | 0.508369 | 0.422111 | 0.384477 | 0.034* | |
H18B | 0.580622 | 0.454563 | 0.344556 | 0.034* | |
H18C | 0.540591 | 0.490307 | 0.328575 | 0.034* | |
C19 | 0.5261 (3) | 0.4136 (3) | 0.0387 (5) | 0.0136 (15) | |
H19A | 0.482758 | 0.407899 | 0.031716 | 0.016* | |
H19B | 0.551399 | 0.438524 | −0.021869 | 0.016* | |
C20 | 0.5207 (4) | 0.3485 (3) | 0.0357 (6) | 0.0176 (19) | |
H20A | 0.500567 | 0.327002 | −0.029382 | 0.026* | |
H20B | 0.563461 | 0.353448 | 0.040443 | 0.026* | |
H20C | 0.494689 | 0.322765 | 0.094130 | 0.026* | |
C21 | 0.5629 (3) | 0.5169 (3) | 0.1230 (6) | 0.0153 (17) | |
H21A | 0.588891 | 0.537152 | 0.060404 | 0.018* | |
H21B | 0.586552 | 0.543683 | 0.183095 | 0.018* | |
C22 | 0.5000 (4) | 0.5170 (4) | 0.1129 (7) | 0.021 (2) | |
H22A | 0.508879 | 0.560968 | 0.104620 | 0.031* | |
H22B | 0.476566 | 0.491726 | 0.052262 | 0.031* | |
H22C | 0.474221 | 0.498273 | 0.175262 | 0.031* | |
C23 | 0.6234 (3) | 0.4607 (3) | 0.1529 (5) | 0.0138 (16) | |
H23A | 0.642488 | 0.487591 | 0.215039 | 0.017* | |
H23B | 0.618705 | 0.418332 | 0.167444 | 0.017* | |
C24 | 0.6693 (4) | 0.4905 (4) | 0.0638 (5) | 0.0180 (17) | |
H24A | 0.710386 | 0.494019 | 0.081621 | 0.027* | |
H24B | 0.651791 | 0.463676 | 0.002054 | 0.027* | |
H24C | 0.675632 | 0.533108 | 0.049767 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.0105 (3) | 0.0105 (3) | 0.0075 (5) | 0.00524 (13) | 0.000 | 0.000 |
S1 | 0.0201 (18) | 0.0201 (18) | 0.007 (2) | 0.0101 (9) | 0.000 | 0.000 |
S2 | 0.0194 (12) | 0.0124 (11) | 0.0195 (11) | 0.0082 (10) | 0.0002 (10) | 0.0028 (9) |
Re2 | 0.0102 (3) | 0.0102 (3) | 0.0084 (6) | 0.00512 (14) | 0.000 | 0.000 |
S3 | 0.0224 (18) | 0.0224 (18) | 0.005 (2) | 0.0112 (9) | 0.000 | 0.000 |
S4 | 0.0187 (12) | 0.0148 (11) | 0.0174 (11) | 0.0065 (10) | 0.0010 (10) | 0.0034 (9) |
Re3 | 0.0115 (3) | 0.0115 (3) | 0.0063 (6) | 0.00573 (14) | 0.000 | 0.000 |
S5 | 0.0113 (16) | 0.0113 (16) | 0.010 (3) | 0.0056 (8) | 0.000 | 0.000 |
S6 | 0.0178 (11) | 0.0112 (11) | 0.0185 (12) | 0.0042 (9) | 0.0024 (10) | 0.0032 (9) |
Re4 | 0.00993 (19) | 0.0092 (2) | 0.0069 (3) | 0.00435 (15) | −0.00001 (13) | 0.00042 (19) |
S7 | 0.0193 (10) | 0.0147 (10) | 0.0090 (8) | 0.0065 (8) | 0.0004 (8) | 0.0011 (7) |
S8 | 0.0135 (10) | 0.0169 (10) | 0.0167 (11) | 0.0093 (8) | 0.0016 (9) | −0.0010 (9) |
S9 | 0.0169 (11) | 0.0127 (9) | 0.0150 (10) | 0.0062 (9) | 0.0013 (9) | 0.0041 (8) |
S10 | 0.0124 (10) | 0.0159 (12) | 0.0176 (11) | 0.0058 (9) | −0.0044 (8) | −0.0024 (9) |
Re5 | 0.0095 (2) | 0.0093 (2) | 0.0129 (6) | 0.00455 (15) | 0.00000 (18) | −0.00072 (13) |
S11 | 0.0218 (12) | 0.0161 (11) | 0.0138 (9) | 0.0082 (8) | 0.0000 (8) | 0.0005 (8) |
S12 | 0.0147 (11) | 0.0146 (11) | 0.0182 (11) | 0.0089 (9) | 0.0044 (9) | 0.0007 (9) |
S13 | 0.0167 (11) | 0.0111 (9) | 0.0189 (13) | 0.0059 (9) | −0.0014 (9) | 0.0011 (8) |
S14 | 0.0118 (10) | 0.0179 (12) | 0.0197 (11) | 0.0074 (9) | −0.0026 (8) | −0.0029 (9) |
N1 | 0.016 (6) | 0.014 (3) | 0.015 (5) | 0.006 (3) | 0.000 (4) | −0.001 (6) |
C1 | 0.019 (5) | 0.011 (4) | 0.013 (4) | 0.008 (4) | 0.000 (3) | 0.001 (3) |
C2 | 0.023 (6) | 0.027 (5) | 0.018 (5) | 0.017 (4) | 0.003 (4) | 0.006 (3) |
