research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Structures of five salt forms of di­sulfonated monoazo dyes

CROSSMARK_Color_square_no_text.svg

aWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bAdvanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by D. S. Yufit, University of Durham, United Kingdom (Received 15 August 2020; accepted 18 September 2020; online 23 September 2020)

The structures of five s-block metal salt forms of three di­sulfonated monoazo dyes are presented. These are poly[di-μ-aqua-di­aqua­[μ4-3,3′-(di­azane-1,2-di­yl)bis­(benzene­sulfonato)]disodium(I)], [Na2(C12H8N2O6S2)(H2O)4]n, (I), catena-poly[[tetra­aqua­calcium(II)]-μ-3,3′-(di­azane-1,2-di­yl)bis­(benzene­sulfonato)], [Ca(C12H8N2O6S2)(H2O)4]n, (II), catena-poly[[[di­aqua­calcium(II)]-μ-2-(4-amino-3-sulfonato­phen­yl)-1-(4-sulfonato­phen­yl)diazenium] dihydrate], {[Na(C12H10N3O6S2)(H2O)2]·2H2O}n, (III), hexa­aqua­magnesium bis­[2-(4-amino-3-sulfonato­phen­yl)-1-(4-sulfonato­phen­yl)diazenium] octa­hydrate, [Mg(H2O)6](C12H10N3O6S2)2·8H2O, (IV), and poly[[{μ2-4-[2-(4-amino-2-methyl-5-meth­oxy­phen­yl)diazen-1-yl]benzene-1,3-di­sulfonato}di-μ-aqua-di­aqua­barium(II)] dihydrate], {[Ba(C14H13N3O7S2)(H2O)4]·2H2O}n, (V). Compound (III) is that obtained on crystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8]. The Mg species is a solvent-separated ion-pair structure and the others are all coordination polymers with bonds from the metal atoms to sulfonate groups. Compound (I) is a three-dimensional coordination polymer, (V) is a two-dimensional coordination polymer and both (II) and (III) are one-dimensional coordination polymers. The coordination behaviour of the azo ligands and the water ligands, the dimensionality of the coordination polymers and the overall packing motifs of these five structures are contrasted to those of mono­sulfonate monoazo congers. It is found that (I) and (II) adopt similar structural types to those of mono­sulfonate species but that the other three structures do not.

1. Introduction

Azo com­pounds have a long history of use as both dyes and pigments. One of the commonest subclasses is that of sulfon­ated azo species, where the sulfonate group is typically added to aid water solubility and/or to decrease toxicity (Hunger et al., 2003[Hunger, K., Gregory, P., Meiderer, P., Berneth, H., Heid, C. & Mennicke, W. (2003). Important Chemical Chromophores of Dye Classes, in Industrial Dyes: Chemistry, Properties, Applications, edited by K. Hunge. Weinheim: Wiley-VCH.]). Despite being widely referred to as organic colourants, the commercial products of sulfonated azo species are commonly metal com­plexes and often s-block metal salt forms (Christie & Mackay, 2008[Christie, R. M. & Mackay, J. L. (2008). Coloration Technol. 124, 133-144.]). Even before large-scale crystallographic studies were available, it was recognized that small structural changes systematically changed the colour and material properties of such dyestuffs (Greenwood et al., 1986[Greenwood, D., Hutchings, M. G. & Lamble, B. (1986). J. Chem. Soc. Perkin Trans. II, pp. 1107-1114.]). These structure–property relationships led to an inter­est in more detailed structural investigations. A reasonable number of crystal structures of the salt forms of mono­sulfonated azo dyes and even pigments are now known (e.g. Kennedy et al., 2000[Kennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638-640.], 2004[Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.], 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494-9504.]; Tapmeyer et al., 2020[Tapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). Acta Cryst. C76, 716-722.]; Aiken et al., 2013[Aiken, S., Gabbutt, C. D., Gillie, L. J., Heywood, J. D., Jacquemin, D., Rice, C. R. & Heron, B. M. (2013). Eur. J. Org. Chem. 2013, 8097-8107.]). However, far fewer relevant structures of di­sulfonated azo species are known, despite these being commercially commonplace. The only azo­benzene-based di­sulfonate structures that we are aware of are those of azo­benzene-4,4′-di­sulfonate (Soegiarto & Ward, 2009[Soegiarto, A. C. & Ward, M. D. (2009). Cryst. Growth Des. 9, 3803-3815.]; Soegiarto et al., 2010[Soegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603-14616.], 2011[Soegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204-2219.]). In these structures, the di­sulfonate ions are utilized as framework hosts for a series of functional organic guests and thus they are not of particular relevance to commercial colourant materials. Some s-block metal salt structures of more com­plicated di­sulfonated dyes, with naphthalene- rather than azo­benzene-based azo fragments, are also known (e.g. Black et al., 2019[Black, D. T., Kennedy, A. R. & Lobato, K. M. (2019). Acta Cryst. C75, 633-642.]; Kennedy et al., 2006[Kennedy, A. R., Kirkhouse, J. B. A. & Whyte, L. (2006). Inorg. Chem. 45, 2965-2971.]; Ojala et al., 1994[Ojala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994). Acta Cryst. B50, 684-694.]). The azo moiety in all these examples exists in the hydrazone tautomeric form and in all cases both sulfonate groups lie on only one ring system at one end of the azo bond. The only colourant relevant di­sulfonate structures with sulfonate groups on both the ring systems, at either end of an azo bond, are the Ca lake structures of Pigment Yellow 183 and Pigment Yellow 191 determined by Schmidt and co-workers (Ivashevskaya et al., 2009[Ivashevskaya, S. N., van de Streek, J., Djanhan, J. E., Brüning, J., Alig, E., Bolte, M., Schmidt, M. U., Blaschka, P., Höffken, H. W. & Erk, P. (2009). Acta Cryst. B65, 212-222.]; Schmidt et al., 2009[Schmidt, M. U., van de Streek, J. & Ivashevskaya, S. N. (2009). Chem. Eur. J. 15, 338-341.]). These are relatively com­plex materials with pyrazolone groups between the two sulfonated aryl rings. Herein we present five new structures of s-block metal salt forms of azo­benzene di­sulfonate derivatives (Scheme 1), namely, [Na2L1(OH2)4]n, (I)[link], and [CaL1(OH2)4]n, (II)[link], where L1 is azo­benzene-3,3′-di­sulfonate; {[NaL2(OH2)2]·2H2O}n, (III),[link] and [Mg(OH2)6][L2]2·8H2O, (IV)[link], where L2 is 4-amino­di­azen­iumyl­benzene-3,4′-di­sulfonate; and {[BaL3(OH2)4]·2H2O}n (V)[link], where L3 is 4-amino-2-methyl-5-meth­oxy­azo­ben­zene-2′,4′-di­sulfonate. Structure (III)[link] is notable as it was obtained from recrystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8].

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

The Raman spectra of solid samples were measured using a Reinshaw Ramascope 2000 instrument with excitation at 785 nm. IR samples were prepared as KBr discs and spectra were measured using a Nicolet Avatar 360 FT–IR.

The Na salt of azo­benzene-3,3′-di­sulfonate, (I)[link], was pro­duced by the alkaline reduction of 3-nitro­benzene­sulfonic acid by glucose (Galbraith et al., 1951[Galbraith, H. W., Degering, E. F. & Hitch, E. F. (1951). J. Am. Chem. Soc. 73, 1323-1324.]). Yellow crystals suitable for analysis were obtained directly from the aqueous reaction mixture. IR (KBr): 1645 (br), 1470, 1419, 1235, 1199, 1107, 1081, 1045, 999, 902, 810, 712, 685, 620, 569, 528 cm−1. Raman: 1477, 1413, 1183, 1163, 1104, 995, 283 cm−1. Microanalysis found (expected) (%): C 31.57 (31.44), H 3.56 (3.53), N 5.90 (6.11), S 13.66 (13.99).

The Ca salt (II)[link] was prepared by adding excess CaCl2 to an aqueous solution of (I)[link]. After filtration, the resulting solution deposited yellow–orange crystals of (II)[link] after slow evaporation (four weeks). IR (KBr): 1629, 1465, 1204, 1102, 1076, 1050, 999, 794, 712, 682, 615 cm−1. Raman: 1592, 1420, 1376, 1325, 1198, 1162, 1124, 978, 822, 602, 381, 350, 277 cm−1. The crystals were somewhat hygroscopic and an acceptable micro­analysis was not obtained.

The monosodium salt of Acid Yellow 9 was purchased from Sigma–Aldrich and recrystallized from water to give fibrous red crystals of (III)[link]. The Mg salt (IV)[link] was prepared by adding an equimolar amount of MgCl2 to an aqueous solution of the monosodium salt of Acid Yellow 9. After filtering off the initial dark precipitate, allowing the remaining solution to evaporate to dryness gave red crystals of (IV)[link]. IR (KBr): 1625, 1574, 1528, 1392, 1162, 1008, 879 cm−1.

The free acid equivalent of (V)[link] was provided by Dystar UK. Treatment of an aqueous solution with Ba(OH)2 gave an orange solution. After several attempts, a simple slow evaporation (approximately four weeks) from water gave a few suitable orange crystals of (V)[link].

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Data for (III)[link] were measured at the Daresbury SRS Station 9.8 (Cernik et al., 1997[Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279-286.]) and for (V)[link], data were measured by the UK National Crystallography Service (Cole & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]).

Table 1
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Na2(C12H8N2O6S2)(H2O)4] [Ca(C12H8N2O6S2)(H2O)4] [Na(C12H10N3O6S2)(H2O)2]·2H2O
Mr 458.37 452.47 451.40
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 130 123 150
a, b, c (Å) 21.2141 (9), 5.5370 (3), 15.3045 (8) 6.3875 (2), 6.7470 (2), 11.3030 (5) 13.9454 (18), 19.517 (3), 6.9014 (9)
α, β, γ (°) 90, 90.310 (2), 90 94.289 (2), 103.160 (2), 108.456 (2) 90, 93.838 (2), 90
V3) 1797.68 (16) 444.21 (3) 1874.2 (4)
Z 4 1 4
Radiation type Mo Kα Mo Kα Synchrotron, λ = 0.6775 Å
μ (mm−1) 0.40 0.65 0.32
Crystal size (mm) 0.50 × 0.32 × 0.08 0.50 × 0.25 × 0.05 0.50 × 0.01 × 0.01
 
Data collection
Diffractometer Nonius KappaCCD Nonius Kappa CCD Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.676, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3500, 1865, 1414 3837, 2038, 1775 15360, 3531, 2772
Rint 0.035 0.020 0.049
(sin θ/λ)max−1) 0.629 0.651 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.04 0.027, 0.070, 1.05 0.040, 0.107, 1.04
No. of reflections 1865 2038 3531
No. of parameters 145 140 311
No. of restraints 6 6 15
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.32 0.40, −0.46 0.35, −0.44
  (IV) (V)
Crystal data
Chemical formula [Mg(H2O)6](C12H10N3O6S2)2·8H2O [Ba(C14H13N3O7S2)(H2O)4]·2H2O
Mr 989.23 644.83
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pbca
Temperature (K) 123 123
a, b, c (Å) 36.896 (3), 6.7806 (4), 17.9140 (12) 7.1293 (4), 18.8368 (11), 34.752 (2)
α, β, γ (°) 90, 111.178 (9), 90 90, 90, 90
V3) 4179.0 (6) 4667.0 (5)
Z 4 8
Radiation type Cu Kα Mo Kα
μ (mm−1) 3.12 1.95
Crystal size (mm) 0.5 × 0.05 × 0.03 0.25 × 0.10 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini S Nonius KappaCCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.572, 1.000 0.448, 0.743
No. of measured, independent and observed [I > 2σ(I)] reflections 7541, 4093, 3287 7914, 4489, 3554
Rint 0.039 0.037
(sin θ/λ)max−1) 0.621 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.06 0.042, 0.096, 1.15
No. of reflections 4093 4489
No. of parameters 359 344
No. of restraints 110 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.38 1.65, −1.23
Computer programs: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SAINT (Bruker, 2012[Bruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Disorder models were used for one non-metal-bound water mol­ecule of both (III)[link] and (IV)[link], and also for one SO3 group of (IV)[link]. In all cases, a two-site model was used and site-occupancy factors were refined. Suitable restraints and constraints were applied to the bond lengths and displacement parameters of the disordered units to ensure that they displayed approximately normal behaviour.

For all structures, H atoms bound to C atoms were placed in the expected geometric positions and treated in riding mode, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for C—H groups, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3 groups. H atoms bound to N or O atoms were located by difference synthesis and placed accordingly. For (III)[link] and (IV)[link], H atoms bound to N atoms were refined freely and isotropically. For (V)[link], the N—H distances were restrained to 0.88 (1) Å. All water H atoms were restrained such that O—H = 0.88 (1) Å and H⋯H = 1.33 (2) Å. For the water H atoms of (V)[link] and the H atoms of the disordered groups, Uiso values were allowed to ride on the parent O atom and for all other water H atoms, Uiso values were allowed to refine freely.

3. Results and discussion

Previous work on the salt forms of mono­sulfonated dyes and pigments has shown that many structural features can be predicted from knowledge of the cation identity and the position of the sulfonate group (Kennedy et al., 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494-9504.], 2012[Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064-3069.]). With respect to L1 and the metal cations used herein, relevant observations on mono­sulfonated species with a similar meta relationship between the azo and SO3 groups are as follows. Na structures are expected to feature high-dimensionality coordination polymers with both SO3 and H2O groups bridging between Na centres. However, if metal-to-sulfonate bonds exist at all, then Ca structures should either be nonpolymeric entities or simple one-dimensional polymers with H2O ligands adopting only terminal positions. L2 has both meta and para relationships between its azo and SO3 groups. Again extrapolation from what is known of mono­sulfonated azo salt forms would suggest that for L2 an Mg species should be a solvent-separated ion-pair structure with no Mg—O3S bonds, whilst Na species should have a high-dimensional coordination polymer structure similar to those predicted for an Na salt of L1 above (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]). In all cases, the overall packing should feature simple alternating layers of hydro­philic groups (e.g. cations, SO3 and H2O) and hydro­phobic groups (the aryl azo body of the anions) (Kennedy et al., 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494-9504.]).

The structure of di­sulfonate (I)[link] fits well with these predictions from mono­sulfonates. It is indeed a three-dimensional coordination polymer with both SO3 and H2O groups bridging between metal centres, and it forms a simple layered structure as expected. In more detail, the asymmetric unit of (I)[link] contains two separate Na sites, both of which occupy special positions (Na1 sits on a twofold axis and Na2 on a centre of symmetry in the space group C2/c). It also contains two water ligands and half of an L1 dianion. A crystallographic centre of symmetry is located at the centre of the azo bond, giving a planar dianion with mutually anti SO3 groups (Fig. 1[link]). As can be seen from Table 2[link], each Na centre is approximately octa­hedral, with Na1 bonding to two bridging water mol­ecules and to four O atoms of four different L1 dianions. Na2 bonds to two O atoms of two L1 dianions and to four water ligands, two of which form terminal bonds and two of which bridge to Na1 centres. Note that the bond lengths involving Na1 are systematically longer than those of Na2 [ranges 2.4174 (19)–2.5019 (18) and 2.3340 (18)–2.4480 (17) Å for Na1 and Na2, respectively]. The SO3 units each form three bonds to Na centres, one from each O atom. Within the hydro­philic layers, pairs of Na1 centres are linked by eight-membered [NaOSO]2 rings, whilst the Na1 and Na2 centres are linked by six-membered [NaOSONaO] rings, with both bridging sulfonate and water ligands. As can be seen from Fig. 2[link], the layers expand parallel to the bc plane, with the di­sulfonate dianions bridging between neighbouring hydro­philic layers to give the overall three-dimensional coordination polymer. The hydrogen-bond details for (I)[link] are given in Table 3[link].

