research papers
Structures of five salt forms of disulfonated monoazo dyes
aWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bAdvanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
*Correspondence e-mail: a.r.kennedy@strath.ac.uk
The structures of five s-block metal salt forms of three disulfonated monoazo dyes are presented. These are poly[di-μ-aqua-diaqua[μ4-3,3′-(diazane-1,2-diyl)bis(benzenesulfonato)]disodium(I)], [Na2(C12H8N2O6S2)(H2O)4]n, (I), catena-poly[[tetraaquacalcium(II)]-μ-3,3′-(diazane-1,2-diyl)bis(benzenesulfonato)], [Ca(C12H8N2O6S2)(H2O)4]n, (II), catena-poly[[[diaquacalcium(II)]-μ-2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] dihydrate], {[Na(C12H10N3O6S2)(H2O)2]·2H2O}n, (III), hexaaquamagnesium bis[2-(4-amino-3-sulfonatophenyl)-1-(4-sulfonatophenyl)diazenium] octahydrate, [Mg(H2O)6](C12H10N3O6S2)2·8H2O, (IV), and poly[[{μ2-4-[2-(4-amino-2-methyl-5-methoxyphenyl)diazen-1-yl]benzene-1,3-disulfonato}di-μ-aqua-diaquabarium(II)] dihydrate], {[Ba(C14H13N3O7S2)(H2O)4]·2H2O}n, (V). Compound (III) is that obtained on crystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8]. The Mg species is a solvent-separated ion-pair structure and the others are all coordination polymers with bonds from the metal atoms to sulfonate groups. Compound (I) is a three-dimensional coordination polymer, (V) is a two-dimensional coordination polymer and both (II) and (III) are one-dimensional coordination polymers. The coordination behaviour of the azo ligands and the water ligands, the dimensionality of the coordination polymers and the overall packing motifs of these five structures are contrasted to those of monosulfonate monoazo congers. It is found that (I) and (II) adopt similar structural types to those of monosulfonate species but that the other three structures do not.
Keywords: dyes; salt forms; sulfonates; monoazo; coordination polymers; crystal structure.
1. Introduction
Azo compounds have a long history of use as both dyes and pigments. One of the commonest subclasses is that of sulfonated azo species, where the sulfonate group is typically added to aid water solubility and/or to decrease toxicity (Hunger et al., 2003). Despite being widely referred to as organic colourants, the commercial products of sulfonated azo species are commonly metal complexes and often s-block metal salt forms (Christie & Mackay, 2008). Even before large-scale crystallographic studies were available, it was recognized that small structural changes systematically changed the colour and material properties of such dyestuffs (Greenwood et al., 1986). These structure–property relationships led to an interest in more detailed structural investigations. A reasonable number of crystal structures of the salt forms of monosulfonated azo dyes and even pigments are now known (e.g. Kennedy et al., 2000, 2004, 2009; Tapmeyer et al., 2020; Aiken et al., 2013). However, far fewer relevant structures of disulfonated azo species are known, despite these being commercially commonplace. The only azobenzene-based disulfonate structures that we are aware of are those of azobenzene-4,4′-disulfonate (Soegiarto & Ward, 2009; Soegiarto et al., 2010, 2011). In these structures, the disulfonate ions are utilized as framework hosts for a series of functional organic guests and thus they are not of particular relevance to commercial colourant materials. Some s-block metal salt structures of more complicated disulfonated dyes, with naphthalene- rather than azobenzene-based azo fragments, are also known (e.g. Black et al., 2019; Kennedy et al., 2006; Ojala et al., 1994). The azo moiety in all these examples exists in the hydrazone tautomeric form and in all cases both sulfonate groups lie on only one ring system at one end of the azo bond. The only colourant relevant disulfonate structures with sulfonate groups on both the ring systems, at either end of an azo bond, are the Ca lake structures of Pigment Yellow 183 and Pigment Yellow 191 determined by Schmidt and co-workers (Ivashevskaya et al., 2009; Schmidt et al., 2009). These are relatively complex materials with pyrazolone groups between the two sulfonated aryl rings. Herein we present five new structures of s-block metal salt forms of azobenzene disulfonate derivatives (Scheme 1), namely, [Na2L1(OH2)4]n, (I), and [CaL1(OH2)4]n, (II), where L1 is azobenzene-3,3′-disulfonate; {[NaL2(OH2)2]·2H2O}n, (III), and [Mg(OH2)6][L2]2·8H2O, (IV), where L2 is 4-aminodiazeniumylbenzene-3,4′-disulfonate; and {[BaL3(OH2)4]·2H2O}n (V), where L3 is 4-amino-2-methyl-5-methoxyazobenzene-2′,4′-disulfonate. Structure (III) is notable as it was obtained from recrystallizing the commercial dyestuff Acid Yellow 9 [74543-21-8].
2. Experimental
2.1. Synthesis and crystallization
The Raman spectra of solid samples were measured using a Reinshaw Ramascope 2000 instrument with excitation at 785 nm. IR samples were prepared as KBr discs and spectra were measured using a Nicolet Avatar 360 FT–IR.
The Na salt of azobenzene-3,3′-disulfonate, (I), was produced by the alkaline reduction of 3-nitrobenzenesulfonic acid by glucose (Galbraith et al., 1951). Yellow crystals suitable for analysis were obtained directly from the aqueous reaction mixture. IR (KBr): 1645 (br), 1470, 1419, 1235, 1199, 1107, 1081, 1045, 999, 902, 810, 712, 685, 620, 569, 528 cm−1. Raman: 1477, 1413, 1183, 1163, 1104, 995, 283 cm−1. Microanalysis found (expected) (%): C 31.57 (31.44), H 3.56 (3.53), N 5.90 (6.11), S 13.66 (13.99).
The Ca salt (II) was prepared by adding excess CaCl2 to an aqueous solution of (I). After filtration, the resulting solution deposited yellow–orange crystals of (II) after slow evaporation (four weeks). IR (KBr): 1629, 1465, 1204, 1102, 1076, 1050, 999, 794, 712, 682, 615 cm−1. Raman: 1592, 1420, 1376, 1325, 1198, 1162, 1124, 978, 822, 602, 381, 350, 277 cm−1. The crystals were somewhat hygroscopic and an acceptable microanalysis was not obtained.
The monosodium salt of Acid Yellow 9 was purchased from Sigma–Aldrich and recrystallized from water to give fibrous red crystals of (III). The Mg salt (IV) was prepared by adding an equimolar amount of MgCl2 to an aqueous solution of the monosodium salt of Acid Yellow 9. After filtering off the initial dark precipitate, allowing the remaining solution to evaporate to dryness gave red crystals of (IV). IR (KBr): 1625, 1574, 1528, 1392, 1162, 1008, 879 cm−1.
The free acid equivalent of (V) was provided by Dystar UK. Treatment of an aqueous solution with Ba(OH)2 gave an orange solution. After several attempts, a simple slow evaporation (approximately four weeks) from water gave a few suitable orange crystals of (V).
2.2. Refinement
Crystal data, data collection and structure . Data for (III) were measured at the Daresbury SRS Station 9.8 (Cernik et al., 1997) and for (V), data were measured by the UK National Crystallography Service (Cole & Gale, 2012).
details are summarized in Table 1Disorder models were used for one non-metal-bound water molecule of both (III) and (IV), and also for one SO3 group of (IV). In all cases, a two-site model was used and site-occupancy factors were refined. Suitable restraints and constraints were applied to the bond lengths and displacement parameters of the disordered units to ensure that they displayed approximately normal behaviour.
For all structures, H atoms bound to C atoms were placed in the expected geometric positions and treated in riding mode, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for C—H groups, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3 groups. H atoms bound to N or O atoms were located by difference synthesis and placed accordingly. For (III) and (IV), H atoms bound to N atoms were refined freely and isotropically. For (V), the N—H distances were restrained to 0.88 (1) Å. All water H atoms were restrained such that O—H = 0.88 (1) Å and H⋯H = 1.33 (2) Å. For the water H atoms of (V) and the H atoms of the disordered groups, Uiso values were allowed to ride on the parent O atom and for all other water H atoms, Uiso values were allowed to refine freely.
3. Results and discussion
Previous work on the salt forms of monosulfonated dyes and pigments has shown that many structural features can be predicted from knowledge of the cation identity and the position of the sulfonate group (Kennedy et al., 2009, 2012). With respect to L1 and the metal cations used herein, relevant observations on monosulfonated species with a similar meta relationship between the azo and SO3 groups are as follows. Na structures are expected to feature high-dimensionality coordination polymers with both SO3 and H2O groups bridging between Na centres. However, if metal-to-sulfonate bonds exist at all, then Ca structures should either be nonpolymeric entities or simple one-dimensional polymers with H2O ligands adopting only terminal positions. L2 has both meta and para relationships between its azo and SO3 groups. Again extrapolation from what is known of monosulfonated azo salt forms would suggest that for L2 an Mg species should be a solvent-separated ion-pair structure with no Mg—O3S bonds, whilst Na species should have a high-dimensional coordination polymer structure similar to those predicted for an Na salt of L1 above (Kennedy et al., 2004). In all cases, the overall packing should feature simple alternating layers of hydrophilic groups (e.g. cations, SO3 and H2O) and hydrophobic groups (the aryl azo body of the anions) (Kennedy et al., 2009).
The structure of disulfonate (I) fits well with these predictions from monosulfonates. It is indeed a three-dimensional coordination polymer with both SO3 and H2O groups bridging between metal centres, and it forms a simple layered structure as expected. In more detail, the of (I) contains two separate Na sites, both of which occupy special positions (Na1 sits on a twofold axis and Na2 on a centre of symmetry in the C2/c). It also contains two water ligands and half of an L1 dianion. A crystallographic centre of symmetry is located at the centre of the azo bond, giving a planar dianion with mutually anti SO3 groups (Fig. 1). As can be seen from Table 2, each Na centre is approximately octahedral, with Na1 bonding to two bridging water molecules and to four O atoms of four different L1 dianions. Na2 bonds to two O atoms of two L1 dianions and to four water ligands, two of which form terminal bonds and two of which bridge to Na1 centres. Note that the bond lengths involving Na1 are systematically longer than those of Na2 [ranges 2.4174 (19)–2.5019 (18) and 2.3340 (18)–2.4480 (17) Å for Na1 and Na2, respectively]. The SO3 units each form three bonds to Na centres, one from each O atom. Within the hydrophilic layers, pairs of Na1 centres are linked by eight-membered [NaOSO]2 rings, whilst the Na1 and Na2 centres are linked by six-membered [NaOSONaO] rings, with both bridging sulfonate and water ligands. As can be seen from Fig. 2, the layers expand parallel to the bc plane, with the disulfonate dianions bridging between neighbouring hydrophilic layers to give the overall three-dimensional coordination polymer. The hydrogen-bond details for (I) are given in Table 3.
|
|
The contains half of an L1 dianion, two water ligands and a Ca site. Both the Ca1 site and the centre of the azo N=N bond occupy crystallographic inversion centres. As with (I), this gives a planar dianion with anti SO3 groups and an octahedral metal centre (Fig. 3 and Table 4). Ca1 forms bonds to O atoms from two trans SO3 groups and to four terminal water ligands. Each SO3 group makes a single Ca—O bond and thus the disulfonate dianion links Ca centres into a one-dimensional coordination polymer (Fig. 4). These features combine to give the layered structure shown in Fig. 5. Within the hydrophilic layers, hydrogen bonding between the water ligands and the two noncoordinating O atoms of SO3 link neighbouring coordination chains (Table 5). Thus, structure (II) also follows the rules proposed for monosulfonated azo dye salts. There are Ca—O3S bonds, but these are relatively few in number and, even with the two-headed nature of the disulfonate ligand, they combine to give only a one-dimensional coordination polymer. The H2O ligands take no part in bridging between metal centres and the overall packing motif is one of simple alternating hydrophobic and hydrophilic layers.
of (II)
|
|
Structure (III) was obtained from aqueous recrystallization of the commercial product called `Acid Yellow 9, monosodium salt'. An interesting problem here was to discover the protonation site. The crystal structures of three acidic sulfonated azobenzene-based dyes with amino substituents are known. 4-Aminoazobenzene-4′-sulfonic acid crystallizes with protonation of the amino group, giving an –NH3-bearing zwitterion, whilst the other two known structures crystallize with protonation of the azo N atom furthest from the neutral –NH2 group (Lu et al., 2009; Miyano et al., 2016; Kennedy et al., 2020). The azo group is the commonest protonation site for the free acid forms of sulfonated azo dyes that do not bear a more basic substituent (Kennedy et al., 2001, 2020). The of (III) was found to contain an Na centre, a monoanionic L2 ligand with protonation at azo atom N1, two metal-coordinated water ligands and two non-bound water molecules, one of which is disordered (Fig. 6). Unusually for an Na salt of an aryl sulfonate, only one of the six independent SO3 O atoms is involved in bonding to Na. This Na1—O6 interaction involves the SO3 group meta to the azo bond. Na1 exists in a distorted square-pyramidal and hence five-coordinate environment, where one bond is to a terminal water ligand and the other four bonds (from two water ligands and two SO3 groups) all bridge to neighbouring Na centres (see Table 6 for geometric details). The Na—O bond lengths of (III) [range 2.275 (2)–2.425 (2) Å] are understandably shorter than those of the six-coordinate Na centres of (I). An interesting detail is that in (III) the Na-to-OH2 distances are shorter that the Na-to-SO3 distances. This is the opposite of the case in (I). The one-dimensional coordination polymers in (III) are formed by chains of [Na1—O2W—Na1—O6] rings and propagate parallel to the crystallographic c direction. Each chain is asymmetric, with the L2 anions on one side and the water ligands on the other (Fig. 7). This structure is thus unlike those of the monosulfonated azo Na salts as, despite having an extra potential metal-bonding group in the form of the second SO3 substituent, it does not form a higher-dimensional coordination polymer. A further difference is highlighted by Fig. 8, which shows that (III) is not a simple alternating layer structure. Note the hydrate channels running parallel to c. A reason for this may be that the simple alternate layering seen elsewhere is a function of the azo anions' approximation to linear spacers, with hydrophilic head and tail groups separated by a hydrophobic central region (Kennedy et al., 2009). As L2 is protonated on the azo group, this introduces a hydrophilic group and strong hydrogen-bond donor to the centre of the azo anion. It may be that the need to provide a hydrogen-bond acceptor to this formally charged N—H group is what breaks the otherwise common simple layering motif (Table 7). In this respect, the packing of (III) is more similar to the packing of free acid sulfonated azo structures than it is to the packing of equivalent salt forms (Kennedy et al., 2020).
|
|
All known Mg salt forms of sulfonated azo dyes and pigments are solvent-separated ion pairs, with no direct bond between Mg and SO3 (Kennedy et al., 2006, 2009, 2012). As is shown in Fig. 9, the structure of (IV) is also of this type. Its contains an L2 anion that is protonated at the azo N1 atom, half of an octahedral [Mg(OH2)]6 dication (with Mg1 situated at a crystallographic inversion centre) and four noncoordinated water molecules (Table 8). One of the water molecules and the SO3 group ortho to NH2 are disordered. As shown in the packing diagram (Fig. 10), there are hydrophilic layers that extend parallel to the bc plane. The organic anions lie between these but their azobenzene cores do not form continuous hydrophobic layers – instead water molecules are dispersed within these layers. Thus, rather than true two-dimensional layers, the hydrophobic azobenzene units form stacks parallel to the b direction surrounded by [Mg(OH2)6]2+ ions and water molecules. As with (III) above, the protonation of the azo unit at the centre of the anion appears to mitigate against the simple alternating layer structures seen elsewhere. In both (III) and (IV), the protonated azo group acts as a hydrogen-bond donor to water molecules (see Tables 7 and 9).
|
|
Fig. 11 shows the contents of the of (V) extended to give the complete coordination geometry (Table 10). The consists of an azo dianion, a BaII cation with four coordinated water ligands and two non-bound water molecules. The Ba centre is nonacoordinated, with three bonds to O atoms of SO3 groups and six bonds to water ligands. The Ba—O—Ba bridges all involve water O atoms. Both SO3 groups interact with the Ba atom, with the group ortho to the azo group making two Ba—O bonds and the para SO3 group making one bond. This is notable as ortho SO3 groups are generally unfavourable coordination sites compared to para SO3 groups (Kennedy et al., 2009). As with both L2 structures, here the amino group of L3 takes no part in coordination to the metal atom.
|
Complex (V) forms a two-dimensional coordination polymer. Ba—O—Ba bridges involving the water molecules extend the polymer parallel to the a direction, whilst parallel to the b direction, the polymer propagates through the coordination of the two SO3 groups to give the large [Ba(OH2)4Ba(L3)]2 cyclic structures shown in Fig. 12. The overall packing (Fig. 13) shows a layered structure with hydrophobic and hydrophilic layers parallel to the ab plane. As with (III) and (IV), the amine group of (V) is essentially planar rather than pyramidal. However, it differs by acting as a hydrogen-bond donor to only SO3 groups (Table 11), whilst the amine groups of (III) and (IV) donate hydrogen bonds to both SO3 and water groups. None of the amine groups act as hydrogen-bond acceptors. Azo atom N1 of (V) does act as a hydrogen-bond acceptor from water, as do both azo N atoms of (I), but this is not the case for any of the other azo N atoms, see hydrogen-bond tables for details.
|
The literature on the Ba salt forms of monosulfonated azo dyes predicts structures with no bridging water ligands and with discrete coordination complexes or simple one-dimensional coordination polymers (Kennedy et al., 2004, 2009). Neither prediction is true for disulfonate (V).