C3 | 0.016 (4) | 0.012 (4) | 0.014 (4) | 0.010 (3) | −0.001 (3) | −0.004 (3) |
C4 | 0.020 (5) | 0.023 (5) | 0.020 (4) | 0.015 (4) | −0.001 (3) | −0.004 (3) |
C5 | 0.013 (4) | 0.011 (4) | 0.023 (5) | 0.008 (4) | 0.003 (3) | 0.000 (3) |
C6 | 0.023 (5) | 0.015 (4) | 0.027 (4) | 0.011 (4) | 0.002 (4) | 0.002 (4) |
C7 | 0.014 (4) | 0.010 (4) | 0.010 (4) | 0.002 (3) | −0.003 (3) | −0.004 (3) |
C8 | 0.014 (5) | 0.014 (5) | 0.033 (5) | 0.007 (4) | 0.003 (4) | 0.002 (4) |
N2 | 0.012 (5) | 0.005 (5) | 0.021 (8) | 0.000 (3) | 0.000 (4) | 0.001 (5) |
C9 | 0.009 (4) | 0.009 (4) | 0.022 (4) | 0.005 (3) | −0.004 (3) | −0.006 (3) |
C10 | 0.020 (5) | 0.033 (6) | 0.012 (5) | 0.014 (4) | −0.001 (3) | 0.002 (4) |
C11 | 0.013 (4) | 0.008 (4) | 0.024 (4) | 0.003 (3) | −0.006 (3) | −0.008 (3) |
C12 | 0.023 (5) | 0.019 (6) | 0.024 (6) | 0.011 (4) | −0.008 (4) | −0.005 (4) |
C13 | 0.015 (4) | 0.010 (4) | 0.018 (4) | 0.009 (3) | 0.004 (3) | 0.004 (3) |
C14 | 0.024 (5) | 0.018 (4) | 0.022 (4) | 0.014 (4) | −0.007 (4) | −0.002 (4) |
C15 | 0.018 (4) | 0.020 (4) | 0.015 (4) | 0.010 (3) | 0.006 (3) | −0.001 (3) |
C16 | 0.016 (4) | 0.025 (5) | 0.023 (4) | 0.007 (4) | 0.005 (3) | 0.002 (4) |
N3 | 0.016 (4) | 0.012 (4) | 0.012 (6) | 0.008 (4) | −0.003 (3) | −0.004 (5) |
C17 | 0.010 (4) | 0.009 (4) | 0.018 (4) | 0.003 (3) | 0.003 (3) | 0.003 (3) |
C18 | 0.022 (5) | 0.019 (5) | 0.019 (6) | 0.004 (4) | 0.003 (4) | 0.004 (3) |
C19 | 0.014 (4) | 0.012 (3) | 0.015 (4) | 0.007 (3) | −0.009 (3) | −0.008 (3) |
C20 | 0.017 (4) | 0.007 (4) | 0.024 (4) | 0.002 (3) | −0.004 (3) | −0.006 (3) |
C21 | 0.014 (4) | 0.008 (4) | 0.023 (5) | 0.005 (3) | 0.001 (3) | 0.004 (3) |
C22 | 0.034 (5) | 0.023 (5) | 0.014 (5) | 0.021 (4) | −0.006 (3) | −0.003 (4) |
C23 | 0.008 (4) | 0.016 (4) | 0.016 (4) | 0.004 (3) | −0.001 (3) | −0.002 (3) |
C24 | 0.013 (4) | 0.023 (4) | 0.019 (4) | 0.010 (4) | 0.010 (4) | 0.009 (4) |
Re1—S1 | 2.135 (5) | C9—C10 | 1.528 (11) |
Re1—S2 | 2.144 (2) | C9—H9A | 0.9900 |
Re1—S2i | 2.144 (2) | C9—H9B | 0.9900 |
Re1—S2ii | 2.144 (2) | C10—H10A | 0.9800 |
Re2—S3 | 2.128 (5) | C10—H10B | 0.9800 |
Re2—S4iii | 2.142 (2) | C10—H10C | 0.9800 |
Re2—S4iv | 2.142 (2) | C11—C12 | 1.531 (11) |
Re2—S4 | 2.142 (2) | C11—H11A | 0.9900 |
Re3—S6v | 2.146 (2) | C11—H11B | 0.9900 |
Re3—S6 | 2.146 (2) | C12—H12A | 0.9800 |
Re3—S6vi | 2.146 (2) | C12—H12B | 0.9800 |
Re3—S5 | 2.155 (5) | C12—H12C | 0.9800 |
Re4—S7 | 2.137 (2) | C13—C14 | 1.534 (10) |
Re4—S10 | 2.138 (2) | C13—H13A | 0.9900 |
Re4—S9 | 2.142 (2) | C13—H13B | 0.9900 |
Re4—S8 | 2.147 (2) | C14—H14A | 0.9800 |
Re5—S11 | 2.141 (2) | C14—H14B | 0.9800 |
Re5—S12 | 2.142 (2) | C14—H14C | 0.9800 |
Re5—S13 | 2.143 (2) | C15—C16 | 1.506 (10) |
Re5—S14 | 2.148 (2) | C15—H15A | 0.9900 |
N1—C7 | 1.490 (11) | C15—H15B | 0.9900 |
N1—C5 | 1.513 (11) | C16—H16A | 0.9800 |
N1—C3 | 1.52 (2) | C16—H16B | 0.9800 |
N1—C1 | 1.528 (18) | C16—H16C | 0.9800 |
C1—C2 | 1.510 (11) | N3—C17 | 1.499 (18) |
C1—H1A | 0.9900 | N3—C21 | 1.508 (12) |
C1—H1B | 0.9900 | N3—C19 | 1.520 (18) |
C2—H2A | 0.9800 | N3—C23 | 1.533 (10) |
C2—H2B | 0.9800 | C17—C18 | 1.520 (11) |
C2—H2C | 0.9800 | C17—H17A | 0.9900 |
C3—C4 | 1.516 (10) | C17—H17B | 0.9900 |