Table 2
Selected geometric parameters (Å, °) for (I)[link]

Na1—O3i 2.4174 (19) Na2—O2 2.3340 (18)
Na1—O3ii 2.4175 (19) Na2—O1W 2.3688 (17)
Na1—O1 2.419 (2) Na2—O1Wiv 2.3688 (17)
Na1—O1iii 2.419 (2) Na2—O2Wiv 2.4480 (17)
Na1—O1Wiii 2.5019 (18) Na2—O2W 2.4480 (17)
Na1—O1W 2.5019 (18) N1—N1v 1.262 (4)
Na2—O2iv 2.3340 (18) N1—C3 1.431 (3)
       
O3i—Na1—O3ii 100.81 (10) O2iv—Na2—O2 180.0
O3i—Na1—O1 85.49 (6) O2iv—Na2—O1W 91.49 (7)
O3ii—Na1—O1 163.62 (6) O2—Na2—O1W 88.51 (7)
O1—Na1—O1iii 92.59 (9) O1W—Na2—O1Wiv 180.0
O3i—Na1—O1Wiii 86.52 (7) O2—Na2—O2Wiv 98.30 (6)
O3ii—Na1—O1Wiii 75.28 (6) O1W—Na2—O2Wiv 87.42 (6)
O1—Na1—O1Wiii 90.17 (6) O2—Na2—O2W 81.70 (6)
O1—Na1—O1W 109.77 (6) O1W—Na2—O2W 92.58 (6)
O1Wiii—Na1—O1W 151.40 (10)    
Symmetry codes: (i) [x, y-1, z]; (ii) [-x, y-1, -z+{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [-x, -y+1, -z+1]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2Wi 0.87 (1) 2.07 (2) 2.919 (3) 163 (3)
O1W—H1W⋯O2i 0.87 (1) 2.29 (2) 3.044 (3) 145 (3)
O1W—H1W⋯O3i 0.87 (1) 2.32 (3) 3.005 (3) 136 (3)
O2W—H3W⋯O1iii 0.87 (1) 1.94 (1) 2.807 (2) 175 (3)
O2W—H4W⋯N1vi 0.87 (1) 2.22 (1) 3.076 (3) 168 (3)
Symmetry codes: (i) [x, y-1, z]; (iii) [-x, y, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The asymmetric unit of (I)[link] expanded to show the coordination shell about Na1 and Na2, and the conformation of L1. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.
[Figure 2]
Figure 2
Packing diagram of (I)[link], viewed down the b axis. Note the alternating hydro­phobic and hydro­philic layers that lie parallel to the bc plane.

The asymmetric unit of (II)[link] contains half of an L1 dianion, two water ligands and a Ca site. Both the Ca1 site and the centre of the azo N=N bond occupy crystallographic inversion centres. As with (I)[link], this gives a planar dianion with anti SO3 groups and an octa­hedral metal centre (Fig. 3[link] and Table 4[link]). Ca1 forms bonds to O atoms from two trans SO3 groups and to four terminal water ligands. Each SO3 group makes a single Ca—O bond and thus the di­sulfonate dianion links Ca centres into a one-dimensional coordination polymer (Fig. 4[link]). These features combine to give the layered structure shown in Fig. 5[link]. Within the hydro­philic layers, hydrogen bonding between the water ligands and the two noncoordinating O atoms of SO3 link neighbouring coordination chains (Table 5[link]). Thus, structure (II)[link] also follows the rules proposed for mono­sulfonated azo dye salts. There are Ca—O3S bonds, but these are relatively few in number and, even with the two-headed nature of the di­sulfonate ligand, they combine to give only a one-dimensional coordination polymer. The H2O ligands take no part in bridging between metal centres and the overall packing motif is one of simple alternating hydro­phobic and hydro­philic layers.

Table 4
Selected geometric parameters (Å, °) for (II)[link]

Ca1—O3 2.3050 (11) Ca1—O2Wi 2.3385 (12)
Ca1—O3i 2.3051 (11) Ca1—O2W 2.3385 (12)
Ca1—O1W 2.3235 (12) N1—N1ii 1.256 (3)
Ca1—O1Wi 2.3236 (12) N1—C3 1.432 (2)
       
O3—Ca1—O3i 180.0 O1W—Ca1—O2Wi 90.52 (5)
O3—Ca1—O1W 87.66 (4) O3—Ca1—O2W 86.93 (5)
O3—Ca1—O1Wi 92.34 (4) O1W—Ca1—O2W 89.48 (5)
O1W—Ca1—O1Wi 180.00 (6) O2Wi—Ca1—O2W 180.0
O3—Ca1—O2Wi 93.07 (4)    
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z].

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2iii 0.87 (1) 2.01 (1) 2.8521 (17) 162 (2)
O1W—H2W⋯O1iv 0.86 (1) 2.00 (1) 2.8454 (17) 165 (2)
O2W—H3W⋯O2iv 0.86 (1) 1.95 (1) 2.8119 (16) 174 (2)
O2W—H4W⋯O1v 0.86 (1) 1.94 (1) 2.7907 (16) 168 (2)
Symmetry codes: (iii) [-x+2, -y+1, -z+1]; (iv) [-x+2, -y+2, -z+1]; (v) [-x+1], [-y+2, -z+1].
[Figure 3]
Figure 3
The asymmetric unit of (II)[link] expanded to show the coordination shell about Ca1 and the conformation of L1. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.
[Figure 4]
Figure 4
Part of the one-dimensional coordination polymer of (II)[link].
[Figure 5]
Figure 5
Packing diagram of (II)[link], viewed down the a axis. Note the alternating hydro­phobic and hydro­philic layers that lie parallel to the ab plane.

Structure (III)[link] was obtained from aqueous recrystallization of the commercial product called `Acid Yellow 9, monosodium salt'. An inter­esting problem here was to discover the protonation site. The crystal structures of three acidic sulfonated azo­benzene-based dyes with amino substituents are known. 4-Amino­azo­benzene-4′-sulfonic acid crystallizes with proton­ation of the amino group, giving an –NH3-bearing zwitterion, whilst the other two known structures crystallize with protonation of the azo N atom furthest from the neutral –NH2 group (Lu et al., 2009[Lü, J., Gao, S.-Y., Lin, J.-X., Shi, L.-X., Cao, R. & Batten, S. R. (2009). Dalton Trans. pp. 1944-1953.]; Miyano et al., 2016[Miyano, T., Sakai, T., Hisaki, I., Ichida, H., Kanematsu, Y. & Tohnai, N. (2016). Chem. Commun. 52, 13710-13713.]; Kennedy et al., 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662.]). The azo group is the commonest protonation site for the free acid forms of sulfonated azo dyes that do not bear a more basic substituent (Kennedy et al., 2001[Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, E. W. (2001). J. Chem. Soc. Dalton Trans. pp. 2199-2205.], 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662.]). The asymmetric unit of (III)[link] was found to contain an Na centre, a monoanionic L2 ligand with protonation at azo atom N1, two metal-coordinated water ligands and two non-bound water mol­ecules, one of which is disordered (Fig. 6[link]). Unusually for an Na salt of an aryl sulfonate, only one of the six independent SO3 O atoms is involved in bonding to Na. This Na1—O6 inter­action involves the SO3 group meta to the azo bond. Na1 exists in a distorted square-pyramidal and hence five-coordinate environment, where one bond is to a terminal water ligand and the other four bonds (from two water ligands and two SO3 groups) all bridge to neighbouring Na centres (see Table 6[link] for geometric details). The Na—O bond lengths of (III)[link] [range 2.275 (2)–2.425 (2) Å] are understandably shorter than those of the six-coordinate Na centres of (I)[link]. An inter­esting detail is that in (III)[link] the Na-to-OH2 distances are shorter that the Na-to-SO3 distances. This is the opposite of the case in (I)[link]. The one-dimensional coordination polymers in (III)[link] are formed by chains of [Na1—O2W—Na1—O6] rings and propagate parallel to the crystallographic c direction. Each chain is asymmetric, with the L2 anions on one side and the water ligands on the other (Fig. 7[link]). This structure is thus unlike those of the mono­sulfonated azo Na salts as, despite having an extra potential metal-bonding group in the form of the second SO3 substituent, it does not form a higher-dimensional coordination polymer. A further difference is highlighted by Fig. 8[link], which shows that (III)[link] is not a simple alternating layer structure. Note the hydrate channels running parallel to c. A reason for this may be that the simple alternate layering seen elsewhere is a function of the azo anions' approximation to linear spacers, with hydro­philic head and tail groups separated by a hydro­phobic central region (Kennedy et al., 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494-9504.]). As L2 is protonated on the azo group, this introduces a hydro­philic group and strong hydrogen-bond donor to the centre of the azo anion. It may be that the need to provide a hydrogen-bond acceptor to this formally charged N—H group is what breaks the otherwise common simple layering motif (Table 7[link]). In this respect, the packing of (III)[link] is more similar to the packing of free acid sulfonated azo structures than it is to the packing of equivalent salt forms (Kennedy et al., 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662.]).

Table 6
Selected geometric parameters (Å, °) for (III)[link]

Na1—O1W 2.275 (2) N1—N2 1.294 (3)
Na1—O2Wi 2.335 (2) N1—C4 1.411 (3)
Na1—O2W 2.369 (2) N2—C7 1.341 (3)
Na1—O6 2.409 (2) N3—C10 1.316 (3)
Na1—O6i 2.425 (2)    
       
O1W—Na1—O2Wi 154.18 (9) O2W—Na1—O6 75.46 (7)
O1W—Na1—O2W 96.67 (9) O1W—Na1—O6i 85.06 (8)
O2Wi—Na1—O2W 95.44 (7) O2Wi—Na1—O6i 75.79 (7)
O1W—Na1—O6 88.23 (8) O2W—Na1—O6i 159.34 (8)
O2Wi—Na1—O6 116.93 (8) O6—Na1—O6i 125.20 (8)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 7
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3Wii 0.84 (3) 2.10 (3) 2.878 (3) 153 (3)
N3—H2N⋯O4W 0.82 (3) 2.04 (3) 2.847 (5) 170 (3)
N3—H2N⋯O5W 0.82 (3) 2.05 (4) 2.843 (11) 163 (3)
N3—H3N⋯O4 0.81 (3) 2.60 (3) 3.084 (3) 120 (3)
N3—H3N⋯O4iii 0.81 (3) 2.20 (3) 2.923 (3) 150 (3)
N3—H3N⋯O5 0.81 (3) 2.61 (3) 3.095 (3) 120 (3)
O1W—H1W⋯O5iv 0.88 (1) 1.93 (2) 2.773 (3) 160 (4)
O1W—H2W⋯O4i 0.88 (1) 1.93 (2) 2.756 (3) 157 (4)
O2W—H3W⋯O3v 0.88 (1) 1.90 (1) 2.774 (2) 176 (4)
O2W—H4W⋯O1vi 0.88 (1) 1.88 (1) 2.746 (3) 171 (3)
O3W—H5W⋯O2vii 0.86 (1) 2.03 (1) 2.866 (3) 164 (3)
O3W—H6W⋯O3vi 0.87 (1) 2.22 (1) 3.081 (3) 171 (3)
O4W—H7W⋯O3i 0.88 (1) 2.02 (1) 2.887 (5) 175 (4)
O4W—H8W⋯O1iv 0.88 (1) 1.97 (1) 2.846 (5) 173 (5)
O5W—H9W⋯O3i 0.88 (1) 2.08 (2) 2.947 (13) 170 (10)
O5W—H10W⋯O1iv 0.88 (1) 1.89 (2) 2.765 (9) 171 (10)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x, -y+1, -z]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x, -y, -z]; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x, -y, -z+1].
[Figure 6]
Figure 6
The asymmetric unit of (III)[link] expanded to show the coordination shell about Na1. The minor-disorder com­ponent at O4W is not shown. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.
[Figure 7]
Figure 7
Part of the one-dimensional coordination polymer of (III)[link].
[Figure 8]
Figure 8
Packing diagram of (III)[link], viewed down the c axis. H atoms have been omitted for clarity. Note the hydrate channels that extend parallel to the c axis.

All known Mg salt forms of sulfonated azo dyes and pigments are solvent-separated ion pairs, with no direct bond between Mg and SO3 (Kennedy et al., 2006[Kennedy, A. R., Kirkhouse, J. B. A. & Whyte, L. (2006). Inorg. Chem. 45, 2965-2971.], 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494-9504.], 2012[Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064-3069.]). As is shown in Fig. 9[link], the structure of (IV)[link] is also of this type. Its asymmetric unit contains an L2 anion that is protonated at the azo N1 atom, half of an octa­hedral [Mg(OH2)]6 dication (with Mg1 situated at a crystallographic inversion centre) and four noncoordinated water mol­ecules (Table 8[link]). One of the water mol­ecules and the SO3 group ortho to NH2 are disordered. As shown in the packing diagram (Fig. 10[link]), there are hydro­philic layers that extend parallel to the bc plane. The organic anions lie between these but their azo­benzene cores do not form continuous hydro­phobic layers – instead water mol­ecules are dispersed within these layers. Thus, rather than true two-dimensional layers, the hydro­phobic azo­benzene units form stacks parallel to the b direction surrounded by [Mg(OH2)6]2+ ions and water mol­ecules. As with (III)[link] above, the protonation of the azo unit at the centre of the anion appears to mitigate against the simple alternating layer structures seen elsewhere. In both (III)[link] and (IV)[link], the protonated azo group acts as a hydrogen-bond donor to water mol­ecules (see Tables 7[link] and 9[link]).

Table 8
Selected geometric parameters (Å, °) for (IV)[link]

Mg1—O2W 2.0322 (19) N1—C4 1.413 (3)
Mg1—O1W 2.0472 (18) N2—C7 1.342 (4)
Mg1—O3W 2.0769 (19) N3—C10 1.309 (4)
N1—N2 1.294 (4)    
       
O2Wi—Mg1—O2W 180.0 O1W—Mg1—O3Wi 88.07 (8)
O2Wi—Mg1—O1W 88.72 (8) O2W—Mg1—O3W 91.69 (8)
O2W—Mg1—O1W 91.28 (8) O1W—Mg1—O3W 91.93 (8)
O1W—Mg1—O1Wi 180.0 O3Wi—Mg1—O3W 180.0
O2W—Mg1—O3Wi 88.31 (8)    
Symmetry code: (i) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 9
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O7W 0.84 (4) 1.99 (5) 2.80 (2) 164 (4)
N1—H1N⋯O8W 0.84 (4) 2.00 (6) 2.83 (4) 170 (4)
N3—H2N⋯O5Wii 0.87 (4) 2.02 (4) 2.881 (3) 174 (4)
N3—H3N⋯O6 0.84 (5) 2.03 (5) 2.700 (7) 137 (4)
N3—H3N⋯O6A 0.84 (5) 2.10 (5) 2.763 (14) 136 (4)
O1W—H1W⋯O3 0.87 (1) 1.92 (1) 2.769 (3) 167 (3)
O1W—H2W⋯O1iii 0.87 (1) 1.84 (1) 2.714 (3) 177 (4)
O2W—H3W⋯O4W 0.87 (1) 1.88 (1) 2.727 (3) 165 (3)
O2W—H4W⋯O2iv 0.87 (1) 1.95 (1) 2.812 (3) 173 (4)
O3W—H5W⋯O4Wv 0.87 (1) 1.85 (1) 2.707 (3) 169 (4)
O3W—H6W⋯O6vi 0.87 (1) 2.04 (2) 2.897 (6) 169 (4)
O3W—H6W⋯O6Avi 0.87 (1) 2.18 (2) 2.983 (11) 153 (3)
O4W—H8W⋯O5W 0.87 (1) 1.95 (2) 2.803 (3) 166 (4)
O4W—H7W⋯O6W 0.87 (1) 1.86 (1) 2.706 (3) 162 (3)
O5W—H10W⋯O2i 0.87 (1) 2.16 (3) 2.829 (3) 133 (3)
O5W—H9W⋯O3vii 0.87 (1) 1.99 (1) 2.820 (3) 160 (3)
O5W—H10W⋯O3viii 0.87 (1) 2.52 (3) 3.251 (3) 141 (3)
O6W—H11W⋯O4vi 0.87 (1) 2.18 (2) 3.028 (13) 167 (4)
O6W—H11W⋯O4Avi 0.87 (1) 1.94 (3) 2.81 (2) 174 (4)
O6W—H12W⋯O5ix 0.87 (1) 2.02 (2) 2.878 (8) 170 (5)
O6W—H12W⋯O5Aix 0.87 (1) 2.43 (2) 3.276 (14) 163 (4)
O6W—H12W⋯O6Aix 0.87 (1) 2.52 (3) 3.220 (17) 139 (4)
O7W—H13W⋯O5x 0.89 (1) 2.35 (6) 2.89 (2) 119 (5)
O7W—H14W⋯O6Wii 0.88 (1) 2.52 (3) 3.354 (18) 159 (5)
O7W—H14W⋯O4xi 0.88 (1) 2.35 (5) 2.92 (2) 123 (4)
O8W—H16W⋯O5Ax 0.89 2.01 2.87 (4) 163
O8W—H15W⋯O4Axi 0.88 2.18 2.81 (4) 128
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) [x, y-1, z]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (viii) [x, -y+1, z+{\script{1\over 2}}]; (ix) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (x) [x, -y+1, z-{\script{1\over 2}}]; (xi) [x, -y, z-{\script{1\over 2}}].
[Figure 9]
Figure 9
The asymmetric unit of (IV)[link] expanded to show the coordination shell about Mg1. The minor-disorder com­ponents of the sulfonate groups of S2 and the O7W water mol­ecule are not shown. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.
[Figure 10]
Figure 10
Packing diagram of (IV)[link], viewed down the b axis. H atoms have been omitted for clarity. Note the solvent water mol­ecules lying within the layers of azo dianions that lie parallel to the bc plane.

