research papers
Conversion of 3-amino-4-arylamino-1H-isochromen-1-ones to 1-arylisochromeno[3,4-d][1,2,3]triazol-5(1H)-ones: synthesis, spectroscopic characterization and the structures of four products and one ring-opened derivative
aFacultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales, Calle 222, No. 55-37, Bogotá, Colombia, bDepartamento de Química, Universidad Nacional de Colombia, Cuidad Universitaria, Carrera 30, No. 45-03, Edificio 451, Bogotá, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
An efficient synthesis of 1-arylisochromeno[3,4-d][1,2,3]triazol-5(1H)-ones, involving the diazotization of 3-amino-4-arylamino-1H-isochromen-1-ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1-phenylisochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H9N3O2, (I), are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds, while the structures of 1-(2-methylphenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C16H11N3O2, (II), and 1-(3-chlorophenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π-stacking interactions in (II) but not in (III). In the structure of 1-(4-chlorophenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (IV), isomeric with (III), a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring-opened transesterification product methyl 2-[4-hydroxy-1-(2-methylphenyl)-1H-1,2,3-triazol-5-yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H⋯O hydrogen bonds to form centrosymmetric dimers.
1. Introduction
et al., 1990), as herbicides (Zhang et al., 2016) and as insecticides (Qadeer et al., 2007). In order to gain access to compounds of this type in a straightforward way, a synthetic route has been developed using reactions between 2-formylbenzoic acid, hydrogen cyanide and anilines to yield N-aryldiaminoisocoumarins (Opatz & Ferenc, 2005). We have reported the structures of several compounds of this type (Vicentes et al., 2013) and, more recently using such compounds as precursors, we have developed the synthesis of a new heterocyclic system, namely fused imidazoloisocoumarins, as part of an exploration of possible synergies between the imidazole and isocoumarin pharmacophores (Rodríguez et al., 2017).
are an important building block in synthetic medicinal chemistry because they have shown interesting bioactivities, for example, as anticoagulants (OweidaThe bioactivity of hybrid systems containing the 1,2,3-triazole unit has been reviewed recently (Xu et al., 2019) and, with this in mind, we have now developed an efficient synthesis of 1-arylisochromeno[3,4-d][1,2,3]triazol-5(1H)-ones starting from the same N-aryldiaminoisocoumarins as were used in the synthesis of imidazoloisocoumarins (Rodríguez et al., 2017). Thus, we now report the synthesis and spectroscopic characterization, and the molecular and supramolecular structures of four representative examples, namely, 1-phenylisochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (I), 1-(2-methylphenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (II), 1-(3-chlorophenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (III), and 1-(4-chlorophenyl)isochromeno[3,4-d][1,2,3]triazol-5(1H)-one, (IV), carrying substituents at different positions in the pendent aryl group, along with those of a transesterification product, namely, methyl 2-[4-hydroxy-1-(2-methylphenyl)-1H-1,2,3-triazol-5-yl]benzoate, (V). Compounds (I)–(IV) were prepared by reaction of sodium nitrite in acetic acid with the corresponding 3-amino-4-arylamino-1H-isochromen-1-ones (A) (see Scheme 1); the precursors of type (A) having aryl = phenyl, 2-methylphenyl or 4-chlorophenyl were prepared (Scheme 1) as reported previously (Rodríguez et al., 2017), and the new analogue having aryl = 3-chlorophenyl was prepared in the same way. The conversion of the precursors of type (A) to the products (I)–(IV) proceeds via the diazonium intermediate (B) (Scheme 1), which itself undergoes an intramolecular to form the triazolo ring. It is important to stress here the necessity of using a weak acid, here acetic acid, in the diazotization of (A) to form (B), as often readily undergo ring opening in the presence of strong acids. To confirm this, a sample of compound (II) was stirred in methanol in the presence of aqueous hydrochloric acid, resulting in a quantitative conversion of (II) to ester (V).
2. Experimental
2.1. Synthesis and crystallization
The known precursors of type (A) (see Scheme 1) having Ar = C6H5, 2-CH3C6H4 and 4-ClC6H4 were prepared as described previously (Rodríguez et al., 2017); the new analogue having Ar = 3-ClC6H4 was prepared following the same procedure. Analytical data for 3-amino-4-(3-chloroanilino)-1H-isochromen-1-one: yellow solid, yield 71%, m.p. 451–452 K; IR (ATR, cm−1): 3456, 3319, 2922, 1701, 1592, 1474, 1306, 1089, 767, 679; NMR [CDCl3, the numbering of the chlorophenyl ring follows that for compound (III)]: δ(1H) 8.15 (dd, J = 8.0, 0.7 Hz, 1H, H8), 7.53 (t, J = 7.6 Hz, 1H, H6), 7.20 (t, J = 7.6 Hz, 1H, H7), 7.16 (d, J = 8.1 Hz, 1H, H5), 7.10 (t, J = 8.0 Hz, 1H, H15), 6.76 (dd, J = 7.9, 1.1 Hz, 1H, H14), 6.65 (t, J = 2.0 Hz, 1H, H12), 6.56 (dd, J = 8.2, 1.6 Hz, 1H, H16), 4.85 (s, 1H, NH), 4.57 (s, 2H, NH2); δ(13C) 160.64 (CO), 154.78 (C3), 147.59 (C11), 140.40 (C4A), 135.65 (C13), 135.52 (C6), 130.86 (C15), 130.56 (C8), 124.23 (C7), 119.74 (C5), 119.29 (C14), 116.15 (C8A), 113.24 (C12), 111.59 (C16), 92.19 (C4); MS (EI, 70 eV): m/z (%) 285.9 (12) [M]+, 259.94 (31), 257.93 (100), 177.97 (16), 148.92 (20), 129.93 (21), 110.89 (17), 103.92 (17); HRMS (ESI–QTOF) found 287.0582, C15H1135ClN2O2 requires for [M + H]+ 287.0578.
For the synthesis of compounds (I)–(IV), sodium nitrite (153 mg, 2.22 mmol) was added to a suspension of the appropriate precursor (A) [1.09 mmol; 275 mg for (I), 290 mg for (II) and 313 mg for each of (III) and (IV)] in acetic acid (1.0 ml) and the resulting mixture was then stirred at ambient temperature for 5 min. The resulting solid precipitate was collected by filtration and washed with an aqueous solution of sodium hydrogen carbonate (10% w/v) and then with water. The crude solid products were purified by on silica gel 60 (0.040–0.063 mm) using dichloromethane as eluent.
Analytical data for compound (I), colourless solid, yield 77%, m.p. 433–434 K; IR (ATR, cm−1): 3065, 1736, 1622, 1493, 1208, 1019, 763, 715; NMR (CDCl3): δ(1H) 8.46 (dd, J = 7.5, 1.6 Hz, 1H, H6), 7.72–7.55 (m, 7H, H7, H8, H12, H13, H14, H15, H16), 7.29 (dd, J = 7.8, 1.0 Hz, 1H, H9); δ(13C) 160.18 (CO), 154.65 (C3A), 136.89 (C11), 135.41 (C8), 132.84 (C6), 131.24 (C14), 130.23 (C13, C15), 129.79 (C7), 126.27 (C9A), 126.11 (C12, C16), 121.25 (C9), 120.57 (C9B), 115.26 (C5A); MS (EI, 70 eV): m/z (%) 262.98 (2) [M]+, 223.99 (35), 178.98 (100), 178.00 (29), 148.93 (36), 104.94 (23), 76.95 (35); HRMS (ESI–QTOF) found 264.0768, C15H9N3O3 requires for [M + H]+ 264.0768.
Analytical data for compound (II), colourless solid, yield 74%, m.p. 439–440 K; IR (ATR, cm−1): 1745, 1622, 1012, 987, 764, 680; NMR (CDCl3): δ(1H) 8.45 (dd, J = 7.1, 2.2 Hz, 1H, H8), 7.66–7.57 (m, 3H, H6, H7, H13), 7.55–7.48 (m, 2H, H14, H15), 7.46 (dd, J = 7.8, 1.6 Hz, 1H, H16), 6.92 (dd, J = 7.0, 2.1 Hz, 1H, H5), 2.10 (s, 3H, CH3); δ(13C) 160.22 (CO), 154.34 (C3A), 135.85 (C11), 135.69 (C8), 132.67 (C6), 131.89 (C14), 131.66 (C13), 129.78 (C7), 127.73 (C16), 127.38 (C15), 126.19 (C9A), 120.63 (C9), 120.46 (C9B), 115.62 (C5A), 17.32 (CH3); MS (EI, 70 eV): m/z (%) 276,97 (2) [M]+, 220.99 (16), 194.02 (15), 193.00 (100), 192.02 (21), 164.97 (22), 88.94 (22); HRMS (ESI–QTOF) found 278.0923, C16H11N3O2 requires for [M + H]+ 278.0924.
Analytical data for compound (III), yellow solid, yield 75%, m.p. 448–449 K; IR (ATR, cm−1): 3072, 2919, 2850, 1748, 1617, 1587, 1010, 885, 867, 783; NMR (CDCl3): δ(1H) 8.46 (dd, J = 7.9, 1.4 Hz, 1H, H6), 7.75–7.60 (m, 5H, H7, H8, H12, H14, H15), 7.56 (ddd, J = 7.7, 1.9, 1.4 Hz, 1H, H16), 7.34 (dd, J = 7.9, 0.6 Hz, 1H, H9); δ(13C) 159.94 (CO), 154.65 (C3A), 137.75 (C11), 136.03 (C13), 135.57 (C8), 132.95 (C6), 131.47 (C15), 131.22 (C14), 130.04 (C7), 126.46 (C12), 125.92 (C9A), 124.23 (C16), 121.20 (C9), 120.57 (C9B), 115.22 (C5A); MS (EI, 70 eV): m/z (%) 296.95 (2) [M]+, 214.96 (29), 213.98 (15), 212.01 (100), 177.98 (47), 150.97 (15), 74.94 (27); HRMS (ESI–QTOF) found 298.0380, C15H835ClN3O2 requires for [M + H]+ 298.0378.
Analytical data for compound (IV), pink solid, yield 62%,, m.p. 490–492 K; IR (ATR, cm−1): 3087, 3066, 1740, 1620, 1457, 1217, 1013, 832, 764; NMR (CDCl3) δ(1H) 8.46 (ddd, J = 7.8, 1.5, 0.6 Hz, 1H, H6), 7.72–7.58 (m, 6H, H7, H8, H12, H13, H15, H16), 7.32 (ddd, J = 7.9, 1.3, 0.5 Hz, 1H, H9); δ(13C) 159.98 (CO), 154.69 (C3A), 137.45 (C11), 135.51 (C8), 135.30 (C14), 132.96 (C6), 130.53 (C13, C15), 130.00 (C7), 127.39 (C12, C16), 126.02 (C9A), 121.14 (C9), 120.59 (C9B), 115.25 (C5A); MS (EI, 70 eV): m/z (%) 296.93 (1.4) [M]+, 214.95 (31), 213.96 (15), 212.90 (100), 177.97 (39), 150.96 (14), 110.91 (13), 74.93 (25); HRMS (ESI–QTOF) found 298.0379, C15H835ClN3O2 requires for [M + H]+ 298.0378.
For the conversion of compound (II) into compound (V), a sample of (II) (2.00 g, 7.22 mmol) and aqueous hydrochloric acid (1 mol dm−3, 1 ml) were added to methanol (9 ml) and the resulting mixture was then stirred for 24 h at ambient temperature. The solvent was removed under reduced pressure and the resulting solid product was washed with an aqueous solution of sodium hydrogen carbonate (10% w/v) and then with water and finally dried in air to provide (V) as a colourless solid in quantitative yield (m.p. 463–464 K). Analytical data: IR (ATR, cm−1): 2982, 2948, 1722, 1623, 1512, 1259, 764, 713; NMR (CDCl3): δ(1H) 10.48 (s, 1H, OH), 7.76 (d, J = 7.7 Hz, 1H, H3), 7.51 (td, J = 7.5, 1.2 Hz, 1H, H5), 7.44 (t, J = 7.2 Hz, 1H, H4), 7.40–7.29 (m, 2H, H213, H214), 7.26 (td, J = 7.7, 1.1 Hz, 1H, H215), 7.23–7.16 (m, 2H, H6, H216), 3.67 (s, 3H, OCH3), 2.02 (s, 3H, CH3); δ(13C) 166.53 (CO), 155.36 (C24), 135.61 (C211), 134.49 (C214), 131.80 (C5), 131.38 (C6), 131.09 (C213), 130.85 (C25), 129.94 (C3), 129.70 (C214), 128.85 (C4), 127.39 (C216), 126.52 (C215), 126.40 (C1), 119.03 (C2), 52.12 (OCH3), 17.07 (CH3); MS (EI, 70 eV): m/z (%) 309.00 (2) [M]+, 239.01 (16), 237.98 (100), 219.99 (21), 193.00 (70), 164.97 (23), 90.96 (30); HRMS (ESI–QTOF) found 310.1186, C17H15N3O2 requires for [M + H]+ 310.1186.
Crystals of compounds (I)–(V) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in chloroform.
2.2. Refinement
Crystal data, data collection and structure . All H atoms were located in difference maps. H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (alkenyl and aromatic) or 0.98 Å (CH3) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atom bonded to an O atom in compound (V), the atomic coordinates were refined with Uiso(H) = 1.5Ueq(O), giving an O—H distance of 0.90 (2) Å. Several low-angle reflections which had been attenuated by the beam stop were omitted, i.e. 01 for (II) and 02 for (IV); in addition, one bad outlier reflection, i.e. 06, was omitted from the data set for (II) before the final refinements. For several of the refinements, the final analyses of variance showed unexpected values of K = [mean(Fo2)/mean(Fc2)] for the groups of the very weakest reflections. Thus, for (III) and (IV), respectively, −0.035 and −0.125 for 312 and 289 reflections in the Fc/Fc(max) ranges 0.000–0.008 and 0.000–0.010, and for (V), 3.550 for 339 reflections in the Fc/Fc(max) range 0.000–0.009; these values are probably statistical artefacts.
details are summarized in Table 13. Results and discussion
The constitutions of compounds (I)–(V) were all fully established by a combination of high-resolution 1H and 13C NMR spectroscopy, further confirmed by the structure analyses reported here (Figs. 1–5). The HRMS data for (I)–(IV) demonstrate the incorporation of an additional H atom, the IR data show the absence of an NH2 absorption around 3400 cm−1 and the 1H NMR spectra show the absence of signals around δ 4.5–5.0 arising from an amino group; these observations taken together confirm the conversion of the diamino precursors of type (A) (Scheme 1) into the triazolo products (I)–(IV), whose constitutions were fully confirmed by the detailed assignments of the 1H and 13C NMR spectra (see §2.1). Hence, the constitutions of (I)–(IV) show clearly that the anticipated triazolo ring formation has occurred, with the additional N atom arising from the diazotization process; similarly, the constitution of (V) confirms the occurrence of a ring-opening transesterification process.
(HRMS), IR spectrosopy andAside from the orientation of the 2-methyl and 3-chloro substituents in compounds (II) and (III), respectively, the conformations of compounds (I)–(IV) are fairly similar; the dihedral angles between the triazolo ring and the pendent ring (C11–C16) are 65.32 (5), 64.59 (4), 45.48 (8) and 52.32 (9)° in (I)–(IV), respectively. The molecules thus exhibit no internal symmetry and so are conformationally chiral in the crystalline state; the centrosymmetric space groups (Table 1) confirm that (I)–(IV) have all crystallized as conformational racemates. For all of (I)–(IV), the reference molecules were selected to have the same sign for the torsion angle N2—N1—C11—C12, or N2—N1—C11—C16 in the case of (III). A comparison of the conformation of ester (V) with that of its precursor (II) (Figs. 2 and 5) indicates that, in the crystalline state, there appear to have been rotations about both the bonds exocyclic to the triazolo ring in (V), along with a rotation about the bond linking the ester unit to the adjacent aryl ring. The significance of these differences is unclear. The bond lengths in (I)–(V) show no unusual features.
The supramolecular assembly in compounds (I)–(IV) is dominated by contacts of C—H⋯N, C—H⋯O and C—H⋯π(arene) types (Table 2) and it is therefore worthwhile to specify the criteria under which such interactions are regarded here is structurally significant, or otherwise. Firstly, we discount all C—H⋯N and C—H⋯O contacts in which the D—H⋯A angle is less than 140°, as the interaction energies associated with such contacts are likely to be extremely small (Wood et al., 2009). Secondly, we discount all contacts involving methyl C—H bonds; these are not only of low acidity, but methyl groups CH3—E are generally undergoing very fast rotation about the C—E bonds, even in the solid state (Riddell & Rogerson, 1996, 1997). In particular, for methyl groups bonded to aryl rings, as found in (II) and (V), the rotation of the methyl group relative to the ring is subject to a sixfold rotation barrier, known to be in general extremely low, typically just a few J mol−1 rather than the more typical magnitude of a few kJ mol−1 (Tannenbaum et al., 1956; Naylor & Wilson, 1957). Hence, there is just one significant intermolecular C—H⋯X interaction in each of (II), (III) and (V), involving atoms C13, C16 and O24, respectively, as the donors, and two each in (I) and (IV), involving as the donors C8 and C12 in (I), and C7 and C8 in (IV).
|
The supramolecular assembly in compound (I) is mediated by two hydrogen bonds, one each of the C—H⋯N and C—H⋯O types (Table 2). Molecules which are related by an n-glide plane are linked by the C—H⋯N hydrogen bond to form a C(7) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) chain running parallel to the [101] direction, while molecules which are related by a 21 screw axis are linked by a C—H⋯O hydrogen bond to form a C(9) chain running parallel to the [010] direction. The combination of these two chain motifs generates a sheet lying parallel to (10) and built of R44(28) rings (Fig. 6).
For compound (II), a single C—H⋯O hydrogen bond links molecules which are related by a 21 screw axis to form a C(10) chain running parallel to the [010] direction (Fig. 7), and chains of this type are linked by two π–π stacking interactions, both involving the fused carbocyclic ring, which together generate a π-stacked chain running parallel to [100] (Fig. 8). The combination of these two motifs generates a sheet lying parallel to (001). There is again just one hydrogen bond in the structure of compound (III), this time of the C—H⋯N type, linking molecules which are related by a c-glide plane to form a C(5) chain running parallel to the [001] direction (Fig. 9), but here there are no direction-specific interactions between adjacent chains.
The assembly in compound (IV) is built from a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds (Table 2). The C—H⋯O hydrogen bond links molecules which are related by a c-glide plane to form a C(7) chain running parallel to the [001] direction (Fig. 10). By contrast, molecules which are related by a 21 screw axis are linked by the C—H⋯π(arene) hydrogen bond to form a chain running parallel to the [010] direction (Fig. 11), and the combination of these two chain motifs generates a sheet lying parallel to (100).
Paired O—H⋯O hydrogen bonds link inversion-related pairs of molecules of (V) to form a cyclic centrosymmetric R22(8) dimer (Fig. 12), but there are no direction-specific interactions between adjacent dimer units.
Thus, minor variations in the substituent on the pendent aryl ring in compounds (I)–(IV) are associated with significant changes in the pattern of supramolecular assembly. Whereas for the unsubstituted parent compound (I), the molecules are linked into hydrogen-bonded sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds, the sheet formation in 4-chloro derivative (IV) is based on a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds. In each of the methyl compound (II) and the 3-chloro compound (III), a single hydrogen bond, of the C—H⋯O and C—H⋯N types, respectively, links the molecules into simple chains; these chains form π-stacked sheets in (II), but not in (III).
In summary, therefore, we have developed a simple and efficient route to new 1-arylisochromeno[3,4-d][1,2,3]triazol-5(1H)-ones, with full spectroscopic and structural characterization of four examples, which show that small changes in substituents are associated with substantial changes in the patterns of supramolecular aggregation, and we have demonstrated the necessity of using only a weak acid in the synthesis, along with the spectroscopic and structural characterization of a ring-opened derivative.
Supporting information
https://doi.org/10.1107/S2053229620003757/sk3747sup1.cif
contains datablocks global, I, II, III, IV, V. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229620003757/sk3747Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2053229620003757/sk3747IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2053229620003757/sk3747IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2053229620003757/sk3747IVsup5.hkl
Structure factors: contains datablock V. DOI: https://doi.org/10.1107/S2053229620003757/sk3747Vsup6.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229620003757/sk3747Isup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229620003757/sk3747IIsup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229620003757/sk3747IIIsup9.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229620003757/sk3747IVsup10.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229620003757/sk3747Vsup11.cml
For all structures, data collection: APEX3 (Bruker, 2018); cell
APEX3 (Bruker, 2018); data reduction: APEX3 (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).C15H9N3O2 | F(000) = 544 |
Mr = 263.25 | Dx = 1.475 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.6814 (5) Å | Cell parameters from 2747 reflections |
b = 6.4310 (3) Å | θ = 2.6–27.6° |
c = 16.0589 (8) Å | µ = 0.10 mm−1 |
β = 100.687 (2)° | T = 100 K |
V = 1185.47 (10) Å3 | Plate, colourless |
Z = 4 | 0.20 × 0.12 × 0.06 mm |
Bruker D8 Venture diffractometer | 2747 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 2400 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.037 |
φ and ω scans | θmax = 27.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −15→15 |
Tmin = 0.936, Tmax = 0.994 | k = −8→8 |
26237 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0472P)2 + 0.6009P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2747 reflections | Δρmax = 0.31 e Å−3 |
181 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.42457 (8) | 0.29285 (15) | 0.11368 (6) | 0.0179 (2) | |
N2 | 0.35944 (9) | 0.28467 (17) | 0.03458 (6) | 0.0220 (2) | |
N3 | 0.24822 (9) | 0.28866 (16) | 0.04153 (7) | 0.0215 (2) | |
C3A | 0.24551 (10) | 0.29942 (17) | 0.12447 (8) | 0.0173 (2) | |
O4 | 0.14429 (7) | 0.30258 (13) | 0.15478 (5) | 0.0192 (2) | |
C5 | 0.15189 (10) | 0.30615 (17) | 0.24186 (8) | 0.0181 (2) | |
O5 | 0.06155 (7) | 0.31098 (14) | 0.26774 (6) | 0.0235 (2) | |
C5A | 0.26924 (10) | 0.30227 (17) | 0.29667 (7) | 0.0164 (2) | |
C6 | 0.27436 (10) | 0.29619 (18) | 0.38439 (8) | 0.0195 (2) | |
H6 | 0.2046 | 0.2987 | 0.4068 | 0.023* | |
C7 | 0.38124 (11) | 0.28646 (19) | 0.43835 (8) | 0.0216 (3) | |
H7 | 0.3847 | 0.2809 | 0.4979 | 0.026* | |
C8 | 0.48402 (10) | 0.28471 (19) | 0.40587 (7) | 0.0205 (3) | |
H8 | 0.5570 | 0.2775 | 0.4435 | 0.025* | |
C9 | 0.48066 (10) | 0.29343 (17) | 0.31931 (7) | 0.0178 (2) | |
H9 | 0.5511 | 0.2939 | 0.2977 | 0.021* | |
C9A | 0.37320 (10) | 0.30147 (16) | 0.26375 (7) | 0.0153 (2) | |
C9B | 0.35513 (9) | 0.30231 (17) | 0.17263 (7) | 0.0159 (2) | |
C11 | 0.54952 (10) | 0.28664 (19) | 0.12449 (7) | 0.0189 (2) | |
C12 | 0.61353 (11) | 0.4585 (2) | 0.15790 (8) | 0.0247 (3) | |
H12 | 0.5758 | 0.5803 | 0.1726 | 0.030* | |
C13 | 0.73450 (11) | 0.4484 (2) | 0.16938 (8) | 0.0282 (3) | |
H13 | 0.7801 | 0.5636 | 0.1931 | 0.034* | |
C14 | 0.78884 (11) | 0.2714 (2) | 0.14647 (8) | 0.0284 (3) | |
H14 | 0.8714 | 0.2658 | 0.1544 | 0.034* | |
C15 | 0.72280 (11) | 0.1026 (2) | 0.11200 (8) | 0.0275 (3) | |
H15 | 0.7604 | −0.0176 | 0.0956 | 0.033* | |
C16 | 0.60190 (10) | 0.1080 (2) | 0.10133 (7) | 0.0224 (3) | |
H16 | 0.5563 | −0.0082 | 0.0787 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0164 (5) | 0.0208 (5) | 0.0157 (5) | 0.0001 (4) | 0.0010 (4) | −0.0015 (4) |
N2 | 0.0204 (5) | 0.0266 (5) | 0.0173 (5) | −0.0001 (4) | −0.0013 (4) | −0.0024 (4) |
N3 | 0.0191 (5) | 0.0229 (5) | 0.0206 (5) | 0.0002 (4) | −0.0010 (4) | −0.0012 (4) |
C3A | 0.0147 (5) | 0.0141 (5) | 0.0220 (6) | 0.0002 (4) | 0.0002 (4) | −0.0006 (4) |
O4 | 0.0124 (4) | 0.0196 (4) | 0.0243 (4) | −0.0004 (3) | −0.0002 (3) | −0.0002 (3) |
C5 | 0.0154 (5) | 0.0121 (5) | 0.0262 (6) | −0.0008 (4) | 0.0026 (4) | −0.0001 (4) |
O5 | 0.0146 (4) | 0.0224 (4) | 0.0341 (5) | −0.0003 (3) | 0.0064 (3) | 0.0015 (4) |
C5A | 0.0147 (5) | 0.0124 (5) | 0.0219 (6) | −0.0005 (4) | 0.0025 (4) | −0.0004 (4) |
C6 | 0.0193 (5) | 0.0164 (5) | 0.0239 (6) | −0.0006 (4) | 0.0070 (4) | −0.0006 (4) |
C7 | 0.0255 (6) | 0.0212 (6) | 0.0181 (5) | −0.0013 (5) | 0.0044 (5) | −0.0007 (4) |
C8 | 0.0180 (5) | 0.0218 (6) | 0.0198 (6) | −0.0008 (4) | −0.0014 (4) | −0.0014 (4) |
C9 | 0.0142 (5) | 0.0181 (5) | 0.0205 (6) | 0.0000 (4) | 0.0019 (4) | −0.0006 (4) |
C9A | 0.0148 (5) | 0.0118 (5) | 0.0186 (5) | 0.0000 (4) | 0.0016 (4) | −0.0009 (4) |
C9B | 0.0141 (5) | 0.0135 (5) | 0.0195 (6) | 0.0002 (4) | 0.0017 (4) | −0.0006 (4) |
C11 | 0.0155 (5) | 0.0265 (6) | 0.0148 (5) | −0.0001 (4) | 0.0030 (4) | 0.0008 (4) |
C12 | 0.0228 (6) | 0.0272 (6) | 0.0254 (6) | −0.0039 (5) | 0.0077 (5) | −0.0034 (5) |
C13 | 0.0227 (6) | 0.0389 (7) | 0.0241 (6) | −0.0102 (5) | 0.0066 (5) | −0.0043 (5) |
C14 | 0.0168 (6) | 0.0504 (8) | 0.0182 (6) | −0.0018 (5) | 0.0042 (4) | −0.0009 (5) |
C15 | 0.0215 (6) | 0.0400 (8) | 0.0208 (6) | 0.0069 (5) | 0.0035 (5) | −0.0037 (5) |
C16 | 0.0202 (6) | 0.0285 (6) | 0.0177 (5) | 0.0017 (5) | 0.0013 (4) | −0.0028 (5) |
N1—N2 | 1.3552 (14) | C8—C9 | 1.3845 (16) |
N1—C9B | 1.3574 (15) | C8—H8 | 0.9500 |
N1—C11 | 1.4381 (14) | C9—C9A | 1.3997 (15) |
N2—N3 | 1.3247 (15) | C9—H9 | 0.9500 |
N3—C3A | 1.3398 (15) | C9A—C9B | 1.4392 (15) |
C3A—O4 | 1.3598 (14) | C11—C16 | 1.3844 (17) |
C3A—C9B | 1.3678 (15) | C11—C12 | 1.3855 (17) |
O4—C5 | 1.3848 (15) | C12—C13 | 1.3923 (17) |
C5—O5 | 1.2042 (14) | C12—H12 | 0.9500 |
C5—C5A | 1.4856 (15) | C13—C14 | 1.386 (2) |
C5A—C6 | 1.3993 (16) | C13—H13 | 0.9500 |
C5A—C9A | 1.4116 (15) | C14—C15 | 1.387 (2) |
C6—C7 | 1.3829 (17) | C14—H14 | 0.9500 |
C6—H6 | 0.9500 | C15—C16 | 1.3912 (16) |
C7—C8 | 1.3949 (17) | C15—H15 | 0.9500 |
C7—H7 | 0.9500 | C16—H16 | 0.9500 |
N2—N1—C9B | 110.56 (9) | C9A—C9—H9 | 120.1 |
N2—N1—C11 | 119.53 (10) | C9—C9A—C5A | 119.57 (11) |
C9B—N1—C11 | 129.89 (10) | C9—C9A—C9B | 126.40 (10) |
N3—N2—N1 | 108.01 (9) | C5A—C9A—C9B | 114.00 (10) |
N2—N3—C3A | 106.80 (10) | N1—C9B—C3A | 102.88 (10) |
N3—C3A—O4 | 122.62 (10) | N1—C9B—C9A | 135.65 (10) |
N3—C3A—C9B | 111.75 (10) | C3A—C9B—C9A | 121.35 (10) |
O4—C3A—C9B | 125.62 (11) | C16—C11—C12 | 122.15 (11) |
C3A—O4—C5 | 117.69 (9) | C16—C11—N1 | 118.68 (11) |
O5—C5—O4 | 116.93 (10) | C12—C11—N1 | 119.17 (11) |
O5—C5—C5A | 124.56 (11) | C11—C12—C13 | 118.40 (12) |
O4—C5—C5A | 118.51 (10) | C11—C12—H12 | 120.8 |
C6—C5A—C9A | 119.85 (10) | C13—C12—H12 | 120.8 |
C6—C5A—C5 | 117.35 (10) | C14—C13—C12 | 120.46 (12) |
C9A—C5A—C5 | 122.79 (11) | C14—C13—H13 | 119.8 |
C7—C6—C5A | 119.81 (11) | C12—C13—H13 | 119.8 |
C7—C6—H6 | 120.1 | C13—C14—C15 | 120.06 (12) |
C5A—C6—H6 | 120.1 | C13—C14—H14 | 120.0 |
C6—C7—C8 | 120.38 (11) | C15—C14—H14 | 120.0 |
C6—C7—H7 | 119.8 | C14—C15—C16 | 120.42 (12) |
C8—C7—H7 | 119.8 | C14—C15—H15 | 119.8 |
C9—C8—C7 | 120.60 (11) | C16—C15—H15 | 119.8 |
C9—C8—H8 | 119.7 | C11—C16—C15 | 118.50 (12) |
C7—C8—H8 | 119.7 | C11—C16—H16 | 120.8 |
C8—C9—C9A | 119.78 (11) | C15—C16—H16 | 120.8 |
C8—C9—H9 | 120.1 | ||
C9B—N1—N2—N3 | −0.02 (13) | N2—N1—C9B—C3A | −0.02 (12) |
C11—N1—N2—N3 | 178.80 (10) | C11—N1—C9B—C3A | −178.69 (11) |
N1—N2—N3—C3A | 0.06 (13) | N2—N1—C9B—C9A | 175.65 (12) |
N2—N3—C3A—O4 | −178.86 (10) | C11—N1—C9B—C9A | −3.0 (2) |
N2—N3—C3A—C9B | −0.08 (13) | N3—C3A—C9B—N1 | 0.06 (13) |
N3—C3A—O4—C5 | 177.66 (10) | O4—C3A—C9B—N1 | 178.80 (10) |
C9B—C3A—O4—C5 | −0.95 (16) | N3—C3A—C9B—C9A | −176.40 (10) |
C3A—O4—C5—O5 | 179.30 (10) | O4—C3A—C9B—C9A | 2.34 (17) |
C3A—O4—C5—C5A | −1.14 (14) | C9—C9A—C9B—N1 | 1.4 (2) |
O5—C5—C5A—C6 | 2.43 (17) | C5A—C9A—C9B—N1 | −176.43 (12) |
O4—C5—C5A—C6 | −177.09 (10) | C9—C9A—C9B—C3A | 176.48 (11) |
O5—C5—C5A—C9A | −178.50 (11) | C5A—C9A—C9B—C3A | −1.36 (15) |
O4—C5—C5A—C9A | 1.98 (15) | N2—N1—C11—C16 | −65.11 (15) |
C9A—C5A—C6—C7 | −0.91 (16) | C9B—N1—C11—C16 | 113.45 (13) |
C5—C5A—C6—C7 | 178.19 (10) | N2—N1—C11—C12 | 115.11 (13) |
C5A—C6—C7—C8 | 0.62 (17) | C9B—N1—C11—C12 | −66.33 (16) |
C6—C7—C8—C9 | 0.24 (18) | C16—C11—C12—C13 | −0.94 (18) |
C7—C8—C9—C9A | −0.80 (17) | N1—C11—C12—C13 | 178.83 (11) |
C8—C9—C9A—C5A | 0.50 (16) | C11—C12—C13—C14 | 1.08 (19) |
C8—C9—C9A—C9B | −177.24 (11) | C12—C13—C14—C15 | −0.2 (2) |
C6—C5A—C9A—C9 | 0.35 (16) | C13—C14—C15—C16 | −1.0 (2) |
C5—C5A—C9A—C9 | −178.69 (10) | C12—C11—C16—C15 | −0.15 (18) |
C6—C5A—C9A—C9B | 178.36 (10) | N1—C11—C16—C15 | −179.92 (11) |
C5—C5A—C9A—C9B | −0.69 (15) | C14—C15—C16—C11 | 1.11 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N3i | 0.95 | 2.52 | 3.4641 (16) | 173 |
C12—H12···O5ii | 0.95 | 2.50 | 3.4136 (16) | 161 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
C16H11N3O2 | F(000) = 576 |
Mr = 277.28 | Dx = 1.410 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5676 (5) Å | Cell parameters from 3244 reflections |
b = 20.2663 (14) Å | θ = 2.6–28.3° |
c = 9.2503 (7) Å | µ = 0.10 mm−1 |
β = 112.957 (3)° | T = 100 K |
V = 1306.33 (16) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.17 × 0.16 mm |
Bruker D8 Venture diffractometer | 3242 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 2915 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.034 |
φ and ω scans | θmax = 28.3°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −9→10 |
Tmin = 0.941, Tmax = 0.985 | k = −26→27 |
36209 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6412P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3242 reflections | Δρmax = 0.31 e Å−3 |
191 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.64617 (13) | 0.39965 (4) | 0.84757 (10) | 0.01530 (19) | |
N2 | 0.78444 (13) | 0.41415 (5) | 0.99005 (11) | 0.0188 (2) | |
N3 | 0.77052 (14) | 0.47755 (5) | 1.01796 (11) | 0.0193 (2) | |
C3A | 0.62518 (15) | 0.50189 (5) | 0.89301 (12) | 0.0159 (2) | |
O4 | 0.57303 (11) | 0.56642 (4) | 0.88252 (9) | 0.01773 (17) | |
C5 | 0.41921 (15) | 0.58629 (5) | 0.74851 (12) | 0.0162 (2) | |
O5 | 0.37021 (12) | 0.64284 (4) | 0.74350 (10) | 0.02200 (19) | |
C5A | 0.33179 (15) | 0.53730 (5) | 0.62166 (12) | 0.0149 (2) | |
C6 | 0.18714 (15) | 0.56044 (5) | 0.48412 (13) | 0.0175 (2) | |
H6 | 0.1472 | 0.6052 | 0.4769 | 0.021* | |
C7 | 0.10215 (16) | 0.51836 (6) | 0.35852 (13) | 0.0190 (2) | |
H7 | 0.0044 | 0.5342 | 0.2648 | 0.023* | |
C8 | 0.15996 (15) | 0.45252 (6) | 0.36942 (12) | 0.0183 (2) | |
H8 | 0.1004 | 0.4238 | 0.2828 | 0.022* | |
C9 | 0.30339 (15) | 0.42840 (5) | 0.50514 (12) | 0.0165 (2) | |
H9 | 0.3422 | 0.3836 | 0.5110 | 0.020* | |
C9A | 0.39036 (14) | 0.47069 (5) | 0.63331 (12) | 0.0141 (2) | |
C9B | 0.54239 (14) | 0.45455 (5) | 0.78150 (12) | 0.0141 (2) | |
C11 | 0.63623 (15) | 0.33424 (5) | 0.78533 (12) | 0.0157 (2) | |
C12 | 0.47496 (16) | 0.29469 (5) | 0.75875 (13) | 0.0181 (2) | |
C13 | 0.47388 (17) | 0.23249 (6) | 0.69298 (14) | 0.0215 (2) | |
H13 | 0.3660 | 0.2044 | 0.6714 | 0.026* | |
C14 | 0.62740 (18) | 0.21092 (6) | 0.65863 (14) | 0.0227 (2) | |
H14 | 0.6219 | 0.1688 | 0.6119 | 0.027* | |
C15 | 0.78913 (17) | 0.25035 (6) | 0.69194 (14) | 0.0215 (2) | |
H15 | 0.8954 | 0.2349 | 0.6713 | 0.026* | |
C16 | 0.79318 (15) | 0.31249 (5) | 0.75567 (13) | 0.0181 (2) | |
H16 | 0.9024 | 0.3400 | 0.7789 | 0.022* | |
C17 | 0.30969 (17) | 0.31669 (6) | 0.79939 (15) | 0.0243 (2) | |
H17A | 0.2431 | 0.2779 | 0.8167 | 0.036* | |
H17B | 0.2201 | 0.3429 | 0.7128 | 0.036* | |
H17C | 0.3584 | 0.3435 | 0.8951 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0137 (4) | 0.0163 (4) | 0.0143 (4) | −0.0003 (3) | 0.0038 (3) | −0.0002 (3) |
N2 | 0.0166 (4) | 0.0208 (5) | 0.0156 (4) | −0.0009 (3) | 0.0025 (3) | −0.0004 (3) |
N3 | 0.0184 (4) | 0.0203 (5) | 0.0162 (4) | −0.0009 (3) | 0.0035 (4) | −0.0010 (3) |
C3A | 0.0154 (5) | 0.0170 (5) | 0.0151 (5) | −0.0016 (4) | 0.0059 (4) | −0.0013 (4) |
O4 | 0.0192 (4) | 0.0152 (4) | 0.0164 (4) | −0.0013 (3) | 0.0042 (3) | −0.0028 (3) |
C5 | 0.0160 (5) | 0.0168 (5) | 0.0169 (5) | −0.0017 (4) | 0.0076 (4) | −0.0005 (4) |
O5 | 0.0246 (4) | 0.0157 (4) | 0.0257 (4) | 0.0003 (3) | 0.0099 (3) | −0.0012 (3) |
C5A | 0.0140 (5) | 0.0165 (5) | 0.0149 (5) | −0.0019 (4) | 0.0066 (4) | −0.0002 (4) |
C6 | 0.0167 (5) | 0.0179 (5) | 0.0177 (5) | 0.0002 (4) | 0.0064 (4) | 0.0031 (4) |
C7 | 0.0157 (5) | 0.0241 (5) | 0.0155 (5) | −0.0011 (4) | 0.0043 (4) | 0.0032 (4) |
C8 | 0.0171 (5) | 0.0228 (5) | 0.0143 (5) | −0.0046 (4) | 0.0053 (4) | −0.0025 (4) |
C9 | 0.0164 (5) | 0.0172 (5) | 0.0160 (5) | −0.0017 (4) | 0.0064 (4) | −0.0016 (4) |
C9A | 0.0125 (4) | 0.0166 (5) | 0.0138 (5) | −0.0017 (4) | 0.0059 (4) | −0.0001 (4) |
C9B | 0.0134 (5) | 0.0149 (4) | 0.0143 (5) | −0.0009 (4) | 0.0056 (4) | −0.0003 (4) |
C11 | 0.0172 (5) | 0.0140 (5) | 0.0144 (5) | 0.0005 (4) | 0.0045 (4) | 0.0012 (4) |
C12 | 0.0185 (5) | 0.0179 (5) | 0.0182 (5) | −0.0010 (4) | 0.0075 (4) | 0.0007 (4) |
C13 | 0.0231 (5) | 0.0179 (5) | 0.0232 (5) | −0.0043 (4) | 0.0087 (4) | −0.0011 (4) |
C14 | 0.0290 (6) | 0.0157 (5) | 0.0229 (5) | 0.0013 (4) | 0.0098 (5) | −0.0007 (4) |
C15 | 0.0216 (5) | 0.0205 (5) | 0.0234 (5) | 0.0045 (4) | 0.0099 (4) | 0.0016 (4) |
C16 | 0.0160 (5) | 0.0185 (5) | 0.0186 (5) | 0.0009 (4) | 0.0055 (4) | 0.0025 (4) |
C17 | 0.0224 (6) | 0.0235 (6) | 0.0318 (6) | −0.0046 (4) | 0.0157 (5) | −0.0039 (5) |
N1—N2 | 1.3574 (12) | C9—C9A | 1.4016 (14) |
N1—C9B | 1.3616 (13) | C9—H9 | 0.9500 |
N1—C11 | 1.4353 (13) | C9A—C9B | 1.4421 (14) |
N2—N3 | 1.3229 (13) | C11—C16 | 1.3909 (15) |
N3—C3A | 1.3406 (14) | C11—C12 | 1.3994 (15) |
C3A—O4 | 1.3586 (13) | C12—C13 | 1.3982 (15) |
C3A—C9B | 1.3686 (14) | C12—C17 | 1.5071 (16) |
O4—C5 | 1.3886 (13) | C13—C14 | 1.3892 (17) |
C5—O5 | 1.2000 (13) | C13—H13 | 0.9500 |
C5—C5A | 1.4815 (14) | C14—C15 | 1.3919 (17) |
C5A—C6 | 1.3966 (14) | C14—H14 | 0.9500 |
C5A—C9A | 1.4118 (14) | C15—C16 | 1.3857 (16) |
C6—C7 | 1.3813 (15) | C15—H15 | 0.9500 |
C6—H6 | 0.9500 | C16—H16 | 0.9500 |
C7—C8 | 1.3955 (16) | C17—H17A | 0.9800 |
C7—H7 | 0.9500 | C17—H17B | 0.9800 |
C8—C9 | 1.3894 (15) | C17—H17C | 0.9800 |
C8—H8 | 0.9500 | ||
N2—N1—C9B | 110.50 (9) | C5A—C9A—C9B | 113.56 (9) |
N2—N1—C11 | 119.30 (9) | N1—C9B—C3A | 102.72 (9) |
C9B—N1—C11 | 130.07 (9) | N1—C9B—C9A | 135.95 (10) |
N3—N2—N1 | 108.05 (9) | C3A—C9B—C9A | 121.23 (10) |
N2—N3—C3A | 106.87 (9) | C16—C11—C12 | 122.48 (10) |
N3—C3A—O4 | 122.25 (9) | C16—C11—N1 | 117.17 (9) |
N3—C3A—C9B | 111.86 (10) | C12—C11—N1 | 120.34 (9) |
O4—C3A—C9B | 125.89 (10) | C13—C12—C11 | 116.72 (10) |
C3A—O4—C5 | 117.51 (8) | C13—C12—C17 | 120.71 (10) |
O5—C5—O4 | 116.76 (10) | C11—C12—C17 | 122.57 (10) |
O5—C5—C5A | 125.01 (10) | C14—C13—C12 | 121.31 (11) |
O4—C5—C5A | 118.20 (9) | C14—C13—H13 | 119.3 |
C6—C5A—C9A | 120.12 (10) | C12—C13—H13 | 119.3 |
C6—C5A—C5 | 116.46 (9) | C13—C14—C15 | 120.69 (11) |
C9A—C5A—C5 | 123.40 (9) | C13—C14—H14 | 119.7 |
C7—C6—C5A | 120.08 (10) | C15—C14—H14 | 119.7 |
C7—C6—H6 | 120.0 | C16—C15—C14 | 119.18 (10) |
C5A—C6—H6 | 120.0 | C16—C15—H15 | 120.4 |
C6—C7—C8 | 119.97 (10) | C14—C15—H15 | 120.4 |
C6—C7—H7 | 120.0 | C15—C16—C11 | 119.55 (10) |
C8—C7—H7 | 120.0 | C15—C16—H16 | 120.2 |
C9—C8—C7 | 120.94 (10) | C11—C16—H16 | 120.2 |
C9—C8—H8 | 119.5 | C12—C17—H17A | 109.5 |
C7—C8—H8 | 119.5 | C12—C17—H17B | 109.5 |
C8—C9—C9A | 119.53 (10) | H17A—C17—H17B | 109.5 |
C8—C9—H9 | 120.2 | C12—C17—H17C | 109.5 |
C9A—C9—H9 | 120.2 | H17A—C17—H17C | 109.5 |
C9—C9A—C5A | 119.35 (10) | H17B—C17—H17C | 109.5 |
C9—C9A—C9B | 127.07 (10) | ||
C9B—N1—N2—N3 | 0.61 (12) | N2—N1—C9B—C9A | 175.50 (11) |
C11—N1—N2—N3 | 176.84 (9) | C11—N1—C9B—C9A | −0.2 (2) |
N1—N2—N3—C3A | −0.29 (12) | N3—C3A—C9B—N1 | 0.46 (12) |
N2—N3—C3A—O4 | −179.29 (9) | O4—C3A—C9B—N1 | 179.60 (10) |
N2—N3—C3A—C9B | −0.12 (13) | N3—C3A—C9B—C9A | −176.40 (9) |
N3—C3A—O4—C5 | −179.41 (9) | O4—C3A—C9B—C9A | 2.74 (16) |
C9B—C3A—O4—C5 | 1.54 (15) | C9—C9A—C9B—N1 | −0.72 (19) |
C3A—O4—C5—O5 | 177.28 (9) | C5A—C9A—C9B—N1 | −179.19 (11) |
C3A—O4—C5—C5A | −4.34 (13) | C9—C9A—C9B—C3A | 174.88 (10) |
O5—C5—C5A—C6 | 2.91 (16) | C5A—C9A—C9B—C3A | −3.59 (14) |
O4—C5—C5A—C6 | −175.32 (9) | N2—N1—C11—C16 | −62.57 (13) |
O5—C5—C5A—C9A | −178.43 (10) | C9B—N1—C11—C16 | 112.81 (12) |
O4—C5—C5A—C9A | 3.34 (15) | N2—N1—C11—C12 | 116.56 (11) |
C9A—C5A—C6—C7 | −0.59 (16) | C9B—N1—C11—C12 | −68.06 (15) |
C5—C5A—C6—C7 | 178.11 (9) | C16—C11—C12—C13 | −3.01 (16) |
C5A—C6—C7—C8 | 0.43 (16) | N1—C11—C12—C13 | 177.90 (10) |
C6—C7—C8—C9 | −0.35 (16) | C16—C11—C12—C17 | 176.43 (11) |
C7—C8—C9—C9A | 0.43 (16) | N1—C11—C12—C17 | −2.66 (16) |
C8—C9—C9A—C5A | −0.58 (15) | C11—C12—C13—C14 | 1.10 (17) |
C8—C9—C9A—C9B | −178.97 (10) | C17—C12—C13—C14 | −178.35 (11) |
C6—C5A—C9A—C9 | 0.67 (15) | C12—C13—C14—C15 | 1.34 (18) |
C5—C5A—C9A—C9 | −177.95 (9) | C13—C14—C15—C16 | −1.95 (17) |
C6—C5A—C9A—C9B | 179.27 (9) | C14—C15—C16—C11 | 0.10 (16) |
C5—C5A—C9A—C9B | 0.65 (14) | C12—C11—C16—C15 | 2.46 (16) |
N2—N1—C9B—C3A | −0.64 (11) | N1—C11—C16—C15 | −178.43 (9) |
C11—N1—C9B—C3A | −176.34 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N3i | 0.95 | 2.55 | 3.2770 (15) | 133 |
C13—H13···O5ii | 0.95 | 2.54 | 3.4083 (16) | 151 |
C15—H15···O5iii | 0.95 | 2.48 | 3.2482 (16) | 138 |
Symmetry codes: (i) x−1, y, z−1; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2. |
C15H8ClN3O2 | F(000) = 608 |
Mr = 297.69 | Dx = 1.563 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.0993 (8) Å | Cell parameters from 2905 reflections |
b = 12.8996 (9) Å | θ = 2.5–27.5° |
c = 9.2234 (6) Å | µ = 0.31 mm−1 |
β = 106.675 (2)° | T = 100 K |
V = 1265.04 (15) Å3 | Plate, yellow |
Z = 4 | 0.20 × 0.12 × 0.05 mm |
Bruker D8 Venture diffractometer | 2905 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 2495 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.044 |
φ and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −14→14 |
Tmin = 0.895, Tmax = 0.985 | k = −16→16 |
28194 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.8531P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2905 reflections | Δρmax = 0.32 e Å−3 |
190 parameters | Δρmin = −0.36 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.31229 (11) | 0.37182 (9) | 0.35005 (13) | 0.0154 (2) | |
N2 | 0.33212 (12) | 0.37226 (9) | 0.21107 (13) | 0.0178 (3) | |
N3 | 0.45443 (12) | 0.37148 (9) | 0.23045 (13) | 0.0178 (3) | |
C3A | 0.50995 (13) | 0.37008 (10) | 0.38001 (15) | 0.0150 (3) | |
O4 | 0.63690 (9) | 0.36761 (8) | 0.43901 (11) | 0.0173 (2) | |
C5 | 0.68473 (13) | 0.35314 (11) | 0.59491 (16) | 0.0169 (3) | |
O5 | 0.79506 (10) | 0.33562 (9) | 0.64252 (12) | 0.0235 (2) | |
C5A | 0.59649 (13) | 0.36403 (10) | 0.68762 (15) | 0.0152 (3) | |
C6 | 0.64946 (14) | 0.36544 (11) | 0.84469 (16) | 0.0172 (3) | |
H6 | 0.7377 | 0.3578 | 0.8868 | 0.021* | |
C7 | 0.57345 (14) | 0.37794 (11) | 0.93857 (16) | 0.0184 (3) | |
H7 | 0.6092 | 0.3784 | 1.0453 | 0.022* | |
C8 | 0.44389 (14) | 0.38985 (11) | 0.87597 (16) | 0.0178 (3) | |
H8 | 0.3922 | 0.3991 | 0.9411 | 0.021* | |
C9 | 0.38931 (13) | 0.38851 (11) | 0.72091 (16) | 0.0168 (3) | |
H9 | 0.3010 | 0.3971 | 0.6802 | 0.020* | |
C9A | 0.46493 (13) | 0.37448 (10) | 0.62463 (15) | 0.0145 (3) | |
C9B | 0.42430 (13) | 0.37109 (10) | 0.46111 (15) | 0.0146 (3) | |
C11 | 0.18482 (13) | 0.37130 (11) | 0.35641 (15) | 0.0165 (3) | |
C12 | 0.10125 (13) | 0.43927 (11) | 0.26168 (16) | 0.0183 (3) | |
H12 | 0.1280 | 0.4848 | 0.1961 | 0.022* | |
C13 | −0.02249 (14) | 0.43847 (12) | 0.26588 (17) | 0.0217 (3) | |
Cl13 | −0.12819 (4) | 0.52194 (3) | 0.14523 (5) | 0.03006 (12) | |
C14 | −0.06264 (15) | 0.37398 (14) | 0.36282 (18) | 0.0266 (3) | |
H14 | −0.1474 | 0.3758 | 0.3659 | 0.032* | |
C15 | 0.02333 (15) | 0.30666 (14) | 0.45542 (19) | 0.0278 (4) | |
H15 | −0.0031 | 0.2623 | 0.5226 | 0.033* | |
C16 | 0.14708 (14) | 0.30312 (12) | 0.45149 (17) | 0.0217 (3) | |
H16 | 0.2048 | 0.2552 | 0.5124 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0152 (6) | 0.0181 (6) | 0.0128 (5) | 0.0003 (4) | 0.0039 (4) | 0.0002 (4) |
N2 | 0.0201 (6) | 0.0196 (6) | 0.0146 (6) | 0.0005 (5) | 0.0062 (5) | −0.0001 (4) |
N3 | 0.0191 (6) | 0.0184 (6) | 0.0163 (6) | 0.0005 (5) | 0.0055 (5) | −0.0004 (4) |
C3A | 0.0161 (7) | 0.0142 (6) | 0.0151 (6) | 0.0002 (5) | 0.0052 (5) | 0.0001 (5) |
O4 | 0.0145 (5) | 0.0217 (5) | 0.0165 (5) | −0.0004 (4) | 0.0057 (4) | 0.0001 (4) |
C5 | 0.0172 (7) | 0.0161 (6) | 0.0173 (7) | −0.0017 (5) | 0.0047 (5) | −0.0009 (5) |
O5 | 0.0152 (5) | 0.0317 (6) | 0.0236 (5) | 0.0013 (4) | 0.0058 (4) | 0.0006 (4) |
C5A | 0.0163 (7) | 0.0134 (6) | 0.0161 (7) | −0.0009 (5) | 0.0049 (5) | 0.0002 (5) |
C6 | 0.0155 (7) | 0.0161 (6) | 0.0183 (7) | −0.0011 (5) | 0.0020 (5) | 0.0004 (5) |
C7 | 0.0221 (7) | 0.0182 (7) | 0.0138 (6) | −0.0010 (5) | 0.0036 (5) | 0.0005 (5) |
C8 | 0.0218 (7) | 0.0171 (7) | 0.0159 (6) | 0.0001 (5) | 0.0078 (5) | 0.0001 (5) |
C9 | 0.0153 (7) | 0.0177 (7) | 0.0179 (7) | 0.0005 (5) | 0.0056 (5) | 0.0002 (5) |
C9A | 0.0168 (7) | 0.0133 (6) | 0.0134 (6) | −0.0006 (5) | 0.0044 (5) | −0.0003 (5) |
C9B | 0.0152 (6) | 0.0136 (6) | 0.0150 (6) | 0.0008 (5) | 0.0042 (5) | −0.0002 (5) |
C11 | 0.0141 (7) | 0.0197 (7) | 0.0150 (6) | −0.0016 (5) | 0.0032 (5) | −0.0029 (5) |
C12 | 0.0181 (7) | 0.0203 (7) | 0.0162 (6) | −0.0007 (5) | 0.0046 (5) | −0.0015 (5) |
C13 | 0.0174 (7) | 0.0274 (8) | 0.0182 (7) | 0.0024 (6) | 0.0018 (5) | −0.0002 (6) |
Cl13 | 0.0192 (2) | 0.0406 (2) | 0.0283 (2) | 0.00990 (16) | 0.00339 (15) | 0.00611 (16) |
C14 | 0.0167 (7) | 0.0377 (9) | 0.0255 (8) | −0.0022 (6) | 0.0065 (6) | 0.0008 (7) |
C15 | 0.0230 (8) | 0.0359 (9) | 0.0250 (8) | −0.0059 (7) | 0.0077 (6) | 0.0058 (7) |
C16 | 0.0201 (7) | 0.0238 (7) | 0.0196 (7) | −0.0024 (6) | 0.0033 (6) | 0.0031 (6) |
N1—N2 | 1.3614 (16) | C8—C9 | 1.3841 (19) |
N1—C9B | 1.3654 (18) | C8—H8 | 0.9500 |
N1—C11 | 1.4328 (18) | C9—C9A | 1.3977 (19) |
N2—N3 | 1.3175 (17) | C9—H9 | 0.9500 |
N3—C3A | 1.3399 (18) | C9A—C9B | 1.4455 (18) |
C3A—O4 | 1.3574 (17) | C11—C12 | 1.388 (2) |
C3A—C9B | 1.3680 (19) | C11—C16 | 1.389 (2) |
O4—C5 | 1.3950 (17) | C12—C13 | 1.385 (2) |
C5—O5 | 1.1979 (18) | C12—H12 | 0.9500 |
C5—C5A | 1.4801 (19) | C13—C14 | 1.385 (2) |
C5A—C6 | 1.3986 (19) | C13—Cl13 | 1.7392 (15) |
C5A—C9A | 1.4146 (19) | C14—C15 | 1.388 (2) |
C6—C7 | 1.381 (2) | C14—H14 | 0.9500 |
C6—H6 | 0.9500 | C15—C16 | 1.385 (2) |
C7—C8 | 1.396 (2) | C15—H15 | 0.9500 |
C7—H7 | 0.9500 | C16—H16 | 0.9500 |
N2—N1—C9B | 110.37 (11) | C9A—C9—H9 | 120.2 |
N2—N1—C11 | 117.83 (11) | C9—C9A—C5A | 119.26 (13) |
C9B—N1—C11 | 131.80 (12) | C9—C9A—C9B | 127.04 (13) |
N3—N2—N1 | 108.11 (11) | C5A—C9A—C9B | 113.69 (12) |
N2—N3—C3A | 106.94 (12) | N1—C9B—C3A | 102.46 (12) |
N3—C3A—O4 | 122.07 (12) | N1—C9B—C9A | 136.62 (13) |
N3—C3A—C9B | 112.11 (13) | C3A—C9B—C9A | 120.87 (13) |
O4—C3A—C9B | 125.82 (12) | C12—C11—C16 | 121.95 (14) |
C3A—O4—C5 | 117.43 (11) | C12—C11—N1 | 117.43 (12) |
O5—C5—O4 | 116.73 (12) | C16—C11—N1 | 120.60 (13) |
O5—C5—C5A | 125.62 (13) | C13—C12—C11 | 117.81 (14) |
O4—C5—C5A | 117.62 (12) | C13—C12—H12 | 121.1 |
C6—C5A—C9A | 120.11 (13) | C11—C12—H12 | 121.1 |
C6—C5A—C5 | 116.65 (12) | C12—C13—C14 | 121.86 (14) |
C9A—C5A—C5 | 123.23 (12) | C12—C13—Cl13 | 118.02 (12) |
C7—C6—C5A | 120.01 (13) | C14—C13—Cl13 | 120.12 (12) |
C7—C6—H6 | 120.0 | C13—C14—C15 | 118.77 (15) |
C5A—C6—H6 | 120.0 | C13—C14—H14 | 120.6 |
C6—C7—C8 | 119.72 (13) | C15—C14—H14 | 120.6 |
C6—C7—H7 | 120.1 | C16—C15—C14 | 121.09 (15) |
C8—C7—H7 | 120.1 | C16—C15—H15 | 119.5 |
C9—C8—C7 | 121.31 (13) | C14—C15—H15 | 119.5 |
C9—C8—H8 | 119.3 | C15—C16—C11 | 118.47 (14) |
C7—C8—H8 | 119.3 | C15—C16—H16 | 120.8 |
C8—C9—C9A | 119.57 (13) | C11—C16—H16 | 120.8 |
C8—C9—H9 | 120.2 | ||
C9B—N1—N2—N3 | 0.20 (15) | C11—N1—C9B—C3A | 178.81 (14) |
C11—N1—N2—N3 | −179.28 (11) | N2—N1—C9B—C9A | 176.95 (15) |
N1—N2—N3—C3A | 0.28 (14) | C11—N1—C9B—C9A | −3.7 (3) |
N2—N3—C3A—O4 | 179.12 (12) | N3—C3A—C9B—N1 | 0.77 (15) |
N2—N3—C3A—C9B | −0.68 (16) | O4—C3A—C9B—N1 | −179.02 (13) |
N3—C3A—O4—C5 | −172.11 (12) | N3—C3A—C9B—C9A | −177.25 (12) |
C9B—C3A—O4—C5 | 7.7 (2) | O4—C3A—C9B—C9A | 3.0 (2) |
C3A—O4—C5—O5 | 169.17 (13) | C9—C9A—C9B—N1 | −5.6 (3) |
C3A—O4—C5—C5A | −12.78 (17) | C5A—C9A—C9B—N1 | 175.67 (15) |
O5—C5—C5A—C6 | 7.6 (2) | C9—C9A—C9B—C3A | 171.59 (14) |
O4—C5—C5A—C6 | −170.28 (12) | C5A—C9A—C9B—C3A | −7.14 (19) |
O5—C5—C5A—C9A | −173.50 (14) | N2—N1—C11—C12 | −45.43 (17) |
O4—C5—C5A—C9A | 8.6 (2) | C9B—N1—C11—C12 | 135.22 (15) |
C9A—C5A—C6—C7 | −0.6 (2) | N2—N1—C11—C16 | 132.99 (14) |
C5—C5A—C6—C7 | 178.40 (13) | C9B—N1—C11—C16 | −46.4 (2) |
C5A—C6—C7—C8 | −0.4 (2) | C16—C11—C12—C13 | 0.9 (2) |
C6—C7—C8—C9 | 0.6 (2) | N1—C11—C12—C13 | 179.30 (13) |
C7—C8—C9—C9A | 0.3 (2) | C11—C12—C13—C14 | 1.3 (2) |
C8—C9—C9A—C5A | −1.3 (2) | C11—C12—C13—Cl13 | −178.97 (11) |
C8—C9—C9A—C9B | −179.96 (13) | C12—C13—C14—C15 | −1.6 (2) |
C6—C5A—C9A—C9 | 1.4 (2) | Cl13—C13—C14—C15 | 178.64 (13) |
C5—C5A—C9A—C9 | −177.46 (13) | C13—C14—C15—C16 | −0.2 (3) |
C6—C5A—C9A—C9B | −179.74 (12) | C14—C15—C16—C11 | 2.3 (2) |
C5—C5A—C9A—C9B | 1.38 (19) | C12—C11—C16—C15 | −2.6 (2) |
N2—N1—C9B—C3A | −0.58 (15) | N1—C11—C16—C15 | 179.00 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N3i | 0.95 | 2.58 | 3.2465 (19) | 127 |
C16—H16···N2ii | 0.95 | 2.56 | 3.500 (2) | 169 |
Symmetry codes: (i) x, y, z+1; (ii) x, −y+1/2, z+1/2. |
C15H8ClN3O2 | F(000) = 608 |
Mr = 297.69 | Dx = 1.570 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.7331 (12) Å | Cell parameters from 2892 reflections |
b = 5.9676 (4) Å | θ = 2.6–27.5° |
c = 13.681 (1) Å | µ = 0.31 mm−1 |
β = 112.820 (3)° | T = 100 K |
V = 1259.21 (16) Å3 | Block, pink |
Z = 4 | 0.25 × 0.14 × 0.11 mm |
Bruker D8 Venture diffractometer | 2891 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 2413 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.056 |
φ and ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −21→21 |
Tmin = 0.880, Tmax = 0.967 | k = −7→7 |
34775 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0251P)2 + 1.2186P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
2891 reflections | Δρmax = 0.37 e Å−3 |
190 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.28243 (8) | 0.9201 (2) | 0.34381 (11) | 0.0144 (3) | |
N2 | 0.31078 (9) | 1.1119 (2) | 0.40077 (11) | 0.0171 (3) | |
N3 | 0.27667 (9) | 1.1220 (2) | 0.47311 (11) | 0.0167 (3) | |
C3A | 0.22867 (10) | 0.9365 (3) | 0.46143 (12) | 0.0148 (3) | |
O4 | 0.18490 (7) | 0.89279 (19) | 0.52497 (9) | 0.0165 (2) | |
C5 | 0.13882 (10) | 0.6934 (3) | 0.50868 (13) | 0.0164 (3) | |
O5 | 0.10574 (8) | 0.6503 (2) | 0.57022 (10) | 0.0229 (3) | |
C5A | 0.13207 (10) | 0.5537 (3) | 0.41602 (12) | 0.0144 (3) | |
C6 | 0.07782 (10) | 0.3663 (3) | 0.39504 (13) | 0.0167 (3) | |
H6 | 0.0483 | 0.3316 | 0.4401 | 0.020* | |
C7 | 0.06720 (11) | 0.2317 (3) | 0.30858 (13) | 0.0179 (3) | |
H7 | 0.0309 | 0.1033 | 0.2948 | 0.021* | |
C8 | 0.10969 (10) | 0.2841 (3) | 0.24148 (13) | 0.0165 (3) | |
H8 | 0.1013 | 0.1921 | 0.1816 | 0.020* | |
C9 | 0.16389 (10) | 0.4687 (3) | 0.26127 (13) | 0.0149 (3) | |
H9 | 0.1926 | 0.5028 | 0.2152 | 0.018* | |
C9A | 0.17630 (10) | 0.6048 (3) | 0.34916 (12) | 0.0136 (3) | |
C9B | 0.22950 (10) | 0.8037 (3) | 0.38052 (12) | 0.0138 (3) | |
C11 | 0.32143 (10) | 0.8577 (3) | 0.27144 (13) | 0.0140 (3) | |
C12 | 0.36182 (10) | 0.6505 (3) | 0.28242 (13) | 0.0162 (3) | |
H12 | 0.3594 | 0.5457 | 0.3335 | 0.019* | |
C13 | 0.40594 (10) | 0.5987 (3) | 0.21758 (13) | 0.0162 (3) | |
H13 | 0.4329 | 0.4566 | 0.2227 | 0.019* | |
C14 | 0.41012 (10) | 0.7567 (3) | 0.14533 (13) | 0.0158 (3) | |
Cl14 | 0.47074 (3) | 0.69834 (7) | 0.07027 (3) | 0.02089 (12) | |
C15 | 0.36852 (11) | 0.9621 (3) | 0.13295 (13) | 0.0170 (3) | |
H15 | 0.3709 | 1.0667 | 0.0818 | 0.020* | |
C16 | 0.32319 (10) | 1.0128 (3) | 0.19655 (13) | 0.0160 (3) | |
H16 | 0.2938 | 1.1520 | 0.1889 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0145 (6) | 0.0119 (6) | 0.0174 (7) | −0.0002 (5) | 0.0067 (5) | −0.0001 (5) |
N2 | 0.0175 (7) | 0.0139 (7) | 0.0189 (7) | −0.0001 (5) | 0.0059 (6) | −0.0025 (5) |
N3 | 0.0168 (7) | 0.0155 (7) | 0.0167 (7) | 0.0012 (5) | 0.0054 (5) | −0.0016 (5) |
C3A | 0.0142 (7) | 0.0152 (7) | 0.0147 (7) | 0.0019 (6) | 0.0051 (6) | 0.0007 (6) |
O4 | 0.0200 (6) | 0.0170 (6) | 0.0151 (5) | −0.0010 (5) | 0.0097 (5) | −0.0023 (4) |
C5 | 0.0146 (8) | 0.0176 (8) | 0.0169 (8) | 0.0023 (6) | 0.0059 (6) | 0.0010 (6) |
O5 | 0.0248 (7) | 0.0287 (7) | 0.0201 (6) | −0.0039 (5) | 0.0141 (5) | −0.0030 (5) |
C5A | 0.0134 (7) | 0.0155 (8) | 0.0139 (7) | 0.0023 (6) | 0.0049 (6) | 0.0015 (6) |
C6 | 0.0149 (8) | 0.0170 (8) | 0.0182 (8) | 0.0006 (6) | 0.0065 (6) | 0.0028 (6) |
C7 | 0.0157 (8) | 0.0150 (8) | 0.0203 (8) | −0.0011 (6) | 0.0040 (7) | 0.0018 (6) |
C8 | 0.0162 (8) | 0.0142 (7) | 0.0159 (8) | 0.0017 (6) | 0.0029 (6) | −0.0021 (6) |
C9 | 0.0153 (8) | 0.0141 (7) | 0.0150 (7) | 0.0012 (6) | 0.0057 (6) | 0.0008 (6) |
C9A | 0.0128 (7) | 0.0125 (7) | 0.0142 (7) | 0.0023 (6) | 0.0039 (6) | 0.0020 (6) |
C9B | 0.0135 (7) | 0.0139 (7) | 0.0146 (7) | 0.0013 (6) | 0.0060 (6) | 0.0004 (6) |
C11 | 0.0108 (7) | 0.0153 (7) | 0.0163 (7) | −0.0024 (6) | 0.0056 (6) | −0.0015 (6) |
C12 | 0.0151 (8) | 0.0160 (8) | 0.0165 (8) | −0.0008 (6) | 0.0050 (6) | 0.0016 (6) |
C13 | 0.0142 (7) | 0.0139 (7) | 0.0191 (8) | 0.0021 (6) | 0.0051 (6) | −0.0004 (6) |
C14 | 0.0126 (7) | 0.0199 (8) | 0.0150 (8) | −0.0027 (6) | 0.0053 (6) | −0.0031 (6) |
Cl14 | 0.0205 (2) | 0.0249 (2) | 0.0211 (2) | −0.00127 (16) | 0.01233 (16) | −0.00372 (16) |
C15 | 0.0183 (8) | 0.0170 (8) | 0.0153 (8) | −0.0017 (6) | 0.0062 (6) | 0.0019 (6) |
C16 | 0.0155 (8) | 0.0132 (7) | 0.0185 (8) | 0.0016 (6) | 0.0056 (6) | 0.0018 (6) |
N1—N2 | 1.3625 (19) | C8—C9 | 1.386 (2) |
N1—C9B | 1.365 (2) | C8—H8 | 0.9500 |
N1—C11 | 1.430 (2) | C9—C9A | 1.398 (2) |
N2—N3 | 1.3217 (19) | C9—H9 | 0.9500 |
N3—C3A | 1.341 (2) | C9A—C9B | 1.445 (2) |
C3A—O4 | 1.3615 (19) | C11—C12 | 1.389 (2) |
C3A—C9B | 1.366 (2) | C11—C16 | 1.390 (2) |
O4—C5 | 1.388 (2) | C12—C13 | 1.391 (2) |
C5—O5 | 1.201 (2) | C12—H12 | 0.9500 |
C5—C5A | 1.485 (2) | C13—C14 | 1.387 (2) |
C5A—C6 | 1.398 (2) | C13—H13 | 0.9500 |
C5A—C9A | 1.415 (2) | C14—C15 | 1.387 (2) |
C6—C7 | 1.383 (2) | C14—Cl14 | 1.7358 (16) |
C6—H6 | 0.9500 | C15—C16 | 1.391 (2) |
C7—C8 | 1.397 (2) | C15—H15 | 0.9500 |
C7—H7 | 0.9500 | C16—H16 | 0.9500 |
N2—N1—C9B | 110.42 (13) | C9A—C9—H9 | 120.1 |
N2—N1—C11 | 117.62 (13) | C9—C9A—C5A | 119.34 (14) |
C9B—N1—C11 | 131.09 (13) | C9—C9A—C9B | 126.95 (14) |
N3—N2—N1 | 108.11 (13) | C5A—C9A—C9B | 113.69 (14) |
N2—N3—C3A | 106.61 (13) | N1—C9B—C3A | 102.40 (14) |
N3—C3A—O4 | 121.86 (14) | N1—C9B—C9A | 136.18 (14) |
N3—C3A—C9B | 112.45 (14) | C3A—C9B—C9A | 121.21 (14) |
O4—C3A—C9B | 125.69 (15) | C12—C11—C16 | 121.61 (15) |
C3A—O4—C5 | 117.68 (12) | C12—C11—N1 | 119.38 (14) |
O5—C5—O4 | 116.70 (15) | C16—C11—N1 | 118.85 (14) |
O5—C5—C5A | 125.10 (15) | C11—C12—C13 | 119.03 (15) |
O4—C5—C5A | 118.18 (13) | C11—C12—H12 | 120.5 |
C6—C5A—C9A | 120.04 (15) | C13—C12—H12 | 120.5 |
C6—C5A—C5 | 116.93 (14) | C14—C13—C12 | 119.27 (15) |
C9A—C5A—C5 | 123.02 (14) | C14—C13—H13 | 120.4 |
C7—C6—C5A | 119.86 (15) | C12—C13—H13 | 120.4 |
C7—C6—H6 | 120.1 | C15—C14—C13 | 121.75 (15) |
C5A—C6—H6 | 120.1 | C15—C14—Cl14 | 119.07 (13) |
C6—C7—C8 | 120.19 (15) | C13—C14—Cl14 | 119.17 (13) |
C6—C7—H7 | 119.9 | C14—C15—C16 | 119.03 (15) |
C8—C7—H7 | 119.9 | C14—C15—H15 | 120.5 |
C9—C8—C7 | 120.71 (15) | C16—C15—H15 | 120.5 |
C9—C8—H8 | 119.6 | C11—C16—C15 | 119.26 (15) |
C7—C8—H8 | 119.6 | C11—C16—H16 | 120.4 |
C8—C9—C9A | 119.85 (15) | C15—C16—H16 | 120.4 |
C8—C9—H9 | 120.1 | ||
C9B—N1—N2—N3 | −0.38 (17) | C11—N1—C9B—C3A | 168.64 (15) |
C11—N1—N2—N3 | −170.86 (13) | N2—N1—C9B—C9A | 174.36 (17) |
N1—N2—N3—C3A | 0.74 (17) | C11—N1—C9B—C9A | −16.8 (3) |
N2—N3—C3A—O4 | 179.27 (13) | N3—C3A—C9B—N1 | 0.63 (18) |
N2—N3—C3A—C9B | −0.88 (18) | O4—C3A—C9B—N1 | −179.53 (14) |
N3—C3A—O4—C5 | −178.29 (14) | N3—C3A—C9B—C9A | −174.93 (14) |
C9B—C3A—O4—C5 | 1.9 (2) | O4—C3A—C9B—C9A | 4.9 (2) |
C3A—O4—C5—O5 | 174.88 (14) | C9—C9A—C9B—N1 | −1.2 (3) |
C3A—O4—C5—C5A | −6.7 (2) | C5A—C9A—C9B—N1 | −179.60 (17) |
O5—C5—C5A—C6 | 4.8 (2) | C9—C9A—C9B—C3A | 172.55 (16) |
O4—C5—C5A—C6 | −173.41 (14) | C5A—C9A—C9B—C3A | −5.9 (2) |
O5—C5—C5A—C9A | −176.28 (16) | N2—N1—C11—C12 | 122.23 (16) |
O4—C5—C5A—C9A | 5.5 (2) | C9B—N1—C11—C12 | −45.9 (2) |
C9A—C5A—C6—C7 | −0.3 (2) | N2—N1—C11—C16 | −53.3 (2) |
C5—C5A—C6—C7 | 178.64 (15) | C9B—N1—C11—C16 | 138.61 (17) |
C5A—C6—C7—C8 | −0.8 (2) | C16—C11—C12—C13 | 0.8 (2) |
C6—C7—C8—C9 | 1.0 (2) | N1—C11—C12—C13 | −174.59 (14) |
C7—C8—C9—C9A | −0.1 (2) | C11—C12—C13—C14 | 1.4 (2) |
C8—C9—C9A—C5A | −1.0 (2) | C12—C13—C14—C15 | −2.6 (2) |
C8—C9—C9A—C9B | −179.30 (15) | C12—C13—C14—Cl14 | 176.09 (12) |
C6—C5A—C9A—C9 | 1.1 (2) | C13—C14—C15—C16 | 1.6 (2) |
C5—C5A—C9A—C9 | −177.70 (14) | Cl14—C14—C15—C16 | −177.12 (12) |
C6—C5A—C9A—C9B | 179.70 (14) | C12—C11—C16—C15 | −1.8 (2) |
C5—C5A—C9A—C9B | 0.9 (2) | N1—C11—C16—C15 | 173.59 (14) |
N2—N1—C9B—C3A | −0.14 (17) | C14—C15—C16—C11 | 0.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O5i | 0.95 | 2.53 | 3.287 (2) | 137 |
C8—H8···O5ii | 0.95 | 2.57 | 3.478 (2) | 161 |
C15—H15···N3iii | 0.95 | 2.52 | 3.271 (2) | 136 |
C7—H7···Cg1iv | 0.95 | 2.69 | 3.517 (2) | 146 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x, −y+5/2, z−1/2; (iv) −x, y−1/2, −z+1/2. |
C17H15N3O3 | F(000) = 648 |
Mr = 309.32 | Dx = 1.405 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1518 (5) Å | Cell parameters from 3361 reflections |
b = 9.3143 (4) Å | θ = 2.6–27.5° |
c = 14.2417 (6) Å | µ = 0.10 mm−1 |
β = 98.655 (2)° | T = 100 K |
V = 1462.46 (11) Å3 | Block, colourless |
Z = 4 | 0.19 × 0.11 × 0.07 mm |
Bruker D8 Venture diffractometer | 3360 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 3084 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.036 |
φ and ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −14→14 |
Tmin = 0.960, Tmax = 0.993 | k = −12→12 |
33834 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0333P)2 + 1.1492P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3360 reflections | Δρmax = 0.34 e Å−3 |
213 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.09089 (12) | 0.58783 (14) | 0.64445 (9) | 0.0143 (3) | |
C2 | 0.20897 (12) | 0.64468 (14) | 0.66637 (9) | 0.0140 (3) | |
C3 | 0.22319 (12) | 0.79047 (15) | 0.68731 (9) | 0.0171 (3) | |
H3 | 0.3024 | 0.8295 | 0.7027 | 0.021* | |
C4 | 0.12250 (13) | 0.87957 (15) | 0.68594 (10) | 0.0194 (3) | |
H4 | 0.1333 | 0.9789 | 0.6998 | 0.023* | |
C5 | 0.00649 (13) | 0.82309 (16) | 0.66441 (10) | 0.0194 (3) | |
H5 | −0.0622 | 0.8837 | 0.6633 | 0.023* | |
C6 | −0.00894 (12) | 0.67859 (15) | 0.64454 (9) | 0.0176 (3) | |
H6 | −0.0886 | 0.6403 | 0.6307 | 0.021* | |
C7 | 0.07137 (12) | 0.43259 (15) | 0.61927 (9) | 0.0158 (3) | |
O1 | 0.15037 (9) | 0.34535 (11) | 0.61744 (8) | 0.0255 (2) | |
O2 | −0.04681 (9) | 0.40148 (11) | 0.59904 (7) | 0.0205 (2) | |
C8 | −0.07555 (14) | 0.25126 (16) | 0.58262 (11) | 0.0227 (3) | |
H8A | −0.0554 | 0.1980 | 0.6423 | 0.034* | |
H8B | −0.0284 | 0.2131 | 0.5355 | 0.034* | |
H8C | −0.1623 | 0.2410 | 0.5590 | 0.034* | |
N21 | 0.38126 (10) | 0.47254 (12) | 0.72720 (8) | 0.0142 (2) | |
N22 | 0.47490 (10) | 0.40735 (12) | 0.69580 (8) | 0.0160 (2) | |
N23 | 0.47309 (10) | 0.45003 (12) | 0.60673 (8) | 0.0157 (2) | |
C24 | 0.38003 (11) | 0.54203 (14) | 0.58314 (9) | 0.0152 (3) | |
C25 | 0.31891 (11) | 0.55871 (14) | 0.65953 (9) | 0.0140 (3) | |
C211 | 0.35990 (11) | 0.44834 (15) | 0.82315 (9) | 0.0155 (3) | |
C212 | 0.33495 (12) | 0.30970 (15) | 0.85228 (9) | 0.0171 (3) | |
C213 | 0.31541 (12) | 0.29355 (16) | 0.94627 (10) | 0.0210 (3) | |
H213 | 0.2981 | 0.2009 | 0.9688 | 0.025* | |
C214 | 0.32075 (13) | 0.40992 (18) | 1.00731 (10) | 0.0241 (3) | |
H214 | 0.3062 | 0.3962 | 1.0707 | 0.029* | |
C215 | 0.34696 (14) | 0.54549 (17) | 0.97710 (10) | 0.0235 (3) | |
H215 | 0.3513 | 0.6246 | 1.0196 | 0.028* | |
C216 | 0.36705 (12) | 0.56555 (15) | 0.88384 (10) | 0.0191 (3) | |
H216 | 0.3854 | 0.6582 | 0.8621 | 0.023* | |
C217 | 0.32682 (14) | 0.18273 (15) | 0.78655 (10) | 0.0226 (3) | |
H27A | 0.3030 | 0.0975 | 0.8196 | 0.034* | |
H27B | 0.4060 | 0.1661 | 0.7665 | 0.034* | |
H27C | 0.2662 | 0.2018 | 0.7306 | 0.034* | |
O24 | 0.35119 (9) | 0.60183 (12) | 0.49726 (7) | 0.0208 (2) | |
H24 | 0.4112 (18) | 0.587 (2) | 0.4622 (14) | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0154 (6) | 0.0175 (6) | 0.0104 (6) | 0.0008 (5) | 0.0028 (4) | 0.0018 (5) |
C2 | 0.0145 (6) | 0.0172 (6) | 0.0109 (5) | 0.0013 (5) | 0.0035 (4) | 0.0013 (5) |
C3 | 0.0158 (6) | 0.0192 (7) | 0.0161 (6) | −0.0011 (5) | 0.0016 (5) | −0.0004 (5) |
C4 | 0.0225 (7) | 0.0169 (6) | 0.0188 (6) | 0.0017 (5) | 0.0036 (5) | −0.0024 (5) |
C5 | 0.0178 (6) | 0.0228 (7) | 0.0179 (6) | 0.0056 (5) | 0.0034 (5) | 0.0006 (5) |
C6 | 0.0139 (6) | 0.0229 (7) | 0.0160 (6) | 0.0010 (5) | 0.0022 (5) | 0.0012 (5) |
C7 | 0.0162 (6) | 0.0190 (6) | 0.0119 (6) | −0.0011 (5) | 0.0009 (5) | 0.0021 (5) |
O1 | 0.0179 (5) | 0.0191 (5) | 0.0386 (6) | 0.0015 (4) | 0.0014 (4) | −0.0051 (4) |
O2 | 0.0152 (5) | 0.0189 (5) | 0.0268 (5) | −0.0028 (4) | 0.0010 (4) | 0.0002 (4) |
C8 | 0.0231 (7) | 0.0196 (7) | 0.0248 (7) | −0.0066 (5) | 0.0013 (6) | −0.0001 (6) |
N21 | 0.0122 (5) | 0.0158 (5) | 0.0148 (5) | 0.0015 (4) | 0.0031 (4) | 0.0013 (4) |
N22 | 0.0139 (5) | 0.0187 (5) | 0.0164 (5) | 0.0022 (4) | 0.0049 (4) | 0.0011 (4) |
N23 | 0.0148 (5) | 0.0186 (6) | 0.0141 (5) | 0.0011 (4) | 0.0036 (4) | 0.0010 (4) |
C24 | 0.0134 (6) | 0.0169 (6) | 0.0155 (6) | 0.0004 (5) | 0.0027 (5) | 0.0002 (5) |
C25 | 0.0125 (6) | 0.0149 (6) | 0.0142 (6) | −0.0007 (5) | 0.0011 (4) | 0.0003 (5) |
C211 | 0.0113 (6) | 0.0216 (7) | 0.0137 (6) | 0.0027 (5) | 0.0022 (4) | 0.0029 (5) |
C212 | 0.0121 (6) | 0.0207 (7) | 0.0179 (6) | 0.0018 (5) | 0.0004 (5) | 0.0033 (5) |
C213 | 0.0166 (6) | 0.0250 (7) | 0.0210 (7) | 0.0014 (5) | 0.0012 (5) | 0.0085 (6) |
C214 | 0.0234 (7) | 0.0343 (8) | 0.0151 (6) | 0.0065 (6) | 0.0046 (5) | 0.0059 (6) |
C215 | 0.0257 (7) | 0.0279 (8) | 0.0165 (7) | 0.0072 (6) | 0.0019 (5) | −0.0016 (6) |
C216 | 0.0191 (6) | 0.0194 (7) | 0.0184 (6) | 0.0037 (5) | 0.0015 (5) | 0.0020 (5) |
C217 | 0.0264 (7) | 0.0180 (7) | 0.0231 (7) | −0.0005 (6) | 0.0023 (6) | 0.0024 (6) |
O24 | 0.0199 (5) | 0.0299 (6) | 0.0138 (5) | 0.0093 (4) | 0.0068 (4) | 0.0063 (4) |
C1—C6 | 1.3981 (18) | N21—C211 | 1.4396 (16) |
C1—C2 | 1.4100 (18) | N22—N23 | 1.3265 (15) |
C1—C7 | 1.4977 (19) | N23—C24 | 1.3489 (17) |
C2—C3 | 1.3941 (19) | C24—O24 | 1.3383 (16) |
C2—C25 | 1.4798 (17) | C24—C25 | 1.3768 (17) |
C3—C4 | 1.3941 (19) | C211—C216 | 1.3873 (19) |
C3—H3 | 0.9500 | C211—C212 | 1.3971 (19) |
C4—C5 | 1.387 (2) | C212—C213 | 1.3963 (19) |
C4—H4 | 0.9500 | C212—C217 | 1.503 (2) |
C5—C6 | 1.381 (2) | C213—C214 | 1.385 (2) |
C5—H5 | 0.9500 | C213—H213 | 0.9500 |
C6—H6 | 0.9500 | C214—C215 | 1.379 (2) |
C7—O1 | 1.2017 (17) | C214—H214 | 0.9500 |
C7—O2 | 1.3378 (16) | C215—C216 | 1.3924 (19) |
O2—C8 | 1.4466 (17) | C215—H215 | 0.9500 |
C8—H8A | 0.9800 | C216—H216 | 0.9500 |
C8—H8B | 0.9800 | C217—H27A | 0.9800 |
C8—H8C | 0.9800 | C217—H27B | 0.9800 |
N21—N22 | 1.3415 (15) | C217—H27C | 0.9800 |
N21—C25 | 1.3619 (16) | O24—H24 | 0.90 (2) |
C6—C1—C2 | 119.34 (12) | N22—N23—C24 | 109.21 (10) |
C6—C1—C7 | 119.80 (12) | O24—C24—N23 | 124.20 (12) |
C2—C1—C7 | 120.85 (12) | O24—C24—C25 | 126.57 (12) |
C3—C2—C1 | 119.05 (12) | N23—C24—C25 | 109.19 (11) |
C3—C2—C25 | 118.19 (12) | N21—C25—C24 | 103.41 (11) |
C1—C2—C25 | 122.52 (12) | N21—C25—C2 | 127.75 (11) |
C4—C3—C2 | 120.76 (13) | C24—C25—C2 | 128.80 (12) |
C4—C3—H3 | 119.6 | C216—C211—C212 | 122.52 (12) |
C2—C3—H3 | 119.6 | C216—C211—N21 | 117.77 (12) |
C5—C4—C3 | 119.98 (13) | C212—C211—N21 | 119.70 (12) |
C5—C4—H4 | 120.0 | C213—C212—C211 | 116.82 (13) |
C3—C4—H4 | 120.0 | C213—C212—C217 | 120.60 (13) |
C6—C5—C4 | 119.88 (13) | C211—C212—C217 | 122.58 (12) |
C6—C5—H5 | 120.1 | C214—C213—C212 | 121.27 (14) |
C4—C5—H5 | 120.1 | C214—C213—H213 | 119.4 |
C5—C6—C1 | 120.99 (13) | C212—C213—H213 | 119.4 |
C5—C6—H6 | 119.5 | C215—C214—C213 | 120.78 (13) |
C1—C6—H6 | 119.5 | C215—C214—H214 | 119.6 |
O1—C7—O2 | 123.40 (13) | C213—C214—H214 | 119.6 |
O1—C7—C1 | 125.27 (12) | C214—C215—C216 | 119.50 (14) |
O2—C7—C1 | 111.32 (11) | C214—C215—H215 | 120.3 |
C7—O2—C8 | 115.56 (11) | C216—C215—H215 | 120.3 |
O2—C8—H8A | 109.5 | C211—C216—C215 | 119.10 (13) |
O2—C8—H8B | 109.5 | C211—C216—H216 | 120.5 |
H8A—C8—H8B | 109.5 | C215—C216—H216 | 120.5 |
O2—C8—H8C | 109.5 | C212—C217—H27A | 109.5 |
H8A—C8—H8C | 109.5 | C212—C217—H27B | 109.5 |
H8B—C8—H8C | 109.5 | H27A—C217—H27B | 109.5 |
N22—N21—C25 | 111.77 (10) | C212—C217—H27C | 109.5 |
N22—N21—C211 | 119.60 (10) | H27A—C217—H27C | 109.5 |
C25—N21—C211 | 128.62 (11) | H27B—C217—H27C | 109.5 |
N23—N22—N21 | 106.42 (10) | C24—O24—H24 | 110.1 (12) |
C6—C1—C2—C3 | −0.23 (18) | C211—N21—C25—C2 | −3.2 (2) |
C7—C1—C2—C3 | 178.54 (12) | O24—C24—C25—N21 | 177.72 (13) |
C6—C1—C2—C25 | −174.48 (12) | N23—C24—C25—N21 | 0.04 (14) |
C7—C1—C2—C25 | 4.29 (18) | O24—C24—C25—C2 | −0.1 (2) |
C1—C2—C3—C4 | −0.53 (19) | N23—C24—C25—C2 | −177.80 (13) |
C25—C2—C3—C4 | 173.97 (12) | C3—C2—C25—N21 | 98.58 (16) |
C2—C3—C4—C5 | 0.6 (2) | C1—C2—C25—N21 | −87.12 (17) |
C3—C4—C5—C6 | 0.1 (2) | C3—C2—C25—C24 | −84.07 (18) |
C4—C5—C6—C1 | −0.9 (2) | C1—C2—C25—C24 | 90.23 (18) |
C2—C1—C6—C5 | 0.94 (19) | N22—N21—C211—C216 | 117.83 (14) |
C7—C1—C6—C5 | −177.84 (12) | C25—N21—C211—C216 | −60.69 (18) |
C6—C1—C7—O1 | −179.60 (13) | N22—N21—C211—C212 | −61.17 (16) |
C2—C1—C7—O1 | 1.6 (2) | C25—N21—C211—C212 | 120.30 (15) |
C6—C1—C7—O2 | 0.11 (17) | C216—C211—C212—C213 | 0.88 (19) |
C2—C1—C7—O2 | −178.66 (11) | N21—C211—C212—C213 | 179.84 (11) |
O1—C7—O2—C8 | 5.37 (19) | C216—C211—C212—C217 | 179.82 (13) |
C1—C7—O2—C8 | −174.35 (11) | N21—C211—C212—C217 | −1.23 (19) |
C25—N21—N22—N23 | −0.60 (14) | C211—C212—C213—C214 | 0.0 (2) |
C211—N21—N22—N23 | −179.36 (11) | C217—C212—C213—C214 | −179.00 (13) |
N21—N22—N23—C24 | 0.61 (14) | C212—C213—C214—C215 | −0.7 (2) |
N22—N23—C24—O24 | −178.16 (12) | C213—C214—C215—C216 | 0.7 (2) |
N22—N23—C24—C25 | −0.41 (15) | C212—C211—C216—C215 | −1.0 (2) |
N22—N21—C25—C24 | 0.34 (14) | N21—C211—C216—C215 | −179.93 (12) |
C211—N21—C25—C24 | 178.96 (12) | C214—C215—C216—C211 | 0.2 (2) |
N22—N21—C25—C2 | 178.22 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O24—H24···N23i | 0.90 (2) | 1.77 (2) | 2.6721 (15) | 177.5 (19) |
C8—H8A···Cg2ii | 0.98 | 2.90 | 3.6605 (16) | 135 |
C8—H8B···Cg2iii | 0.98 | 2.90 | 3.5007 (16) | 120 |
C8—H8C···O24iii | 0.98 | 2.59 | 3.4004 (19) | 140 |
C215—H215···O24iv | 0.95 | 2.57 | 3.2972 (19) | 134 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, y−1/2, −z+3/2; (iii) −x, −y+1, −z+1; (iv) x, −y+3/2, z+1/2. |
Compound | D—H···A | D—H | H···A | D···A | D—H···A |
(I) | C8—H8···N3i | 0.95 | 2.52 | 3.4641 (16) | 173 |
C12—H12···O5ii | 0.95 | 2.50 | 3.4136 (16) | 161 | |
(II) | C7—H7···N3iii | 0.95 | 2.55 | 3.2770 (15) | 133 |
C13—H13···O5iv | 0.95 | 2.54 | 3.4083 (16) | 151 | |
C15—H15···O5v | 0.95 | 2.48 | 3.2482 (16) | 138 | |
(III) | C8—H8···N3vi | 0.95 | 2.58 | 3.2465 (19) | 127 |
C16—H16···N2vii | 0.95 | 2.56 | 3.500 (2) | 169 | |
(IV) | C6—H6···O5viii | 0.95 | 2.53 | 3.287 (3) | 137 |
C8—H8···O5ix | 0.95 | 2.57 | 3.578 (2) | 161 | |
C15—H15···N3x | 0.95 | 2.52 | 3.271 (2) | 136 | |
C7—H7···Cg1xi | 0.95 | 2.69 | 3.517 (2) | 146 | |
(V) | O24—H24···N23xii | 0.90 (2) | 1.77 (2) | 2.6721 (15) | 177.5 (19) |
C8—H8A···Cg2xiii | 0.98 | 2.90 | 3.6605 (16) | 135 | |
C8—H8B···Cg2viii | 0.98 | 2.90 | 3.5007 (16) | 120 | |
C8—H8C···O24viii | 0.98 | 2.59 | 3.4004 (19) | 140 | |
C215—H215···O24xiv | 0.95 | 2.57 | 3.2972 (19) | 134 |
Cg1 and Cg2 represent the centroids of the rings C5A/C6–C9/C9A and C1–C6, respectively. Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) x-1, y, z-1; (iv) -x+1/2, y-1/2, -z+3/2; (v) -x+3/2, y-1/2, -z+3/2; (vi) x, y, z+1; (vii) x, -y+1/2, z+1/2; (viii) -x, -y+1, -z+1; (ix) x, -y+1/2, z-1/2; (x) x, -y+5/2, z-1/2; (xi) -x, y-1/2, -z+1/2; (xii) -x+1, -y+1, -z+1; (xiii) -x, y-1/2, -z+3/2; (xiv) x, -y+3/2, z+1/2. |
Acknowledgements
The authors thank `Centro de Instrumentación Científico-Técnica of Universidad de Jaén' for data collection. The authors thank Universidad de Ciencias Aplicadas y Ambientales (UDCA), Universidad Nacional de Colombia, the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060. CrossRef CAS Web of Science Google Scholar
Opatz, T. & Ferenc, D. (2005). Eur. J. Org. Chem. 2005, 817–821. CSD CrossRef Google Scholar
Oweida, S. W., Ku, D. N., Lumsden, A. B., Kam, C. M. & Powers, J. C. (1990). Thromb. Res. 58, 191–197. CrossRef CAS PubMed Google Scholar
Qadeer, G., Rama, N. H., Fan, Z. J., Liu, B. & Liu, X. F. (2007). J. Braz. Chem. Soc. 18, 1176–1182. CrossRef CAS Google Scholar
Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504. CrossRef Web of Science Google Scholar
Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256. CrossRef Web of Science Google Scholar
Rodríguez, R., Vicentes, D. E., Cobo, J. & Nogueras, M. (2017). Tetrahedron Lett. 58, 1487–1489. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47. CrossRef CAS Web of Science Google Scholar
Vicentes, D. E., Rodríguez, R., Cobo, J. & Glidewell, C. (2013). Acta Cryst. C69, 770–773. CSD CrossRef IUCr Journals Google Scholar
Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571. Web of Science CrossRef CAS Google Scholar
Xu, Z., Zhao, S. J. & Liu, Y. (2019). Eur. J. Med. Chem. 183, 111700. CrossRef PubMed Google Scholar
Zhang, Z., Huo, J. Q., Dong, H. J., Shi, J. M. & Zhang, J. L. (2016). Asian J. Chem. 28, 666–668. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.