C3—H3A | 0.9900 | C18—H18A | 0.9800 |
C3—H3B | 0.9900 | C18—H18B | 0.9800 |
C4—H4A | 0.9800 | C18—H18C | 0.9800 |
C4—H4B | 0.9800 | C19—C20 | 1.514 (9) |
C4—H4C | 0.9800 | C19—H19A | 0.9900 |
C5—C6 | 1.488 (10) | C19—H19B | 0.9900 |
C5—H5A | 0.9900 | C20—H20A | 0.9800 |
C5—H5B | 0.9900 | C20—H20B | 0.9800 |
C6—H6A | 0.9800 | C20—H20C | 0.9800 |
C6—H6B | 0.9800 | C21—C22 | 1.526 (11) |
C6—H6C | 0.9800 | C21—H21A | 0.9900 |
C7—C8 | 1.519 (11) | C21—H21B | 0.9900 |
C7—H7A | 0.9900 | C22—H22A | 0.9800 |
C7—H7B | 0.9900 | C22—H22B | 0.9800 |
C8—H8A | 0.9800 | C22—H22C | 0.9800 |
C8—H8B | 0.9800 | C23—C24 | 1.508 (9) |
C8—H8C | 0.9800 | C23—H23A | 0.9900 |
N2—C9 | 1.48 (2) | C23—H23B | 0.9900 |
N2—C11 | 1.505 (10) | C24—H24A | 0.9800 |
N2—C15 | 1.53 (2) | C24—H24B | 0.9800 |
N2—C13 | 1.545 (11) | C24—H24C | 0.9800 |
S1—Re1—S2 | 109.09 (8) | C9—C10—H10A | 109.5 |
S1—Re1—S2i | 109.09 (8) | C9—C10—H10B | 109.5 |
S2—Re1—S2i | 109.85 (8) | H10A—C10—H10B | 109.5 |
S1—Re1—S2ii | 109.09 (8) | C9—C10—H10C | 109.5 |
S2—Re1—S2ii | 109.85 (8) | H10A—C10—H10C | 109.5 |
S2i—Re1—S2ii | 109.85 (8) | H10B—C10—H10C | 109.5 |
S3—Re2—S4iii | 109.10 (8) | N2—C11—C12 | 115.0 (6) |
S3—Re2—S4iv | 109.10 (8) | N2—C11—H11A | 108.5 |
S4iii—Re2—S4iv | 109.84 (8) | C12—C11—H11A | 108.5 |
S3—Re2—S4 | 109.10 (8) | N2—C11—H11B | 108.5 |
S4iii—Re2—S4 | 109.84 (8) | C12—C11—H11B | 108.5 |
S4iv—Re2—S4 | 109.84 (7) | H11A—C11—H11B | 107.5 |
S6v—Re3—S6 | 109.87 (7) | C11—C12—H12A | 109.5 |
S6v—Re3—S6vi | 109.87 (7) | C11—C12—H12B | 109.5 |
S6—Re3—S6vi | 109.87 (7) | H12A—C12—H12B | 109.5 |
S6v—Re3—S5 | 109.07 (7) | C11—C12—H12C | 109.5 |
S6—Re3—S5 | 109.07 (7) | H12A—C12—H12C | 109.5 |
S6vi—Re3—S5 | 109.07 (7) | H12B—C12—H12C | 109.5 |
S7—Re4—S10 | 109.13 (8) | C14—C13—N2 | 114.9 (10) |
S7—Re4—S9 | 109.13 (8) | C14—C13—H13A | 108.5 |
S10—Re4—S9 | 109.81 (9) | N2—C13—H13A | 108.5 |
S7—Re4—S8 | 109.61 (8) | C14—C13—H13B | 108.5 |
S10—Re4—S8 | 109.49 (10) | N2—C13—H13B | 108.5 |
S9—Re4—S8 | 109.64 (8) | H13A—C13—H13B | 107.5 |
S11—Re5—S12 | 109.40 (7) | C13—C14—H14A | 109.5 |
S11—Re5—S13 | 109.38 (9) | C13—C14—H14B | 109.5 |
S12—Re5—S13 | 109.74 (9) | H14A—C14—H14B | 109.5 |
S11—Re5—S14 | 109.96 (8) | C13—C14—H14C | 109.5 |
S12—Re5—S14 | 109.23 (9) | H14A—C14—H14C | 109.5 |
S13—Re5—S14 | 109.13 (9) | H14B—C14—H14C | 109.5 |
C7—N1—C5 | 109.5 (6) | C16—C15—N2 | 115.0 (7) |
C7—N1—C3 | 109.1 (12) | C16—C15—H15A | 108.5 |
C5—N1—C3 | 110.0 (10) | N2—C15—H15A | 108.5 |
C7—N1—C1 | 112.4 (11) | C16—C15—H15B | 108.5 |
C5—N1—C1 | 108.3 (12) | N2—C15—H15B | 108.5 |
C3—N1—C1 | 107.4 (5) | H15A—C15—H15B | 107.5 |
C2—C1—N1 | 114.7 (8) | C15—C16—H16A | 109.5 |
C2—C1—H1A | 108.6 | C15—C16—H16B | 109.5 |
N1—C1—H1A | 108.6 | H16A—C16—H16B | 109.5 |
C2—C1—H1B | 108.6 | C15—C16—H16C | 109.5 |
N1—C1—H1B | 108.6 | H16A—C16—H16C | 109.5 |
H1A—C1—H1B | 107.6 | H16B—C16—H16C | 109.5 |
C1—C2—H2A | 109.5 | C17—N3—C21 | 112.4 (10) |
C1—C2—H2B | 109.5 | C17—N3—C19 | 107.6 (5) |
H2A—C2—H2B | 109.5 | C21—N3—C19 | 107.8 (12) |
C1—C2—H2C | 109.5 | C17—N3—C23 | 109.2 (12) |
H2A—C2—H2C | 109.5 | C21—N3—C23 | 108.9 (5) |
H2B—C2—H2C | 109.5 | C19—N3—C23 | 110.9 (10) |