For L2, with its protonated azo group, the N=N bond lengths of (III) and (IV) are 1.294 (3) and 1.294 (4) Å, respectively. The N2—C7 bond lengths are also equivalent at 1.341 (3) and 1.342 (4) Å. These values are as expected for a protonated azo unit bound to an aniline fragment and, despite being for an anionic ligand, are close matches to those found for the overall neutral but zwitterionic free acid forms of those monosulfonated azo dyes which also feature protonated azo groups (Kennedy et al., 2020). At 1.256 (3) and 1.432 (2) Å, the N=N and N2—C7 bond lengths of L1 in (II) are clearly much shorter and longer, respectively, than their equivalents in L2. They fit well with the ranges found for the 4,4′ isomer and with those found for monosulfonated azo species with no strong electron-donating ring substituents (Soegiarto et al., 2009, 2010, 2011; Kennedy et al., 2001, 2020). The N=N bond in (I) is 1.262 (4) Å and is thus outside the ranges of the literature structures above; however, the difference is not statistically significant. For (V), the N=N and N2—C7 bond lengths of L3 are intermediate between the lengths reported for L1 and L2 above at 1.277 (6) and 1.393 (6) Å. Such distortions from the expected geometry of azobenzene (Harada & Ogawa, 2004) can be explained by the resonance electron-donating ability of the NH2 group para to the azo group (Kennedy et al., 2020). The values found for dianion L3 are, however, slightly more distorted from the azobenzene base than has been found for metal complexes of related monoanions, such as 4-aminoazobenzene-4′-sulfonate (Kennedy et al., 2004; Lu et al., 2009). A final point about the geometries of the azo species herein is that in (I)–(IV), the azo moiety is essentially planar [range of dihedral angles between ring planes = 0.00 (6)–14.13 (6)°]. In comparison, the dianion of (V) is distinctly twisted [dihedral angle between the ring planes = 34.0 (2)°] and stepped [e.g. atom N2 lies 0.905 (9) Å out of the plane defined by atoms C1–C6].
4. Conclusion
Compounds (I) and (II) both contain the simple disulfonate L1 and both have structures that fit with the structural types seen for equivalent monosulfonate salt species – they give the expected dimensionality coordination polymers in which the bonding roles of water ligands are predictable and their packing structures have the expected alternating layer motifs (Kennedy et al., 2004). However, the other three structures presented herein do not have the same structural features as their monosulfonate cognates. Structures (III) and (IV) both contain the monoanion L2. Neither adopts the expected simple alternating layer structure and Na salt (III) is a one-dimensional coordination polymer rather than the expected two- or three-dimensional coordination polymer. The strong hydrogen-bonding N—H group at the centre of L2 is a feature not seen in other salt structures. This difference gives a rational explanation for the difference in packing behaviour. Finally, the Ba salt of L3, i.e. (V), does give the expected layered packing, but has metal-centre-bridging water ligands and an unexpected two-dimensional rather than a one-dimensional coordination polymer structure. The extra dimensionality of the coordination polymer may simply be related to the extra SO3 group in L3 compared to literature structures, but it is less clear why the coordination role of the water ligands should also change.
Supporting information
https://doi.org/10.1107/S2053229620012735/yf3208sup1.cif
contains datablocks I, II, III, IV, V, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229620012735/yf3208Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2053229620012735/yf3208IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2053229620012735/yf3208IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2053229620012735/yf3208IVsup5.hkl
Structure factors: contains datablock V. DOI: https://doi.org/10.1107/S2053229620012735/yf3208Vsup6.hkl
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (I), (II), (V); SAINT (Bruker, 2012) for (III); CrysAlis PRO (Rigaku OD, 2019) for (IV). Cell
DENZO (Otwinowski & Minor, 1997) for (I), (II), (V); SAINT (Bruker, 2012) for (III); CrysAlis PRO (Rigaku OD, 2019) for (IV). Data reduction: DENZO (Otwinowski & Minor, 1997) for (I), (II), (V); SAINT (Bruker, 2012) for (III); CrysAlis PRO (Rigaku OD, 2019) for (IV). Program(s) used to solve structure: SHELXS (Sheldrick, 2015) for (I), (III); SIR92 (Altomare et al., 1994) for (II), (IV), (V). For all structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2020) and ORTEP-3 (Farrugia, 2012). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) for (I), (II), (IV), (V).[Na2(C12H8N2O6S2)(H2O)4] | F(000) = 944 |
Mr = 458.37 | Dx = 1.694 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 21.2141 (9) Å | Cell parameters from 2025 reflections |
b = 5.5370 (3) Å | θ = 1.0–26.4° |
c = 15.3045 (8) Å | µ = 0.40 mm−1 |
β = 90.310 (2)° | T = 130 K |
V = 1797.68 (16) Å3 | Plate, yellow |
Z = 4 | 0.50 × 0.32 × 0.08 mm |
Nonius KappaCCD diffractometer | Rint = 0.035 |
Radiation source: sealed tube | θmax = 26.6°, θmin = 1.9° |
ω and phi scans | h = 0→26 |
3500 measured reflections | k = −6→6 |
1865 independent reflections | l = −19→19 |
1414 reflections with I > 2σ(I) |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0342P)2 + 3.0179P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1865 reflections | Δρmax = 0.43 e Å−3 |
145 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.09144 (3) | 0.74864 (11) | 0.31076 (4) | 0.01712 (16) | |
Na1 | 0.0000 | 0.2759 (2) | 0.2500 | 0.0219 (3) | |
Na2 | 0.0000 | 0.5000 | 0.5000 | 0.0195 (3) | |
O1 | 0.08204 (8) | 0.5777 (3) | 0.23944 (11) | 0.0253 (4) | |
O2 | 0.05412 (8) | 0.6889 (4) | 0.38656 (11) | 0.0351 (5) | |
O3 | 0.08455 (8) | 0.9976 (3) | 0.28351 (12) | 0.0293 (4) | |
O1W | −0.01637 (9) | 0.1643 (3) | 0.40666 (11) | 0.0237 (4) | |
O2W | −0.08853 (8) | 0.7231 (3) | 0.43599 (11) | 0.0256 (4) | |
N1 | 0.27167 (9) | 0.3035 (3) | 0.47962 (12) | 0.0186 (4) | |
C1 | 0.17132 (11) | 0.7150 (4) | 0.34449 (14) | 0.0157 (5) | |
C2 | 0.18751 (11) | 0.5193 (4) | 0.39621 (15) | 0.0180 (5) | |
H2 | 0.1567 | 0.4030 | 0.4121 | 0.022* | |
C3 | 0.24990 (11) | 0.4954 (4) | 0.42461 (14) | 0.0182 (5) | |
C4 | 0.29542 (11) | 0.6610 (4) | 0.39847 (15) | 0.0196 (5) | |
H4 | 0.3380 | 0.6416 | 0.4168 | 0.023* | |
C5 | 0.27865 (11) | 0.8541 (5) | 0.34576 (15) | 0.0205 (5) | |
H5 | 0.3098 | 0.9664 | 0.3275 | 0.025* | |
C6 | 0.21610 (11) | 0.8837 (4) | 0.31940 (15) | 0.0182 (5) | |
H6 | 0.2042 | 1.0183 | 0.2845 | 0.022* | |
H1W | 0.0172 (9) | 0.076 (5) | 0.399 (2) | 0.066 (12)* | |
H2W | −0.0447 (11) | 0.052 (5) | 0.415 (2) | 0.076 (13)* | |
H3W | −0.0888 (13) | 0.676 (6) | 0.3820 (9) | 0.053 (11)* | |
H4W | −0.1281 (6) | 0.723 (6) | 0.4498 (18) | 0.053 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0161 (3) | 0.0178 (3) | 0.0175 (3) | 0.0025 (3) | 0.0005 (2) | 0.0031 (3) |
Na1 | 0.0230 (7) | 0.0185 (7) | 0.0242 (7) | 0.000 | 0.0003 (5) | 0.000 |
Na2 | 0.0220 (7) | 0.0179 (7) | 0.0185 (7) | 0.0000 (6) | 0.0002 (5) | 0.0003 (6) |
O1 | 0.0213 (9) | 0.0257 (10) | 0.0291 (10) | 0.0017 (8) | −0.0031 (7) | −0.0061 (8) |
O2 | 0.0229 (10) | 0.0565 (14) | 0.0259 (10) | 0.0079 (9) | 0.0063 (8) | 0.0157 (9) |
O3 | 0.0258 (10) | 0.0193 (9) | 0.0425 (11) | 0.0045 (8) | −0.0077 (8) | 0.0058 (8) |
O1W | 0.0255 (10) | 0.0207 (9) | 0.0250 (10) | 0.0017 (8) | 0.0000 (8) | −0.0023 (8) |
O2W | 0.0201 (10) | 0.0336 (11) | 0.0230 (10) | 0.0017 (8) | −0.0005 (7) | 0.0021 (9) |
N1 | 0.0194 (10) | 0.0184 (11) | 0.0181 (10) | 0.0028 (8) | −0.0014 (8) | −0.0002 (8) |
C1 | 0.0161 (11) | 0.0174 (12) | 0.0135 (11) | 0.0023 (10) | 0.0009 (9) | −0.0020 (9) |
C2 | 0.0189 (13) | 0.0157 (12) | 0.0194 (12) | 0.0003 (10) | 0.0022 (9) | 0.0015 (10) |
C3 | 0.0225 (13) | 0.0166 (12) | 0.0155 (11) | 0.0024 (10) | −0.0010 (9) | −0.0001 (10) |
C4 | 0.0170 (12) | 0.0230 (13) | 0.0188 (12) | 0.0011 (10) | −0.0013 (9) | −0.0031 (10) |
C5 | 0.0215 (13) | 0.0201 (12) | 0.0200 (12) | −0.0053 (10) | 0.0015 (10) | −0.0012 (11) |
C6 | 0.0245 (13) | 0.0152 (12) | 0.0149 (11) | 0.0003 (10) | 0.0002 (9) | 0.0006 (10) |
S1—O2 | 1.4464 (18) | Na2—O2W | 2.4480 (17) |
S1—O3 | 1.4474 (18) | Na2—Na1iv | 4.0223 (4) |
S1—O1 | 1.4575 (18) | O3—Na1v | 2.4174 (19) |
S1—C1 | 1.779 (2) | O1W—H1W | 0.871 (10) |
S1—Na1 | 3.3852 (12) | O1W—H2W | 0.872 (10) |
Na1—O3i | 2.4174 (19) | O2W—H3W | 0.867 (10) |
Na1—O3ii | 2.4175 (19) | O2W—H4W | 0.866 (10) |
Na1—O1 | 2.419 (2) | N1—N1vi | 1.262 (4) |
Na1—O1iii | 2.419 (2) | N1—C3 | 1.431 (3) |
Na1—O1Wiii | 2.5019 (18) | C1—C2 | 1.384 (3) |
Na1—O1W | 2.5019 (18) | C1—C6 | 1.388 (3) |
Na1—S1iii | 3.3853 (12) | C2—C3 | 1.397 (3) |
Na1—Na2 | 4.0223 (5) | C2—H2 | 0.9500 |
Na1—Na2iii | 4.0223 (5) | C3—C4 | 1.392 (3) |
Na1—H1W | 2.56 (3) | C4—C5 | 1.384 (3) |
Na2—O2iv | 2.3340 (18) | C4—H4 | 0.9500 |
Na2—O2 | 2.3340 (18) | C5—C6 | 1.395 (3) |
Na2—O1W | 2.3688 (17) | C5—H5 | 0.9500 |
Na2—O1Wiv | 2.3688 (17) | C6—H6 | 0.9500 |
Na2—O2Wiv | 2.4480 (17) | ||
O2—S1—O3 | 113.21 (12) | S1iii—Na1—H1W | 131.1 (4) |
O2—S1—O1 | 112.26 (12) | Na2—Na1—H1W | 44.4 (6) |
O3—S1—O1 | 112.92 (11) | Na2iii—Na1—H1W | 168.6 (3) |
O2—S1—C1 | 105.55 (10) | O2iv—Na2—O2 | 180.0 |
O3—S1—C1 | 106.13 (11) | O2iv—Na2—O1W | 91.49 (7) |
O1—S1—C1 | 106.00 (10) | O2—Na2—O1W | 88.51 (7) |
O2—S1—Na1 | 74.22 (9) | O2iv—Na2—O1Wiv | 88.51 (7) |
O3—S1—Na1 | 126.91 (8) | O2—Na2—O1Wiv | 91.49 (7) |
O1—S1—Na1 | 38.41 (7) | O1W—Na2—O1Wiv | 180.0 |
C1—S1—Na1 | 122.85 (8) | O2iv—Na2—O2Wiv | 81.69 (6) |
O3i—Na1—O3ii | 100.81 (10) | O2—Na2—O2Wiv | 98.30 (6) |
O3i—Na1—O1 | 85.49 (6) | O1W—Na2—O2Wiv | 87.42 (6) |
O3ii—Na1—O1 | 163.62 (6) | O1Wiv—Na2—O2Wiv | 92.58 (6) |
O3i—Na1—O1iii | 163.62 (6) | O2iv—Na2—O2W | 98.31 (6) |
O3ii—Na1—O1iii | 85.49 (6) | O2—Na2—O2W | 81.70 (6) |
O1—Na1—O1iii | 92.59 (9) | O1W—Na2—O2W | 92.58 (6) |
O3i—Na1—O1Wiii | 86.52 (7) | O1Wiv—Na2—O2W | 87.42 (6) |
O3ii—Na1—O1Wiii | 75.28 (6) | O2Wiv—Na2—O2W | 180.0 |
O1—Na1—O1Wiii | 90.17 (6) | O2iv—Na2—Na1 | 124.88 (5) |
O1iii—Na1—O1Wiii | 109.77 (6) | O2—Na2—Na1 | 55.12 (5) |
O3i—Na1—O1W | 75.28 (6) | O1W—Na2—Na1 | 35.41 (5) |
O3ii—Na1—O1W | 86.52 (7) | O1Wiv—Na2—Na1 | 144.59 (5) |
O1—Na1—O1W | 109.77 (6) | O2Wiv—Na2—Na1 | 102.77 (4) |
O1iii—Na1—O1W | 90.17 (6) | O2W—Na2—Na1 | 77.23 (4) |
O1Wiii—Na1—O1W | 151.40 (10) | O2iv—Na2—Na1iv | 55.12 (5) |
O3i—Na1—S1 | 90.64 (4) | O2—Na2—Na1iv | 124.88 (5) |
O3ii—Na1—S1 | 167.03 (6) | O1W—Na2—Na1iv | 144.59 (5) |
O1—Na1—S1 | 21.98 (4) | O1Wiv—Na2—Na1iv | 35.41 (5) |
O1iii—Na1—S1 | 81.88 (5) | O2Wiv—Na2—Na1iv | 77.23 (4) |
O1Wiii—Na1—S1 | 111.83 (5) | O2W—Na2—Na1iv | 102.77 (4) |
O1W—Na1—S1 | 90.57 (5) | Na1—Na2—Na1iv | 180.0 |
O3i—Na1—S1iii | 167.03 (6) | S1—O1—Na1 | 119.61 (10) |
O3ii—Na1—S1iii | 90.64 (4) | S1—O2—Na2 | 166.59 (14) |
O1—Na1—S1iii | 81.88 (5) | S1—O3—Na1v | 137.88 (11) |
O1iii—Na1—S1iii | 21.98 (4) | Na2—O1W—Na1 | 111.31 (8) |
O1Wiii—Na1—S1iii | 90.58 (5) | Na2—O1W—H1W | 114 (2) |
O1W—Na1—S1iii | 111.83 (5) | Na1—O1W—H1W | 84 (2) |
S1—Na1—S1iii | 78.70 (3) | Na2—O1W—H2W | 125 (2) |
O3i—Na1—Na2 | 89.92 (4) | Na1—O1W—H2W | 114 (3) |
O3ii—Na1—Na2 | 113.24 (5) | H1W—O1W—H2W | 101 (2) |
O1—Na1—Na2 | 81.61 (4) | Na2—O2W—H3W | 103 (2) |
O1iii—Na1—Na2 | 73.71 (4) | Na2—O2W—H4W | 130 (2) |
O1Wiii—Na1—Na2 | 171.28 (5) | H3W—O2W—H4W | 103.3 (19) |
O1W—Na1—Na2 | 33.27 (4) | N1vi—N1—C3 | 113.9 (2) |
S1—Na1—Na2 | 60.206 (15) | C2—C1—C6 | 121.1 (2) |
S1iii—Na1—Na2 | 91.13 (2) | C2—C1—S1 | 118.74 (18) |
O3i—Na1—Na2iii | 113.24 (5) | C6—C1—S1 | 120.12 (17) |
O3ii—Na1—Na2iii | 89.92 (4) | C1—C2—C3 | 118.9 (2) |
O1—Na1—Na2iii | 73.71 (4) | C1—C2—H2 | 120.5 |
O1iii—Na1—Na2iii | 81.61 (4) | C3—C2—H2 | 120.5 |
O1Wiii—Na1—Na2iii | 33.27 (4) | C4—C3—C2 | 120.4 (2) |
O1W—Na1—Na2iii | 171.28 (5) | C4—C3—N1 | 115.9 (2) |
S1—Na1—Na2iii | 91.13 (2) | C2—C3—N1 | 123.7 (2) |
S1iii—Na1—Na2iii | 60.207 (15) | C5—C4—C3 | 120.0 (2) |
Na2—Na1—Na2iii | 144.06 (4) | C5—C4—H4 | 120.0 |
O3i—Na1—H1W | 55.5 (3) | C3—C4—H4 | 120.0 |
O3ii—Na1—H1W | 90.9 (7) | C4—C5—C6 | 120.0 (2) |
O1—Na1—H1W | 105.0 (7) | C4—C5—H5 | 120.0 |
O1iii—Na1—H1W | 109.8 (3) | C6—C5—H5 | 120.0 |
O1Wiii—Na1—H1W | 136.7 (5) | C1—C6—C5 | 119.5 (2) |
O1W—Na1—H1W | 19.8 (3) | C1—C6—H6 | 120.2 |
S1—Na1—H1W | 90.6 (7) | C5—C6—H6 | 120.2 |
O2—S1—O1—Na1 | 8.38 (15) | O3—S1—C1—C6 | −17.6 (2) |
O3—S1—O1—Na1 | −121.08 (12) | O1—S1—C1—C6 | 102.7 (2) |
C1—S1—O1—Na1 | 123.13 (11) | Na1—S1—C1—C6 | 140.94 (16) |
O3—S1—O2—Na2 | 167.7 (5) | C6—C1—C2—C3 | 1.2 (3) |
O1—S1—O2—Na2 | 38.4 (5) | S1—C1—C2—C3 | −178.45 (17) |
C1—S1—O2—Na2 | −76.6 (5) | C1—C2—C3—C4 | −2.4 (3) |
Na1—S1—O2—Na2 | 43.8 (5) | C1—C2—C3—N1 | 178.7 (2) |
O2—S1—O3—Na1v | −51.3 (2) | N1vi—N1—C3—C4 | 162.2 (2) |
O1—S1—O3—Na1v | 77.64 (18) | N1vi—N1—C3—C2 | −18.9 (4) |
C1—S1—O3—Na1v | −166.65 (15) | C2—C3—C4—C5 | 1.6 (3) |
Na1—S1—O3—Na1v | 35.9 (2) | N1—C3—C4—C5 | −179.4 (2) |
O2—S1—C1—C2 | 41.6 (2) | C3—C4—C5—C6 | 0.5 (3) |
O3—S1—C1—C2 | 162.04 (18) | C2—C1—C6—C5 | 0.8 (3) |
O1—S1—C1—C2 | −77.7 (2) | S1—C1—C6—C5 | −179.51 (18) |
Na1—S1—C1—C2 | −39.4 (2) | C4—C5—C6—C1 | −1.7 (3) |
O2—S1—C1—C6 | −138.1 (2) |
Symmetry codes: (i) x, y−1, z; (ii) −x, y−1, −z+1/2; (iii) −x, y, −z+1/2; (iv) −x, −y+1, −z+1; (v) x, y+1, z; (vi) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O2Wi | 0.87 (1) | 2.07 (2) | 2.919 (3) | 163 (3) |
O1W—H1W···O2i | 0.87 (1) | 2.29 (2) | 3.044 (3) | 145 (3) |
O1W—H1W···O3i | 0.87 (1) | 2.32 (3) | 3.005 (3) | 136 (3) |
O2W—H3W···O1iii | 0.87 (1) | 1.94 (1) | 2.807 (2) | 175 (3) |
O2W—H4W···N1vii | 0.87 (1) | 2.22 (1) | 3.076 (3) | 168 (3) |
Symmetry codes: (i) x, y−1, z; (iii) −x, y, −z+1/2; (vii) x−1/2, y+1/2, z. |
[Ca(C12H8N2O6S2)(H2O)4] | Z = 1 |
Mr = 452.47 | F(000) = 234 |
Triclinic, P1 | Dx = 1.691 Mg m−3 |
a = 6.3875 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.7470 (2) Å | Cell parameters from 1934 reflections |
c = 11.3030 (5) Å | θ = 1.0–27.5° |
α = 94.289 (2)° | µ = 0.65 mm−1 |
β = 103.160 (2)° | T = 123 K |
γ = 108.456 (2)° | Plate, yellow-orange |
V = 444.21 (3) Å3 | 0.50 × 0.25 × 0.05 mm |
Nonius Kappa CCD diffractometer | Rint = 0.020 |
Radiation source: sealed tube | θmax = 27.6°, θmin = 1.9° |
phi and ω scans | h = −8→8 |
3837 measured reflections | k = −8→8 |
2038 independent reflections | l = −14→14 |
1775 reflections with I > 2σ(I) |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0253P)2 + 0.2861P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2038 reflections | Δρmax = 0.40 e Å−3 |
140 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.5000 | 0.5000 | 0.5000 | 0.01202 (12) | |
S1 | 0.81011 (6) | 0.85257 (6) | 0.30913 (3) | 0.01227 (11) | |
O1 | 0.82484 (19) | 1.06481 (17) | 0.35704 (11) | 0.0180 (3) | |
O2 | 1.03284 (18) | 0.83889 (18) | 0.30803 (10) | 0.0167 (2) | |
O3 | 0.6843 (2) | 0.69091 (18) | 0.37004 (11) | 0.0202 (3) | |
O1W | 0.8574 (2) | 0.5188 (2) | 0.61733 (12) | 0.0230 (3) | |
O2W | 0.5467 (2) | 0.82518 (18) | 0.61047 (12) | 0.0229 (3) | |
N1 | 0.0426 (2) | 0.5479 (2) | −0.03915 (13) | 0.0170 (3) | |
C1 | 0.6455 (3) | 0.7956 (2) | 0.15386 (14) | 0.0125 (3) | |
C2 | 0.4105 (3) | 0.6926 (2) | 0.12544 (15) | 0.0143 (3) | |
H2 | 0.3369 | 0.6498 | 0.1881 | 0.017* | |
C3 | 0.2852 (3) | 0.6534 (2) | 0.00261 (15) | 0.0147 (3) | |
C4 | 0.3926 (3) | 0.7176 (2) | −0.08881 (15) | 0.0165 (3) | |
H4 | 0.3047 | 0.6926 | −0.1719 | 0.020* | |
C5 | 0.6283 (3) | 0.8181 (3) | −0.05911 (15) | 0.0173 (3) | |
H5 | 0.7019 | 0.8592 | −0.1220 | 0.021* | |
C6 | 0.7562 (3) | 0.8584 (2) | 0.06276 (15) | 0.0157 (3) | |
H6 | 0.9173 | 0.9280 | 0.0839 | 0.019* | |
H1W | 0.922 (4) | 0.429 (3) | 0.644 (2) | 0.045 (7)* | |
H2W | 0.973 (3) | 0.635 (2) | 0.630 (2) | 0.057 (8)* | |
H3W | 0.671 (2) | 0.933 (3) | 0.632 (2) | 0.048 (7)* | |
H4W | 0.442 (3) | 0.877 (3) | 0.618 (2) | 0.040 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0106 (2) | 0.0102 (2) | 0.0134 (2) | 0.00197 (16) | 0.00191 (16) | 0.00172 (16) |
S1 | 0.00967 (19) | 0.01111 (19) | 0.01310 (19) | 0.00092 (14) | 0.00129 (14) | 0.00152 (14) |
O1 | 0.0153 (6) | 0.0142 (6) | 0.0206 (6) | 0.0038 (4) | 0.0011 (5) | −0.0032 (5) |
O2 | 0.0114 (5) | 0.0185 (6) | 0.0182 (6) | 0.0048 (4) | 0.0008 (4) | 0.0020 (5) |
O3 | 0.0173 (6) | 0.0215 (6) | 0.0152 (6) | −0.0019 (5) | 0.0021 (5) | 0.0072 (5) |
O1W | 0.0130 (6) | 0.0183 (6) | 0.0330 (7) | 0.0039 (5) | −0.0018 (5) | 0.0069 (5) |
O2W | 0.0156 (6) | 0.0147 (6) | 0.0348 (7) | 0.0022 (5) | 0.0067 (5) | −0.0055 (5) |
N1 | 0.0120 (7) | 0.0160 (7) | 0.0189 (7) | 0.0020 (5) | 0.0006 (5) | 0.0007 (5) |
C1 | 0.0123 (7) | 0.0093 (7) | 0.0142 (7) | 0.0027 (6) | 0.0016 (6) | 0.0014 (6) |
C2 | 0.0126 (7) | 0.0120 (7) | 0.0175 (8) | 0.0036 (6) | 0.0036 (6) | 0.0027 (6) |
C3 | 0.0113 (7) | 0.0120 (7) | 0.0184 (8) | 0.0030 (6) | 0.0012 (6) | 0.0013 (6) |
C4 | 0.0173 (8) | 0.0141 (8) | 0.0143 (8) | 0.0038 (6) | −0.0003 (6) | 0.0004 (6) |
C5 | 0.0176 (8) | 0.0174 (8) | 0.0163 (8) | 0.0044 (6) | 0.0058 (6) | 0.0031 (6) |
C6 | 0.0124 (7) | 0.0128 (7) | 0.0196 (8) | 0.0018 (6) | 0.0035 (6) | 0.0017 (6) |
Ca1—O3 | 2.3050 (11) | O2W—H4W | 0.863 (9) |
Ca1—O3i | 2.3051 (11) | N1—N1ii | 1.256 (3) |
Ca1—O1W | 2.3235 (12) | N1—C3 | 1.432 (2) |
Ca1—O1Wi | 2.3236 (12) | C1—C2 | 1.388 (2) |
Ca1—O2Wi | 2.3385 (12) | C1—C6 | 1.395 (2) |
Ca1—O2W | 2.3385 (12) | C2—C3 | 1.394 (2) |
S1—O3 | 1.4556 (11) | C2—H2 | 0.9500 |
S1—O2 | 1.4573 (12) | C3—C4 | 1.388 (2) |
S1—O1 | 1.4588 (12) | C4—C5 | 1.388 (2) |
S1—C1 | 1.7711 (16) | C4—H4 | 0.9500 |
O1W—H1W | 0.870 (9) | C5—C6 | 1.389 (2) |
O1W—H2W | 0.864 (10) | C5—H5 | 0.9500 |
O2W—H3W | 0.862 (10) | C6—H6 | 0.9500 |
O3—Ca1—O3i | 180.0 | H1W—O1W—H2W | 102.3 (17) |
O3—Ca1—O1W | 87.66 (4) | Ca1—O2W—H3W | 125.5 (15) |
O3i—Ca1—O1W | 92.34 (4) | Ca1—O2W—H4W | 127.9 (15) |
O3—Ca1—O1Wi | 92.34 (4) | H3W—O2W—H4W | 103.9 (17) |
O3i—Ca1—O1Wi | 87.66 (4) | N1ii—N1—C3 | 113.72 (17) |
O1W—Ca1—O1Wi | 180.00 (6) | C2—C1—C6 | 121.50 (14) |
O3—Ca1—O2Wi | 93.07 (4) | C2—C1—S1 | 119.72 (12) |
O3i—Ca1—O2Wi | 86.93 (5) | C6—C1—S1 | 118.78 (12) |
O1W—Ca1—O2Wi | 90.52 (5) | C1—C2—C3 | 118.31 (15) |
O1Wi—Ca1—O2Wi | 89.48 (5) | C1—C2—H2 | 120.8 |
O3—Ca1—O2W | 86.93 (5) | C3—C2—H2 | 120.8 |
O3i—Ca1—O2W | 93.07 (4) | C4—C3—C2 | 120.82 (14) |
O1W—Ca1—O2W | 89.48 (5) | C4—C3—N1 | 115.24 (14) |
O1Wi—Ca1—O2W | 90.52 (5) | C2—C3—N1 | 123.94 (15) |
O2Wi—Ca1—O2W | 180.0 | C3—C4—C5 | 120.17 (15) |
O3—S1—O2 | 112.30 (7) | C3—C4—H4 | 119.9 |
O3—S1—O1 | 112.52 (7) | C5—C4—H4 | 119.9 |
