research papers
Crystallographic evidence for unintended benzisothiazolinone 1-oxide formation from benzothiazinones through oxidation
aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany, bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany, cDepartment of Medicine and Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada, and dDepartment of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
1,3-Benzothiazin-4-ones (BTZs) are a promising new class of drugs with activity against Mycobacterium tuberculosis, which have already reached clinical trials. A product obtained in low yield upon treatment of 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-benzothiazin-4-one with 3-chloroperbenzoic acid, in analogy to a literature report describing the formation of sulfoxide and sulfone derived from BTZ043 [Tiwari et al. (2015). ACS Med. Chem. Lett. 6, 128–133], is a ring-contracted benzisothiazolinone (BIT) 1-oxide, namely, 7-nitro-2-(piperidine-1-carbonyl)-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one 1-oxide, C14H12F3N3O5S, as revealed by X-ray crystallography. Single-crystal X-ray analysis of the oxidation product originally assigned as BTZ043 sulfone provides clear evidence that the structure of the purported BTZ043 sulfone is likewise the corresponding BIT 1-oxide, namely, 2-[(S)-2-methyl-1,4-dioxa-8-azaspiro[4.5]decane-8-carbonyl]-7-nitro-5-(trifluoromethyl)benzo[d]isothiazol-3(2H)-one 1-oxide, C17H16F3N3O7S. A possible mechanism for the ring contraction affording the BIT 1-oxides instead of the anticipated constitutionally isomeric BTZ and antimycobacterial activities thereof are discussed.
1. Introduction
Due to extremely low cidal concentrations against Mycobacterium tuberculosis in vitro, 8-nitro-1,3-benzothiazin-4-ones (BTZs) have been the focus of many chemical, pharmacological and, recently, clinical studies (Mikušová et al., 2014; Kloss et al., 2017; Makarov & Mikušová, 2020). Several promising compounds with improved aqueous solubilities have been identified with potent antitubercular activity (Zhang et al., 2019). The first small molecule of a BTZ, namely macozinone (PBTZ169), was reported in this journal by Zhang & Aldrich (2019). So far, the excellent in vitro activity appears not to translate to the low daily doses aspired for a medication that needs to be administered for months (Lupien et al., 2018). This could be attributed to pharmacokinetic problems and rapid metabolism by gut bacteria (Lv et al., 2017).
Research interest in this compound class is also inspired by the chemical versatility of the BTZs, which offer several points of attack, especially for nucleophiles and reducing agents (Tiwari et al., 2013). In turn, the BTZ S atom appears to be not very susceptible to oxidation. When BTZ043 (Scheme 1) was treated with the oxidizing agent 3-chloroperbenzoic acid at room temperature for several days, a major amount of unreacted BTZ starting material was recovered and small quantities of two oxidation products were isolated. Based on 1H NMR spectroscopy and the sum formula calculated from high-resolution the corresponding BTZ sulfoxide and sulfone structures were assigned (Tiwari et al., 2015).
Treatment of 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-benzothiazin-4-one (1, Scheme 1) with 3-chloroperbenzoic acid in a similar way and crystallographic characterization of one of the oxidation products revealed the formation of a ring-contracted benzisothiazolone (BIT) 1-oxide instead of the anticipated BTZ sulfone (Fig. 1). Subsequent crystallographic reinvestigation of the BTZ043 oxidation product originally described as BTZ sulfone by us (Tiwari et al., 2015) evidenced that the structure must be revised to the corresponding ring-contracted BIT 1-oxide. In this article, we report the structural characterization of BIT 1-oxides resulting from oxidation of 1 and BTZ043, and propose a of the ring contraction. We furthermore show by analysis of spectroscopic data and deliberate synthesis that the purported BTZ sulfoxide is actually a BIT.
2. Experimental
2.1. General
Starting materials were obtained from commercial sources and were used as received. Solvents were of analytical grade. Compound 1 was synthesized as described elsewhere (Rudolph et al., 2016). (TLC) was performed on Silica gel 60 F254 TLC plates (Merck KGaA, Darmstadt). The reported RF values are uncorrected. Flash was carried out with a 40 g puriFlash column (30 µm silica gel, 60 Å, 500 m2 g−1, Interchim, Montluçon, France). Preparative HPLC was performed on a Shimadzu LC-10AD system using 19 × 150 mm XTerra RP-18 columns (7 µm, Waters, Milford, Massachusetts, USA). 1H and 13C NMR spectra were recorded at room temperature on an Agilent Technologies VNMRS 400 MHz NMR spectrometer (bs = broad singlet, q = quartet and m = multiplet). Chemical shifts are referenced to the residual signals of CDCl3 (δH = 7.26 ppm and δC = 77.0 ppm). High-resolution mass spectra (HRMS) were measured on a Bruker Daltonics APEXIII FT–ICR mass spectrometer.
2.2. Synthesis and crystallization
Compounds 2 and 3 were obtained when 1 was treated with 3-chloroperbenzoic acid, adapting the procedure described by Tiwari et al. (2015). A solution of 3-chloroperbenzoic acid (1.04 g, 6.0 mmol) in dichloromethane (6.5 ml) was added dropwise to a stirred solution of 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-1,3-benzothiazin-4-one, 1 (1.09 g, 3.0 mmol), in dichloromethane (5 ml) at 0 °C. After stirring for 4 d at room temperature, additional 3-chloroperbenzoic acid (0.5 g) was added and the mixture was stirred for another day. The resulting mixture was washed twice with a saturated sodium bicarbonate solution (55 ml) and then once with deionized water (55 ml). After drying over sodium sulfate, the solvent was removed using a rotary evaporator. The crude product was subjected to flash [gradient of 50–100 (v/v) ethyl acetate/heptane] to give 2 and 3. Both compounds were purified by HPLC [gradient of 5–95 (v/v) acetonitrile/water in 10 min + 0.05% trifluoroacetic acid] to yield 6 mg of 2 (0.016 mmol, 0.5%) and 35 mg of 3 (0.089 mmol, 3%).
Crystals of 3 suitable for single-crystal X-ray analysis were obtained after a couple of days when a solution of ca 5 mg of the compound in ethanol (1.5 ml) in a 10 × 50 mm glass vial with a screw cap was left at room temperature and the solvent allowed to evaporate slowly.
The synthesis of 4 has been reported elsewhere (Tiwari et al., 2015; therein mistaken for the sulfone of the BTZ043 starting material). For the preparation of crystals suitable for single-crystal X-ray analysis, the compound (1 mg) was added to a 6 × 50 mm round-bottomed borosilicate glass culture tube, and dissolved in chloroform (0.4 ml) to give a clear homogenous solution. The tube was placed in a 20 ml scintillation vial, followed by the addition of pentane (5 ml). The vial was capped tightly and the resulting diffusion chamber was allowed to stand undisturbed at room temperature. After several days, crystals suitable for X-ray analysis formed.
2.2.1. Analytical data for 2
1H NMR (400 MHz, CDCl3): δ 8.77 (bs, 1H), 8.57 (bs, 1H), 3.58 (m, 4H), 1.78–1.70 (m, 6H) ppm; HRMS(ESI): calculated for C14H12F3N3O4S [M + Na]+ 398.0398, found 398.0397; RF = 0.29 (ethyl acetate/heptane, 2:8 v/v).
2.2.2. Analytical data for 3
1H NMR (400 MHz, CDCl3) δ 8.79 (bs, 1H), 8.58 (bs, 1H), 3.68–3.51 (m, 4H), 1.81–1.62 (m, 6H) ppm; 13C NMR (101 MHz, CDCl3): δ 159.5, 148.3, 144.8, 143.0, 137.8 (q, 2JC,F = 35.5 Hz), 132.8, 129.4 (q, 3JC,F = 3.6 Hz), 126.6 (q, 3JC,F = 3.6 Hz), 121.6 (q, 1JC,F = 274.2 Hz), 47.5, 25.8, 24.0 ppm; HRMS(ESI): calculated for C14H12F3N3O5S [M + H]+ 392.0528, found 392.0526; RF = 0.22 (ethyl acetate/heptane, 2:8 v/v).
2.3. Refinement
Crystal data, data collection and structure . H-atom positions were calculated geometrically, with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å, methylene C—H = 0.99 Å and methine C—H = 1.00 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) (1.5 for methyl groups). The torsion angles of the methyl groups were initially determined using a circular Fourier search and subsequently refined while maintaining the tetrahedral structure.
details are summarized in Table 13. Results and discussion
3.1. Synthesis and structural identification
When 1 was treated with 3-chloroperbenzoic acid, adapting the procedure for BTZ043 reported by Tiwari et al. (2015), likewise a major amount of the BTZ starting material was recovered, but small quantities of oxidation products 2 and 3 could be isolated by The corresponding sum formulae were obtained from high-resolution mass spectra, and 3 was subjected to X-ray crystallography. The X-ray analysis umambiguously revealed the BIT 1-oxide structure for 3 instead of the anticipated BTZ sulfone, which would be a constitutional isomer (Fig. 1). Accordingly, and in agreement with the sum formula, we propose the corresponding BIT structure for 2 instead of the anticipated BTZ sulfoxide, which likewise would be a constitutional isomer.
Single-crystal X-ray analysis of the oxidation product of BTZ043 resulting from treatment with 3-chloroperbenzoic acid, which was named `BTZ-SO2' by Tiwari et al. (2015), provided clear evidence for the formation of the corresponding BIT 1-oxide 4, a constitutional isomer of the reported BTZ sulfone (Fig. 2).
Table 2 compares the 1H NMR shifts of the two aromatic protons in 1 and BTZ043 with those of the derived oxidation products. For both 2 and 3, as well as `BTZ-SO' and 4, the signals assigned to the two aromatic protons are upfield shifted compared with the parent BTZs. While assuming the anticipated BTZ sulfoxide and sulfone structures, Tiwari et al. (2015) attributed this effect to the influence of the S-atom lone-pair delocalization and the loss of aromaticity due to the nonplanarity of the 1,4-thiazinone rings in the assumed BTZ sulfoxide and sulfone structures. Higher electron density within the encountered BIT nine-membered heterobicyclic system, as compared with the BTZ ten-membered system, however, provides a better explanation for the shielding of the aromatic protons resulting in the observed upfield shifts. For further corroboration, BIT 2, for which we did not obtain crystals suitable for single-crystal X-ray analysis, was synthesized deliberately from 2-chloro-3-nitro-5-(trifluoromethyl)nitrobenzamide (see supporting information), following an established procedure for related BITs (Bhakuni et al., 2012). NMR spectroscopic and mass spectrometric data of the product thus obtained agreed with those for 2 resulting from treatment of 1 with 3-chloroperbenzoic acid.
|
3.2. Structural descriptions of 3 and 4
Compound 3 crystallizes in the polar orthorhombic Iba2 with one molecule in the (Z′ = 1). Fig. 3 shows the molecular structure in the crystal. The BIT system is not entirely planar. Atoms N2 and O2 are displaced by 0.27 (1) and −0.20 (1) Å, respectively, above and below the mean plane defined by the benzene ring. The plane of the nitro group is tilted out of this plane by 12 (1)°. The sulfinamide moiety exhibits a pyramidal structure at the S atom, as expected. The molecule in the chosen is R-configured at the S atom. It is worth emphasizing, however, that the S enantiomer is generated by glide symmetry in the polar so the crystal is a racemate. The central carbamide moiety is tilted out of the BIT plane, as revealed by the torsion angles about the N2—C9 bond. The structure at atom N2 is slightly pyramidal, whereas that at N4 is virtually planar due to conjugation with the adjacent carbonyl group. The piperidine ring adopts a low-energy chair conformation with some deviations of the bond angles from ideal tetrahedal angles, which can be attributed to the planarity at N4.