C4—C3—N1 | 117.0 (7) | N3—C17—C18 | 114.4 (7) |
C4—C3—H3A | 108.0 | N3—C17—H17A | 108.7 |
N1—C3—H3A | 108.0 | C18—C17—H17A | 108.7 |
C4—C3—H3B | 108.0 | N3—C17—H17B | 108.7 |
N1—C3—H3B | 108.0 | C18—C17—H17B | 108.7 |
H3A—C3—H3B | 107.3 | H17A—C17—H17B | 107.6 |
C3—C4—H4A | 109.5 | C17—C18—H18A | 109.5 |
C3—C4—H4B | 109.5 | C17—C18—H18B | 109.5 |
H4A—C4—H4B | 109.5 | H18A—C18—H18B | 109.5 |
C3—C4—H4C | 109.5 | C17—C18—H18C | 109.5 |
H4A—C4—H4C | 109.5 | H18A—C18—H18C | 109.5 |
H4B—C4—H4C | 109.5 | H18B—C18—H18C | 109.5 |
C6—C5—N1 | 116.1 (10) | C20—C19—N3 | 114.8 (7) |
C6—C5—H5A | 108.3 | C20—C19—H19A | 108.6 |
N1—C5—H5A | 108.3 | N3—C19—H19A | 108.6 |
C6—C5—H5B | 108.3 | C20—C19—H19B | 108.6 |
N1—C5—H5B | 108.3 | N3—C19—H19B | 108.6 |
H5A—C5—H5B | 107.4 | H19A—C19—H19B | 107.6 |
C5—C6—H6A | 109.5 | C19—C20—H20A | 109.5 |
C5—C6—H6B | 109.5 | C19—C20—H20B | 109.5 |
H6A—C6—H6B | 109.5 | H20A—C20—H20B | 109.5 |
C5—C6—H6C | 109.5 | C19—C20—H20C | 109.5 |
H6A—C6—H6C | 109.5 | H20A—C20—H20C | 109.5 |
H6B—C6—H6C | 109.5 | H20B—C20—H20C | 109.5 |
N1—C7—C8 | 115.4 (6) | N3—C21—C22 | 115.5 (6) |
N1—C7—H7A | 108.4 | N3—C21—H21A | 108.4 |
C8—C7—H7A | 108.4 | C22—C21—H21A | 108.4 |
N1—C7—H7B | 108.4 | N3—C21—H21B | 108.4 |
C8—C7—H7B | 108.4 | C22—C21—H21B | 108.4 |
H7A—C7—H7B | 107.5 | H21A—C21—H21B | 107.5 |
C7—C8—H8A | 109.5 | C21—C22—H22A | 109.5 |
C7—C8—H8B | 109.5 | C21—C22—H22B | 109.5 |
H8A—C8—H8B | 109.5 | H22A—C22—H22B | 109.5 |
C7—C8—H8C | 109.5 | C21—C22—H22C | 109.5 |
H8A—C8—H8C | 109.5 | H22A—C22—H22C | 109.5 |
H8B—C8—H8C | 109.5 | H22B—C22—H22C | 109.5 |
C9—N2—C11 | 113.2 (12) | C24—C23—N3 | 115.5 (9) |
C9—N2—C15 | 108.2 (4) | C24—C23—H23A | 108.4 |
C11—N2—C15 | 108.4 (13) | N3—C23—H23A | 108.4 |
C9—N2—C13 | 108.7 (12) | C24—C23—H23B | 108.4 |
C11—N2—C13 | 108.2 (4) | N3—C23—H23B | 108.4 |
C15—N2—C13 | 110.1 (11) | H23A—C23—H23B | 107.5 |
N2—C9—C10 | 114.6 (8) | C23—C24—H24A | 109.5 |
N2—C9—H9A | 108.6 | C23—C24—H24B | 109.5 |
C10—C9—H9A | 108.6 | H24A—C24—H24B | 109.5 |
N2—C9—H9B | 108.6 | C23—C24—H24C | 109.5 |
C10—C9—H9B | 108.6 | H24A—C24—H24C | 109.5 |
H9A—C9—H9B | 107.6 | H24B—C24—H24C | 109.5 |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z; (iii) −x+y+1, −x+1, z; (iv) −y+1, x−y, z; (v) −y+1, x−y+1, z; (vi) −x+y, −x+1, z. |
(C8H20N)[ReS4] | F(000) = 428 |
Mr = 444.69 | Dx = 2.051 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.900 (2) Å | Cell parameters from 3279 reflections |
b = 12.842 (3) Å | θ = 2.9–29.5° |
c = 8.118 (2) Å | µ = 8.99 mm−1 |
β = 119.04 (2)° | T = 150 K |
V = 720.0 (3) Å3 | Prism, black |
Z = 2 | 0.24 × 0.20 × 0.17 mm |
Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD camera | 2814 independent reflections |
Radiation source: fine-focus sealed tube Enhanced (Mo) | 2808 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 16.2705 pixels mm-1 | θmax = 29.3°, θmin = 3.3° |
ω scans | h = −10→10 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)] | k = −15→16 |
Tmin = 0.241, Tmax = 0.336 | l = −10→10 |
4476 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.052 | w = 1/[σ2(Fo2) + (0.0596P)2 + 29.5424P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.138 | (Δ/σ)max = 0.002 |
S = 1.09 | Δρmax = 2.01 e Å−3 |
2814 reflections | Δρmin = −4.80 e Å−3 |
87 parameters | Absolute structure: Flack x determined using 1080 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
89 restraints | Absolute structure parameter: 0.105 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 6-component twin. Suitable single crystals of Et4NReS4 were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the CrysAlisPro program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F2 (Sheldrick, 2015, 2008). The graphics were prepared with the program Diamond (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File. |
x | y | z | Uiso*/Ueq | ||
Re | 0.0222 (5) | 0.25452 (19) | 0.03784 (19) | 0.0174 (3) | |
S1 | 0.0542 (18) | 0.4194 (5) | 0.0361 (16) | 0.023 (3) | |
S2 | −0.105 (2) | 0.1961 (8) | −0.2401 (14) | 0.022 (2) | |
S3 | −0.150 (2) | 0.2166 (9) | 0.163 (2) | 0.026 (3) | |
S4 | 0.3036 (17) | 0.1879 (9) | 0.194 (2) | 0.030 (3) | |
N | 0.680 (3) | 0.5128 (17) | 0.326 (3) | 0.016 (6)* | |
C1 | 0.595 (6) | 0.417 (2) | 0.366 (5) | 0.025 (9)* | |
H1A | 0.682470 | 0.357262 | 0.384336 | 0.030* | |
H1B | 0.469486 | 0.401274 | 0.253227 | 0.030* | |
C2 | 0.562 (8) | 0.422 (4) | 0.537 (7) | 0.030 (11)* | |
H2A | 0.507365 | 0.356325 | 0.550356 | 0.045* | |
H2B | 0.685905 | 0.435040 | 0.651499 | 0.045* | |
H2C | 0.472238 | 0.479193 | 0.519969 | 0.045* | |
C3 | 0.878 (5) | 0.535 (3) | 0.492 (5) | 0.025 (9)* | |
H3A | 0.860836 | 0.555189 | 0.600623 | 0.029* | |
H3B | 0.932921 | 0.596495 | 0.459715 | 0.029* | |
C4 | 1.025 (7) | 0.447 (3) | 0.552 (7) | 0.029 (10)* | |
H4A | 1.147093 | 0.468969 | 0.659847 | 0.044* | |
H4B | 0.974470 | 0.386098 | 0.588604 | 0.044* | |
H4C | 1.046759 | 0.427522 | 0.447296 | 0.044* | |
C5 | 0.546 (5) | 0.604 (2) | 0.292 (6) | 0.027 (9)* | |
H5A | 0.527783 | 0.612571 | 0.403188 | 0.033* | |
H5B | 0.418227 | 0.587752 | 0.182885 | 0.033* | |
C6 | 0.613 (8) | 0.709 (2) | 0.253 (5) | 0.025 (8)* | |
H6A | 0.517313 | 0.762502 | 0.233300 | 0.037* | |
H6B | 0.738025 | 0.727722 | 0.361484 | 0.037* | |
H6C | 0.628155 | 0.702831 | 0.140546 | 0.037* | |
C7 | 0.703 (5) | 0.494 (3) | 0.153 (5) | 0.017 (8)* | |
H7A | 0.780548 | 0.430017 | 0.174116 | 0.021* | |
H7B | 0.777263 | 0.552620 | 0.140771 | 0.021* | |
C8 | 0.516 (4) | 0.482 (3) | −0.033 (5) | 0.021 (9)* | |
H8A | 0.546821 | 0.470602 | −0.134755 | 0.032* | |
H8B | 0.442106 | 0.423120 | −0.025216 | 0.032* | |
H8C | 0.438810 | 0.546083 | −0.058658 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re | 0.0322 (12) | 0.0080 (4) | 0.0215 (7) | 0.0046 (17) | 0.0207 (11) | 0.004 (2) |
S1 | 0.027 (8) | 0.008 (3) | 0.025 (8) | −0.001 (3) | 0.005 (4) | 0.005 (4) |
S2 | 0.015 (7) | 0.021 (4) | 0.030 (6) | −0.003 (5) | 0.010 (5) | −0.004 (4) |
S3 | 0.025 (8) | 0.027 (5) | 0.039 (9) | 0.006 (4) | 0.025 (8) | 0.006 (5) |
S4 | 0.019 (6) | 0.016 (5) | 0.048 (9) | 0.012 (5) | 0.011 (6) | 0.002 (7) |
Re—S3 | 2.111 (9) | C3—H3B | 0.9900 |
Re—S2 | 2.113 (10) | C4—H4A | 0.9800 |
Re—S4 | 2.132 (10) | C4—H4B | 0.9800 |
Re—S1 | 2.133 (7) | C4—H4C | 0.9800 |
N—C5 | 1.51 (2) | C5—C6 | 1.53 (3) |
N—C1 | 1.51 (2) | C5—H5A | 0.9900 |