O2—S1—O1 | 112.61 (7) | C4—C5—C6 | 119.87 (15) |
O3—S1—C1 | 105.40 (7) | C4—C5—H5 | 120.1 |
O2—S1—C1 | 106.74 (7) | C6—C5—H5 | 120.1 |
O1—S1—C1 | 106.66 (7) | C5—C6—C1 | 119.31 (14) |
S1—O3—Ca1 | 166.87 (8) | C5—C6—H6 | 120.3 |
Ca1—O1W—H1W | 136.4 (15) | C1—C6—H6 | 120.3 |
Ca1—O1W—H2W | 120.0 (16) | ||
O2—S1—O3—Ca1 | 111.4 (3) | C1—C2—C3—C4 | −0.6 (2) |
O1—S1—O3—Ca1 | −16.9 (4) | C1—C2—C3—N1 | 179.69 (14) |
C1—S1—O3—Ca1 | −132.8 (3) | N1ii—N1—C3—C4 | 165.42 (17) |
O3—S1—C1—C2 | 27.51 (14) | N1ii—N1—C3—C2 | −14.8 (3) |
O2—S1—C1—C2 | 147.11 (12) | C2—C3—C4—C5 | 1.4 (2) |
O1—S1—C1—C2 | −92.29 (13) | N1—C3—C4—C5 | −178.84 (14) |
O3—S1—C1—C6 | −153.27 (13) | C3—C4—C5—C6 | −1.3 (2) |
O2—S1—C1—C6 | −33.67 (14) | C4—C5—C6—C1 | 0.4 (2) |
O1—S1—C1—C6 | 86.93 (13) | C2—C1—C6—C5 | 0.4 (2) |
C6—C1—C2—C3 | −0.3 (2) | S1—C1—C6—C5 | −178.82 (12) |
S1—C1—C2—C3 | 178.88 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O2iii | 0.87 (1) | 2.01 (1) | 2.8521 (17) | 162 (2) |
O1W—H2W···O1iv | 0.86 (1) | 2.00 (1) | 2.8454 (17) | 165 (2) |
O2W—H3W···O2iv | 0.86 (1) | 1.95 (1) | 2.8119 (16) | 174 (2) |
O2W—H4W···O1v | 0.86 (1) | 1.94 (1) | 2.7907 (16) | 168 (2) |
Symmetry codes: (iii) −x+2, −y+1, −z+1; (iv) −x+2, −y+2, −z+1; (v) −x+1, −y+2, −z+1. |
[Na(C12H10N3O6S2)(H2O)2]·2H2O | F(000) = 936 |
Mr = 451.40 | Dx = 1.600 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.6775 Å |
a = 13.9454 (18) Å | Cell parameters from 8092 reflections |
b = 19.517 (3) Å | θ = 1.4–24.3° |
c = 6.9014 (9) Å | µ = 0.32 mm−1 |
β = 93.838 (2)° | T = 150 K |
V = 1874.2 (4) Å3 | Fibre, red |
Z = 4 | 0.50 × 0.01 × 0.01 mm |
APEXII diffractometer | 2772 reflections with I > 2σ(I) |
Radiation source: Station 9.8 Daresbury SRS | Rint = 0.049 |
ω scans | θmax = 24.3°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −16→16 |
Tmin = 0.676, Tmax = 1.000 | k = −23→23 |
15360 measured reflections | l = −8→8 |
3531 independent reflections |
Refinement on F2 | 15 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0583P)2 + 0.7405P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3531 reflections | Δρmax = 0.35 e Å−3 |
311 parameters | Δρmin = −0.44 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Na1 | 0.12675 (8) | 0.22691 (6) | 0.23165 (16) | 0.0383 (3) | |
S1 | −0.39901 (4) | −0.11626 (3) | 0.25342 (9) | 0.02313 (17) | |
S2 | 0.01324 (4) | 0.38021 (3) | 0.06796 (9) | 0.02399 (17) | |
O1 | −0.33121 (14) | −0.14369 (9) | 0.4031 (3) | 0.0352 (5) | |
O2 | −0.49783 (13) | −0.12523 (9) | 0.2974 (3) | 0.0348 (5) | |
O3 | −0.38045 (12) | −0.14348 (8) | 0.0621 (3) | 0.0276 (4) | |
O4 | −0.00470 (13) | 0.42439 (8) | −0.1002 (3) | 0.0295 (4) | |
O5 | 0.06200 (12) | 0.41576 (10) | 0.2293 (3) | 0.0344 (5) | |
O6 | 0.05796 (12) | 0.31539 (9) | 0.0222 (3) | 0.0291 (4) | |
O1W | 0.02623 (18) | 0.15088 (11) | 0.0719 (3) | 0.0463 (5) | |
O2W | 0.23561 (13) | 0.23836 (9) | −0.0156 (3) | 0.0301 (4) | |
O3W | 0.53321 (13) | 0.24230 (9) | 0.4670 (3) | 0.0319 (4) | |
O4W | −0.2986 (10) | 0.5679 (6) | 0.2536 (7) | 0.036 (2) | 0.67 (4) |
H7W | −0.322 (3) | 0.593 (2) | 0.344 (5) | 0.043* | 0.6659 |
H8W | −0.308 (4) | 0.594 (2) | 0.152 (4) | 0.043* | 0.6659 |
O5W | −0.258 (2) | 0.5945 (15) | 0.2586 (13) | 0.043 (6) | 0.33 (4) |
H9W | −0.294 (6) | 0.614 (5) | 0.343 (11) | 0.052* | 0.3341 |
H10W | −0.287 (7) | 0.611 (5) | 0.151 (8) | 0.052* | 0.3341 |
N1 | −0.32011 (15) | 0.18160 (10) | 0.2481 (3) | 0.0226 (4) | |
N2 | −0.23798 (14) | 0.20549 (10) | 0.2029 (3) | 0.0228 (5) | |
N3 | −0.14295 (18) | 0.47735 (11) | 0.1967 (3) | 0.0271 (5) | |
C1 | −0.37563 (17) | −0.02746 (12) | 0.2466 (3) | 0.0210 (5) | |
C2 | −0.45031 (17) | 0.01909 (12) | 0.2548 (4) | 0.0254 (5) | |
H2 | −0.5145 | 0.0034 | 0.2609 | 0.030* | |
C3 | −0.43073 (17) | 0.08833 (12) | 0.2541 (4) | 0.0255 (5) | |
H3 | −0.4813 | 0.1207 | 0.2599 | 0.031* | |
C4 | −0.33685 (18) | 0.11031 (11) | 0.2448 (4) | 0.0222 (5) | |
C5 | −0.26117 (18) | 0.06385 (12) | 0.2347 (4) | 0.0244 (5) | |
H5 | −0.1971 | 0.0796 | 0.2271 | 0.029* | |
C6 | −0.28139 (17) | −0.00534 (12) | 0.2358 (4) | 0.0238 (5) | |
H6 | −0.2310 | −0.0378 | 0.2293 | 0.029* | |
C7 | −0.22223 (17) | 0.27328 (12) | 0.2046 (3) | 0.0205 (5) | |
C8 | −0.12979 (17) | 0.29210 (12) | 0.1488 (3) | 0.0206 (5) | |
H8 | −0.0862 | 0.2573 | 0.1151 | 0.025* | |
C9 | −0.10223 (16) | 0.35880 (12) | 0.1425 (3) | 0.0212 (5) | |
C10 | −0.16655 (17) | 0.41207 (12) | 0.1950 (3) | 0.0215 (5) | |
C11 | −0.26021 (17) | 0.39255 (12) | 0.2479 (4) | 0.0229 (5) | |
H11 | −0.3045 | 0.4271 | 0.2796 | 0.027* | |
C12 | −0.28719 (17) | 0.32635 (12) | 0.2540 (3) | 0.0217 (5) | |
H12 | −0.3496 | 0.3148 | 0.2911 | 0.026* | |
H3N | −0.092 (2) | 0.4909 (17) | 0.164 (5) | 0.047 (10)* | |
H1N | −0.365 (2) | 0.2073 (15) | 0.279 (4) | 0.027 (7)* | |
H2N | −0.184 (2) | 0.5049 (16) | 0.224 (4) | 0.037 (9)* | |
H2W | 0.006 (3) | 0.1202 (15) | 0.153 (5) | 0.103 (17)* | |
H5W | 0.511 (2) | 0.2091 (11) | 0.534 (4) | 0.059 (11)* | |
H3W | 0.2823 (16) | 0.2095 (12) | −0.036 (5) | 0.064 (11)* | |
H4W | 0.2700 (19) | 0.2733 (10) | 0.028 (5) | 0.056 (11)* | |
H6W | 0.4863 (17) | 0.2716 (13) | 0.466 (5) | 0.066 (12)* | |
H1W | 0.046 (3) | 0.1233 (15) | −0.019 (4) | 0.077 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0349 (6) | 0.0465 (7) | 0.0334 (6) | −0.0113 (5) | 0.0016 (5) | 0.0046 (5) |
S1 | 0.0273 (3) | 0.0131 (3) | 0.0294 (4) | −0.0020 (2) | 0.0045 (3) | 0.0000 (2) |
S2 | 0.0222 (3) | 0.0193 (3) | 0.0313 (4) | −0.0031 (2) | 0.0076 (2) | −0.0007 (3) |
O1 | 0.0504 (12) | 0.0183 (9) | 0.0358 (11) | 0.0020 (8) | −0.0061 (9) | 0.0040 (8) |
O2 | 0.0329 (10) | 0.0202 (9) | 0.0530 (12) | −0.0064 (8) | 0.0160 (9) | −0.0027 (9) |
O3 | 0.0337 (10) | 0.0185 (9) | 0.0312 (10) | 0.0008 (7) | 0.0060 (8) | −0.0034 (7) |
O4 | 0.0341 (10) | 0.0196 (9) | 0.0358 (10) | −0.0010 (7) | 0.0108 (8) | 0.0047 (8) |
O5 | 0.0276 (10) | 0.0366 (11) | 0.0392 (11) | −0.0094 (8) | 0.0042 (8) | −0.0066 (9) |
O6 | 0.0257 (9) | 0.0207 (9) | 0.0418 (11) | 0.0020 (7) | 0.0100 (8) | 0.0018 (8) |
O1W | 0.0674 (16) | 0.0345 (12) | 0.0368 (12) | −0.0072 (11) | 0.0022 (11) | 0.0001 (10) |
O2W | 0.0280 (10) | 0.0235 (10) | 0.0390 (11) | 0.0017 (8) | 0.0034 (8) | −0.0046 (8) |
O3W | 0.0327 (11) | 0.0221 (9) | 0.0421 (11) | 0.0030 (8) | 0.0123 (9) | 0.0091 (9) |
O4W | 0.044 (5) | 0.032 (4) | 0.032 (2) | 0.015 (3) | 0.0048 (19) | −0.0011 (18) |
O5W | 0.048 (9) | 0.045 (9) | 0.036 (4) | 0.020 (8) | −0.003 (4) | −0.006 (4) |
N1 | 0.0237 (11) | 0.0151 (10) | 0.0294 (12) | −0.0020 (9) | 0.0046 (9) | 0.0010 (9) |
N2 | 0.0252 (11) | 0.0179 (10) | 0.0252 (11) | −0.0033 (8) | 0.0014 (9) | 0.0011 (8) |
N3 | 0.0262 (12) | 0.0159 (11) | 0.0401 (14) | −0.0010 (10) | 0.0099 (10) | −0.0005 (10) |
C1 | 0.0246 (12) | 0.0139 (11) | 0.0244 (12) | −0.0020 (9) | 0.0017 (10) | 0.0000 (9) |
C2 | 0.0234 (12) | 0.0196 (12) | 0.0331 (14) | −0.0043 (10) | 0.0020 (10) | −0.0012 (10) |
C3 | 0.0240 (13) | 0.0199 (12) | 0.0328 (14) | 0.0020 (10) | 0.0021 (11) | 0.0000 (11) |
C4 | 0.0288 (13) | 0.0139 (11) | 0.0241 (13) | −0.0021 (10) | 0.0023 (10) | 0.0006 (10) |
C5 | 0.0211 (12) | 0.0215 (13) | 0.0309 (14) | −0.0035 (10) | 0.0034 (10) | 0.0011 (11) |
C6 | 0.0224 (12) | 0.0184 (12) | 0.0308 (13) | 0.0023 (9) | 0.0029 (10) | 0.0013 (10) |
C7 | 0.0219 (12) | 0.0161 (12) | 0.0234 (12) | −0.0024 (9) | 0.0005 (10) | −0.0005 (9) |
C8 | 0.0230 (12) | 0.0163 (12) | 0.0225 (12) | 0.0003 (9) | 0.0018 (10) | −0.0006 (9) |
C9 | 0.0202 (12) | 0.0182 (12) | 0.0253 (13) | −0.0015 (9) | 0.0028 (10) | 0.0003 (10) |
C10 | 0.0255 (12) | 0.0165 (12) | 0.0226 (12) | −0.0011 (10) | 0.0013 (10) | 0.0022 (10) |
C11 | 0.0245 (12) | 0.0182 (12) | 0.0264 (13) | 0.0028 (9) | 0.0044 (10) | 0.0006 (10) |
C12 | 0.0204 (12) | 0.0206 (12) | 0.0244 (13) | −0.0013 (9) | 0.0035 (10) | 0.0008 (10) |
Na1—O1W | 2.275 (2) | O5W—H10W | 0.879 (10) |
Na1—O2Wi | 2.335 (2) | N1—N2 | 1.294 (3) |
Na1—O2W | 2.369 (2) | N1—C4 | 1.411 (3) |
Na1—O6 | 2.409 (2) | N1—H1N | 0.84 (3) |
Na1—O6i | 2.425 (2) | N2—C7 | 1.341 (3) |
Na1—Na1ii | 3.5664 (7) | N3—C10 | 1.316 (3) |
Na1—Na1i | 3.5665 (7) | N3—H3N | 0.81 (3) |
Na1—H4W | 2.68 (3) | N3—H2N | 0.82 (3) |
S1—O2 | 1.4415 (18) | C1—C2 | 1.386 (3) |
S1—O1 | 1.4552 (19) | C1—C6 | 1.390 (3) |
S1—O3 | 1.4623 (18) | C2—C3 | 1.379 (3) |
S1—C1 | 1.765 (2) | C2—H2 | 0.9500 |
S2—O5 | 1.4430 (19) | C3—C4 | 1.383 (3) |
S2—O4 | 1.4541 (18) | C3—H3 | 0.9500 |
S2—O6 | 1.4545 (18) | C4—C5 | 1.397 (3) |
S2—C9 | 1.773 (2) | C5—C6 | 1.380 (3) |
O6—Na1ii | 2.425 (2) | C5—H5 | 0.9500 |
O1W—H2W | 0.878 (10) | C6—H6 | 0.9500 |
O1W—H1W | 0.883 (10) | C7—C8 | 1.418 (3) |
O2W—Na1ii | 2.335 (2) | C7—C12 | 1.432 (3) |
O2W—H3W | 0.879 (10) | C8—C9 | 1.359 (3) |
O2W—H4W | 0.876 (10) | C8—H8 | 0.9500 |
O3W—H5W | 0.863 (10) | C9—C10 | 1.435 (3) |
O3W—H6W | 0.869 (10) | C10—C11 | 1.431 (3) |
O4W—H7W | 0.875 (10) | C11—C12 | 1.347 (3) |
O4W—H8W | 0.876 (10) | C11—H11 | 0.9500 |
O5W—H9W | 0.878 (10) | C12—H12 | 0.9500 |
O1W—Na1—O2Wi | 154.18 (9) | Na1ii—O2W—H4W | 110 (2) |
O1W—Na1—O2W | 96.67 (9) | Na1—O2W—H4W | 101 (2) |
O2Wi—Na1—O2W | 95.44 (7) | H3W—O2W—H4W | 99.1 (19) |
O1W—Na1—O6 | 88.23 (8) | H5W—O3W—H6W | 102 (2) |
O2Wi—Na1—O6 | 116.93 (8) | H7W—O4W—H8W | 101 (2) |
O2W—Na1—O6 | 75.46 (7) | H9W—O5W—H10W | 99 (2) |
O1W—Na1—O6i | 85.06 (8) | N2—N1—C4 | 120.0 (2) |
O2Wi—Na1—O6i | 75.79 (7) | N2—N1—H1N | 122.2 (19) |
O2W—Na1—O6i | 159.34 (8) | C4—N1—H1N | 117.8 (19) |
O6—Na1—O6i | 125.20 (8) | N1—N2—C7 | 120.0 (2) |
O1W—Na1—Na1ii | 74.68 (6) | C10—N3—H3N | 123 (2) |
O2Wi—Na1—Na1ii | 127.39 (6) | C10—N3—H2N | 118 (2) |
O2W—Na1—Na1ii | 40.34 (5) | H3N—N3—H2N | 120 (3) |
O6—Na1—Na1ii | 42.63 (5) | C2—C1—C6 | 120.9 (2) |
O6i—Na1—Na1ii | 155.75 (5) | C2—C1—S1 | 120.13 (18) |
O1W—Na1—Na1i | 126.43 (7) | C6—C1—S1 | 118.91 (18) |
O2Wi—Na1—Na1i | 41.06 (5) | C3—C2—C1 | 119.5 (2) |
O2W—Na1—Na1i | 135.61 (6) | C3—C2—H2 | 120.2 |
O6—Na1—Na1i | 111.93 (7) | C1—C2—H2 | 120.2 |
O6i—Na1—Na1i | 42.29 (5) | C2—C3—C4 | 119.5 (2) |
Na1ii—Na1—Na1i | 150.73 (7) | C2—C3—H3 | 120.2 |
O1W—Na1—H4W | 115.1 (4) | C4—C3—H3 | 120.2 |
O2Wi—Na1—H4W | 79.8 (5) | C3—C4—C5 | 121.4 (2) |
O2W—Na1—H4W | 18.8 (4) | C3—C4—N1 | 117.5 (2) |
O6—Na1—H4W | 74.0 (7) | C5—C4—N1 | 121.1 (2) |
O6i—Na1—H4W | 154.1 (6) | C6—C5—C4 | 118.7 (2) |
Na1ii—Na1—H4W | 50.1 (6) | C6—C5—H5 | 120.7 |
Na1i—Na1—H4W | 118.1 (5) | C4—C5—H5 | 120.7 |
O2—S1—O1 | 113.00 (12) | C5—C6—C1 | 119.9 (2) |
O2—S1—O3 | 112.05 (11) | C5—C6—H6 | 120.0 |
O1—S1—O3 | 111.19 (11) | C1—C6—H6 | 120.0 |
O2—S1—C1 | 107.81 (11) | N2—C7—C8 | 113.9 (2) |
O1—S1—C1 | 105.53 (11) | N2—C7—C12 | 127.6 (2) |
O3—S1—C1 | 106.78 (11) | C8—C7—C12 | 118.6 (2) |
O5—S2—O4 | 112.19 (11) | C9—C8—C7 | 121.4 (2) |
O5—S2—O6 | 113.51 (11) | C9—C8—H8 | 119.3 |
O4—S2—O6 | 113.34 (11) | C7—C8—H8 | 119.3 |
O5—S2—C9 | 106.24 (11) | C8—C9—C10 | 120.2 (2) |
O4—S2—C9 | 105.09 (11) | C8—C9—S2 | 119.96 (18) |
O6—S2—C9 | 105.60 (11) | C10—C9—S2 | 119.84 (17) |
S2—O6—Na1 | 130.74 (11) | N3—C10—C11 | 119.2 (2) |
S2—O6—Na1ii | 132.42 (11) | N3—C10—C9 | 122.9 (2) |
Na1—O6—Na1ii | 95.07 (6) | C11—C10—C9 | 117.9 (2) |
Na1—O1W—H2W | 110 (3) | C12—C11—C10 | 121.6 (2) |
Na1—O1W—H1W | 122 (3) | C12—C11—H11 | 119.2 |
H2W—O1W—H1W | 99 (2) | C10—C11—H11 | 119.2 |
Na1ii—O2W—Na1 | 98.59 (8) | C11—C12—C7 | 120.3 (2) |
Na1ii—O2W—H3W | 121 (2) | C11—C12—H12 | 119.9 |
Na1—O2W—H3W | 125 (2) | C7—C12—H12 | 119.9 |
O5—S2—O6—Na1 | 40.72 (16) | C2—C1—C6—C5 | 0.5 (4) |
O4—S2—O6—Na1 | 170.23 (12) | S1—C1—C6—C5 | −178.6 (2) |
C9—S2—O6—Na1 | −75.26 (15) | N1—N2—C7—C8 | −179.0 (2) |
O5—S2—O6—Na1ii | −120.22 (14) | N1—N2—C7—C12 | 0.6 (4) |
O4—S2—O6—Na1ii | 9.30 (18) | N2—C7—C8—C9 | 179.9 (2) |
C9—S2—O6—Na1ii | 123.80 (14) | C12—C7—C8—C9 | 0.3 (4) |
C4—N1—N2—C7 | 179.5 (2) | C7—C8—C9—C10 | 0.7 (4) |
O2—S1—C1—C2 | −8.7 (2) | C7—C8—C9—S2 | −178.92 (18) |
O1—S1—C1—C2 | −129.7 (2) | O5—S2—C9—C8 | −120.0 (2) |
O3—S1—C1—C2 | 111.9 (2) | O4—S2—C9—C8 | 120.9 (2) |
O2—S1—C1—C6 | 170.41 (19) | O6—S2—C9—C8 | 0.8 (2) |
O1—S1—C1—C6 | 49.4 (2) | O5—S2—C9—C10 | 60.4 (2) |
O3—S1—C1—C6 | −69.0 (2) | O4—S2—C9—C10 | −58.7 (2) |
C6—C1—C2—C3 | −0.6 (4) | O6—S2—C9—C10 | −178.80 (19) |
S1—C1—C2—C3 | 178.45 (19) | C8—C9—C10—N3 | 178.1 (2) |
C1—C2—C3—C4 | 0.1 (4) | S2—C9—C10—N3 | −2.2 (3) |
C2—C3—C4—C5 | 0.5 (4) | C8—C9—C10—C11 | −1.7 (3) |
C2—C3—C4—N1 | −178.8 (2) | S2—C9—C10—C11 | 177.93 (18) |
N2—N1—C4—C3 | −166.8 (2) | N3—C10—C11—C12 | −178.1 (2) |
N2—N1—C4—C5 | 13.9 (4) | C9—C10—C11—C12 | 1.7 (4) |
C3—C4—C5—C6 | −0.6 (4) | C10—C11—C12—C7 | −0.8 (4) |
N1—C4—C5—C6 | 178.7 (2) | N2—C7—C12—C11 | −179.8 (2) |
C4—C5—C6—C1 | 0.1 (4) | C8—C7—C12—C11 | −0.3 (4) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3Wiii | 0.84 (3) | 2.10 (3) | 2.878 (3) | 153 (3) |
N3—H2N···O4W | 0.82 (3) | 2.04 (3) | 2.847 (5) | 170 (3) |
N3—H2N···O5W | 0.82 (3) | 2.05 (4) | 2.843 (11) | 163 (3) |
N3—H3N···O4 | 0.81 (3) | 2.60 (3) | 3.084 (3) | 120 (3) |
N3—H3N···O4iv | 0.81 (3) | 2.20 (3) | 2.923 (3) | 150 (3) |
N3—H3N···O5 | 0.81 (3) | 2.61 (3) | 3.095 (3) | 120 (3) |
O1W—H1W···O5ii | 0.88 (1) | 1.93 (2) | 2.773 (3) | 160 (4) |
O1W—H2W···O4i | 0.88 (1) | 1.93 (2) | 2.756 (3) | 157 (4) |
O2W—H3W···O3v | 0.88 (1) | 1.90 (1) | 2.774 (2) | 176 (4) |
O2W—H4W···O1vi | 0.88 (1) | 1.88 (1) | 2.746 (3) | 171 (3) |
O3W—H5W···O2vii | 0.86 (1) | 2.03 (1) | 2.866 (3) | 164 (3) |
O3W—H6W···O3vi | 0.87 (1) | 2.22 (1) | 3.081 (3) | 171 (3) |
O4W—H7W···O3i | 0.88 (1) | 2.02 (1) | 2.887 (5) | 175 (4) |
O4W—H8W···O1ii | 0.88 (1) | 1.97 (1) | 2.846 (5) | 173 (5) |
O5W—H9W···O3i | 0.88 (1) | 2.08 (2) | 2.947 (13) | 170 (10) |
O5W—H10W···O1ii | 0.88 (1) | 1.89 (2) | 2.765 (9) | 171 (10) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (iii) x−1, y, z; (iv) −x, −y+1, −z; (v) −x, −y, −z; (vi) −x, y+1/2, −z+1/2; (vii) −x, −y, −z+1. |
[Mg(H2O)6](C12H10N3O6S2)2·8H2O | F(000) = 2072 |
Mr = 989.23 | Dx = 1.572 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.5418 Å |
a = 36.896 (3) Å | Cell parameters from 1905 reflections |
b = 6.7806 (4) Å | θ = 4.3–73.1° |
c = 17.9140 (12) Å | µ = 3.12 mm−1 |
β = 111.178 (9)° | T = 123 K |
V = 4179.0 (6) Å3 | Long needle, red |
Z = 4 | 0.5 × 0.05 × 0.03 mm |
Oxford Diffraction Gemini S diffractometer | 3287 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.039 |
ω scans | θmax = 73.2°, θmin = 5.0° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2019) | h = −38→45 |
Tmin = 0.572, Tmax = 1.000 | k = −6→8 |
7541 measured reflections | l = −21→15 |
4093 independent reflections |
Refinement on F2 | 110 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0813P)2 + 0.7784P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
4093 reflections | Δρmax = 0.80 e Å−3 |
359 parameters | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mg1 | −0.2500 | 0.2500 | 0.0000 | 0.0176 (3) | |
S1 | −0.19426 (2) | 0.24840 (8) | −0.24675 (4) | 0.01688 (17) | |
O1 | −0.19535 (5) | 0.3776 (3) | −0.31234 (11) | 0.0241 (4) | |
O2 | −0.20622 (5) | 0.0469 (3) | −0.27349 (11) | 0.0228 (4) | |
O3 | −0.21518 (5) | 0.3271 (3) | −0.19768 (11) | 0.0229 (4) | |
O1W | −0.24688 (6) | 0.1251 (3) | −0.10154 (11) | 0.0251 (4) | |
O2W | −0.27304 (6) | 0.5014 (3) | −0.06023 (12) | 0.0281 (4) | |
O3W | −0.30486 (6) | 0.1320 (3) | −0.02226 (12) | 0.0246 (4) | |
O4W | −0.31418 (6) | 0.7439 (3) | 0.00138 (13) | 0.0266 (4) | |
O5W | −0.29954 (6) | 0.7674 (3) | 0.16593 (12) | 0.0236 (4) | |
O6W | −0.39177 (7) | 0.7067 (3) | −0.07645 (14) | 0.0334 (5) | |
O7W | 0.0109 (5) | 0.219 (3) | −0.1575 (12) | 0.0307 (19) | 0.638 (12) |
H13W | 0.0139 (17) | 0.346 (4) | −0.146 (4) | 0.046* | 0.6377 |
H14W | 0.0355 (7) | 0.186 (8) | −0.144 (4) | 0.046* | 0.6377 |
N1 | −0.02640 (7) | 0.2391 (3) | −0.04636 (14) | 0.0204 (5) | |
N2 | −0.01425 (7) | 0.2547 (3) | 0.03076 (14) | 0.0213 (5) | |
N3 | 0.13859 (7) | 0.2773 (4) | 0.22824 (16) | 0.0233 (5) | |
C1 | −0.14448 (8) | 0.2379 (3) | −0.18386 (15) | 0.0168 (5) | |
C2 | −0.13333 (8) | 0.2471 (4) | −0.10121 (16) | 0.0206 (5) | |
H2 | −0.1524 | 0.2538 | −0.0771 | 0.025* | |
C3 | −0.09400 (8) | 0.2462 (4) | −0.05389 (16) | 0.0214 (5) | |
H3 | −0.0858 | 0.2528 | 0.0028 | 0.026* | |
C4 | −0.06672 (8) | 0.2355 (4) | −0.09123 (16) | 0.0196 (5) | |
C5 | −0.07798 (8) | 0.2241 (4) | −0.17404 (17) | 0.0214 (5) | |
H5 | −0.0590 | 0.2161 | −0.1982 | 0.026* | |
C6 | −0.11712 (8) | 0.2245 (4) | −0.22083 (16) | 0.0213 (5) | |
H6 | −0.1253 | 0.2158 | −0.2775 | 0.026* | |
C7 | 0.02395 (8) | 0.2602 (4) | 0.07415 (17) | 0.0204 (5) | |
C8 | 0.03296 (8) | 0.2748 (4) | 0.15798 (17) | 0.0236 (6) | |
H8 | 0.0123 | 0.2806 | 0.1778 | 0.028* | |
C9 | 0.07028 (8) | 0.2807 (4) | 0.21070 (16) | 0.0213 (5) | |
C10 | 0.10190 (8) | 0.2726 (3) | 0.18162 (17) | 0.0191 (5) | |
C11 | 0.09238 (8) | 0.2577 (4) | 0.09611 (17) | 0.0208 (5) | |
H11 | 0.1128 | 0.2518 | 0.0758 | 0.025* | |
C12 | 0.05534 (8) | 0.2519 (4) | 0.04459 (16) | 0.0209 (5) | |
H12 | 0.0499 | 0.2424 | −0.0113 | 0.025* | |
S2 | 0.0782 (2) | 0.2875 (14) | 0.3153 (3) | 0.0256 (5) | 0.638 (12) |
O4 | 0.0564 (3) | 0.1246 (16) | 0.3309 (10) | 0.0390 (19) | 0.638 (12) |
O5 | 0.0628 (3) | 0.4763 (12) | 0.3280 (5) | 0.0439 (16) | 0.638 (12) |
O6 | 0.11985 (18) | 0.2653 (15) | 0.3606 (4) | 0.0542 (18) | 0.638 (12) |
S2A | 0.0753 (4) | 0.300 (3) | 0.3128 (5) | 0.0256 (5) | 0.362 (12) |
O4A | 0.0650 (7) | 0.105 (3) | 0.3300 (19) | 0.0390 (19) | 0.362 (12) |
O5A | 0.0488 (4) | 0.454 (2) | 0.3169 (10) | 0.0439 (16) | 0.362 (12) |
O6A | 0.1150 (3) | 0.362 (3) | 0.3546 (7) | 0.0542 (18) | 0.362 (12) |
O8W | 0.0158 (10) | 0.189 (5) | −0.149 (2) | 0.0307 (19) | 0.362 (12) |
H16W | 0.0210 | 0.3101 | −0.1623 | 0.046* | 0.362 (12) |
H15W | 0.0203 | 0.1197 | −0.1863 | 0.046* | 0.362 (12) |
H2N | 0.1562 (12) | 0.280 (5) | 0.207 (2) | 0.029 (9)* | |
H1N | −0.0114 (12) | 0.226 (5) | −0.072 (3) | 0.034 (10)* | |
H3N | 0.1447 (14) | 0.299 (6) | 0.277 (3) | 0.049 (13)* | |
H3W | −0.2859 (8) | 0.594 (4) | −0.0471 (17) | 0.024 (8)* | |
H1W | −0.2378 (11) | 0.172 (5) | −0.1364 (17) | 0.044 (11)* | |
H9W | −0.2895 (10) | 0.882 (3) | 0.184 (2) | 0.043 (11)* | |
H8W | −0.3098 (11) | 0.729 (6) | 0.0521 (7) | 0.051 (13)* | |
H11W | −0.4034 (11) | 0.606 (3) | −0.105 (2) | 0.052 (13)* | |
H7W | −0.3385 (4) | 0.707 (5) | −0.0197 (19) | 0.033 (10)* | |
H5W | −0.3086 (11) | 0.0055 (18) | −0.021 (2) | 0.046 (11)* | |
H4W | −0.2777 (11) | 0.523 (6) | −0.1107 (9) | 0.051 (12)* | |
H12W | −0.4031 (12) | 0.806 (4) | −0.106 (2) | 0.063 (15)* | |
H6W | −0.3258 (7) | 0.173 (5) | −0.0602 (19) | 0.049 (12)* | |
H2W | −0.2649 (8) | 0.043 (4) | −0.1293 (18) | 0.037 (10)* | |
H10W | −0.2840 (9) | 0.691 (4) | 0.2032 (18) | 0.046 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0180 (6) | 0.0191 (5) | 0.0148 (6) | −0.0012 (4) | 0.0050 (5) | −0.0003 (4) |
S1 | 0.0136 (3) | 0.0195 (3) | 0.0170 (3) | 0.0002 (2) | 0.0048 (2) | 0.0011 (2) |
O1 | 0.0195 (9) | 0.0282 (9) | 0.0237 (9) | 0.0023 (8) | 0.0066 (7) | 0.0069 (8) |
O2 | 0.0192 (9) | 0.0236 (9) | 0.0221 (9) | −0.0023 (7) | 0.0036 (7) | −0.0017 (7) |
O3 | 0.0194 (9) | 0.0272 (9) | 0.0224 (9) | 0.0016 (8) | 0.0079 (7) | 0.0002 (7) |
O1W | 0.0291 (10) | 0.0299 (10) | 0.0183 (9) | −0.0098 (8) | 0.0111 (8) | −0.0059 (8) |
O2W | 0.0354 (11) | 0.0270 (10) | 0.0223 (9) | 0.0094 (9) | 0.0108 (8) | 0.0063 (8) |
O3W | 0.0183 (9) | 0.0268 (9) | 0.0254 (9) | −0.0036 (8) | 0.0038 (7) | −0.0002 (7) |
O4W | 0.0221 (10) | 0.0314 (10) | 0.0263 (10) | −0.0012 (8) | 0.0088 (8) | 0.0004 (8) |
O5W | 0.0195 (9) | 0.0237 (9) | 0.0266 (10) | 0.0000 (7) | 0.0070 (8) | −0.0002 (7) |
O6W | 0.0271 (11) | 0.0371 (11) | 0.0323 (12) | −0.0032 (9) | 0.0064 (9) | −0.0008 (9) |
O7W | 0.020 (5) | 0.042 (6) | 0.029 (4) | 0.008 (3) | 0.008 (3) | 0.006 (3) |
N1 | 0.0168 (11) | 0.0244 (11) | 0.0193 (11) | 0.0004 (8) | 0.0056 (9) | −0.0003 (8) |
N2 | 0.0181 (11) | 0.0248 (10) | 0.0192 (11) | 0.0000 (8) | 0.0048 (9) | −0.0001 (8) |
N3 | 0.0158 (11) | 0.0311 (12) | 0.0223 (12) | −0.0035 (9) | 0.0062 (9) | −0.0025 (9) |
C1 | 0.0151 (12) | 0.0170 (10) | 0.0167 (12) | 0.0009 (9) | 0.0040 (9) | 0.0020 (9) |
C2 | 0.0178 (13) | 0.0255 (12) | 0.0193 (13) | 0.0012 (10) | 0.0077 (10) | 0.0000 (9) |
C3 | 0.0185 (13) | 0.0280 (12) | 0.0161 (12) | −0.0013 (10) | 0.0042 (10) | 0.0007 (9) |
C4 | 0.0175 (12) | 0.0188 (11) | 0.0211 (13) | −0.0007 (9) | 0.0054 (10) | 0.0007 (9) |
C5 | 0.0190 (13) | 0.0239 (12) | 0.0222 (13) | −0.0002 (10) | 0.0087 (11) | 0.0013 (10) |
C6 | 0.0182 (13) | 0.0257 (12) | 0.0193 (12) | 0.0000 (10) | 0.0061 (10) | 0.0003 (9) |
C7 | 0.0178 (13) | 0.0219 (12) | 0.0208 (13) | −0.0016 (10) | 0.0062 (10) | −0.0008 (9) |
C8 | 0.0168 (12) | 0.0324 (13) | 0.0227 (13) | −0.0021 (11) | 0.0086 (10) | −0.0028 (10) |
C9 | 0.0199 (13) | 0.0268 (13) | 0.0185 (12) | −0.0026 (10) | 0.0086 (10) | −0.0021 (9) |
C10 | 0.0167 (12) | 0.0166 (11) | 0.0244 (13) | −0.0013 (9) | 0.0078 (10) | −0.0009 (9) |
C11 | 0.0206 (13) | 0.0201 (11) | 0.0241 (13) | −0.0003 (10) | 0.0111 (11) | 0.0005 (9) |
C12 | 0.0217 (13) | 0.0229 (12) | 0.0188 (12) | −0.0015 (10) | 0.0080 (10) | 0.0001 (9) |
S2 | 0.0164 (10) | 0.0416 (12) | 0.0181 (4) | −0.0034 (8) | 0.0056 (5) | −0.0033 (5) |
O4 | 0.055 (5) | 0.041 (2) | 0.0269 (12) | −0.002 (3) | 0.022 (4) | 0.001 (2) |
O5 | 0.067 (5) | 0.040 (2) | 0.026 (3) | 0.002 (3) | 0.019 (4) | −0.0086 (17) |
O6 | 0.0169 (19) | 0.121 (6) | 0.0188 (15) | 0.003 (3) | −0.0002 (14) | 0.004 (3) |
S2A | 0.0164 (10) | 0.0416 (12) | 0.0181 (4) | −0.0034 (8) | 0.0056 (5) | −0.0033 (5) |
O4A | 0.055 (5) | 0.041 (2) | 0.0269 (12) | −0.002 (3) | 0.022 (4) | 0.001 (2) |
O5A | 0.067 (5) | 0.040 (2) | 0.026 (3) | 0.002 (3) | 0.019 (4) | −0.0086 (17) |
O6A | 0.0169 (19) | 0.121 (6) | 0.0188 (15) | 0.003 (3) | −0.0002 (14) | 0.004 (3) |
O8W | 0.020 (5) | 0.042 (6) | 0.029 (4) | 0.008 (3) | 0.008 (3) | 0.006 (3) |
Mg1—O2Wi | 2.0322 (19) | N3—H3N | 0.84 (5) |
Mg1—O2W | 2.0322 (19) | C1—C2 | 1.388 (4) |
Mg1—O1W | 2.0472 (18) | C1—C6 | 1.396 (4) |
Mg1—O1Wi | 2.0472 (18) | C2—C3 | 1.391 (4) |
Mg1—O3Wi | 2.0769 (19) | C2—H2 | 0.9500 |
Mg1—O3W | 2.0769 (19) | C3—C4 | 1.397 (4) |
S1—O1 | 1.4544 (19) | C3—H3 | 0.9500 |
S1—O2 | 1.4624 (19) | C4—C5 | 1.391 (4) |
S1—O3 | 1.464 (2) | C5—C6 | 1.383 (4) |
S1—C1 | 1.776 (3) | C5—H5 | 0.9500 |
O1W—H1W | 0.867 (10) | C6—H6 | 0.9500 |
O1W—H2W | 0.873 (10) | C7—C8 | 1.419 (4) |
O2W—H3W | 0.868 (10) | C7—C12 | 1.438 (4) |
O2W—H4W | 0.869 (10) | C8—C9 | 1.360 (4) |
O3W—H5W | 0.870 (10) | C8—H8 | 0.9500 |
O3W—H6W | 0.871 (10) | C9—C10 | 1.441 (4) |
O4W—H8W | 0.870 (10) | C9—S2A | 1.775 (9) |
O4W—H7W | 0.874 (10) | C9—S2 | 1.789 (6) |
O5W—H9W | 0.872 (10) | C10—C11 | 1.446 (4) |
O5W—H10W | 0.874 (10) | C11—C12 | 1.345 (4) |
O6W—H11W | 0.868 (10) | C11—H11 | 0.9500 |
O6W—H12W | 0.871 (10) | C12—H12 | 0.9500 |
O7W—H13W | 0.887 (10) | S2—O5 | 1.451 (6) |
O7W—H14W | 0.879 (10) | S2—O4 | 1.452 (6) |
N1—N2 | 1.294 (4) | S2—O6 | 1.465 (6) |
N1—C4 | 1.413 (3) | S2A—O4A | 1.444 (9) |
N1—H1N | 0.84 (4) | S2A—O5A | 1.445 (9) |
N2—C7 | 1.342 (4) | S2A—O6A | 1.445 (9) |
N3—C10 | 1.309 (4) | O8W—H16W | 0.8927 |
N3—H2N | 0.87 (4) | O8W—H15W | 0.8807 |
O2Wi—Mg1—O2W | 180.0 | C3—C2—H2 | 120.3 |
O2Wi—Mg1—O1W | 88.72 (8) | C2—C3—C4 | 118.8 (3) |
O2W—Mg1—O1W | 91.28 (8) | C2—C3—H3 | 120.6 |
O2Wi—Mg1—O1Wi | 91.28 (8) | C4—C3—H3 | 120.6 |
O2W—Mg1—O1Wi | 88.72 (8) | C5—C4—C3 | 121.6 (3) |
O1W—Mg1—O1Wi | 180.0 | C5—C4—N1 | 117.1 (3) |
O2Wi—Mg1—O3Wi | 91.69 (8) | C3—C4—N1 | 121.3 (2) |
O2W—Mg1—O3Wi | 88.31 (8) | C6—C5—C4 | 119.4 (3) |
O1W—Mg1—O3Wi | 88.07 (8) | C6—C5—H5 | 120.3 |
O1Wi—Mg1—O3Wi | 91.93 (8) | C4—C5—H5 | 120.3 |
O2Wi—Mg1—O3W | 88.31 (8) | C5—C6—C1 | 119.2 (3) |
O2W—Mg1—O3W | 91.69 (8) | C5—C6—H6 | 120.4 |
O1W—Mg1—O3W | 91.93 (8) | C1—C6—H6 | 120.4 |
O1Wi—Mg1—O3W | 88.07 (8) | N2—C7—C8 | 114.2 (2) |
O3Wi—Mg1—O3W | 180.0 | N2—C7—C12 | 127.1 (3) |
O1—S1—O2 | 112.39 (12) | C8—C7—C12 | 118.7 (3) |
O1—S1—O3 | 113.50 (12) | C9—C8—C7 | 121.9 (3) |
O2—S1—O3 | 112.04 (12) | C9—C8—H8 | 119.1 |
O1—S1—C1 | 104.89 (11) | C7—C8—H8 | 119.1 |
O2—S1—C1 | 106.91 (11) | C8—C9—C10 | 119.8 (2) |
O3—S1—C1 | 106.42 (12) | C8—C9—S2A | 114.8 (5) |
Mg1—O1W—H1W | 130 (2) | C10—C9—S2A | 125.4 (5) |
Mg1—O1W—H2W | 120 (2) | C8—C9—S2 | 117.9 (3) |
H1W—O1W—H2W | 104 (2) | C10—C9—S2 | 122.2 (3) |
Mg1—O2W—H3W | 129 (2) | N3—C10—C9 | 123.7 (3) |
Mg1—O2W—H4W | 125 (2) | N3—C10—C11 | 118.5 (3) |
H3W—O2W—H4W | 104 (2) | C9—C10—C11 | 117.8 (2) |
Mg1—O3W—H5W | 122 (3) | C12—C11—C10 | 121.8 (3) |
Mg1—O3W—H6W | 124 (3) | C12—C11—H11 | 119.1 |
H5W—O3W—H6W | 103 (2) | C10—C11—H11 | 119.1 |
H8W—O4W—H7W | 101 (2) | C11—C12—C7 | 120.0 (3) |
H9W—O5W—H10W | 100 (2) | C11—C12—H12 | 120.0 |
H11W—O6W—H12W | 103 (2) | C7—C12—H12 | 120.0 |
H13W—O7W—H14W | 99 (2) | O5—S2—O4 | 111.5 (7) |
N2—N1—C4 | 119.8 (2) | O5—S2—O6 | 113.3 (6) |
N2—N1—H1N | 123 (3) | O4—S2—O6 | 111.0 (7) |
C4—N1—H1N | 117 (3) | O5—S2—C9 | 105.2 (6) |
N1—N2—C7 | 120.5 (2) | O4—S2—C9 | 106.9 (8) |
C10—N3—H2N | 119 (3) | O6—S2—C9 | 108.6 (5) |
C10—N3—H3N | 120 (3) | O4A—S2A—O5A | 114.5 (14) |
H2N—N3—H3N | 120 (4) | O4A—S2A—O6A | 116.7 (15) |
C2—C1—C6 | 121.5 (2) | O5A—S2A—O6A | 110.1 (11) |
C2—C1—S1 | 121.0 (2) | O4A—S2A—C9 | 102.3 (15) |
C6—C1—S1 | 117.5 (2) | O5A—S2A—C9 | 106.6 (10) |
C1—C2—C3 | 119.4 (3) | O6A—S2A—C9 | 105.3 (9) |
C1—C2—H2 | 120.3 | H16W—O8W—H15W | 100.0 |
C4—N1—N2—C7 | −179.3 (2) | C7—C8—C9—S2 | −177.1 (4) |
O1—S1—C1—C2 | 137.8 (2) | C8—C9—C10—N3 | −179.9 (3) |
O2—S1—C1—C2 | −102.7 (2) | S2A—C9—C10—N3 | 0.6 (8) |
O3—S1—C1—C2 | 17.3 (2) | S2—C9—C10—N3 | −2.8 (5) |
O1—S1—C1—C6 | −40.8 (2) | C8—C9—C10—C11 | −0.2 (4) |
O2—S1—C1—C6 | 78.7 (2) | S2A—C9—C10—C11 | −179.6 (7) |
O3—S1—C1—C6 | −161.37 (19) | S2—C9—C10—C11 | 177.0 (4) |
C6—C1—C2—C3 | 1.1 (4) | N3—C10—C11—C12 | 180.0 (3) |
S1—C1—C2—C3 | −177.5 (2) | C9—C10—C11—C12 | 0.2 (4) |
C1—C2—C3—C4 | −0.2 (4) | C10—C11—C12—C7 | −0.1 (4) |
C2—C3—C4—C5 | −0.5 (4) | N2—C7—C12—C11 | −179.5 (3) |
C2—C3—C4—N1 | 178.4 (2) | C8—C7—C12—C11 | 0.1 (4) |
N2—N1—C4—C5 | 178.2 (2) | C8—C9—S2—O5 | −66.3 (6) |
N2—N1—C4—C3 | −0.8 (4) | C10—C9—S2—O5 | 116.5 (5) |
C3—C4—C5—C6 | 0.4 (4) | C8—C9—S2—O4 | 52.3 (7) |
N1—C4—C5—C6 | −178.6 (2) | C10—C9—S2—O4 | −124.9 (6) |
C4—C5—C6—C1 | 0.5 (4) | C8—C9—S2—O6 | 172.1 (5) |
C2—C1—C6—C5 | −1.2 (4) | C10—C9—S2—O6 | −5.1 (8) |
S1—C1—C6—C5 | 177.4 (2) | C8—C9—S2A—O4A | 73.9 (12) |
N1—N2—C7—C8 | −179.2 (2) | C10—C9—S2A—O4A | −106.6 (11) |
N1—N2—C7—C12 | 0.5 (4) | C8—C9—S2A—O5A | −46.7 (12) |
N2—C7—C8—C9 | 179.6 (3) | C10—C9—S2A—O5A | 132.8 (9) |
C12—C7—C8—C9 | −0.1 (4) | C8—C9—S2A—O6A | −163.7 (9) |
C7—C8—C9—C10 | 0.1 (4) | C10—C9—S2A—O6A | 15.8 (13) |
C7—C8—C9—S2A | 179.7 (7) |
Symmetry code: (i) −x−1/2, −y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O7W | 0.84 (4) | 1.99 (5) | 2.80 (2) | 164 (4) |
N1—H1N···O8W | 0.84 (4) | 2.00 (6) | 2.83 (4) | 170 (4) |
N3—H2N···O5Wii | 0.87 (4) | 2.02 (4) | 2.881 (3) | 174 (4) |
N3—H3N···O6 | 0.84 (5) | 2.03 (5) | 2.700 (7) | 137 (4) |
N3—H3N···O6A | 0.84 (5) | 2.10 (5) | 2.763 (14) | 136 (4) |
O1W—H1W···O3 | 0.87 (1) | 1.92 (1) | 2.769 (3) | 167 (3) |
O1W—H2W···O1iii | 0.87 (1) | 1.84 (1) | 2.714 (3) | 177 (4) |
O2W—H3W···O4W | 0.87 (1) | 1.88 (1) | 2.727 (3) | 165 (3) |
O2W—H4W···O2iv | 0.87 (1) | 1.95 (1) | 2.812 (3) | 173 (4) |
O3W—H5W···O4Wv | 0.87 (1) | 1.85 (1) | 2.707 (3) | 169 (4) |
O3W—H6W···O6vi | 0.87 (1) | 2.04 (2) | 2.897 (6) | 169 (4) |
O3W—H6W···O6Avi | 0.87 (1) | 2.18 (2) | 2.983 (11) | 153 (3) |
O4W—H8W···O5W | 0.87 (1) | 1.95 (2) | 2.803 (3) | 166 (4) |
O4W—H7W···O6W | 0.87 (1) | 1.86 (1) | 2.706 (3) | 162 (3) |
O5W—H10W···O2i | 0.87 (1) | 2.16 (3) | 2.829 (3) | 133 (3) |
O5W—H9W···O3vii | 0.87 (1) | 1.99 (1) | 2.820 (3) | 160 (3) |
O5W—H10W···O3viii | 0.87 (1) | 2.52 (3) | 3.251 (3) | 141 (3) |
O6W—H11W···O4vi | 0.87 (1) | 2.17 (2) | 3.028 (13) | 167 (4) |
O6W—H11W···O4Avi | 0.87 (1) | 1.94 (3) | 2.81 (2) | 174 (4) |
O6W—H12W···O5ix | 0.87 (1) | 2.02 (2) | 2.878 (8) | 170 (5) |
O6W—H12W···O5Aix | 0.87 (1) | 2.43 (2) | 3.276 (14) | 163 (4) |
O6W—H12W···O6Aix | 0.87 (1) | 2.52 (3) | 3.220 (17) | 139 (4) |
O7W—H13W···O5x | 0.89 (1) | 2.35 (6) | 2.89 (2) | 119 (5) |
O7W—H14W···O6Wii | 0.88 (1) | 2.52 (3) | 3.354 (18) | 159 (5) |
O7W—H14W···O4xi | 0.88 (1) | 2.35 (5) | 2.92 (2) | 123 (4) |
O8W—H16W···O5Ax | 0.89 | 2.01 | 2.87 (4) | 163 |
O8W—H15W···O4Axi | 0.88 | 2.18 | 2.81 (4) | 128 |
Symmetry codes: (i) −x−1/2, −y+1/2, −z; (ii) x+1/2, y−1/2, z; (iii) −x−1/2, y−1/2, −z−1/2; (iv) −x−1/2, y+1/2, −z−1/2; (v) x, y−1, z; (vi) x−1/2, −y+1/2, z−1/2; (vii) −x−1/2, −y+3/2, −z; (viii) x, −y+1, z+1/2; (ix) x−1/2, −y+3/2, z−1/2; (x) x, −y+1, z−1/2; (xi) x, −y, z−1/2. |
[Ba(C14H13N3O7S2)(H2O)4]·2H2O | Dx = 1.835 Mg m−3 |
Mr = 644.83 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 4623 reflections |
a = 7.1293 (4) Å | θ = 1.0–26.0° |
b = 18.8368 (11) Å | µ = 1.95 mm−1 |
c = 34.752 (2) Å | T = 123 K |
V = 4667.0 (5) Å3 | Elongated rhomb, orange |
Z = 8 | 0.25 × 0.10 × 0.04 mm |
F(000) = 2576 |
Nonius KappaCCD diffractometer | 3554 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.037 |
ω and phi scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −8→8 |
Tmin = 0.448, Tmax = 0.743 | k = −23→23 |
7914 measured reflections | l = −42→42 |
4489 independent reflections |
Refinement on F2 | 20 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0229P)2 + 26.8527P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
4489 reflections | Δρmax = 1.65 e Å−3 |
344 parameters | Δρmin = −1.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.46936 (4) | 0.13398 (2) | 0.19569 (2) | 0.01523 (10) | |
S1 | 0.3700 (2) | 0.33522 (7) | 0.17263 (4) | 0.0177 (3) | |
S2 | 0.52454 (19) | 0.61085 (6) | 0.14177 (4) | 0.0142 (3) | |
O1 | 0.4242 (6) | 0.26422 (18) | 0.16056 (11) | 0.0235 (9) | |
O2 | 0.1747 (6) | 0.35234 (19) | 0.16343 (11) | 0.0229 (9) | |
O3 | 0.4127 (6) | 0.34897 (18) | 0.21305 (10) | 0.0225 (9) | |
O4 | 0.3983 (5) | 0.60937 (18) | 0.17551 (10) | 0.0178 (8) | |
O5 | 0.7040 (5) | 0.64361 (18) | 0.15189 (10) | 0.0174 (8) | |
O6 | 0.4375 (5) | 0.64224 (18) | 0.10819 (10) | 0.0183 (8) | |
O7 | 0.9268 (6) | 0.76192 (18) | −0.01184 (10) | 0.0229 (9) | |
O1W | 0.5033 (6) | −0.0101 (2) | 0.18560 (12) | 0.0291 (10) | |
H1W | 0.457 (8) | −0.042 (2) | 0.1701 (13) | 0.035* | |
H2W | 0.569 (8) | −0.037 (2) | 0.2011 (13) | 0.035* | |
O2W | 0.4366 (6) | 0.1078 (3) | 0.11948 (12) | 0.0328 (10) | |
H3W | 0.338 (5) | 0.115 (3) | 0.1049 (13) | 0.039* | |
H4W | 0.510 (6) | 0.086 (3) | 0.1030 (13) | 0.039* | |
O3W | 0.6687 (6) | 0.21189 (19) | 0.25537 (11) | 0.0227 (9) | |
H5W | 0.710 (7) | 0.2458 (19) | 0.2404 (13) | 0.027* | |
H6W | 0.588 (6) | 0.236 (2) | 0.2692 (13) | 0.027* | |
O4W | 0.3374 (6) | 0.0719 (2) | 0.26436 (11) | 0.0225 (9) | |
H7W | 0.415 (7) | 0.072 (3) | 0.2841 (11) | 0.027* | |
H8W | 0.320 (8) | 0.0258 (8) | 0.2628 (14) | 0.027* | |
O5W | −0.1119 (6) | 0.2702 (2) | 0.19632 (11) | 0.0238 (9) | |
H9W | −0.046 (7) | 0.305 (2) | 0.1861 (13) | 0.029* | |
H10W | −0.145 (8) | 0.248 (2) | 0.1752 (8) | 0.029* | |
O6W | 0.2298 (6) | 0.42869 (19) | 0.26713 (11) | 0.0238 (9) | |
H11W | 0.274 (7) | 0.405 (2) | 0.2472 (11) | 0.029* | |
H12W | 0.136 (6) | 0.401 (2) | 0.2733 (15) | 0.029* | |
N1 | 0.7484 (6) | 0.5510 (2) | 0.07400 (12) | 0.0155 (9) | |
N2 | 0.7400 (6) | 0.5290 (2) | 0.03926 (12) | 0.0168 (10) | |
N3 | 0.9314 (8) | 0.7070 (3) | −0.08174 (14) | 0.0250 (11) | |
C1 | 0.5036 (7) | 0.3964 (3) | 0.14543 (14) | 0.0158 (11) | |
C2 | 0.6185 (8) | 0.3746 (3) | 0.11551 (15) | 0.0182 (12) | |
H2 | 0.6392 | 0.3255 | 0.1108 | 0.022* | |
C3 | 0.7031 (8) | 0.4258 (3) | 0.09250 (15) | 0.0183 (12) | |
H3 | 0.7817 | 0.4113 | 0.0719 | 0.022* | |
C4 | 0.6745 (8) | 0.4981 (3) | 0.09918 (15) | 0.0158 (11) | |
C5 | 0.5678 (8) | 0.5194 (3) | 0.13124 (15) | 0.0161 (11) | |
C6 | 0.4806 (8) | 0.4688 (3) | 0.15396 (14) | 0.0155 (11) | |
H6 | 0.4055 | 0.4830 | 0.1752 | 0.019* | |
C7 | 0.7944 (7) | 0.5760 (3) | 0.01038 (14) | 0.0146 (11) | |
C8 | 0.7904 (7) | 0.5476 (3) | −0.02719 (15) | 0.0152 (11) | |
C9 | 0.8361 (8) | 0.5924 (3) | −0.05756 (15) | 0.0175 (11) | |
H9 | 0.8346 | 0.5738 | −0.0830 | 0.021* | |
C10 | 0.8843 (8) | 0.6637 (3) | −0.05219 (15) | 0.0195 (12) | |
C11 | 0.8853 (8) | 0.6905 (3) | −0.01369 (16) | 0.0182 (11) | |
C12 | 0.8409 (7) | 0.6479 (3) | 0.01663 (15) | 0.0167 (11) | |
H12 | 0.8412 | 0.6666 | 0.0420 | 0.020* | |
C13 | 0.7344 (8) | 0.4715 (3) | −0.03471 (16) | 0.0202 (12) | |
H13A | 0.7096 | 0.4651 | −0.0622 | 0.030* | |
H13B | 0.6210 | 0.4602 | −0.0200 | 0.030* | |
H13C | 0.8364 | 0.4398 | −0.0268 | 0.030* | |
C14 | 0.9168 (9) | 0.7942 (3) | 0.02544 (16) | 0.0244 (13) | |
H14A | 0.7913 | 0.7869 | 0.0363 | 0.037* | |
H14B | 0.9418 | 0.8452 | 0.0232 | 0.037* | |
H14C | 1.0105 | 0.7725 | 0.0424 | 0.037* | |
H1N | 0.911 (9) | 0.693 (3) | −0.1055 (7) | 0.033 (18)* | |
H2N | 0.955 (10) | 0.7519 (12) | −0.077 (2) | 0.05 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.01377 (17) | 0.01302 (15) | 0.01890 (16) | −0.00088 (13) | −0.00011 (13) | 0.00011 (12) |
S1 | 0.0207 (7) | 0.0111 (6) | 0.0214 (7) | −0.0017 (5) | 0.0025 (6) | 0.0020 (5) |
S2 | 0.0126 (6) | 0.0110 (6) | 0.0189 (6) | −0.0004 (5) | 0.0005 (5) | 0.0001 (5) |
O1 | 0.032 (2) | 0.0110 (18) | 0.028 (2) | 0.0017 (17) | 0.0066 (18) | 0.0012 (15) |
O2 | 0.020 (2) | 0.0161 (19) | 0.033 (2) | −0.0035 (16) | 0.0008 (17) | 0.0027 (16) |
O3 | 0.029 (2) | 0.0173 (19) | 0.021 (2) | −0.0021 (17) | 0.0030 (18) | 0.0021 (15) |
O4 | 0.0154 (19) | 0.0146 (17) | 0.023 (2) | 0.0081 (15) | 0.0013 (16) | −0.0002 (15) |
O5 | 0.015 (2) | 0.0111 (17) | 0.026 (2) | −0.0021 (15) | −0.0007 (16) | −0.0024 (15) |
O6 | 0.017 (2) | 0.0131 (18) | 0.0248 (19) | −0.0044 (16) | 0.0016 (16) | 0.0037 (14) |
O7 | 0.030 (2) | 0.0142 (18) | 0.025 (2) | −0.0047 (17) | 0.0030 (18) | 0.0011 (15) |
O1W | 0.033 (3) | 0.018 (2) | 0.036 (2) | 0.0001 (19) | −0.010 (2) | −0.0025 (16) |
O2W | 0.016 (2) | 0.056 (3) | 0.026 (2) | 0.007 (2) | −0.0030 (18) | −0.015 (2) |
O3W | 0.023 (2) | 0.0203 (19) | 0.025 (2) | −0.0029 (18) | 0.0034 (18) | 0.0010 (16) |
O4W | 0.025 (2) | 0.0181 (19) | 0.024 (2) | 0.0009 (18) | 0.0006 (18) | 0.0034 (16) |
O5W | 0.025 (2) | 0.020 (2) | 0.026 (2) | −0.0054 (17) | 0.003 (2) | −0.0012 (17) |
O6W | 0.024 (2) | 0.0178 (19) | 0.029 (2) | −0.0046 (18) | 0.0048 (18) | −0.0031 (16) |
N1 | 0.014 (2) | 0.015 (2) | 0.018 (2) | −0.0014 (18) | 0.0011 (19) | 0.0009 (17) |
N2 | 0.015 (2) | 0.016 (2) | 0.019 (2) | −0.0005 (19) | −0.0007 (19) | 0.0003 (18) |
N3 | 0.032 (3) | 0.019 (2) | 0.024 (3) | −0.002 (2) | 0.002 (2) | 0.001 (2) |
C1 | 0.015 (3) | 0.013 (2) | 0.020 (3) | −0.001 (2) | −0.003 (2) | 0.003 (2) |
C2 | 0.022 (3) | 0.013 (3) | 0.020 (3) | 0.002 (2) | 0.001 (2) | −0.001 (2) |
C3 | 0.020 (3) | 0.016 (3) | 0.018 (3) | 0.003 (2) | 0.003 (2) | −0.002 (2) |
C4 | 0.015 (3) | 0.015 (3) | 0.018 (3) | −0.001 (2) | 0.000 (2) | −0.001 (2) |
C5 | 0.018 (3) | 0.011 (2) | 0.019 (3) | −0.003 (2) | −0.004 (2) | 0.0013 (19) |
C6 | 0.014 (3) | 0.017 (3) | 0.015 (2) | −0.002 (2) | 0.000 (2) | −0.0015 (19) |
C7 | 0.009 (3) | 0.018 (3) | 0.017 (3) | 0.004 (2) | 0.001 (2) | 0.002 (2) |
C8 | 0.007 (3) | 0.016 (3) | 0.023 (3) | 0.002 (2) | 0.001 (2) | 0.000 (2) |
C9 | 0.016 (3) | 0.018 (3) | 0.018 (3) | 0.004 (2) | 0.001 (2) | −0.001 (2) |
C10 | 0.013 (3) | 0.025 (3) | 0.021 (3) | 0.001 (2) | 0.000 (2) | 0.002 (2) |
C11 | 0.016 (3) | 0.013 (2) | 0.026 (3) | 0.002 (2) | −0.002 (2) | 0.001 (2) |
C12 | 0.012 (3) | 0.019 (3) | 0.019 (3) | 0.003 (2) | −0.002 (2) | −0.004 (2) |
C13 | 0.019 (3) | 0.016 (3) | 0.025 (3) | 0.001 (2) | 0.000 (2) | −0.002 (2) |
C14 | 0.030 (4) | 0.014 (3) | 0.029 (3) | 0.001 (2) | 0.003 (3) | −0.003 (2) |
Ba1—O2W | 2.704 (4) | O6W—H11W | 0.878 (10) |
Ba1—O1W | 2.747 (4) | O6W—H12W | 0.876 (10) |
Ba1—O4i | 2.753 (4) | N1—N2 | 1.277 (6) |
Ba1—O1 | 2.759 (4) | N1—C4 | 1.426 (6) |
Ba1—O5ii | 2.788 (4) | N2—C7 | 1.393 (6) |
Ba1—O4W | 2.819 (4) | N3—C10 | 1.354 (7) |
Ba1—O3W | 2.911 (4) | N3—H1N | 0.879 (10) |
Ba1—O3Wiii | 3.105 (4) | N3—H2N | 0.877 (10) |
Ba1—O4Wiv | 3.191 (4) | C1—C2 | 1.386 (7) |
S1—O1 | 1.454 (4) | C1—C6 | 1.406 (7) |
S1—O3 | 1.460 (4) | C2—C3 | 1.391 (7) |
S1—O2 | 1.465 (4) | C2—H2 | 0.9500 |
S1—C1 | 1.768 (5) | C3—C4 | 1.397 (7) |
S2—O6 | 1.448 (4) | C3—H3 | 0.9500 |
S2—O5 | 1.463 (4) | C4—C5 | 1.408 (7) |
S2—O4 | 1.478 (4) | C5—C6 | 1.385 (7) |
S2—C5 | 1.788 (5) | C6—H6 | 0.9500 |
O4—Ba1v | 2.753 (4) | C7—C8 | 1.411 (7) |
O5—Ba1vi | 2.788 (4) | C7—C12 | 1.412 (7) |
O7—C11 | 1.379 (6) | C8—C9 | 1.390 (7) |
O7—C14 | 1.433 (6) | C8—C13 | 1.511 (7) |
O1W—H1W | 0.873 (10) | C9—C10 | 1.400 (7) |
O1W—H2W | 0.873 (10) | C9—H9 | 0.9500 |
O2W—H3W | 0.877 (10) | C10—C11 | 1.430 (7) |
O2W—H4W | 0.875 (10) | C11—C12 | 1.361 (7) |
O3W—Ba1iv | 3.105 (4) | C12—H12 | 0.9500 |
O3W—H5W | 0.875 (10) | C13—H13A | 0.9800 |
O3W—H6W | 0.876 (10) | C13—H13B | 0.9800 |
O4W—Ba1iii | 3.191 (4) | C13—H13C | 0.9800 |
O4W—H7W | 0.879 (10) | C14—H14A | 0.9800 |
O4W—H8W | 0.878 (10) | C14—H14B | 0.9800 |
O5W—H9W | 0.877 (10) | C14—H14C | 0.9800 |
O5W—H10W | 0.876 (10) | ||
O2W—Ba1—O1W | 72.69 (14) | H5W—O3W—H6W | 100 (2) |
O2W—Ba1—O4i | 68.74 (12) | Ba1—O4W—Ba1iii | 119.37 (12) |
O1W—Ba1—O4i | 83.39 (12) | Ba1—O4W—H7W | 116 (4) |
O2W—Ba1—O1 | 73.66 (13) | Ba1iii—O4W—H7W | 100 (4) |
O1W—Ba1—O1 | 146.32 (12) | Ba1—O4W—H8W | 114 (4) |
O4i—Ba1—O1 | 85.75 (11) | Ba1iii—O4W—H8W | 106 (4) |
O2W—Ba1—O5ii | 63.22 (12) | H7W—O4W—H8W | 99 (2) |
O1W—Ba1—O5ii | 85.47 (12) | H9W—O5W—H10W | 99 (2) |
O4i—Ba1—O5ii | 131.85 (10) | H11W—O6W—H12W | 100 (2) |
O1—Ba1—O5ii | 78.35 (11) | N2—N1—C4 | 109.7 (4) |
O2W—Ba1—O4W | 136.43 (13) | N1—N2—C7 | 117.5 (4) |
O1W—Ba1—O4W | 74.19 (12) | C10—N3—H1N | 119 (4) |
O4i—Ba1—O4W | 80.10 (11) | C10—N3—H2N | 119 (5) |
O1—Ba1—O4W | 134.80 (11) | H1N—N3—H2N | 120 (6) |
O5ii—Ba1—O4W | 140.16 (11) | C2—C1—C6 | 121.0 (5) |
O2W—Ba1—O3W | 146.29 (13) | C2—C1—S1 | 121.8 (4) |
O1W—Ba1—O3W | 123.10 (12) | C6—C1—S1 | 117.2 (4) |
O4i—Ba1—O3W | 136.99 (11) | C1—C2—C3 | 118.8 (5) |
O1—Ba1—O3W | 85.63 (11) | C1—C2—H2 | 120.6 |
O5ii—Ba1—O3W | 87.04 (11) | C3—C2—H2 | 120.6 |
O4W—Ba1—O3W | 76.65 (11) | C2—C3—C4 | 121.2 (5) |
O2W—Ba1—O3Wiii | 124.26 (12) | C2—C3—H3 | 119.4 |
O1W—Ba1—O3Wiii | 126.70 (12) | C4—C3—H3 | 119.4 |
O4i—Ba1—O3Wiii | 64.01 (10) | C3—C4—C5 | 119.2 (5) |
O1—Ba1—O3Wiii | 75.02 (10) | C3—C4—N1 | 121.7 (5) |
O5ii—Ba1—O3Wiii | 147.67 (10) | C5—C4—N1 | 119.1 (4) |
O4W—Ba1—O3Wiii | 60.15 (10) | C6—C5—C4 | 119.9 (5) |
O3W—Ba1—O3Wiii | 73.06 (5) | C6—C5—S2 | 118.0 (4) |
O2W—Ba1—O4Wiv | 115.49 (11) | C4—C5—S2 | 122.0 (4) |
O1W—Ba1—O4Wiv | 67.73 (11) | C5—C6—C1 | 119.7 (5) |
O4i—Ba1—O4Wiv | 146.32 (10) | C5—C6—H6 | 120.2 |
O1—Ba1—O4Wiv | 127.91 (11) | C1—C6—H6 | 120.2 |
O5ii—Ba1—O4Wiv | 64.82 (10) | N2—C7—C8 | 114.9 (4) |
O4W—Ba1—O4Wiv | 75.76 (7) | N2—C7—C12 | 124.3 (5) |
O3W—Ba1—O4Wiv | 58.23 (10) | C8—C7—C12 | 120.7 (5) |
O3Wiii—Ba1—O4Wiv | 120.18 (10) | C9—C8—C7 | 117.9 (5) |
O1—S1—O3 | 112.7 (2) | C9—C8—C13 | 120.4 (5) |
O1—S1—O2 | 113.1 (2) | C7—C8—C13 | 121.6 (5) |
O3—S1—O2 | 111.7 (2) | C8—C9—C10 | 122.6 (5) |
O1—S1—C1 | 107.6 (2) | C8—C9—H9 | 118.7 |
O3—S1—C1 | 106.7 (2) | C10—C9—H9 | 118.7 |
O2—S1—C1 | 104.6 (2) | N3—C10—C9 | 122.6 (5) |
O6—S2—O5 | 113.3 (2) | N3—C10—C11 | 119.7 (5) |
O6—S2—O4 | 112.7 (2) | C9—C10—C11 | 117.7 (5) |
O5—S2—O4 | 110.5 (2) | C12—C11—O7 | 126.0 (5) |
O6—S2—C5 | 107.6 (2) | C12—C11—C10 | 121.0 (5) |
O5—S2—C5 | 107.7 (2) | O7—C11—C10 | 112.9 (4) |
O4—S2—C5 | 104.4 (2) | C11—C12—C7 | 120.1 (5) |
S1—O1—Ba1 | 136.2 (2) | C11—C12—H12 | 120.0 |
S2—O4—Ba1v | 141.1 (2) | C7—C12—H12 | 120.0 |
S2—O5—Ba1vi | 146.5 (2) | C8—C13—H13A | 109.5 |
C11—O7—C14 | 116.4 (4) | C8—C13—H13B | 109.5 |
Ba1—O1W—H1W | 137 (3) | H13A—C13—H13B | 109.5 |
Ba1—O1W—H2W | 123 (3) | C8—C13—H13C | 109.5 |
H1W—O1W—H2W | 101 (2) | H13A—C13—H13C | 109.5 |
Ba1—O2W—H3W | 127 (4) | H13B—C13—H13C | 109.5 |
Ba1—O2W—H4W | 132 (4) | O7—C14—H14A | 109.5 |
H3W—O2W—H4W | 100 (2) | O7—C14—H14B | 109.5 |
Ba1—O3W—Ba1iv | 119.27 (12) | H14A—C14—H14B | 109.5 |
Ba1—O3W—H5W | 96 (4) | O7—C14—H14C | 109.5 |
Ba1iv—O3W—H5W | 116 (4) | H14A—C14—H14C | 109.5 |
Ba1—O3W—H6W | 109 (4) | H14B—C14—H14C | 109.5 |
Ba1iv—O3W—H6W | 114 (4) | ||
O3—S1—O1—Ba1 | 26.9 (4) | O4—S2—C5—C6 | 1.2 (5) |
O2—S1—O1—Ba1 | −100.9 (3) | O6—S2—C5—C4 | 56.1 (5) |
C1—S1—O1—Ba1 | 144.1 (3) | O5—S2—C5—C4 | −66.4 (5) |
O6—S2—O4—Ba1v | 8.8 (4) | O4—S2—C5—C4 | 176.1 (4) |
O5—S2—O4—Ba1v | 136.7 (3) | C4—C5—C6—C1 | 1.8 (8) |
C5—S2—O4—Ba1v | −107.7 (3) | S2—C5—C6—C1 | 176.9 (4) |
O6—S2—O5—Ba1vi | −167.3 (3) | C2—C1—C6—C5 | 2.6 (8) |
O4—S2—O5—Ba1vi | 65.1 (4) | S1—C1—C6—C5 | −173.9 (4) |
C5—S2—O5—Ba1vi | −48.3 (4) | N1—N2—C7—C8 | 177.2 (5) |
C4—N1—N2—C7 | 175.6 (4) | N1—N2—C7—C12 | −6.2 (8) |
O1—S1—C1—C2 | 6.8 (5) | N2—C7—C8—C9 | 177.6 (5) |
O3—S1—C1—C2 | 127.9 (4) | C12—C7—C8—C9 | 0.9 (8) |
O2—S1—C1—C2 | −113.7 (5) | N2—C7—C8—C13 | −1.1 (7) |
O1—S1—C1—C6 | −176.7 (4) | C12—C7—C8—C13 | −177.8 (5) |
O3—S1—C1—C6 | −55.6 (5) | C7—C8—C9—C10 | −0.4 (8) |
O2—S1—C1—C6 | 62.8 (4) | C13—C8—C9—C10 | 178.4 (5) |
C6—C1—C2—C3 | −3.6 (8) | C8—C9—C10—N3 | 179.0 (5) |
S1—C1—C2—C3 | 172.8 (4) | C8—C9—C10—C11 | −0.1 (8) |
C1—C2—C3—C4 | 0.3 (8) | C14—O7—C11—C12 | −1.8 (8) |
C2—C3—C4—C5 | 4.0 (8) | C14—O7—C11—C10 | 175.4 (5) |
C2—C3—C4—N1 | −175.0 (5) | N3—C10—C11—C12 | −179.2 (5) |
N2—N1—C4—C3 | 36.7 (7) | C9—C10—C11—C12 | 0.0 (8) |
N2—N1—C4—C5 | −142.4 (5) | N3—C10—C11—O7 | 3.4 (8) |
C3—C4—C5—C6 | −5.0 (8) | C9—C10—C11—O7 | −177.4 (5) |
N1—C4—C5—C6 | 174.0 (5) | O7—C11—C12—C7 | 177.6 (5) |
C3—C4—C5—S2 | −179.9 (4) | C10—C11—C12—C7 | 0.5 (8) |
N1—C4—C5—S2 | −0.8 (7) | N2—C7—C12—C11 | −177.4 (5) |
O6—S2—C5—C6 | −118.8 (4) | C8—C7—C12—C11 | −1.0 (8) |
O5—S2—C5—C6 | 118.6 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+3/2, y−1/2, z; (iii) x−1/2, y, −z+1/2; (iv) x+1/2, y, −z+1/2; (v) −x+1/2, y+1/2, z; (vi) −x+3/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N···O2vii | 0.88 (1) | 2.27 (2) | 3.144 (6) | 172 (6) |
N3—H2N···O6viii | 0.88 (1) | 2.28 (5) | 2.984 (6) | 138 (6) |
O1W—H1W···O2i | 0.87 (1) | 2.21 (3) | 2.987 (5) | 148 (5) |
O1W—H2W···O6Wix | 0.87 (1) | 1.92 (2) | 2.766 (6) | 161 (6) |
O2W—H3W···O6i | 0.88 (1) | 2.03 (3) | 2.772 (6) | 141 (5) |
O2W—H4W···N1ii | 0.88 (1) | 2.10 (2) | 2.948 (6) | 162 (5) |
O3W—H5W···O5Wx | 0.88 (1) | 2.04 (3) | 2.805 (5) | 145 (4) |
O3W—H6W···O5Wiv | 0.88 (1) | 1.97 (1) | 2.833 (6) | 168 (5) |
O4W—H7W···O4ix | 0.88 (1) | 2.06 (2) | 2.901 (5) | 160 (4) |
O4W—H8W···O6Wi | 0.88 (1) | 1.87 (2) | 2.741 (5) | 171 (5) |
O5W—H9W···O2 | 0.88 (1) | 1.97 (3) | 2.805 (5) | 158 (6) |
O5W—H10W···O5i | 0.88 (1) | 2.17 (3) | 2.917 (5) | 143 (5) |
O6W—H11W···O3 | 0.88 (1) | 1.88 (2) | 2.737 (5) | 166 (6) |
O6W—H12W···O3iii | 0.88 (1) | 1.93 (1) | 2.800 (6) | 174 (5) |
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+3/2, y−1/2, z; (iii) x−1/2, y, −z+1/2; (iv) x+1/2, y, −z+1/2; (vii) −x+1, −y+1, −z; (viii) x+1/2, −y+3/2, −z; (ix) −x+1, y−1/2, −z+1/2; (x) x+1, y, z. |
Acknowledgements
The authors thank the UK National Crystallography Service (University of Southampton) for the data collection on (V) and Mrs Margaret Adams (University of Strathclyde) for microanalysis. The CCLRC is thanked for providing a beamtime award at Daresbury SRS and Dystar UK are thanked for providing L3 as the free acid form.
References
Aiken, S., Gabbutt, C. D., Gillie, L. J., Heywood, J. D., Jacquemin, D., Rice, C. R. & Heron, B. M. (2013). Eur. J. Org. Chem. 2013, 8097–8107. CSD CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Black, D. T., Kennedy, A. R. & Lobato, K. M. (2019). Acta Cryst. C75, 633–642. CSD CrossRef IUCr Journals Google Scholar
Bruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279–286. CrossRef CAS Web of Science IUCr Journals Google Scholar
Christie, R. M. & Mackay, J. L. (2008). Coloration Technol. 124, 133–144. Web of Science CrossRef CAS Google Scholar
Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galbraith, H. W., Degering, E. F. & Hitch, E. F. (1951). J. Am. Chem. Soc. 73, 1323–1324. CrossRef CAS Google Scholar
Greenwood, D., Hutchings, M. G. & Lamble, B. (1986). J. Chem. Soc. Perkin Trans. II, pp. 1107–1114. CrossRef Google Scholar
Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539–3544. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hunger, K., Gregory, P., Meiderer, P., Berneth, H., Heid, C. & Mennicke, W. (2003). Important Chemical Chromophores of Dye Classes, in Industrial Dyes: Chemistry, Properties, Applications, edited by K. Hunge. Weinheim: Wiley-VCH. Google Scholar
Ivashevskaya, S. N., van de Streek, J., Djanhan, J. E., Brüning, J., Alig, E., Bolte, M., Schmidt, M. U., Blaschka, P., Höffken, H. W. & Erk, P. (2009). Acta Cryst. B65, 212–222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). Chem. Eur. J. 15, 9494–9504. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, article No. 662. CSD CrossRef Google Scholar
Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, E. W. (2001). J. Chem. Soc. Dalton Trans. pp. 2199–2205. Web of Science CSD CrossRef Google Scholar
Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606–4615. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kennedy, A. R., Kirkhouse, J. B. A. & Whyte, L. (2006). Inorg. Chem. 45, 2965–2971. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638–640. CrossRef CAS Google Scholar
Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064–3069. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lü, J., Gao, S.-Y., Lin, J.-X., Shi, L.-X., Cao, R. & Batten, S. R. (2009). Dalton Trans. pp. 1944–1953. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miyano, T., Sakai, T., Hisaki, I., Ichida, H., Kanematsu, Y. & Tohnai, N. (2016). Chem. Commun. 52, 13710–13713. CSD CrossRef CAS Google Scholar
Ojala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994). Acta Cryst. B50, 684–694. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Schmidt, M. U., van de Streek, J. & Ivashevskaya, S. N. (2009). Chem. Eur. J. 15, 338–341. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603–14616. Web of Science CSD CrossRef CAS PubMed Google Scholar
Soegiarto, A. C. & Ward, M. D. (2009). Cryst. Growth Des. 9, 3803–3815. CSD CrossRef CAS Google Scholar
Soegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204–2219. Web of Science CSD CrossRef CAS Google Scholar
Tapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). Acta Cryst. C76, 716–722. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.