research papers
Regio- and stereospecific assembly of dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidines] from simple precursors using a one-pot procedure: synthesis, spectroscopic and structural characterization, and a proposed mechanism of formation
aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
The synthesis and characterization of three new dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)-2′-(4-Chlorophenyl)-1-hexyl-2′′-sulfanylidene-5′,6′,7′,7a′-tetrahydro-2′H-dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidine]-2,4′′-dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)-2′-(4-chlorophenyl)-1-benzyl-5-methyl-2′′-sulfanylidene-5′,6′,7′,7a′-tetrahydro-2′H-dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidine]-2,4′′-dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)-2′-(4-chlorophenyl)-5-fluoro-2′′-sulfanylidene-5′,6′,7′,7a′-tetrahydro-2′H-dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidine]-2,4′′-dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one-pot reaction involving L-proline, a substituted isatin and (Z)-5-(4-chlorobenzylidene)-2-sulfanylidenethiazolidin-4-one [5-(4-chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high-resolution in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single-crystal X-ray structure analysis. A possible for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H⋯N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H⋯O and C—H⋯S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H⋯N and N—H⋯S=C hydrogen bonds.
1. Introduction
An attractive approach to the production of new organic compounds exhibiting broad-spectrum biological activity, for agricultural and pharmaceutical applications, is to combine in the same molecule two or more pharmacophores of proven efficacy. We report here on the synthesis, characterization and structure of a new heterocyclic system containing three such units, namely, the spiro-oxindole, pyrrolizine and rhodanine (2-sulfanylidenethiazolidin-4-one) units. Spiro-oxindoles are an important class of S,3R)-6-hydroxy-2′-(2-methylpropyl)spiro[1H-indole-3,3′-pyrrolidine]-2-one], horsfiline [(3R)-5-methoxy-1′-methylspiro[1H-indole-3,3′-pyrrolidine]-2-one] rhynchophylline [methyl (7β,16E,20α)-16-(methoxymethylene)-2-oxocorynoxan-17-oate] and spirotryprostatin {(3S,3′S,5′aS,10′aS)-6-methoxy-3′-(2-methylprop-1-enyl)spiro[1H-indole-3,2′-3,5a,6,7,8,10a-hexahydro-1H-dipyrrolo[1,2-c:1′,4′-f]pyrazine]-2,5′,10′-trione}, and compounds of this type exhibit a wide range of biological activity, including antibacterial, antifungal, anti-oxidant and antitumour activity (Russel, 2010). In addition, pyrrolizines have been found to be promising scaffolds for anticancer drugs (Belal & El-Gendy, 2014), while compounds derived from rhodanine have been found to exhibit outstanding levels of antibacterial and antifungal activity (Sortino et al., 2007; Tomasić & Masic, 2009). Hence, the synthesis of new compounds containing all three of these molecular fragments, i.e. spiro-oxoindole, pyrrolizine and rhodanine, is essential, and an efficient route to such compounds involves a 1,3-dipolar cycloaddition reaction between an appropriate derivative of isatin (1H-indole-2,3-dione), an amino acid and an electron-deficient alkene (Ponnala et al., 2006; Liu et al., 2011).
derived from indole that are widely distributed in nature, including examples such as elacomine [(2′Accordingly, we report here the synthesis and characterization of three examples, namely, (3RS,1′SR,2′SR,7a′SR)-2′-(4-chlorophenyl)-1-hexyl-2′′-sulfanylidene-5′,6′,7′,7a′-tetrahydro-2′H-dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidine]-2,4′′-dione, (I), (3RS,1′SR,2′SR,7a′SR)-2′-(4-chlorophenyl)-1-benzyl-5-methyl-2′′-sulfanylidene-5′,6′,7′,7a′-tetrahydro-2′H-dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidine]-2,4′′-dione, (II), and (3RS,1′SR,2′SR,7a′SR)-2′-(4-chlorophenyl)-5-fluoro-2′′-sulfanylidene-5′,6′,7′,7a′-tetrahydro-2′H-dispiro[indoline-3,3′-pyrrolizine-1′,5′′-thiazolidine]-2,4′′-dione, (III), along with the structures of compounds (I) and (II) (Figs. 1 and 2). The compounds were synthesized, as the sole isolated product in each case, in a one-pot procedure involving the reaction between an isatin, (A) [1-hexylisatin for (I), N-benzyl-5-methylisatin for (II) and 5-fluoroisatin for (III)], L-proline, (B), and the electron-deficient alkene (Z)-5-(4-chlorobenzylidene)-2-sulfanylidenethiazolidin-4-one [5-(4-chlorobenzylidene)rhodanine], (C) (Scheme 1). Analysis of the NMR spectra showed which regioisomer had been isolated, while the analyses for (I) and (II) established the relative stereochemistry at the four contiguous stereogenic centres at the atoms labelled here as C13, C21, C22 and C27A (Figs. 1 and 2), which correspond to the chemical sites C3, C1′, C2′ and C7a′, respectively, as defined in §2.3 below.
2. Experimental
2.1. Synthesis and crystallization
For the synthesis of compounds (I)–(III), a solution containing equimolar quantities (0.39 mmol of each reactant) of L-proline, (Z)-5-(4-chlorobenzylidene)-2-sulfanylidenethiazolidin-4-one and the appropriate isatin in methanol (120 ml) was heated under reflux for 8 h, after which time monitoring using (TLC) indicated that the reactions were complete. Each solution was then allowed to cool to ambient temperature and the resulting solid product was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were selected directly from the synthetic products.
2.2. Analytical data
2.2.1. Compound (I)
Yield 52%, m.p. > 570 K. NMR (DMSO-d6): δ(1H) 0.76–0.90 (m, 3H), 1.10–1.32 (m, 6H), 1.40–1.54 (m, 2H), 1.75–1.89 (m, 1H), 1.89–1.99 (m, 1H), 1.99–2.13 (m, 2H), 2.41–2.48 (m, 1H), 2.52–2.57 (m, 1H), 3.51–3.69 (m, 2H), 4.42 (t, J = 7.22 Hz, 1H, H-7a′), 4.64 (s, 1H, H-2′), 6.86 (d, J = 7.61 Hz, 1H, H-7), 7.04 (t, J = 7.52 Hz, 1H, H-6), 7.14 (d, J = 8.59 Hz, 2H, Ho), 7.18 (t, J = 7.71 Hz, 1H, H-5), 7.25 (d, J = 8.59 Hz, 2H, Hm), 7.49 (d, J = 7.22 Hz, 1H, H-4), 13.21 (br s, 1H, NH-3′′); δ(13C) 14.3 (CH3), 22.5 (CH2), 26.6 (CH2), 27.4 (CH2), 28.1 (CH2), 30.0 (CH2), 31.3 (CH2), 40.0 (CH2), 47.3 (CH2), 65.3 (C-2′), 74.3 (C-spiro), 74.9 (C-7a′), 75.1 (C-spiro), 109.5 (C-7), 123.6 (C-6), 124.0 (C-4), 128.7 (Cm), 129.0 (C), 129.9 (C-5), 130.5 (C), 132.4 (Co), 134.0 (C), 142.9 (C), 176.1 (N—C=O), 179.6 (N—C=O), 203.9 (C=S). MS–ESI (m/z) found for [M + H]+ 540.1543, C28H31ClN3O2S2 has an exact mass of 540.1546. MS–EI (70 eV) m/z (%) 499 (6), 284 [100, M+ − 4-Cl-(C6H4)–CHC–CONHCS2], 255 {27, [4-Cl-(C6H4)–CHC–CONHCS2]}, 217 (17), 168 (82), 133 (33), 118 (25), 89 (38). Analysis (%) found: C 62.4, H 5.5, N 7.7; C28H30ClN3O2S2 requires: C 62.3, H 5.6, N 7.8.
2.2.2. Compound (II)
Yield 50%, m.p. > 570 K. NMR (DMSO-d6): δ(1H) 1.84 (dt, J = 19.1, 17.4, 9.1 Hz, 1H, H-6′), 1.92–2.01 (m, 1H, H-7′), 2.02–2.14 (m, 2H, H-6′ & H-7′), 2.25 (s, 3H, 5-CH3), 2.54–2.61 (m, 1H, H-5′), 4.43 (t, J = 7.2 Hz, 1H, H-7a′), 4.67 (s, 1H, H-2′), 4.80 (d, J = 15.5 Hz, 1H, NCHH), 4.86 (d, J = 15.5 Hz, 1H, NCHH), 6.69 (d, J = 8.00 Hz, 1H), 6.93 (d, J = 7.61 Hz, 1H), 7.10 (d, J = 8.94 Hz, 2H), 7.14 (d, J = 8.76 Hz, 2H), 7.21 (dd, J = 7.55, 1.98 Hz, 2H), 7.27–7.37 (m, 4H), 13.22 (br s, 1H, H-3′′); δ(13C) 21.1 (5-CH3), 28.2 (CH2), 30.0 (CH2), 43.5 (N—CH2), 47.2 (CH2), 65.2 (C-2′), 74.4 (C-spiro), 74.9 (C-7a′), 75.2 (C-spiro), 109.8 (CH), 124.8 (CH), 128.0 (CH), 128.2 (CH), 128.8 (CH), 129.0 (C), 129.1 (CH), 130.1 (CH), 130.5 (C), 132.3 (CH), 133.1 (C), 133.9 (C), 136.3 (C), 140.1 (C), 176.2 (N—C=O), 179.6 (N—C=O), 203.8 (C=S). MS–EI (70 eV) m/z (%) 539 (5), 304 {60, M+ − 4-Cl-(C6H4)–CHC–CONHCS2], 255 {4, [4-Cl-(C6H4)–CHC–CONHCS2]}, 236 (16), 213 (10), 168 (100), 133 (40), 123 (8), 91 [75, (C7H7)+], 89 (55). Analysis (%) found: C 64.4, H 4.6, N 7.4; C30H26ClN3O2S2 requires: C 64.3, H 4.7, N 7.5.
2.2.3. Compound (III)
Yield 49%, m.p. > 570 K. NMR (DMSO-d6): δ(1H) 1.76–1.89 (m, 1H, H-6′), 1.89–1.99 (m, 1H, H-7′), 2.00–2.12 (m, 2H, H-6′ & H-7′), 2.53–2.64 (m, 1H, H-5′), 4.41 (t, J = 7.3 Hz, 1H, H-7a′), 4.66 (s, 1H, H-2′), 6.62 (dd, J = 8.4, 4.3 Hz, 1H), 6.92 (ddd, J = 11.1, 8.7, 2.7 Hz, 1H), 7.24 (d, J = 8.6, Hz, 2H, Ho), 7.31 (d, J = 8.6 Hz, 2H, Hm), 7.37 (dd, J = 8.1, 2.7 Hz, 1H), 10.73 (s, 1H, NH), 13.19 (br s, 1H, NH-1), 13.19 (br s, 1H, H-3′′); δ(13C) 28.2 (CH2), 29.9 (CH2), 47.3 (CH2), 65.0 (C-2′), 74.3 (C-spiro), 75.0 (C-7a′), 75.9 (C-spiro), 111.2 (d, JCF = 7.3 Hz, C), 112.2 (d, JCF = 24.8 Hz, CH), 116.2 (d, JCF = 23.3 Hz, CH), 128.9 (CH), 130.6 (C), 131.7 (d, JCF = 7.3 Hz, C—N), 132.3 (CH), 134.1 (C), 137.9 (C), 157.8 (C), 159.0 (d, JCF = 237 Hz, C—F), 160.2 (C), 178.3 (N—C=O), 179.5 (N—C=O), 204.0 (C=S). MS–EI (70 eV) m/z (%) 473 (1.3, M+), 368 (3), 355 (6), 255 [6, 4-Cl-(C6H4)-CHC-CONHCS2], 218 {20, M+ − [4-Cl-(C6H4)–CHC–CONHCS2]}, 215 (51), 168 (17), 160 (20), 127 (35), 111 (18), 97 (37), 81 (49), 55 (75), 44 (100). Analysis (%) found: C 55.7, H 3.7, N 8.8; C22H17ClFN3O2S2 requires: C 55.8, H 3.6, N 8.9.
2.3. Refinement
Crystal data, data collection and structure . The atom labelling for the central dispiro unit is based on the systematic chemical numbering, following the convention used previously (Quiroga et al., 2017); thus, the atoms with chemical locants N1, C2 and so on are labelled here as N11, C12, etc.; those atoms with chemical locants such as C1′, C2′ and so on are labelled here as C21, C22, etc.; and those atoms with chemical locants such as S1′′, C2′′ and so on are labelled here as S31, C32, etc. All other chemical fragments are treated as substituents on the central dispiro unit. All H atoms were located in difference maps. H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic C—H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving an N—H distance of 0.862 (17) Å in (I) and 0.77 (3) Å in (II). For compound (II), the correct orientation of the structure with respect to the polar-axis direction was calculated by means of the Flack x parameter (Flack, 1983), with x = 0.050 (19) as calculated (Parsons et al., 2013) using 2956 quotients of the type [(I+) − (I−)]/[(I+) + (I−)].
details are summarized in Table 13. Results and discussion
Compounds (I)–(III) (Scheme 1) were each isolated as a single stereoisomer in yields of 53% for (I), 49% for (II) and 50% for (III). For all three products, the compositions were established by elemental analysis, complemented by high-resolution in the case of (I) (§2.1). The 1H and 13C NMR spectra contained all the signals expected for the proposed formulations, and the regioselectivity of the reactions leading to the products was established by analysis of the 1H spectra; it is necessary here to discuss only the analysis for (I), as those for (II) and (III) follow entirely similar lines. For (I), the signal from the proton H2′ bonded to atom C2′ (atom C22 in the crystallographic labeling scheme; see Fig. 1 and §2.2) was observed as a singlet at δ 4.64, while the signal for H7a′ bonded to C7a′ (C27A) was observed as a triplet (J = 7.22 Hz) at δ 4.42. These two signals indicate the formation of the pyrrolizine in (I), singly substituted at position C2′ and doubly substituted at positions C1′ and C3′, so confirming the identity of regioisomer (I) (Scheme 1 and Fig. 1). Had the alternative regioisomer (Ia) been formed, the appearance of these two pyrrolizine signals would have been different; that for atom H7a′ would have been a doublet of triplets and, crucially, that for atom H1′ would have appeared as a doublet, rather than the singlet actually observed. Entirely similar remarks apply to the spectra of compounds (II) and (III) but, in addition, five of the signals in the 13C NMR spectrum of (III) exhibit coupling to the 19F nucleus at position 5, namely, those at δ 159.0 for C5, 131.7 for C7, 116.2 and 112.2 for C4 and C6, and 111.2 for C3A; the four-bond coupling to atom C7A is too small to be resolved.
Although the regiochemistry of the synthetic reactions can be deduced from the NMR data, it is not possible to establish from these data the relative stereochemistry of all four stereogenic centres, but this is readily achieved by and (II) (Table 1) show that they have both crystallized as racemic mixtures and, for each compound, the reference molecule was selected as that having the R configuration at atom C13 (Figs. 1 and 2); on this basis, the configuration at each of atoms C21, C22 and C27A is S, with these atoms corresponding, respectively, to locants C3, C1′, C2′ and C7a′ in the chemical numbering scheme, so that the overall configuration of these compounds is (3RS,1′SR,2′SR,3′SR).
analysis. The space groups for compounds (I)Based on earlier work (Pardasani et al., 2003; Quiroga et al., 2017), a reaction sequence can be proposed which commences with nucleophilic addition of the proline component (B) to the isatin (A) (Scheme 1) to form the intermediate (D) (Scheme 2), followed by sequential cyclodehydration to give (E) and decarboxylation to form the key azomethine intermediate (F). This intermediate then undergoes a 1,3-dipolar cycloaddition with the electron-deficient alkene (C) to form the products (I)–(III). The alternative orientation of the alkene relative to the azomethine in the would give the products (Ia)–(IIIa) with transposed chlorophenyl and rhodanine units, but these have not been detected. Thus, the negative pole of intermediate (F) has coupled to the heterocyclic end of the alkenic double bond, adjacent to the carbonyl group, rather than to the chlorophenyl end. Neither of the components in the cycloaddition reaction step contains any stereogenic centres, and there are no reagents present which could induce enantioselectivity; hence the products are formed as racemic mixtures. These each contain four contiguous stereogenic centres, so that whichever of these centres is formed first, it appears to exert strong control over the formation of all the others. In the transition state leading to the formation of the products (I)–(III), the reactants can approach one another in two orientations: the endo transition state, in which the Cl atom is remote from the aryl ring of the isatin unit, leads to the observed (3RS,1′SR,2′SR,3′SR) stereochemistry, whereas the alternative exo transition state, with the Cl atom close to the aryl ring of the isatin, would lead to the alternative (3RS,1′RS,2′RS,3′RS) stereochemistry, which is not observed. The choice of the transition state in this step is presumably determined by the minimization of Hence this proposed can account for both the regiochemistry and for the relative stereochemistry at the four stereogenic centres.
Within the molecules of (I) and (II), the rhodanine rings are almost planar, with r.m.s. deviations from the mean planes of the five ring atoms of 0.0573 Å in (I) and 0.0210 Å in (II). However, the rings containing atoms C22 and C25 (Figs. 1 and 2) both adopt half-chair conformations, as indicated by the ring-puckering parameters (Cremer & Pople, 1975) shown in Table 2. For an idealized half-chair conformation, the value of φ2 is (36k + 18)°, where k represents an integer (Boeyens, 1978). Here the rings denoted A (Table 2) are twisted about a line joining atom C27A to the mid-point of the C13—C22 bond, while the rings denoted B are twisted about a line joining atom N24 to the mid-point of the C26—C27 bond.
|
Overall, therefore, the composition of compounds (I)–(III) has been determined; the constitutions, including the regiochemistry, have been established from the NMR spectra and the relative configurations of the stereogenic centres, and the conformations of the nonplanar rings in (I) and (II) have been established from the X-ray structure analyses. We have also investigated the of compound (III). Despite repeated attempts at crystallization, this compound consistently formed tightly-packed clusters of very thin lath-like crystals, and the resulting diffraction data and the structure deduced from it is of somewhat indifferent quality (see supporting information). After conventional of (III), the resulting difference map contained several significant electron-density maxima, but no chemically plausible solvent model could be developed from these peaks. Accordingly, SQUEEZE (Spek, 2015) was applied and the using this modified data set established that the constitution and configuration of (III) are the same as those for compounds (I) and (II), and that the conformations of the type A and B rings are also very similar to those in (I) and (II) (Table 2). However, the identity of the included solvent species remains undetermined.
The supramolecular assembly of both (I) and (II) is very simple. In compound (I), a single N—H⋯N hydrogen bond (Table 3) links molecules which are related by a 21 screw axis to form simple C(6) chains (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) running parallel to the [010] direction (Fig. 3), but there are no direction-specific interactions between adjacent chains. In compound (II), molecules which are related by a 21 screw axis are linked by a combination of one N—H⋯O hydrogen bond and one C—H⋯S=C hydrogen bond (Table 3). These two interactions, acting singly, give rise to C(8) and C(12) chains, respectively, while in combination they generate a C(8)C(12)[R22(11)] chain of rings (Fig. 4). There are no direction-specific interactions between adjacent chains. The of (III) contains N—H⋯N and N—H⋯S hydrogen bonds (Table 3), which individually generate C(6) and C(9) chains, both running parallel to the [010] direction, and in combination these interactions generate a sheet of R44(24) rings lying parallel to (001) (Fig. 5).
|
A number of structures have been reported for spiro[indoline-3,3′-pyrrolizine] derivatives (Sarrafi & Alimohammadi, 2008a,b; Sathya et al., 2012; Fathimunnisa et al., 2015; Corres et al., 2016), but often without any mention of either the relative or the absolute stereochemistry, despite the presence of multiple stereogenic centres.
Supporting information
https://doi.org/10.1107/S2053229620009791/ky3198sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229620009791/ky3198Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2053229620009791/ky3198IIsup3.hkl
data for structure (III). DOI:For both structures, data collection: APEX3 (Bruker, 2018); cell
SAINT(Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).C28H30ClN3O2S2 | F(000) = 1136 |
Mr = 540.12 | Dx = 1.395 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.1669 (5) Å | Cell parameters from 6390 reflections |
b = 10.7145 (3) Å | θ = 2.3–28.3° |
c = 17.1350 (5) Å | µ = 0.34 mm−1 |
β = 98.654 (1)° | T = 100 K |
V = 2571.33 (14) Å3 | Block, colourless |
Z = 4 | 0.18 × 0.11 × 0.05 mm |
Bruker D8 Venture diffractometer | 6390 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 5580 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.049 |
φ and ω scans | θmax = 28.3°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −18→18 |
Tmin = 0.906, Tmax = 0.983 | k = −14→14 |
58781 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0261P)2 + 1.9059P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
6390 reflections | Δρmax = 0.47 e Å−3 |
329 parameters | Δρmin = −0.41 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.38984 (8) | 0.46405 (10) | 0.32810 (6) | 0.0124 (2) | |
C12 | 0.30350 (9) | 0.46202 (11) | 0.35416 (7) | 0.0111 (2) | |
O12 | 0.28957 (7) | 0.48958 (9) | 0.42055 (5) | 0.01425 (19) | |
C13 | 0.22665 (9) | 0.41823 (12) | 0.28497 (7) | 0.0101 (2) | |
C13A | 0.28767 (9) | 0.38460 (12) | 0.22290 (7) | 0.0110 (2) | |
C14 | 0.26377 (9) | 0.33426 (12) | 0.14842 (8) | 0.0132 (2) | |
H14 | 0.1993 | 0.3139 | 0.1286 | 0.016* | |
C15 | 0.33628 (10) | 0.31370 (13) | 0.10258 (8) | 0.0155 (3) | |
H15 | 0.3213 | 0.2767 | 0.0518 | 0.019* | |
C16 | 0.42985 (10) | 0.34706 (13) | 0.13089 (8) | 0.0174 (3) | |
H16 | 0.4780 | 0.3334 | 0.0988 | 0.021* | |
C17 | 0.45472 (10) | 0.40035 (13) | 0.20557 (8) | 0.0162 (3) | |
H17 | 0.5186 | 0.4245 | 0.2245 | 0.019* | |
C17A | 0.38255 (9) | 0.41647 (12) | 0.25075 (7) | 0.0123 (2) | |
C21 | 0.08415 (9) | 0.51746 (12) | 0.32233 (7) | 0.0103 (2) | |
C22 | 0.15215 (9) | 0.52067 (11) | 0.25754 (7) | 0.0099 (2) | |
H22 | 0.1129 | 0.4856 | 0.2091 | 0.012* | |
N24 | 0.16385 (7) | 0.31858 (10) | 0.30627 (6) | 0.0101 (2) | |
C25 | 0.20764 (9) | 0.21899 (12) | 0.36102 (7) | 0.0130 (2) | |
H25A | 0.2707 | 0.2458 | 0.3890 | 0.016* | |
H25B | 0.2158 | 0.1409 | 0.3319 | 0.016* | |
C26 | 0.13670 (10) | 0.20031 (12) | 0.41911 (8) | 0.0143 (3) | |
H26A | 0.1692 | 0.1688 | 0.4705 | 0.017* | |
H26B | 0.0856 | 0.1411 | 0.3978 | 0.017* | |
C27 | 0.09634 (9) | 0.33176 (12) | 0.42746 (7) | 0.0137 (2) | |
H27A | 0.0348 | 0.3291 | 0.4482 | 0.016* | |
H27B | 0.1419 | 0.3851 | 0.4621 | 0.016* | |
C27A | 0.08320 (9) | 0.37667 (12) | 0.34186 (7) | 0.0109 (2) | |
H271 | 0.0220 | 0.3409 | 0.3142 | 0.013* | |
S31 | 0.11441 (2) | 0.62162 (3) | 0.40671 (2) | 0.01185 (7) | |
C32 | 0.02013 (9) | 0.72364 (12) | 0.37629 (7) | 0.0116 (2) | |
S32 | 0.00374 (2) | 0.85216 (3) | 0.42460 (2) | 0.01431 (7) | |
N33 | −0.03583 (8) | 0.68025 (10) | 0.31006 (6) | 0.0121 (2) | |
H33 | −0.0841 (12) | 0.7206 (16) | 0.2856 (10) | 0.014* | |
C34 | −0.01382 (9) | 0.56458 (12) | 0.28215 (7) | 0.0112 (2) | |
O34 | −0.06330 (7) | 0.50921 (9) | 0.23002 (5) | 0.01482 (19) | |
C111 | 0.47900 (9) | 0.49823 (13) | 0.37816 (8) | 0.0145 (3) | |
H11A | 0.4638 | 0.5358 | 0.4276 | 0.017* | |
H11B | 0.5121 | 0.5623 | 0.3507 | 0.017* | |
C112 | 0.54657 (9) | 0.38780 (13) | 0.39904 (8) | 0.0151 (3) | |
H12A | 0.5736 | 0.3630 | 0.3513 | 0.018* | |
H12B | 0.6002 | 0.4153 | 0.4392 | 0.018* | |
C113 | 0.49993 (10) | 0.27395 (13) | 0.43052 (8) | 0.0165 (3) | |
H13A | 0.4452 | 0.2473 | 0.3912 | 0.020* | |
H13B | 0.4749 | 0.2973 | 0.4794 | 0.020* | |
C114 | 0.56909 (10) | 0.16447 (13) | 0.44815 (8) | 0.0179 (3) | |
H14A | 0.5332 | 0.0914 | 0.4634 | 0.021* | |
H14B | 0.5946 | 0.1425 | 0.3992 | 0.021* | |
C115 | 0.65276 (10) | 0.18967 (13) | 0.51338 (8) | 0.0175 (3) | |
H15A | 0.6277 | 0.2152 | 0.5619 | 0.021* | |
H15B | 0.6911 | 0.2597 | 0.4972 | 0.021* | |
C116 | 0.71704 (11) | 0.07583 (14) | 0.53159 (9) | 0.0237 (3) | |
H16A | 0.7424 | 0.0505 | 0.4839 | 0.036* | |
H16B | 0.6800 | 0.0071 | 0.5494 | 0.036* | |
H16C | 0.7700 | 0.0968 | 0.5732 | 0.036* | |
C221 | 0.18456 (9) | 0.64645 (12) | 0.23251 (7) | 0.0115 (2) | |
C222 | 0.15072 (10) | 0.68746 (13) | 0.15582 (8) | 0.0153 (3) | |
H222 | 0.1120 | 0.6335 | 0.1204 | 0.018* | |
C223 | 0.17286 (10) | 0.80581 (14) | 0.13059 (8) | 0.0187 (3) | |
H223 | 0.1498 | 0.8328 | 0.0784 | 0.022* | |
C224 | 0.22895 (10) | 0.88346 (13) | 0.18270 (9) | 0.0185 (3) | |
Cl24 | 0.25285 (3) | 1.03498 (3) | 0.15442 (3) | 0.02795 (10) | |
C225 | 0.26587 (10) | 0.84461 (13) | 0.25809 (9) | 0.0179 (3) | |
H225 | 0.3056 | 0.8985 | 0.2928 | 0.021* | |
C226 | 0.24403 (9) | 0.72571 (12) | 0.28246 (8) | 0.0145 (3) | |
H226 | 0.2700 | 0.6980 | 0.3339 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0098 (5) | 0.0146 (5) | 0.0126 (5) | −0.0008 (4) | 0.0012 (4) | −0.0001 (4) |
C12 | 0.0104 (6) | 0.0087 (5) | 0.0140 (6) | 0.0012 (4) | 0.0009 (4) | 0.0019 (4) |
O12 | 0.0141 (4) | 0.0166 (5) | 0.0120 (4) | 0.0010 (4) | 0.0018 (3) | −0.0013 (3) |
C13 | 0.0102 (6) | 0.0101 (6) | 0.0100 (5) | −0.0003 (4) | 0.0020 (4) | 0.0000 (4) |
C13A | 0.0114 (6) | 0.0096 (6) | 0.0127 (6) | 0.0012 (4) | 0.0038 (5) | 0.0027 (4) |
C14 | 0.0132 (6) | 0.0124 (6) | 0.0139 (6) | 0.0004 (5) | 0.0019 (5) | 0.0017 (5) |
C15 | 0.0193 (7) | 0.0149 (6) | 0.0129 (6) | 0.0025 (5) | 0.0049 (5) | 0.0004 (5) |
C16 | 0.0167 (7) | 0.0202 (7) | 0.0173 (6) | 0.0037 (5) | 0.0088 (5) | 0.0022 (5) |
C17 | 0.0117 (6) | 0.0192 (7) | 0.0185 (6) | 0.0007 (5) | 0.0046 (5) | 0.0021 (5) |
C17A | 0.0123 (6) | 0.0117 (6) | 0.0132 (6) | 0.0005 (5) | 0.0026 (5) | 0.0017 (5) |
C21 | 0.0094 (6) | 0.0121 (6) | 0.0091 (5) | 0.0000 (4) | 0.0011 (4) | −0.0007 (4) |
C22 | 0.0087 (5) | 0.0116 (6) | 0.0097 (5) | 0.0004 (4) | 0.0022 (4) | −0.0002 (4) |
N24 | 0.0089 (5) | 0.0100 (5) | 0.0116 (5) | 0.0004 (4) | 0.0026 (4) | 0.0015 (4) |
C25 | 0.0126 (6) | 0.0122 (6) | 0.0140 (6) | 0.0014 (5) | 0.0018 (5) | 0.0034 (5) |
C26 | 0.0158 (6) | 0.0140 (6) | 0.0135 (6) | 0.0001 (5) | 0.0035 (5) | 0.0032 (5) |
C27 | 0.0148 (6) | 0.0152 (6) | 0.0121 (6) | 0.0003 (5) | 0.0049 (5) | 0.0025 (5) |
C27A | 0.0096 (6) | 0.0117 (6) | 0.0116 (6) | 0.0003 (5) | 0.0026 (4) | 0.0009 (4) |
S31 | 0.01191 (14) | 0.01336 (15) | 0.00997 (14) | 0.00198 (11) | 0.00067 (11) | −0.00128 (11) |
C32 | 0.0110 (6) | 0.0138 (6) | 0.0108 (5) | −0.0002 (5) | 0.0040 (4) | 0.0024 (4) |
S32 | 0.01623 (16) | 0.01289 (15) | 0.01414 (15) | 0.00173 (12) | 0.00338 (12) | −0.00180 (11) |
N33 | 0.0106 (5) | 0.0126 (5) | 0.0129 (5) | 0.0022 (4) | 0.0011 (4) | 0.0006 (4) |
C34 | 0.0105 (6) | 0.0135 (6) | 0.0102 (5) | 0.0008 (5) | 0.0039 (4) | 0.0022 (4) |
O34 | 0.0124 (4) | 0.0169 (5) | 0.0145 (4) | 0.0005 (4) | 0.0000 (3) | −0.0018 (4) |
C111 | 0.0106 (6) | 0.0158 (6) | 0.0164 (6) | −0.0023 (5) | −0.0004 (5) | −0.0001 (5) |
C112 | 0.0102 (6) | 0.0183 (6) | 0.0163 (6) | −0.0006 (5) | 0.0006 (5) | 0.0012 (5) |
C113 | 0.0129 (6) | 0.0173 (6) | 0.0187 (6) | −0.0011 (5) | 0.0001 (5) | 0.0015 (5) |
C114 | 0.0183 (7) | 0.0151 (6) | 0.0194 (7) | −0.0005 (5) | −0.0001 (5) | −0.0010 (5) |
C115 | 0.0154 (6) | 0.0173 (7) | 0.0193 (7) | 0.0012 (5) | 0.0007 (5) | −0.0005 (5) |
C116 | 0.0224 (7) | 0.0212 (7) | 0.0259 (7) | 0.0057 (6) | −0.0014 (6) | 0.0002 (6) |
C221 | 0.0101 (6) | 0.0116 (6) | 0.0136 (6) | 0.0023 (5) | 0.0043 (5) | 0.0009 (5) |
C222 | 0.0134 (6) | 0.0188 (7) | 0.0143 (6) | 0.0018 (5) | 0.0046 (5) | 0.0026 (5) |
C223 | 0.0180 (7) | 0.0208 (7) | 0.0190 (7) | 0.0048 (5) | 0.0082 (5) | 0.0080 (5) |
C224 | 0.0167 (7) | 0.0117 (6) | 0.0305 (8) | 0.0032 (5) | 0.0144 (6) | 0.0065 (5) |
Cl24 | 0.0302 (2) | 0.01309 (16) | 0.0458 (2) | 0.00390 (14) | 0.02268 (17) | 0.01029 (15) |
C225 | 0.0158 (6) | 0.0140 (6) | 0.0251 (7) | −0.0020 (5) | 0.0075 (5) | −0.0022 (5) |
C226 | 0.0134 (6) | 0.0143 (6) | 0.0161 (6) | 0.0003 (5) | 0.0033 (5) | 0.0009 (5) |
N11—C12 | 1.3639 (16) | S31—C32 | 1.7438 (13) |
N11—C17A | 1.4093 (16) | C32—N33 | 1.3645 (16) |
N11—C111 | 1.4627 (16) | C32—S32 | 1.6411 (13) |
C12—O12 | 1.2198 (16) | N33—C34 | 1.3809 (17) |
C12—C13 | 1.5566 (17) | N33—H33 | 0.862 (17) |
C13—N24 | 1.4705 (16) | C34—O34 | 1.2053 (16) |
C13—C13A | 1.5115 (17) | C111—C112 | 1.5301 (18) |
C13—C22 | 1.5460 (17) | C111—H11A | 0.9900 |
C13A—C14 | 1.3800 (18) | C111—H11B | 0.9900 |
C13A—C17A | 1.3993 (18) | C112—C113 | 1.5241 (19) |
C14—C15 | 1.4014 (18) | C112—H12A | 0.9900 |
C14—H14 | 0.9500 | C112—H12B | 0.9900 |
C15—C16 | 1.388 (2) | C113—C114 | 1.5291 (19) |
C15—H15 | 0.9500 | C113—H13A | 0.9900 |
C16—C17 | 1.3972 (19) | C113—H13B | 0.9900 |
C16—H16 | 0.9500 | C114—C115 | 1.5259 (19) |
C17—C17A | 1.3830 (18) | C114—H14A | 0.9900 |
C17—H17 | 0.9500 | C114—H14B | 0.9900 |
C21—C34 | 1.5388 (17) | C115—C116 | 1.5261 (19) |
C21—C27A | 1.5457 (17) | C115—H15A | 0.9900 |
C21—C22 | 1.5758 (17) | C115—H15B | 0.9900 |
C21—S31 | 1.8258 (13) | C116—H16A | 0.9800 |
C22—C221 | 1.5067 (17) | C116—H16B | 0.9800 |
C22—H22 | 1.0000 | C116—H16C | 0.9800 |
N24—C25 | 1.4928 (16) | C221—C226 | 1.3951 (18) |
N24—C27A | 1.5080 (16) | C221—C222 | 1.4000 (18) |
C25—C26 | 1.5304 (18) | C222—C223 | 1.3908 (19) |
C25—H25A | 0.9900 | C222—H222 | 0.9500 |
C25—H25B | 0.9900 | C223—C224 | 1.381 (2) |
C26—C27 | 1.5348 (18) | C223—H223 | 0.9500 |
C26—H26A | 0.9900 | C224—C225 | 1.383 (2) |
C26—H26B | 0.9900 | C224—Cl24 | 1.7419 (14) |
C27—C27A | 1.5282 (17) | C225—C226 | 1.3899 (19) |
C27—H27A | 0.9900 | C225—H225 | 0.9500 |
C27—H27B | 0.9900 | C226—H226 | 0.9500 |
C27A—H271 | 1.0000 | ||
C12—N11—C17A | 111.08 (10) | C27—C27A—H271 | 107.8 |
C12—N11—C111 | 123.36 (11) | C21—C27A—H271 | 107.8 |
C17A—N11—C111 | 125.22 (11) | C32—S31—C21 | 93.93 (6) |
O12—C12—N11 | 125.48 (12) | N33—C32—S32 | 126.64 (10) |
O12—C12—C13 | 126.20 (11) | N33—C32—S31 | 110.98 (9) |
N11—C12—C13 | 108.32 (10) | S32—C32—S31 | 122.37 (8) |
N24—C13—C13A | 115.66 (10) | C32—N33—C34 | 117.43 (11) |
N24—C13—C22 | 100.37 (9) | C32—N33—H33 | 123.5 (11) |
C13A—C13—C22 | 113.07 (10) | C34—N33—H33 | 119.1 (11) |
N24—C13—C12 | 114.19 (10) | O34—C34—N33 | 124.19 (12) |
C13A—C13—C12 | 101.49 (10) | O34—C34—C21 | 123.71 (11) |
C22—C13—C12 | 112.63 (10) | N33—C34—C21 | 112.03 (11) |
C14—C13A—C17A | 120.01 (12) | N11—C111—C112 | 113.47 (11) |
C14—C13A—C13 | 131.08 (12) | N11—C111—H11A | 108.9 |
C17A—C13A—C13 | 108.88 (11) | C112—C111—H11A | 108.9 |
C13A—C14—C15 | 118.77 (12) | N11—C111—H11B | 108.9 |
C13A—C14—H14 | 120.6 | C112—C111—H11B | 108.9 |
C15—C14—H14 | 120.6 | H11A—C111—H11B | 107.7 |
C16—C15—C14 | 120.38 (12) | C113—C112—C111 | 114.35 (11) |
C16—C15—H15 | 119.8 | C113—C112—H12A | 108.7 |
C14—C15—H15 | 119.8 | C111—C112—H12A | 108.7 |
C15—C16—C17 | 121.42 (12) | C113—C112—H12B | 108.7 |
C15—C16—H16 | 119.3 | C111—C112—H12B | 108.7 |
C17—C16—H16 | 119.3 | H12A—C112—H12B | 107.6 |
C17A—C17—C16 | 117.26 (13) | C112—C113—C114 | 112.63 (11) |
C17A—C17—H17 | 121.4 | C112—C113—H13A | 109.1 |
C16—C17—H17 | 121.4 | C114—C113—H13A | 109.1 |
C17—C17A—C13A | 122.12 (12) | C112—C113—H13B | 109.1 |
C17—C17A—N11 | 128.02 (12) | C114—C113—H13B | 109.1 |
C13A—C17A—N11 | 109.86 (11) | H13A—C113—H13B | 107.8 |
C34—C21—C27A | 112.36 (10) | C115—C114—C113 | 114.40 (11) |
C34—C21—C22 | 106.47 (9) | C115—C114—H14A | 108.7 |
C27A—C21—C22 | 101.54 (9) | C113—C114—H14A | 108.7 |
C34—C21—S31 | 104.02 (8) | C115—C114—H14B | 108.7 |
C27A—C21—S31 | 115.71 (8) | C113—C114—H14B | 108.7 |
C22—C21—S31 | 116.68 (8) | H14A—C114—H14B | 107.6 |
C221—C22—C13 | 119.88 (10) | C114—C115—C116 | 112.47 (12) |
C221—C22—C21 | 117.70 (10) | C114—C115—H15A | 109.1 |
C13—C22—C21 | 103.42 (9) | C116—C115—H15A | 109.1 |
C221—C22—H22 | 104.7 | C114—C115—H15B | 109.1 |
C13—C22—H22 | 104.7 | C116—C115—H15B | 109.1 |
C21—C22—H22 | 104.7 | H15A—C115—H15B | 107.8 |
C13—N24—C25 | 117.73 (10) | C115—C116—H16A | 109.5 |
C13—N24—C27A | 108.92 (9) | C115—C116—H16B | 109.5 |
C25—N24—C27A | 108.02 (9) | H16A—C116—H16B | 109.5 |
N24—C25—C26 | 104.52 (10) | C115—C116—H16C | 109.5 |
N24—C25—H25A | 110.8 | H16A—C116—H16C | 109.5 |
C26—C25—H25A | 110.8 | H16B—C116—H16C | 109.5 |
N24—C25—H25B | 110.8 | C226—C221—C222 | 118.33 (12) |
C26—C25—H25B | 110.8 | C226—C221—C22 | 123.48 (11) |
H25A—C25—H25B | 108.9 | C222—C221—C22 | 118.16 (11) |
C25—C26—C27 | 103.35 (10) | C223—C222—C221 | 121.11 (13) |
C25—C26—H26A | 111.1 | C223—C222—H222 | 119.4 |
C27—C26—H26A | 111.1 | C221—C222—H222 | 119.4 |
C25—C26—H26B | 111.1 | C224—C223—C222 | 118.88 (13) |
C27—C26—H26B | 111.1 | C224—C223—H223 | 120.6 |
H26A—C26—H26B | 109.1 | C222—C223—H223 | 120.6 |
C27A—C27—C26 | 101.12 (10) | C223—C224—C225 | 121.51 (13) |
C27A—C27—H27A | 111.5 | C223—C224—Cl24 | 119.91 (11) |
C26—C27—H27A | 111.5 | C225—C224—Cl24 | 118.58 (12) |
C27A—C27—H27B | 111.5 | C224—C225—C226 | 119.11 (13) |
C26—C27—H27B | 111.5 | C224—C225—H225 | 120.4 |
H27A—C27—H27B | 109.4 | C226—C225—H225 | 120.4 |
N24—C27A—C27 | 105.54 (10) | C225—C226—C221 | 120.99 (13) |
N24—C27A—C21 | 106.46 (10) | C225—C226—H226 | 119.5 |
C27—C27A—C21 | 120.75 (11) | C221—C226—H226 | 119.5 |
N24—C27A—H271 | 107.8 | ||
C17A—N11—C12—O12 | 174.79 (12) | C27A—N24—C25—C26 | 12.63 (13) |
C111—N11—C12—O12 | 1.2 (2) | N24—C25—C26—C27 | −34.02 (13) |
C17A—N11—C12—C13 | −5.00 (14) | C25—C26—C27—C27A | 41.69 (12) |
C111—N11—C12—C13 | −178.62 (11) | C13—N24—C27A—C27 | −115.28 (11) |
O12—C12—C13—N24 | −48.63 (17) | C25—N24—C27A—C27 | 13.68 (13) |
N11—C12—C13—N24 | 131.16 (11) | C13—N24—C27A—C21 | 14.19 (12) |
O12—C12—C13—C13A | −173.78 (12) | C25—N24—C27A—C21 | 143.14 (10) |
N11—C12—C13—C13A | 6.01 (13) | C26—C27—C27A—N24 | −34.02 (12) |
O12—C12—C13—C22 | 65.02 (16) | C26—C27—C27A—C21 | −154.53 (11) |
N11—C12—C13—C22 | −115.19 (11) | C34—C21—C27A—N24 | 127.01 (10) |
N24—C13—C13A—C14 | 52.65 (18) | C22—C21—C27A—N24 | 13.63 (12) |
C22—C13—C13A—C14 | −62.29 (17) | S31—C21—C27A—N24 | −113.73 (9) |
C12—C13—C13A—C14 | 176.81 (13) | C34—C21—C27A—C27 | −112.93 (12) |
N24—C13—C13A—C17A | −129.14 (11) | C22—C21—C27A—C27 | 133.69 (11) |
C22—C13—C13A—C17A | 115.91 (12) | S31—C21—C27A—C27 | 6.33 (15) |
C12—C13—C13A—C17A | −4.98 (13) | C34—C21—S31—C32 | −9.48 (9) |
C17A—C13A—C14—C15 | 1.29 (19) | C27A—C21—S31—C32 | −133.22 (9) |
C13—C13A—C14—C15 | 179.33 (12) | C22—C21—S31—C32 | 107.42 (9) |
C13A—C14—C15—C16 | −1.9 (2) | C21—S31—C32—N33 | 3.99 (10) |
C14—C15—C16—C17 | 0.7 (2) | C21—S31—C32—S32 | −177.07 (8) |
C15—C16—C17—C17A | 1.1 (2) | S32—C32—N33—C34 | −174.88 (10) |
C16—C17—C17A—C13A | −1.8 (2) | S31—C32—N33—C34 | 4.00 (14) |
C16—C17—C17A—N11 | 177.88 (13) | C32—N33—C34—O34 | 171.20 (12) |
C14—C13A—C17A—C17 | 0.6 (2) | C32—N33—C34—C21 | −11.88 (15) |
C13—C13A—C17A—C17 | −177.83 (12) | C27A—C21—C34—O34 | −43.92 (16) |
C14—C13A—C17A—N11 | −179.13 (11) | C22—C21—C34—O34 | 66.39 (15) |
C13—C13A—C17A—N11 | 2.43 (14) | S31—C21—C34—O34 | −169.81 (11) |
C12—N11—C17A—C17 | −177.99 (13) | C27A—C21—C34—N33 | 139.14 (11) |
C111—N11—C17A—C17 | −4.5 (2) | C22—C21—C34—N33 | −110.55 (11) |
C12—N11—C17A—C13A | 1.73 (15) | S31—C21—C34—N33 | 13.26 (12) |
C111—N11—C17A—C13A | 175.20 (11) | C12—N11—C111—C112 | 109.24 (14) |
N24—C13—C22—C221 | 177.40 (10) | C17A—N11—C111—C112 | −63.47 (16) |
C13A—C13—C22—C221 | −58.79 (15) | N11—C111—C112—C113 | −49.81 (15) |
C12—C13—C22—C221 | 55.56 (14) | C111—C112—C113—C114 | 178.19 (11) |
N24—C13—C22—C21 | 43.91 (11) | C112—C113—C114—C115 | 63.75 (16) |
C13A—C13—C22—C21 | 167.72 (10) | C113—C114—C115—C116 | 177.22 (12) |
C12—C13—C22—C21 | −77.93 (12) | C13—C22—C221—C226 | −61.00 (16) |
C34—C21—C22—C221 | 72.19 (13) | C21—C22—C221—C226 | 66.16 (16) |
C27A—C21—C22—C221 | −170.08 (10) | C13—C22—C221—C222 | 121.09 (13) |
S31—C21—C22—C221 | −43.35 (14) | C21—C22—C221—C222 | −111.76 (13) |
C34—C21—C22—C13 | −153.08 (10) | C226—C221—C222—C223 | −2.19 (19) |
C27A—C21—C22—C13 | −35.35 (11) | C22—C221—C222—C223 | 175.83 (12) |
S31—C21—C22—C13 | 91.38 (10) | C221—C222—C223—C224 | −0.2 (2) |
C13A—C13—N24—C25 | 78.63 (13) | C222—C223—C224—C225 | 2.2 (2) |
C22—C13—N24—C25 | −159.37 (10) | C222—C223—C224—Cl24 | −176.75 (10) |
C12—C13—N24—C25 | −38.63 (15) | C223—C224—C225—C226 | −1.6 (2) |
C13A—C13—N24—C27A | −158.03 (10) | Cl24—C224—C225—C226 | 177.35 (10) |
C22—C13—N24—C27A | −36.03 (11) | C224—C225—C226—C221 | −1.0 (2) |
C12—C13—N24—C27A | 84.71 (12) | C222—C221—C226—C225 | 2.80 (19) |
C13—N24—C25—C26 | 136.43 (11) | C22—C221—C226—C225 | −175.12 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N33—H33···N24i | 0.863 (17) | 2.079 (17) | 2.8933 (15) | 157.2 (16) |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
C30H26ClN3O2S2 | Dx = 1.390 Mg m−3 |
Mr = 560.11 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 3475 reflections |
a = 8.2419 (2) Å | θ = 2.6–28.3° |
b = 28.0429 (6) Å | µ = 0.33 mm−1 |
c = 11.5843 (3) Å | T = 100 K |
V = 2677.44 (11) Å3 | Needle, colourless |
Z = 4 | 0.34 × 0.18 × 0.12 mm |
F(000) = 1168 |
Bruker D8 Venture diffractometer | 6574 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 6425 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.038 |
φ and ω scans | θmax = 28.3°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −10→10 |
Tmin = 0.917, Tmax = 0.961 | k = −37→37 |
26105 measured reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0258P)2 + 0.6579P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.064 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.37 e Å−3 |
6574 reflections | Δρmin = −0.27 e Å−3 |
347 parameters | Absolute structure: Flack x determined using 2956 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.050 (19) |
Primary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.4912 (2) | 0.32585 (6) | 0.44612 (14) | 0.0133 (3) | |
C12 | 0.5345 (2) | 0.37223 (7) | 0.45503 (16) | 0.0127 (4) | |
O12 | 0.48339 (19) | 0.40480 (5) | 0.39356 (13) | 0.0175 (3) | |
C13 | 0.6598 (2) | 0.37797 (7) | 0.55441 (16) | 0.0117 (3) | |
C13A | 0.6735 (2) | 0.32703 (6) | 0.59682 (17) | 0.0117 (3) | |
C14 | 0.7598 (2) | 0.30824 (7) | 0.68828 (17) | 0.0142 (4) | |
H14 | 0.8264 | 0.3282 | 0.7345 | 0.017* | |
C15 | 0.7479 (3) | 0.25932 (7) | 0.71215 (17) | 0.0159 (4) | |
C16 | 0.6508 (3) | 0.23092 (7) | 0.64225 (18) | 0.0170 (4) | |
H16 | 0.6455 | 0.1977 | 0.6573 | 0.020* | |
C17 | 0.5605 (3) | 0.24957 (7) | 0.55039 (17) | 0.0155 (4) | |
H17 | 0.4933 | 0.2298 | 0.5040 | 0.019* | |
C17A | 0.5734 (2) | 0.29796 (7) | 0.53023 (17) | 0.0128 (3) | |
C21 | 0.6449 (2) | 0.46322 (6) | 0.60016 (18) | 0.0131 (3) | |
C22 | 0.6043 (2) | 0.41280 (6) | 0.65025 (16) | 0.0118 (3) | |
H22 | 0.6857 | 0.4082 | 0.7132 | 0.014* | |
N24 | 0.8120 (2) | 0.40002 (5) | 0.52018 (15) | 0.0141 (3) | |
C25 | 0.8828 (3) | 0.38859 (7) | 0.40651 (19) | 0.0175 (4) | |
H25A | 0.7981 | 0.3776 | 0.3521 | 0.021* | |
H25B | 0.9668 | 0.3635 | 0.4136 | 0.021* | |
C26 | 0.9574 (3) | 0.43573 (8) | 0.3661 (2) | 0.0223 (5) | |
H26A | 0.9632 | 0.4373 | 0.2808 | 0.027* | |
H26B | 1.0675 | 0.4402 | 0.3984 | 0.027* | |
C27 | 0.8383 (3) | 0.47302 (8) | 0.4141 (2) | 0.0232 (4) | |
H27A | 0.8884 | 0.5051 | 0.4180 | 0.028* | |
H27B | 0.7379 | 0.4747 | 0.3674 | 0.028* | |
C27A | 0.8052 (3) | 0.45299 (7) | 0.53427 (18) | 0.0175 (4) | |
H271 | 0.8973 | 0.4626 | 0.5854 | 0.021* | |
S31 | 0.48214 (6) | 0.49186 (2) | 0.51754 (4) | 0.01522 (10) | |
C32 | 0.4565 (2) | 0.53771 (7) | 0.61713 (17) | 0.0151 (4) | |
S32 | 0.31832 (7) | 0.57931 (2) | 0.60451 (5) | 0.02113 (11) | |
N33 | 0.5668 (2) | 0.53414 (6) | 0.70448 (15) | 0.0163 (3) | |
H33 | 0.563 (3) | 0.5524 (10) | 0.754 (2) | 0.020* | |
C34 | 0.6749 (3) | 0.49665 (7) | 0.70299 (18) | 0.0157 (4) | |
O34 | 0.7779 (2) | 0.48991 (5) | 0.77459 (15) | 0.0226 (3) | |
C117 | 0.3670 (3) | 0.30773 (7) | 0.36649 (18) | 0.0168 (4) | |
H11A | 0.3074 | 0.3351 | 0.3330 | 0.020* | |
H11B | 0.2882 | 0.2883 | 0.4106 | 0.020* | |
C111 | 0.4359 (3) | 0.27787 (7) | 0.26955 (18) | 0.0169 (4) | |
C112 | 0.5196 (3) | 0.29919 (9) | 0.1790 (2) | 0.0250 (5) | |
H112 | 0.5347 | 0.3328 | 0.1783 | 0.030* | |
C113 | 0.5812 (3) | 0.27172 (10) | 0.0896 (2) | 0.0311 (5) | |
H113 | 0.6375 | 0.2866 | 0.0278 | 0.037* | |
C114 | 0.5610 (3) | 0.22266 (9) | 0.0902 (2) | 0.0294 (5) | |
H114 | 0.6053 | 0.2039 | 0.0297 | 0.035* | |
C115 | 0.4764 (3) | 0.20114 (9) | 0.1788 (2) | 0.0283 (5) | |
H115 | 0.4612 | 0.1676 | 0.1788 | 0.034* | |
C116 | 0.4133 (3) | 0.22872 (8) | 0.26831 (19) | 0.0226 (4) | |
H116 | 0.3544 | 0.2138 | 0.3289 | 0.027* | |
C151 | 0.8387 (3) | 0.23761 (8) | 0.81275 (19) | 0.0217 (4) | |
H15A | 0.7616 | 0.2219 | 0.8647 | 0.032* | |
H15B | 0.8965 | 0.2628 | 0.8547 | 0.032* | |
H15C | 0.9168 | 0.2141 | 0.7839 | 0.032* | |
C221 | 0.4429 (2) | 0.40572 (7) | 0.70937 (17) | 0.0127 (4) | |
C222 | 0.4450 (3) | 0.40064 (7) | 0.82936 (18) | 0.0154 (4) | |
H222 | 0.5459 | 0.4008 | 0.8690 | 0.019* | |
C223 | 0.3016 (3) | 0.39527 (7) | 0.89188 (18) | 0.0178 (4) | |
H223 | 0.3042 | 0.3919 | 0.9735 | 0.021* | |
C224 | 0.1555 (3) | 0.39493 (7) | 0.83321 (19) | 0.0165 (4) | |
Cl24 | −0.02407 (6) | 0.39020 (2) | 0.91141 (5) | 0.02411 (12) | |
C225 | 0.1491 (3) | 0.39936 (7) | 0.71405 (19) | 0.0159 (4) | |
H225 | 0.0478 | 0.3988 | 0.6749 | 0.019* | |
C226 | 0.2935 (2) | 0.40461 (7) | 0.65266 (17) | 0.0143 (4) | |
H226 | 0.2902 | 0.4075 | 0.5710 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0154 (8) | 0.0116 (7) | 0.0129 (7) | −0.0001 (6) | 0.0002 (6) | 0.0002 (6) |
C12 | 0.0149 (9) | 0.0124 (9) | 0.0108 (8) | 0.0003 (7) | 0.0023 (7) | −0.0010 (7) |
O12 | 0.0266 (8) | 0.0126 (6) | 0.0133 (7) | 0.0028 (6) | −0.0015 (6) | 0.0020 (6) |
C13 | 0.0150 (9) | 0.0094 (8) | 0.0107 (8) | 0.0003 (7) | 0.0013 (7) | 0.0003 (7) |
C13A | 0.0123 (8) | 0.0091 (7) | 0.0138 (8) | 0.0008 (6) | 0.0032 (7) | 0.0010 (7) |
C14 | 0.0133 (9) | 0.0142 (9) | 0.0151 (9) | 0.0015 (7) | 0.0015 (7) | 0.0002 (7) |
C15 | 0.0149 (9) | 0.0155 (9) | 0.0174 (9) | 0.0034 (7) | 0.0048 (7) | 0.0037 (7) |
C16 | 0.0189 (10) | 0.0118 (8) | 0.0203 (9) | 0.0012 (7) | 0.0051 (8) | 0.0030 (7) |
C17 | 0.0178 (9) | 0.0113 (9) | 0.0173 (9) | −0.0017 (7) | 0.0029 (7) | −0.0010 (7) |
C17A | 0.0130 (8) | 0.0123 (8) | 0.0131 (9) | 0.0009 (7) | 0.0031 (7) | 0.0007 (7) |
C21 | 0.0157 (9) | 0.0092 (8) | 0.0146 (8) | −0.0004 (6) | 0.0002 (7) | −0.0001 (7) |
C22 | 0.0142 (9) | 0.0096 (7) | 0.0116 (8) | −0.0003 (7) | 0.0006 (7) | 0.0003 (7) |
N24 | 0.0174 (8) | 0.0092 (7) | 0.0158 (8) | −0.0017 (6) | 0.0040 (7) | −0.0004 (6) |
C25 | 0.0192 (10) | 0.0149 (8) | 0.0183 (9) | −0.0011 (7) | 0.0065 (8) | −0.0008 (8) |
C26 | 0.0240 (11) | 0.0169 (10) | 0.0260 (11) | −0.0019 (8) | 0.0105 (9) | 0.0018 (8) |
C27 | 0.0257 (11) | 0.0170 (9) | 0.0268 (11) | −0.0009 (8) | 0.0073 (9) | 0.0045 (9) |
C27A | 0.0189 (10) | 0.0114 (8) | 0.0221 (10) | −0.0008 (7) | 0.0017 (8) | 0.0006 (7) |
S31 | 0.0228 (2) | 0.01031 (19) | 0.0126 (2) | 0.00093 (17) | −0.0033 (2) | −0.00054 (18) |
C32 | 0.0185 (9) | 0.0130 (8) | 0.0138 (9) | −0.0004 (7) | 0.0011 (8) | −0.0003 (7) |
S32 | 0.0245 (3) | 0.0197 (2) | 0.0192 (2) | 0.0089 (2) | −0.0018 (2) | −0.0011 (2) |
N33 | 0.0218 (9) | 0.0122 (8) | 0.0148 (8) | 0.0022 (7) | −0.0031 (7) | −0.0054 (6) |
C34 | 0.0184 (10) | 0.0104 (8) | 0.0184 (9) | −0.0028 (7) | 0.0000 (7) | −0.0007 (7) |
O34 | 0.0232 (8) | 0.0184 (7) | 0.0263 (8) | 0.0002 (6) | −0.0093 (7) | −0.0040 (6) |
C117 | 0.0161 (10) | 0.0174 (9) | 0.0171 (9) | −0.0019 (8) | −0.0027 (7) | −0.0009 (7) |
C111 | 0.0186 (10) | 0.0185 (10) | 0.0138 (9) | −0.0028 (8) | −0.0036 (8) | −0.0014 (8) |
C112 | 0.0319 (12) | 0.0241 (11) | 0.0189 (10) | −0.0090 (10) | 0.0009 (9) | 0.0002 (9) |
C113 | 0.0370 (14) | 0.0384 (13) | 0.0180 (11) | −0.0126 (11) | 0.0064 (10) | −0.0036 (10) |
C114 | 0.0336 (13) | 0.0346 (13) | 0.0201 (11) | −0.0001 (10) | 0.0006 (10) | −0.0107 (10) |
C115 | 0.0393 (14) | 0.0222 (11) | 0.0233 (11) | −0.0012 (10) | −0.0029 (10) | −0.0057 (9) |
C116 | 0.0317 (12) | 0.0193 (10) | 0.0168 (9) | −0.0055 (9) | −0.0005 (9) | −0.0008 (8) |
C151 | 0.0217 (10) | 0.0202 (10) | 0.0231 (10) | 0.0042 (8) | 0.0007 (9) | 0.0094 (8) |
C221 | 0.0161 (10) | 0.0083 (8) | 0.0137 (9) | −0.0002 (7) | 0.0016 (7) | −0.0011 (7) |
C222 | 0.0174 (9) | 0.0147 (9) | 0.0142 (9) | −0.0009 (7) | −0.0016 (7) | −0.0002 (7) |
C223 | 0.0226 (10) | 0.0177 (9) | 0.0130 (9) | −0.0015 (8) | 0.0026 (8) | −0.0010 (7) |
C224 | 0.0172 (9) | 0.0125 (9) | 0.0200 (9) | −0.0009 (7) | 0.0066 (8) | −0.0003 (7) |
Cl24 | 0.0185 (2) | 0.0305 (3) | 0.0234 (3) | −0.0019 (2) | 0.0078 (2) | 0.0009 (2) |
C225 | 0.0147 (10) | 0.0130 (9) | 0.0200 (9) | 0.0000 (7) | −0.0006 (8) | −0.0003 (7) |
C226 | 0.0183 (10) | 0.0128 (8) | 0.0117 (8) | 0.0012 (7) | 0.0003 (7) | −0.0004 (7) |
N11—C12 | 1.353 (2) | C27A—H271 | 1.0000 |
N11—C17A | 1.421 (2) | S31—C32 | 1.740 (2) |
N11—C117 | 1.469 (3) | C32—N33 | 1.364 (3) |
C12—O12 | 1.232 (2) | C32—S32 | 1.637 (2) |
C12—C13 | 1.555 (3) | N33—C34 | 1.378 (3) |
C13—N24 | 1.454 (2) | N33—H33 | 0.77 (3) |
C13—C13A | 1.515 (2) | C34—O34 | 1.202 (3) |
C13—C22 | 1.548 (3) | C117—C111 | 1.511 (3) |
C13A—C14 | 1.381 (3) | C117—H11A | 0.9900 |
C13A—C17A | 1.393 (3) | C117—H11B | 0.9900 |
C14—C15 | 1.403 (3) | C111—C112 | 1.391 (3) |
C14—H14 | 0.9500 | C111—C116 | 1.391 (3) |
C15—C16 | 1.389 (3) | C112—C113 | 1.386 (3) |
C15—C151 | 1.513 (3) | C112—H112 | 0.9500 |
C16—C17 | 1.400 (3) | C113—C114 | 1.386 (4) |
C16—H16 | 0.9500 | C113—H113 | 0.9500 |
C17—C17A | 1.381 (3) | C114—C115 | 1.379 (4) |
C17—H17 | 0.9500 | C114—H114 | 0.9500 |
C21—C34 | 1.536 (3) | C115—C116 | 1.395 (3) |
C21—C27A | 1.552 (3) | C115—H115 | 0.9500 |
C21—C22 | 1.565 (3) | C116—H116 | 0.9500 |
C21—S31 | 1.833 (2) | C151—H15A | 0.9800 |
C22—C221 | 1.509 (3) | C151—H15B | 0.9800 |
C22—H22 | 1.0000 | C151—H15C | 0.9800 |
N24—C25 | 1.476 (3) | C221—C226 | 1.396 (3) |
N24—C27A | 1.495 (2) | C221—C222 | 1.397 (3) |
C25—C26 | 1.531 (3) | C222—C223 | 1.394 (3) |
C25—H25A | 0.9900 | C222—H222 | 0.9500 |
C25—H25B | 0.9900 | C223—C224 | 1.383 (3) |
C26—C27 | 1.539 (3) | C223—H223 | 0.9500 |
C26—H26A | 0.9900 | C224—C225 | 1.387 (3) |
C26—H26B | 0.9900 | C224—Cl24 | 1.740 (2) |
C27—C27A | 1.525 (3) | C225—C226 | 1.395 (3) |
C27—H27A | 0.9900 | C225—H225 | 0.9500 |
C27—H27B | 0.9900 | C226—H226 | 0.9500 |
C12—N11—C17A | 110.57 (16) | N24—C27A—C21 | 105.61 (15) |
C12—N11—C117 | 124.35 (17) | C27—C27A—C21 | 122.20 (17) |
C17A—N11—C117 | 124.92 (16) | N24—C27A—H271 | 107.7 |
O12—C12—N11 | 125.35 (18) | C27—C27A—H271 | 107.7 |
O12—C12—C13 | 125.31 (17) | C21—C27A—H271 | 107.7 |
N11—C12—C13 | 109.34 (16) | C32—S31—C21 | 93.81 (9) |
N24—C13—C13A | 115.15 (16) | N33—C32—S32 | 125.62 (15) |
N24—C13—C22 | 100.50 (15) | N33—C32—S31 | 110.89 (14) |
C13A—C13—C22 | 112.62 (15) | S32—C32—S31 | 123.49 (12) |
N24—C13—C12 | 114.53 (16) | C32—N33—C34 | 118.52 (17) |
C13A—C13—C12 | 101.07 (15) | C32—N33—H33 | 119 (2) |
C22—C13—C12 | 113.60 (15) | C34—N33—H33 | 123 (2) |
C14—C13A—C17A | 120.46 (17) | O34—C34—N33 | 124.60 (19) |
C14—C13A—C13 | 130.33 (18) | O34—C34—C21 | 123.56 (19) |
C17A—C13A—C13 | 109.15 (17) | N33—C34—C21 | 111.82 (17) |
C13A—C14—C15 | 119.23 (18) | N11—C117—C111 | 113.35 (17) |
C13A—C14—H14 | 120.4 | N11—C117—H11A | 108.9 |
C15—C14—H14 | 120.4 | C111—C117—H11A | 108.9 |
C16—C15—C14 | 119.09 (18) | N11—C117—H11B | 108.9 |
C16—C15—C151 | 120.21 (18) | C111—C117—H11B | 108.9 |
C14—C15—C151 | 120.70 (19) | H11A—C117—H11B | 107.7 |
C15—C16—C17 | 122.34 (18) | C112—C111—C116 | 119.0 (2) |
C15—C16—H16 | 118.8 | C112—C111—C117 | 120.59 (19) |
C17—C16—H16 | 118.8 | C116—C111—C117 | 120.42 (19) |
C17A—C17—C16 | 117.06 (19) | C113—C112—C111 | 120.4 (2) |
C17A—C17—H17 | 121.5 | C113—C112—H112 | 119.8 |
C16—C17—H17 | 121.5 | C111—C112—H112 | 119.8 |
C17—C17A—C13A | 121.79 (18) | C114—C113—C112 | 120.3 (2) |
C17—C17A—N11 | 128.32 (18) | C114—C113—H113 | 119.9 |
C13A—C17A—N11 | 109.87 (16) | C112—C113—H113 | 119.9 |
C34—C21—C27A | 110.94 (16) | C115—C114—C113 | 119.9 (2) |
C34—C21—C22 | 107.36 (16) | C115—C114—H114 | 120.0 |
C27A—C21—C22 | 101.39 (14) | C113—C114—H114 | 120.0 |
C34—C21—S31 | 104.79 (13) | C114—C115—C116 | 119.9 (2) |
C27A—C21—S31 | 116.55 (14) | C114—C115—H115 | 120.0 |
C22—C21—S31 | 115.64 (13) | C116—C115—H115 | 120.0 |
C221—C22—C13 | 120.19 (16) | C111—C116—C115 | 120.5 (2) |
C221—C22—C21 | 118.42 (16) | C111—C116—H116 | 119.8 |
C13—C22—C21 | 103.94 (15) | C115—C116—H116 | 119.8 |
C221—C22—H22 | 104.1 | C15—C151—H15A | 109.5 |
C13—C22—H22 | 104.1 | C15—C151—H15B | 109.5 |
C21—C22—H22 | 104.1 | H15A—C151—H15B | 109.5 |
C13—N24—C25 | 119.50 (16) | C15—C151—H15C | 109.5 |
C13—N24—C27A | 111.13 (15) | H15A—C151—H15C | 109.5 |
C25—N24—C27A | 109.14 (15) | H15B—C151—H15C | 109.5 |
N24—C25—C26 | 104.15 (16) | C226—C221—C222 | 118.48 (18) |
N24—C25—H25A | 110.9 | C226—C221—C22 | 124.52 (17) |
C26—C25—H25A | 110.9 | C222—C221—C22 | 116.99 (18) |
N24—C25—H25B | 110.9 | C223—C222—C221 | 121.14 (19) |
C26—C25—H25B | 110.9 | C223—C222—H222 | 119.4 |
H25A—C25—H25B | 108.9 | C221—C222—H222 | 119.4 |
C25—C26—C27 | 102.70 (17) | C224—C223—C222 | 118.92 (19) |
C25—C26—H26A | 111.2 | C224—C223—H223 | 120.5 |
C27—C26—H26A | 111.2 | C222—C223—H223 | 120.5 |
C25—C26—H26B | 111.2 | C223—C224—C225 | 121.5 (2) |
C27—C26—H26B | 111.2 | C223—C224—Cl24 | 119.03 (17) |
H26A—C26—H26B | 109.1 | C225—C224—Cl24 | 119.49 (17) |
C27A—C27—C26 | 101.19 (17) | C224—C225—C226 | 119.0 (2) |
C27A—C27—H27A | 111.5 | C224—C225—H225 | 120.5 |
C26—C27—H27A | 111.5 | C226—C225—H225 | 120.5 |
C27A—C27—H27B | 111.5 | C225—C226—C221 | 121.02 (18) |
C26—C27—H27B | 111.5 | C225—C226—H226 | 119.5 |
H27A—C27—H27B | 109.4 | C221—C226—H226 | 119.5 |
N24—C27A—C27 | 105.04 (16) | ||
C17A—N11—C12—O12 | 179.86 (18) | C25—C26—C27—C27A | 42.0 (2) |
C117—N11—C12—O12 | −4.6 (3) | C13—N24—C27A—C27 | −121.17 (18) |
C17A—N11—C12—C13 | 0.3 (2) | C25—N24—C27A—C27 | 12.7 (2) |
C117—N11—C12—C13 | 175.81 (17) | C13—N24—C27A—C21 | 9.2 (2) |
O12—C12—C13—N24 | −55.7 (3) | C25—N24—C27A—C21 | 143.07 (17) |
N11—C12—C13—N24 | 123.86 (17) | C26—C27—C27A—N24 | −33.6 (2) |
O12—C12—C13—C13A | 179.83 (18) | C26—C27—C27A—C21 | −153.53 (18) |
N11—C12—C13—C13A | −0.6 (2) | C34—C21—C27A—N24 | 130.88 (17) |
O12—C12—C13—C22 | 59.0 (2) | C22—C21—C27A—N24 | 17.12 (19) |
N11—C12—C13—C22 | −121.44 (17) | S31—C21—C27A—N24 | −109.34 (15) |
N24—C13—C13A—C14 | 59.7 (3) | C34—C21—C27A—C27 | −109.5 (2) |
C22—C13—C13A—C14 | −54.7 (3) | C22—C21—C27A—C27 | 136.74 (19) |
C12—C13—C13A—C14 | −176.28 (19) | S31—C21—C27A—C27 | 10.3 (2) |
N24—C13—C13A—C17A | −123.32 (18) | C34—C21—S31—C32 | −3.88 (14) |
C22—C13—C13A—C17A | 122.25 (17) | C27A—C21—S31—C32 | −126.91 (15) |
C12—C13—C13A—C17A | 0.7 (2) | C22—C21—S31—C32 | 114.09 (15) |
C17A—C13A—C14—C15 | 1.2 (3) | C21—S31—C32—N33 | 2.99 (16) |
C13—C13A—C14—C15 | 177.86 (19) | C21—S31—C32—S32 | −177.52 (14) |
C13A—C14—C15—C16 | 0.7 (3) | S32—C32—N33—C34 | 179.55 (16) |
C13A—C14—C15—C151 | −179.08 (19) | S31—C32—N33—C34 | −1.0 (2) |
C14—C15—C16—C17 | −1.8 (3) | C32—N33—C34—O34 | 179.5 (2) |
C151—C15—C16—C17 | 177.98 (19) | C32—N33—C34—C21 | −2.2 (3) |
C15—C16—C17—C17A | 0.9 (3) | C27A—C21—C34—O34 | −51.1 (3) |
C16—C17—C17A—C13A | 1.0 (3) | C22—C21—C34—O34 | 58.8 (3) |
C16—C17—C17A—N11 | −177.57 (18) | S31—C21—C34—O34 | −177.70 (18) |
C14—C13A—C17A—C17 | −2.1 (3) | C27A—C21—C34—N33 | 130.60 (18) |
C13—C13A—C17A—C17 | −179.40 (17) | C22—C21—C34—N33 | −119.45 (18) |
C14—C13A—C17A—N11 | 176.73 (17) | S31—C21—C34—N33 | 4.0 (2) |
C13—C13A—C17A—N11 | −0.6 (2) | C12—N11—C117—C111 | 110.6 (2) |
C12—N11—C17A—C17 | 178.9 (2) | C17A—N11—C117—C111 | −74.5 (2) |
C117—N11—C17A—C17 | 3.4 (3) | N11—C117—C111—C112 | −73.7 (3) |
C12—N11—C17A—C13A | 0.2 (2) | N11—C117—C111—C116 | 107.8 (2) |
C117—N11—C17A—C13A | −175.32 (18) | C116—C111—C112—C113 | −0.8 (4) |
N24—C13—C22—C221 | 176.92 (16) | C117—C111—C112—C113 | −179.3 (2) |
C13A—C13—C22—C221 | −60.0 (2) | C111—C112—C113—C114 | −0.5 (4) |
C12—C13—C22—C221 | 54.1 (2) | C112—C113—C114—C115 | 1.3 (4) |
N24—C13—C22—C21 | 41.55 (18) | C113—C114—C115—C116 | −0.8 (4) |
C13A—C13—C22—C21 | 164.61 (16) | C112—C111—C116—C115 | 1.3 (3) |
C12—C13—C22—C21 | −81.25 (18) | C117—C111—C116—C115 | 179.8 (2) |
C34—C21—C22—C221 | 71.1 (2) | C114—C115—C116—C111 | −0.5 (4) |
C27A—C21—C22—C221 | −172.48 (16) | C13—C22—C221—C226 | −58.1 (3) |
S31—C21—C22—C221 | −45.4 (2) | C21—C22—C221—C226 | 71.1 (2) |
C34—C21—C22—C13 | −152.56 (16) | C13—C22—C221—C222 | 122.8 (2) |
C27A—C21—C22—C13 | −36.14 (18) | C21—C22—C221—C222 | −108.0 (2) |
S31—C21—C22—C13 | 90.91 (16) | C226—C221—C222—C223 | −0.9 (3) |
C13A—C13—N24—C25 | 78.7 (2) | C22—C221—C222—C223 | 178.21 (18) |
C22—C13—N24—C25 | −160.02 (16) | C221—C222—C223—C224 | 0.1 (3) |
C12—C13—N24—C25 | −37.9 (2) | C222—C223—C224—C225 | 0.6 (3) |
C13A—C13—N24—C27A | −152.79 (16) | C222—C223—C224—Cl24 | −177.92 (15) |
C22—C13—N24—C27A | −31.52 (19) | C223—C224—C225—C226 | −0.5 (3) |
C12—C13—N24—C27A | 90.62 (19) | Cl24—C224—C225—C226 | 178.04 (15) |
C13—N24—C25—C26 | 143.31 (18) | C224—C225—C226—C221 | −0.4 (3) |
C27A—N24—C25—C26 | 13.9 (2) | C222—C221—C226—C225 | 1.1 (3) |
N24—C25—C26—C27 | −34.8 (2) | C22—C221—C226—C225 | −178.00 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N33—H33···O12i | 0.77 (3) | 2.05 (3) | 2.811 (2) | 170 (3) |
C112—H112···S32ii | 0.95 | 2.88 | 3.760 (3) | 155 |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1, −y+1, z−1/2. |
Ring A | (I) | (II) | (III) | |
Q2 | 0.4311 (13) | 0.411 (2) | 0.424 (6) | |
φ2 | 55.57 (17) | 61.9 (3) | 54.2 (8) | |
Ring B | (I) | (II) | (III) | |
Q2 | 0.4103 (14) | 0.416 (3) | 0.390 (7) | |
φ2 | 270.63 (18) | 269.1 (3) | 272.3 (9) |
Parameters for rings A and B are calculated for the atom sequences N24–C13–C22–C21–C27A and N24–C25–C26–C27–C27A, respectively. Data for (III) are from the supporting information. |
Compound | D—H···A | D—H | H···A | D···A | D—H···A | |
(I) | N33—H33···N24i | 0.863 (17) | 2.079 (17) | 2.8933 (15) | 157.2 (16) | |
(II) | N33—H33···O12ii | 0.77 (3) | 2.05 (3) | 2.811 (2) | 170 (3) | |
C112—H112···S32iii | 0.95 | 2.88 | 3.760 (3) | 155 | ||
(III) | N11—H11···S32iv | 0.88 | 2.55 | 3.374 (5) | 156 | |
N33—H33···N24v | 0.88 | 2.08 | 2.878 (7) | 150 |
Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x+1, -y+1, z+1/2; (iii) -x+1, -y+1, z-1/2; (iv) -x, y-1/2, -z+1/2; (v) -x+1, y+1/2, -z+1/2. The data for (III) are from the supporting information. |
Acknowledgements
The authors thank `Centro de Instrumentación Científico-Técnica of Universidad de Jaén' for data collection. The authors thank COLCIENCIAS, Universidad del Valle, the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ thanks the AUIP for a scholarship granted for a stay at the Universidad de Jaén.
References
Belal, A. & El-Gendy, B. E. M. (2014). Bioorg. Med. Chem. 22, 46–53. CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Corres, A., Estévez, V., Villacampa, M. & Menéndez, J. C. (2016). RSC Adv. 6, 39433–39443. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fathimunnisa, M., Manikandan, H., Selvanayagam, S. & Sridhar, B. (2015). Acta Cryst. E71, 915–918. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, H., Zou, Y., Hu, Y. & Shi, D.-Q. (2011). J. Heterocycl. Chem. 48, 877–881. CSD CrossRef CAS Google Scholar
Pardasani, R. T., Pardasani, P., Chaturvedi, V., Yadav, S. K., Saxena, A. & Sharma, I. (2003). Heteroatom Chem. 14, 36–41. Web of Science CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ponnala, S., Sahu, D. P., Kumar, R. & Maulik, P. R. (2006). J. Heterocycl. Chem. 43, 1635–1640. CSD CrossRef CAS Google Scholar
Quiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109–1115. CSD CrossRef IUCr Journals Google Scholar
Russel, J. S. (2010). Topics in Heterocyclic Chemistry, Vol. 26, edited by G. Gribble, Heterocyclic Scaffolds II, pp. 397–431. Berlin, Heidelberg: Springer. Google Scholar
Sarrafi, Y. & Alimohammadi, K. (2008a). Acta Cryst. E64, o1490. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarrafi, Y. & Alimohammadi, K. (2008b). Acta Cryst. E64, o1740. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sathya, S., Bhaskaran, S., Usha, G., Sivakumar, N. & Bakthadoss, M. (2012). Acta Cryst. E68, o277. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tomasić, T. & Masic, L. (2009). Curr. Med. Chem. 16, 1596–1629. PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.