N—C3 | 1.52 (2) | C5—H5B | 0.9900 |
N—C7 | 1.52 (2) | C6—H6A | 0.9800 |
C1—C2 | 1.54 (3) | C6—H6B | 0.9800 |
C1—H1A | 0.9900 | C6—H6C | 0.9800 |
C1—H1B | 0.9900 | C7—C8 | 1.52 (3) |
C2—H2A | 0.9800 | C7—H7A | 0.9900 |
C2—H2B | 0.9800 | C7—H7B | 0.9900 |
C2—H2C | 0.9800 | C8—H8A | 0.9800 |
C3—C4 | 1.53 (3) | C8—H8B | 0.9800 |
C3—H3A | 0.9900 | C8—H8C | 0.9800 |
S3—Re—S2 | 110.3 (6) | C3—C4—H4A | 109.5 |
S3—Re—S4 | 110.6 (6) | C3—C4—H4B | 109.5 |
S2—Re—S4 | 108.0 (6) | H4A—C4—H4B | 109.5 |
S3—Re—S1 | 109.8 (5) | C3—C4—H4C | 109.5 |
S2—Re—S1 | 110.0 (4) | H4A—C4—H4C | 109.5 |
S4—Re—S1 | 108.0 (5) | H4B—C4—H4C | 109.5 |
C5—N—C1 | 109.4 (17) | N—C5—C6 | 116 (3) |
C5—N—C3 | 109.9 (18) | N—C5—H5A | 108.3 |
C1—N—C3 | 109.7 (18) | C6—C5—H5A | 108.3 |
C5—N—C7 | 109.9 (18) | N—C5—H5B | 108.3 |
C1—N—C7 | 109.5 (17) | C6—C5—H5B | 108.3 |
C3—N—C7 | 108.5 (17) | H5A—C5—H5B | 107.4 |
N—C1—C2 | 116 (2) | C5—C6—H6A | 109.5 |
N—C1—H1A | 108.2 | C5—C6—H6B | 109.5 |
C2—C1—H1A | 108.2 | H6A—C6—H6B | 109.5 |
N—C1—H1B | 108.2 | C5—C6—H6C | 109.5 |
C2—C1—H1B | 108.2 | H6A—C6—H6C | 109.5 |
H1A—C1—H1B | 107.3 | H6B—C6—H6C | 109.5 |
C1—C2—H2A | 109.5 | N—C7—C8 | 116 (2) |
C1—C2—H2B | 109.5 | N—C7—H7A | 108.3 |
H2A—C2—H2B | 109.5 | C8—C7—H7A | 108.3 |
C1—C2—H2C | 109.5 | N—C7—H7B | 108.3 |
H2A—C2—H2C | 109.5 | C8—C7—H7B | 108.3 |
H2B—C2—H2C | 109.5 | H7A—C7—H7B | 107.4 |
N—C3—C4 | 116 (3) | C7—C8—H8A | 109.5 |
N—C3—H3A | 108.3 | C7—C8—H8B | 109.5 |
C4—C3—H3A | 108.3 | H8A—C8—H8B | 109.5 |
N—C3—H3B | 108.3 | C7—C8—H8C | 109.5 |
C4—C3—H3B | 108.3 | H8A—C8—H8C | 109.5 |
H3A—C3—H3B | 107.4 | H8B—C8—H8C | 109.5 |
Twin components | Appropriate symmetry operations in P63mc | h,k,l;i [i = -h-l]* | Fractional contribution ki |
1 | [1] 1 | h,k,l;i | 0.178 (7) |
2 | [2] 3+ (0,0,z) | l,k,i;h | 0.213 (7) |
3 | [3] 3- (0,0,z) | i,k,h;l | 0.080 (7) |
4 | [7] m (x,-x,z) | -l,k,-h;i | 0.084 (7) |
5 | [8] m (x,2x,z) | -h,k,-i;l | 0.233 (7) |
6 | [9] m (2x,x,z) | -i,k,-l;h | 0.212 (7) |
Note: (*) the fourth Miller index is the sum of -h and -l, because the transformation from P63mc to P21 causes the 63-axis along the y axis. |
Anion | BF4- a | ClO4- b | ReS4- c | FeCl4- d | FeBrCl3- e | InCl4- f | TlCl4- g |
Temperature (K) | 373 | 393 | 297 (2) | 290–295 | 293 | r.t. | 297 |
Temperature range (K) | >342 | >378.5 | >285 | >234.7 | n.d.h | n.d. | >222 |
Space group | Fm3m | Fm3m | P63mc | P63mc | P63mc | P63mc | P63mc |
Z | 4 | 4 | 2 | 2 | 2 | 2 | 2 |
V/Z (Å3) | 317.3 (4) | 329.1 | 376.42 (7) | 383.7–385.7 | 388.4 (1) | 397 | 394.7 (4) |
Notes and references: (a) Matsumoto et al. (2014); (b) Ye et al. (2016); (c) this work; (d) Lutz et al. (2014), Warnke et al. (2010), Evans et al. (1990) and Navarro et al. (1988); (e) Evans et al. (1990); (f) Trotter et al. (1969); (g) Lenck et al. (1991); (h) n.d. = not determined. |
Anion | ClO4- a | BF4- b | MnO4- c | PO2F2- d | ReO3S- e | ReS4- f | ReS4- f | FeCl4- g | FeCl4- h |
Temperature (K) | 110–173 | 298 | 293 | 110 | 293 (2) | 149.9 (3) | 109.9 (3) | 110–170 | 230 |
Temperature range (K) | <378.5 | <342 | n.d. i | <323 | n.d. i | <285 | metastable | <226.6 | 234.7–226.6 |
Apace group | Cc | Cc | P21/c | Cc | P21/c | P21 | P63 | Pca21 | P63 |
Z | 4 | 4 | 4 | 4 | 8 | 2 | 18 | 4 | 18 |
V/Z (Å3) | 291.3–294.5 | 294.5 (3) | 307.7 (1) | 311.39 (4) | 316.7 (1) | 360.0 (2) | 363.05 (2) | 363.77–367.75 | 376.86 (3) |
Notes and references: (a) Ibers (1993), Kivikoski et al. (1995) and Ye et al. (2016); (b) Giuseppetti et al. (1994), Matsumoto et al. (2012) and Matsumoto et al. (2014); (c) Whang et al. (1991); (d) Matsumoto et al. (2012); (e) Partyka & Holm (2004); (f) this work; (g) Lutz et al. (2014) and Navarro et al. (1988); (h) Lutz et al. (2014) and Navarro et al. (1988); (i) n.d. = not determined. |
F2av(odd)/F2av | F2av(even)/F2av | F2av(odd)/F2av(even) | Δa (Å) | |
Ia (obs) | 0.082 | 1.737 | 0.047 | 0 |
Ia (calc) | 0.080 | 1.740 | 0.046 | 0 |
Ib (obs) b | 0.184 | 1.815 | 0.102 | 0.0573c |
Ib (calc) | 0.174 | 1.826 | 0.095 | 0.0573c |
Ic (obs) | 0.803 | 1.196 | 0.672 | 0.2720 |
Ic (calc) | 0.796 | 1.203 | 0.662 | 0.2720 |
Notes: (a) Average displacement of the Re atoms from the threefold axis. (b) Reflections of Ib with h = 3n and k = 3m overlap with appropriate reflections of Ic. The reflections with h = 3n and k = 3m are on average 1.2 times too strong and were not used in the refinement. (c) Re1, Re2 and Re3 = 0 Å; Re4 = 0.0815 Å; Re5 = 0.0905 Å. |
Cation | Et4N+, Iba | Et4N+, Ica | Et4N+, Iaa | Et4N+,b | Bu4N+,c | Ph4P+,d |
Temperature (K) | 109.9 (3) | 149.9 (3) | 297 (2) | r.t.e | r.t. | r.t. |
Re—S average | 2.142 (2) | 2.122 (10) | 2.125 (4) | 2.125 (4) | 2.122 (6) | 2.155 (30) |
Re—S range | 2.130–2.154 | 2.111–2.133 | 2.120–2.127 | 2.123–2.126 | 2.118–2.126 | 2.155–2.155 |
S—Re—S average | 109.47 (9) | 109.47 (71) | 109.47 (17) | 109.45 (11) | 109.48 (84) | Not specified |
S—Re—S range | 109.06–109.95 | 108.01–110.61 | 109.33–109.61 | 109.4–109.5 | 107.4–112.8 | Not specified |
Notes and references: (a) this work; (b) Müller et al. (1987); (c) Do et al. (1985); (d) Diemann & Müller (1976); (e) r.t. - room temperature. |
Acknowledgements
We thank Dr Birger Dittrich, MSc Moloud Mokfi and MSc Darya Schmidt for discussions.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Arnold, H. (1983). International Tables for Crystallography. Dordrecht: D. Reidel; online edition (2016). doi: 10.1107/97809553602060000114. Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Diemann, E. & Müller, A. (1976). Z. Naturforsch. Teil B, 31, 1287–1288. CrossRef Web of Science Google Scholar
Do, Y., Simhon, E. D. & Holm, R. H. (1985). Inorg. Chem. 24, 4635–4642. CSD CrossRef ICSD CAS Web of Science Google Scholar
Dopke, J. A., Wilson, S. R. & Rauchfuss, T. B. (2000). Inorg. Chem. 39, 5014–5021. Web of Science CSD CrossRef PubMed CAS Google Scholar
Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818–1821. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Giuseppetti, G., Tadini, C., Ferloni, P., Zabinska, G. & Torre, S. (1994). Z. Kristallogr. 209, 509–511. CAS Google Scholar
Goodman, J. T., Inomata, S. & Rauchfuss, T. B. (1996). J. Am. Chem. Soc. 118, 11674–11675. CSD CrossRef CAS Web of Science Google Scholar
Goodman, J. T. & Rauchfuss, T. B. (1997). Angew. Chem. 109, 2173–2175. CrossRef Google Scholar
Goodman, J. T. & Rauchfuss, T. B. (1998). Inorg. Chem. 37, 5040–5041. Web of Science CSD CrossRef CAS Google Scholar
Goodman, J. T. & Rauchfuss, T. B. (1999). J. Am. Chem. Soc. 121, 5017–5022. Web of Science CSD CrossRef CAS Google Scholar
Goodman, J. T. & Rauchfuss, T. B. (2002). Inorg. Synth. 33, 107–110. CAS Google Scholar
Halbert, T. R., Stiefel, E. I. & Wei, L. (1990). EP 000000401435. Google Scholar
Ibers, J. A. (1993). Z. Kristallogr. 208, 316–318. CAS Google Scholar
Kautny, P., Schwartz, T., Stöger, B. & Fröhlich, J. (2017). Acta Cryst. B73, 65–73. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kivikoski, J., Howard, J. A. K., Kelly, P. & Parker, D. (1995). Acta Cryst. C51, 535–536. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Krebs, B. & Kindler, E. (1969). Z. Anorg. Allg. Chem. 368, 293–307. CrossRef ICSD CAS Web of Science Google Scholar
Lenck, M., Dou, S. & Weiss, A. (1991). Z. Naturforsch. Teil A, 46, 777–784. CrossRef CAS Web of Science Google Scholar
Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470–476. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matsumoto, K., Harinaga, U., Tanaka, R., Koyama, A., Hagiwara, R. & Tsunashima, K. (2014). Phys. Chem. Chem. Phys. 16, 23616–23626. Web of Science CSD CrossRef CAS PubMed Google Scholar
Matsumoto, K., Okawa, T. & Hagiwara, R. (2012). Chem. Lett. 41, 394–396. Web of Science CSD CrossRef CAS Google Scholar
Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961–2971. Google Scholar
Müller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61–78. Google Scholar
Müller, A., Krickemeyer, E., Bögge, H., Penk, M. & Rehder, D. (1986). Chimia, 40, 50–52. Google Scholar
Naudin, C., Bonhomme, F., Bruneel, J. L., Ducasse, L., Grondin, J., Lassegues, J. C. & Servant, L. (2000). J. Raman Spectrosc. 31, 979–985. CrossRef CAS Google Scholar
Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373–384. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2016). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Partyka, D. V. & Holm, R. H. (2004). Inorg. Chem. 43, 8609–8616. Web of Science CSD CrossRef PubMed CAS Google Scholar
Scattergood, C. D., David Garner, C. & Clegg, W. (1987). Inorg. Chim. Acta, 132, 161–162. CSD CrossRef CAS Web of Science Google Scholar
Schwarz, D. E. & Rauchfuss, T. B. (2000). Chem. Commun. pp. 1123–1124. Web of Science CSD CrossRef Google Scholar
Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040–1050. Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Trotter, J., Einstein, F. W. B. & Tuck, D. G. (1969). Acta Cryst. B25, 603–604. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Warnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285–289. Web of Science CSD CrossRef CAS Google Scholar
Wei, L., Halbert, T. R. & Stiefel, E. I. (1991). US Patent 4997962. Google Scholar
Whang, D., Chung, S.-K. & Kim, K. (1991). Acta Cryst. C47, 2672–2674. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ye, H.-Y., Ge, J.-Z., Tang, Y.-Y., Li, P.-F., Zhang, Y., You, Y.-M. & Xiong, R.-G. (2016). J. Am. Chem. Soc. 138, 13175–13178. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.