Compound 4 crystallizes in the Sohncke P21 with two in the (Z′ = 2). Fig. 4 depicts displacement ellipsoid plots for both unique molecules. Compared with 3, compound 4 exhibits an additional spiro-(2S)-methyl-1,3-dioxolane group appended to the piperidine ring in the 4-position. The S configuration at C15, as in the BTZ043 starting material, is encountered in both crystallographically distinct molecules and the configurational assignment was confirmed by a Flack x parameter (Parsons et al., 2013) close to zero with a reasonably small (Table 1). The two independent molecules exhibit opposite configurations at the S atoms and thus the crystal is a cocrystal of two Possible causes of Z′ > 1 crystallization have been discussed (Steed & Steed, 2015). Here, Z′ = 2 is attributed to diasteromeric crystallization. The formation of a diastereomeric conglomerate or a would have been an alternative crystallization pathway. Apart from the configuration at the S atom, the distinct molecules also exhibit different conformations of the 1,3-dioxolane five-membered rings. In molecule 1 (Fig. 4a), the 1,3-dioxolane ring adopts an with atom C16 on the flap, whereas in molecule 2 (Fig. 4b), the ring is close to an envelope with the C12 on the flap. As in 3, the BIT systems deviate slightly from planarity. In molecule 1, atom O2 is displaced from the mean plane of the benzene ring by 0.323 (6) Å, and in molecule 2, atoms N2 and O2 deviate by −0.118 (5) and 0.333 (5) Å, respectively, from this plane. The tilt angle between the mean plane of the benzene ring and the plane of the nitro group is 16.4 (3)° in molecule 1 and 10.7 (4)° in molecule 2. Similar to 3, in both molecules, the central carbamide moiety is tilted out of the plane of the BIT skeleton and the appended piperidine ring adopts a low-energy chair conformation with some minor deviations of the bond angles.
The supramolecular structure of 4 in the solid state features short C—F⋯F—C contacts [F1_1⋯F3_2i = 2.737 (4) Å and F3_1⋯F1_2ii = 2.751 (4) Å)], which link unique molecules 1 and 2 along the [100] direction (Fig. 5). According to the corresponding C—F⋯F angles in the range of 157.8–167.8°, these contacts may be classified as type-I F⋯ F interactions (Baker et al., 2012). F⋯F contacts that are shorter than the sum of the van der Waals radii are not encountered in the of 3, but instead several short C—H⋯F contacts are observed (not depicted).
3.3. Mechanistic discussion of the ring contraction
Since the ring-contracted oxidation products only formed in very low yields, investigation of the . This is in part based on a mechanism postulated by Szabó et al. (1988). We follow these authors in assuming that the anticipated oxidation of 1 to the corresponding BTZ sulfoxide occurred initially and was followed by nucleophilic addition of water (from wet 3-chloroperbenzoic acid used) to the C=N bond of the BTZ system. Ring opening and rearrangement to a sulfenic acid group and an N-acylcarbamide moiety within the molecule would be followed by the loss of water to form 2, which was then oxidized by another equivalent of 3-chloroperbenzoic acid leading to 3, which we isolated and structurally characterized by X-ray crystallography. Although this mechanism is only postulated, it explains why both 2 and 3 were formed.
of BTZ oxidation and rearrangement upon treatment with 3-chloroperbenzoic acid was not undertaken. We propose the sequence shown in Fig. 63.4. Antimycobacterial activities
Tiwari et al. (2015) reported in vitro activities of the oxidation products against Mycobacterium tuberculosis and M. aurum, among other mycobacteria, albeit assuming the BTZ sulfoxide and sulfone structures, which are revised in the present work. We also evaluated the activities of 2 and 3 against M. tuberculosis and M. aurum (the assay protocols can be found in the supporting information). Although the structures of 2 and 3 differ from those of `BTZ-SO' and 4 by the absence of the spiro-(2S)-methyl-1,3-dioxolane group appended to the piperidine ring in the 4-position, their activities against M. tuberculosis and M. aurum are comparable (Table 3). Indeed, BITs are known to have antimicrobial activity and are used as preservatives (Novick et al., 2013). Interestingly, BIT 2 and its 1-oxide 3, as well as `BTZ-SO' and 4, show comparable or better activity against both mycobacterial species than the corresponding BTZs 1 and BTZ043 (Table 3). Thus, BITs could likewise be considered as decaprenylphosphoryl-β-D-ribose 2′-epimerase (DprE1) inhibitors, and work along this line is in progess. It should be noted, however, that BITs are known to have various molecular targets in microorganisms (Gopinath et al., 2017). This may render them less promising for the development of antimycobacterial agents.
|
Supporting information
https://doi.org/10.1107/S2053229620010931/ep3008sup1.cif
contains datablocks global, 3, 4. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2053229620010931/ep30083sup2.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2053229620010931/ep30084sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229620010931/ep30083sup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229620010931/ep30084sup5.cml
Description of both the deliberate synthesis of 2 and the antimycobacterial assays. DOI: https://doi.org/10.1107/S2053229620010931/ep3008sup6.pdf
For both structures, data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).C14H12F3N3O5S | Dx = 1.660 Mg m−3 |
Mr = 391.33 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Iba2 | Cell parameters from 2591 reflections |
a = 17.6719 (8) Å | θ = 3.0–47.9° |
b = 25.7296 (12) Å | µ = 2.50 mm−1 |
c = 6.8887 (3) Å | T = 100 K |
V = 3132.2 (2) Å3 | Needle, yellow |
Z = 8 | 0.23 × 0.06 × 0.04 mm |
F(000) = 1600 |
Bruker Kappa Mach3 APEXII diffractometer | 2477 independent reflections |
Radiation source: 0.2 x 2mm2 focus rotating anode | 1843 reflections with I > 2σ(I) |
MONTEL graded multilayer optics monochromator | Rint = 0.102 |
Detector resolution: 66.67 pixels mm-1 | θmax = 70.1°, θmin = 3.0° |
φ– and ω–scans | h = −20→18 |
Absorption correction: gaussian (SADABS; Bruker, 2012) | k = −29→29 |
Tmin = 0.748, Tmax = 0.936 | l = −7→7 |
22457 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.170 | w = 1/[σ2(Fo2) + (0.0581P)2 + 17.2243P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2477 reflections | Δρmax = 0.53 e Å−3 |
235 parameters | Δρmin = −0.75 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 550 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: 0.08 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.39270 (11) | 0.23902 (8) | 0.2946 (4) | 0.0263 (5) | |
F1 | 0.2738 (3) | 0.4716 (2) | 0.6178 (10) | 0.0484 (17) | |
F2 | 0.3923 (3) | 0.4791 (2) | 0.6776 (10) | 0.0498 (17) | |
F3 | 0.3204 (4) | 0.4389 (2) | 0.8789 (9) | 0.0471 (17) | |
O1 | 0.4744 (3) | 0.2295 (2) | 0.2901 (11) | 0.0306 (14) | |
O2 | 0.2793 (3) | 0.2404 (2) | 0.7694 (9) | 0.0298 (15) | |
O3 | 0.4304 (4) | 0.3133 (3) | 0.0182 (11) | 0.0428 (18) | |
O4 | 0.4590 (4) | 0.3947 (3) | 0.0606 (12) | 0.0478 (19) | |
O5 | 0.3327 (3) | 0.1386 (2) | 0.3621 (9) | 0.0308 (16) | |
N2 | 0.3585 (4) | 0.2155 (3) | 0.5159 (11) | 0.0242 (17) | |
N3 | 0.4310 (4) | 0.3531 (3) | 0.1142 (12) | 0.035 (2) | |
N4 | 0.3505 (4) | 0.1367 (3) | 0.6918 (11) | 0.0244 (16) | |
C3 | 0.3214 (5) | 0.2512 (3) | 0.6345 (14) | 0.027 (2) | |
C3A | 0.3407 (4) | 0.3036 (4) | 0.5686 (14) | 0.027 (2) | |
C4 | 0.3244 (5) | 0.3493 (3) | 0.6639 (14) | 0.027 (2) | |
H4 | 0.297101 | 0.348687 | 0.782699 | 0.033* | |
C5 | 0.3480 (5) | 0.3961 (4) | 0.5857 (15) | 0.029 (2) | |
C6 | 0.3843 (5) | 0.3979 (4) | 0.4055 (15) | 0.030 (2) | |
H6 | 0.399673 | 0.430018 | 0.350254 | 0.036* | |
C7 | 0.3970 (5) | 0.3513 (3) | 0.3099 (16) | 0.0262 (19) | |
C7A | 0.3775 (5) | 0.3036 (4) | 0.3912 (14) | 0.028 (2) | |
C8 | 0.3337 (6) | 0.4459 (4) | 0.6897 (18) | 0.038 (3) | |
C9 | 0.3460 (5) | 0.1602 (3) | 0.5197 (15) | 0.029 (2) | |
C10 | 0.3233 (5) | 0.0826 (4) | 0.7055 (15) | 0.032 (2) | |
H10A | 0.309365 | 0.070047 | 0.574432 | 0.039* | |
H10B | 0.277370 | 0.081524 | 0.787702 | 0.039* | |
C11 | 0.3836 (5) | 0.0469 (3) | 0.7919 (18) | 0.034 (2) | |
H11A | 0.361581 | 0.011974 | 0.813779 | 0.041* | |
H11B | 0.425884 | 0.043181 | 0.698612 | 0.041* | |
C12 | 0.4138 (6) | 0.0681 (4) | 0.9830 (15) | 0.033 (2) | |
H12A | 0.455499 | 0.045824 | 1.030461 | 0.040* | |
H12B | 0.373036 | 0.068011 | 1.081686 | 0.040* | |
C13 | 0.4426 (5) | 0.1238 (3) | 0.9521 (14) | 0.028 (2) | |
H13A | 0.460546 | 0.137967 | 1.077522 | 0.033* | |
H13B | 0.486071 | 0.123146 | 0.861508 | 0.033* | |
C14 | 0.3822 (5) | 0.1587 (4) | 0.8718 (15) | 0.032 (2) | |
H14A | 0.341411 | 0.162932 | 0.968949 | 0.039* | |
H14B | 0.403903 | 0.193404 | 0.844520 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0261 (10) | 0.0301 (10) | 0.0225 (11) | 0.0024 (8) | 0.0004 (10) | −0.0012 (11) |
F1 | 0.045 (3) | 0.035 (3) | 0.065 (5) | 0.014 (3) | −0.003 (3) | −0.012 (3) |
F2 | 0.047 (4) | 0.035 (3) | 0.067 (5) | −0.011 (3) | 0.004 (3) | −0.011 (3) |
F3 | 0.062 (4) | 0.038 (3) | 0.040 (4) | −0.001 (3) | 0.009 (3) | −0.009 (3) |
O1 | 0.026 (3) | 0.036 (3) | 0.030 (4) | 0.006 (2) | 0.001 (3) | 0.004 (3) |
O2 | 0.031 (3) | 0.032 (3) | 0.027 (4) | 0.002 (3) | 0.008 (3) | 0.001 (3) |
O3 | 0.055 (5) | 0.045 (5) | 0.029 (4) | 0.013 (4) | 0.005 (4) | 0.001 (3) |
O4 | 0.047 (4) | 0.049 (4) | 0.048 (5) | 0.003 (4) | 0.021 (4) | 0.010 (4) |
O5 | 0.033 (4) | 0.032 (4) | 0.027 (4) | 0.001 (3) | −0.006 (3) | −0.004 (3) |
N2 | 0.021 (4) | 0.029 (4) | 0.022 (4) | 0.002 (3) | −0.001 (3) | −0.004 (3) |
N3 | 0.035 (5) | 0.036 (5) | 0.034 (5) | 0.006 (4) | 0.012 (4) | 0.011 (4) |
N4 | 0.033 (4) | 0.022 (4) | 0.019 (4) | −0.002 (3) | −0.007 (3) | 0.002 (3) |
C3 | 0.020 (5) | 0.038 (5) | 0.024 (6) | 0.005 (4) | 0.000 (4) | −0.004 (4) |
C3A | 0.016 (4) | 0.034 (5) | 0.030 (6) | 0.003 (4) | −0.007 (4) | −0.002 (4) |
C4 | 0.023 (5) | 0.033 (5) | 0.026 (6) | 0.007 (4) | 0.006 (4) | −0.011 (4) |
C5 | 0.022 (4) | 0.030 (5) | 0.033 (6) | 0.001 (4) | −0.002 (4) | −0.001 (4) |
C6 | 0.020 (4) | 0.029 (5) | 0.040 (6) | 0.004 (4) | 0.004 (4) | 0.004 (4) |
C7 | 0.025 (4) | 0.028 (4) | 0.025 (5) | 0.002 (4) | 0.006 (4) | 0.005 (5) |
C7A | 0.016 (4) | 0.041 (6) | 0.026 (5) | 0.000 (4) | 0.005 (4) | 0.000 (4) |
C8 | 0.031 (5) | 0.039 (6) | 0.045 (8) | −0.004 (5) | 0.007 (5) | 0.003 (5) |
C9 | 0.027 (5) | 0.029 (5) | 0.030 (6) | 0.002 (4) | −0.001 (4) | −0.001 (5) |
C10 | 0.023 (5) | 0.040 (5) | 0.034 (6) | −0.004 (4) | −0.004 (4) | −0.006 (4) |
C11 | 0.038 (5) | 0.025 (5) | 0.041 (6) | 0.002 (4) | −0.001 (5) | 0.005 (5) |
C12 | 0.037 (6) | 0.028 (5) | 0.034 (6) | −0.001 (4) | −0.007 (4) | 0.008 (4) |
C13 | 0.032 (5) | 0.026 (5) | 0.026 (6) | 0.002 (4) | 0.001 (4) | −0.003 (4) |
C14 | 0.031 (5) | 0.031 (5) | 0.034 (6) | −0.002 (4) | −0.004 (5) | 0.003 (4) |
S1—O1 | 1.465 (6) | C4—H4 | 0.9500 |
S1—N2 | 1.748 (8) | C5—C6 | 1.398 (14) |
S1—C7A | 1.810 (10) | C5—C8 | 1.490 (14) |
F1—C8 | 1.344 (12) | C6—C7 | 1.386 (13) |
F2—C8 | 1.345 (11) | C6—H6 | 0.9500 |
F3—C8 | 1.336 (13) | C7—C7A | 1.393 (12) |
O2—C3 | 1.222 (11) | C10—C11 | 1.529 (13) |
O3—N3 | 1.220 (11) | C10—H10A | 0.9900 |
O4—N3 | 1.236 (10) | C10—H10B | 0.9900 |
O5—C9 | 1.243 (12) | C11—C12 | 1.522 (15) |
N2—C3 | 1.394 (11) | C11—H11A | 0.9900 |
N2—C9 | 1.439 (11) | C11—H11B | 0.9900 |
N3—C7 | 1.477 (13) | C12—C13 | 1.535 (12) |
N4—C9 | 1.334 (12) | C12—H12A | 0.9900 |
N4—C14 | 1.474 (12) | C12—H12B | 0.9900 |
N4—C10 | 1.474 (11) | C13—C14 | 1.500 (12) |
C3—C3A | 1.461 (13) | C13—H13A | 0.9900 |
C3A—C4 | 1.378 (12) | C13—H13B | 0.9900 |
C3A—C7A | 1.384 (14) | C14—H14A | 0.9900 |
C4—C5 | 1.384 (12) | C14—H14B | 0.9900 |
O1—S1—N2 | 107.6 (4) | F3—C8—C5 | 112.5 (9) |
O1—S1—C7A | 107.9 (4) | F1—C8—C5 | 112.4 (9) |
N2—S1—C7A | 86.9 (4) | F2—C8—C5 | 112.7 (8) |
C3—N2—C9 | 124.7 (8) | O5—C9—N4 | 125.7 (8) |
C3—N2—S1 | 116.4 (6) | O5—C9—N2 | 117.1 (9) |
C9—N2—S1 | 114.3 (6) | N4—C9—N2 | 117.1 (8) |
O3—N3—O4 | 124.7 (9) | N4—C10—C11 | 111.4 (7) |
O3—N3—C7 | 117.7 (8) | N4—C10—H10A | 109.3 |
O4—N3—C7 | 117.6 (8) | C11—C10—H10A | 109.3 |
C9—N4—C14 | 126.6 (7) | N4—C10—H10B | 109.3 |
C9—N4—C10 | 117.8 (8) | C11—C10—H10B | 109.3 |
C14—N4—C10 | 115.6 (7) | H10A—C10—H10B | 108.0 |
O2—C3—N2 | 125.5 (9) | C12—C11—C10 | 111.4 (8) |
O2—C3—C3A | 126.0 (8) | C12—C11—H11A | 109.4 |
N2—C3—C3A | 108.4 (8) | C10—C11—H11A | 109.4 |
C4—C3A—C7A | 121.2 (9) | C12—C11—H11B | 109.4 |
C4—C3A—C3 | 126.1 (9) | C10—C11—H11B | 109.4 |
C7A—C3A—C3 | 112.7 (8) | H11A—C11—H11B | 108.0 |
C3A—C4—C5 | 119.7 (9) | C11—C12—C13 | 109.4 (8) |
C3A—C4—H4 | 120.2 | C11—C12—H12A | 109.8 |
C5—C4—H4 | 120.2 | C13—C12—H12A | 109.8 |
C4—C5—C6 | 120.8 (9) | C11—C12—H12B | 109.8 |
C4—C5—C8 | 120.7 (9) | C13—C12—H12B | 109.8 |
C6—C5—C8 | 118.5 (9) | H12A—C12—H12B | 108.2 |
C7—C6—C5 | 117.9 (9) | C14—C13—C12 | 111.9 (8) |
C7—C6—H6 | 121.0 | C14—C13—H13A | 109.2 |
C5—C6—H6 | 121.0 | C12—C13—H13A | 109.2 |
C6—C7—C7A | 122.1 (9) | C14—C13—H13B | 109.2 |
C6—C7—N3 | 118.2 (8) | C12—C13—H13B | 109.2 |
C7A—C7—N3 | 119.7 (8) | H13A—C13—H13B | 107.9 |
C3A—C7A—C7 | 118.2 (9) | N4—C14—C13 | 110.5 (8) |
C3A—C7A—S1 | 113.2 (7) | N4—C14—H14A | 109.5 |
C7—C7A—S1 | 128.6 (7) | C13—C14—H14A | 109.5 |
F3—C8—F1 | 106.7 (8) | N4—C14—H14B | 109.5 |
F3—C8—F2 | 106.3 (9) | C13—C14—H14B | 109.5 |
F1—C8—F2 | 105.8 (8) | H14A—C14—H14B | 108.1 |
O1—S1—N2—C3 | 121.9 (6) | N3—C7—C7A—C3A | −175.3 (8) |
C7A—S1—N2—C3 | 14.1 (6) | C6—C7—C7A—S1 | −177.4 (7) |
O1—S1—N2—C9 | −80.9 (6) | N3—C7—C7A—S1 | 3.8 (13) |
C7A—S1—N2—C9 | 171.3 (6) | O1—S1—C7A—C3A | −114.4 (7) |
C9—N2—C3—O2 | 7.5 (14) | N2—S1—C7A—C3A | −6.9 (7) |
S1—N2—C3—O2 | 162.1 (7) | O1—S1—C7A—C7 | 66.4 (9) |
C9—N2—C3—C3A | −171.7 (8) | N2—S1—C7A—C7 | 173.9 (9) |
S1—N2—C3—C3A | −17.1 (9) | C4—C5—C8—F3 | 20.3 (13) |
O2—C3—C3A—C4 | 10.7 (14) | C6—C5—C8—F3 | −161.2 (8) |
N2—C3—C3A—C4 | −170.1 (8) | C4—C5—C8—F1 | −100.2 (11) |
O2—C3—C3A—C7A | −168.2 (9) | C6—C5—C8—F1 | 78.4 (11) |
N2—C3—C3A—C7A | 11.0 (10) | C4—C5—C8—F2 | 140.5 (9) |
C7A—C3A—C4—C5 | −2.8 (13) | C6—C5—C8—F2 | −41.0 (13) |
C3—C3A—C4—C5 | 178.3 (8) | C14—N4—C9—O5 | 165.6 (8) |
C3A—C4—C5—C6 | 3.8 (13) | C10—N4—C9—O5 | −12.6 (13) |
C3A—C4—C5—C8 | −177.7 (9) | C14—N4—C9—N2 | −13.8 (13) |
C4—C5—C6—C7 | −1.2 (13) | C10—N4—C9—N2 | 168.1 (7) |
C8—C5—C6—C7 | −179.7 (8) | C3—N2—C9—O5 | 128.9 (9) |
C5—C6—C7—C7A | −2.5 (13) | S1—N2—C9—O5 | −26.2 (10) |
C5—C6—C7—N3 | 176.4 (8) | C3—N2—C9—N4 | −51.7 (12) |
O3—N3—C7—C6 | −167.9 (8) | S1—N2—C9—N4 | 153.3 (7) |
O4—N3—C7—C6 | 13.0 (12) | C9—N4—C10—C11 | 126.6 (9) |
O3—N3—C7—C7A | 10.9 (13) | C14—N4—C10—C11 | −51.8 (11) |
O4—N3—C7—C7A | −168.1 (8) | N4—C10—C11—C12 | 52.2 (11) |
C4—C3A—C7A—C7 | −0.8 (13) | C10—C11—C12—C13 | −54.9 (11) |
C3—C3A—C7A—C7 | 178.2 (8) | C11—C12—C13—C14 | 57.0 (11) |
C4—C3A—C7A—S1 | 180.0 (7) | C9—N4—C14—C13 | −125.1 (10) |
C3—C3A—C7A—S1 | −1.1 (10) | C10—N4—C14—C13 | 53.0 (10) |
C6—C7—C7A—C3A | 3.5 (13) | C12—C13—C14—N4 | −54.9 (10) |
C17H16F3N3O7S | F(000) = 952 |
Mr = 463.39 | Dx = 1.609 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 8.8165 (2) Å | Cell parameters from 9779 reflections |
b = 16.1649 (4) Å | θ = 3.3–70.3° |
c = 13.4246 (3) Å | µ = 2.23 mm−1 |
β = 90.0022 (12)° | T = 120 K |
V = 1913.24 (8) Å3 | Blade, colorless |
Z = 4 | 0.25 × 0.07 × 0.04 mm |
Bruker PHOTON-II diffractometer | 7140 independent reflections |
Radiation source: Incoatec micro-focus | 6860 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.041 |
φ– and ω–scans | θmax = 70.3°, θmin = 3.3° |
Absorption correction: numerical (SADABS; Bruker, 2012) | h = −10→10 |
Tmin = 0.715, Tmax = 0.949 | k = −19→19 |
36857 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.5798P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
7140 reflections | Δρmax = 0.61 e Å−3 |
561 parameters | Δρmin = −0.31 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 3080 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: 0.017 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Although the monoclinic beta angle is close to 90°, the structure is monoclinic with no sign of twinning. Averaging the diffraction data under mmm Laue symmetry results in R(sym) = 0.305 (XPREP). |
x | y | z | Uiso*/Ueq | ||
S1_1 | 0.30602 (8) | 0.66421 (5) | 0.53028 (5) | 0.02508 (16) | |
F1_1 | 0.4878 (3) | 0.5408 (2) | 0.0698 (2) | 0.0671 (9) | |
F2_1 | 0.3554 (4) | 0.43821 (16) | 0.11563 (19) | 0.0611 (8) | |
F3_1 | 0.2495 (4) | 0.5428 (2) | 0.05546 (19) | 0.0698 (9) | |
O1_1 | 0.1439 (2) | 0.66606 (16) | 0.55526 (16) | 0.0311 (5) | |
O2_1 | 0.4782 (3) | 0.44663 (16) | 0.50398 (18) | 0.0351 (6) | |
O3_1 | 0.2457 (4) | 0.79269 (17) | 0.4081 (2) | 0.0440 (6) | |
O4_1 | 0.1989 (3) | 0.79614 (17) | 0.2497 (2) | 0.0411 (6) | |
O5_1 | 0.4618 (3) | 0.62275 (15) | 0.70901 (17) | 0.0303 (5) | |
O6_1 | 0.2306 (3) | 0.33735 (16) | 0.8664 (2) | 0.0355 (6) | |
O7_1 | 0.4331 (3) | 0.25355 (16) | 0.8326 (2) | 0.0372 (6) | |
N2_1 | 0.3682 (3) | 0.56598 (17) | 0.5661 (2) | 0.0257 (6) | |
N3_1 | 0.2405 (3) | 0.76066 (18) | 0.3254 (2) | 0.0321 (6) | |
N4_1 | 0.3743 (3) | 0.49099 (18) | 0.7162 (2) | 0.0272 (6) | |
C3_1 | 0.4135 (4) | 0.5114 (2) | 0.4911 (2) | 0.0270 (7) | |
C3A_1 | 0.3715 (4) | 0.5490 (2) | 0.3938 (2) | 0.0251 (6) | |
C4_1 | 0.3832 (3) | 0.5100 (2) | 0.3017 (2) | 0.0251 (6) | |
H4_1 | 0.413697 | 0.453809 | 0.296739 | 0.030* | |
C5_1 | 0.3484 (3) | 0.5563 (2) | 0.2168 (2) | 0.0256 (6) | |
C6_1 | 0.3028 (4) | 0.6385 (2) | 0.2245 (2) | 0.0278 (7) | |
H6_1 | 0.280891 | 0.669736 | 0.166306 | 0.033* | |
C7_1 | 0.2897 (3) | 0.6742 (2) | 0.3177 (2) | 0.0261 (6) | |
C7A_1 | 0.3224 (3) | 0.6294 (2) | 0.4026 (2) | 0.0243 (6) | |
C8_1 | 0.3641 (4) | 0.5181 (2) | 0.1151 (2) | 0.0300 (7) | |
C9_1 | 0.4068 (4) | 0.5614 (2) | 0.6702 (2) | 0.0262 (6) | |
C10_1 | 0.4126 (4) | 0.4841 (2) | 0.8225 (2) | 0.0300 (7) | |
H10A_1 | 0.320432 | 0.493256 | 0.863078 | 0.036* | |
H10B_1 | 0.487716 | 0.527145 | 0.840268 | 0.036* | |
C11_1 | 0.4776 (4) | 0.3993 (2) | 0.8452 (3) | 0.0319 (7) | |
H11A_1 | 0.576074 | 0.392673 | 0.810696 | 0.038* | |
H11B_1 | 0.495561 | 0.394122 | 0.917723 | 0.038* | |
C12_1 | 0.3696 (4) | 0.3320 (2) | 0.8115 (3) | 0.0305 (7) | |
C13_1 | 0.3324 (4) | 0.3413 (2) | 0.7007 (3) | 0.0318 (7) | |
H13A_1 | 0.425391 | 0.333099 | 0.660625 | 0.038* | |
H13B_1 | 0.257375 | 0.298890 | 0.680770 | 0.038* | |
C14_1 | 0.2686 (4) | 0.4268 (2) | 0.6816 (3) | 0.0305 (7) | |
H14A_1 | 0.249873 | 0.433853 | 0.609366 | 0.037* | |
H14B_1 | 0.170498 | 0.432827 | 0.716744 | 0.037* | |
C15_1 | 0.2153 (4) | 0.2645 (2) | 0.9264 (3) | 0.0357 (8) | |
H15_1 | 0.258964 | 0.274399 | 0.994133 | 0.043* | |
C16_1 | 0.3134 (4) | 0.2035 (2) | 0.8696 (3) | 0.0387 (8) | |
H16A_1 | 0.352563 | 0.159634 | 0.914125 | 0.046* | |
H16B_1 | 0.255997 | 0.177567 | 0.814418 | 0.046* | |
C17_1 | 0.0503 (5) | 0.2413 (3) | 0.9349 (3) | 0.0409 (9) | |
H17A_1 | −0.003992 | 0.284440 | 0.971850 | 0.061* | |
H17B_1 | 0.041028 | 0.188541 | 0.970358 | 0.061* | |
H17C_1 | 0.006466 | 0.235913 | 0.868172 | 0.061* | |
S1_2 | 0.80116 (8) | 0.67422 (5) | 0.49508 (5) | 0.02466 (16) | |
F1_2 | 0.9905 (3) | 0.52933 (17) | 0.94230 (18) | 0.0502 (6) | |
F2_2 | 0.8580 (3) | 0.42752 (15) | 0.89242 (16) | 0.0505 (6) | |
F3_2 | 0.7516 (3) | 0.5301 (2) | 0.96310 (18) | 0.0598 (8) | |
O1_2 | 0.6391 (3) | 0.67522 (16) | 0.46951 (17) | 0.0314 (5) | |
O2_2 | 0.9930 (3) | 0.46106 (16) | 0.50856 (17) | 0.0317 (5) | |
O3_2 | 0.7350 (3) | 0.79653 (17) | 0.6287 (2) | 0.0416 (6) | |
O4_2 | 0.6666 (3) | 0.78627 (17) | 0.7835 (2) | 0.0387 (6) | |
O5_2 | 0.9631 (3) | 0.63962 (15) | 0.31252 (17) | 0.0312 (5) | |
O6_2 | 0.7628 (3) | 0.34331 (14) | 0.15282 (17) | 0.0278 (5) | |
O7_2 | 0.9657 (3) | 0.26758 (15) | 0.19997 (19) | 0.0310 (5) | |
N2_2 | 0.8690 (3) | 0.57884 (17) | 0.4538 (2) | 0.0250 (5) | |
N3_2 | 0.7211 (3) | 0.75800 (18) | 0.7071 (2) | 0.0299 (6) | |
N4_2 | 0.8767 (3) | 0.50701 (17) | 0.30231 (19) | 0.0258 (5) | |
C3_2 | 0.9198 (4) | 0.5226 (2) | 0.5250 (2) | 0.0253 (6) | |
C3A_2 | 0.8723 (3) | 0.5537 (2) | 0.6242 (2) | 0.0237 (6) | |
C4_2 | 0.8831 (3) | 0.5105 (2) | 0.7132 (2) | 0.0244 (6) | |
H4_2 | 0.917693 | 0.454873 | 0.714581 | 0.029* | |
C5_2 | 0.8417 (4) | 0.5513 (2) | 0.8004 (2) | 0.0253 (6) | |
C6_2 | 0.7886 (3) | 0.6322 (2) | 0.7985 (2) | 0.0256 (6) | |
H6_2 | 0.760764 | 0.659404 | 0.858474 | 0.031* | |
C7_2 | 0.7769 (3) | 0.6725 (2) | 0.7080 (2) | 0.0256 (6) | |
C7A_2 | 0.8166 (3) | 0.6337 (2) | 0.6208 (2) | 0.0243 (6) | |
C8_2 | 0.8602 (4) | 0.5086 (2) | 0.8995 (2) | 0.0278 (7) | |
C9_2 | 0.9082 (3) | 0.5775 (2) | 0.3495 (2) | 0.0247 (6) | |
C10_2 | 0.9211 (4) | 0.4984 (2) | 0.1973 (2) | 0.0286 (7) | |
H10C_2 | 0.992716 | 0.543109 | 0.179110 | 0.034* | |
H10D_2 | 0.830364 | 0.503397 | 0.154230 | 0.034* | |
C11_2 | 0.9963 (4) | 0.4141 (2) | 0.1808 (2) | 0.0296 (7) | |
H11C_2 | 1.019612 | 0.407034 | 0.109177 | 0.036* | |
H11D_2 | 1.092943 | 0.411788 | 0.218231 | 0.036* | |
C12_2 | 0.8936 (4) | 0.3445 (2) | 0.2150 (2) | 0.0267 (7) | |
C13_2 | 0.8496 (4) | 0.3570 (2) | 0.3241 (2) | 0.0279 (7) | |
H13C_2 | 0.778394 | 0.312906 | 0.344953 | 0.033* | |
H13D_2 | 0.941200 | 0.353360 | 0.366559 | 0.033* | |
C14_2 | 0.7756 (4) | 0.4407 (2) | 0.3373 (2) | 0.0277 (7) | |
H14C_2 | 0.679456 | 0.442399 | 0.299286 | 0.033* | |
H14D_2 | 0.751547 | 0.449476 | 0.408546 | 0.033* | |
C15_2 | 0.7050 (4) | 0.2603 (2) | 0.1594 (3) | 0.0294 (7) | |
H15B_2 | 0.632899 | 0.255825 | 0.216599 | 0.035* | |
C16_2 | 0.8482 (4) | 0.2086 (2) | 0.1806 (3) | 0.0307 (7) | |
H16C_2 | 0.832426 | 0.172305 | 0.239069 | 0.037* | |
H16D_2 | 0.874416 | 0.173854 | 0.122391 | 0.037* | |
C17_2 | 0.6243 (5) | 0.2395 (3) | 0.0633 (3) | 0.0399 (9) | |
H17D_2 | 0.535456 | 0.275423 | 0.055739 | 0.060* | |
H17E_2 | 0.591606 | 0.181582 | 0.064828 | 0.060* | |
H17F_2 | 0.693369 | 0.248058 | 0.007064 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1_1 | 0.0265 (4) | 0.0257 (4) | 0.0231 (3) | −0.0001 (3) | 0.0001 (2) | −0.0018 (3) |
F1_1 | 0.0607 (17) | 0.085 (2) | 0.0554 (16) | −0.0381 (15) | 0.0340 (13) | −0.0312 (15) |
F2_1 | 0.108 (2) | 0.0411 (14) | 0.0342 (12) | −0.0178 (14) | 0.0175 (13) | −0.0051 (10) |
F3_1 | 0.0717 (19) | 0.104 (2) | 0.0339 (13) | 0.0250 (17) | −0.0134 (12) | −0.0137 (14) |
O1_1 | 0.0277 (11) | 0.0361 (12) | 0.0295 (11) | 0.0008 (10) | 0.0046 (8) | −0.0032 (11) |
O2_1 | 0.0442 (15) | 0.0354 (14) | 0.0256 (12) | 0.0118 (11) | 0.0011 (10) | 0.0025 (10) |
O3_1 | 0.0616 (18) | 0.0320 (13) | 0.0383 (15) | 0.0057 (12) | −0.0041 (12) | −0.0014 (11) |
O4_1 | 0.0498 (16) | 0.0341 (13) | 0.0394 (15) | 0.0042 (12) | −0.0013 (12) | 0.0121 (12) |
O5_1 | 0.0313 (12) | 0.0327 (13) | 0.0269 (12) | −0.0043 (10) | −0.0019 (9) | −0.0024 (10) |
O6_1 | 0.0355 (13) | 0.0308 (12) | 0.0403 (14) | 0.0049 (10) | 0.0104 (10) | 0.0064 (10) |
O7_1 | 0.0356 (14) | 0.0310 (13) | 0.0450 (15) | 0.0076 (10) | −0.0017 (11) | 0.0009 (11) |
N2_1 | 0.0293 (14) | 0.0266 (14) | 0.0213 (13) | 0.0028 (10) | −0.0002 (10) | 0.0006 (10) |
N3_1 | 0.0345 (16) | 0.0279 (14) | 0.0339 (16) | 0.0000 (12) | 0.0023 (12) | 0.0070 (13) |
N4_1 | 0.0302 (14) | 0.0314 (15) | 0.0201 (13) | −0.0038 (11) | −0.0022 (10) | −0.0010 (11) |
C3_1 | 0.0274 (16) | 0.0316 (18) | 0.0221 (15) | 0.0019 (13) | 0.0007 (11) | 0.0020 (13) |
C3A_1 | 0.0225 (15) | 0.0281 (16) | 0.0247 (15) | −0.0007 (12) | 0.0001 (11) | 0.0044 (13) |
C4_1 | 0.0218 (14) | 0.0280 (16) | 0.0255 (16) | −0.0001 (12) | 0.0028 (11) | −0.0004 (12) |
C5_1 | 0.0209 (15) | 0.0323 (16) | 0.0235 (15) | −0.0057 (12) | 0.0026 (11) | 0.0022 (13) |
C6_1 | 0.0232 (15) | 0.0346 (17) | 0.0255 (16) | −0.0042 (13) | 0.0011 (11) | 0.0056 (13) |
C7_1 | 0.0231 (14) | 0.0262 (15) | 0.0290 (15) | −0.0041 (13) | 0.0009 (11) | 0.0010 (14) |
C7A_1 | 0.0205 (14) | 0.0282 (16) | 0.0242 (15) | −0.0038 (12) | 0.0018 (11) | 0.0006 (12) |
C8_1 | 0.0343 (18) | 0.0325 (18) | 0.0231 (16) | −0.0071 (14) | 0.0047 (12) | 0.0041 (13) |
C9_1 | 0.0215 (15) | 0.0340 (17) | 0.0232 (15) | 0.0024 (12) | 0.0010 (11) | −0.0023 (13) |
C10_1 | 0.0325 (18) | 0.0358 (19) | 0.0216 (15) | −0.0007 (14) | −0.0034 (12) | −0.0015 (13) |
C11_1 | 0.0322 (18) | 0.0375 (19) | 0.0259 (16) | 0.0016 (14) | −0.0043 (13) | 0.0000 (14) |
C12_1 | 0.0294 (17) | 0.0330 (17) | 0.0292 (17) | 0.0024 (14) | 0.0025 (13) | −0.0007 (13) |
C13_1 | 0.0313 (17) | 0.0339 (18) | 0.0302 (17) | −0.0019 (14) | −0.0029 (13) | −0.0062 (14) |
C14_1 | 0.0269 (17) | 0.0356 (18) | 0.0289 (16) | −0.0039 (14) | −0.0046 (13) | −0.0003 (14) |
C15_1 | 0.040 (2) | 0.0369 (19) | 0.0306 (18) | −0.0008 (15) | −0.0060 (14) | 0.0088 (15) |
C16_1 | 0.038 (2) | 0.0299 (17) | 0.048 (2) | 0.0023 (14) | −0.0051 (16) | 0.0084 (16) |
C17_1 | 0.042 (2) | 0.040 (2) | 0.041 (2) | −0.0031 (16) | 0.0030 (16) | 0.0087 (16) |
S1_2 | 0.0262 (4) | 0.0249 (4) | 0.0229 (3) | 0.0013 (3) | −0.0001 (2) | 0.0016 (3) |
F1_2 | 0.0472 (13) | 0.0622 (15) | 0.0411 (13) | −0.0194 (11) | −0.0207 (10) | 0.0156 (11) |
F2_2 | 0.089 (2) | 0.0348 (12) | 0.0277 (11) | −0.0093 (12) | −0.0064 (11) | 0.0037 (9) |
F3_2 | 0.0599 (16) | 0.090 (2) | 0.0293 (12) | 0.0263 (15) | 0.0181 (11) | 0.0136 (12) |
O1_2 | 0.0281 (11) | 0.0358 (12) | 0.0303 (11) | 0.0032 (10) | −0.0041 (8) | 0.0019 (11) |
O2_2 | 0.0371 (13) | 0.0344 (13) | 0.0236 (11) | 0.0105 (10) | −0.0014 (9) | −0.0023 (9) |
O3_2 | 0.0545 (17) | 0.0306 (13) | 0.0398 (15) | 0.0085 (12) | −0.0005 (12) | 0.0009 (12) |
O4_2 | 0.0359 (14) | 0.0376 (14) | 0.0425 (15) | 0.0036 (11) | 0.0047 (11) | −0.0128 (11) |
O5_2 | 0.0359 (13) | 0.0322 (12) | 0.0253 (11) | −0.0054 (10) | 0.0045 (9) | 0.0018 (9) |
O6_2 | 0.0274 (12) | 0.0309 (12) | 0.0251 (11) | 0.0000 (9) | −0.0029 (9) | 0.0013 (9) |
O7_2 | 0.0259 (12) | 0.0286 (12) | 0.0384 (13) | 0.0027 (9) | −0.0011 (9) | −0.0020 (10) |
N2_2 | 0.0286 (13) | 0.0263 (14) | 0.0202 (13) | 0.0015 (11) | 0.0008 (10) | −0.0010 (10) |
N3_2 | 0.0282 (15) | 0.0272 (14) | 0.0343 (16) | 0.0006 (11) | −0.0024 (11) | −0.0077 (12) |
N4_2 | 0.0267 (13) | 0.0299 (14) | 0.0206 (13) | −0.0018 (11) | 0.0033 (10) | 0.0014 (11) |
C3_2 | 0.0275 (16) | 0.0271 (16) | 0.0214 (14) | 0.0008 (13) | −0.0006 (11) | −0.0017 (12) |
C3A_2 | 0.0215 (15) | 0.0283 (16) | 0.0213 (15) | 0.0002 (12) | −0.0001 (11) | −0.0027 (12) |
C4_2 | 0.0216 (14) | 0.0282 (16) | 0.0236 (15) | 0.0007 (12) | 0.0000 (11) | −0.0006 (12) |
C5_2 | 0.0215 (15) | 0.0336 (17) | 0.0206 (15) | −0.0049 (12) | −0.0001 (11) | −0.0006 (13) |
C6_2 | 0.0214 (14) | 0.0310 (16) | 0.0244 (15) | −0.0016 (12) | 0.0010 (11) | −0.0054 (13) |
C7_2 | 0.0194 (13) | 0.0268 (15) | 0.0306 (15) | −0.0011 (13) | 0.0000 (11) | −0.0050 (14) |
C7A_2 | 0.0209 (14) | 0.0269 (15) | 0.0251 (15) | −0.0030 (12) | −0.0011 (11) | 0.0015 (12) |
C8_2 | 0.0274 (16) | 0.0344 (18) | 0.0215 (15) | −0.0023 (13) | 0.0004 (12) | −0.0017 (13) |
C9_2 | 0.0219 (14) | 0.0323 (17) | 0.0199 (14) | 0.0025 (12) | −0.0001 (11) | 0.0027 (12) |
C10_2 | 0.0337 (17) | 0.0311 (17) | 0.0211 (15) | −0.0033 (13) | 0.0031 (12) | 0.0023 (13) |
C11_2 | 0.0291 (17) | 0.0358 (18) | 0.0239 (15) | −0.0030 (13) | 0.0039 (12) | −0.0022 (13) |
C12_2 | 0.0239 (15) | 0.0312 (17) | 0.0251 (16) | 0.0036 (13) | −0.0009 (12) | 0.0012 (13) |
C13_2 | 0.0308 (17) | 0.0297 (17) | 0.0230 (15) | −0.0026 (13) | −0.0002 (12) | 0.0017 (13) |
C14_2 | 0.0280 (16) | 0.0330 (17) | 0.0221 (15) | −0.0048 (13) | 0.0051 (12) | 0.0015 (13) |
C15_2 | 0.0274 (17) | 0.0319 (17) | 0.0288 (16) | 0.0000 (13) | −0.0001 (13) | −0.0015 (13) |
C16_2 | 0.0312 (18) | 0.0289 (16) | 0.0321 (17) | −0.0002 (14) | 0.0017 (13) | −0.0020 (14) |
C17_2 | 0.041 (2) | 0.039 (2) | 0.039 (2) | −0.0019 (16) | −0.0103 (16) | −0.0053 (16) |
S1_1—O1_1 | 1.468 (2) | S1_2—O1_2 | 1.470 (2) |
S1_1—N2_1 | 1.747 (3) | S1_2—N2_2 | 1.744 (3) |
S1_1—C7A_1 | 1.810 (3) | S1_2—C7A_2 | 1.815 (3) |
F1_1—C8_1 | 1.302 (4) | F1_2—C8_2 | 1.327 (4) |
F2_1—C8_1 | 1.293 (5) | F2_2—C8_2 | 1.315 (4) |
F3_1—C8_1 | 1.349 (5) | F3_2—C8_2 | 1.329 (4) |
O2_1—C3_1 | 1.204 (4) | O2_2—C3_2 | 1.206 (4) |
O3_1—N3_1 | 1.226 (4) | O3_2—N3_2 | 1.229 (4) |
O4_1—N3_1 | 1.223 (4) | O4_2—N3_2 | 1.221 (4) |
O5_1—C9_1 | 1.221 (4) | O5_2—C9_2 | 1.220 (4) |
O6_1—C12_1 | 1.432 (4) | O6_2—C12_2 | 1.424 (4) |
O6_1—C15_1 | 1.434 (4) | O6_2—C15_2 | 1.438 (4) |
O7_1—C12_1 | 1.415 (4) | O7_2—C12_2 | 1.411 (4) |
O7_1—C16_1 | 1.419 (5) | O7_2—C16_2 | 1.431 (4) |
N2_1—C3_1 | 1.397 (4) | N2_2—C3_2 | 1.393 (4) |
N2_1—C9_1 | 1.440 (4) | N2_2—C9_2 | 1.442 (4) |
N3_1—C7_1 | 1.466 (5) | N3_2—C7_2 | 1.466 (5) |
N4_1—C9_1 | 1.326 (5) | N4_2—C9_2 | 1.333 (4) |
N4_1—C10_1 | 1.470 (4) | N4_2—C10_2 | 1.470 (4) |
N4_1—C14_1 | 1.470 (4) | N4_2—C14_2 | 1.471 (4) |
C3_1—C3A_1 | 1.488 (4) | C3_2—C3A_2 | 1.484 (4) |
C3A_1—C7A_1 | 1.375 (5) | C3A_2—C7A_2 | 1.384 (5) |
C3A_1—C4_1 | 1.391 (5) | C3A_2—C4_2 | 1.386 (5) |
C4_1—C5_1 | 1.398 (4) | C4_2—C5_2 | 1.392 (4) |
C4_1—H4_1 | 0.9500 | C4_2—H4_2 | 0.9500 |
C5_1—C6_1 | 1.392 (5) | C5_2—C6_2 | 1.389 (5) |
C5_1—C8_1 | 1.505 (5) | C5_2—C8_2 | 1.507 (4) |
C6_1—C7_1 | 1.383 (5) | C6_2—C7_2 | 1.383 (5) |
C6_1—H6_1 | 0.9500 | C6_2—H6_2 | 0.9500 |
C7_1—C7A_1 | 1.381 (5) | C7_2—C7A_2 | 1.374 (5) |
C10_1—C11_1 | 1.517 (5) | C10_2—C11_2 | 1.532 (5) |
C10_1—H10A_1 | 0.9900 | C10_2—H10C_2 | 0.9900 |
C10_1—H10B_1 | 0.9900 | C10_2—H10D_2 | 0.9900 |
C11_1—C12_1 | 1.515 (5) | C11_2—C12_2 | 1.515 (5) |
C11_1—H11A_1 | 0.9900 | C11_2—H11C_2 | 0.9900 |
C11_1—H11B_1 | 0.9900 | C11_2—H11D_2 | 0.9900 |
C12_1—C13_1 | 1.529 (5) | C12_2—C13_2 | 1.529 (4) |
C13_1—C14_1 | 1.514 (5) | C13_2—C14_2 | 1.513 (5) |
C13_1—H13A_1 | 0.9900 | C13_2—H13C_2 | 0.9900 |
C13_1—H13B_1 | 0.9900 | C13_2—H13D_2 | 0.9900 |
C14_1—H14A_1 | 0.9900 | C14_2—H14C_2 | 0.9900 |
C14_1—H14B_1 | 0.9900 | C14_2—H14D_2 | 0.9900 |
C15_1—C17_1 | 1.507 (6) | C15_2—C17_2 | 1.511 (5) |
C15_1—C16_1 | 1.517 (6) | C15_2—C16_2 | 1.540 (5) |
C15_1—H15_1 | 1.0000 | C15_2—H15B_2 | 1.0000 |
C16_1—H16A_1 | 0.9900 | C16_2—H16C_2 | 0.9900 |
C16_1—H16B_1 | 0.9900 | C16_2—H16D_2 | 0.9900 |
C17_1—H17A_1 | 0.9800 | C17_2—H17D_2 | 0.9800 |
C17_1—H17B_1 | 0.9800 | C17_2—H17E_2 | 0.9800 |
C17_1—H17C_1 | 0.9800 | C17_2—H17F_2 | 0.9800 |
O1_1—S1_1—N2_1 | 105.13 (14) | O1_2—S1_2—N2_2 | 105.61 (14) |
O1_1—S1_1—C7A_1 | 107.49 (14) | O1_2—S1_2—C7A_2 | 107.10 (14) |
N2_1—S1_1—C7A_1 | 87.31 (14) | N2_2—S1_2—C7A_2 | 87.17 (14) |
C12_1—O6_1—C15_1 | 108.7 (3) | C12_2—O6_2—C15_2 | 105.3 (2) |
C12_1—O7_1—C16_1 | 106.6 (3) | C12_2—O7_2—C16_2 | 106.7 (2) |
C3_1—N2_1—C9_1 | 126.8 (3) | C3_2—N2_2—C9_2 | 125.4 (3) |
C3_1—N2_1—S1_1 | 117.7 (2) | C3_2—N2_2—S1_2 | 118.0 (2) |
C9_1—N2_1—S1_1 | 112.9 (2) | C9_2—N2_2—S1_2 | 113.8 (2) |
O4_1—N3_1—O3_1 | 124.5 (3) | O4_2—N3_2—O3_2 | 124.6 (3) |
O4_1—N3_1—C7_1 | 118.5 (3) | O4_2—N3_2—C7_2 | 118.6 (3) |
O3_1—N3_1—C7_1 | 117.1 (3) | O3_2—N3_2—C7_2 | 116.8 (3) |
C9_1—N4_1—C10_1 | 117.9 (3) | C9_2—N4_2—C10_2 | 118.8 (3) |
C9_1—N4_1—C14_1 | 126.5 (3) | C9_2—N4_2—C14_2 | 126.7 (3) |
C10_1—N4_1—C14_1 | 113.5 (3) | C10_2—N4_2—C14_2 | 113.5 (3) |
O2_1—C3_1—N2_1 | 125.5 (3) | O2_2—C3_2—N2_2 | 125.8 (3) |
O2_1—C3_1—C3A_1 | 126.8 (3) | O2_2—C3_2—C3A_2 | 126.5 (3) |
N2_1—C3_1—C3A_1 | 107.7 (3) | N2_2—C3_2—C3A_2 | 107.7 (3) |
C7A_1—C3A_1—C4_1 | 121.8 (3) | C7A_2—C3A_2—C4_2 | 121.6 (3) |
C7A_1—C3A_1—C3_1 | 112.9 (3) | C7A_2—C3A_2—C3_2 | 112.7 (3) |
C4_1—C3A_1—C3_1 | 125.2 (3) | C4_2—C3A_2—C3_2 | 125.7 (3) |
C3A_1—C4_1—C5_1 | 117.8 (3) | C3A_2—C4_2—C5_2 | 117.9 (3) |
C3A_1—C4_1—H4_1 | 121.1 | C3A_2—C4_2—H4_2 | 121.1 |
C5_1—C4_1—H4_1 | 121.1 | C5_2—C4_2—H4_2 | 121.1 |
C6_1—C5_1—C4_1 | 120.9 (3) | C6_2—C5_2—C4_2 | 121.2 (3) |
C6_1—C5_1—C8_1 | 119.1 (3) | C6_2—C5_2—C8_2 | 118.9 (3) |
C4_1—C5_1—C8_1 | 120.0 (3) | C4_2—C5_2—C8_2 | 119.8 (3) |
C7_1—C6_1—C5_1 | 119.3 (3) | C7_2—C6_2—C5_2 | 119.1 (3) |
C7_1—C6_1—H6_1 | 120.3 | C7_2—C6_2—H6_2 | 120.5 |
C5_1—C6_1—H6_1 | 120.3 | C5_2—C6_2—H6_2 | 120.5 |
C7A_1—C7_1—C6_1 | 120.6 (3) | C7A_2—C7_2—C6_2 | 120.9 (3) |
C7A_1—C7_1—N3_1 | 120.3 (3) | C7A_2—C7_2—N3_2 | 120.6 (3) |
C6_1—C7_1—N3_1 | 119.1 (3) | C6_2—C7_2—N3_2 | 118.5 (3) |
C3A_1—C7A_1—C7_1 | 119.4 (3) | C7_2—C7A_2—C3A_2 | 119.2 (3) |
C3A_1—C7A_1—S1_1 | 113.6 (2) | C7_2—C7A_2—S1_2 | 127.5 (3) |
C7_1—C7A_1—S1_1 | 126.9 (3) | C3A_2—C7A_2—S1_2 | 113.3 (2) |
F2_1—C8_1—F1_1 | 109.6 (3) | F2_2—C8_2—F1_2 | 107.2 (3) |
F2_1—C8_1—F3_1 | 104.7 (3) | F2_2—C8_2—F3_2 | 107.2 (3) |
F1_1—C8_1—F3_1 | 105.5 (3) | F1_2—C8_2—F3_2 | 106.2 (3) |
F2_1—C8_1—C5_1 | 113.5 (3) | F2_2—C8_2—C5_2 | 113.0 (3) |
F1_1—C8_1—C5_1 | 112.6 (3) | F1_2—C8_2—C5_2 | 111.2 (3) |
F3_1—C8_1—C5_1 | 110.3 (3) | F3_2—C8_2—C5_2 | 111.7 (3) |
O5_1—C9_1—N4_1 | 125.8 (3) | O5_2—C9_2—N4_2 | 126.3 (3) |
O5_1—C9_1—N2_1 | 117.8 (3) | O5_2—C9_2—N2_2 | 118.6 (3) |
N4_1—C9_1—N2_1 | 116.5 (3) | N4_2—C9_2—N2_2 | 115.1 (3) |
N4_1—C10_1—C11_1 | 110.5 (3) | N4_2—C10_2—C11_2 | 109.7 (3) |
N4_1—C10_1—H10A_1 | 109.5 | N4_2—C10_2—H10C_2 | 109.7 |
C11_1—C10_1—H10A_1 | 109.5 | C11_2—C10_2—H10C_2 | 109.7 |
N4_1—C10_1—H10B_1 | 109.5 | N4_2—C10_2—H10D_2 | 109.7 |
C11_1—C10_1—H10B_1 | 109.5 | C11_2—C10_2—H10D_2 | 109.7 |
H10A_1—C10_1—H10B_1 | 108.1 | H10C_2—C10_2—H10D_2 | 108.2 |
C12_1—C11_1—C10_1 | 110.6 (3) | C12_2—C11_2—C10_2 | 111.0 (3) |
C12_1—C11_1—H11A_1 | 109.5 | C12_2—C11_2—H11C_2 | 109.4 |
C10_1—C11_1—H11A_1 | 109.5 | C10_2—C11_2—H11C_2 | 109.4 |
C12_1—C11_1—H11B_1 | 109.5 | C12_2—C11_2—H11D_2 | 109.4 |
C10_1—C11_1—H11B_1 | 109.5 | C10_2—C11_2—H11D_2 | 109.4 |
H11A_1—C11_1—H11B_1 | 108.1 | H11C_2—C11_2—H11D_2 | 108.0 |
O7_1—C12_1—O6_1 | 106.8 (3) | O7_2—C12_2—O6_2 | 105.6 (3) |
O7_1—C12_1—C11_1 | 109.5 (3) | O7_2—C12_2—C11_2 | 110.0 (3) |
O6_1—C12_1—C11_1 | 109.9 (3) | O6_2—C12_2—C11_2 | 108.5 (3) |
O7_1—C12_1—C13_1 | 111.6 (3) | O7_2—C12_2—C13_2 | 111.5 (3) |
O6_1—C12_1—C13_1 | 108.1 (3) | O6_2—C12_2—C13_2 | 111.0 (3) |
C11_1—C12_1—C13_1 | 110.8 (3) | C11_2—C12_2—C13_2 | 110.1 (3) |
C14_1—C13_1—C12_1 | 109.6 (3) | C14_2—C13_2—C12_2 | 109.8 (3) |
C14_1—C13_1—H13A_1 | 109.8 | C14_2—C13_2—H13C_2 | 109.7 |
C12_1—C13_1—H13A_1 | 109.8 | C12_2—C13_2—H13C_2 | 109.7 |
C14_1—C13_1—H13B_1 | 109.8 | C14_2—C13_2—H13D_2 | 109.7 |
C12_1—C13_1—H13B_1 | 109.8 | C12_2—C13_2—H13D_2 | 109.7 |
H13A_1—C13_1—H13B_1 | 108.2 | H13C_2—C13_2—H13D_2 | 108.2 |
N4_1—C14_1—C13_1 | 110.8 (3) | N4_2—C14_2—C13_2 | 110.7 (3) |
N4_1—C14_1—H14A_1 | 109.5 | N4_2—C14_2—H14C_2 | 109.5 |
C13_1—C14_1—H14A_1 | 109.5 | C13_2—C14_2—H14C_2 | 109.5 |
N4_1—C14_1—H14B_1 | 109.5 | N4_2—C14_2—H14D_2 | 109.5 |
C13_1—C14_1—H14B_1 | 109.5 | C13_2—C14_2—H14D_2 | 109.5 |
H14A_1—C14_1—H14B_1 | 108.1 | H14C_2—C14_2—H14D_2 | 108.1 |
O6_1—C15_1—C17_1 | 109.7 (3) | O6_2—C15_2—C17_2 | 108.8 (3) |
O6_1—C15_1—C16_1 | 101.4 (3) | O6_2—C15_2—C16_2 | 103.1 (3) |
C17_1—C15_1—C16_1 | 115.3 (3) | C17_2—C15_2—C16_2 | 115.1 (3) |
O6_1—C15_1—H15_1 | 110.0 | O6_2—C15_2—H15B_2 | 109.9 |
C17_1—C15_1—H15_1 | 110.0 | C17_2—C15_2—H15B_2 | 109.9 |
C16_1—C15_1—H15_1 | 110.0 | C16_2—C15_2—H15B_2 | 109.9 |
O7_1—C16_1—C15_1 | 103.3 (3) | O7_2—C16_2—C15_2 | 105.4 (3) |
O7_1—C16_1—H16A_1 | 111.1 | O7_2—C16_2—H16C_2 | 110.7 |
C15_1—C16_1—H16A_1 | 111.1 | C15_2—C16_2—H16C_2 | 110.7 |
O7_1—C16_1—H16B_1 | 111.1 | O7_2—C16_2—H16D_2 | 110.7 |
C15_1—C16_1—H16B_1 | 111.1 | C15_2—C16_2—H16D_2 | 110.7 |
H16A_1—C16_1—H16B_1 | 109.1 | H16C_2—C16_2—H16D_2 | 108.8 |
C15_1—C17_1—H17A_1 | 109.5 | C15_2—C17_2—H17D_2 | 109.5 |
C15_1—C17_1—H17B_1 | 109.5 | C15_2—C17_2—H17E_2 | 109.5 |
H17A_1—C17_1—H17B_1 | 109.5 | H17D_2—C17_2—H17E_2 | 109.5 |
C15_1—C17_1—H17C_1 | 109.5 | C15_2—C17_2—H17F_2 | 109.5 |
H17A_1—C17_1—H17C_1 | 109.5 | H17D_2—C17_2—H17F_2 | 109.5 |
H17B_1—C17_1—H17C_1 | 109.5 | H17E_2—C17_2—H17F_2 | 109.5 |
O1_1—S1_1—N2_1—C3_1 | 113.0 (2) | O1_2—S1_2—N2_2—C3_2 | −114.6 (2) |
C7A_1—S1_1—N2_1—C3_1 | 5.6 (3) | C7A_2—S1_2—N2_2—C3_2 | −7.6 (2) |
O1_1—S1_1—N2_1—C9_1 | −84.0 (2) | O1_2—S1_2—N2_2—C9_2 | 83.3 (2) |
C7A_1—S1_1—N2_1—C9_1 | 168.6 (2) | C7A_2—S1_2—N2_2—C9_2 | −169.7 (2) |
C9_1—N2_1—C3_1—O2_1 | 8.8 (6) | C9_2—N2_2—C3_2—O2_2 | −6.6 (5) |
S1_1—N2_1—C3_1—O2_1 | 169.0 (3) | S1_2—N2_2—C3_2—O2_2 | −166.4 (3) |
C9_1—N2_1—C3_1—C3A_1 | −169.5 (3) | C9_2—N2_2—C3_2—C3A_2 | 171.4 (3) |
S1_1—N2_1—C3_1—C3A_1 | −9.2 (3) | S1_2—N2_2—C3_2—C3A_2 | 11.6 (3) |
O2_1—C3_1—C3A_1—C7A_1 | −169.4 (3) | O2_2—C3_2—C3A_2—C7A_2 | 167.7 (3) |
N2_1—C3_1—C3A_1—C7A_1 | 8.9 (4) | N2_2—C3_2—C3A_2—C7A_2 | −10.3 (4) |
O2_1—C3_1—C3A_1—C4_1 | 8.9 (6) | O2_2—C3_2—C3A_2—C4_2 | −11.0 (5) |
N2_1—C3_1—C3A_1—C4_1 | −172.9 (3) | N2_2—C3_2—C3A_2—C4_2 | 170.9 (3) |
C7A_1—C3A_1—C4_1—C5_1 | 2.3 (5) | C7A_2—C3A_2—C4_2—C5_2 | −2.5 (5) |
C3_1—C3A_1—C4_1—C5_1 | −175.8 (3) | C3_2—C3A_2—C4_2—C5_2 | 176.1 (3) |
C3A_1—C4_1—C5_1—C6_1 | −0.4 (5) | C3A_2—C4_2—C5_2—C6_2 | 1.1 (5) |
C3A_1—C4_1—C5_1—C8_1 | 178.0 (3) | C3A_2—C4_2—C5_2—C8_2 | −176.4 (3) |
C4_1—C5_1—C6_1—C7_1 | −1.0 (5) | C4_2—C5_2—C6_2—C7_2 | 0.1 (5) |
C8_1—C5_1—C6_1—C7_1 | −179.3 (3) | C8_2—C5_2—C6_2—C7_2 | 177.6 (3) |
C5_1—C6_1—C7_1—C7A_1 | 0.5 (5) | C5_2—C6_2—C7_2—C7A_2 | 0.1 (4) |
C5_1—C6_1—C7_1—N3_1 | −179.6 (3) | C5_2—C6_2—C7_2—N3_2 | −179.8 (3) |
O4_1—N3_1—C7_1—C7A_1 | −173.3 (3) | O4_2—N3_2—C7_2—C7A_2 | 169.6 (3) |
O3_1—N3_1—C7_1—C7A_1 | 7.5 (5) | O3_2—N3_2—C7_2—C7A_2 | −11.4 (4) |
O4_1—N3_1—C7_1—C6_1 | 6.8 (4) | O4_2—N3_2—C7_2—C6_2 | −10.5 (4) |
O3_1—N3_1—C7_1—C6_1 | −172.5 (3) | O3_2—N3_2—C7_2—C6_2 | 168.5 (3) |
C4_1—C3A_1—C7A_1—C7_1 | −2.8 (5) | C6_2—C7_2—C7A_2—C3A_2 | −1.5 (4) |
C3_1—C3A_1—C7A_1—C7_1 | 175.5 (3) | N3_2—C7_2—C7A_2—C3A_2 | 178.4 (3) |
C4_1—C3A_1—C7A_1—S1_1 | 176.5 (2) | C6_2—C7_2—C7A_2—S1_2 | 176.9 (2) |
C3_1—C3A_1—C7A_1—S1_1 | −5.2 (3) | N3_2—C7_2—C7A_2—S1_2 | −3.2 (4) |
C6_1—C7_1—C7A_1—C3A_1 | 1.4 (4) | C4_2—C3A_2—C7A_2—C7_2 | 2.7 (5) |
N3_1—C7_1—C7A_1—C3A_1 | −178.6 (3) | C3_2—C3A_2—C7A_2—C7_2 | −176.1 (3) |
C6_1—C7_1—C7A_1—S1_1 | −177.8 (2) | C4_2—C3A_2—C7A_2—S1_2 | −175.9 (2) |
N3_1—C7_1—C7A_1—S1_1 | 2.2 (4) | C3_2—C3A_2—C7A_2—S1_2 | 5.3 (3) |
O1_1—S1_1—C7A_1—C3A_1 | −104.9 (2) | O1_2—S1_2—C7A_2—C7_2 | −72.1 (3) |
N2_1—S1_1—C7A_1—C3A_1 | 0.1 (2) | N2_2—S1_2—C7A_2—C7_2 | −177.6 (3) |
O1_1—S1_1—C7A_1—C7_1 | 74.3 (3) | O1_2—S1_2—C7A_2—C3A_2 | 106.3 (2) |
N2_1—S1_1—C7A_1—C7_1 | 179.3 (3) | N2_2—S1_2—C7A_2—C3A_2 | 0.9 (2) |
C6_1—C5_1—C8_1—F2_1 | −157.6 (3) | C6_2—C5_2—C8_2—F2_2 | 157.3 (3) |
C4_1—C5_1—C8_1—F2_1 | 24.0 (5) | C4_2—C5_2—C8_2—F2_2 | −25.1 (4) |
C6_1—C5_1—C8_1—F1_1 | 77.1 (4) | C6_2—C5_2—C8_2—F1_2 | −82.1 (4) |
C4_1—C5_1—C8_1—F1_1 | −101.3 (4) | C4_2—C5_2—C8_2—F1_2 | 95.5 (4) |
C6_1—C5_1—C8_1—F3_1 | −40.4 (4) | C6_2—C5_2—C8_2—F3_2 | 36.4 (4) |
C4_1—C5_1—C8_1—F3_1 | 141.2 (3) | C4_2—C5_2—C8_2—F3_2 | −146.1 (3) |
C10_1—N4_1—C9_1—O5_1 | −2.5 (5) | C10_2—N4_2—C9_2—O5_2 | 5.0 (5) |
C14_1—N4_1—C9_1—O5_1 | 159.9 (3) | C14_2—N4_2—C9_2—O5_2 | −162.5 (3) |
C10_1—N4_1—C9_1—N2_1 | 179.8 (3) | C10_2—N4_2—C9_2—N2_2 | −176.4 (3) |
C14_1—N4_1—C9_1—N2_1 | −17.8 (5) | C14_2—N4_2—C9_2—N2_2 | 16.1 (4) |
C3_1—N2_1—C9_1—O5_1 | 127.2 (4) | C3_2—N2_2—C9_2—O5_2 | −125.1 (3) |
S1_1—N2_1—C9_1—O5_1 | −33.9 (4) | S1_2—N2_2—C9_2—O5_2 | 35.4 (4) |
C3_1—N2_1—C9_1—N4_1 | −54.9 (4) | C3_2—N2_2—C9_2—N4_2 | 56.2 (4) |
S1_1—N2_1—C9_1—N4_1 | 144.0 (2) | S1_2—N2_2—C9_2—N4_2 | −143.3 (2) |
C9_1—N4_1—C10_1—C11_1 | −138.9 (3) | C9_2—N4_2—C10_2—C11_2 | 134.3 (3) |
C14_1—N4_1—C10_1—C11_1 | 56.4 (4) | C14_2—N4_2—C10_2—C11_2 | −56.6 (4) |
N4_1—C10_1—C11_1—C12_1 | −55.0 (4) | N4_2—C10_2—C11_2—C12_2 | 55.3 (4) |
C16_1—O7_1—C12_1—O6_1 | 19.5 (4) | C16_2—O7_2—C12_2—O6_2 | −32.4 (3) |
C16_1—O7_1—C12_1—C11_1 | 138.5 (3) | C16_2—O7_2—C12_2—C11_2 | −149.2 (3) |
C16_1—O7_1—C12_1—C13_1 | −98.5 (3) | C16_2—O7_2—C12_2—C13_2 | 88.3 (3) |
C15_1—O6_1—C12_1—O7_1 | 4.1 (4) | C15_2—O6_2—C12_2—O7_2 | 38.7 (3) |
C15_1—O6_1—C12_1—C11_1 | −114.7 (3) | C15_2—O6_2—C12_2—C11_2 | 156.5 (3) |
C15_1—O6_1—C12_1—C13_1 | 124.3 (3) | C15_2—O6_2—C12_2—C13_2 | −82.3 (3) |
C10_1—C11_1—C12_1—O7_1 | 179.5 (3) | C10_2—C11_2—C12_2—O7_2 | −179.5 (3) |
C10_1—C11_1—C12_1—O6_1 | −63.5 (4) | C10_2—C11_2—C12_2—O6_2 | 65.5 (3) |
C10_1—C11_1—C12_1—C13_1 | 56.0 (4) | C10_2—C11_2—C12_2—C13_2 | −56.1 (4) |
O7_1—C12_1—C13_1—C14_1 | −178.6 (3) | O7_2—C12_2—C13_2—C14_2 | 178.9 (3) |
O6_1—C12_1—C13_1—C14_1 | 64.2 (4) | O6_2—C12_2—C13_2—C14_2 | −63.6 (4) |
C11_1—C12_1—C13_1—C14_1 | −56.3 (4) | C11_2—C12_2—C13_2—C14_2 | 56.5 (3) |
C9_1—N4_1—C14_1—C13_1 | 139.5 (3) | C9_2—N4_2—C14_2—C13_2 | −133.8 (3) |
C10_1—N4_1—C14_1—C13_1 | −57.5 (4) | C10_2—N4_2—C14_2—C13_2 | 58.2 (4) |
C12_1—C13_1—C14_1—N4_1 | 56.0 (4) | C12_2—C13_2—C14_2—N4_2 | −56.7 (3) |
C12_1—O6_1—C15_1—C17_1 | −146.3 (3) | C12_2—O6_2—C15_2—C17_2 | −151.2 (3) |
C12_1—O6_1—C15_1—C16_1 | −23.9 (4) | C12_2—O6_2—C15_2—C16_2 | −28.6 (3) |
C12_1—O7_1—C16_1—C15_1 | −34.1 (4) | C12_2—O7_2—C16_2—C15_2 | 13.8 (3) |
O6_1—C15_1—C16_1—O7_1 | 35.2 (4) | O6_2—C15_2—C16_2—O7_2 | 9.2 (3) |
C17_1—C15_1—C16_1—O7_1 | 153.6 (3) | C17_2—C15_2—C16_2—O7_2 | 127.5 (3) |
Data for BTZ043, `BTZ-SO' and `BTZ-SO2' were taken from Tiwari et al. (2015). |
1 | 2 | 3 | BTZ043 | `BTZ-SO' | `BTZ-SO2' (4) |
9.08 | 8.77 | 8.79 | 9.02 | 8.78 | 8.80 |
8.72 | 8.57 | 8.58 | 8.55 | 8.59 | 8.58 |
Data for BTZ043, `BTZ-SO' and `BTZ-SO2' were taken from Tiwari et al. (2015). |
1 | 2 | 3 | BTZ043 | `BTZ-SO' | `BTZ-SO2' (4) | |
M. tuberculosis | 4.3a | < 0.26a | 8.0a | 0.02b | 0.06b | 0.48b |
M. aurum | 10.9c | 2.0c | 19.4c | >200a | 3.13-12.5d | >200d |
Notes: (a) M. tuberculosis H37Rv pTEC27 (7H9 medium plus 10% OADC and 0.05% Tween 80, microplate RFP assay); (b) M. tuberculosis H37Rv (7H9 medium plus casitone, palmitic acid, albumin and catalase; MABA, Microplate Alamar Blue Assay); (c) M. aurum DSMZ 43999 (7H9 medium plus 10% OADC and 0.5% glycerol, microplate OD600 Assay); (d) M. aurum SB66. |
Acknowledgements
We thank Dr Matthias Schmidt for performing the preparative HPLC of 2 and 3 and Nils Nöthling for the data collection for 3. Professor Christian W. Lehmann is gratefully acknowledged for providing access to the X-ray diffraction facility used to collect the data for 3. AR and HAS would like to thank Professor Yossef Av-Gay for his support. Open access funding enabled and organized by Projekt DEAL.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435–1444. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bhakuni, B. S., Balkrishna, S. J., Kumar, A. & Kumar, S. (2012). Tetrahedron Lett. 53, 1354–1357. CrossRef CAS Google Scholar
Brandenburg, K. (2018). DIAMOND. Version 3.2k. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gopinath, P., Yadav, R. K., Shukla, P. K., Srivastava, K., Puri, S. K. & Muraleedharan, K. M. (2017). Bioorg. Med. Chem. Lett. 27, 1291–1295. CrossRef CAS PubMed Google Scholar
Kloss, F., Krchnak, V., Krchnakova, A., Schieferdecker, S., Dreisbach, J., Krone, V., Möllmann, U., Hoelscher, M. & Miller, M. J. (2017). Angew. Chem. Int. Ed. 56, 2187–2191. CrossRef CAS Google Scholar
Lupien, A., Vocat, A., Foo, C. S.-Y., Blattes, E., Gillon, J.-Y., Makarov, V. & Cole, S. T. (2018). Antimicrob. Agents Chemother. 62, e00840-18. CrossRef PubMed Google Scholar
Lv, K., You, X., Wang, B., Wei, Z., Chai, Y., Wang, B., Wang, A., Huang, G., Liu, M. & Lu, Y. (2017). ACS Med. Chem. Lett. 8, 636–641. CrossRef CAS PubMed Google Scholar
Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269. Web of Science CrossRef Google Scholar
Mikušová, K., Makarov, V. & Neres, J. (2014). Curr. Pharm. Des. 20, 4379–4403. Web of Science PubMed Google Scholar
Novick, R. M., Nelson, M. L., Unice, K. M., Keenan, J. J. & Paustenbach, D. J. (2013). Food Chem. Toxicol. 56, 60–66. CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933. Web of Science CrossRef CAS PubMed Google Scholar
Szabó, J., Szücs, E., Fodor, L., Katócs, Á., Bernáth, G. & Sohár, P. (1988). Tetrahedron, 44, 2985–2992. Google Scholar
Tiwari, R., Miller, P. A., Cho, S., Franzblau, S. G. & Miller, M. J. (2015). ACS Med. Chem. Lett. 6, 128–133. CrossRef CAS PubMed Google Scholar
Tiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539–3549. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031–1035. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, G., Howe, M. & Aldrich, C. A. (2019). ACS Med. Chem. Lett. 10, 348–351. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.