Fig. 11[link] shows the contents of the asymmetric unit of (V)[link] extended to give the com­plete coordination geometry (Table 10[link]). The asymmetric unit consists of an azo dianion, a BaII cation with four coordinated water ligands and two non-bound water mol­ecules. The Ba centre is nona­coordinated, with three bonds to O atoms of SO3 groups and six bonds to water ligands. The Ba—O—Ba bridges all involve water O atoms. Both SO3 groups inter­act with the Ba atom, with the group ortho to the azo group making two Ba—O bonds and the para SO3 group making one bond. This is notable as ortho SO3 groups are generally unfavourable coordination sites com­pared to para SO3 groups (Kennedy et al., 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494-9504.]). As with both L2 structures, here the amino group of L3 takes no part in coordination to the metal atom.

Table 10
Selected geometric parameters (Å, °) for (V)[link]

Ba1—O2W 2.704 (4) Ba1—O3W 2.911 (4)
Ba1—O1W 2.747 (4) Ba1—O3Wiii 3.105 (4)
Ba1—O4i 2.753 (4) N1—N2 1.277 (6)
Ba1—O1 2.759 (4) N1—C4 1.426 (6)
Ba1—O5ii 2.788 (4) N2—C7 1.393 (6)
Ba1—O4W 2.819 (4) N3—C10 1.354 (7)
       
O2W—Ba1—O1W 72.69 (14) O1—Ba1—O3W 85.63 (11)
O2W—Ba1—O4i 68.74 (12) O5ii—Ba1—O3W 87.04 (11)
O1W—Ba1—O4i 83.39 (12) O4W—Ba1—O3W 76.65 (11)
O2W—Ba1—O1 73.66 (13) O2W—Ba1—O3Wiii 124.26 (12)
O1W—Ba1—O1 146.32 (12) O1W—Ba1—O3Wiii 126.70 (12)
O4i—Ba1—O1 85.75 (11) O4i—Ba1—O3Wiii 64.01 (10)
O2W—Ba1—O5ii 63.22 (12) O1—Ba1—O3Wiii 75.02 (10)
O1W—Ba1—O5ii 85.47 (12) O5ii—Ba1—O3Wiii 147.67 (10)
O4i—Ba1—O5ii 131.85 (10) O4W—Ba1—O3Wiii 60.15 (10)
O1—Ba1—O5ii 78.35 (11) O3W—Ba1—O3Wiii 73.06 (5)
O2W—Ba1—O4W 136.43 (13) O2W—Ba1—O4Wiv 115.49 (11)
O1W—Ba1—O4W 74.19 (12) O1W—Ba1—O4Wiv 67.73 (11)
O4i—Ba1—O4W 80.10 (11) O4i—Ba1—O4Wiv 146.32 (10)
O1—Ba1—O4W 134.80 (11) O1—Ba1—O4Wiv 127.91 (11)
O5ii—Ba1—O4W 140.16 (11) O5ii—Ba1—O4Wiv 64.82 (10)
O2W—Ba1—O3W 146.29 (13) O4W—Ba1—O4Wiv 75.76 (7)
O1W—Ba1—O3W 123.10 (12) O3W—Ba1—O4Wiv 58.23 (10)
O4i—Ba1—O3W 136.99 (11) O3Wiii—Ba1—O4Wiv 120.18 (10)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 11]
Figure 11
The asymmetric unit of (V)[link] expanded to show the coordination shell about Ba1 and all dative bonds originating from the modelled dianion. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary size.

Complex (V)[link] forms a two-dimensional coordination polymer. Ba—O—Ba bridges involving the water mol­ecules extend the polymer parallel to the a direction, whilst parallel to the b direction, the polymer propagates through the coordination of the two SO3 groups to give the large [Ba(OH2)4Ba(L3)]2 cyclic structures shown in Fig. 12[link]. The overall packing (Fig. 13[link]) shows a layered structure with hydro­phobic and hydro­philic layers parallel to the ab plane. As with (III)[link] and (IV)[link], the amine group of (V)[link] is essentially planar rather than pyramidal. However, it differs by acting as a hydrogen-bond donor to only SO3 groups (Table 11[link]), whilst the amine groups of (III)[link] and (IV)[link] donate hydrogen bonds to both SO3 and water groups. None of the amine groups act as hydrogen-bond acceptors. Azo atom N1 of (V)[link] does act as a hydrogen-bond acceptor from water, as do both azo N atoms of (I)[link], but this is not the case for any of the other azo N atoms, see hydrogen-bond tables for details.

Table 11
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O2v 0.88 (1) 2.27 (2) 3.144 (6) 172 (6)
N3—H2N⋯O6vi 0.88 (1) 2.28 (5) 2.984 (6) 138 (6)
O1W—H1W⋯O2i 0.87 (1) 2.21 (3) 2.987 (5) 148 (5)
O1W—H2W⋯O6Wvii 0.87 (1) 1.92 (2) 2.766 (6) 161 (6)
O2W—H3W⋯O6i 0.88 (1) 2.03 (3) 2.772 (6) 141 (5)
O2W—H4W⋯N1ii 0.88 (1) 2.10 (2) 2.948 (6) 162 (5)
O3W—H5W⋯O5Wviii 0.88 (1) 2.04 (3) 2.805 (5) 145 (4)
O3W—H6W⋯O5Wiv 0.88 (1) 1.97 (1) 2.833 (6) 168 (5)
O4W—H7W⋯O4vii 0.88 (1) 2.06 (2) 2.901 (5) 160 (4)
O4W—H8W⋯O6Wi 0.88 (1) 1.87 (2) 2.741 (5) 171 (5)
O5W—H9W⋯O2 0.88 (1) 1.97 (3) 2.805 (5) 158 (6)
O5W—H10W⋯O5i 0.88 (1) 2.17 (3) 2.917 (5) 143 (5)
O6W—H11W⋯O3 0.88 (1) 1.88 (2) 2.737 (5) 166 (6)
O6W—H12W⋯O3iii 0.88 (1) 1.93 (1) 2.800 (6) 174 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [-x+1, -y+1, -z]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (vii) [-x+1, y-{\script{1\over 2}}], [-z+{\script{1\over 2}}]; (viii) x+1, y, z.
[Figure 12]
Figure 12
Part of the two-dimensional coordination polymer of (V)[link], viewed down the a axis, showing the coordination polymer extending by SO3 coordination parallel to the b direction.
[Figure 13]
Figure 13
Packing diagram of (V)[link], viewed down the a axis. H atoms have been omitted for clarity.

The literature on the Ba salt forms of mono­sulfonated azo dyes predicts structures with no bridging water ligands and with discrete coordination com­plexes or simple one-dimensional coordination polymers (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.], 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494-9504.]). Neither prediction is true for di­sulfonate (V)[link].

For L2, with its protonated azo group, the N=N bond lengths of (III)[link] and (IV)[link] are 1.294 (3) and 1.294 (4) Å, respectively. The N2—C7 bond lengths are also equivalent at 1.341 (3) and 1.342 (4) Å. These values are as expected for a protonated azo unit bound to an aniline fragment and, despite being for an anionic ligand, are close matches to those found for the overall neutral but zwitterionic free acid forms of those mono­sulfonated azo dyes which also feature protonated azo groups (Kennedy et al., 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662.]). At 1.256 (3) and 1.432 (2) Å, the N=N and N2—C7 bond lengths of L1 in (II)[link] are clearly much shorter and longer, respectively, than their equivalents in L2. They fit well with the ranges found for the 4,4′ isomer and with those found for mono­sulfonated azo species with no strong electron-donating ring substituents (Soegiarto et al., 2009[Soegiarto, A. C. & Ward, M. D. (2009). Cryst. Growth Des. 9, 3803-3815.], 2010[Soegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603-14616.], 2011[Soegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204-2219.]; Kennedy et al., 2001[Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, E. W. (2001). J. Chem. Soc. Dalton Trans. pp. 2199-2205.], 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662.]). The N=N bond in (I)[link] is 1.262 (4) Å and is thus outside the ranges of the literature structures above; however, the difference is not statistically significant. For (V)[link], the N=N and N2—C7 bond lengths of L3 are inter­mediate between the lengths reported for L1 and L2 above at 1.277 (6) and 1.393 (6) Å. Such distortions from the expected geometry of azo­benzene (Harada & Ogawa, 2004[Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.]) can be explained by the resonance electron-donating ability of the NH2 group para to the azo group (Kennedy et al., 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662.]). The values found for dianion L3 are, however, slightly more distorted from the azo­benzene base than has been found for metal com­plexes of related monoanions, such as 4-amino­azo­benzene-4′-sulfonate (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]; Lu et al., 2009[Lü, J., Gao, S.-Y., Lin, J.-X., Shi, L.-X., Cao, R. & Batten, S. R. (2009). Dalton Trans. pp. 1944-1953.]). A final point about the geometries of the azo species herein is that in (I)–(IV), the azo moiety is essentially planar [range of dihedral angles between ring planes = 0.00 (6)–14.13 (6)°]. In com­parison, the dianion of (V)[link] is distinctly twisted [dihedral angle between the ring planes = 34.0 (2)°] and stepped [e.g. atom N2 lies 0.905 (9) Å out of the plane defined by atoms C1–C6].

4. Conclusion

Compounds (I)[link] and (II)[link] both contain the simple di­sulfonate L1 and both have structures that fit with the structural types seen for equivalent mono­sulfonate salt species – they give the expected dimensionality coordination polymers in which the bonding roles of water ligands are predictable and their packing structures have the expected alternating layer motifs (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]). However, the other three structures presented herein do not have the same structural features as their mono­sulfonate cognates. Structures (III)[link] and (IV)[link] both contain the monoanion L2. Neither adopts the expected simple alternating layer structure and Na salt (III)[link] is a one-dimensional coordination polymer rather than the expected two- or three-dimensional coordination polymer. The strong hydrogen-bonding N—H group at the centre of L2 is a feature not seen in other salt structures. This difference gives a rational explanation for the difference in packing behaviour. Finally, the Ba salt of L3, i.e. (V)[link], does give the expected layered packing, but has metal-centre-bridging water ligands and an unexpected two-dimensional rather than a one-dimensional coordination polymer structure. The extra dimensionality of the coordination polymer may simply be related to the extra SO3 group in L3 com­pared to literature structures, but it is less clear why the coordination role of the water ligands should also change.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (I), (II), (V); SAINT (Bruker, 2012) for (III); CrysAlis PRO (Rigaku OD, 2019) for (IV). Cell refinement: DENZO (Otwinowski & Minor, 1997) for (I), (II), (V); SAINT (Bruker, 2012) for (III); CrysAlis PRO (Rigaku OD, 2019) for (IV). Data reduction: DENZO (Otwinowski & Minor, 1997) for (I), (II), (V); SAINT (Bruker, 2012) for (III); CrysAlis PRO (Rigaku OD, 2019) for (IV). Program(s) used to solve structure: SHELXS (Sheldrick, 2015) for (I), (III); SIR92 (Altomare et al., 1994) for (II), (IV), (V). For all structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2020) and ORTEP-3 (Farrugia, 2012). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) for (I), (II), (IV), (V).

Poly[di-µ-aqua-diaqua[µ4-3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)]disodium(I)] (I) top
Crystal data top
[Na2(C12H8N2O6S2)(H2O)4]F(000) = 944
Mr = 458.37Dx = 1.694 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.2141 (9) ÅCell parameters from 2025 reflections
b = 5.5370 (3) Åθ = 1.0–26.4°
c = 15.3045 (8) ŵ = 0.40 mm1
β = 90.310 (2)°T = 130 K
V = 1797.68 (16) Å3Plate, yellow
Z = 40.50 × 0.32 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.035
Radiation source: sealed tubeθmax = 26.6°, θmin = 1.9°
ω and phi scansh = 026
3500 measured reflectionsk = 66
1865 independent reflectionsl = 1919
1414 reflections with I > 2σ(I)
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0342P)2 + 3.0179P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1865 reflectionsΔρmax = 0.43 e Å3
145 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09144 (3)0.74864 (11)0.31076 (4)0.01712 (16)
Na10.00000.2759 (2)0.25000.0219 (3)
Na20.00000.50000.50000.0195 (3)
O10.08204 (8)0.5777 (3)0.23944 (11)0.0253 (4)
O20.05412 (8)0.6889 (4)0.38656 (11)0.0351 (5)
O30.08455 (8)0.9976 (3)0.28351 (12)0.0293 (4)
O1W0.01637 (9)0.1643 (3)0.40666 (11)0.0237 (4)
O2W0.08853 (8)0.7231 (3)0.43599 (11)0.0256 (4)
N10.27167 (9)0.3035 (3)0.47962 (12)0.0186 (4)
C10.17132 (11)0.7150 (4)0.34449 (14)0.0157 (5)
C20.18751 (11)0.5193 (4)0.39621 (15)0.0180 (5)
H20.15670.40300.41210.022*
C30.24990 (11)0.4954 (4)0.42461 (14)0.0182 (5)
C40.29542 (11)0.6610 (4)0.39847 (15)0.0196 (5)
H40.33800.64160.41680.023*
C50.27865 (11)0.8541 (5)0.34576 (15)0.0205 (5)
H50.30980.96640.32750.025*
C60.21610 (11)0.8837 (4)0.31940 (15)0.0182 (5)
H60.20421.01830.28450.022*
H1W0.0172 (9)0.076 (5)0.399 (2)0.066 (12)*
H2W0.0447 (11)0.052 (5)0.415 (2)0.076 (13)*
H3W0.0888 (13)0.676 (6)0.3820 (9)0.053 (11)*
H4W0.1281 (6)0.723 (6)0.4498 (18)0.053 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0161 (3)0.0178 (3)0.0175 (3)0.0025 (3)0.0005 (2)0.0031 (3)
Na10.0230 (7)0.0185 (7)0.0242 (7)0.0000.0003 (5)0.000
Na20.0220 (7)0.0179 (7)0.0185 (7)0.0000 (6)0.0002 (5)0.0003 (6)
O10.0213 (9)0.0257 (10)0.0291 (10)0.0017 (8)0.0031 (7)0.0061 (8)
O20.0229 (10)0.0565 (14)0.0259 (10)0.0079 (9)0.0063 (8)0.0157 (9)
O30.0258 (10)0.0193 (9)0.0425 (11)0.0045 (8)0.0077 (8)0.0058 (8)
O1W0.0255 (10)0.0207 (9)0.0250 (10)0.0017 (8)0.0000 (8)0.0023 (8)
O2W0.0201 (10)0.0336 (11)0.0230 (10)0.0017 (8)0.0005 (7)0.0021 (9)
N10.0194 (10)0.0184 (11)0.0181 (10)0.0028 (8)0.0014 (8)0.0002 (8)
C10.0161 (11)0.0174 (12)0.0135 (11)0.0023 (10)0.0009 (9)0.0020 (9)
C20.0189 (13)0.0157 (12)0.0194 (12)0.0003 (10)0.0022 (9)0.0015 (10)
C30.0225 (13)0.0166 (12)0.0155 (11)0.0024 (10)0.0010 (9)0.0001 (10)
C40.0170 (12)0.0230 (13)0.0188 (12)0.0011 (10)0.0013 (9)0.0031 (10)
C50.0215 (13)0.0201 (12)0.0200 (12)0.0053 (10)0.0015 (10)0.0012 (11)
C60.0245 (13)0.0152 (12)0.0149 (11)0.0003 (10)0.0002 (9)0.0006 (10)
Geometric parameters (Å, º) top
S1—O21.4464 (18)Na2—O2W2.4480 (17)
S1—O31.4474 (18)Na2—Na1iv4.0223 (4)
S1—O11.4575 (18)O3—Na1v2.4174 (19)
S1—C11.779 (2)O1W—H1W0.871 (10)
S1—Na13.3852 (12)O1W—H2W0.872 (10)
Na1—O3i2.4174 (19)O2W—H3W0.867 (10)
Na1—O3ii2.4175 (19)O2W—H4W0.866 (10)
Na1—O12.419 (2)N1—N1vi1.262 (4)
Na1—O1iii2.419 (2)N1—C31.431 (3)
Na1—O1Wiii2.5019 (18)C1—C21.384 (3)
Na1—O1W2.5019 (18)C1—C61.388 (3)
Na1—S1iii3.3853 (12)C2—C31.397 (3)
Na1—Na24.0223 (5)C2—H20.9500
Na1—Na2iii4.0223 (5)C3—C41.392 (3)
Na1—H1W2.56 (3)C4—C51.384 (3)
Na2—O2iv2.3340 (18)C4—H40.9500
Na2—O22.3340 (18)C5—C61.395 (3)
Na2—O1W2.3688 (17)C5—H50.9500
Na2—O1Wiv2.3688 (17)C6—H60.9500
Na2—O2Wiv2.4480 (17)
O2—S1—O3113.21 (12)S1iii—Na1—H1W131.1 (4)
O2—S1—O1112.26 (12)Na2—Na1—H1W44.4 (6)
O3—S1—O1112.92 (11)Na2iii—Na1—H1W168.6 (3)
O2—S1—C1105.55 (10)O2iv—Na2—O2180.0
O3—S1—C1106.13 (11)O2iv—Na2—O1W91.49 (7)
O1—S1—C1106.00 (10)O2—Na2—O1W88.51 (7)
O2—S1—Na174.22 (9)O2iv—Na2—O1Wiv88.51 (7)
O3—S1—Na1126.91 (8)O2—Na2—O1Wiv91.49 (7)
O1—S1—Na138.41 (7)O1W—Na2—O1Wiv180.0
C1—S1—Na1122.85 (8)O2iv—Na2—O2Wiv81.69 (6)
O3i—Na1—O3ii100.81 (10)O2—Na2—O2Wiv98.30 (6)
O3i—Na1—O185.49 (6)O1W—Na2—O2Wiv87.42 (6)
O3ii—Na1—O1163.62 (6)O1Wiv—Na2—O2Wiv92.58 (6)
O3i—Na1—O1iii163.62 (6)O2iv—Na2—O2W98.31 (6)
O3ii—Na1—O1iii85.49 (6)O2—Na2—O2W81.70 (6)
O1—Na1—O1iii92.59 (9)O1W—Na2—O2W92.58 (6)
O3i—Na1—O1Wiii86.52 (7)O1Wiv—Na2—O2W87.42 (6)
O3ii—Na1—O1Wiii75.28 (6)O2Wiv—Na2—O2W180.0
O1—Na1—O1Wiii90.17 (6)O2iv—Na2—Na1124.88 (5)
O1iii—Na1—O1Wiii109.77 (6)O2—Na2—Na155.12 (5)
O3i—Na1—O1W75.28 (6)O1W—Na2—Na135.41 (5)
O3ii—Na1—O1W86.52 (7)O1Wiv—Na2—Na1144.59 (5)
O1—Na1—O1W109.77 (6)O2Wiv—Na2—Na1102.77 (4)
O1iii—Na1—O1W90.17 (6)O2W—Na2—Na177.23 (4)
O1Wiii—Na1—O1W151.40 (10)O2iv—Na2—Na1iv55.12 (5)
O3i—Na1—S190.64 (4)O2—Na2—Na1iv124.88 (5)
O3ii—Na1—S1167.03 (6)O1W—Na2—Na1iv144.59 (5)
O1—Na1—S121.98 (4)O1Wiv—Na2—Na1iv35.41 (5)
O1iii—Na1—S181.88 (5)O2Wiv—Na2—Na1iv77.23 (4)
O1Wiii—Na1—S1111.83 (5)O2W—Na2—Na1iv102.77 (4)
O1W—Na1—S190.57 (5)Na1—Na2—Na1iv180.0
O3i—Na1—S1iii167.03 (6)S1—O1—Na1119.61 (10)
O3ii—Na1—S1iii90.64 (4)S1—O2—Na2166.59 (14)
O1—Na1—S1iii81.88 (5)S1—O3—Na1v137.88 (11)
O1iii—Na1—S1iii21.98 (4)Na2—O1W—Na1111.31 (8)
O1Wiii—Na1—S1iii90.58 (5)Na2—O1W—H1W114 (2)
O1W—Na1—S1iii111.83 (5)Na1—O1W—H1W84 (2)
S1—Na1—S1iii78.70 (3)Na2—O1W—H2W125 (2)
O3i—Na1—Na289.92 (4)Na1—O1W—H2W114 (3)
O3ii—Na1—Na2113.24 (5)H1W—O1W—H2W101 (2)
O1—Na1—Na281.61 (4)Na2—O2W—H3W103 (2)
O1iii—Na1—Na273.71 (4)Na2—O2W—H4W130 (2)
O1Wiii—Na1—Na2171.28 (5)H3W—O2W—H4W103.3 (19)
O1W—Na1—Na233.27 (4)N1vi—N1—C3113.9 (2)
S1—Na1—Na260.206 (15)C2—C1—C6121.1 (2)
S1iii—Na1—Na291.13 (2)C2—C1—S1118.74 (18)
O3i—Na1—Na2iii113.24 (5)C6—C1—S1120.12 (17)
O3ii—Na1—Na2iii89.92 (4)C1—C2—C3118.9 (2)
O1—Na1—Na2iii73.71 (4)C1—C2—H2120.5
O1iii—Na1—Na2iii81.61 (4)C3—C2—H2120.5
O1Wiii—Na1—Na2iii33.27 (4)C4—C3—C2120.4 (2)
O1W—Na1—Na2iii171.28 (5)C4—C3—N1115.9 (2)
S1—Na1—Na2iii91.13 (2)C2—C3—N1123.7 (2)
S1iii—Na1—Na2iii60.207 (15)C5—C4—C3120.0 (2)
Na2—Na1—Na2iii144.06 (4)C5—C4—H4120.0
O3i—Na1—H1W55.5 (3)C3—C4—H4120.0
O3ii—Na1—H1W90.9 (7)C4—C5—C6120.0 (2)
O1—Na1—H1W105.0 (7)C4—C5—H5120.0
O1iii—Na1—H1W109.8 (3)C6—C5—H5120.0
O1Wiii—Na1—H1W136.7 (5)C1—C6—C5119.5 (2)
O1W—Na1—H1W19.8 (3)C1—C6—H6120.2
S1—Na1—H1W90.6 (7)C5—C6—H6120.2
O2—S1—O1—Na18.38 (15)O3—S1—C1—C617.6 (2)
O3—S1—O1—Na1121.08 (12)O1—S1—C1—C6102.7 (2)
C1—S1—O1—Na1123.13 (11)Na1—S1—C1—C6140.94 (16)
O3—S1—O2—Na2167.7 (5)C6—C1—C2—C31.2 (3)
O1—S1—O2—Na238.4 (5)S1—C1—C2—C3178.45 (17)
C1—S1—O2—Na276.6 (5)C1—C2—C3—C42.4 (3)
Na1—S1—O2—Na243.8 (5)C1—C2—C3—N1178.7 (2)
O2—S1—O3—Na1v51.3 (2)N1vi—N1—C3—C4162.2 (2)
O1—S1—O3—Na1v77.64 (18)N1vi—N1—C3—C218.9 (4)
C1—S1—O3—Na1v166.65 (15)C2—C3—C4—C51.6 (3)
Na1—S1—O3—Na1v35.9 (2)N1—C3—C4—C5179.4 (2)
O2—S1—C1—C241.6 (2)C3—C4—C5—C60.5 (3)
O3—S1—C1—C2162.04 (18)C2—C1—C6—C50.8 (3)
O1—S1—C1—C277.7 (2)S1—C1—C6—C5179.51 (18)
Na1—S1—C1—C239.4 (2)C4—C5—C6—C11.7 (3)
O2—S1—C1—C6138.1 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y1, z+1/2; (iii) x, y, z+1/2; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2Wi0.87 (1)2.07 (2)2.919 (3)163 (3)
O1W—H1W···O2i0.87 (1)2.29 (2)3.044 (3)145 (3)
O1W—H1W···O3i0.87 (1)2.32 (3)3.005 (3)136 (3)
O2W—H3W···O1iii0.87 (1)1.94 (1)2.807 (2)175 (3)
O2W—H4W···N1vii0.87 (1)2.22 (1)3.076 (3)168 (3)
Symmetry codes: (i) x, y1, z; (iii) x, y, z+1/2; (vii) x1/2, y+1/2, z.
catena-Poly[[tetraaquacalcium(II)]-µ-3,3'-(diazane-1,2-diyl)bis(benzenesulfonato)] (II) top
Crystal data top
[Ca(C12H8N2O6S2)(H2O)4]Z = 1
Mr = 452.47F(000) = 234
Triclinic, P1Dx = 1.691 Mg m3
a = 6.3875 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.7470 (2) ÅCell parameters from 1934 reflections
c = 11.3030 (5) Åθ = 1.0–27.5°
α = 94.289 (2)°µ = 0.65 mm1
β = 103.160 (2)°T = 123 K
γ = 108.456 (2)°Plate, yellow-orange
V = 444.21 (3) Å30.50 × 0.25 × 0.05 mm
Data collection top
Nonius Kappa CCD
diffractometer
Rint = 0.020
Radiation source: sealed tubeθmax = 27.6°, θmin = 1.9°
phi and ω scansh = 88
3837 measured reflectionsk = 88
2038 independent reflectionsl = 1414
1775 reflections with I > 2σ(I)
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.2861P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2038 reflectionsΔρmax = 0.40 e Å3
140 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50000.50000.50000.01202 (12)
S10.81011 (6)0.85257 (6)0.30913 (3)0.01227 (11)
O10.82484 (19)1.06481 (17)0.35704 (11)0.0180 (3)
O21.03284 (18)0.83889 (18)0.30803 (10)0.0167 (2)
O30.6843 (2)0.69091 (18)0.37004 (11)0.0202 (3)
O1W0.8574 (2)0.5188 (2)0.61733 (12)0.0230 (3)
O2W0.5467 (2)0.82518 (18)0.61047 (12)0.0229 (3)
N10.0426 (2)0.5479 (2)0.03915 (13)0.0170 (3)
C10.6455 (3)0.7956 (2)0.15386 (14)0.0125 (3)
C20.4105 (3)0.6926 (2)0.12544 (15)0.0143 (3)
H20.33690.64980.18810.017*
C30.2852 (3)0.6534 (2)0.00261 (15)0.0147 (3)
C40.3926 (3)0.7176 (2)0.08881 (15)0.0165 (3)
H40.30470.69260.17190.020*
C50.6283 (3)0.8181 (3)0.05911 (15)0.0173 (3)
H50.70190.85920.12200.021*
C60.7562 (3)0.8584 (2)0.06276 (15)0.0157 (3)
H60.91730.92800.08390.019*
H1W0.922 (4)0.429 (3)0.644 (2)0.045 (7)*
H2W0.973 (3)0.635 (2)0.630 (2)0.057 (8)*
H3W0.671 (2)0.933 (3)0.632 (2)0.048 (7)*
H4W0.442 (3)0.877 (3)0.618 (2)0.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0106 (2)0.0102 (2)0.0134 (2)0.00197 (16)0.00191 (16)0.00172 (16)
S10.00967 (19)0.01111 (19)0.01310 (19)0.00092 (14)0.00129 (14)0.00152 (14)
O10.0153 (6)0.0142 (6)0.0206 (6)0.0038 (4)0.0011 (5)0.0032 (5)
O20.0114 (5)0.0185 (6)0.0182 (6)0.0048 (4)0.0008 (4)0.0020 (5)
O30.0173 (6)0.0215 (6)0.0152 (6)0.0019 (5)0.0021 (5)0.0072 (5)
O1W0.0130 (6)0.0183 (6)0.0330 (7)0.0039 (5)0.0018 (5)0.0069 (5)
O2W0.0156 (6)0.0147 (6)0.0348 (7)0.0022 (5)0.0067 (5)0.0055 (5)
N10.0120 (7)0.0160 (7)0.0189 (7)0.0020 (5)0.0006 (5)0.0007 (5)
C10.0123 (7)0.0093 (7)0.0142 (7)0.0027 (6)0.0016 (6)0.0014 (6)
C20.0126 (7)0.0120 (7)0.0175 (8)0.0036 (6)0.0036 (6)0.0027 (6)
C30.0113 (7)0.0120 (7)0.0184 (8)0.0030 (6)0.0012 (6)0.0013 (6)
C40.0173 (8)0.0141 (8)0.0143 (8)0.0038 (6)0.0003 (6)0.0004 (6)
C50.0176 (8)0.0174 (8)0.0163 (8)0.0044 (6)0.0058 (6)0.0031 (6)
C60.0124 (7)0.0128 (7)0.0196 (8)0.0018 (6)0.0035 (6)0.0017 (6)
Geometric parameters (Å, º) top
Ca1—O32.3050 (11)O2W—H4W0.863 (9)
Ca1—O3i2.3051 (11)N1—N1ii1.256 (3)
Ca1—O1W2.3235 (12)N1—C31.432 (2)
Ca1—O1Wi2.3236 (12)C1—C21.388 (2)
Ca1—O2Wi2.3385 (12)C1—C61.395 (2)
Ca1—O2W2.3385 (12)C2—C31.394 (2)
S1—O31.4556 (11)C2—H20.9500
S1—O21.4573 (12)C3—C41.388 (2)
S1—O11.4588 (12)C4—C51.388 (2)
S1—C11.7711 (16)C4—H40.9500
O1W—H1W0.870 (9)C5—C61.389 (2)
O1W—H2W0.864 (10)C5—H50.9500
O2W—H3W0.862 (10)C6—H60.9500
O3—Ca1—O3i180.0H1W—O1W—H2W102.3 (17)
O3—Ca1—O1W87.66 (4)Ca1—O2W—H3W125.5 (15)
O3i—Ca1—O1W92.34 (4)Ca1—O2W—H4W127.9 (15)
O3—Ca1—O1Wi92.34 (4)H3W—O2W—H4W103.9 (17)
O3i—Ca1—O1Wi87.66 (4)N1ii—N1—C3113.72 (17)
O1W—Ca1—O1Wi180.00 (6)C2—C1—C6121.50 (14)
O3—Ca1—O2Wi93.07 (4)C2—C1—S1119.72 (12)
O3i—Ca1—O2Wi86.93 (5)C6—C1—S1118.78 (12)
O1W—Ca1—O2Wi90.52 (5)C1—C2—C3118.31 (15)
O1Wi—Ca1—O2Wi89.48 (5)C1—C2—H2120.8
O3—Ca1—O2W86.93 (5)C3—C2—H2120.8
O3i—Ca1—O2W93.07 (4)C4—C3—C2120.82 (14)
O1W—Ca1—O2W89.48 (5)C4—C3—N1115.24 (14)
O1Wi—Ca1—O2W90.52 (5)C2—C3—N1123.94 (15)
O2Wi—Ca1—O2W180.0C3—C4—C5120.17 (15)
O3—S1—O2112.30 (7)C3—C4—H4119.9
O3—S1—O1112.52 (7)C5—C4—H4119.9
O2—S1—O1112.61 (7)C4—C5—C6119.87 (15)
O3—S1—C1105.40 (7)C4—C5—H5120.1
O2—S1—C1106.74 (7)C6—C5—H5120.1
O1—S1—C1106.66 (7)C5—C6—C1119.31 (14)
S1—O3—Ca1166.87 (8)C5—C6—H6120.3
Ca1—O1W—H1W136.4 (15)C1—C6—H6120.3
Ca1—O1W—H2W120.0 (16)
O2—S1—O3—Ca1111.4 (3)C1—C2—C3—C40.6 (2)
O1—S1—O3—Ca116.9 (4)C1—C2—C3—N1179.69 (14)
C1—S1—O3—Ca1132.8 (3)N1ii—N1—C3—C4165.42 (17)
O3—S1—C1—C227.51 (14)N1ii—N1—C3—C214.8 (3)
O2—S1—C1—C2147.11 (12)C2—C3—C4—C51.4 (2)
O1—S1—C1—C292.29 (13)N1—C3—C4—C5178.84 (14)
O3—S1—C1—C6153.27 (13)C3—C4—C5—C61.3 (2)
O2—S1—C1—C633.67 (14)C4—C5—C6—C10.4 (2)
O1—S1—C1—C686.93 (13)C2—C1—C6—C50.4 (2)
C6—C1—C2—C30.3 (2)S1—C1—C6—C5178.82 (12)
S1—C1—C2—C3178.88 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iii0.87 (1)2.01 (1)2.8521 (17)162 (2)
O1W—H2W···O1iv0.86 (1)2.00 (1)2.8454 (17)165 (2)
O2W—H3W···O2iv0.86 (1)1.95 (1)2.8119 (16)174 (2)
O2W—H4W···O1v0.86 (1)1.94 (1)2.7907 (16)168 (2)
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x+2, y+2, z+1; (v) x+1, y+2, z+1.
catena-Poly[[[diaquacalcium(II)]-µ-2-(4-amino-3-sulfonatophenyl)-\ 1-(4-sulfonatophenyl)diazenium] dihydrate] (III) top
Crystal data top
[Na(C12H10N3O6S2)(H2O)2]·2H2OF(000) = 936
Mr = 451.40Dx = 1.600 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.6775 Å
a = 13.9454 (18) ÅCell parameters from 8092 reflections
b = 19.517 (3) Åθ = 1.4–24.3°
c = 6.9014 (9) ŵ = 0.32 mm1
β = 93.838 (2)°T = 150 K
V = 1874.2 (4) Å3Fibre, red
Z = 40.50 × 0.01 × 0.01 mm
Data collection top
APEXII
diffractometer
2772 reflections with I > 2σ(I)
Radiation source: Station 9.8 Daresbury SRSRint = 0.049
ω scansθmax = 24.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1616
Tmin = 0.676, Tmax = 1.000k = 2323
15360 measured reflectionsl = 88
3531 independent reflections
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.7405P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3531 reflectionsΔρmax = 0.35 e Å3
311 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.12675 (8)0.22691 (6)0.23165 (16)0.0383 (3)
S10.39901 (4)0.11626 (3)0.25342 (9)0.02313 (17)
S20.01324 (4)0.38021 (3)0.06796 (9)0.02399 (17)
O10.33121 (14)0.14369 (9)0.4031 (3)0.0352 (5)
O20.49783 (13)0.12523 (9)0.2974 (3)0.0348 (5)
O30.38045 (12)0.14348 (8)0.0621 (3)0.0276 (4)
O40.00470 (13)0.42439 (8)0.1002 (3)0.0295 (4)
O50.06200 (12)0.41576 (10)0.2293 (3)0.0344 (5)
O60.05796 (12)0.31539 (9)0.0222 (3)0.0291 (4)
O1W0.02623 (18)0.15088 (11)0.0719 (3)0.0463 (5)
O2W0.23561 (13)0.23836 (9)0.0156 (3)0.0301 (4)
O3W0.53321 (13)0.24230 (9)0.4670 (3)0.0319 (4)
O4W0.2986 (10)0.5679 (6)0.2536 (7)0.036 (2)0.67 (4)
H7W0.322 (3)0.593 (2)0.344 (5)0.043*0.6659
H8W0.308 (4)0.594 (2)0.152 (4)0.043*0.6659
O5W0.258 (2)0.5945 (15)0.2586 (13)0.043 (6)0.33 (4)
H9W0.294 (6)0.614 (5)0.343 (11)0.052*0.3341
H10W0.287 (7)0.611 (5)0.151 (8)0.052*0.3341
N10.32011 (15)0.18160 (10)0.2481 (3)0.0226 (4)
N20.23798 (14)0.20549 (10)0.2029 (3)0.0228 (5)
N30.14295 (18)0.47735 (11)0.1967 (3)0.0271 (5)
C10.37563 (17)0.02746 (12)0.2466 (3)0.0210 (5)
C20.45031 (17)0.01909 (12)0.2548 (4)0.0254 (5)
H20.51450.00340.26090.030*
C30.43073 (17)0.08833 (12)0.2541 (4)0.0255 (5)
H30.48130.12070.25990.031*
C40.33685 (18)0.11031 (11)0.2448 (4)0.0222 (5)
C50.26117 (18)0.06385 (12)0.2347 (4)0.0244 (5)
H50.19710.07960.22710.029*
C60.28139 (17)0.00534 (12)0.2358 (4)0.0238 (5)
H60.23100.03780.22930.029*
C70.22223 (17)0.27328 (12)0.2046 (3)0.0205 (5)
C80.12979 (17)0.29210 (12)0.1488 (3)0.0206 (5)
H80.08620.25730.11510.025*
C90.10223 (16)0.35880 (12)0.1425 (3)0.0212 (5)
C100.16655 (17)0.41207 (12)0.1950 (3)0.0215 (5)
C110.26021 (17)0.39255 (12)0.2479 (4)0.0229 (5)
H110.30450.42710.27960.027*
C120.28719 (17)0.32635 (12)0.2540 (3)0.0217 (5)
H120.34960.31480.29110.026*
H3N0.092 (2)0.4909 (17)0.164 (5)0.047 (10)*
H1N0.365 (2)0.2073 (15)0.279 (4)0.027 (7)*
H2N0.184 (2)0.5049 (16)0.224 (4)0.037 (9)*
H2W0.006 (3)0.1202 (15)0.153 (5)0.103 (17)*
H5W0.511 (2)0.2091 (11)0.534 (4)0.059 (11)*
H3W0.2823 (16)0.2095 (12)0.036 (5)0.064 (11)*
H4W0.2700 (19)0.2733 (10)0.028 (5)0.056 (11)*
H6W0.4863 (17)0.2716 (13)0.466 (5)0.066 (12)*
H1W0.046 (3)0.1233 (15)0.019 (4)0.077 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0349 (6)0.0465 (7)0.0334 (6)0.0113 (5)0.0016 (5)0.0046 (5)
S10.0273 (3)0.0131 (3)0.0294 (4)0.0020 (2)0.0045 (3)0.0000 (2)
S20.0222 (3)0.0193 (3)0.0313 (4)0.0031 (2)0.0076 (2)0.0007 (3)
O10.0504 (12)0.0183 (9)0.0358 (11)0.0020 (8)0.0061 (9)0.0040 (8)
O20.0329 (10)0.0202 (9)0.0530 (12)0.0064 (8)0.0160 (9)0.0027 (9)
O30.0337 (10)0.0185 (9)0.0312 (10)0.0008 (7)0.0060 (8)0.0034 (7)
O40.0341 (10)0.0196 (9)0.0358 (10)0.0010 (7)0.0108 (8)0.0047 (8)
O50.0276 (10)0.0366 (11)0.0392 (11)0.0094 (8)0.0042 (8)0.0066 (9)
O60.0257 (9)0.0207 (9)0.0418 (11)0.0020 (7)0.0100 (8)0.0018 (8)
O1W0.0674 (16)0.0345 (12)0.0368 (12)0.0072 (11)0.0022 (11)0.0001 (10)
O2W0.0280 (10)0.0235 (10)0.0390 (11)0.0017 (8)0.0034 (8)0.0046 (8)
O3W0.0327 (11)0.0221 (9)0.0421 (11)0.0030 (8)0.0123 (9)0.0091 (9)
O4W0.044 (5)0.032 (4)0.032 (2)0.015 (3)0.0048 (19)0.0011 (18)
O5W0.048 (9)0.045 (9)0.036 (4)0.020 (8)0.003 (4)0.006 (4)
N10.0237 (11)0.0151 (10)0.0294 (12)0.0020 (9)0.0046 (9)0.0010 (9)
N20.0252 (11)0.0179 (10)0.0252 (11)0.0033 (8)0.0014 (9)0.0011 (8)
N30.0262 (12)0.0159 (11)0.0401 (14)0.0010 (10)0.0099 (10)0.0005 (10)
C10.0246 (12)0.0139 (11)0.0244 (12)0.0020 (9)0.0017 (10)0.0000 (9)
C20.0234 (12)0.0196 (12)0.0331 (14)0.0043 (10)0.0020 (10)0.0012 (10)
C30.0240 (13)0.0199 (12)0.0328 (14)0.0020 (10)0.0021 (11)0.0000 (11)
C40.0288 (13)0.0139 (11)0.0241 (13)0.0021 (10)0.0023 (10)0.0006 (10)
C50.0211 (12)0.0215 (13)0.0309 (14)0.0035 (10)0.0034 (10)0.0011 (11)
C60.0224 (12)0.0184 (12)0.0308 (13)0.0023 (9)0.0029 (10)0.0013 (10)
C70.0219 (12)0.0161 (12)0.0234 (12)0.0024 (9)0.0005 (10)0.0005 (9)
C80.0230 (12)0.0163 (12)0.0225 (12)0.0003 (9)0.0018 (10)0.0006 (9)
C90.0202 (12)0.0182 (12)0.0253 (13)0.0015 (9)0.0028 (10)0.0003 (10)
C100.0255 (12)0.0165 (12)0.0226 (12)0.0011 (10)0.0013 (10)0.0022 (10)
C110.0245 (12)0.0182 (12)0.0264 (13)0.0028 (9)0.0044 (10)0.0006 (10)
C120.0204 (12)0.0206 (12)0.0244 (13)0.0013 (9)0.0035 (10)0.0008 (10)
Geometric parameters (Å, º) top
Na1—O1W2.275 (2)O5W—H10W0.879 (10)
Na1—O2Wi2.335 (2)N1—N21.294 (3)
Na1—O2W2.369 (2)N1—C41.411 (3)
Na1—O62.409 (2)N1—H1N0.84 (3)
Na1—O6i2.425 (2)N2—C71.341 (3)
Na1—Na1ii3.5664 (7)N3—C101.316 (3)
Na1—Na1i3.5665 (7)N3—H3N0.81 (3)
Na1—H4W2.68 (3)N3—H2N0.82 (3)
S1—O21.4415 (18)C1—C21.386 (3)
S1—O11.4552 (19)C1—C61.390 (3)
S1—O31.4623 (18)C2—C31.379 (3)
S1—C11.765 (2)C2—H20.9500
S2—O51.4430 (19)C3—C41.383 (3)
S2—O41.4541 (18)C3—H30.9500
S2—O61.4545 (18)C4—C51.397 (3)
S2—C91.773 (2)C5—C61.380 (3)
O6—Na1ii2.425 (2)C5—H50.9500
O1W—H2W0.878 (10)C6—H60.9500
O1W—H1W0.883 (10)C7—C81.418 (3)
O2W—Na1ii2.335 (2)C7—C121.432 (3)
O2W—H3W0.879 (10)C8—C91.359 (3)
O2W—H4W0.876 (10)C8—H80.9500
O3W—H5W0.863 (10)C9—C101.435 (3)
O3W—H6W0.869 (10)C10—C111.431 (3)
O4W—H7W0.875 (10)C11—C121.347 (3)
O4W—H8W0.876 (10)C11—H110.9500
O5W—H9W0.878 (10)C12—H120.9500
O1W—Na1—O2Wi154.18 (9)Na1ii—O2W—H4W110 (2)
O1W—Na1—O2W96.67 (9)Na1—O2W—H4W101 (2)
O2Wi—Na1—O2W95.44 (7)H3W—O2W—H4W99.1 (19)
O1W—Na1—O688.23 (8)H5W—O3W—H6W102 (2)
O2Wi—Na1—O6116.93 (8)H7W—O4W—H8W101 (2)
O2W—Na1—O675.46 (7)H9W—O5W—H10W99 (2)
O1W—Na1—O6i85.06 (8)N2—N1—C4120.0 (2)
O2Wi—Na1—O6i75.79 (7)N2—N1—H1N122.2 (19)
O2W—Na1—O6i159.34 (8)C4—N1—H1N117.8 (19)
O6—Na1—O6i125.20 (8)N1—N2—C7120.0 (2)
O1W—Na1—Na1ii74.68 (6)C10—N3—H3N123 (2)
O2Wi—Na1—Na1ii127.39 (6)C10—N3—H2N118 (2)
O2W—Na1—Na1ii40.34 (5)H3N—N3—H2N120 (3)
O6—Na1—Na1ii42.63 (5)C2—C1—C6120.9 (2)
O6i—Na1—Na1ii155.75 (5)C2—C1—S1120.13 (18)
O1W—Na1—Na1i126.43 (7)C6—C1—S1118.91 (18)
O2Wi—Na1—Na1i41.06 (5)C3—C2—C1119.5 (2)
O2W—Na1—Na1i135.61 (6)C3—C2—H2120.2
O6—Na1—Na1i111.93 (7)C1—C2—H2120.2
O6i—Na1—Na1i42.29 (5)C2—C3—C4119.5 (2)
Na1ii—Na1—Na1i150.73 (7)C2—C3—H3120.2
O1W—Na1—H4W115.1 (4)C4—C3—H3120.2
O2Wi—Na1—H4W79.8 (5)C3—C4—C5121.4 (2)
O2W—Na1—H4W18.8 (4)C3—C4—N1117.5 (2)
O6—Na1—H4W74.0 (7)C5—C4—N1121.1 (2)
O6i—Na1—H4W154.1 (6)C6—C5—C4118.7 (2)
Na1ii—Na1—H4W50.1 (6)C6—C5—H5120.7
Na1i—Na1—H4W118.1 (5)C4—C5—H5120.7
O2—S1—O1113.00 (12)C5—C6—C1119.9 (2)
O2—S1—O3112.05 (11)C5—C6—H6120.0
O1—S1—O3111.19 (11)C1—C6—H6120.0
O2—S1—C1107.81 (11)N2—C7—C8113.9 (2)
O1—S1—C1105.53 (11)N2—C7—C12127.6 (2)
O3—S1—C1106.78 (11)C8—C7—C12118.6 (2)
O5—S2—O4112.19 (11)C9—C8—C7121.4 (2)
O5—S2—O6113.51 (11)C9—C8—H8119.3
O4—S2—O6113.34 (11)C7—C8—H8119.3
O5—S2—C9106.24 (11)C8—C9—C10120.2 (2)
O4—S2—C9105.09 (11)C8—C9—S2119.96 (18)
O6—S2—C9105.60 (11)C10—C9—S2119.84 (17)
S2—O6—Na1130.74 (11)N3—C10—C11119.2 (2)
S2—O6—Na1ii132.42 (11)N3—C10—C9122.9 (2)
Na1—O6—Na1ii95.07 (6)C11—C10—C9117.9 (2)
Na1—O1W—H2W110 (3)C12—C11—C10121.6 (2)
Na1—O1W—H1W122 (3)C12—C11—H11119.2
H2W—O1W—H1W99 (2)C10—C11—H11119.2
Na1ii—O2W—Na198.59 (8)C11—C12—C7120.3 (2)
Na1ii—O2W—H3W121 (2)C11—C12—H12119.9
Na1—O2W—H3W125 (2)C7—C12—H12119.9
O5—S2—O6—Na140.72 (16)C2—C1—C6—C50.5 (4)
O4—S2—O6—Na1170.23 (12)S1—C1—C6—C5178.6 (2)
C9—S2—O6—Na175.26 (15)N1—N2—C7—C8179.0 (2)
O5—S2—O6—Na1ii120.22 (14)N1—N2—C7—C120.6 (4)
O4—S2—O6—Na1ii9.30 (18)N2—C7—C8—C9179.9 (2)
C9—S2—O6—Na1ii123.80 (14)C12—C7—C8—C90.3 (4)
C4—N1—N2—C7179.5 (2)C7—C8—C9—C100.7 (4)
O2—S1—C1—C28.7 (2)C7—C8—C9—S2178.92 (18)
O1—S1—C1—C2129.7 (2)O5—S2—C9—C8120.0 (2)
O3—S1—C1—C2111.9 (2)O4—S2—C9—C8120.9 (2)
O2—S1—C1—C6170.41 (19)O6—S2—C9—C80.8 (2)
O1—S1—C1—C649.4 (2)O5—S2—C9—C1060.4 (2)
O3—S1—C1—C669.0 (2)O4—S2—C9—C1058.7 (2)
C6—C1—C2—C30.6 (4)O6—S2—C9—C10178.80 (19)
S1—C1—C2—C3178.45 (19)C8—C9—C10—N3178.1 (2)
C1—C2—C3—C40.1 (4)S2—C9—C10—N32.2 (3)
C2—C3—C4—C50.5 (4)C8—C9—C10—C111.7 (3)
C2—C3—C4—N1178.8 (2)S2—C9—C10—C11177.93 (18)
N2—N1—C4—C3166.8 (2)N3—C10—C11—C12178.1 (2)
N2—N1—C4—C513.9 (4)C9—C10—C11—C121.7 (4)
C3—C4—C5—C60.6 (4)C10—C11—C12—C70.8 (4)
N1—C4—C5—C6178.7 (2)N2—C7—C12—C11179.8 (2)
C4—C5—C6—C10.1 (4)C8—C7—C12—C110.3 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3Wiii0.84 (3)2.10 (3)2.878 (3)153 (3)
N3—H2N···O4W0.82 (3)2.04 (3)2.847 (5)170 (3)
N3—H2N···O5W0.82 (3)2.05 (4)2.843 (11)163 (3)
N3—H3N···O40.81 (3)2.60 (3)3.084 (3)120 (3)
N3—H3N···O4iv0.81 (3)2.20 (3)2.923 (3)150 (3)
N3—H3N···O50.81 (3)2.61 (3)3.095 (3)120 (3)
O1W—H1W···O5ii0.88 (1)1.93 (2)2.773 (3)160 (4)
O1W—H2W···O4i0.88 (1)1.93 (2)2.756 (3)157 (4)
O2W—H3W···O3v0.88 (1)1.90 (1)2.774 (2)176 (4)
O2W—H4W···O1vi0.88 (1)1.88 (1)2.746 (3)171 (3)
O3W—H5W···O2vii0.86 (1)2.03 (1)2.866 (3)164 (3)
O3W—H6W···O3vi0.87 (1)2.22 (1)3.081 (3)171 (3)
O4W—H7W···O3i0.88 (1)2.02 (1)2.887 (5)175 (4)
O4W—H8W···O1ii0.88 (1)1.97 (1)2.846 (5)173 (5)
O5W—H9W···O3i0.88 (1)2.08 (2)2.947 (13)170 (10)
O5W—H10W···O1ii0.88 (1)1.89 (2)2.765 (9)171 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y+1, z; (v) x, y, z; (vi) x, y+1/2, z+1/2; (vii) x, y, z+1.
Hexaaquamagnesium bis{2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium} octahydrate (IV) top
Crystal data top
[Mg(H2O)6](C12H10N3O6S2)2·8H2OF(000) = 2072
Mr = 989.23Dx = 1.572 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
a = 36.896 (3) ÅCell parameters from 1905 reflections
b = 6.7806 (4) Åθ = 4.3–73.1°
c = 17.9140 (12) ŵ = 3.12 mm1
β = 111.178 (9)°T = 123 K
V = 4179.0 (6) Å3Long needle, red
Z = 40.5 × 0.05 × 0.03 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
3287 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.039
ω scansθmax = 73.2°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 3845
Tmin = 0.572, Tmax = 1.000k = 68
7541 measured reflectionsl = 2115
4093 independent reflections
Refinement top
Refinement on F2110 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.7784P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4093 reflectionsΔρmax = 0.80 e Å3
359 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.25000.25000.00000.0176 (3)
S10.19426 (2)0.24840 (8)0.24675 (4)0.01688 (17)
O10.19535 (5)0.3776 (3)0.31234 (11)0.0241 (4)
O20.20622 (5)0.0469 (3)0.27349 (11)0.0228 (4)
O30.21518 (5)0.3271 (3)0.19768 (11)0.0229 (4)
O1W0.24688 (6)0.1251 (3)0.10154 (11)0.0251 (4)
O2W0.27304 (6)0.5014 (3)0.06023 (12)0.0281 (4)
O3W0.30486 (6)0.1320 (3)0.02226 (12)0.0246 (4)
O4W0.31418 (6)0.7439 (3)0.00138 (13)0.0266 (4)
O5W0.29954 (6)0.7674 (3)0.16593 (12)0.0236 (4)
O6W0.39177 (7)0.7067 (3)0.07645 (14)0.0334 (5)
O7W0.0109 (5)0.219 (3)0.1575 (12)0.0307 (19)0.638 (12)
H13W0.0139 (17)0.346 (4)0.146 (4)0.046*0.6377
H14W0.0355 (7)0.186 (8)0.144 (4)0.046*0.6377
N10.02640 (7)0.2391 (3)0.04636 (14)0.0204 (5)
N20.01425 (7)0.2547 (3)0.03076 (14)0.0213 (5)
N30.13859 (7)0.2773 (4)0.22824 (16)0.0233 (5)
C10.14448 (8)0.2379 (3)0.18386 (15)0.0168 (5)
C20.13333 (8)0.2471 (4)0.10121 (16)0.0206 (5)
H20.15240.25380.07710.025*
C30.09400 (8)0.2462 (4)0.05389 (16)0.0214 (5)
H30.08580.25280.00280.026*
C40.06672 (8)0.2355 (4)0.09123 (16)0.0196 (5)
C50.07798 (8)0.2241 (4)0.17404 (17)0.0214 (5)
H50.05900.21610.19820.026*
C60.11712 (8)0.2245 (4)0.22083 (16)0.0213 (5)
H60.12530.21580.27750.026*
C70.02395 (8)0.2602 (4)0.07415 (17)0.0204 (5)
C80.03296 (8)0.2748 (4)0.15798 (17)0.0236 (6)
H80.01230.28060.17780.028*
C90.07028 (8)0.2807 (4)0.21070 (16)0.0213 (5)
C100.10190 (8)0.2726 (3)0.18162 (17)0.0191 (5)
C110.09238 (8)0.2577 (4)0.09611 (17)0.0208 (5)
H110.11280.25180.07580.025*
C120.05534 (8)0.2519 (4)0.04459 (16)0.0209 (5)
H120.04990.24240.01130.025*
S20.0782 (2)0.2875 (14)0.3153 (3)0.0256 (5)0.638 (12)
O40.0564 (3)0.1246 (16)0.3309 (10)0.0390 (19)0.638 (12)
O50.0628 (3)0.4763 (12)0.3280 (5)0.0439 (16)0.638 (12)
O60.11985 (18)0.2653 (15)0.3606 (4)0.0542 (18)0.638 (12)
S2A0.0753 (4)0.300 (3)0.3128 (5)0.0256 (5)0.362 (12)
O4A0.0650 (7)0.105 (3)0.3300 (19)0.0390 (19)0.362 (12)
O5A0.0488 (4)0.454 (2)0.3169 (10)0.0439 (16)0.362 (12)
O6A0.1150 (3)0.362 (3)0.3546 (7)0.0542 (18)0.362 (12)
O8W0.0158 (10)0.189 (5)0.149 (2)0.0307 (19)0.362 (12)
H16W0.02100.31010.16230.046*0.362 (12)
H15W0.02030.11970.18630.046*0.362 (12)
H2N0.1562 (12)0.280 (5)0.207 (2)0.029 (9)*
H1N0.0114 (12)0.226 (5)0.072 (3)0.034 (10)*
H3N0.1447 (14)0.299 (6)0.277 (3)0.049 (13)*
H3W0.2859 (8)0.594 (4)0.0471 (17)0.024 (8)*
H1W0.2378 (11)0.172 (5)0.1364 (17)0.044 (11)*
H9W0.2895 (10)0.882 (3)0.184 (2)0.043 (11)*
H8W0.3098 (11)0.729 (6)0.0521 (7)0.051 (13)*
H11W0.4034 (11)0.606 (3)0.105 (2)0.052 (13)*
H7W0.3385 (4)0.707 (5)0.0197 (19)0.033 (10)*
H5W0.3086 (11)0.0055 (18)0.021 (2)0.046 (11)*
H4W0.2777 (11)0.523 (6)0.1107 (9)0.051 (12)*
H12W0.4031 (12)0.806 (4)0.106 (2)0.063 (15)*
H6W0.3258 (7)0.173 (5)0.0602 (19)0.049 (12)*
H2W0.2649 (8)0.043 (4)0.1293 (18)0.037 (10)*
H10W0.2840 (9)0.691 (4)0.2032 (18)0.046 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0180 (6)0.0191 (5)0.0148 (6)0.0012 (4)0.0050 (5)0.0003 (4)
S10.0136 (3)0.0195 (3)0.0170 (3)0.0002 (2)0.0048 (2)0.0011 (2)
O10.0195 (9)0.0282 (9)0.0237 (9)0.0023 (8)0.0066 (7)0.0069 (8)
O20.0192 (9)0.0236 (9)0.0221 (9)0.0023 (7)0.0036 (7)0.0017 (7)
O30.0194 (9)0.0272 (9)0.0224 (9)0.0016 (8)0.0079 (7)0.0002 (7)
O1W0.0291 (10)0.0299 (10)0.0183 (9)0.0098 (8)0.0111 (8)0.0059 (8)
O2W0.0354 (11)0.0270 (10)0.0223 (9)0.0094 (9)0.0108 (8)0.0063 (8)
O3W0.0183 (9)0.0268 (9)0.0254 (9)0.0036 (8)0.0038 (7)0.0002 (7)
O4W0.0221 (10)0.0314 (10)0.0263 (10)0.0012 (8)0.0088 (8)0.0004 (8)
O5W0.0195 (9)0.0237 (9)0.0266 (10)0.0000 (7)0.0070 (8)0.0002 (7)
O6W0.0271 (11)0.0371 (11)0.0323 (12)0.0032 (9)0.0064 (9)0.0008 (9)
O7W0.020 (5)0.042 (6)0.029 (4)0.008 (3)0.008 (3)0.006 (3)
N10.0168 (11)0.0244 (11)0.0193 (11)0.0004 (8)0.0056 (9)0.0003 (8)
N20.0181 (11)0.0248 (10)0.0192 (11)0.0000 (8)0.0048 (9)0.0001 (8)
N30.0158 (11)0.0311 (12)0.0223 (12)0.0035 (9)0.0062 (9)0.0025 (9)
C10.0151 (12)0.0170 (10)0.0167 (12)0.0009 (9)0.0040 (9)0.0020 (9)
C20.0178 (13)0.0255 (12)0.0193 (13)0.0012 (10)0.0077 (10)0.0000 (9)
C30.0185 (13)0.0280 (12)0.0161 (12)0.0013 (10)0.0042 (10)0.0007 (9)
C40.0175 (12)0.0188 (11)0.0211 (13)0.0007 (9)0.0054 (10)0.0007 (9)
C50.0190 (13)0.0239 (12)0.0222 (13)0.0002 (10)0.0087 (11)0.0013 (10)
C60.0182 (13)0.0257 (12)0.0193 (12)0.0000 (10)0.0061 (10)0.0003 (9)
C70.0178 (13)0.0219 (12)0.0208 (13)0.0016 (10)0.0062 (10)0.0008 (9)
C80.0168 (12)0.0324 (13)0.0227 (13)0.0021 (11)0.0086 (10)0.0028 (10)
C90.0199 (13)0.0268 (13)0.0185 (12)0.0026 (10)0.0086 (10)0.0021 (9)
C100.0167 (12)0.0166 (11)0.0244 (13)0.0013 (9)0.0078 (10)0.0009 (9)
C110.0206 (13)0.0201 (11)0.0241 (13)0.0003 (10)0.0111 (11)0.0005 (9)
C120.0217 (13)0.0229 (12)0.0188 (12)0.0015 (10)0.0080 (10)0.0001 (9)
S20.0164 (10)0.0416 (12)0.0181 (4)0.0034 (8)0.0056 (5)0.0033 (5)
O40.055 (5)0.041 (2)0.0269 (12)0.002 (3)0.022 (4)0.001 (2)
O50.067 (5)0.040 (2)0.026 (3)0.002 (3)0.019 (4)0.0086 (17)
O60.0169 (19)0.121 (6)0.0188 (15)0.003 (3)0.0002 (14)0.004 (3)
S2A0.0164 (10)0.0416 (12)0.0181 (4)0.0034 (8)0.0056 (5)0.0033 (5)
O4A0.055 (5)0.041 (2)0.0269 (12)0.002 (3)0.022 (4)0.001 (2)
O5A0.067 (5)0.040 (2)0.026 (3)0.002 (3)0.019 (4)0.0086 (17)
O6A0.0169 (19)0.121 (6)0.0188 (15)0.003 (3)0.0002 (14)0.004 (3)
O8W0.020 (5)0.042 (6)0.029 (4)0.008 (3)0.008 (3)0.006 (3)
Geometric parameters (Å, º) top
Mg1—O2Wi2.0322 (19)N3—H3N0.84 (5)
Mg1—O2W2.0322 (19)C1—C21.388 (4)
Mg1—O1W2.0472 (18)C1—C61.396 (4)
Mg1—O1Wi2.0472 (18)C2—C31.391 (4)
Mg1—O3Wi2.0769 (19)C2—H20.9500
Mg1—O3W2.0769 (19)C3—C41.397 (4)
S1—O11.4544 (19)C3—H30.9500
S1—O21.4624 (19)C4—C51.391 (4)
S1—O31.464 (2)C5—C61.383 (4)
S1—C11.776 (3)C5—H50.9500
O1W—H1W0.867 (10)C6—H60.9500
O1W—H2W0.873 (10)C7—C81.419 (4)
O2W—H3W0.868 (10)C7—C121.438 (4)
O2W—H4W0.869 (10)C8—C91.360 (4)
O3W—H5W0.870 (10)C8—H80.9500
O3W—H6W0.871 (10)C9—C101.441 (4)
O4W—H8W0.870 (10)C9—S2A1.775 (9)
O4W—H7W0.874 (10)C9—S21.789 (6)
O5W—H9W0.872 (10)C10—C111.446 (4)
O5W—H10W0.874 (10)C11—C121.345 (4)
O6W—H11W0.868 (10)C11—H110.9500
O6W—H12W0.871 (10)C12—H120.9500
O7W—H13W0.887 (10)S2—O51.451 (6)
O7W—H14W0.879 (10)S2—O41.452 (6)
N1—N21.294 (4)S2—O61.465 (6)
N1—C41.413 (3)S2A—O4A1.444 (9)
N1—H1N0.84 (4)S2A—O5A1.445 (9)
N2—C71.342 (4)S2A—O6A1.445 (9)
N3—C101.309 (4)O8W—H16W0.8927
N3—H2N0.87 (4)O8W—H15W0.8807
O2Wi—Mg1—O2W180.0C3—C2—H2120.3
O2Wi—Mg1—O1W88.72 (8)C2—C3—C4118.8 (3)
O2W—Mg1—O1W91.28 (8)C2—C3—H3120.6
O2Wi—Mg1—O1Wi91.28 (8)C4—C3—H3120.6
O2W—Mg1—O1Wi88.72 (8)C5—C4—C3121.6 (3)
O1W—Mg1—O1Wi180.0C5—C4—N1117.1 (3)
O2Wi—Mg1—O3Wi91.69 (8)C3—C4—N1121.3 (2)
O2W—Mg1—O3Wi88.31 (8)C6—C5—C4119.4 (3)
O1W—Mg1—O3Wi88.07 (8)C6—C5—H5120.3
O1Wi—Mg1—O3Wi91.93 (8)C4—C5—H5120.3
O2Wi—Mg1—O3W88.31 (8)C5—C6—C1119.2 (3)
O2W—Mg1—O3W91.69 (8)C5—C6—H6120.4
O1W—Mg1—O3W91.93 (8)C1—C6—H6120.4
O1Wi—Mg1—O3W88.07 (8)N2—C7—C8114.2 (2)
O3Wi—Mg1—O3W180.0N2—C7—C12127.1 (3)
O1—S1—O2112.39 (12)C8—C7—C12118.7 (3)
O1—S1—O3113.50 (12)C9—C8—C7121.9 (3)
O2—S1—O3112.04 (12)C9—C8—H8119.1
O1—S1—C1104.89 (11)C7—C8—H8119.1
O2—S1—C1106.91 (11)C8—C9—C10119.8 (2)
O3—S1—C1106.42 (12)C8—C9—S2A114.8 (5)
Mg1—O1W—H1W130 (2)C10—C9—S2A125.4 (5)
Mg1—O1W—H2W120 (2)C8—C9—S2117.9 (3)
H1W—O1W—H2W104 (2)C10—C9—S2122.2 (3)
Mg1—O2W—H3W129 (2)N3—C10—C9123.7 (3)
Mg1—O2W—H4W125 (2)N3—C10—C11118.5 (3)
H3W—O2W—H4W104 (2)C9—C10—C11117.8 (2)
Mg1—O3W—H5W122 (3)C12—C11—C10121.8 (3)
Mg1—O3W—H6W124 (3)C12—C11—H11119.1
H5W—O3W—H6W103 (2)C10—C11—H11119.1
H8W—O4W—H7W101 (2)C11—C12—C7120.0 (3)
H9W—O5W—H10W100 (2)C11—C12—H12120.0
H11W—O6W—H12W103 (2)C7—C12—H12120.0
H13W—O7W—H14W99 (2)O5—S2—O4111.5 (7)
N2—N1—C4119.8 (2)O5—S2—O6113.3 (6)
N2—N1—H1N123 (3)O4—S2—O6111.0 (7)
C4—N1—H1N117 (3)O5—S2—C9105.2 (6)
N1—N2—C7120.5 (2)O4—S2—C9106.9 (8)
C10—N3—H2N119 (3)O6—S2—C9108.6 (5)
C10—N3—H3N120 (3)O4A—S2A—O5A114.5 (14)
H2N—N3—H3N120 (4)O4A—S2A—O6A116.7 (15)
C2—C1—C6121.5 (2)O5A—S2A—O6A110.1 (11)
C2—C1—S1121.0 (2)O4A—S2A—C9102.3 (15)
C6—C1—S1117.5 (2)O5A—S2A—C9106.6 (10)
C1—C2—C3119.4 (3)O6A—S2A—C9105.3 (9)
C1—C2—H2120.3H16W—O8W—H15W100.0
C4—N1—N2—C7179.3 (2)C7—C8—C9—S2177.1 (4)
O1—S1—C1—C2137.8 (2)C8—C9—C10—N3179.9 (3)
O2—S1—C1—C2102.7 (2)S2A—C9—C10—N30.6 (8)
O3—S1—C1—C217.3 (2)S2—C9—C10—N32.8 (5)
O1—S1—C1—C640.8 (2)C8—C9—C10—C110.2 (4)
O2—S1—C1—C678.7 (2)S2A—C9—C10—C11179.6 (7)
O3—S1—C1—C6161.37 (19)S2—C9—C10—C11177.0 (4)
C6—C1—C2—C31.1 (4)N3—C10—C11—C12180.0 (3)
S1—C1—C2—C3177.5 (2)C9—C10—C11—C120.2 (4)
C1—C2—C3—C40.2 (4)C10—C11—C12—C70.1 (4)
C2—C3—C4—C50.5 (4)N2—C7—C12—C11179.5 (3)
C2—C3—C4—N1178.4 (2)C8—C7—C12—C110.1 (4)
N2—N1—C4—C5178.2 (2)C8—C9—S2—O566.3 (6)
N2—N1—C4—C30.8 (4)C10—C9—S2—O5116.5 (5)
C3—C4—C5—C60.4 (4)C8—C9—S2—O452.3 (7)
N1—C4—C5—C6178.6 (2)C10—C9—S2—O4124.9 (6)
C4—C5—C6—C10.5 (4)C8—C9—S2—O6172.1 (5)
C2—C1—C6—C51.2 (4)C10—C9—S2—O65.1 (8)
S1—C1—C6—C5177.4 (2)C8—C9—S2A—O4A73.9 (12)
N1—N2—C7—C8179.2 (2)C10—C9—S2A—O4A106.6 (11)
N1—N2—C7—C120.5 (4)C8—C9—S2A—O5A46.7 (12)
N2—C7—C8—C9179.6 (3)C10—C9—S2A—O5A132.8 (9)
C12—C7—C8—C90.1 (4)C8—C9—S2A—O6A163.7 (9)
C7—C8—C9—C100.1 (4)C10—C9—S2A—O6A15.8 (13)
C7—C8—C9—S2A179.7 (7)
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7W0.84 (4)1.99 (5)2.80 (2)164 (4)
N1—H1N···O8W0.84 (4)2.00 (6)2.83 (4)170 (4)
N3—H2N···O5Wii0.87 (4)2.02 (4)2.881 (3)174 (4)
N3—H3N···O60.84 (5)2.03 (5)2.700 (7)137 (4)
N3—H3N···O6A0.84 (5)2.10 (5)2.763 (14)136 (4)
O1W—H1W···O30.87 (1)1.92 (1)2.769 (3)167 (3)
O1W—H2W···O1iii0.87 (1)1.84 (1)2.714 (3)177 (4)
O2W—H3W···O4W0.87 (1)1.88 (1)2.727 (3)165 (3)
O2W—H4W···O2iv0.87 (1)1.95 (1)2.812 (3)173 (4)
O3W—H5W···O4Wv0.87 (1)1.85 (1)2.707 (3)169 (4)
O3W—H6W···O6vi0.87 (1)2.04 (2)2.897 (6)169 (4)
O3W—H6W···O6Avi0.87 (1)2.18 (2)2.983 (11)153 (3)
O4W—H8W···O5W0.87 (1)1.95 (2)2.803 (3)166 (4)
O4W—H7W···O6W0.87 (1)1.86 (1)2.706 (3)162 (3)
O5W—H10W···O2i0.87 (1)2.16 (3)2.829 (3)133 (3)
O5W—H9W···O3vii0.87 (1)1.99 (1)2.820 (3)160 (3)
O5W—H10W···O3viii0.87 (1)2.52 (3)3.251 (3)141 (3)
O6W—H11W···O4vi0.87 (1)2.17 (2)3.028 (13)167 (4)
O6W—H11W···O4Avi0.87 (1)1.94 (3)2.81 (2)174 (4)
O6W—H12W···O5ix0.87 (1)2.02 (2)2.878 (8)170 (5)
O6W—H12W···O5Aix0.87 (1)2.43 (2)3.276 (14)163 (4)
O6W—H12W···O6Aix0.87 (1)2.52 (3)3.220 (17)139 (4)
O7W—H13W···O5x0.89 (1)2.35 (6)2.89 (2)119 (5)
O7W—H14W···O6Wii0.88 (1)2.52 (3)3.354 (18)159 (5)
O7W—H14W···O4xi0.88 (1)2.35 (5)2.92 (2)123 (4)
O8W—H16W···O5Ax0.892.012.87 (4)163
O8W—H15W···O4Axi0.882.182.81 (4)128
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y1, z; (vi) x1/2, y+1/2, z1/2; (vii) x1/2, y+3/2, z; (viii) x, y+1, z+1/2; (ix) x1/2, y+3/2, z1/2; (x) x, y+1, z1/2; (xi) x, y, z1/2.
Poly[[{µ2-4-[2-(4-amino-2-methyl-5-methoxyphenyl)diazen-1-yl]benzene-1,3-disulfonato}di-µ-aqua-diaquabarium(II)] dihydrate] (V) top
Crystal data top
[Ba(C14H13N3O7S2)(H2O)4]·2H2ODx = 1.835 Mg m3
Mr = 644.83Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4623 reflections
a = 7.1293 (4) Åθ = 1.0–26.0°
b = 18.8368 (11) ŵ = 1.95 mm1
c = 34.752 (2) ÅT = 123 K
V = 4667.0 (5) Å3Elongated rhomb, orange
Z = 80.25 × 0.10 × 0.04 mm
F(000) = 2576
Data collection top
Nonius KappaCCD
diffractometer
3554 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.037
ω and phi scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 88
Tmin = 0.448, Tmax = 0.743k = 2323
7914 measured reflectionsl = 4242
4489 independent reflections
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0229P)2 + 26.8527P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
4489 reflectionsΔρmax = 1.65 e Å3
344 parametersΔρmin = 1.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.46936 (4)0.13398 (2)0.19569 (2)0.01523 (10)
S10.3700 (2)0.33522 (7)0.17263 (4)0.0177 (3)
S20.52454 (19)0.61085 (6)0.14177 (4)0.0142 (3)
O10.4242 (6)0.26422 (18)0.16056 (11)0.0235 (9)
O20.1747 (6)0.35234 (19)0.16343 (11)0.0229 (9)
O30.4127 (6)0.34897 (18)0.21305 (10)0.0225 (9)
O40.3983 (5)0.60937 (18)0.17551 (10)0.0178 (8)
O50.7040 (5)0.64361 (18)0.15189 (10)0.0174 (8)
O60.4375 (5)0.64224 (18)0.10819 (10)0.0183 (8)
O70.9268 (6)0.76192 (18)0.01184 (10)0.0229 (9)
O1W0.5033 (6)0.0101 (2)0.18560 (12)0.0291 (10)
H1W0.457 (8)0.042 (2)0.1701 (13)0.035*
H2W0.569 (8)0.037 (2)0.2011 (13)0.035*
O2W0.4366 (6)0.1078 (3)0.11948 (12)0.0328 (10)
H3W0.338 (5)0.115 (3)0.1049 (13)0.039*
H4W0.510 (6)0.086 (3)0.1030 (13)0.039*
O3W0.6687 (6)0.21189 (19)0.25537 (11)0.0227 (9)
H5W0.710 (7)0.2458 (19)0.2404 (13)0.027*
H6W0.588 (6)0.236 (2)0.2692 (13)0.027*
O4W0.3374 (6)0.0719 (2)0.26436 (11)0.0225 (9)
H7W0.415 (7)0.072 (3)0.2841 (11)0.027*
H8W0.320 (8)0.0258 (8)0.2628 (14)0.027*
O5W0.1119 (6)0.2702 (2)0.19632 (11)0.0238 (9)
H9W0.046 (7)0.305 (2)0.1861 (13)0.029*
H10W0.145 (8)0.248 (2)0.1752 (8)0.029*
O6W0.2298 (6)0.42869 (19)0.26713 (11)0.0238 (9)
H11W0.274 (7)0.405 (2)0.2472 (11)0.029*
H12W0.136 (6)0.401 (2)0.2733 (15)0.029*
N10.7484 (6)0.5510 (2)0.07400 (12)0.0155 (9)
N20.7400 (6)0.5290 (2)0.03926 (12)0.0168 (10)
N30.9314 (8)0.7070 (3)0.08174 (14)0.0250 (11)
C10.5036 (7)0.3964 (3)0.14543 (14)0.0158 (11)
C20.6185 (8)0.3746 (3)0.11551 (15)0.0182 (12)
H20.63920.32550.11080.022*
C30.7031 (8)0.4258 (3)0.09250 (15)0.0183 (12)
H30.78170.41130.07190.022*
C40.6745 (8)0.4981 (3)0.09918 (15)0.0158 (11)
C50.5678 (8)0.5194 (3)0.13124 (15)0.0161 (11)
C60.4806 (8)0.4688 (3)0.15396 (14)0.0155 (11)
H60.40550.48300.17520.019*
C70.7944 (7)0.5760 (3)0.01038 (14)0.0146 (11)
C80.7904 (7)0.5476 (3)0.02719 (15)0.0152 (11)
C90.8361 (8)0.5924 (3)0.05756 (15)0.0175 (11)
H90.83460.57380.08300.021*
C100.8843 (8)0.6637 (3)0.05219 (15)0.0195 (12)
C110.8853 (8)0.6905 (3)0.01369 (16)0.0182 (11)
C120.8409 (7)0.6479 (3)0.01663 (15)0.0167 (11)
H120.84120.66660.04200.020*
C130.7344 (8)0.4715 (3)0.03471 (16)0.0202 (12)
H13A0.70960.46510.06220.030*
H13B0.62100.46020.02000.030*
H13C0.83640.43980.02680.030*
C140.9168 (9)0.7942 (3)0.02544 (16)0.0244 (13)
H14A0.79130.78690.03630.037*
H14B0.94180.84520.02320.037*
H14C1.01050.77250.04240.037*
H1N0.911 (9)0.693 (3)0.1055 (7)0.033 (18)*
H2N0.955 (10)0.7519 (12)0.077 (2)0.05 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01377 (17)0.01302 (15)0.01890 (16)0.00088 (13)0.00011 (13)0.00011 (12)
S10.0207 (7)0.0111 (6)0.0214 (7)0.0017 (5)0.0025 (6)0.0020 (5)
S20.0126 (6)0.0110 (6)0.0189 (6)0.0004 (5)0.0005 (5)0.0001 (5)
O10.032 (2)0.0110 (18)0.028 (2)0.0017 (17)0.0066 (18)0.0012 (15)
O20.020 (2)0.0161 (19)0.033 (2)0.0035 (16)0.0008 (17)0.0027 (16)
O30.029 (2)0.0173 (19)0.021 (2)0.0021 (17)0.0030 (18)0.0021 (15)
O40.0154 (19)0.0146 (17)0.023 (2)0.0081 (15)0.0013 (16)0.0002 (15)
O50.015 (2)0.0111 (17)0.026 (2)0.0021 (15)0.0007 (16)0.0024 (15)
O60.017 (2)0.0131 (18)0.0248 (19)0.0044 (16)0.0016 (16)0.0037 (14)
O70.030 (2)0.0142 (18)0.025 (2)0.0047 (17)0.0030 (18)0.0011 (15)
O1W0.033 (3)0.018 (2)0.036 (2)0.0001 (19)0.010 (2)0.0025 (16)
O2W0.016 (2)0.056 (3)0.026 (2)0.007 (2)0.0030 (18)0.015 (2)
O3W0.023 (2)0.0203 (19)0.025 (2)0.0029 (18)0.0034 (18)0.0010 (16)
O4W0.025 (2)0.0181 (19)0.024 (2)0.0009 (18)0.0006 (18)0.0034 (16)
O5W0.025 (2)0.020 (2)0.026 (2)0.0054 (17)0.003 (2)0.0012 (17)
O6W0.024 (2)0.0178 (19)0.029 (2)0.0046 (18)0.0048 (18)0.0031 (16)
N10.014 (2)0.015 (2)0.018 (2)0.0014 (18)0.0011 (19)0.0009 (17)
N20.015 (2)0.016 (2)0.019 (2)0.0005 (19)0.0007 (19)0.0003 (18)
N30.032 (3)0.019 (2)0.024 (3)0.002 (2)0.002 (2)0.001 (2)
C10.015 (3)0.013 (2)0.020 (3)0.001 (2)0.003 (2)0.003 (2)
C20.022 (3)0.013 (3)0.020 (3)0.002 (2)0.001 (2)0.001 (2)
C30.020 (3)0.016 (3)0.018 (3)0.003 (2)0.003 (2)0.002 (2)
C40.015 (3)0.015 (3)0.018 (3)0.001 (2)0.000 (2)0.001 (2)
C50.018 (3)0.011 (2)0.019 (3)0.003 (2)0.004 (2)0.0013 (19)
C60.014 (3)0.017 (3)0.015 (2)0.002 (2)0.000 (2)0.0015 (19)
C70.009 (3)0.018 (3)0.017 (3)0.004 (2)0.001 (2)0.002 (2)
C80.007 (3)0.016 (3)0.023 (3)0.002 (2)0.001 (2)0.000 (2)
C90.016 (3)0.018 (3)0.018 (3)0.004 (2)0.001 (2)0.001 (2)
C100.013 (3)0.025 (3)0.021 (3)0.001 (2)0.000 (2)0.002 (2)
C110.016 (3)0.013 (2)0.026 (3)0.002 (2)0.002 (2)0.001 (2)
C120.012 (3)0.019 (3)0.019 (3)0.003 (2)0.002 (2)0.004 (2)
C130.019 (3)0.016 (3)0.025 (3)0.001 (2)0.000 (2)0.002 (2)
C140.030 (4)0.014 (3)0.029 (3)0.001 (2)0.003 (3)0.003 (2)
Geometric parameters (Å, º) top
Ba1—O2W2.704 (4)O6W—H11W0.878 (10)
Ba1—O1W2.747 (4)O6W—H12W0.876 (10)
Ba1—O4i2.753 (4)N1—N21.277 (6)
Ba1—O12.759 (4)N1—C41.426 (6)
Ba1—O5ii2.788 (4)N2—C71.393 (6)
Ba1—O4W2.819 (4)N3—C101.354 (7)
Ba1—O3W2.911 (4)N3—H1N0.879 (10)
Ba1—O3Wiii3.105 (4)N3—H2N0.877 (10)
Ba1—O4Wiv3.191 (4)C1—C21.386 (7)
S1—O11.454 (4)C1—C61.406 (7)
S1—O31.460 (4)C2—C31.391 (7)
S1—O21.465 (4)C2—H20.9500
S1—C11.768 (5)C3—C41.397 (7)
S2—O61.448 (4)C3—H30.9500
S2—O51.463 (4)C4—C51.408 (7)
S2—O41.478 (4)C5—C61.385 (7)
S2—C51.788 (5)C6—H60.9500
O4—Ba1v2.753 (4)C7—C81.411 (7)
O5—Ba1vi2.788 (4)C7—C121.412 (7)
O7—C111.379 (6)C8—C91.390 (7)
O7—C141.433 (6)C8—C131.511 (7)
O1W—H1W0.873 (10)C9—C101.400 (7)
O1W—H2W0.873 (10)C9—H90.9500
O2W—H3W0.877 (10)C10—C111.430 (7)
O2W—H4W0.875 (10)C11—C121.361 (7)
O3W—Ba1iv3.105 (4)C12—H120.9500
O3W—H5W0.875 (10)C13—H13A0.9800
O3W—H6W0.876 (10)C13—H13B0.9800
O4W—Ba1iii3.191 (4)C13—H13C0.9800
O4W—H7W0.879 (10)C14—H14A0.9800
O4W—H8W0.878 (10)C14—H14B0.9800
O5W—H9W0.877 (10)C14—H14C0.9800
O5W—H10W0.876 (10)
O2W—Ba1—O1W72.69 (14)H5W—O3W—H6W100 (2)
O2W—Ba1—O4i68.74 (12)Ba1—O4W—Ba1iii119.37 (12)
O1W—Ba1—O4i83.39 (12)Ba1—O4W—H7W116 (4)
O2W—Ba1—O173.66 (13)Ba1iii—O4W—H7W100 (4)
O1W—Ba1—O1146.32 (12)Ba1—O4W—H8W114 (4)
O4i—Ba1—O185.75 (11)Ba1iii—O4W—H8W106 (4)
O2W—Ba1—O5ii63.22 (12)H7W—O4W—H8W99 (2)
O1W—Ba1—O5ii85.47 (12)H9W—O5W—H10W99 (2)
O4i—Ba1—O5ii131.85 (10)H11W—O6W—H12W100 (2)
O1—Ba1—O5ii78.35 (11)N2—N1—C4109.7 (4)
O2W—Ba1—O4W136.43 (13)N1—N2—C7117.5 (4)
O1W—Ba1—O4W74.19 (12)C10—N3—H1N119 (4)
O4i—Ba1—O4W80.10 (11)C10—N3—H2N119 (5)
O1—Ba1—O4W134.80 (11)H1N—N3—H2N120 (6)
O5ii—Ba1—O4W140.16 (11)C2—C1—C6121.0 (5)
O2W—Ba1—O3W146.29 (13)C2—C1—S1121.8 (4)
O1W—Ba1—O3W123.10 (12)C6—C1—S1117.2 (4)
O4i—Ba1—O3W136.99 (11)C1—C2—C3118.8 (5)
O1—Ba1—O3W85.63 (11)C1—C2—H2120.6
O5ii—Ba1—O3W87.04 (11)C3—C2—H2120.6
O4W—Ba1—O3W76.65 (11)C2—C3—C4121.2 (5)
O2W—Ba1—O3Wiii124.26 (12)C2—C3—H3119.4
O1W—Ba1—O3Wiii126.70 (12)C4—C3—H3119.4
O4i—Ba1—O3Wiii64.01 (10)C3—C4—C5119.2 (5)
O1—Ba1—O3Wiii75.02 (10)C3—C4—N1121.7 (5)
O5ii—Ba1—O3Wiii147.67 (10)C5—C4—N1119.1 (4)
O4W—Ba1—O3Wiii60.15 (10)C6—C5—C4119.9 (5)
O3W—Ba1—O3Wiii73.06 (5)C6—C5—S2118.0 (4)
O2W—Ba1—O4Wiv115.49 (11)C4—C5—S2122.0 (4)
O1W—Ba1—O4Wiv67.73 (11)C5—C6—C1119.7 (5)
O4i—Ba1—O4Wiv146.32 (10)C5—C6—H6120.2
O1—Ba1—O4Wiv127.91 (11)C1—C6—H6120.2
O5ii—Ba1—O4Wiv64.82 (10)N2—C7—C8114.9 (4)
O4W—Ba1—O4Wiv75.76 (7)N2—C7—C12124.3 (5)
O3W—Ba1—O4Wiv58.23 (10)C8—C7—C12120.7 (5)
O3Wiii—Ba1—O4Wiv120.18 (10)C9—C8—C7117.9 (5)
O1—S1—O3112.7 (2)C9—C8—C13120.4 (5)
O1—S1—O2113.1 (2)C7—C8—C13121.6 (5)
O3—S1—O2111.7 (2)C8—C9—C10122.6 (5)
O1—S1—C1107.6 (2)C8—C9—H9118.7
O3—S1—C1106.7 (2)C10—C9—H9118.7
O2—S1—C1104.6 (2)N3—C10—C9122.6 (5)
O6—S2—O5113.3 (2)N3—C10—C11119.7 (5)
O6—S2—O4112.7 (2)C9—C10—C11117.7 (5)
O5—S2—O4110.5 (2)C12—C11—O7126.0 (5)
O6—S2—C5107.6 (2)C12—C11—C10121.0 (5)
O5—S2—C5107.7 (2)O7—C11—C10112.9 (4)
O4—S2—C5104.4 (2)C11—C12—C7120.1 (5)
S1—O1—Ba1136.2 (2)C11—C12—H12120.0
S2—O4—Ba1v141.1 (2)C7—C12—H12120.0
S2—O5—Ba1vi146.5 (2)C8—C13—H13A109.5
C11—O7—C14116.4 (4)C8—C13—H13B109.5
Ba1—O1W—H1W137 (3)H13A—C13—H13B109.5
Ba1—O1W—H2W123 (3)C8—C13—H13C109.5
H1W—O1W—H2W101 (2)H13A—C13—H13C109.5
Ba1—O2W—H3W127 (4)H13B—C13—H13C109.5
Ba1—O2W—H4W132 (4)O7—C14—H14A109.5
H3W—O2W—H4W100 (2)O7—C14—H14B109.5
Ba1—O3W—Ba1iv119.27 (12)H14A—C14—H14B109.5
Ba1—O3W—H5W96 (4)O7—C14—H14C109.5
Ba1iv—O3W—H5W116 (4)H14A—C14—H14C109.5
Ba1—O3W—H6W109 (4)H14B—C14—H14C109.5
Ba1iv—O3W—H6W114 (4)
O3—S1—O1—Ba126.9 (4)O4—S2—C5—C61.2 (5)
O2—S1—O1—Ba1100.9 (3)O6—S2—C5—C456.1 (5)
C1—S1—O1—Ba1144.1 (3)O5—S2—C5—C466.4 (5)
O6—S2—O4—Ba1v8.8 (4)O4—S2—C5—C4176.1 (4)
O5—S2—O4—Ba1v136.7 (3)C4—C5—C6—C11.8 (8)
C5—S2—O4—Ba1v107.7 (3)S2—C5—C6—C1176.9 (4)
O6—S2—O5—Ba1vi167.3 (3)C2—C1—C6—C52.6 (8)
O4—S2—O5—Ba1vi65.1 (4)S1—C1—C6—C5173.9 (4)
C5—S2—O5—Ba1vi48.3 (4)N1—N2—C7—C8177.2 (5)
C4—N1—N2—C7175.6 (4)N1—N2—C7—C126.2 (8)
O1—S1—C1—C26.8 (5)N2—C7—C8—C9177.6 (5)
O3—S1—C1—C2127.9 (4)C12—C7—C8—C90.9 (8)
O2—S1—C1—C2113.7 (5)N2—C7—C8—C131.1 (7)
O1—S1—C1—C6176.7 (4)C12—C7—C8—C13177.8 (5)
O3—S1—C1—C655.6 (5)C7—C8—C9—C100.4 (8)
O2—S1—C1—C662.8 (4)C13—C8—C9—C10178.4 (5)
C6—C1—C2—C33.6 (8)C8—C9—C10—N3179.0 (5)
S1—C1—C2—C3172.8 (4)C8—C9—C10—C110.1 (8)
C1—C2—C3—C40.3 (8)C14—O7—C11—C121.8 (8)
C2—C3—C4—C54.0 (8)C14—O7—C11—C10175.4 (5)
C2—C3—C4—N1175.0 (5)N3—C10—C11—C12179.2 (5)
N2—N1—C4—C336.7 (7)C9—C10—C11—C120.0 (8)
N2—N1—C4—C5142.4 (5)N3—C10—C11—O73.4 (8)
C3—C4—C5—C65.0 (8)C9—C10—C11—O7177.4 (5)
N1—C4—C5—C6174.0 (5)O7—C11—C12—C7177.6 (5)
C3—C4—C5—S2179.9 (4)C10—C11—C12—C70.5 (8)
N1—C4—C5—S20.8 (7)N2—C7—C12—C11177.4 (5)
O6—S2—C5—C6118.8 (4)C8—C7—C12—C111.0 (8)
O5—S2—C5—C6118.6 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y1/2, z; (iii) x1/2, y, z+1/2; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O2vii0.88 (1)2.27 (2)3.144 (6)172 (6)
N3—H2N···O6viii0.88 (1)2.28 (5)2.984 (6)138 (6)
O1W—H1W···O2i0.87 (1)2.21 (3)2.987 (5)148 (5)
O1W—H2W···O6Wix0.87 (1)1.92 (2)2.766 (6)161 (6)
O2W—H3W···O6i0.88 (1)2.03 (3)2.772 (6)141 (5)
O2W—H4W···N1ii0.88 (1)2.10 (2)2.948 (6)162 (5)
O3W—H5W···O5Wx0.88 (1)2.04 (3)2.805 (5)145 (4)
O3W—H6W···O5Wiv0.88 (1)1.97 (1)2.833 (6)168 (5)
O4W—H7W···O4ix0.88 (1)2.06 (2)2.901 (5)160 (4)
O4W—H8W···O6Wi0.88 (1)1.87 (2)2.741 (5)171 (5)
O5W—H9W···O20.88 (1)1.97 (3)2.805 (5)158 (6)
O5W—H10W···O5i0.88 (1)2.17 (3)2.917 (5)143 (5)
O6W—H11W···O30.88 (1)1.88 (2)2.737 (5)166 (6)
O6W—H12W···O3iii0.88 (1)1.93 (1)2.800 (6)174 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y1/2, z; (iii) x1/2, y, z+1/2; (iv) x+1/2, y, z+1/2; (vii) x+1, y+1, z; (viii) x+1/2, y+3/2, z; (ix) x+1, y1/2, z+1/2; (x) x+1, y, z.
 

Acknowledgements

The authors thank the UK National Crystallography Service (University of Southampton) for the data collection on (V)[link] and Mrs Margaret Adams (University of Strathclyde) for microanalysis. The CCLRC is thanked for providing a beamtime award at Daresbury SRS and Dystar UK are thanked for providing L3 as the free acid form.

References

First citationAiken, S., Gabbutt, C. D., Gillie, L. J., Heywood, J. D., Jacquemin, D., Rice, C. R. & Heron, B. M. (2013). Eur. J. Org. Chem. 2013, 8097–8107.  CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlack, D. T., Kennedy, A. R. & Lobato, K. M. (2019). Acta Cryst. C75, 633–642.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279–286.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChristie, R. M. & Mackay, J. L. (2008). Coloration Technol. 124, 133–144.  Web of Science CrossRef CAS Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalbraith, H. W., Degering, E. F. & Hitch, E. F. (1951). J. Am. Chem. Soc. 73, 1323–1324.  CrossRef CAS Google Scholar
First citationGreenwood, D., Hutchings, M. G. & Lamble, B. (1986). J. Chem. Soc. Perkin Trans. II, pp. 1107–1114.  CrossRef Google Scholar
First citationHarada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539–3544.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHunger, K., Gregory, P., Meiderer, P., Berneth, H., Heid, C. & Mennicke, W. (2003). Important Chemical Chromophores of Dye Classes, in Industrial Dyes: Chemistry, Properties, Applications, edited by K. Hunge. Weinheim: Wiley-VCH.  Google Scholar
First citationIvashevskaya, S. N., van de Streek, J., Djanhan, J. E., Brüning, J., Alig, E., Bolte, M., Schmidt, M. U., Blaschka, P., Höffken, H. W. & Erk, P. (2009). Acta Cryst. B65, 212–222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494–9504.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662.  CSD CrossRef Google Scholar
First citationKennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, E. W. (2001). J. Chem. Soc. Dalton Trans. pp. 2199–2205.  Web of Science CSD CrossRef Google Scholar
First citationKennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606–4615.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKennedy, A. R., Kirkhouse, J. B. A. & Whyte, L. (2006). Inorg. Chem. 45, 2965–2971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638–640.  CrossRef CAS Google Scholar
First citationKennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064–3069.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLü, J., Gao, S.-Y., Lin, J.-X., Shi, L.-X., Cao, R. & Batten, S. R. (2009). Dalton Trans. pp. 1944–1953.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyano, T., Sakai, T., Hisaki, I., Ichida, H., Kanematsu, Y. & Tohnai, N. (2016). Chem. Commun. 52, 13710–13713.  CSD CrossRef CAS Google Scholar
First citationOjala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994). Acta Cryst. B50, 684–694.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchmidt, M. U., van de Streek, J. & Ivashevskaya, S. N. (2009). Chem. Eur. J. 15, 338–341.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603–14616.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSoegiarto, A. C. & Ward, M. D. (2009). Cryst. Growth Des. 9, 3803–3815.  CSD CrossRef CAS Google Scholar
First citationSoegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204–2219.  Web of Science CSD CrossRef CAS Google Scholar
First citationTapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). Acta Cryst. C76, 716–722.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds