research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal structure and Hirshfeld surface analysis of the elusive tri­chloro­bis­­(di­ethyl ether)oxo­molybdenum(V)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Central Florida, Orlando, FL 32816, USA, bRenewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, FL 32816, USA, and cRigaku Americas Corporation, The Woodlands, TX 77381, USA
*Correspondence e-mail: al.sattelberger@knights.ucf.edu, titel.jurca@ucf.edu

Edited by A. Lemmerer, University of the Witwatersrand, South Africa (Received 21 July 2020; accepted 25 August 2020; online 19 September 2020)

First reported in 1930, MoCl3O(Et2O)2 is a by-product of the reductive synthesis of MoCl4(OEt2)2 from MoCl5. We report herein the X-ray crystal structure and Hirshfeld surface characteristics of mer-MoCl3O(Et2O)2, or [MoCl3O(C4H10O)2]. The com­pound crystallizes in the ortho­rhom­bic space group P212121. The molyb­denyl (Mo=O) bond length is 1.694 (3) Å and the cis- and trans-Mo—O distances are 2.157 (3) and 2.304 (3) Å, respectively. Inter­molecular Mo=O⋯H bonding is present in the lattice, with the shortest distance being 2.572 Å.

1. Introduction

The red–orange diethyl ether adduct of molybdenum(IV) chloride, MoCl4(OEt2)2 (1), is a useful synthon for mid-valent molybdenum chemistry (Kuiper et al., 2008a[Kuiper, D. S., Douthwaite, R. E., Mayol, A.-R., Wolczanski, P. T., Lobkovsky, E. B., Cundari, T. R., Lam, O. P. & Meyer, K. (2008a). Inorg. Chem. 47, 7139-7153.],b[Kuiper, D. S., Wolczanski, P. T., Lobkovsky, E. B. & Cundari, T. R. (2008b). Inorg. Chem. 47, 10542-10553.]). It can be prepared anaerobically by reducing a suspension of molybdenum penta­chloride, MoCl5, in diethyl ether with any one of the following reductants: norbornene (Castellani & Gallazzi, 1985[Castellani, L. & Gallazzi, M. C. (1985). Transition Met. Chem. 10, 194-195.]), allyl­tri­methyl­silane (Persson & Andersson, 1993[Persson, C. & Andersson, C. (1993). Inorg. Chim. Acta, 203, 235-238.]), or elemental tin (Stoffelbach et al., 2001[Stoffelbach, F., Saurenz, D. & Poli, R. (2001). Eur. J. Inorg. Chem. 2001, 2699-2703.]). 1 is sparingly soluble in ether and easily isolated by filtration. The crystalline solid slowly loses ether on standing at room temperature and more rapidly under vacuum. Each of the published preparations provide 1 in ≥80% yield. Two of the reported syntheses (Castellani & Gallazzi, 1985[Castellani, L. & Gallazzi, M. C. (1985). Transition Met. Chem. 10, 194-195.]; Stoffelbach et al., 2001[Stoffelbach, F., Saurenz, D. & Poli, R. (2001). Eur. J. Inorg. Chem. 2001, 2699-2703.]) note that if either the diethyl ether is not sufficiently dry and/or the MoCl5 is contaminated with oxyhalides, the green molybdenum(V) oxo–chloro com­pound MoCl3O(OEt2)2 (2) forms as a by-product. The latter com­pound was first reported in 1930 (Wardlaw & Webb, 1930[Wardlaw, W. & Webb, H. W. (1930). J. Chem. Soc. pp. 2100-2106.]). The solid-state structure of 2 (Scheme 1[link]) has never been reported and is the subject of the present work.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

Compound 1 was prepared essentially as described by Persson & Andersson (1993[Persson, C. & Andersson, C. (1993). Inorg. Chim. Acta, 203, 235-238.]), by adding excess C3H5SiMe3 dropwise to a stirred diethyl ether suspension of MoCl5 inside an mBraun inert atmosphere glove-box (water and O2 levels of ≤1 ppm). For practical reasons, the reaction was carried out at approximately −30 °C rather than at the reported −78 °C. The red–orange solid product, which formed immediately at low temperature upon addition of the silane, was stirred for 2 h at room temperature and then filtered off and washed with fresh diethyl ether collected on an mBraun solvent purification system. The red–orange filtrate was concentrated to ca 15 ml, placed in a scintillation vial, and stored in the −35 °C freezer of the glove-box. After several days, a well-formed dark-green crystal of 2 was observed at the bottom of the vial. A crystal of 2 with dimensions 0.16 × 0.21 × 0.60 mm was removed from the mother liquor, coated with Paratone oil, removed from the glove-box, quickly secured to a MiteGen micromount, and mounted on the diffractometer under a cryostream (100 K) to prevent the loss of diethyl ether. Notably, 2 rapidly degrades in Paratone under ambient con­ditions (Fig. S1 in the supporting information).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were attached via the riding model at calculated positions.

Table 1
Experimental details

Crystal data
Chemical formula [MoCl3O(C4H10O)2]
Mr 366.53
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 8.6186 (7), 12.250 (1), 13.5681 (11)
V3) 1432.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.46
Crystal size (mm) 0.6 × 0.21 × 0.16
 
Data collection
Diffractometer Rigaku XtaLAB Mini II
Absorption correction Gaussian (CrysAlis PRO; Rigaku Oxford Diffraction, 2020[Rigaku Oxford Diffraction (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.614, 0.831
No. of measured, independent and observed [I > 2σ(I)] reflections 7488, 3179, 2959
Rint 0.042
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.069, 1.01
No. of reflections 3179
No. of parameters 153
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.87
Absolute structure Flack x determined using 1123 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (5)
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2020[Rigaku Oxford Diffraction (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

MoCl3O(Et2O)2 (2) crystallized in the enanti­omorphic space group P212121 with a single mol­ecule in the asymmetric unit. The structure and atom-labeling scheme are shown in Fig. 1[link](a). A partially occupied unit cell, with hydrogen bonding represented by dashed lines, is shown in Fig. 1[link](b). Expanded packing diagrams of eight unit cells (2 × 2 × 2) are displayed in the supporting information (Fig. S2); beyond the description of hydrogen-bonding interactions provided (vide infra), there are no remarkable features requiring further discussion. The isolated MoCl3O(Et2O)2 com­plex exists in a distorted octa­hedral geometry, with the chloro ligands adopting a meridional configuration. This is consistent with predicted structures and analogous oxomolybdenum com­plexes with solvent ligands coordinated through the O heteroatoms (Castellani & Gallazzi, 1985[Castellani, L. & Gallazzi, M. C. (1985). Transition Met. Chem. 10, 194-195.]; Stoffelbach et al., 2001[Stoffelbach, F., Saurenz, D. & Poli, R. (2001). Eur. J. Inorg. Chem. 2001, 2699-2703.]; Vitzthumecker et al., 2017[Vitzthumecker, C., Robinson, F. & Pfitzner, A. (2017). Monatsh. Chem. 148, 629-633.]; Marchetti et al., 2013[Marchetti, F., Pampaloni, G. & Zacchini, S. (2013). Dalton Trans. 42, 15226-15234.]). Selected bond lengths are shown in Table 2[link], showcasing the metal-to-ligand bond lengths and angles.

Table 2
Selected geometric parameters (Å, °)

Mo1—Cl1 2.3469 (13) Mo1—O3 2.304 (3)
Mo1—Cl3 2.3530 (13) O2—C1 1.468 (6)
Mo1—Cl2 2.3159 (13) O2—C3 1.463 (6)
Mo1—O1 1.694 (3) O3—C5 1.455 (5)
Mo1—O2 2.157 (3) O3—C7 1.463 (5)
       
O1—Mo1—O3 173.06 (14) O1—Mo1—O2 93.09 (14)
O2—Mo1—Cl2 168.30 (9) O3—Mo1—Cl2 88.37 (9)
Cl1—Mo1—Cl3 165.00 (5) O3—Mo1—Cl1 82.92 (8)
O1—Mo1—Cl2 98.48 (12) O3—Mo1—Cl3 82.19 (8)
O1—Mo1—Cl1 98.02 (11) O2—Mo1—O3 80.10 (11)
O1—Mo1—Cl3 96.55 (11)    
[Figure 1]
Figure 1
(a) The asymmetric unit of 2, showing the labeling scheme for the com­plex. Dis­placement ellipsoids are drawn at the 50% probability level. (b) The partially filled P212121 unit cell of 2, showing the inter- and intra­molecular hydrogen-bonding inter­actions.

As expected, the O atom of the diethyl ether ligand that is trans to the molybdenum–oxo bond is elongated [2.304 (3) Å] com­pared to the O atom trans to a meridional chloro ligand [2.157 (3) Å]. In fact, the molybdenum–oxo bond length, as well as the lengths of the meridional chloro ligands, are similar to analogous com­plexes (Table 3[link]) (Marchetti et al., 2013[Marchetti, F., Pampaloni, G. & Zacchini, S. (2013). Dalton Trans. 42, 15226-15234.]; Vitzthumecker et al., 2017[Vitzthumecker, C., Robinson, F. & Pfitzner, A. (2017). Monatsh. Chem. 148, 629-633.]; Di Nicola et al., 2015[Di Nicola, F. P., Lanzi, M., Marchetti, F., Pampaloni, G. & Zacchini, S. (2015). Dalton Trans. 44, 12653-12659.]). The slight differences in the bond lengths of the meridional chloro ligands can be explained by the donating nature of the coordinating solvents. The only com­plex with longer Mo—O(solvent) bonds is MoCl3O(H3COCH2CH2OCH2Cl), which is likely a result of the chloro functioning as a weak electron-withdrawing group. The lability of the diethyl ether ligands and the relatively short lifetime of the isolated MoCl3O(Et2O)2 com­plex under ambient conditions can thus be ex­plained by the elongated Mo—O(solvent) bonds (Fig. S1 in the supporting information).

Table 3
Comparative Mo—L and Mo—X bond lengths of MoCl3O(Et2O)2 (2) and analogous com­plexes

The ligand represented by `thf' is tetrahydrofuran.

MoCl3O(Et2O)2 MoCl3O(thf)2 MoCl3O(MeOH)2 MoCl3O[MeO(CH2)2OCH2Cl]
  (Marchetti et al., 2013[Marchetti, F., Pampaloni, G. & Zacchini, S. (2013). Dalton Trans. 42, 15226-15234.]) (Vitzthumecker et al., 2017[Vitzthumecker, C., Robinson, F. & Pfitzner, A. (2017). Monatsh. Chem. 148, 629-633.]) (Di Nicola et al., 2015[Di Nicola, F. P., Lanzi, M., Marchetti, F., Pampaloni, G. & Zacchini, S. (2015). Dalton Trans. 44, 12653-12659.])
Mo1—Cl1 2.3469 (13) Mo—Cl2 2.3513 (9) Mo1—Cl2 2.3642 (8) Mo1—Cl5 2.3542 (8)
Mo1—Cl3 2.3530 (13) Mo—Cl1 2.3646 (8) Mo1—Cl1 2.3434 (7) Mo1—Cl4 2.3453 (7)
Mo1—Cl2 2.3159 (13) Mo—Cl3 2.3191 (9) Mo1—Cl3 2.3741 (9) Mo1—Cl2 2.3216 (7)
Mo1—O2 2.157 (3) Mo—O2(thf) 2.146 (2) Mo—O2 2.099 (2) Mo1—O2 2.161 (2)
Mo1—O3 2.304 (3) Mo—O3(thf) 2.277 (2) Mo—O3 2.266 (2) Mo1—O3 2.420 (2)
Mo1—O1 1.694 (3) Mo—O1(oxo) 1.682 (2) Mo1—O1 1.655 (2) Mo1—O1 1.666 (2)

There are instances of inter­molecular hydrogen bonding that occur between the molybdenum–oxo linkage and neighboring diethyl ether ligands. Specifically, Mo1=O1⋯H1Bi—C1i and Mo1=O1⋯H5Bii—C5ii [symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]], with bond lengths of 2.683 and 2.572 Å, respectively (Fig. 1[link]b). These two bonding inter­actions explain the extended Mo1=O1 bond distance [1.694 (3) Å] compared to analogous oxomolyb­denum complexes (Table 3[link]). An intra­molecular close contact is also present between two meridional chloro ligands and neighboring diethyl ether H atoms, viz. Cl1⋯H1A—C1, Cl3⋯H4B—C4, and Cl3⋯H8B—C8, with bond lengths of 2.697, 2.949, and 2.946 Å, respectively. Atom Cl3 also experiences an inter­molecular contact through Cl3⋯H5Aii—C5ii and Cl3⋯H2Aii—C2ii, with bond lengths of 2.926 and 2.927 Å, respectively. These close contacts are a direct cause of the extended Mo—Cl bond lengths of Mo1—Cl1 and Mo1—Cl3 (Table 2[link]). A basal plane was generated through the meridional plane of the com­plex with the equation −0.272x + 0.709y − 0.650z − 0.536 = 0 (Fig. S3 in the sup­porting information). The distance of the molybdenum centre from the centroid of the basal plane is 0.264 Å and the fractional coordinates from the atom projection to the plane are (0.134701, 0.460936, 0.478813). This centre–centroid dis­tance is shorter than that reported for the MoCl3O(MeOH)2 and MoCl3O[MeO(CH2)2OCH2Cl] adducts, which display respective distances of 0.322 and 0.378 Å, but is similar to that of MoCl3O(PMe3)(O=PMe3), which has a distance of 0.256 Å (Marchetti et al., 2013[Marchetti, F., Pampaloni, G. & Zacchini, S. (2013). Dalton Trans. 42, 15226-15234.]; Limberg et al., 1996[Limberg, C., Büchner, M., Heinze, K. & Walter, O. (1996). Inorg. Chem. 36, 872-879.]).

The dnorm Hirshfeld surface (−0.0313 to 1.2958 Å) was generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, J. D., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) and can be seen in Fig. 2[link]. There are four red portions of the surface, generated by inter­actions that are shorter than van der Waals radii, all of which are the result of Mo=O⋯H—C inter­actions between the CH2 hydrogens of the coordinated diethyl ether and the Mo=O oxygen. Two of these inter­actions are the result of exterior diethyl ether hydrogens near the inter­ior Mo=O bond, while the other two are caused by two exterior Mo=O bonds inter­acting with inter­ior diethyl ether ligands. The Hirshfeld surface with neighboring atoms and mol­ecules is elaborated in Fig. S4 (see supporting information). The spatial configuration of neighboring mol­ecules is a direct result of these close contact inter­actions, causing the coordinated diethyl ethers to lie in proximity to one another. Because of this, the majority of the Hirshfeld surface is the result of H⋯H inter­actions between inter­ior and exterior diethyl ethers, which account for 49.9% of the surface (Fig. 3[link]b). The points of intimate contact between the diethyl ether H atoms and the molybdenum–oxo bonds account for a total of 10.9% of the surface (Figs. 3[link]d and 3e). Intriguingly, contact between the meridional chloro ligands and diethyl ether H atoms account for 37.4% of the Hirshfeld surface, but do not account for any of the close contact points of the surface. The remaining percentages of the Hirshfeld surface can be seen in the remainder of Fig. 3[link]. As expected, no portions of the surface are caused by inter­actions, both inter­ior and exterior, from Mo or C atoms.

[Figure 2]
Figure 2
dnorm Hirshfeld surface of MoCl3O(Et2O)2 from various viewpoints highlighting the areas of intimate contact.
[Figure 3]
Figure 3
Two-dimensional (2D) fingerprint plots identifying the percent com­position of the Hirshfeld surface from the various noncovalent inter­actions, with the accom­panying percent contribution to the Hirshfeld surface: (a) the com­plete fingerprint plot accounting for all inter­actions, (b) inter­actions between inter­ior and exterior H atoms, (c) inter­actions between inter­ior Cl and exterior H atoms, (d) inter­actions between inter­ior H and exterior Cl atoms, (e) inter­actions between inter­ior O and exterior H atoms, (f) inter­actions between inter­ior H and exterior O atoms, (g) inter­actions between inter­ior Cl and exterior O atoms, and (h) inter­actions between inter­ior O and exterior Cl atoms.

4. Conclusion

The crystal structure and Hirshfeld surface character of mer-MoCl3O(Et2O)2, along with fingerprint-plot analysis, have been reported. The chloro ligands adopt a meridional configuration, with one diethyl ether ligand coordinated trans to a chloro ligand and one trans to the molybdenum–oxo bond. The molybdenum–diethyl ether bond trans to the molybdenum–oxo bond is noticeably longer than seen in analogous com­plexes, consistent with the lability of the coordinated diethyl ether. Inter­molecular hydrogen bonds occur between the molybdenum–oxo bond and the CH2 diethyl ether groups of neighboring com­plexes. Unresolved is the source of the molybdenyl O atom in 2. All reagents were of high purity and the liquid starting materials were thoroughly dried and de­oxy­genated. The yield of 2 described above was estimated to be <5%. When a second reaction was carried out with identical qu­anti­ties of the same reagents, but closer to room temperature, the filtrate was green and the yield of 2 increased significantly (>10%). We surmise from this result that diethyl ether is at least a contributing source of the molybdenyl O atom in 2. Further work would be needed to identify the organic side products and develop a mechanistic picture of exactly how the oxygen transfer occurs. With a confirmed structure, the door is open for implementation of mer-MoCl3O(Et2O)2 (2) as a potential oxomolybdenum(V) syn­thon.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2020); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2020); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2020); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Trichloridobis(diethyl ether)oxidomolybdenum(V) top
Crystal data top
[MoCl3O(C4H10O)2]Dx = 1.700 Mg m3
Mr = 366.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3727 reflections
a = 8.6186 (7) Åθ = 2.2–30.5°
b = 12.250 (1) ŵ = 1.46 mm1
c = 13.5681 (11) ÅT = 100 K
V = 1432.5 (2) Å3Block, green
Z = 40.6 × 0.21 × 0.16 mm
F(000) = 740
Data collection top
Rigaku XtaLAB Mini II
diffractometer
Rint = 0.042
Absorption correction: gaussian
(CrysAlis PRO; Rigaku Oxford Diffraction, 2020)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.614, Tmax = 0.831h = 1110
7488 measured reflectionsk = 1515
3179 independent reflectionsl = 1716
2959 reflections with I > 2σ(I)
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0278P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.069Δρmax = 0.53 e Å3
S = 1.01Δρmin = 0.87 e Å3
3179 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
153 parametersExtinction coefficient: 0.0042 (6)
0 restraintsAbsolute structure: Flack x determined using 1123 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.01 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.14299 (5)0.44571 (3)0.49142 (3)0.01453 (13)
Cl30.28566 (14)0.58992 (10)0.56149 (9)0.0189 (3)
Cl10.00756 (16)0.33468 (10)0.38785 (9)0.0220 (3)
Cl20.07724 (14)0.49900 (10)0.57657 (9)0.0209 (3)
O20.3298 (4)0.4174 (3)0.3888 (2)0.0174 (8)
O30.0863 (4)0.5768 (2)0.3751 (2)0.0144 (7)
O10.2054 (4)0.3474 (3)0.5698 (2)0.0168 (8)
C50.0851 (6)0.5576 (4)0.2693 (3)0.0182 (11)
H5A0.135 (6)0.491 (4)0.258 (4)0.022*
H5B0.160 (6)0.612 (4)0.235 (4)0.022*
C60.0733 (6)0.5618 (4)0.2246 (4)0.0236 (12)
H6A0.0660490.5471340.1537690.035*
H6B0.1181330.6344220.2350480.035*
H6C0.1395160.5066950.2557530.035*
C70.0422 (6)0.6881 (4)0.4026 (4)0.0190 (12)
H7A0.0275850.6916990.4748580.023*
H7B0.0582130.7062620.3711060.023*
C30.4417 (6)0.4994 (4)0.3559 (4)0.0224 (12)
H3A0.3960330.5728730.3649030.027*
H3B0.4614790.4891610.2845770.027*
C10.3840 (7)0.3043 (5)0.3786 (4)0.0229 (13)
H1A0.289 (6)0.265 (4)0.396 (4)0.027*
H1B0.467 (6)0.293 (4)0.421 (4)0.027*
C80.1614 (7)0.7714 (4)0.3723 (4)0.0286 (13)
H8A0.1742680.7697150.3005480.043*
H8B0.2607230.7545670.4040310.043*
H8C0.1269300.8442670.3926190.043*
C20.4275 (8)0.2761 (4)0.2751 (4)0.0314 (14)
H2A0.3401210.2918470.2311390.047*
H2B0.4535180.1983660.2711390.047*
H2C0.5175730.3196930.2551010.047*
C40.5935 (6)0.4942 (5)0.4102 (4)0.0346 (15)
H4A0.6478420.4266570.3926710.052*
H4B0.5739640.4953830.4813240.052*
H4C0.6575490.5571150.3919580.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01522 (19)0.0139 (2)0.0144 (2)0.00072 (17)0.00121 (18)0.00088 (18)
Cl30.0200 (6)0.0202 (6)0.0165 (6)0.0034 (5)0.0024 (5)0.0025 (5)
Cl10.0286 (7)0.0161 (6)0.0213 (7)0.0050 (6)0.0044 (6)0.0019 (6)
Cl20.0174 (6)0.0251 (7)0.0202 (7)0.0015 (6)0.0047 (6)0.0008 (6)
O20.0203 (18)0.0119 (17)0.0200 (18)0.0030 (14)0.0045 (15)0.0044 (14)
O30.0205 (17)0.0124 (18)0.0103 (16)0.0035 (14)0.0016 (14)0.0012 (14)
O10.0164 (17)0.0174 (18)0.0166 (18)0.0003 (15)0.0010 (15)0.0014 (16)
C50.025 (3)0.021 (3)0.009 (2)0.002 (3)0.002 (2)0.002 (2)
C60.029 (3)0.023 (3)0.019 (3)0.000 (3)0.007 (2)0.001 (3)
C70.024 (3)0.008 (2)0.024 (3)0.004 (2)0.001 (2)0.001 (2)
C30.022 (3)0.023 (3)0.022 (3)0.004 (2)0.007 (2)0.003 (2)
C10.031 (3)0.018 (3)0.020 (3)0.012 (2)0.002 (3)0.002 (2)
C80.041 (3)0.014 (3)0.031 (3)0.001 (3)0.003 (3)0.000 (2)
C20.051 (4)0.021 (3)0.022 (3)0.011 (3)0.007 (3)0.003 (3)
C40.019 (3)0.050 (4)0.035 (3)0.001 (3)0.005 (3)0.001 (3)
Geometric parameters (Å, º) top
Mo1—Cl12.3469 (13)C7—H7B0.9900
Mo1—Cl32.3530 (13)C7—C81.506 (7)
Mo1—Cl22.3159 (13)C3—H3A0.9900
Mo1—O11.694 (3)C3—H3B0.9900
Mo1—O22.157 (3)C3—C41.502 (7)
Mo1—O32.304 (3)C1—H1A0.97 (5)
O2—C11.468 (6)C1—H1B0.93 (5)
O2—C31.463 (6)C1—C21.493 (7)
O3—C51.455 (5)C8—H8A0.9800
O3—C71.463 (5)C8—H8B0.9800
C5—H5A0.93 (5)C8—H8C0.9800
C5—H5B1.04 (5)C2—H2A0.9800
C5—C61.494 (7)C2—H2B0.9800
C6—H6A0.9800C2—H2C0.9800
C6—H6B0.9800C4—H4A0.9800
C6—H6C0.9800C4—H4B0.9800
C7—H7A0.9900C4—H4C0.9800
O1—Mo1—O3173.06 (14)O3—C7—C8112.6 (4)
O2—Mo1—Cl2168.30 (9)H7A—C7—H7B107.8
Cl1—Mo1—Cl3165.00 (5)C8—C7—H7A109.1
O1—Mo1—Cl298.48 (12)C8—C7—H7B109.1
O1—Mo1—Cl198.02 (11)O2—C3—H3A108.9
O1—Mo1—Cl396.55 (11)O2—C3—H3B108.9
O1—Mo1—O293.09 (14)O2—C3—C4113.3 (4)
O3—Mo1—Cl288.37 (9)H3A—C3—H3B107.7
O3—Mo1—Cl182.92 (8)C4—C3—H3A108.9
O3—Mo1—Cl382.19 (8)C4—C3—H3B108.9
O2—Mo1—O380.10 (11)O2—C1—H1A100 (3)
Cl2—Mo1—Cl390.87 (5)O2—C1—H1B109 (3)
Cl2—Mo1—Cl190.51 (5)O2—C1—C2112.7 (4)
O2—Mo1—Cl389.52 (9)H1A—C1—H1B115 (4)
O2—Mo1—Cl186.14 (10)C2—C1—H1A109 (3)
C3—O2—Mo1125.4 (3)C2—C1—H1B110 (3)
C3—O2—C1114.2 (4)C7—C8—H8A109.5
C1—O2—Mo1116.8 (3)C7—C8—H8B109.5
C5—O3—Mo1124.4 (3)C7—C8—H8C109.5
C5—O3—C7113.6 (4)H8A—C8—H8B109.5
C7—O3—Mo1122.0 (3)H8A—C8—H8C109.5
O3—C5—H5A107 (3)H8B—C8—H8C109.5
O3—C5—H5B110 (3)C1—C2—H2A109.5
O3—C5—C6113.7 (4)C1—C2—H2B109.5
H5A—C5—H5B101 (4)C1—C2—H2C109.5
C6—C5—H5A113 (3)H2A—C2—H2B109.5
C6—C5—H5B111 (3)H2A—C2—H2C109.5
C5—C6—H6A109.5H2B—C2—H2C109.5
C5—C6—H6B109.5C3—C4—H4A109.5
C5—C6—H6C109.5C3—C4—H4B109.5
H6A—C6—H6B109.5C3—C4—H4C109.5
H6A—C6—H6C109.5H4A—C4—H4B109.5
H6B—C6—H6C109.5H4A—C4—H4C109.5
O3—C7—H7A109.1H4B—C4—H4C109.5
O3—C7—H7B109.1
Mo1—O2—C3—C498.5 (5)C5—O3—C7—C868.7 (5)
Mo1—O2—C1—C2143.0 (4)C7—O3—C5—C667.0 (5)
Mo1—O3—C5—C6110.8 (4)C3—O2—C1—C257.5 (6)
Mo1—O3—C7—C8113.4 (4)C1—O2—C3—C458.9 (6)
Comparative Mo—L and Mo—X bond lengths of MoCl3O(Et2O)2 (2) and analogous complexes (Marchetti et al., 2013; Vitzthumecker et al., 2017; Di Nicola et al., 2015) top
MoCl3O(Et2O)2MoCl3O(thf)2MoCl3O(MeOH)2MoCl3O(MeO(CH2)2OCH2Cl)
Mo1—Cl1 2.353 (1)Mo—Cl2 2.3513 (9)Mo1—Cl2 2.3642 (8)Mo1—Cl5 2.3542 (8)
Mo1—Cl3 2.347 (1)Mo—Cl1 2.3646 (8)Mo1—Cl1 2.3434 (7)Mo1—Cl4 2.3453 (7)
Mo1—Cl2 2.316 (1)Mo—Cl3 2.3191 (9)Mo1—Cl3 2.3741 (9)Mo1—Cl2 2.3216 (7)
Mo1—O2 2.158 (3)Mo—O2(thf) 2.146 (2)Mo—O2 2.099 (2)Mo1—O2 2.161 (2)
Mo1—O3 2.305 (3)Mo—O3(thf) 2.277 (2)Mo—O3 2.266 (2)Mo1—O3 2.420 (2)
Mo1—O1 1.694 (3)Mo—O1(oxide) 1.682 (2)Mo1—O1 1.655 (2)Mo1—O1 1.666 (2)
 

Acknowledgements

This work was supported by start-up funding from the Department of Chemistry, College of Science, and the Faculty Cluster Initiative at the University of Central Florida.

References

First citationCastellani, L. & Gallazzi, M. C. (1985). Transition Met. Chem. 10, 194–195.  CrossRef CAS Google Scholar
First citationDi Nicola, F. P., Lanzi, M., Marchetti, F., Pampaloni, G. & Zacchini, S. (2015). Dalton Trans. 44, 12653–12659.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKuiper, D. S., Douthwaite, R. E., Mayol, A.-R., Wolczanski, P. T., Lobkovsky, E. B., Cundari, T. R., Lam, O. P. & Meyer, K. (2008a). Inorg. Chem. 47, 7139–7153.  CSD CrossRef PubMed CAS Google Scholar
First citationKuiper, D. S., Wolczanski, P. T., Lobkovsky, E. B. & Cundari, T. R. (2008b). Inorg. Chem. 47, 10542–10553.  CSD CrossRef PubMed CAS Google Scholar
First citationLimberg, C., Büchner, M., Heinze, K. & Walter, O. (1996). Inorg. Chem. 36, 872–879.  CSD CrossRef Google Scholar
First citationMarchetti, F., Pampaloni, G. & Zacchini, S. (2013). Dalton Trans. 42, 15226–15234.  CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPersson, C. & Andersson, C. (1993). Inorg. Chim. Acta, 203, 235–238.  CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoffelbach, F., Saurenz, D. & Poli, R. (2001). Eur. J. Inorg. Chem. 2001, 2699–2703.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, J. D., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.netGoogle Scholar
First citationVitzthumecker, C., Robinson, F. & Pfitzner, A. (2017). Monatsh. Chem. 148, 629–633.  CSD CrossRef CAS Google Scholar
First citationWardlaw, W. & Webb, H. W. (1930). J. Chem. Soc. pp. 2100–2106.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds