research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Phase transition and structures of the twinned low-temperature phases of (Et4N)[ReS4]

CROSSMARK_Color_square_no_text.svg

aAnorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstrasse 20, Wuppertal 42119, Germany, and bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
*Correspondence e-mail: edbern@uni-wuppertal.de

Edited by A. Lemmerer, University of the Witwatersrand, Johannesburg, South Africa (Received 28 October 2019; accepted 25 December 2019; online 7 February 2020)

The title com­pound, tetra­ethyl­ammonium tetra­thio­rhenate, [(C2H5)4N][ReS4], has, at room temperature, a disordered structure in the space group P63mc (Z = 2, α-phase). A phase transition to the monoclinic space group P21 (Z = 2, γ-phase) at 285 K leads to a pseudo-merohedral twin. The high deviation from the hexa­gonal metric causes split reflections. However, the different orientations could not be separated, but were integrated using a large integration box. Rapid cooling to 110–170 K produces a metastable β-phase (P63, Z = 18) in addition to the γ-phase. All crystals of the β-phase are contaminated with the γ-phase. Additionally, the crystals of the β-phase are merohedrally twinned. In contrast to the α-phase, the β- and γ-phases do not show disorder.

1. Introduction

Salts with the ReS4 anion were synthesized for the first time in 1970 (Müller et al., 1970[Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961-2971.]). So far, some syntheses of ReS4 salts with different cations, such as Me4N+ (Müller et al., 1970[Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961-2971.]), Ph4P+ (Müller et al., 1970[Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961-2971.]), Ph4As+ (Müller et al., 1970[Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961-2971.]; Halbert et al., 1990[Halbert, T. R., Stiefel, E. I. & Wei, L. (1990). EP 000000401435.]; Wei et al., 1991[Wei, L., Halbert, T. R. & Stiefel, E. I. (1991). US Patent 4997962.]), Bu4N+ (Do et al., 1985[Do, Y., Simhon, E. D. & Holm, R. H. (1985). Inorg. Chem. 24, 4635-4642.]), Et4N+ (Müller et al., 1986[Müller, A., Krickemeyer, E., Bögge, H., Penk, M. & Rehder, D. (1986). Chimia, 40, 50-52.], 1987[Müller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61-78.]; Halbert et al., 1990[Halbert, T. R., Stiefel, E. I. & Wei, L. (1990). EP 000000401435.]; Wei et al., 1991[Wei, L., Halbert, T. R. & Stiefel, E. I. (1991). US Patent 4997962.]; Goodman & Rauchfuss, 2002[Goodman, J. T. & Rauchfuss, T. B. (2002). Inorg. Synth. 33, 107-110.]), Pr4N+ (Scattergood et al., 1987[Scattergood, C. D., David Garner, C. & Clegg, W. (1987). Inorg. Chim. Acta, 132, 161-162.]) and (PhCH2)Et3N+ (Halbert et al., 1990[Halbert, T. R., Stiefel, E. I. & Wei, L. (1990). EP 000000401435.]; Wei et al., 1991[Wei, L., Halbert, T. R. & Stiefel, E. I. (1991). US Patent 4997962.]), have been reported. There is a lack of reliable methods to prepare salts of the ReS4 anion with Na+, K+, Rb+ and Cs+ cations. The ReS4 anion is used in several organic chemistry reactions, such as addition reactions to carbon–carbon multiple bonds (Goodman et al., 1996[Goodman, J. T., Inomata, S. & Rauchfuss, T. B. (1996). J. Am. Chem. Soc. 118, 11674-11675.]; Goodman & Rauchfuss, 1998[Goodman, J. T. & Rauchfuss, T. B. (1998). Inorg. Chem. 37, 5040-5041.], 1999[Goodman, J. T. & Rauchfuss, T. B. (1999). J. Am. Chem. Soc. 121, 5017-5022.]; Dopke et al., 2000[Dopke, J. A., Wilson, S. R. & Rauchfuss, T. B. (2000). Inorg. Chem. 39, 5014-5021.]) and the carbon–nitro­gen triple bond of some nitriles (Goodman & Rauchfuss, 1997[Goodman, J. T. & Rauchfuss, T. B. (1997). Angew. Chem. 109, 2173-2175.]). Moreover, the reaction of the ReS4 anion with iso­nitriles has been described (Schwarz & Rauchfuss, 2000[Schwarz, D. E. & Rauchfuss, T. B. (2000). Chem. Commun. pp. 1123-1124.]).

[Scheme 1]

X-ray diffraction studies were published for Ph4PReS4 (Müller et al., 1970[Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961-2971.]; Diemann & Müller, 1976[Diemann, E. & Müller, A. (1976). Z. Naturforsch. Teil B, 31, 1287-1288.]), Ph4AsReS4 (Müller et al., 1970[Müller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961-2971.]), Bu4NReS4 (Do et al., 1985[Do, Y., Simhon, E. D. & Holm, R. H. (1985). Inorg. Chem. 24, 4635-4642.]) and Et4NReS4 (Müller et al., 1986[Müller, A., Krickemeyer, E., Bögge, H., Penk, M. & Rehder, D. (1986). Chimia, 40, 50-52.], 1987[Müller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61-78.]). While the structures of Ph4PReS4, Ph4AsReS4 and Bu4NReS4 are ordered, the structure of Et4NReS4 [P6mm, a = 8.149 (2), c = 6.538 (1) Å, Z = 1, room temperature] is disordered. Superstructural reflections were observed, suggesting a larger unit cell. The aim of this work was to verify that the unit cell of Et4NReS4 would be larger at room temperature. Another goal of this work was to investigate whether a phase transition to an ordered structure could be observed at lower temperatures.

2. Experimental

2.1. Synthesis and crystallization

Et4NReS4 was synthesized according to the literature method of Goodman & Rauchfuss (2002[Goodman, J. T. & Rauchfuss, T. B. (2002). Inorg. Synth. 33, 107-110.]). Slow evaporation of an aceto­nitrile solution of Et4NReS4 in air afforded crystals suitable for X-ray diffraction analysis.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The phase designations IaIc are analogous to that used for Et4NFeCl4 (Lutz et al., 2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]).

Table 1
Experimental details

For all phases: (C8H20N)[ReS4], Mr = 444.69. Experiments were carried out with Mo Kα radiation using an Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD camera. The absorption correction was analytical [CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]. H-atom parameters were constrained.

  Ia Ib Ic
Crystal data
Crystal system, space group Hexagonal, P63mc Hexagonal, P63 Monoclinic, P21
Temperature (K) 297 110 150
a, b, c (Å) 8.150 (2), 8.150 (3), 13.092 (3) 24.170 (3), 24.170 (3), 12.916 (2) 7.900 (2), 12.842 (3), 8.118 (2)
α, β, γ (°) 90, 90, 120 90, 90, 120 90, 119.04 (2), 90
V3) 753.1 (4) 6534.5 (19) 720.0 (3)
Z 2 18 2
μ (mm−1) 8.59 8.91 8.99
Crystal size (mm) 0.32 × 0.03 × 0.03 0.24 × 0.21 × 0.16 0.24 × 0.20 × 0.17
 
Data collection
Tmin, Tmax 0.599, 0.829 0.253, 0.351 0.241, 0.336
No. of measured, independent and observed [I > 2σ(I)] reflections 1804, 513, 392 44958, 9707, 8807 4476, 2814, 2808
Rint 0.029 0.036 0.053
(sin θ/λ)max−1) 0.632 0.696 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.08 0.028, 0.048, 1.05 0.052, 0.138, 1.09
No. of reflections 513 9707 2814
No. of parameters 44 380 87
No. of restraints 34 1 89
Δρmax, Δρmin (e Å−3) 0.26, −0.42 0.87, −1.09 2.01, −4.80
Absolute structure Refined as an inversion twin Twinning involves mirror, so Flack parameter cannot be determined Twinning involves mirror, so Flack parameter cannot be determined
Absolute structure parameter 0.14 (4) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Computer programs: CrysAlis PRO (Oxford Diffraction, 2016[Oxford Diffraction (2016). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).
2.2.1. α-phase

The crystal structure of the α-phase (denoted Ia) at 297 K was refined in the space group P63mc (Table 1[link]) starting from the structure of Et4NFeCl4 at 290 K (Lutz et al., 2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]). The ReS4 anion is com­pletely ordered. The whole tetra­ethyl­ammonium cation is disordered about special position b with 3m symmetry. A whole cation with an occupancy of 1/6 was modelled. Similarity distance restraints were applied for the ethyl groups. All the atoms of the cation were refined isotropically because of this severe disorder, whereas the atoms of the ordered anion were refined anisotropically (Fig. 1[link]a). H atoms were attached to geometrically optimized positions and refined with the riding model. Twinning by inversion was considered. The fractional contribution of the minor domain refined to 0.14 (4). The C—H distances were fixed at 0.96 (CH3) or 0.97 Å (CH2). The Uiso(H) values were constrained to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

[Figure 1]
Figure 1
Displacement ellipsoid plots (50% probability level) of (a) Ia at 297 K, (b) Ic at 150 K and (c) Ib at 110 K.
2.2.2. γ-phase

Upon slow cooling (ca 5 K min−1) to 285 K, crystals of the α-phase (i.e. Ia) undergo a reversible phase transition to the γ-phase (denoted Ic). No further phase transitions could be observed between 110 and 300 K. The γ-phase crystallizes in the space group P21 as a pseudomero­hedral twin (Table 1[link]). Attempts to grow crystals at 273 and 253 K also led to the formation of twins. Data for the γ-phase were collected at 150 K. The high deviation from the hexa­gonal metric leads to split reflections and reflections of different domains close to each other (see Fig. S1 of the supporting information). However, the different orientations could not be separated. To take the twinning into account, an HKLF5 file (Sevvana et al., 2019[Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040-1050.]) was produced (SHELXL2018; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) according to the transition from P63mc to P21 (Table 2[link]). The normal procedure using the TWIN command was not possible, because in SHELXL, only one TWIN command is allowed, but here two twin operations, a threefold and a mirror, are needed. We checked for additional twinning by inversion using now twelve com­ponents, but the fractional contributions of the additional six com­ponents refined to values close to zero (for details, see the supporting information). Both the tetra­thio­perrhenate anion (ReS4) and the tetra­ethyl­ammonium cation are com­pletely ordered (Fig. 1[link]b). However, to stabilize the refinement, distance restraints were used and the cation was only isotropically refined. H atoms were attached to geometrical optimized positions and refined with the riding model. The C—H distances were fixed at 0.98 (CH3) or 0.99 Å (CH2). The Uiso(H) values were constrained to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Table 2
Twin com­ponents in Ic

Twin com­ponents Appropriate symmetry operations in P63mc h,k,l;i [i = −hl]* Fractional contribution ki
1 [1] 1 h,k,l;i 0.178 (7)
2 [2] 3+ (0,0,z) l,k,i;h 0.213 (7)
3 [3] 3 (0,0,z) i,k,h;l 0.080 (7)
4 [7] m (x,−x,z) −l,k,−h;i 0.084 (7)
5 [8] m (x,2x,z) h,k,−i;l 0.233 (7)
6 [9] m (2x,x,z) i,k,−l;h 0.212 (7)
Note: (*) the fourth Miller index is the sum of −h and −l, because the transformation from P63mc to P21 causes the 63-axis along the y axis.
2.2.3. β-phase

Rapid cooling (>100 K s−1) of the α-phase (i.e. Ia) to 110–170 K leads to a mixture of the γ-phase (i.e. Ic) and the β-phase (denoted Ib) through a phase transition forming an allotwin. A reciprocal space plot (see Fig. S2 in the supporting information) shows satellites for the reflections with h = 3n and k = 3m. With slow heating (ca 5 K min−1) to 200 K, the β-phase irreversibly changes to the γ-phase. We were not able to obtain crystals of the β-phase free from the γ-phase. Such a superposition of reflections of two phases was also found, for example, in Kautny et al. (2017[Kautny, P., Schwartz, T., Stöger, B. & Fröhlich, J. (2017). Acta Cryst. B73, 65-73.]). The a and b axes of the β-phase are enlarged by a factor of three com­pared to the γ-phase. Therefore, all hkl reflections with h = 3n and k = 3m of the β-phase are contaminated with reflections of the γ-phase. The data collection software (CrysAlis PRO; Oxford Diffraction, 2016[Oxford Diffraction (2016). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) could not split the summed intensity into its two com­ponents. Therefore, the hkl reflections with h = 3n and k = 3m had to be removed from the data set. This lowers the com­pleteness to only 88.8%. Including the con­tami­nated reflections raises the R1 value from 0.0354 to 0.0548 and shows F2obs values for hkl reflections with h = 3n and k = 3m much bigger than the F2calc values (see Table S1 in the supporting information). Even with the ISOR restraint, where atoms are restrained with effective standard deviations so that their Uij components approximate to isotropic behaviour, the anisotropic displacement parameters refine to nonpositive definite values and the residual density increases to 3.45/−3.41 e Å−3. The C—H distances were fixed at 0.98 (CH3) or 0.99 Å (CH2). The Uiso(H) values were constrained to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

The β-phase of Et4NReS4 is isostructural with Et4NFeCl4 at 230 K (Lutz et al., 2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]). It crystallizes as a merohedral twin with the twin law 010 100 001 and a fractional contribution of 0.5005 (15). This twin law describes a mirror plane perpendicular to the face diagonal. To check for additional twinning by inversion, a refinement with `TWIN 0 1 0 1 0 0 0 0 1 −4' was applied. The additional fractional contributions refined to −0.004 (7) and −0.007 (7). Therefore, twinning by inversion could be excluded. All tetra­thio­perrhenate anions (ReS4) and tetra­ethyl­ammonium cations are com­pletely ordered (Fig. 1[link]c).

3. Results and discussion

At 297 K, Et4NReS4 is isostructural with Et4NFeCl4 (Lutz et al., 2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]; Warnke et al., 2010[Warnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285-289.]; Evans et al., 1990[Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818-1821.]; Navarro et al., 1988[Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373-384.]), Et4NFeBrCl3 (Evans et al., 1990[Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818-1821.]), Et4NInCl4 (Trotter et al., 1969[Trotter, J., Einstein, F. W. B. & Tuck, D. G. (1969). Acta Cryst. B25, 603-604.]) and Et4NTlCl4 (Lenck et al., 1991[Lenck, M., Dou, S. & Weiss, A. (1991). Z. Naturforsch. Teil A, 46, 777-784.]). They crystallize in the space group P63mc. While the anion is ordered, the tetra­ethyl­ammonium cation is disordered. The volume of the primitive cell grows in the following series Et4NBF4 ≃ Et4NClO4 < Et4NMnO4 ≃ Et4NPO2F2 ≃ Et4NReOS3 < Et4NReS4 < Et4NFeCl4 < Et4NFeBrCl3 < Et4NTlCl4 ≃ Et4NInCl4. Accordingly, in the series Et4NClO4 (378.5 K) > Et4NBF4 (342 K) > Et4NPO2F2 (323 K) > Et4NReS4 (285 K) > Et4NFeCl4 (234.7 K) > Et4NTlCl4 (222 K), the transition temperature to an ordered structure decreases (Tables 3[link] and 4[link]).

Table 3
Crystallographic data for the high-temperature phase of several Et4NMY4 com­pounds (M = B, Cl, Re, Fe, In and Tl; Y = O, F, S, Cl and Br)

Anion BF4−,a ClO4−,b ReS4−,c FeCl4−,d FeBrCl3−,e InCl4−,f TlCl4−,g
Temperature (K) 373 393 297 (2) 290–295 293 r.t.h 297
Temperature range (K) >342 >378.5 >285 >234.7 n.d.i n.d. >222
Space group Fm[\overline{3}]m Fm[\overline{3}]m P63mc P63mc P63mc P63mc P63mc
Z 4 4 2 2 2 2 2
V/Z3) 317.3 (4) 329.1 376.42 (7) 383.7–385.7 388.4 (1) 397 394.7 (4)
Notes and references: (a) Matsumoto et al. (2014[Matsumoto, K., Harinaga, U., Tanaka, R., Koyama, A., Hagiwara, R. & Tsunashima, K. (2014). Phys. Chem. Chem. Phys. 16, 23616-23626.]); (b) Ye et al. (2016[Ye, H.-Y., Ge, J.-Z., Tang, Y.-Y., Li, P.-F., Zhang, Y., You, Y.-M. & Xiong, R.-G. (2016). J. Am. Chem. Soc. 138, 13175-13178.]); (c) this work; (d) Lutz et al. (2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]), Warnke et al. (2010[Warnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285-289.]), Evans et al. (1990[Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818-1821.]) and Navarro et al. (1988[Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373-384.]); (e) Evans et al. (1990[Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818-1821.]); (f) Trotter et al. (1969[Trotter, J., Einstein, F. W. B. & Tuck, D. G. (1969). Acta Cryst. B25, 603-604.]); (g) Lenck et al. (1991[Lenck, M., Dou, S. & Weiss, A. (1991). Z. Naturforsch. Teil A, 46, 777-784.]); (h) r.t. = room temperature; (i) n.d. = not determined.

Table 4
Crystallographic data for the low-temperature phase of several Et4NMY4 com­pounds (M = B, P, Cl, Mn, Re and Fe; Y = O, F, S and Cl)

Anion ClO4−,a BF4−,b MnO4−,c PO2F2−,d ReO3S−,e ReS4−,f ReS4−,f FeCl4−,g FeCl4−,h
Temperature (K) 110–173 298 293 110 293 (2) 149.9 (3) 109.9 (3) 110–170 230
Temperature range (K) <378.5 <342 n.d.i <323 n.d. <285 metastable <226.6 234.7–226.6
Apace group Cc Cc P21/c Cc P21/c P21 P63 Pca21 P63
Z 4 4 4 4 8 2 18 4 18
V/Z3) 291.3–294.5 294.5 (3) 307.7 (1) 311.39 (4) 316.7 (1) 360.0 (2) 363.05 (2) 363.77–367.75 376.86 (3)
Notes and references: (a) Ibers (1993[Ibers, J. A. (1993). Z. Kristallogr. 208, 316-318.]), Kivikoski et al. (1995[Kivikoski, J., Howard, J. A. K., Kelly, P. & Parker, D. (1995). Acta Cryst. C51, 535-536.]) and Ye et al. (2016[Ye, H.-Y., Ge, J.-Z., Tang, Y.-Y., Li, P.-F., Zhang, Y., You, Y.-M. & Xiong, R.-G. (2016). J. Am. Chem. Soc. 138, 13175-13178.]); (b) Giuseppetti et al. (1994[Giuseppetti, G., Tadini, C., Ferloni, P., Zabinska, G. & Torre, S. (1994). Z. Kristallogr. 209, 509-511.]), Matsumoto et al. (2012[Matsumoto, K., Okawa, T. & Hagiwara, R. (2012). Chem. Lett. 41, 394-396.]) and Matsumoto et al. (2014[Matsumoto, K., Harinaga, U., Tanaka, R., Koyama, A., Hagiwara, R. & Tsunashima, K. (2014). Phys. Chem. Chem. Phys. 16, 23616-23626.]); (c) Whang et al. (1991[Whang, D., Chung, S.-K. & Kim, K. (1991). Acta Cryst. C47, 2672-2674.]); (d) Matsumoto et al. (2012[Matsumoto, K., Okawa, T. & Hagiwara, R. (2012). Chem. Lett. 41, 394-396.]); (e) Partyka & Holm (2004[Partyka, D. V. & Holm, R. H. (2004). Inorg. Chem. 43, 8609-8616.]); (f) this work; (g) Lutz et al. (2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]) and Navarro et al. (1988[Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373-384.]); (h) Lutz et al. (2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]) and Navarro et al. (1988[Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373-384.]); (i) n.d. = not determined.

While Et4NFeCl4 at 234.7 K undergoes a phase transition from P63mc to P63 (Lutz et al., 2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]; Navarro et al., 1988[Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373-384.]), a phase transition from P63mc to P21 is observed for Et4NReS4 at 285 K. The P63 phase is metastable for Et4NReS4, while the P21 phase is not observed for Et4NFeCl4. An additional low-temperature phase of Et4NFeCl4 crystallizes in the space group Pca21 [226.6 (1)–2.93 (3) K] (Lutz et al., 2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]; Navarro et al., 1988[Navarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373-384.]). This phase is not observed for Et4NReS4. While the high-temperature phases of the com­pounds from Table 3[link] have the same structure, the low-temperature phases show different structures (Table 4[link]). Tetra­ethyl­ammonium salts with anions smaller than tetra­thio­rhenate crystallize at room temperature as the low-temperature phase of Et4NReS4. Whereas the tetra­ethyl­ammonium cation in Et4NBF4, Et4NClO4, Et4NPO2F2, Et4NReS4, Et4NFeCl4, Et4NFeBrCl3 and Et4NTlCl4 has the tgtg conformation (t is trans and g is gauche), it has the tttt conformation in Et4NReO3S and Et4NMnO4 (Naudin et al., 2000[Naudin, C., Bonhomme, F., Bruneel, J. L., Ducasse, L., Grondin, J., Lassegues, J. C. & Servant, L. (2000). J. Raman Spectrosc. 31, 979-985.]). Only the structures of Et4NReO3S, Et4NMnO4, Et4NBF4 (high-temperature phase) and Et4NClO4 (high-temperature phase) have an inversion centre. In these two com­pounds, the Et4N+ cation has a tgtg conformation or is disordered.

At 297 K, Et4NReS4 crystallizes in the space group P63mc (Tables 1[link] and 4[link]). Because of the special position of the Re atom (2a, 3m.; Arnold, 1983[Arnold, H. (1983). International Tables for Crystallography. Dordrecht: D. Reidel; online edition (2016). doi: 10.1107/97809553602060000114.]), all reflections with l = 2n + 1 are much weaker than those with l = 2n (Table 5[link]). This could explain why Müller et al. (1986[Müller, A., Krickemeyer, E., Bögge, H., Penk, M. & Rehder, D. (1986). Chimia, 40, 50-52.], 1987[Müller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61-78.]) found a smaller primitive cell [P6mm, a = 8.149 (2), c = 6.538 (1) Å, Z = 1]. They observed weak superstructural reflections, suggesting a doubling of the primitive cell [a = 8.149 (2), c = 13.076 (2) Å, Z = 2], which would be in good agreement with the one found here.

Table 5
Intensity of the reflections with even and odd l (Ia and Ic) or k (Ic) from the .fcf file

  F2av(odd)/F2av F2av(even)/F2av F2av(odd)/F2av(even) Δa (Å)
Ia (obs) 0.082 1.737 0.047 0
Ia (calc) 0.080 1.740 0.046 0
Ib (obs)b 0.184 1.815 0.102 0.0573c
Ib (calc) 0.174 1.826 0.095 0.0573c
Ic (obs) 0.803 1.196 0.672 0.2720
Ic (calc) 0.796 1.203 0.662 0.2720
Notes: (a) Average displacement of the Re atoms from the threefold axis. (b) Reflections of Ib with h = 3n and k = 3m overlap with appropriate reflections of Ic. The reflections with h = 3n and k = 3m are on average 1.2 times too strong and were not used in the refinement. (c) Re1, Re2 and Re3 = 0 Å; Re4 = 0.0815 Å; Re5 = 0.0905 Å.

In Ib and Ic, the Re atom is displaced from the threefold axis. In Ic, reflections with k = 2n + 1 are as strong as the reflections with k = 2n, while for Ib (as also for Ia), reflections with l = 2n + 1 are much weaker than those with l = 2n (Table 5[link]).

Structurally, Ib is closer to Ia than to Ic. Therefore, Ib is also formed by rapid cooling of Ia, although Ic is thermodynamically more stable. The energy barrier for the conversion of Ib to Ic is relatively large, so that rapid conversion occurs only above 200 K.

In the known structures with ReS4, the Re—S bond length is independent of the cation (Table 6[link]). The S—Re—S angle in the ReS4 anion is very close to the tetra­hedral value (109.47°). The Re—S bond length in ReO3S is very similar to that in ReS4. For ReO3S, the following Re—S bond lengths are known: RbReO3S with 2.126 (6) Å (Krebs & Kindler, 1969[Krebs, B. & Kindler, E. (1969). Z. Anorg. Allg. Chem. 368, 293-307.]) and Et4NReO3S with 2.128 (5) and 2.143 (5) Å (Partyka & Holm, 2004[Partyka, D. V. & Holm, R. H. (2004). Inorg. Chem. 43, 8609-8616.]).

Table 6
Re—S bond lengths (Å) and S—Re—S angles (°) for some com­pounds with the ReS4 anion

Cation Et4N+, Iba Et4N+, Ica Et4N+, Iaa Et4N+,b Bu4N+,c Ph4P+,d
Temperature (K) 109.9 (3) 149.9 (3) 297 (2) r.t.e r.t. r.t.
Re—S average 2.142 (2) 2.122 (10) 2.125 (4) 2.125 (4) 2.122 (6) 2.155 (30)
Re—S range 2.130–2.154 2.111–2.133 2.120–2.127 2.123–2.126 2.118–2.126 2.155–2.155
S—Re—S average 109.47 (9) 109.47 (71) 109.47 (17) 109.45 (11) 109.48 (84) Not specified
S—Re—S range 109.06–109.95 108.01–110.61 109.33–109.61 109.4–109.5 107.4–112.8 Not specified
Notes and references: (a) this work; (b) Müller et al. (1987[Müller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61-78.]); (c) Do et al. (1985[Do, Y., Simhon, E. D. & Holm, R. H. (1985). Inorg. Chem. 24, 4635-4642.]); (d) Diemann & Müller (1976[Diemann, E. & Müller, A. (1976). Z. Naturforsch. Teil B, 31, 1287-1288.]); (e) r.t. = room temperature.

In this article, we were able to show that the unit cell of Et4NReS4 is larger at room temperature than previously thought (Müller et al., 1986[Müller, A., Krickemeyer, E., Bögge, H., Penk, M. & Rehder, D. (1986). Chimia, 40, 50-52.], 1987[Müller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61-78.]). In this structure, the Et4N+ cation is disordered, while the ReS4 anion is ordered. At 285 K, there is a phase transition to an ordered structure, where the space group changes from P63mc to P21. The omission of the threefold axis and the mirror plane creates a twin with six com­ponents. In addition to this low-temperature phase, a further metastable phase was formed when Ia was cooled rapidly to 110–170 K. This phase crystallizes in the space group P63 with a nine times bigger unit cell forming an allotwin with Ib.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Oxford Diffraction, 2016); cell refinement: CrysAlis PRO (Oxford Diffraction, 2016); data reduction: CrysAlis PRO (Oxford Diffraction, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

Tetraethylammonium tetrathiorhenate (Ia) top
Crystal data top
(C8H20N)[ReS4]Dx = 1.961 Mg m3
Mr = 444.69Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 687 reflections
a = 8.150 (2) Åθ = 2.9–24.9°
c = 13.092 (3) ŵ = 8.59 mm1
V = 753.1 (4) Å3T = 297 K
Z = 2Prism, black
F(000) = 4280.32 × 0.03 × 0.03 mm
Data collection top
Oxford Diffraction Gemini E Ultra
diffractometer with an EOS CCD camera
513 independent reflections
Radiation source: fine-focus sealed tube Enhanced (Mo)392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.2705 pixels mm-1θmax = 26.7°, θmin = 2.9°
ω scansh = 105
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
k = 710
Tmin = 0.599, Tmax = 0.829l = 816
1804 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.018P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.26 e Å3
513 reflectionsΔρmin = 0.42 e Å3
44 parametersAbsolute structure: Refined as an inversion twin.
34 restraintsAbsolute structure parameter: 0.14 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Suitable single crystals of Et4NReS4 were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the CrysAlisPro program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F2 (Sheldrick, 2015, 2008). The graphics were prepared with the program Diamond (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re0.00000.00000.0550 (2)0.0597 (2)
S10.00000.00000.2173 (4)0.0829 (17)
S20.14196 (19)0.14196 (19)0.0010 (3)0.0930 (8)
N10.678 (4)0.331 (3)0.3103 (10)0.041 (3)*0.1667
C10.513 (4)0.139 (3)0.328 (2)0.065 (5)*0.1667
H1A0.40310.14020.30090.078*0.1667
H1B0.49530.12500.40180.078*0.1667
C20.506 (6)0.038 (3)0.290 (3)0.054 (5)*0.1667
H2A0.38810.14630.30920.082*0.1667
H2B0.60920.04780.31820.082*0.1667
H2C0.51630.03250.21640.082*0.1667
C30.850 (4)0.314 (4)0.293 (3)0.065 (5)*0.1667
H3A0.88780.28570.35810.078*0.1667
H3B0.81500.20560.24880.078*0.1667
C41.020 (5)0.480 (6)0.248 (3)0.054 (5)*0.1667
H4A1.12020.45220.24020.082*0.1667
H4B1.06040.58820.29140.082*0.1667
H4C0.98730.50780.18170.082*0.1667
C50.662 (5)0.428 (5)0.2172 (17)0.065 (5)*0.1667
H5A0.78970.51920.19560.078*0.1667
H5B0.60710.33360.16370.078*0.1667
C60.554 (6)0.529 (6)0.220 (3)0.054 (5)*0.1667
H6A0.55820.58220.15430.082*0.1667
H6B0.60840.62780.27020.082*0.1667
H6C0.42470.44110.23800.082*0.1667
C70.704 (7)0.451 (3)0.4029 (16)0.065 (5)*0.1667
H7A0.59270.46410.40880.078*0.1667
H7B0.81100.57600.39000.078*0.1667
C80.736 (3)0.386 (6)0.5047 (14)0.054 (5)*0.1667
H8A0.74970.47560.55630.082*0.1667
H8B0.84840.37660.50190.082*0.1667
H8C0.62920.26420.52090.082*0.1667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re0.0630 (3)0.0630 (3)0.0530 (3)0.03152 (13)0.0000.000
S10.097 (3)0.097 (3)0.054 (3)0.0486 (14)0.0000.000
S20.1049 (17)0.1049 (17)0.0908 (15)0.069 (2)0.0080 (11)0.0080 (11)
Geometric parameters (Å, º) top
Re—S12.124 (5)C3—H3B0.9700
Re—S2i2.125 (3)C4—H4A0.9600
Re—S2ii2.125 (3)C4—H4B0.9600
Re—S22.125 (3)C4—H4C0.9600
N1—C11.485 (19)C5—C61.47 (3)
N1—C51.496 (19)C5—H5A0.9700
N1—C31.496 (19)C5—H5B0.9700
N1—C71.502 (18)C6—H6A0.9600
C1—C21.51 (2)C6—H6B0.9600
C1—H1A0.9700C6—H6C0.9600
C1—H1B0.9700C7—C81.50 (2)
C2—H2A0.9600C7—H7A0.9700
C2—H2B0.9600C7—H7B0.9700
C2—H2C0.9600C8—H8A0.9600
C3—C41.49 (3)C8—H8B0.9600
C3—H3A0.9700C8—H8C0.9600
S1—Re—S2i109.44 (14)C3—C4—H4A109.5
S1—Re—S2ii109.44 (14)C3—C4—H4B109.5
S2i—Re—S2ii109.51 (14)H4A—C4—H4B109.5
S1—Re—S2109.44 (14)C3—C4—H4C109.5
S2i—Re—S2109.50 (14)H4A—C4—H4C109.5
S2ii—Re—S2109.50 (14)H4B—C4—H4C109.5
C1—N1—C5114 (2)C6—C5—N1121 (2)
C1—N1—C3108.9 (18)C6—C5—H5A107.2
C5—N1—C3105.2 (19)N1—C5—H5A107.2
C1—N1—C7108.2 (18)C6—C5—H5B107.2
C5—N1—C7109.6 (17)N1—C5—H5B107.2
C3—N1—C7110 (3)H5A—C5—H5B106.8
N1—C1—C2122 (2)C5—C6—H6A109.5
N1—C1—H1A106.7C5—C6—H6B109.5
C2—C1—H1A106.7H6A—C6—H6B109.5
N1—C1—H1B106.7C5—C6—H6C109.5
C2—C1—H1B106.7H6A—C6—H6C109.5
H1A—C1—H1B106.6H6B—C6—H6C109.5
C1—C2—H2A109.5N1—C7—C8119 (2)
C1—C2—H2B109.5N1—C7—H7A107.6
H2A—C2—H2B109.5C8—C7—H7A107.6
C1—C2—H2C109.5N1—C7—H7B107.6
H2A—C2—H2C109.5C8—C7—H7B107.6
H2B—C2—H2C109.5H7A—C7—H7B107.1
C4—C3—N1117 (2)C7—C8—H8A109.5
C4—C3—H3A108.0C7—C8—H8B109.5
N1—C3—H3A108.0H8A—C8—H8B109.5
C4—C3—H3B108.0C7—C8—H8C109.5
N1—C3—H3B108.0H8A—C8—H8C109.5
H3A—C3—H3B107.2H8B—C8—H8C109.5
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z.
Tetraethylammonium tetrathiorhenate (Ib) top
Crystal data top
(C8H20N)[ReS4]Dx = 2.034 Mg m3
Mr = 444.69Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 16453 reflections
a = 24.170 (3) Åθ = 2.9–29.3°
c = 12.916 (2) ŵ = 8.91 mm1
V = 6534.5 (19) Å3T = 110 K
Z = 18Prism, black
F(000) = 38520.24 × 0.21 × 0.16 mm
Data collection top
Oxford Diffraction Gemini E Ultra
diffractometer with an EOS CCD camera
9707 independent reflections
Radiation source: fine-focus sealed tube Enhanced (Mo)8807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.2705 pixels mm-1θmax = 29.7°, θmin = 1.9°
ω scansh = 3229
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
k = 3027
Tmin = 0.253, Tmax = 0.351l = 1717
44958 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.008P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.87 e Å3
9707 reflectionsΔρmin = 1.08 e Å3
380 parametersAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Suitable single crystals of Et4NReS4 were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the CrysAlisPro program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F2 (Sheldrick, 2015, 2008). The graphics were prepared with the program Diamond (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.0000000.0000000.35220 (11)0.0095 (2)
S10.0000000.0000000.5175 (4)0.0158 (12)
S20.03466 (11)0.09562 (11)0.2979 (2)0.0170 (5)
Re20.6666670.3333330.35177 (11)0.0096 (2)
S30.6666670.3333330.5165 (4)0.0165 (11)
S40.72698 (11)0.42896 (12)0.2975 (2)0.0178 (5)
Re30.3333330.6666670.35284 (11)0.0097 (2)
S50.3333330.6666670.5197 (4)0.0107 (11)
S60.39202 (11)0.76280 (12)0.2985 (2)0.0171 (5)
Re40.33152 (2)0.32944 (2)0.39300 (2)0.00888 (14)
S70.31787 (9)0.32427 (9)0.55692 (15)0.0152 (4)
S80.38743 (10)0.28632 (10)0.35143 (18)0.0150 (5)
S90.38027 (11)0.42763 (11)0.34619 (18)0.0154 (5)
S100.24045 (10)0.27951 (12)0.3185 (2)0.0159 (5)
Re50.66238 (2)0.66500 (2)0.38567 (2)0.0106 (2)
S110.65647 (9)0.65264 (10)0.55018 (16)0.0178 (5)
S120.70584 (12)0.61460 (11)0.31983 (18)0.0151 (5)
S130.71863 (11)0.76468 (10)0.3498 (2)0.0160 (5)
S140.56841 (11)0.62819 (12)0.32167 (18)0.0165 (5)
N10.2288 (5)0.1209 (4)0.1357 (17)0.016 (2)
C10.2347 (4)0.0831 (4)0.2256 (5)0.0139 (16)
H1A0.1955180.0406140.2281170.017*
H1B0.2711160.0762300.2116970.017*
C20.2444 (6)0.1145 (4)0.3303 (8)0.020 (2)
H2A0.2476690.0872760.3833480.031*
H2B0.2837610.1561060.3295000.031*
H2C0.2080250.1204250.3459500.031*
C30.2216 (3)0.0835 (3)0.0367 (5)0.0129 (15)
H3A0.2207310.1091070.0224820.015*
H3B0.2601660.0795110.0288730.015*
C40.1635 (4)0.0173 (3)0.0288 (5)0.020 (2)
H4A0.1641100.0018450.0378260.029*
H4B0.1641960.0094330.0852520.029*
H4C0.1246130.0202740.0337050.029*
C50.1699 (3)0.1264 (4)0.1529 (6)0.0149 (17)
H5A0.1333930.0831340.1663330.018*
H5B0.1764980.1521660.2161890.018*
C60.1520 (4)0.1554 (4)0.0670 (5)0.0205 (18)
H6A0.1133640.1567070.0860970.031*
H6B0.1869760.1989750.0542250.031*
H6C0.1437410.1297340.0042190.031*
C70.2858 (3)0.1860 (3)0.1261 (6)0.0127 (16)
H7A0.2879110.2111080.1879970.015*
H7B0.2798410.2072760.0650880.015*
C80.3494 (5)0.1881 (4)0.1149 (7)0.021 (2)
H8A0.3838800.2325980.1091430.031*
H8B0.3567760.1684170.1758260.031*
H8C0.3486870.1645760.0526190.031*
N20.2191 (3)0.4378 (5)0.1385 (18)0.015 (3)
C90.2538 (4)0.4319 (3)0.2279 (5)0.0135 (16)
H9A0.2963810.4709420.2318790.016*
H9B0.2605640.3953010.2158680.016*
C100.2202 (4)0.4225 (6)0.3320 (8)0.021 (2)
H10A0.2462030.4190850.3869710.032*
H10B0.2142780.4591330.3458670.032*
H10C0.1783970.3833570.3298280.032*
C110.1531 (3)0.3811 (3)0.1254 (6)0.0160 (17)
H11A0.1332780.3881310.0635440.019*
H11B0.1270560.3785890.1861860.019*
C120.1506 (4)0.3168 (5)0.1135 (8)0.022 (2)
H12A0.1061430.2827520.1053950.033*
H12B0.1752130.3180950.0522900.033*
H12C0.1689770.3085330.1751900.033*
C130.2127 (3)0.4978 (3)0.1536 (5)0.0131 (16)
H13A0.1842220.4905260.2134480.016*
H13B0.2552310.5343290.1709450.016*
C140.1863 (4)0.5160 (4)0.0596 (6)0.0201 (17)
H14A0.1838670.5543610.0757880.030*
H14B0.2147610.5246620.0002370.030*
H14C0.1436100.4807700.0428250.030*
C150.2578 (3)0.4447 (3)0.0404 (5)0.0172 (16)
H15A0.2620810.4062780.0334570.021*
H15B0.2334150.4460390.0202270.021*
C160.3235 (4)0.5029 (4)0.0376 (6)0.023 (2)
H16A0.3446770.5035110.0273910.034*
H16B0.3199340.5415020.0423380.034*
H16C0.3486620.5016570.0961350.034*
N30.5567 (3)0.4520 (4)0.1362 (16)0.013 (3)
C170.5148 (3)0.4158 (3)0.2259 (5)0.0132 (15)
H17A0.5114070.3733090.2291750.016*
H17B0.4714410.4089950.2132210.016*
C180.5382 (4)0.4486 (4)0.3301 (8)0.023 (2)
H18A0.5083690.4221110.3844770.034*
H18B0.5806220.4545630.3445560.034*
H18C0.5405910.4903070.3285750.034*
C190.5261 (3)0.4136 (3)0.0387 (5)0.0136 (15)
H19A0.4827580.4078990.0317160.016*
H19B0.5513990.4385240.0218690.016*
C200.5207 (4)0.3485 (3)0.0357 (6)0.0176 (19)
H20A0.5005670.3270020.0293820.026*
H20B0.5634610.3534480.0404430.026*
H20C0.4946890.3227650.0941300.026*
C210.5629 (3)0.5169 (3)0.1230 (6)0.0153 (17)
H21A0.5888910.5371520.0604040.018*
H21B0.5865520.5436830.1830950.018*
C220.5000 (4)0.5170 (4)0.1129 (7)0.021 (2)
H22A0.5088790.5609680.1046200.031*
H22B0.4765660.4917260.0522620.031*
H22C0.4742210.4982730.1752620.031*
C230.6234 (3)0.4607 (3)0.1529 (5)0.0138 (16)
H23A0.6424880.4875910.2150390.017*
H23B0.6187050.4183320.1674440.017*
C240.6693 (4)0.4905 (4)0.0638 (5)0.0180 (17)
H24A0.7103860.4940190.0816210.027*
H24B0.6517910.4636760.0020540.027*
H24C0.6756320.5331080.0497670.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0105 (3)0.0105 (3)0.0075 (5)0.00524 (13)0.0000.000
S10.0201 (18)0.0201 (18)0.007 (2)0.0101 (9)0.0000.000
S20.0194 (12)0.0124 (11)0.0195 (11)0.0082 (10)0.0002 (10)0.0028 (9)
Re20.0102 (3)0.0102 (3)0.0084 (6)0.00512 (14)0.0000.000
S30.0224 (18)0.0224 (18)0.005 (2)0.0112 (9)0.0000.000
S40.0187 (12)0.0148 (11)0.0174 (11)0.0065 (10)0.0010 (10)0.0034 (9)
Re30.0115 (3)0.0115 (3)0.0063 (6)0.00573 (14)0.0000.000
S50.0113 (16)0.0113 (16)0.010 (3)0.0056 (8)0.0000.000
S60.0178 (11)0.0112 (11)0.0185 (12)0.0042 (9)0.0024 (10)0.0032 (9)
Re40.00993 (19)0.0092 (2)0.0069 (3)0.00435 (15)0.00001 (13)0.00042 (19)
S70.0193 (10)0.0147 (10)0.0090 (8)0.0065 (8)0.0004 (8)0.0011 (7)
S80.0135 (10)0.0169 (10)0.0167 (11)0.0093 (8)0.0016 (9)0.0010 (9)
S90.0169 (11)0.0127 (9)0.0150 (10)0.0062 (9)0.0013 (9)0.0041 (8)
S100.0124 (10)0.0159 (12)0.0176 (11)0.0058 (9)0.0044 (8)0.0024 (9)
Re50.0095 (2)0.0093 (2)0.0129 (6)0.00455 (15)0.00000 (18)0.00072 (13)
S110.0218 (12)0.0161 (11)0.0138 (9)0.0082 (8)0.0000 (8)0.0005 (8)
S120.0147 (11)0.0146 (11)0.0182 (11)0.0089 (9)0.0044 (9)0.0007 (9)
S130.0167 (11)0.0111 (9)0.0189 (13)0.0059 (9)0.0014 (9)0.0011 (8)
S140.0118 (10)0.0179 (12)0.0197 (11)0.0074 (9)0.0026 (8)0.0029 (9)
N10.016 (6)0.014 (3)0.015 (5)0.006 (3)0.000 (4)0.001 (6)
C10.019 (5)0.011 (4)0.013 (4)0.008 (4)0.000 (3)0.001 (3)
C20.023 (6)0.027 (5)0.018 (5)0.017 (4)0.003 (4)0.006 (3)
C30.016 (4)0.012 (4)0.014 (4)0.010 (3)0.001 (3)0.004 (3)
C40.020 (5)0.023 (5)0.020 (4)0.015 (4)0.001 (3)0.004 (3)
C50.013 (4)0.011 (4)0.023 (5)0.008 (4)0.003 (3)0.000 (3)
C60.023 (5)0.015 (4)0.027 (4)0.011 (4)0.002 (4)0.002 (4)
C70.014 (4)0.010 (4)0.010 (4)0.002 (3)0.003 (3)0.004 (3)
C80.014 (5)0.014 (5)0.033 (5)0.007 (4)0.003 (4)0.002 (4)
N20.012 (5)0.005 (5)0.021 (8)0.000 (3)0.000 (4)0.001 (5)
C90.009 (4)0.009 (4)0.022 (4)0.005 (3)0.004 (3)0.006 (3)
C100.020 (5)0.033 (6)0.012 (5)0.014 (4)0.001 (3)0.002 (4)
C110.013 (4)0.008 (4)0.024 (4)0.003 (3)0.006 (3)0.008 (3)
C120.023 (5)0.019 (6)0.024 (6)0.011 (4)0.008 (4)0.005 (4)
C130.015 (4)0.010 (4)0.018 (4)0.009 (3)0.004 (3)0.004 (3)
C140.024 (5)0.018 (4)0.022 (4)0.014 (4)0.007 (4)0.002 (4)
C150.018 (4)0.020 (4)0.015 (4)0.010 (3)0.006 (3)0.001 (3)
C160.016 (4)0.025 (5)0.023 (4)0.007 (4)0.005 (3)0.002 (4)
N30.016 (4)0.012 (4)0.012 (6)0.008 (4)0.003 (3)0.004 (5)
C170.010 (4)0.009 (4)0.018 (4)0.003 (3)0.003 (3)0.003 (3)
C180.022 (5)0.019 (5)0.019 (6)0.004 (4)0.003 (4)0.004 (3)
C190.014 (4)0.012 (3)0.015 (4)0.007 (3)0.009 (3)0.008 (3)
C200.017 (4)0.007 (4)0.024 (4)0.002 (3)0.004 (3)0.006 (3)
C210.014 (4)0.008 (4)0.023 (5)0.005 (3)0.001 (3)0.004 (3)
C220.034 (5)0.023 (5)0.014 (5)0.021 (4)0.006 (3)0.003 (4)
C230.008 (4)0.016 (4)0.016 (4)0.004 (3)0.001 (3)0.002 (3)
C240.013 (4)0.023 (4)0.019 (4)0.010 (4)0.010 (4)0.009 (4)
Geometric parameters (Å, º) top
Re1—S12.135 (5)C9—C101.528 (11)
Re1—S22.144 (2)C9—H9A0.9900
Re1—S2i2.144 (2)C9—H9B0.9900
Re1—S2ii2.144 (2)C10—H10A0.9800
Re2—S32.128 (5)C10—H10B0.9800
Re2—S4iii2.142 (2)C10—H10C0.9800
Re2—S4iv2.142 (2)C11—C121.531 (11)
Re2—S42.142 (2)C11—H11A0.9900
Re3—S6v2.146 (2)C11—H11B0.9900
Re3—S62.146 (2)C12—H12A0.9800
Re3—S6vi2.146 (2)C12—H12B0.9800
Re3—S52.155 (5)C12—H12C0.9800
Re4—S72.137 (2)C13—C141.534 (10)
Re4—S102.138 (2)C13—H13A0.9900
Re4—S92.142 (2)C13—H13B0.9900
Re4—S82.147 (2)C14—H14A0.9800
Re5—S112.141 (2)C14—H14B0.9800
Re5—S122.142 (2)C14—H14C0.9800
Re5—S132.143 (2)C15—C161.506 (10)
Re5—S142.148 (2)C15—H15A0.9900
N1—C71.490 (11)C15—H15B0.9900
N1—C51.513 (11)C16—H16A0.9800
N1—C31.52 (2)C16—H16B0.9800
N1—C11.528 (18)C16—H16C0.9800
C1—C21.510 (11)N3—C171.499 (18)
C1—H1A0.9900N3—C211.508 (12)
C1—H1B0.9900N3—C191.520 (18)
C2—H2A0.9800N3—C231.533 (10)
C2—H2B0.9800C17—C181.520 (11)
C2—H2C0.9800C17—H17A0.9900
C3—C41.516 (10)C17—H17B0.9900
C3—H3A0.9900C18—H18A0.9800
C3—H3B0.9900C18—H18B0.9800
C4—H4A0.9800C18—H18C0.9800
C4—H4B0.9800C19—C201.514 (9)
C4—H4C0.9800C19—H19A0.9900
C5—C61.488 (10)C19—H19B0.9900
C5—H5A0.9900C20—H20A0.9800
C5—H5B0.9900C20—H20B0.9800
C6—H6A0.9800C20—H20C0.9800
C6—H6B0.9800C21—C221.526 (11)
C6—H6C0.9800C21—H21A0.9900
C7—C81.519 (11)C21—H21B0.9900
C7—H7A0.9900C22—H22A0.9800
C7—H7B0.9900C22—H22B0.9800
C8—H8A0.9800C22—H22C0.9800
C8—H8B0.9800C23—C241.508 (9)
C8—H8C0.9800C23—H23A0.9900
N2—C91.48 (2)C23—H23B0.9900
N2—C111.505 (10)C24—H24A0.9800
N2—C151.53 (2)C24—H24B0.9800
N2—C131.545 (11)C24—H24C0.9800
S1—Re1—S2109.09 (8)C9—C10—H10A109.5
S1—Re1—S2i109.09 (8)C9—C10—H10B109.5
S2—Re1—S2i109.85 (8)H10A—C10—H10B109.5
S1—Re1—S2ii109.09 (8)C9—C10—H10C109.5
S2—Re1—S2ii109.85 (8)H10A—C10—H10C109.5
S2i—Re1—S2ii109.85 (8)H10B—C10—H10C109.5
S3—Re2—S4iii109.10 (8)N2—C11—C12115.0 (6)
S3—Re2—S4iv109.10 (8)N2—C11—H11A108.5
S4iii—Re2—S4iv109.84 (8)C12—C11—H11A108.5
S3—Re2—S4109.10 (8)N2—C11—H11B108.5
S4iii—Re2—S4109.84 (8)C12—C11—H11B108.5
S4iv—Re2—S4109.84 (7)H11A—C11—H11B107.5
S6v—Re3—S6109.87 (7)C11—C12—H12A109.5
S6v—Re3—S6vi109.87 (7)C11—C12—H12B109.5
S6—Re3—S6vi109.87 (7)H12A—C12—H12B109.5
S6v—Re3—S5109.07 (7)C11—C12—H12C109.5
S6—Re3—S5109.07 (7)H12A—C12—H12C109.5
S6vi—Re3—S5109.07 (7)H12B—C12—H12C109.5
S7—Re4—S10109.13 (8)C14—C13—N2114.9 (10)
S7—Re4—S9109.13 (8)C14—C13—H13A108.5
S10—Re4—S9109.81 (9)N2—C13—H13A108.5
S7—Re4—S8109.61 (8)C14—C13—H13B108.5
S10—Re4—S8109.49 (10)N2—C13—H13B108.5
S9—Re4—S8109.64 (8)H13A—C13—H13B107.5
S11—Re5—S12109.40 (7)C13—C14—H14A109.5
S11—Re5—S13109.38 (9)C13—C14—H14B109.5
S12—Re5—S13109.74 (9)H14A—C14—H14B109.5
S11—Re5—S14109.96 (8)C13—C14—H14C109.5
S12—Re5—S14109.23 (9)H14A—C14—H14C109.5
S13—Re5—S14109.13 (9)H14B—C14—H14C109.5
C7—N1—C5109.5 (6)C16—C15—N2115.0 (7)
C7—N1—C3109.1 (12)C16—C15—H15A108.5
C5—N1—C3110.0 (10)N2—C15—H15A108.5
C7—N1—C1112.4 (11)C16—C15—H15B108.5
C5—N1—C1108.3 (12)N2—C15—H15B108.5
C3—N1—C1107.4 (5)H15A—C15—H15B107.5
C2—C1—N1114.7 (8)C15—C16—H16A109.5
C2—C1—H1A108.6C15—C16—H16B109.5
N1—C1—H1A108.6H16A—C16—H16B109.5
C2—C1—H1B108.6C15—C16—H16C109.5
N1—C1—H1B108.6H16A—C16—H16C109.5
H1A—C1—H1B107.6H16B—C16—H16C109.5
C1—C2—H2A109.5C17—N3—C21112.4 (10)
C1—C2—H2B109.5C17—N3—C19107.6 (5)
H2A—C2—H2B109.5C21—N3—C19107.8 (12)
C1—C2—H2C109.5C17—N3—C23109.2 (12)
H2A—C2—H2C109.5C21—N3—C23108.9 (5)
H2B—C2—H2C109.5C19—N3—C23110.9 (10)
C4—C3—N1117.0 (7)N3—C17—C18114.4 (7)
C4—C3—H3A108.0N3—C17—H17A108.7
N1—C3—H3A108.0C18—C17—H17A108.7
C4—C3—H3B108.0N3—C17—H17B108.7
N1—C3—H3B108.0C18—C17—H17B108.7
H3A—C3—H3B107.3H17A—C17—H17B107.6
C3—C4—H4A109.5C17—C18—H18A109.5
C3—C4—H4B109.5C17—C18—H18B109.5
H4A—C4—H4B109.5H18A—C18—H18B109.5
C3—C4—H4C109.5C17—C18—H18C109.5
H4A—C4—H4C109.5H18A—C18—H18C109.5
H4B—C4—H4C109.5H18B—C18—H18C109.5
C6—C5—N1116.1 (10)C20—C19—N3114.8 (7)
C6—C5—H5A108.3C20—C19—H19A108.6
N1—C5—H5A108.3N3—C19—H19A108.6
C6—C5—H5B108.3C20—C19—H19B108.6
N1—C5—H5B108.3N3—C19—H19B108.6
H5A—C5—H5B107.4H19A—C19—H19B107.6
C5—C6—H6A109.5C19—C20—H20A109.5
C5—C6—H6B109.5C19—C20—H20B109.5
H6A—C6—H6B109.5H20A—C20—H20B109.5
C5—C6—H6C109.5C19—C20—H20C109.5
H6A—C6—H6C109.5H20A—C20—H20C109.5
H6B—C6—H6C109.5H20B—C20—H20C109.5
N1—C7—C8115.4 (6)N3—C21—C22115.5 (6)
N1—C7—H7A108.4N3—C21—H21A108.4
C8—C7—H7A108.4C22—C21—H21A108.4
N1—C7—H7B108.4N3—C21—H21B108.4
C8—C7—H7B108.4C22—C21—H21B108.4
H7A—C7—H7B107.5H21A—C21—H21B107.5
C7—C8—H8A109.5C21—C22—H22A109.5
C7—C8—H8B109.5C21—C22—H22B109.5
H8A—C8—H8B109.5H22A—C22—H22B109.5
C7—C8—H8C109.5C21—C22—H22C109.5
H8A—C8—H8C109.5H22A—C22—H22C109.5
H8B—C8—H8C109.5H22B—C22—H22C109.5
C9—N2—C11113.2 (12)C24—C23—N3115.5 (9)
C9—N2—C15108.2 (4)C24—C23—H23A108.4
C11—N2—C15108.4 (13)N3—C23—H23A108.4
C9—N2—C13108.7 (12)C24—C23—H23B108.4
C11—N2—C13108.2 (4)N3—C23—H23B108.4
C15—N2—C13110.1 (11)H23A—C23—H23B107.5
N2—C9—C10114.6 (8)C23—C24—H24A109.5
N2—C9—H9A108.6C23—C24—H24B109.5
C10—C9—H9A108.6H24A—C24—H24B109.5
N2—C9—H9B108.6C23—C24—H24C109.5
C10—C9—H9B108.6H24A—C24—H24C109.5
H9A—C9—H9B107.6H24B—C24—H24C109.5
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x+y+1, x+1, z; (iv) y+1, xy, z; (v) y+1, xy+1, z; (vi) x+y, x+1, z.
Tetraethylammonium tetrathiorhenate (Ic) top
Crystal data top
(C8H20N)[ReS4]F(000) = 428
Mr = 444.69Dx = 2.051 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.900 (2) ÅCell parameters from 3279 reflections
b = 12.842 (3) Åθ = 2.9–29.5°
c = 8.118 (2) ŵ = 8.99 mm1
β = 119.04 (2)°T = 150 K
V = 720.0 (3) Å3Prism, black
Z = 20.24 × 0.20 × 0.17 mm
Data collection top
Oxford Diffraction Gemini E Ultra
diffractometer with an EOS CCD camera
2814 independent reflections
Radiation source: fine-focus sealed tube Enhanced (Mo)2808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 16.2705 pixels mm-1θmax = 29.3°, θmin = 3.3°
ω scansh = 1010
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
k = 1516
Tmin = 0.241, Tmax = 0.336l = 1010
4476 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0596P)2 + 29.5424P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max = 0.002
S = 1.09Δρmax = 2.01 e Å3
2814 reflectionsΔρmin = 4.80 e Å3
87 parametersAbsolute structure: Flack x determined using 1080 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
89 restraintsAbsolute structure parameter: 0.105 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 6-component twin.

Suitable single crystals of Et4NReS4 were attached to a goniometer head. The data collection was performed using an Oxford Diffraction Gemini E Ultra diffractometer with a 2K × 2K EOS CCD camera, a four-circle goniometer with κ geometry, a sealed-tube Mo radiation source, and an Oxford Instruments Cryojet cooling unit. Processing of the raw data, scaling of the diffraction data and the application of an empirical absorption correction were performed with the CrysAlisPro program (CrysAlis PRO, 2016). The structures were solved by direct methods and refined against F2 (Sheldrick, 2015, 2008). The graphics were prepared with the program Diamond (Brandenburg, 2001). Full details of all structural data (CCDC-1971807 to CCDC-1971809) are presented in Section S of the Supporting Information File.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re0.0222 (5)0.25452 (19)0.03784 (19)0.0174 (3)
S10.0542 (18)0.4194 (5)0.0361 (16)0.023 (3)
S20.105 (2)0.1961 (8)0.2401 (14)0.022 (2)
S30.150 (2)0.2166 (9)0.163 (2)0.026 (3)
S40.3036 (17)0.1879 (9)0.194 (2)0.030 (3)
N0.680 (3)0.5128 (17)0.326 (3)0.016 (6)*
C10.595 (6)0.417 (2)0.366 (5)0.025 (9)*
H1A0.6824700.3572620.3843360.030*
H1B0.4694860.4012740.2532270.030*
C20.562 (8)0.422 (4)0.537 (7)0.030 (11)*
H2A0.5073650.3563250.5503560.045*
H2B0.6859050.4350400.6514990.045*
H2C0.4722380.4791930.5199690.045*
C30.878 (5)0.535 (3)0.492 (5)0.025 (9)*
H3A0.8608360.5551890.6006230.029*
H3B0.9329210.5964950.4597150.029*
C41.025 (7)0.447 (3)0.552 (7)0.029 (10)*
H4A1.1470930.4689690.6598470.044*
H4B0.9744700.3860980.5886040.044*
H4C1.0467590.4275220.4472960.044*
C50.546 (5)0.604 (2)0.292 (6)0.027 (9)*
H5A0.5277830.6125710.4031880.033*
H5B0.4182270.5877520.1828850.033*
C60.613 (8)0.709 (2)0.253 (5)0.025 (8)*
H6A0.5173130.7625020.2333000.037*
H6B0.7380250.7277220.3614840.037*
H6C0.6281550.7028310.1405460.037*
C70.703 (5)0.494 (3)0.153 (5)0.017 (8)*
H7A0.7805480.4300170.1741160.021*
H7B0.7772630.5526200.1407710.021*
C80.516 (4)0.482 (3)0.033 (5)0.021 (9)*
H8A0.5468210.4706020.1347550.032*
H8B0.4421060.4231200.0252160.032*
H8C0.4388100.5460830.0586580.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re0.0322 (12)0.0080 (4)0.0215 (7)0.0046 (17)0.0207 (11)0.004 (2)
S10.027 (8)0.008 (3)0.025 (8)0.001 (3)0.005 (4)0.005 (4)
S20.015 (7)0.021 (4)0.030 (6)0.003 (5)0.010 (5)0.004 (4)
S30.025 (8)0.027 (5)0.039 (9)0.006 (4)0.025 (8)0.006 (5)
S40.019 (6)0.016 (5)0.048 (9)0.012 (5)0.011 (6)0.002 (7)
Geometric parameters (Å, º) top
Re—S32.111 (9)C3—H3B0.9900
Re—S22.113 (10)C4—H4A0.9800
Re—S42.132 (10)C4—H4B0.9800
Re—S12.133 (7)C4—H4C0.9800
N—C51.51 (2)C5—C61.53 (3)
N—C11.51 (2)C5—H5A0.9900
N—C31.52 (2)C5—H5B0.9900
N—C71.52 (2)C6—H6A0.9800
C1—C21.54 (3)C6—H6B0.9800
C1—H1A0.9900C6—H6C0.9800
C1—H1B0.9900C7—C81.52 (3)
C2—H2A0.9800C7—H7A0.9900
C2—H2B0.9800C7—H7B0.9900
C2—H2C0.9800C8—H8A0.9800
C3—C41.53 (3)C8—H8B0.9800
C3—H3A0.9900C8—H8C0.9800
S3—Re—S2110.3 (6)C3—C4—H4A109.5
S3—Re—S4110.6 (6)C3—C4—H4B109.5
S2—Re—S4108.0 (6)H4A—C4—H4B109.5
S3—Re—S1109.8 (5)C3—C4—H4C109.5
S2—Re—S1110.0 (4)H4A—C4—H4C109.5
S4—Re—S1108.0 (5)H4B—C4—H4C109.5
C5—N—C1109.4 (17)N—C5—C6116 (3)
C5—N—C3109.9 (18)N—C5—H5A108.3
C1—N—C3109.7 (18)C6—C5—H5A108.3
C5—N—C7109.9 (18)N—C5—H5B108.3
C1—N—C7109.5 (17)C6—C5—H5B108.3
C3—N—C7108.5 (17)H5A—C5—H5B107.4
N—C1—C2116 (2)C5—C6—H6A109.5
N—C1—H1A108.2C5—C6—H6B109.5
C2—C1—H1A108.2H6A—C6—H6B109.5
N—C1—H1B108.2C5—C6—H6C109.5
C2—C1—H1B108.2H6A—C6—H6C109.5
H1A—C1—H1B107.3H6B—C6—H6C109.5
C1—C2—H2A109.5N—C7—C8116 (2)
C1—C2—H2B109.5N—C7—H7A108.3
H2A—C2—H2B109.5C8—C7—H7A108.3
C1—C2—H2C109.5N—C7—H7B108.3
H2A—C2—H2C109.5C8—C7—H7B108.3
H2B—C2—H2C109.5H7A—C7—H7B107.4
N—C3—C4116 (3)C7—C8—H8A109.5
N—C3—H3A108.3C7—C8—H8B109.5
C4—C3—H3A108.3H8A—C8—H8B109.5
N—C3—H3B108.3C7—C8—H8C109.5
C4—C3—H3B108.3H8A—C8—H8C109.5
H3A—C3—H3B107.4H8B—C8—H8C109.5
Twin components in Ic top
Twin componentsAppropriate symmetry operations in P63mch,k,l;i [i = -h-l]*Fractional contribution ki
1[1] 1h,k,l;i0.178 (7)
2[2] 3+ (0,0,z)l,k,i;h0.213 (7)
3[3] 3- (0,0,z)i,k,h;l0.080 (7)
4[7] m (x,-x,z)-l,k,-h;i0.084 (7)
5[8] m (x,2x,z)-h,k,-i;l0.233 (7)
6[9] m (2x,x,z)-i,k,-l;h0.212 (7)
Note: (*) the fourth Miller index is the sum of -h and -l, because the transformation from P63mc to P21 causes the 63-axis along the y axis.
Crystallographic data for the high-temperature phase of several Et4NMY4 compounds (M = B, Cl, Re, Fe, In and Tl; Y = O, F, S, Cl, Br) top
AnionBF4- aClO4- bReS4- cFeCl4- dFeBrCl3- eInCl4- fTlCl4- g
Temperature (K)373393297 (2)290–295293r.t.297
Temperature range (K)>342>378.5>285>234.7n.d.hn.d.>222
Space groupFm3mFm3mP63mcP63mcP63mcP63mcP63mc
Z4422222
V/Z3)317.3 (4)329.1376.42 (7)383.7–385.7388.4 (1)397394.7 (4)
Notes and references: (a) Matsumoto et al. (2014); (b) Ye et al. (2016); (c) this work; (d) Lutz et al. (2014), Warnke et al. (2010), Evans et al. (1990) and Navarro et al. (1988); (e) Evans et al. (1990); (f) Trotter et al. (1969); (g) Lenck et al. (1991); (h) n.d. = not determined.
Crystallographic data for the low-temperature phase of several Et4NMY4 compounds (M = B, P, Cl, Mn, Re and Fe; Y = O, F, S and Cl) top
AnionClO4- aBF4- bMnO4- cPO2F2- dReO3S- eReS4- fReS4- fFeCl4- gFeCl4- h
Temperature (K)110–173298293110293 (2)149.9 (3)109.9 (3)110–170230
Temperature range (K)<378.5<342n.d. i<323n.d. i<285metastable<226.6234.7–226.6
Apace groupCcCcP21/cCcP21/cP21P63Pca21P63
Z44448218418
V/Z3)291.3–294.5294.5 (3)307.7 (1)311.39 (4)316.7 (1)360.0 (2)363.05 (2)363.77–367.75376.86 (3)
Notes and references: (a) Ibers (1993), Kivikoski et al. (1995) and Ye et al. (2016); (b) Giuseppetti et al. (1994), Matsumoto et al. (2012) and Matsumoto et al. (2014); (c) Whang et al. (1991); (d) Matsumoto et al. (2012); (e) Partyka & Holm (2004); (f) this work; (g) Lutz et al. (2014) and Navarro et al. (1988); (h) Lutz et al. (2014) and Navarro et al. (1988); (i) n.d. = not determined.
Intensity of the reflections with even and odd l (Ia, c) or k (Ic) from the fcf file top
F2av(odd)/F2avF2av(even)/F2avF2av(odd)/F2av(even)Δa (Å)
Ia (obs)0.0821.7370.0470
Ia (calc)0.0801.7400.0460
Ib (obs) b0.1841.8150.1020.0573c
Ib (calc)0.1741.8260.0950.0573c
Ic (obs)0.8031.1960.6720.2720
Ic (calc)0.7961.2030.6620.2720
Notes: (a) Average displacement of the Re atoms from the threefold axis. (b) Reflections of Ib with h = 3n and k = 3m overlap with appropriate reflections of Ic. The reflections with h = 3n and k = 3m are on average 1.2 times too strong and were not used in the refinement. (c) Re1, Re2 and Re3 = 0 Å; Re4 = 0.0815 Å; Re5 = 0.0905 Å.
Re—S bond lengths (Å) and S—Re—S angles (°) for some compounds with the ReS4- anion top
CationEt4N+, IbaEt4N+, IcaEt4N+, IaaEt4N+,bBu4N+,cPh4P+,d
Temperature (K)109.9 (3)149.9 (3)297 (2)r.t.er.t.r.t.
Re—S average2.142 (2)2.122 (10)2.125 (4)2.125 (4)2.122 (6)2.155 (30)
Re—S range2.130–2.1542.111–2.1332.120–2.1272.123–2.1262.118–2.1262.155–2.155
S—Re—S average109.47 (9)109.47 (71)109.47 (17)109.45 (11)109.48 (84)Not specified
S—Re—S range109.06–109.95108.01–110.61109.33–109.61109.4–109.5107.4–112.8Not specified
Notes and references: (a) this work; (b) Müller et al. (1987); (c) Do et al. (1985); (d) Diemann & Müller (1976); (e) r.t. - room temperature.
 

Acknowledgements

We thank Dr Birger Dittrich, MSc Moloud Mokfi and MSc Darya Schmidt for discussions.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationArnold, H. (1983). International Tables for Crystallography. Dordrecht: D. Reidel; online edition (2016). doi: 10.1107/97809553602060000114.  Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDiemann, E. & Müller, A. (1976). Z. Naturforsch. Teil B, 31, 1287–1288.  CrossRef Web of Science Google Scholar
First citationDo, Y., Simhon, E. D. & Holm, R. H. (1985). Inorg. Chem. 24, 4635–4642.  CSD CrossRef ICSD CAS Web of Science Google Scholar
First citationDopke, J. A., Wilson, S. R. & Rauchfuss, T. B. (2000). Inorg. Chem. 39, 5014–5021.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEvans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818–1821.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGiuseppetti, G., Tadini, C., Ferloni, P., Zabinska, G. & Torre, S. (1994). Z. Kristallogr. 209, 509–511.  CAS Google Scholar
First citationGoodman, J. T., Inomata, S. & Rauchfuss, T. B. (1996). J. Am. Chem. Soc. 118, 11674–11675.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoodman, J. T. & Rauchfuss, T. B. (1997). Angew. Chem. 109, 2173–2175.  CrossRef Google Scholar
First citationGoodman, J. T. & Rauchfuss, T. B. (1998). Inorg. Chem. 37, 5040–5041.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoodman, J. T. & Rauchfuss, T. B. (1999). J. Am. Chem. Soc. 121, 5017–5022.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoodman, J. T. & Rauchfuss, T. B. (2002). Inorg. Synth. 33, 107–110.  CAS Google Scholar
First citationHalbert, T. R., Stiefel, E. I. & Wei, L. (1990). EP 000000401435.  Google Scholar
First citationIbers, J. A. (1993). Z. Kristallogr. 208, 316–318.  CAS Google Scholar
First citationKautny, P., Schwartz, T., Stöger, B. & Fröhlich, J. (2017). Acta Cryst. B73, 65–73.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKivikoski, J., Howard, J. A. K., Kelly, P. & Parker, D. (1995). Acta Cryst. C51, 535–536.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKrebs, B. & Kindler, E. (1969). Z. Anorg. Allg. Chem. 368, 293–307.  CrossRef ICSD CAS Web of Science Google Scholar
First citationLenck, M., Dou, S. & Weiss, A. (1991). Z. Naturforsch. Teil A, 46, 777–784.  CrossRef CAS Web of Science Google Scholar
First citationLutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470–476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsumoto, K., Harinaga, U., Tanaka, R., Koyama, A., Hagiwara, R. & Tsunashima, K. (2014). Phys. Chem. Chem. Phys. 16, 23616–23626.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMatsumoto, K., Okawa, T. & Hagiwara, R. (2012). Chem. Lett. 41, 394–396.  Web of Science CSD CrossRef CAS Google Scholar
First citationMüller, A., Diemann, E. & Rao, V. V. K. (1970). Chem. Ber. 103, 2961–2971.  Google Scholar
First citationMüller, A., Krickemeyer, E. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 554, 61–78.  Google Scholar
First citationMüller, A., Krickemeyer, E., Bögge, H., Penk, M. & Rehder, D. (1986). Chimia, 40, 50–52.  Google Scholar
First citationNaudin, C., Bonhomme, F., Bruneel, J. L., Ducasse, L., Grondin, J., Lassegues, J. C. & Servant, L. (2000). J. Raman Spectrosc. 31, 979–985.  CrossRef CAS Google Scholar
First citationNavarro, R., Puertolas, J. A., Palacio, F. & Gonzalez, D. (1988). J. Chem. Thermodyn. 20, 373–384.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2016). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPartyka, D. V. & Holm, R. H. (2004). Inorg. Chem. 43, 8609–8616.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationScattergood, C. D., David Garner, C. & Clegg, W. (1987). Inorg. Chim. Acta, 132, 161–162.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchwarz, D. E. & Rauchfuss, T. B. (2000). Chem. Commun. pp. 1123–1124.  Web of Science CSD CrossRef Google Scholar
First citationSevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040–1050.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrotter, J., Einstein, F. W. B. & Tuck, D. G. (1969). Acta Cryst. B25, 603–604.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWarnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, L., Halbert, T. R. & Stiefel, E. I. (1991). US Patent 4997962.  Google Scholar
First citationWhang, D., Chung, S.-K. & Kim, K. (1991). Acta Cryst. C47, 2672–2674.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYe, H.-Y., Ge, J.-Z., Tang, Y.-Y., Li, P.-F., Zhang, Y., You, Y.-M. & Xiong, R.-G. (2016). J. Am. Chem. Soc. 138, 13175–13178.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds