research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Regio- and stereospecific assembly of di­spiro­[indoline-3,3′-pyrrolizine-1′,5′′-thia­zolidines] from simple precursors using a one-pot procedure: synthesis, spectroscopic and structural characterization, and a proposed mechanism of formation

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. R. Kennedy, University of Strathclyde, United Kingdom (Received 27 June 2020; accepted 17 July 2020; online 22 July 2020)

The synthesis and characterization of three new di­spiro­[indoline-3,3′-pyrrolizine-1′,5′′-thia­zolidine] com­pounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)-2′-(4-Chloro­phen­yl)-1-hexyl-2′′-sulfanyl­idene-5′,6′,7′,7a′-tetra­hydro-2′H-di­spiro­[indoline-3,3′-pyrrolizine-1′,5′′-thia­zolidine]-2,4′′-dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)-2′-(4-chloro­phen­yl)-1-benzyl-5-methyl-2′′-sulfanyl­idene-5′,6′,7′,7a′-tetra­hydro-2′H-di­spiro­[in­doline-3,3′-pyrrolizine-1′,5′′-thia­zolidine]-2,4′′-dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)-2′-(4-chloro­phen­yl)-5-fluoro-2′′-sulfanyl­idene-5′,6′,7′,7a′-tetra­hydro-2′H-di­spiro­[indoline-3,3′-pyrrolizine-1′,5′′-thia­zolidine]-2,4′′-dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one-pot reaction involving L-proline, a substituted isatin and (Z)-5-(4-chloro­benzyl­idene)-2-sulfanyl­idene­thia­zolidin-4-one [5-(4-chloro­benzyl­idene)rhodanine]. The com­positions of (I)–(III) were established by elemental analysis, com­plemented by high-resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single-crystal X-ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The mol­ecules of (I) are linked into simple chains by a single N—H⋯N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H⋯O and C—H⋯S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H⋯N and N—H⋯S=C hydrogen bonds.

1. Introduction

An attractive approach to the production of new organic com­pounds exhibiting broad-spectrum biological activity, for agricultural and pharmaceutical applications, is to combine in the same mol­ecule two or more pharmacophores of proven efficacy. We report here on the synthesis, characterization and structure of a new heterocyclic system containing three such units, namely, the spiro-oxindole, pyrrolizine and rhodanine (2-sulfanyl­idene­thia­zolidin-4-one) units. Spiro-oxindoles are an important class of alkaloids derived from indole that are widely distributed in nature, including examples such as elacomine [(2′S,3R)-6-hy­droxy-2′-(2-methyl­prop­yl)spiro­[1H-indole-3,3′-pyrrolidine]-2-one], horsfiline [(3R)-5-meth­oxy-1′-methyl­spiro­[1H-indole-3,3′-pyrrolidine]-2-one] rhynchophylline [methyl (7β,16E,20α)-16-(meth­oxy­methyl­ene)-2-oxocorynoxan-17-oate] and spiro­tryprostatin {(3S,3′S,5′aS,10′aS)-6-meth­oxy-3′-(2-methyl­prop-1-en­yl)spiro­[1H-indole-3,2′-3,5a,6,7,8,10a-hexa­hydro-1H-di­pyrrolo­[1,2-c:1′,4′-f]pyrazine]-2,5′,10′-trione}, and com­pounds of this type exhibit a wide range of biological activity, including anti­bacterial, anti­fungal, anti-oxidant and anti­tumour activity (Russel, 2010[Russel, J. S. (2010). Topics in Heterocyclic Chemistry, Vol. 26, edited by G. Gribble, Heterocyclic Scaffolds II, pp. 397-431. Berlin, Heidelberg: Springer.]). In addition, pyrrolizines have been found to be promising scaffolds for anti­cancer drugs (Belal & El-Gendy, 2014[Belal, A. & El-Gendy, B. E. M. (2014). Bioorg. Med. Chem. 22, 46-53.]), while com­pounds derived from rhodanine have been found to exhibit outstanding levels of anti­bacterial and anti­fungal activity (Sortino et al., 2007[Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484-494.]; Tomasić & Masic, 2009[Tomasić, T. & Masic, L. (2009). Curr. Med. Chem. 16, 1596-1629.]). Hence, the synthesis of new com­pounds containing all three of these mol­ecular fragments, i.e. spiro-oxo­indole, pyrrolizine and rhodanine, is essential, and an efficient route to such com­pounds involves a 1,3-dipolar cyclo­addition reaction between an appropriate derivative of isatin (1H-indole-2,3-dione), an amino acid and an electron-deficient alkene (Ponnala et al., 2006[Ponnala, S., Sahu, D. P., Kumar, R. & Maulik, P. R. (2006). J. Heterocycl. Chem. 43, 1635-1640.]; Liu et al., 2011[Liu, H., Zou, Y., Hu, Y. & Shi, D.-Q. (2011). J. Heterocycl. Chem. 48, 877-881.]).

[Scheme 1]

Accordingly, we report here the synthesis and characterization of three examples, namely, (3RS,1′SR,2′SR,7a′SR)-2′-(4-chloro­phen­yl)-1-hexyl-2′′-sulfanyl­idene-5′,6′,7′,7a′-tetra­hydro-2′H-di­spiro­[indoline-3,3′-pyrrolizine-1′,5′′-thia­zolidine]-2,4′′-di­one, (I)[link], (3RS,1′SR,2′SR,7a′SR)-2′-(4-chloro­phen­yl)-1-benzyl-5-methyl-2′′-sulfanyl­idene-5′,6′,7′,7a′-tetra­hydro-2′H-di­spiro­[in­doline-3,3′-pyrrolizine-1′,5′′-thia­zolidine]-2,4′′-dione, (II)[link], and (3RS,1′SR,2′SR,7a′SR)-2′-(4-chloro­phen­yl)-5-fluoro-2′′-sul­fan­yl­idene-5′,6′,7′,7a′-tetra­hydro-2′H-di­spiro­[indoline-3,3′-pyrrolizine-1′,5′′-thia­zolidine]-2,4′′-dione, (III), along with the structures of com­pounds (I)[link] and (II)[link] (Figs. 1[link] and 2[link]). The com­pounds were synthesized, as the sole isolated product in each case, in a one-pot procedure involving the reaction between an isatin, (A) [1-hexyl­isatin for (I)[link], N-benzyl-5-methyl­isatin for (II)[link] and 5-fluoro­isatin for (III)], L-proline, (B), and the electron-deficient alkene (Z)-5-(4-chloro­benzyl­idene)-2-sulfanyl­idene­thia­zolidin-4-one [5-(4-chloro­benzyl­idene)rhodanine], (C) (Scheme 1[link]). Analysis of the NMR spectra showed which regioisomer had been isolated, while the crystal structure analyses for (I)[link] and (II)[link] established the relative stereochemistry at the four contiguous stereogenic centres at the atoms labelled here as C13, C21, C22 and C27A (Figs. 1[link] and 2[link]), which correspond to the chemical sites C3, C1′, C2′ and C7a′, respectively, as defined in §2.3[link] below.

[Figure 1]
Figure 1
The mol­ecular structure of the (3R,1′S,2′S,7a′S) enanti­omer of com­pound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the (3R,1′S,2′S,7a′S) enanti­omer of com­pound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Experimental

2.1. Synthesis and crystallization

For the synthesis of com­pounds (I)–(III), a solution con­taining equimolar qu­anti­ties (0.39 mmol of each reactant) of L-proline, (Z)-5-(4-chloro­benzyl­idene)-2-sulfanyl­idene­thi­a­zoli­din-4-one and the appropriate isatin in methanol (120 ml) was heated under reflux for 8 h, after which time monitoring using thin-layer chromatography (TLC) indicated that the reactions were com­plete. Each solution was then allowed to cool to ambient temperature and the resulting solid product was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were selected directly from the synthetic products.

2.2. Analytical data

2.2.1. Compound (I)

Yield 52%, m.p. > 570 K. NMR (DMSO-d6): δ(1H) 0.76–0.90 (m, 3H), 1.10–1.32 (m, 6H), 1.40–1.54 (m, 2H), 1.75–1.89 (m, 1H), 1.89–1.99 (m, 1H), 1.99–2.13 (m, 2H), 2.41–2.48 (m, 1H), 2.52–2.57 (m, 1H), 3.51–3.69 (m, 2H), 4.42 (t, J = 7.22 Hz, 1H, H-7a′), 4.64 (s, 1H, H-2′), 6.86 (d, J = 7.61 Hz, 1H, H-7), 7.04 (t, J = 7.52 Hz, 1H, H-6), 7.14 (d, J = 8.59 Hz, 2H, Ho), 7.18 (t, J = 7.71 Hz, 1H, H-5), 7.25 (d, J = 8.59 Hz, 2H, Hm), 7.49 (d, J = 7.22 Hz, 1H, H-4), 13.21 (br s, 1H, NH-3′′); δ(13C) 14.3 (CH3), 22.5 (CH2), 26.6 (CH2), 27.4 (CH2), 28.1 (CH2), 30.0 (CH2), 31.3 (CH2), 40.0 (CH2), 47.3 (CH2), 65.3 (C-2′), 74.3 (C-spiro), 74.9 (C-7a′), 75.1 (C-spiro), 109.5 (C-7), 123.6 (C-6), 124.0 (C-4), 128.7 (Cm), 129.0 (C), 129.9 (C-5), 130.5 (C), 132.4 (Co), 134.0 (C), 142.9 (C), 176.1 (N—C=O), 179.6 (N—C=O), 203.9 (C=S). MS–ESI (m/z) found for [M + H]+ 540.1543, C28H31ClN3O2S2 has an exact mass of 540.1546. MS–EI (70 eV) m/z (%) 499 (6), 284 [100, M+ − 4-Cl-(C6H4)–CHC–CONHCS2], 255 {27, [4-Cl-(C6H4)–CHC–CONHCS2]}, 217 (17), 168 (82), 133 (33), 118 (25), 89 (38). Analysis (%) found: C 62.4, H 5.5, N 7.7; C28H30ClN3O2S2 requires: C 62.3, H 5.6, N 7.8.

2.2.2. Compound (II)

Yield 50%, m.p. > 570 K. NMR (DMSO-d6): δ(1H) 1.84 (dt, J = 19.1, 17.4, 9.1 Hz, 1H, H-6′), 1.92–2.01 (m, 1H, H-7′), 2.02–2.14 (m, 2H, H-6′ & H-7′), 2.25 (s, 3H, 5-CH3), 2.54–2.61 (m, 1H, H-5′), 4.43 (t, J = 7.2 Hz, 1H, H-7a′), 4.67 (s, 1H, H-2′), 4.80 (d, J = 15.5 Hz, 1H, NCHH), 4.86 (d, J = 15.5 Hz, 1H, NCHH), 6.69 (d, J = 8.00 Hz, 1H), 6.93 (d, J = 7.61 Hz, 1H), 7.10 (d, J = 8.94 Hz, 2H), 7.14 (d, J = 8.76 Hz, 2H), 7.21 (dd, J = 7.55, 1.98 Hz, 2H), 7.27–7.37 (m, 4H), 13.22 (br s, 1H, H-3′′); δ(13C) 21.1 (5-CH3), 28.2 (CH2), 30.0 (CH2), 43.5 (N—CH2), 47.2 (CH2), 65.2 (C-2′), 74.4 (C-spiro), 74.9 (C-7a′), 75.2 (C-spiro), 109.8 (CH), 124.8 (CH), 128.0 (CH), 128.2 (CH), 128.8 (CH), 129.0 (C), 129.1 (CH), 130.1 (CH), 130.5 (C), 132.3 (CH), 133.1 (C), 133.9 (C), 136.3 (C), 140.1 (C), 176.2 (N—C=O), 179.6 (N—C=O), 203.8 (C=S). MS–EI (70 eV) m/z (%) 539 (5), 304 {60, M+ − 4-Cl-(C6H4)–CHC–CONHCS2], 255 {4, [4-Cl-(C6H4)–CHC–CONHCS2]}, 236 (16), 213 (10), 168 (100), 133 (40), 123 (8), 91 [75, (C7H7)+], 89 (55). Analysis (%) found: C 64.4, H 4.6, N 7.4; C30H26ClN3O2S2 requires: C 64.3, H 4.7, N 7.5.

2.2.3. Compound (III)

Yield 49%, m.p. > 570 K. NMR (DMSO-d6): δ(1H) 1.76–1.89 (m, 1H, H-6′), 1.89–1.99 (m, 1H, H-7′), 2.00–2.12 (m, 2H, H-6′ & H-7′), 2.53–2.64 (m, 1H, H-5′), 4.41 (t, J = 7.3 Hz, 1H, H-7a′), 4.66 (s, 1H, H-2′), 6.62 (dd, J = 8.4, 4.3 Hz, 1H), 6.92 (ddd, J = 11.1, 8.7, 2.7 Hz, 1H), 7.24 (d, J = 8.6, Hz, 2H, Ho), 7.31 (d, J = 8.6 Hz, 2H, Hm), 7.37 (dd, J = 8.1, 2.7 Hz, 1H), 10.73 (s, 1H, NH), 13.19 (br s, 1H, NH-1), 13.19 (br s, 1H, H-3′′); δ(13C) 28.2 (CH2), 29.9 (CH2), 47.3 (CH2), 65.0 (C-2′), 74.3 (C-spiro), 75.0 (C-7a′), 75.9 (C-spiro), 111.2 (d, JCF = 7.3 Hz, C), 112.2 (d, JCF = 24.8 Hz, CH), 116.2 (d, JCF = 23.3 Hz, CH), 128.9 (CH), 130.6 (C), 131.7 (d, JCF = 7.3 Hz, C—N), 132.3 (CH), 134.1 (C), 137.9 (C), 157.8 (C), 159.0 (d, JCF = 237 Hz, C—F), 160.2 (C), 178.3 (N—C=O), 179.5 (N—C=O), 204.0 (C=S). MS–EI (70 eV) m/z (%) 473 (1.3, M+), 368 (3), 355 (6), 255 [6, 4-Cl-(C6H4)-CHC-CONHCS2], 218 {20, M+ − [4-Cl-(C6H4)–CHC–CONHCS2]}, 215 (51), 168 (17), 160 (20), 127 (35), 111 (18), 97 (37), 81 (49), 55 (75), 44 (100). Analysis (%) found: C 55.7, H 3.7, N 8.8; C22H17ClFN3O2S2 requires: C 55.8, H 3.6, N 8.9.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The atom labelling for the central di­spiro unit is based on the systematic chemical numbering, following the convention used previously (Quiroga et al., 2017[Quiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109-1115.]); thus, the atoms with chemical locants N1, C2 and so on are labelled here as N11, C12, etc.; those atoms with chemical locants such as C1′, C2′ and so on are labelled here as C21, C22, etc.; and those atoms with chemical locants such as S1′′, C2′′ and so on are labelled here as S31, C32, etc. All other chemical fragments are treated as substituents on the central di­spiro unit. All H atoms were located in difference maps. H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic C—H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving an N—H distance of 0.862 (17) Å in (I)[link] and 0.77 (3) Å in (II)[link]. For com­pound (II)[link], the correct orientation of the structure with respect to the polar-axis direction was calculated by means of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with x = 0.050 (19) as calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 2956 quotients of the type [(I+) − (I)]/[(I+) + (I)].

Table 1
Experimental details

For both structures: Z = 4. Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 Venture diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H atoms were treated by a mixture of independent and constrained refinement.

  (I) (II)
Crystal data
Chemical formula C28H30ClN3O2S2 C30H26ClN3O2S2
Mr 540.12 560.11
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pna21
a, b, c (Å) 14.1669 (5), 10.7145 (3), 17.1350 (5) 8.2419 (2), 28.0429 (6), 11.5843 (3)
α, β, γ (°) 90, 98.654 (1), 90 90, 90, 90
V3) 2571.33 (14) 2677.44 (11)
μ (mm−1) 0.34 0.33
Crystal size (mm) 0.18 × 0.11 × 0.05 0.34 × 0.18 × 0.12
 
Data collection
Tmin, Tmax 0.906, 0.983 0.917, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 58781, 6390, 5580 26105, 6574, 6425
Rint 0.049 0.038
(sin θ/λ)max−1) 0.667 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.03 0.026, 0.064, 1.05
No. of reflections 6390 6574
No. of parameters 329 347
No. of restraints 0 1
Δρmax, Δρmin (e Å−3) 0.47, −0.41 0.37, −0.27
Absolute structure Flack x determined using 2956 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.050 (19)
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

Compounds (I)–(III) (Scheme 1[link]) were each isolated as a single stereoisomer in yields of 53% for (I)[link], 49% for (II)[link] and 50% for (III). For all three products, the com­positions were established by elemental analysis, com­plemented by high-resolution mass spectrometry in the case of (I)[link] (§2.1[link]). The 1H and 13C NMR spectra contained all the signals expected for the proposed formulations, and the regioselectivity of the reactions leading to the products was established by analysis of the 1H spectra; it is necessary here to discuss only the analysis for (I)[link], as those for (II)[link] and (III) follow entirely similar lines. For (I)[link], the signal from the proton H2′ bonded to atom C2′ (atom C22 in the crystallographic labeling scheme; see Fig. 1[link] and §2.2[link]) was ob­served as a singlet at δ 4.64, while the signal for H7a′ bonded to C7a′ (C27A) was observed as a triplet (J = 7.22 Hz) at δ 4.42. These two signals indicate the formation of the pyrrolizine in (I)[link], singly substituted at position C2′ and doubly substituted at positions C1′ and C3′, so confirming the identity of regioisomer (I)[link] (Scheme 1[link] and Fig. 1[link]). Had the alternative regioisomer (Ia) been formed, the appearance of these two pyrrolizine signals would have been different; that for atom H7a′ would have been a doublet of triplets and, crucially, that for atom H1′ would have appeared as a doublet, rather than the singlet actually observed. Entirely similar remarks apply to the spectra of com­pounds (II)[link] and (III) but, in addition, five of the signals in the 13C NMR spectrum of (III) exhibit coupling to the 19F nucleus at position 5, namely, those at δ 159.0 for C5, 131.7 for C7, 116.2 and 112.2 for C4 and C6, and 111.2 for C3A; the four-bond coupling to atom C7A is too small to be resolved.

Although the regiochemistry of the synthetic reactions can be deduced from the NMR data, it is not possible to establish from these data the relative stereochemistry of all four stereogenic centres, but this is readily achieved by crystal structure analysis. The space groups for com­pounds (I)[link] and (II)[link] (Table 1[link]) show that they have both crystallized as racemic mixtures and, for each com­pound, the reference mol­ecule was selected as that having the R configuration at atom C13 (Figs. 1[link] and 2[link]); on this basis, the configuration at each of atoms C21, C22 and C27A is S, with these atoms corresponding, respectively, to locants C3, C1′, C2′ and C7a′ in the chemical numbering scheme, so that the overall configuration of these com­pounds is (3RS,1′SR,2′SR,3′SR).

Based on earlier work (Pardasani et al., 2003[Pardasani, R. T., Pardasani, P., Chaturvedi, V., Yadav, S. K., Saxena, A. & Sharma, I. (2003). Heteroatom Chem. 14, 36-41.]; Quiroga et al., 2017[Quiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109-1115.]), a reaction sequence can be proposed which commences with nucleophilic addition of the proline com­ponent (B) to the isatin (A) (Scheme 1[link]) to form the inter­mediate (D) (Scheme 2[link]), followed by sequential cyclo­dehydration to give (E) and deca­rboxylation to form the key azomethine inter­mediate (F). This inter­mediate then undergoes a 1,3-dipolar cyclo­addition with the electron-deficient alkene (C) to form the products (I)–(III). The alternative orientation of the alkene relative to the azomethine in the addition reaction would give the products (Ia)–(IIIa) with transposed chloro­phenyl and rhodanine units, but these have not been detected. Thus, the negative pole of inter­mediate (F) has coupled to the heterocyclic end of the alkenic double bond, adjacent to the carbonyl group, rather than to the chloro­phenyl end. Neither of the com­ponents in the cyclo­addition reaction step contains any stereogenic centres, and there are no reagents present which could induce enanti­oselectivity; hence the products are formed as racemic mixtures. These each contain four contiguous stereogenic centres, so that whichever of these centres is formed first, it appears to exert strong control over the formation of all the others. In the transition state leading to the formation of the products (I)–(III), the reactants can approach one another in two orientations: the endo transition state, in which the Cl atom is remote from the aryl ring of the isatin unit, leads to the observed (3RS,1′SR,2′SR,3′SR) stereochemistry, whereas the alternative exo transition state, with the Cl atom close to the aryl ring of the isatin, would lead to the alternative (3RS,1′RS,2′RS,3′RS) stereochemistry, which is not observed. The choice of the transition state in this step is presumably determined by the minimization of steric hindrance. Hence this proposed reaction mechanism can account for both the regiochemistry and for the relative stereochemistry at the four stereogenic centres.

[Scheme 2]

Within the mol­ecules of (I)[link] and (II)[link], the rhodanine rings are almost planar, with r.m.s. deviations from the mean planes of the five ring atoms of 0.0573 Å in (I)[link] and 0.0210 Å in (II)[link]. However, the rings containing atoms C22 and C25 (Figs. 1[link] and 2[link]) both adopt half-chair conformations, as indicated by the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) shown in Table 2[link]. For an idealized half-chair conformation, the value of φ2 is (36k + 18)°, where k represents an integer (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). Here the rings denoted A (Table 2[link]) are twisted about a line joining atom C27A to the mid-point of the C13—C22 bond, while the rings denoted B are twisted about a line joining atom N24 to the mid-point of the C26—C27 bond.

Table 2
Ring-puckering parameters (Å, °)

Parameters for rings A and B are calculated for the atom sequences N24–C13–C22–C21–C27A and N24–C25–C26–C27–C27A, respectively. Data for (III) are available in the supporting information.

Ring A   (I) (II) (III)
Q2   0.4311 (13) 0.411 (2) 0.424 (6)
φ2   55.57 (17) 61.9 (3) 54.2 (8)
         
Ring B   (I) (II) (III)
Q2   0.4103 (14) 0.416 (3) 0.390 (7)
φ2   270.63 (18) 269.1 (3) 272.3 (9)

Overall, therefore, the com­position of com­pounds (I)–(III) has been determined; the constitutions, including the regiochemistry, have been established from the NMR spectra and the relative configurations of the stereogenic centres, and the conformations of the nonplanar rings in (I)[link] and (II)[link] have been established from the X-ray structure analyses. We have also investigated the crystal structure of com­pound (III). Despite repeated attempts at crystallization, this com­pound consistently formed tightly-packed clusters of very thin lath-like crystals, and the resulting diffraction data and the structure deduced from it is of somewhat indifferent quality (see supporting information). After conventional refinement of (III), the resulting difference map contained several significant electron-density maxima, but no chemically plausible solvent model could be developed from these peaks. Accordingly, SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was applied and the refinement using this modified data set established that the constitution and configuration of (III) are the same as those for com­pounds (I)[link] and (II)[link], and that the conformations of the type A and B rings are also very similar to those in (I)[link] and (II)[link] (Table 2[link]). However, the identity of the included solvent species remains undetermined.

The supra­molecular assembly of both (I)[link] and (II)[link] is very simple. In com­pound (I)[link], a single N—H⋯N hydrogen bond (Table 3[link]) links mol­ecules which are related by a 21 screw axis to form simple C(6) chains (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [010] direction (Fig. 3[link]), but there are no direction-specific inter­actions between adjacent chains. In com­pound (II)[link], mol­ecules which are related by a 21 screw axis are linked by a combination of one N—H⋯O hydrogen bond and one C—H⋯S=C hydrogen bond (Table 3[link]). These two inter­actions, acting singly, give rise to C(8) and C(12) chains, respectively, while in combination they generate a C(8)C(12)[R22(11)] chain of rings (Fig. 4[link]). There are no direction-specific inter­actions between adjacent chains. The crystal structure of (III) contains N—H⋯N and N—H⋯S hydrogen bonds (Table 3[link]), which individually generate C(6) and C(9) chains, both running parallel to the [010] direction, and in combination these inter­actions generate a sheet of R44(24) rings lying parallel to (001) (Fig. 5[link]).

Table 3
Hydrogen-bond parameters (Å, °)

The data for (III) are available in the supporting information.

  D—H⋯A   D—H H⋯A DA D—H⋯A
(I) N33—H33⋯N24i   0.863 (17) 2.079 (17) 2.8933 (15) 157.2 (16)
(II) N33—H33⋯O12ii   0.77 (3) 2.05 (3) 2.811 (2) 170 (3)
  C112—H112⋯S32iii   0.95 2.88 3.760 (3) 155
(III) N11—H11⋯S32iv   0.88 2.55 3.374 (5) 156
  N33—H33⋯N24v   0.88 2.08 2.878 (7) 150
Symmetry codes: (i) −x, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, −y + 1, z + [{1\over 2}]; (iii) −x + 1, −y + 1, z − [{1\over 2}]; (iv) −x, y − [{1\over 2}], −z + [{1\over 2}]; (v) −x + 1, y + [{1\over 2}], −z + [{1\over 2}].
[Figure 3]
Figure 3
Part of the crystal structure of com­pound (I)[link], showing the formation of a hydrogen-bonded C(6) chain running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms bonded to C atoms have all been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of com­pound (II)[link], showing the formation of a hydrogen-bonded C(8)C(12)[R22(11)] chain of rings running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms bonded to C atoms have all been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of com­pound (III), showing the formation of a hydrogen-bonded sheet of R44(24) rings; see supporting information for full details. Hydrogen bonds are drawn as dashed line lines and, for the sake of clarity, H atoms bonded to C atoms have all been omitted.

A number of structures have been reported for spiro­[in­doline-3,3′-pyrrolizine] derivatives (Sarrafi & Alimohammadi, 2008a[Sarrafi, Y. & Alimohammadi, K. (2008a). Acta Cryst. E64, o1490.],b[Sarrafi, Y. & Alimohammadi, K. (2008b). Acta Cryst. E64, o1740.]; Sathya et al., 2012[Sathya, S., Bhaskaran, S., Usha, G., Sivakumar, N. & Bakthadoss, M. (2012). Acta Cryst. E68, o277.]; Fathimunnisa et al., 2015[Fathimunnisa, M., Manikandan, H., Selvanayagam, S. & Sridhar, B. (2015). Acta Cryst. E71, 915-918.]; Corres et al., 2016[Corres, A., Estévez, V., Villacampa, M. & Menéndez, J. C. (2016). RSC Adv. 6, 39433-39443.]), but often without any mention of either the relative or the absolute stereochemistry, despite the presence of multiple stereogenic centres.

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT(Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

(3RS,1'SR,2'SR,7a'SR)-2'-(4-Chlorophenyl)-1-hexyl-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione (I) top
Crystal data top
C28H30ClN3O2S2F(000) = 1136
Mr = 540.12Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.1669 (5) ÅCell parameters from 6390 reflections
b = 10.7145 (3) Åθ = 2.3–28.3°
c = 17.1350 (5) ŵ = 0.34 mm1
β = 98.654 (1)°T = 100 K
V = 2571.33 (14) Å3Block, colourless
Z = 40.18 × 0.11 × 0.05 mm
Data collection top
Bruker D8 Venture
diffractometer
6390 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube5580 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.049
φ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1818
Tmin = 0.906, Tmax = 0.983k = 1414
58781 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0261P)2 + 1.9059P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
6390 reflectionsΔρmax = 0.47 e Å3
329 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.38984 (8)0.46405 (10)0.32810 (6)0.0124 (2)
C120.30350 (9)0.46202 (11)0.35416 (7)0.0111 (2)
O120.28957 (7)0.48958 (9)0.42055 (5)0.01425 (19)
C130.22665 (9)0.41823 (12)0.28497 (7)0.0101 (2)
C13A0.28767 (9)0.38460 (12)0.22290 (7)0.0110 (2)
C140.26377 (9)0.33426 (12)0.14842 (8)0.0132 (2)
H140.19930.31390.12860.016*
C150.33628 (10)0.31370 (13)0.10258 (8)0.0155 (3)
H150.32130.27670.05180.019*
C160.42985 (10)0.34706 (13)0.13089 (8)0.0174 (3)
H160.47800.33340.09880.021*
C170.45472 (10)0.40035 (13)0.20557 (8)0.0162 (3)
H170.51860.42450.22450.019*
C17A0.38255 (9)0.41647 (12)0.25075 (7)0.0123 (2)
C210.08415 (9)0.51746 (12)0.32233 (7)0.0103 (2)
C220.15215 (9)0.52067 (11)0.25754 (7)0.0099 (2)
H220.11290.48560.20910.012*
N240.16385 (7)0.31858 (10)0.30627 (6)0.0101 (2)
C250.20764 (9)0.21899 (12)0.36102 (7)0.0130 (2)
H25A0.27070.24580.38900.016*
H25B0.21580.14090.33190.016*
C260.13670 (10)0.20031 (12)0.41911 (8)0.0143 (3)
H26A0.16920.16880.47050.017*
H26B0.08560.14110.39780.017*
C270.09634 (9)0.33176 (12)0.42746 (7)0.0137 (2)
H27A0.03480.32910.44820.016*
H27B0.14190.38510.46210.016*
C27A0.08320 (9)0.37667 (12)0.34186 (7)0.0109 (2)
H2710.02200.34090.31420.013*
S310.11441 (2)0.62162 (3)0.40671 (2)0.01185 (7)
C320.02013 (9)0.72364 (12)0.37629 (7)0.0116 (2)
S320.00374 (2)0.85216 (3)0.42460 (2)0.01431 (7)
N330.03583 (8)0.68025 (10)0.31006 (6)0.0121 (2)
H330.0841 (12)0.7206 (16)0.2856 (10)0.014*
C340.01382 (9)0.56458 (12)0.28215 (7)0.0112 (2)
O340.06330 (7)0.50921 (9)0.23002 (5)0.01482 (19)
C1110.47900 (9)0.49823 (13)0.37816 (8)0.0145 (3)
H11A0.46380.53580.42760.017*
H11B0.51210.56230.35070.017*
C1120.54657 (9)0.38780 (13)0.39904 (8)0.0151 (3)
H12A0.57360.36300.35130.018*
H12B0.60020.41530.43920.018*
C1130.49993 (10)0.27395 (13)0.43052 (8)0.0165 (3)
H13A0.44520.24730.39120.020*
H13B0.47490.29730.47940.020*
C1140.56909 (10)0.16447 (13)0.44815 (8)0.0179 (3)
H14A0.53320.09140.46340.021*
H14B0.59460.14250.39920.021*
C1150.65276 (10)0.18967 (13)0.51338 (8)0.0175 (3)
H15A0.62770.21520.56190.021*
H15B0.69110.25970.49720.021*
C1160.71704 (11)0.07583 (14)0.53159 (9)0.0237 (3)
H16A0.74240.05050.48390.036*
H16B0.68000.00710.54940.036*
H16C0.77000.09680.57320.036*
C2210.18456 (9)0.64645 (12)0.23251 (7)0.0115 (2)
C2220.15072 (10)0.68746 (13)0.15582 (8)0.0153 (3)
H2220.11200.63350.12040.018*
C2230.17286 (10)0.80581 (14)0.13059 (8)0.0187 (3)
H2230.14980.83280.07840.022*
C2240.22895 (10)0.88346 (13)0.18270 (9)0.0185 (3)
Cl240.25285 (3)1.03498 (3)0.15442 (3)0.02795 (10)
C2250.26587 (10)0.84461 (13)0.25809 (9)0.0179 (3)
H2250.30560.89850.29280.021*
C2260.24403 (9)0.72571 (12)0.28246 (8)0.0145 (3)
H2260.27000.69800.33390.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0098 (5)0.0146 (5)0.0126 (5)0.0008 (4)0.0012 (4)0.0001 (4)
C120.0104 (6)0.0087 (5)0.0140 (6)0.0012 (4)0.0009 (4)0.0019 (4)
O120.0141 (4)0.0166 (5)0.0120 (4)0.0010 (4)0.0018 (3)0.0013 (3)
C130.0102 (6)0.0101 (6)0.0100 (5)0.0003 (4)0.0020 (4)0.0000 (4)
C13A0.0114 (6)0.0096 (6)0.0127 (6)0.0012 (4)0.0038 (5)0.0027 (4)
C140.0132 (6)0.0124 (6)0.0139 (6)0.0004 (5)0.0019 (5)0.0017 (5)
C150.0193 (7)0.0149 (6)0.0129 (6)0.0025 (5)0.0049 (5)0.0004 (5)
C160.0167 (7)0.0202 (7)0.0173 (6)0.0037 (5)0.0088 (5)0.0022 (5)
C170.0117 (6)0.0192 (7)0.0185 (6)0.0007 (5)0.0046 (5)0.0021 (5)
C17A0.0123 (6)0.0117 (6)0.0132 (6)0.0005 (5)0.0026 (5)0.0017 (5)
C210.0094 (6)0.0121 (6)0.0091 (5)0.0000 (4)0.0011 (4)0.0007 (4)
C220.0087 (5)0.0116 (6)0.0097 (5)0.0004 (4)0.0022 (4)0.0002 (4)
N240.0089 (5)0.0100 (5)0.0116 (5)0.0004 (4)0.0026 (4)0.0015 (4)
C250.0126 (6)0.0122 (6)0.0140 (6)0.0014 (5)0.0018 (5)0.0034 (5)
C260.0158 (6)0.0140 (6)0.0135 (6)0.0001 (5)0.0035 (5)0.0032 (5)
C270.0148 (6)0.0152 (6)0.0121 (6)0.0003 (5)0.0049 (5)0.0025 (5)
C27A0.0096 (6)0.0117 (6)0.0116 (6)0.0003 (5)0.0026 (4)0.0009 (4)
S310.01191 (14)0.01336 (15)0.00997 (14)0.00198 (11)0.00067 (11)0.00128 (11)
C320.0110 (6)0.0138 (6)0.0108 (5)0.0002 (5)0.0040 (4)0.0024 (4)
S320.01623 (16)0.01289 (15)0.01414 (15)0.00173 (12)0.00338 (12)0.00180 (11)
N330.0106 (5)0.0126 (5)0.0129 (5)0.0022 (4)0.0011 (4)0.0006 (4)
C340.0105 (6)0.0135 (6)0.0102 (5)0.0008 (5)0.0039 (4)0.0022 (4)
O340.0124 (4)0.0169 (5)0.0145 (4)0.0005 (4)0.0000 (3)0.0018 (4)
C1110.0106 (6)0.0158 (6)0.0164 (6)0.0023 (5)0.0004 (5)0.0001 (5)
C1120.0102 (6)0.0183 (6)0.0163 (6)0.0006 (5)0.0006 (5)0.0012 (5)
C1130.0129 (6)0.0173 (6)0.0187 (6)0.0011 (5)0.0001 (5)0.0015 (5)
C1140.0183 (7)0.0151 (6)0.0194 (7)0.0005 (5)0.0001 (5)0.0010 (5)
C1150.0154 (6)0.0173 (7)0.0193 (7)0.0012 (5)0.0007 (5)0.0005 (5)
C1160.0224 (7)0.0212 (7)0.0259 (7)0.0057 (6)0.0014 (6)0.0002 (6)
C2210.0101 (6)0.0116 (6)0.0136 (6)0.0023 (5)0.0043 (5)0.0009 (5)
C2220.0134 (6)0.0188 (7)0.0143 (6)0.0018 (5)0.0046 (5)0.0026 (5)
C2230.0180 (7)0.0208 (7)0.0190 (7)0.0048 (5)0.0082 (5)0.0080 (5)
C2240.0167 (7)0.0117 (6)0.0305 (8)0.0032 (5)0.0144 (6)0.0065 (5)
Cl240.0302 (2)0.01309 (16)0.0458 (2)0.00390 (14)0.02268 (17)0.01029 (15)
C2250.0158 (6)0.0140 (6)0.0251 (7)0.0020 (5)0.0075 (5)0.0022 (5)
C2260.0134 (6)0.0143 (6)0.0161 (6)0.0003 (5)0.0033 (5)0.0009 (5)
Geometric parameters (Å, º) top
N11—C121.3639 (16)S31—C321.7438 (13)
N11—C17A1.4093 (16)C32—N331.3645 (16)
N11—C1111.4627 (16)C32—S321.6411 (13)
C12—O121.2198 (16)N33—C341.3809 (17)
C12—C131.5566 (17)N33—H330.862 (17)
C13—N241.4705 (16)C34—O341.2053 (16)
C13—C13A1.5115 (17)C111—C1121.5301 (18)
C13—C221.5460 (17)C111—H11A0.9900
C13A—C141.3800 (18)C111—H11B0.9900
C13A—C17A1.3993 (18)C112—C1131.5241 (19)
C14—C151.4014 (18)C112—H12A0.9900
C14—H140.9500C112—H12B0.9900
C15—C161.388 (2)C113—C1141.5291 (19)
C15—H150.9500C113—H13A0.9900
C16—C171.3972 (19)C113—H13B0.9900
C16—H160.9500C114—C1151.5259 (19)
C17—C17A1.3830 (18)C114—H14A0.9900
C17—H170.9500C114—H14B0.9900
C21—C341.5388 (17)C115—C1161.5261 (19)
C21—C27A1.5457 (17)C115—H15A0.9900
C21—C221.5758 (17)C115—H15B0.9900
C21—S311.8258 (13)C116—H16A0.9800
C22—C2211.5067 (17)C116—H16B0.9800
C22—H221.0000C116—H16C0.9800
N24—C251.4928 (16)C221—C2261.3951 (18)
N24—C27A1.5080 (16)C221—C2221.4000 (18)
C25—C261.5304 (18)C222—C2231.3908 (19)
C25—H25A0.9900C222—H2220.9500
C25—H25B0.9900C223—C2241.381 (2)
C26—C271.5348 (18)C223—H2230.9500
C26—H26A0.9900C224—C2251.383 (2)
C26—H26B0.9900C224—Cl241.7419 (14)
C27—C27A1.5282 (17)C225—C2261.3899 (19)
C27—H27A0.9900C225—H2250.9500
C27—H27B0.9900C226—H2260.9500
C27A—H2711.0000
C12—N11—C17A111.08 (10)C27—C27A—H271107.8
C12—N11—C111123.36 (11)C21—C27A—H271107.8
C17A—N11—C111125.22 (11)C32—S31—C2193.93 (6)
O12—C12—N11125.48 (12)N33—C32—S32126.64 (10)
O12—C12—C13126.20 (11)N33—C32—S31110.98 (9)
N11—C12—C13108.32 (10)S32—C32—S31122.37 (8)
N24—C13—C13A115.66 (10)C32—N33—C34117.43 (11)
N24—C13—C22100.37 (9)C32—N33—H33123.5 (11)
C13A—C13—C22113.07 (10)C34—N33—H33119.1 (11)
N24—C13—C12114.19 (10)O34—C34—N33124.19 (12)
C13A—C13—C12101.49 (10)O34—C34—C21123.71 (11)
C22—C13—C12112.63 (10)N33—C34—C21112.03 (11)
C14—C13A—C17A120.01 (12)N11—C111—C112113.47 (11)
C14—C13A—C13131.08 (12)N11—C111—H11A108.9
C17A—C13A—C13108.88 (11)C112—C111—H11A108.9
C13A—C14—C15118.77 (12)N11—C111—H11B108.9
C13A—C14—H14120.6C112—C111—H11B108.9
C15—C14—H14120.6H11A—C111—H11B107.7
C16—C15—C14120.38 (12)C113—C112—C111114.35 (11)
C16—C15—H15119.8C113—C112—H12A108.7
C14—C15—H15119.8C111—C112—H12A108.7
C15—C16—C17121.42 (12)C113—C112—H12B108.7
C15—C16—H16119.3C111—C112—H12B108.7
C17—C16—H16119.3H12A—C112—H12B107.6
C17A—C17—C16117.26 (13)C112—C113—C114112.63 (11)
C17A—C17—H17121.4C112—C113—H13A109.1
C16—C17—H17121.4C114—C113—H13A109.1
C17—C17A—C13A122.12 (12)C112—C113—H13B109.1
C17—C17A—N11128.02 (12)C114—C113—H13B109.1
C13A—C17A—N11109.86 (11)H13A—C113—H13B107.8
C34—C21—C27A112.36 (10)C115—C114—C113114.40 (11)
C34—C21—C22106.47 (9)C115—C114—H14A108.7
C27A—C21—C22101.54 (9)C113—C114—H14A108.7
C34—C21—S31104.02 (8)C115—C114—H14B108.7
C27A—C21—S31115.71 (8)C113—C114—H14B108.7
C22—C21—S31116.68 (8)H14A—C114—H14B107.6
C221—C22—C13119.88 (10)C114—C115—C116112.47 (12)
C221—C22—C21117.70 (10)C114—C115—H15A109.1
C13—C22—C21103.42 (9)C116—C115—H15A109.1
C221—C22—H22104.7C114—C115—H15B109.1
C13—C22—H22104.7C116—C115—H15B109.1
C21—C22—H22104.7H15A—C115—H15B107.8
C13—N24—C25117.73 (10)C115—C116—H16A109.5
C13—N24—C27A108.92 (9)C115—C116—H16B109.5
C25—N24—C27A108.02 (9)H16A—C116—H16B109.5
N24—C25—C26104.52 (10)C115—C116—H16C109.5
N24—C25—H25A110.8H16A—C116—H16C109.5
C26—C25—H25A110.8H16B—C116—H16C109.5
N24—C25—H25B110.8C226—C221—C222118.33 (12)
C26—C25—H25B110.8C226—C221—C22123.48 (11)
H25A—C25—H25B108.9C222—C221—C22118.16 (11)
C25—C26—C27103.35 (10)C223—C222—C221121.11 (13)
C25—C26—H26A111.1C223—C222—H222119.4
C27—C26—H26A111.1C221—C222—H222119.4
C25—C26—H26B111.1C224—C223—C222118.88 (13)
C27—C26—H26B111.1C224—C223—H223120.6
H26A—C26—H26B109.1C222—C223—H223120.6
C27A—C27—C26101.12 (10)C223—C224—C225121.51 (13)
C27A—C27—H27A111.5C223—C224—Cl24119.91 (11)
C26—C27—H27A111.5C225—C224—Cl24118.58 (12)
C27A—C27—H27B111.5C224—C225—C226119.11 (13)
C26—C27—H27B111.5C224—C225—H225120.4
H27A—C27—H27B109.4C226—C225—H225120.4
N24—C27A—C27105.54 (10)C225—C226—C221120.99 (13)
N24—C27A—C21106.46 (10)C225—C226—H226119.5
C27—C27A—C21120.75 (11)C221—C226—H226119.5
N24—C27A—H271107.8
C17A—N11—C12—O12174.79 (12)C27A—N24—C25—C2612.63 (13)
C111—N11—C12—O121.2 (2)N24—C25—C26—C2734.02 (13)
C17A—N11—C12—C135.00 (14)C25—C26—C27—C27A41.69 (12)
C111—N11—C12—C13178.62 (11)C13—N24—C27A—C27115.28 (11)
O12—C12—C13—N2448.63 (17)C25—N24—C27A—C2713.68 (13)
N11—C12—C13—N24131.16 (11)C13—N24—C27A—C2114.19 (12)
O12—C12—C13—C13A173.78 (12)C25—N24—C27A—C21143.14 (10)
N11—C12—C13—C13A6.01 (13)C26—C27—C27A—N2434.02 (12)
O12—C12—C13—C2265.02 (16)C26—C27—C27A—C21154.53 (11)
N11—C12—C13—C22115.19 (11)C34—C21—C27A—N24127.01 (10)
N24—C13—C13A—C1452.65 (18)C22—C21—C27A—N2413.63 (12)
C22—C13—C13A—C1462.29 (17)S31—C21—C27A—N24113.73 (9)
C12—C13—C13A—C14176.81 (13)C34—C21—C27A—C27112.93 (12)
N24—C13—C13A—C17A129.14 (11)C22—C21—C27A—C27133.69 (11)
C22—C13—C13A—C17A115.91 (12)S31—C21—C27A—C276.33 (15)
C12—C13—C13A—C17A4.98 (13)C34—C21—S31—C329.48 (9)
C17A—C13A—C14—C151.29 (19)C27A—C21—S31—C32133.22 (9)
C13—C13A—C14—C15179.33 (12)C22—C21—S31—C32107.42 (9)
C13A—C14—C15—C161.9 (2)C21—S31—C32—N333.99 (10)
C14—C15—C16—C170.7 (2)C21—S31—C32—S32177.07 (8)
C15—C16—C17—C17A1.1 (2)S32—C32—N33—C34174.88 (10)
C16—C17—C17A—C13A1.8 (2)S31—C32—N33—C344.00 (14)
C16—C17—C17A—N11177.88 (13)C32—N33—C34—O34171.20 (12)
C14—C13A—C17A—C170.6 (2)C32—N33—C34—C2111.88 (15)
C13—C13A—C17A—C17177.83 (12)C27A—C21—C34—O3443.92 (16)
C14—C13A—C17A—N11179.13 (11)C22—C21—C34—O3466.39 (15)
C13—C13A—C17A—N112.43 (14)S31—C21—C34—O34169.81 (11)
C12—N11—C17A—C17177.99 (13)C27A—C21—C34—N33139.14 (11)
C111—N11—C17A—C174.5 (2)C22—C21—C34—N33110.55 (11)
C12—N11—C17A—C13A1.73 (15)S31—C21—C34—N3313.26 (12)
C111—N11—C17A—C13A175.20 (11)C12—N11—C111—C112109.24 (14)
N24—C13—C22—C221177.40 (10)C17A—N11—C111—C11263.47 (16)
C13A—C13—C22—C22158.79 (15)N11—C111—C112—C11349.81 (15)
C12—C13—C22—C22155.56 (14)C111—C112—C113—C114178.19 (11)
N24—C13—C22—C2143.91 (11)C112—C113—C114—C11563.75 (16)
C13A—C13—C22—C21167.72 (10)C113—C114—C115—C116177.22 (12)
C12—C13—C22—C2177.93 (12)C13—C22—C221—C22661.00 (16)
C34—C21—C22—C22172.19 (13)C21—C22—C221—C22666.16 (16)
C27A—C21—C22—C221170.08 (10)C13—C22—C221—C222121.09 (13)
S31—C21—C22—C22143.35 (14)C21—C22—C221—C222111.76 (13)
C34—C21—C22—C13153.08 (10)C226—C221—C222—C2232.19 (19)
C27A—C21—C22—C1335.35 (11)C22—C221—C222—C223175.83 (12)
S31—C21—C22—C1391.38 (10)C221—C222—C223—C2240.2 (2)
C13A—C13—N24—C2578.63 (13)C222—C223—C224—C2252.2 (2)
C22—C13—N24—C25159.37 (10)C222—C223—C224—Cl24176.75 (10)
C12—C13—N24—C2538.63 (15)C223—C224—C225—C2261.6 (2)
C13A—C13—N24—C27A158.03 (10)Cl24—C224—C225—C226177.35 (10)
C22—C13—N24—C27A36.03 (11)C224—C225—C226—C2211.0 (2)
C12—C13—N24—C27A84.71 (12)C222—C221—C226—C2252.80 (19)
C13—N24—C25—C26136.43 (11)C22—C221—C226—C225175.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N33—H33···N24i0.863 (17)2.079 (17)2.8933 (15)157.2 (16)
Symmetry code: (i) x, y+1/2, z+1/2.
(3RS,1'SR,2'SR,7a'SR)-2'-(4-Chlorophenyl)-1-\ benzyl-5-methyl-2''-sulfanylidene-5',6',7',7a'-tetrahydro-2'H-\ dispiro[indoline-3,3'-pyrrolizine-1',5''-thiazolidine]-2,4''-dione (II) top
Crystal data top
C30H26ClN3O2S2Dx = 1.390 Mg m3
Mr = 560.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3475 reflections
a = 8.2419 (2) Åθ = 2.6–28.3°
b = 28.0429 (6) ŵ = 0.33 mm1
c = 11.5843 (3) ÅT = 100 K
V = 2677.44 (11) Å3Needle, colourless
Z = 40.34 × 0.18 × 0.12 mm
F(000) = 1168
Data collection top
Bruker D8 Venture
diffractometer
6574 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube6425 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.038
φ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.917, Tmax = 0.961k = 3737
26105 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.6579P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.37 e Å3
6574 reflectionsΔρmin = 0.27 e Å3
347 parametersAbsolute structure: Flack x determined using 2956 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.050 (19)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.4912 (2)0.32585 (6)0.44612 (14)0.0133 (3)
C120.5345 (2)0.37223 (7)0.45503 (16)0.0127 (4)
O120.48339 (19)0.40480 (5)0.39356 (13)0.0175 (3)
C130.6598 (2)0.37797 (7)0.55441 (16)0.0117 (3)
C13A0.6735 (2)0.32703 (6)0.59682 (17)0.0117 (3)
C140.7598 (2)0.30824 (7)0.68828 (17)0.0142 (4)
H140.82640.32820.73450.017*
C150.7479 (3)0.25932 (7)0.71215 (17)0.0159 (4)
C160.6508 (3)0.23092 (7)0.64225 (18)0.0170 (4)
H160.64550.19770.65730.020*
C170.5605 (3)0.24957 (7)0.55039 (17)0.0155 (4)
H170.49330.22980.50400.019*
C17A0.5734 (2)0.29796 (7)0.53023 (17)0.0128 (3)
C210.6449 (2)0.46322 (6)0.60016 (18)0.0131 (3)
C220.6043 (2)0.41280 (6)0.65025 (16)0.0118 (3)
H220.68570.40820.71320.014*
N240.8120 (2)0.40002 (5)0.52018 (15)0.0141 (3)
C250.8828 (3)0.38859 (7)0.40651 (19)0.0175 (4)
H25A0.79810.37760.35210.021*
H25B0.96680.36350.41360.021*
C260.9574 (3)0.43573 (8)0.3661 (2)0.0223 (5)
H26A0.96320.43730.28080.027*
H26B1.06750.44020.39840.027*
C270.8383 (3)0.47302 (8)0.4141 (2)0.0232 (4)
H27A0.88840.50510.41800.028*
H27B0.73790.47470.36740.028*
C27A0.8052 (3)0.45299 (7)0.53427 (18)0.0175 (4)
H2710.89730.46260.58540.021*
S310.48214 (6)0.49186 (2)0.51754 (4)0.01522 (10)
C320.4565 (2)0.53771 (7)0.61713 (17)0.0151 (4)
S320.31832 (7)0.57931 (2)0.60451 (5)0.02113 (11)
N330.5668 (2)0.53414 (6)0.70448 (15)0.0163 (3)
H330.563 (3)0.5524 (10)0.754 (2)0.020*
C340.6749 (3)0.49665 (7)0.70299 (18)0.0157 (4)
O340.7779 (2)0.48991 (5)0.77459 (15)0.0226 (3)
C1170.3670 (3)0.30773 (7)0.36649 (18)0.0168 (4)
H11A0.30740.33510.33300.020*
H11B0.28820.28830.41060.020*
C1110.4359 (3)0.27787 (7)0.26955 (18)0.0169 (4)
C1120.5196 (3)0.29919 (9)0.1790 (2)0.0250 (5)
H1120.53470.33280.17830.030*
C1130.5812 (3)0.27172 (10)0.0896 (2)0.0311 (5)
H1130.63750.28660.02780.037*
C1140.5610 (3)0.22266 (9)0.0902 (2)0.0294 (5)
H1140.60530.20390.02970.035*
C1150.4764 (3)0.20114 (9)0.1788 (2)0.0283 (5)
H1150.46120.16760.17880.034*
C1160.4133 (3)0.22872 (8)0.26831 (19)0.0226 (4)
H1160.35440.21380.32890.027*
C1510.8387 (3)0.23761 (8)0.81275 (19)0.0217 (4)
H15A0.76160.22190.86470.032*
H15B0.89650.26280.85470.032*
H15C0.91680.21410.78390.032*
C2210.4429 (2)0.40572 (7)0.70937 (17)0.0127 (4)
C2220.4450 (3)0.40064 (7)0.82936 (18)0.0154 (4)
H2220.54590.40080.86900.019*
C2230.3016 (3)0.39527 (7)0.89188 (18)0.0178 (4)
H2230.30420.39190.97350.021*
C2240.1555 (3)0.39493 (7)0.83321 (19)0.0165 (4)
Cl240.02407 (6)0.39020 (2)0.91141 (5)0.02411 (12)
C2250.1491 (3)0.39936 (7)0.71405 (19)0.0159 (4)
H2250.04780.39880.67490.019*
C2260.2935 (2)0.40461 (7)0.65266 (17)0.0143 (4)
H2260.29020.40750.57100.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0154 (8)0.0116 (7)0.0129 (7)0.0001 (6)0.0002 (6)0.0002 (6)
C120.0149 (9)0.0124 (9)0.0108 (8)0.0003 (7)0.0023 (7)0.0010 (7)
O120.0266 (8)0.0126 (6)0.0133 (7)0.0028 (6)0.0015 (6)0.0020 (6)
C130.0150 (9)0.0094 (8)0.0107 (8)0.0003 (7)0.0013 (7)0.0003 (7)
C13A0.0123 (8)0.0091 (7)0.0138 (8)0.0008 (6)0.0032 (7)0.0010 (7)
C140.0133 (9)0.0142 (9)0.0151 (9)0.0015 (7)0.0015 (7)0.0002 (7)
C150.0149 (9)0.0155 (9)0.0174 (9)0.0034 (7)0.0048 (7)0.0037 (7)
C160.0189 (10)0.0118 (8)0.0203 (9)0.0012 (7)0.0051 (8)0.0030 (7)
C170.0178 (9)0.0113 (9)0.0173 (9)0.0017 (7)0.0029 (7)0.0010 (7)
C17A0.0130 (8)0.0123 (8)0.0131 (9)0.0009 (7)0.0031 (7)0.0007 (7)
C210.0157 (9)0.0092 (8)0.0146 (8)0.0004 (6)0.0002 (7)0.0001 (7)
C220.0142 (9)0.0096 (7)0.0116 (8)0.0003 (7)0.0006 (7)0.0003 (7)
N240.0174 (8)0.0092 (7)0.0158 (8)0.0017 (6)0.0040 (7)0.0004 (6)
C250.0192 (10)0.0149 (8)0.0183 (9)0.0011 (7)0.0065 (8)0.0008 (8)
C260.0240 (11)0.0169 (10)0.0260 (11)0.0019 (8)0.0105 (9)0.0018 (8)
C270.0257 (11)0.0170 (9)0.0268 (11)0.0009 (8)0.0073 (9)0.0045 (9)
C27A0.0189 (10)0.0114 (8)0.0221 (10)0.0008 (7)0.0017 (8)0.0006 (7)
S310.0228 (2)0.01031 (19)0.0126 (2)0.00093 (17)0.0033 (2)0.00054 (18)
C320.0185 (9)0.0130 (8)0.0138 (9)0.0004 (7)0.0011 (8)0.0003 (7)
S320.0245 (3)0.0197 (2)0.0192 (2)0.0089 (2)0.0018 (2)0.0011 (2)
N330.0218 (9)0.0122 (8)0.0148 (8)0.0022 (7)0.0031 (7)0.0054 (6)
C340.0184 (10)0.0104 (8)0.0184 (9)0.0028 (7)0.0000 (7)0.0007 (7)
O340.0232 (8)0.0184 (7)0.0263 (8)0.0002 (6)0.0093 (7)0.0040 (6)
C1170.0161 (10)0.0174 (9)0.0171 (9)0.0019 (8)0.0027 (7)0.0009 (7)
C1110.0186 (10)0.0185 (10)0.0138 (9)0.0028 (8)0.0036 (8)0.0014 (8)
C1120.0319 (12)0.0241 (11)0.0189 (10)0.0090 (10)0.0009 (9)0.0002 (9)
C1130.0370 (14)0.0384 (13)0.0180 (11)0.0126 (11)0.0064 (10)0.0036 (10)
C1140.0336 (13)0.0346 (13)0.0201 (11)0.0001 (10)0.0006 (10)0.0107 (10)
C1150.0393 (14)0.0222 (11)0.0233 (11)0.0012 (10)0.0029 (10)0.0057 (9)
C1160.0317 (12)0.0193 (10)0.0168 (9)0.0055 (9)0.0005 (9)0.0008 (8)
C1510.0217 (10)0.0202 (10)0.0231 (10)0.0042 (8)0.0007 (9)0.0094 (8)
C2210.0161 (10)0.0083 (8)0.0137 (9)0.0002 (7)0.0016 (7)0.0011 (7)
C2220.0174 (9)0.0147 (9)0.0142 (9)0.0009 (7)0.0016 (7)0.0002 (7)
C2230.0226 (10)0.0177 (9)0.0130 (9)0.0015 (8)0.0026 (8)0.0010 (7)
C2240.0172 (9)0.0125 (9)0.0200 (9)0.0009 (7)0.0066 (8)0.0003 (7)
Cl240.0185 (2)0.0305 (3)0.0234 (3)0.0019 (2)0.0078 (2)0.0009 (2)
C2250.0147 (10)0.0130 (9)0.0200 (9)0.0000 (7)0.0006 (8)0.0003 (7)
C2260.0183 (10)0.0128 (8)0.0117 (8)0.0012 (7)0.0003 (7)0.0004 (7)
Geometric parameters (Å, º) top
N11—C121.353 (2)C27A—H2711.0000
N11—C17A1.421 (2)S31—C321.740 (2)
N11—C1171.469 (3)C32—N331.364 (3)
C12—O121.232 (2)C32—S321.637 (2)
C12—C131.555 (3)N33—C341.378 (3)
C13—N241.454 (2)N33—H330.77 (3)
C13—C13A1.515 (2)C34—O341.202 (3)
C13—C221.548 (3)C117—C1111.511 (3)
C13A—C141.381 (3)C117—H11A0.9900
C13A—C17A1.393 (3)C117—H11B0.9900
C14—C151.403 (3)C111—C1121.391 (3)
C14—H140.9500C111—C1161.391 (3)
C15—C161.389 (3)C112—C1131.386 (3)
C15—C1511.513 (3)C112—H1120.9500
C16—C171.400 (3)C113—C1141.386 (4)
C16—H160.9500C113—H1130.9500
C17—C17A1.381 (3)C114—C1151.379 (4)
C17—H170.9500C114—H1140.9500
C21—C341.536 (3)C115—C1161.395 (3)
C21—C27A1.552 (3)C115—H1150.9500
C21—C221.565 (3)C116—H1160.9500
C21—S311.833 (2)C151—H15A0.9800
C22—C2211.509 (3)C151—H15B0.9800
C22—H221.0000C151—H15C0.9800
N24—C251.476 (3)C221—C2261.396 (3)
N24—C27A1.495 (2)C221—C2221.397 (3)
C25—C261.531 (3)C222—C2231.394 (3)
C25—H25A0.9900C222—H2220.9500
C25—H25B0.9900C223—C2241.383 (3)
C26—C271.539 (3)C223—H2230.9500
C26—H26A0.9900C224—C2251.387 (3)
C26—H26B0.9900C224—Cl241.740 (2)
C27—C27A1.525 (3)C225—C2261.395 (3)
C27—H27A0.9900C225—H2250.9500
C27—H27B0.9900C226—H2260.9500
C12—N11—C17A110.57 (16)N24—C27A—C21105.61 (15)
C12—N11—C117124.35 (17)C27—C27A—C21122.20 (17)
C17A—N11—C117124.92 (16)N24—C27A—H271107.7
O12—C12—N11125.35 (18)C27—C27A—H271107.7
O12—C12—C13125.31 (17)C21—C27A—H271107.7
N11—C12—C13109.34 (16)C32—S31—C2193.81 (9)
N24—C13—C13A115.15 (16)N33—C32—S32125.62 (15)
N24—C13—C22100.50 (15)N33—C32—S31110.89 (14)
C13A—C13—C22112.62 (15)S32—C32—S31123.49 (12)
N24—C13—C12114.53 (16)C32—N33—C34118.52 (17)
C13A—C13—C12101.07 (15)C32—N33—H33119 (2)
C22—C13—C12113.60 (15)C34—N33—H33123 (2)
C14—C13A—C17A120.46 (17)O34—C34—N33124.60 (19)
C14—C13A—C13130.33 (18)O34—C34—C21123.56 (19)
C17A—C13A—C13109.15 (17)N33—C34—C21111.82 (17)
C13A—C14—C15119.23 (18)N11—C117—C111113.35 (17)
C13A—C14—H14120.4N11—C117—H11A108.9
C15—C14—H14120.4C111—C117—H11A108.9
C16—C15—C14119.09 (18)N11—C117—H11B108.9
C16—C15—C151120.21 (18)C111—C117—H11B108.9
C14—C15—C151120.70 (19)H11A—C117—H11B107.7
C15—C16—C17122.34 (18)C112—C111—C116119.0 (2)
C15—C16—H16118.8C112—C111—C117120.59 (19)
C17—C16—H16118.8C116—C111—C117120.42 (19)
C17A—C17—C16117.06 (19)C113—C112—C111120.4 (2)
C17A—C17—H17121.5C113—C112—H112119.8
C16—C17—H17121.5C111—C112—H112119.8
C17—C17A—C13A121.79 (18)C114—C113—C112120.3 (2)
C17—C17A—N11128.32 (18)C114—C113—H113119.9
C13A—C17A—N11109.87 (16)C112—C113—H113119.9
C34—C21—C27A110.94 (16)C115—C114—C113119.9 (2)
C34—C21—C22107.36 (16)C115—C114—H114120.0
C27A—C21—C22101.39 (14)C113—C114—H114120.0
C34—C21—S31104.79 (13)C114—C115—C116119.9 (2)
C27A—C21—S31116.55 (14)C114—C115—H115120.0
C22—C21—S31115.64 (13)C116—C115—H115120.0
C221—C22—C13120.19 (16)C111—C116—C115120.5 (2)
C221—C22—C21118.42 (16)C111—C116—H116119.8
C13—C22—C21103.94 (15)C115—C116—H116119.8
C221—C22—H22104.1C15—C151—H15A109.5
C13—C22—H22104.1C15—C151—H15B109.5
C21—C22—H22104.1H15A—C151—H15B109.5
C13—N24—C25119.50 (16)C15—C151—H15C109.5
C13—N24—C27A111.13 (15)H15A—C151—H15C109.5
C25—N24—C27A109.14 (15)H15B—C151—H15C109.5
N24—C25—C26104.15 (16)C226—C221—C222118.48 (18)
N24—C25—H25A110.9C226—C221—C22124.52 (17)
C26—C25—H25A110.9C222—C221—C22116.99 (18)
N24—C25—H25B110.9C223—C222—C221121.14 (19)
C26—C25—H25B110.9C223—C222—H222119.4
H25A—C25—H25B108.9C221—C222—H222119.4
C25—C26—C27102.70 (17)C224—C223—C222118.92 (19)
C25—C26—H26A111.2C224—C223—H223120.5
C27—C26—H26A111.2C222—C223—H223120.5
C25—C26—H26B111.2C223—C224—C225121.5 (2)
C27—C26—H26B111.2C223—C224—Cl24119.03 (17)
H26A—C26—H26B109.1C225—C224—Cl24119.49 (17)
C27A—C27—C26101.19 (17)C224—C225—C226119.0 (2)
C27A—C27—H27A111.5C224—C225—H225120.5
C26—C27—H27A111.5C226—C225—H225120.5
C27A—C27—H27B111.5C225—C226—C221121.02 (18)
C26—C27—H27B111.5C225—C226—H226119.5
H27A—C27—H27B109.4C221—C226—H226119.5
N24—C27A—C27105.04 (16)
C17A—N11—C12—O12179.86 (18)C25—C26—C27—C27A42.0 (2)
C117—N11—C12—O124.6 (3)C13—N24—C27A—C27121.17 (18)
C17A—N11—C12—C130.3 (2)C25—N24—C27A—C2712.7 (2)
C117—N11—C12—C13175.81 (17)C13—N24—C27A—C219.2 (2)
O12—C12—C13—N2455.7 (3)C25—N24—C27A—C21143.07 (17)
N11—C12—C13—N24123.86 (17)C26—C27—C27A—N2433.6 (2)
O12—C12—C13—C13A179.83 (18)C26—C27—C27A—C21153.53 (18)
N11—C12—C13—C13A0.6 (2)C34—C21—C27A—N24130.88 (17)
O12—C12—C13—C2259.0 (2)C22—C21—C27A—N2417.12 (19)
N11—C12—C13—C22121.44 (17)S31—C21—C27A—N24109.34 (15)
N24—C13—C13A—C1459.7 (3)C34—C21—C27A—C27109.5 (2)
C22—C13—C13A—C1454.7 (3)C22—C21—C27A—C27136.74 (19)
C12—C13—C13A—C14176.28 (19)S31—C21—C27A—C2710.3 (2)
N24—C13—C13A—C17A123.32 (18)C34—C21—S31—C323.88 (14)
C22—C13—C13A—C17A122.25 (17)C27A—C21—S31—C32126.91 (15)
C12—C13—C13A—C17A0.7 (2)C22—C21—S31—C32114.09 (15)
C17A—C13A—C14—C151.2 (3)C21—S31—C32—N332.99 (16)
C13—C13A—C14—C15177.86 (19)C21—S31—C32—S32177.52 (14)
C13A—C14—C15—C160.7 (3)S32—C32—N33—C34179.55 (16)
C13A—C14—C15—C151179.08 (19)S31—C32—N33—C341.0 (2)
C14—C15—C16—C171.8 (3)C32—N33—C34—O34179.5 (2)
C151—C15—C16—C17177.98 (19)C32—N33—C34—C212.2 (3)
C15—C16—C17—C17A0.9 (3)C27A—C21—C34—O3451.1 (3)
C16—C17—C17A—C13A1.0 (3)C22—C21—C34—O3458.8 (3)
C16—C17—C17A—N11177.57 (18)S31—C21—C34—O34177.70 (18)
C14—C13A—C17A—C172.1 (3)C27A—C21—C34—N33130.60 (18)
C13—C13A—C17A—C17179.40 (17)C22—C21—C34—N33119.45 (18)
C14—C13A—C17A—N11176.73 (17)S31—C21—C34—N334.0 (2)
C13—C13A—C17A—N110.6 (2)C12—N11—C117—C111110.6 (2)
C12—N11—C17A—C17178.9 (2)C17A—N11—C117—C11174.5 (2)
C117—N11—C17A—C173.4 (3)N11—C117—C111—C11273.7 (3)
C12—N11—C17A—C13A0.2 (2)N11—C117—C111—C116107.8 (2)
C117—N11—C17A—C13A175.32 (18)C116—C111—C112—C1130.8 (4)
N24—C13—C22—C221176.92 (16)C117—C111—C112—C113179.3 (2)
C13A—C13—C22—C22160.0 (2)C111—C112—C113—C1140.5 (4)
C12—C13—C22—C22154.1 (2)C112—C113—C114—C1151.3 (4)
N24—C13—C22—C2141.55 (18)C113—C114—C115—C1160.8 (4)
C13A—C13—C22—C21164.61 (16)C112—C111—C116—C1151.3 (3)
C12—C13—C22—C2181.25 (18)C117—C111—C116—C115179.8 (2)
C34—C21—C22—C22171.1 (2)C114—C115—C116—C1110.5 (4)
C27A—C21—C22—C221172.48 (16)C13—C22—C221—C22658.1 (3)
S31—C21—C22—C22145.4 (2)C21—C22—C221—C22671.1 (2)
C34—C21—C22—C13152.56 (16)C13—C22—C221—C222122.8 (2)
C27A—C21—C22—C1336.14 (18)C21—C22—C221—C222108.0 (2)
S31—C21—C22—C1390.91 (16)C226—C221—C222—C2230.9 (3)
C13A—C13—N24—C2578.7 (2)C22—C221—C222—C223178.21 (18)
C22—C13—N24—C25160.02 (16)C221—C222—C223—C2240.1 (3)
C12—C13—N24—C2537.9 (2)C222—C223—C224—C2250.6 (3)
C13A—C13—N24—C27A152.79 (16)C222—C223—C224—Cl24177.92 (15)
C22—C13—N24—C27A31.52 (19)C223—C224—C225—C2260.5 (3)
C12—C13—N24—C27A90.62 (19)Cl24—C224—C225—C226178.04 (15)
C13—N24—C25—C26143.31 (18)C224—C225—C226—C2210.4 (3)
C27A—N24—C25—C2613.9 (2)C222—C221—C226—C2251.1 (3)
N24—C25—C26—C2734.8 (2)C22—C221—C226—C225178.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N33—H33···O12i0.77 (3)2.05 (3)2.811 (2)170 (3)
C112—H112···S32ii0.952.883.760 (3)155
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z1/2.
Ring-puckering parameters (Å, °) top
Ring A(I)(II)(III)
Q20.4311 (13)0.411 (2)0.424 (6)
φ255.57 (17)61.9 (3)54.2 (8)
Ring B(I)(II)(III)
Q20.4103 (14)0.416 (3)0.390 (7)
φ2270.63 (18)269.1 (3)272.3 (9)
Parameters for rings A and B are calculated for the atom sequences N24–C13–C22–C21–C27A and N24–C25–C26–C27–C27A, respectively. Data for (III) are from the supporting information.
Hydrogen-bond parameters (Å, °) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N33—H33···N24i0.863 (17)2.079 (17)2.8933 (15)157.2 (16)
(II)N33—H33···O12ii0.77 (3)2.05 (3)2.811 (2)170 (3)
C112—H112···S32iii0.952.883.760 (3)155
(III)N11—H11···S32iv0.882.553.374 (5)156
N33—H33···N24v0.882.082.878 (7)150
Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x+1, -y+1, z+1/2; (iii) -x+1, -y+1, z-1/2; (iv) -x, y-1/2, -z+1/2; (v) -x+1, y+1/2, -z+1/2.

The data for (III) are from the supporting information.
 

Acknowledgements

The authors thank `Centro de Instrumentación Científico-Técnica of Universidad de Jaén' for data collection. The authors thank COLCIENCIAS, Universidad del Valle, the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ thanks the AUIP for a scholarship granted for a stay at the Universidad de Jaén.

References

First citationBelal, A. & El-Gendy, B. E. M. (2014). Bioorg. Med. Chem. 22, 46–53.  CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorres, A., Estévez, V., Villacampa, M. & Menéndez, J. C. (2016). RSC Adv. 6, 39433–39443.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFathimunnisa, M., Manikandan, H., Selvanayagam, S. & Sridhar, B. (2015). Acta Cryst. E71, 915–918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, H., Zou, Y., Hu, Y. & Shi, D.-Q. (2011). J. Heterocycl. Chem. 48, 877–881.  CSD CrossRef CAS Google Scholar
First citationPardasani, R. T., Pardasani, P., Chaturvedi, V., Yadav, S. K., Saxena, A. & Sharma, I. (2003). Heteroatom Chem. 14, 36–41.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPonnala, S., Sahu, D. P., Kumar, R. & Maulik, P. R. (2006). J. Heterocycl. Chem. 43, 1635–1640.  CSD CrossRef CAS Google Scholar
First citationQuiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109–1115.  CSD CrossRef IUCr Journals Google Scholar
First citationRussel, J. S. (2010). Topics in Heterocyclic Chemistry, Vol. 26, edited by G. Gribble, Heterocyclic Scaffolds II, pp. 397–431. Berlin, Heidelberg: Springer.  Google Scholar
First citationSarrafi, Y. & Alimohammadi, K. (2008a). Acta Cryst. E64, o1490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarrafi, Y. & Alimohammadi, K. (2008b). Acta Cryst. E64, o1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSathya, S., Bhaskaran, S., Usha, G., Sivakumar, N. & Bakthadoss, M. (2012). Acta Cryst. E68, o277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTomasić, T. & Masic, L. (2009). Curr. Med. Chem. 16, 1596–1629.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds