research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(E)-4-Bromo-2-[(phenyl­imino)­meth­yl]phenol: a new poly­morph and thermochromism

aDepartment of Chemistry, Durham University, South Road, Durham DH1 3LE, England, and bSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England
*Correspondence e-mail: hazel.sparkes@bristol.ac.uk

Edited by M. Yousufuddin, University of North Texas at Dallas, USA (Received 31 July 2020; accepted 24 August 2020; online 8 October 2020)

A new poly­morph of (E)-4-bromo-2-[(phenyl­imino)­meth­yl]phenol, C13H10BrNO, is reported, together with a low-temperature structure determination of the previously published poly­morph. Both poly­morphs were found to have an intra­molecular O—H⋯N hydrogen bond between the phenol OH group and the imine N atom, forming an S(6) ring. The crystals were observed to have different colours at room temperature, with the previously published poly­morph being more orange and the new poly­morph more yellow. The planarity of the mol­ecule in the two poly­morphs was found to be significantly different, with dihedral angles (Φ) between the two aromatic rings for the previously published `orange' poly­morph of Φ = 1.8 (2)° at 120 K, while the new `yellow' poly­morph had Φ = 45.6 (1)° at 150 K. It was also observed that both poly­morphs displayed some degree of thermochromism and upon cooling the `orange' poly­morph became more yellow, while the `yellow' poly­morph became paler upon cooling.

1. Introduction

A wide range of N-salicylideneanilines, Schiff bases of salicyl­aldehyde derivatives with aniline derivatives, have been synthesized (Özek et al., 2007[Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.]; Johmoto et al., 2012[Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297-304.]). The N-salicylideneaniline derivatives are inter­esting as they have generally been found to display thermochromism, with some also showing photochromism in the solid state (Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]; Fujiwara et al., 2004[Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.]). The mechanism for the chromic colour change is believed to be due to a keto–enol tautomerism (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). The keto form is coloured, while the enol form is colourless and the switch can be induced either by changes in temperature or by irradiation. A link has been proposed between the thermochromic behaviour of a com­pound and the dihedral angle (Φ) between the two aromatic rings, with those having Φ < 25° being more likely to be strongly thermochromic (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). A larger interplanar angle allows increased orbital overlap and greater delocalization into the π-system, which reduces the basicity of the N atom and thus the thermochromism. The effect of substituents on the OH bond strength, nitro­gen-accepting ability and crystal packing have also been postulated as important in the chromic behaviour of the N-salicylideneanilines (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). It has also been observed that, in general, the N-salicylideneanilines that are more strongly coloured, typically red/orange, at room temperature, tend to be more strongly thermochromic than those that are paler, typically yellow, at room temperature (Ogawa et al., 2001[Ogawa, K., Harada, J., Fujiwara, T. & Yoshida, S. (2001). J. Phys. Chem. A, 105, 3425-3427.]; Fujiwara et al., 2009[Fujiwara, T., Harada, J. & Ogawa, K. (2009). J. Phys. Chem. A, 113, 1822-1826.]).

The structures of (E)-4-halogeno-2-[(phenyl­imino)­meth­yl]phenol have been reported for fluoro (Swetha et al., 2017[Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). IUCrData, 2, x171671.]), chloro (Bregman et al., 1964[Bregman, J., Leiserowitz, L. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2068-2085.]; Ogawa et al., 1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]), bromo (Yan et al., 2014[Yan, X.-X., Lu, L. & Zhu, M. (2014). Acta Cryst. E70, o853.]) and iodo (Swetha et al., 2019[Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2019). IUCrData, 4, x190788.]). Herein a new poly­morph of (E)-4-bromo-2-[(phenyl­imino)­meth­yl]phenol, denoted 1B, is reported together with a new low-temperature determination of the previously reported poly­morph, 1A (Yan et al., 2014[Yan, X.-X., Lu, L. & Zhu, M. (2014). Acta Cryst. E70, o853.]). Both poly­morphs were found to be thermochromic to some extent.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

(E)-4-Bromo-2-[(phenyl­imino)­meth­yl]phenol was synthesized by direct condensation of 5-bromo­salicyl­aldehyde and aniline in ethanol. The two materials (0.005 mol of each, 1.000 g of 5-bromo­salicyl­aldehyde and 0.466 g of aniline) were dissolved separately in ethanol (25 ml). The resultant solutions were combined and refluxed with stirring for 4 h. After removal of any precipitate, the solution was rotary evaporated until further precipitate formed, the solid filtered off, rinsed with ethanol and left to dry, giving a yield of 94% (1.304 g, 0.0047 mol). Yellow single crystals (of 1B) crashed out of the crude reaction mixture and orange single crystals (of 1A) were produced by recrystallization from ethanol.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms, apart from the OH hydrogen involved in the intra­molecular hydrogen bonding with the imine N atom, were positioned geometrically and refined using a riding model. The H atoms involved in the intra­molecular hydrogen bond were located in the Fourier difference map wherever feasible. In 1A, the O—H distance was restrained to 0.86 (1) Å.

Table 1
Experimental details

For both structures: C13H10BrNO, Mr = 276.13, Z = 4. Experiments were carried out with Mo Kα radiation using an Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra) diffractometer. An analytical absorption correction [CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] was used. Refinement was with 2 restraints. H atoms were treated by a mixture of independent and constrained refinement.

  Polymorph 1A Polymorph 1B
Crystal data
Crystal system, space group Orthorhombic, Pca21 Monoclinic, Cc
Temperature (K) 120 150
a, b, c (Å) 12.2768 (3), 4.4829 (1), 19.6694 (4) 25.8944 (13), 6.9439 (4), 6.1499 (4)
α, β, γ (°) 90, 90, 90 90, 91.381 (5), 90
V3) 1082.52 (4) 1105.48 (11)
μ (mm−1) 3.77 3.69
Crystal size (mm) 0.46 × 0.20 × 0.05 0.58 × 0.49 × 0.22
 
Data collection
Tmin, Tmax 0.383, 0.847 0.190, 0.585
No. of measured, independent and observed [I > 2σ(I)] reflections 13133, 2215, 2133 7049, 2254, 2142
Rint 0.043 0.051
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.05 0.039, 0.100, 1.05
No. of reflections 2215 2254
No. of parameters 149 148
Δρmax, Δρmin (e Å−3) 0.39, −0.23 0.95, −0.34
Absolute structure Flack x determined using 993 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1007 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.006 (8) −0.010 (19)
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

The structures of poly­morphs 1A and 1B are shown in Fig. 1[link]. The structure of 1A at 120 K was consistent with the previously published structure at room temperature (Yan et al., 2014[Yan, X.-X., Lu, L. & Zhu, M. (2014). Acta Cryst. E70, o853.]). The structure of 1A was obtained in the ortho­rhom­bic space group Pca21, while 1B was obtained in the monoclinic space group Cc. The com­pound consists of a hy­droxy-substituted phenyl ring linked via an imine group to a second unsubstituted phenyl group. In both poly­morphs, the structures were found to exist in the enol form, with C7=N1 bond lengths of 1.282 (4) Å for 1A and 1.284 (10) Å for 1B, indicating a double bond, and C1—O1 bond lengths of 1.350 (5) Å for 1A and 1.351 (9) Å for 1B, indicating a single bond. The structures showed quite different dihedral angles, with 1A having Φ = 1.8 (2)° at 120 K and 1B having Φ = 45.6 (1)° at 150 K. Upon cooling, the structures were both found to display some degree of thermochromism with 1A changing from orange at room temperature to yellow at 120 K and 1B, which was yellow at room temperature, becoming slightly paler at 150 K (Fig. 2[link]). The differences in the thermo­chromic behaviour of the two poly­morphs are consistent with literature suggestions that a larger dihedral angle increases the overlap of the π-system reducing the nitro­gen basicity, disfavouring the keto form and thus also reducing the thermochromism of the com­pound.

[Figure 1]
Figure 1
Illustration of the structures of (a) 1A and (b) 1B at 120 (2) and 150 (2) K, respectively, with the atomic numbering schemes depicted. Anisotropic displacement parameters are shown at the 50% probability level.
[Figure 2]
Figure 2
Illustration of the colour change observed upon cooling (a) 1A and (b) 1B.

An intra­molecular O1—H1⋯N1 hydrogen bond, involving the phenol OH group and imine N atom, was identified in the structures of both poly­morphs and creates an S(6) ring. The hydrogen-bonding parameters were almost identical in the two structures, with a donor–acceptor distance of ∼2.59 Å and a hydrogen-bond angle of ∼150° (Tables 2[link] and 3[link].). The packing of the two poly­morphs was unsurprisingly significantly different given the large difference in the dihedral angles. In poly­morph 1A, the mol­ecules are essentially planar and orientated diagonally such that the plane of the mol­ecule is perpendicular to the bc plane and, as a result of the 21 screw axis, the diagonal slant of alternate mol­ecules along the a-axis direction essentially align in opposite directions (Fig. 3[link]a). It was also noted that there were short π-type contacts between the C=N group and the phenol ring in the 0[\overline{1}]1 direction, with a centroid-to-centroid (C=N) distance of 3.326 (1) Å. These can be seen on the Hirshfeld surface of 1A as red dots (Fig. 4[link]a). In poly­morph 1B, although the mol­ecules themselves are twisted, the mol­ecules are orientated relative to each other such that they create planes parallel to the ac plane direction (see Fig. 3[link]b).

Table 2
Hydrogen-bond geometry (Å, °) for poly­morph 1A[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (1) 1.82 (3) 2.593 (4) 150 (5)

Table 3
Hydrogen-bond geometry (Å, °) for poly­morph 1B[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (11) 1.82 (11) 2.590 (10) 148 (10)
[Figure 3]
Figure 3
(a) Illustration of the packing for 1A, looking down the a axis; mol­ecules in blue are in-plane behind those in element colours. (b) View of polymorph 1B, looking down the c axis.
[Figure 4]
Figure 4
The Hirshfeld surface plot (top) and fingerprint plot (bottom) for (a) 1A and (b) 1B.

Examining the Hirshfeld fingerprint plots (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/.]) for the two structures highlights the differences in the two structures, not least in the shapes of the two plots (Fig. 4[link]). For 1A, the O⋯H and Br⋯H contacts are quite obvious, while in 1B the H⋯H and C⋯H contacts are significantly more pronounced, slightly masking the O⋯H and Br⋯H contacts. These differences are very apparent on the Hirshfeld surface for both com­pounds with a greater number of red spots on the surface of 1A that are more noticeable than for 1B, showing that 1A has more short contacts.

The two poly­morphs of (E)-4-bromo-2-[(phenyl­imino)­meth­yl]phenol reported herein are particularly inter­esting as part of a study into N-salicylideneanilines because they show significantly different mol­ecular conformations and colours at room temperature. In line with the literature, the extent of the thermochromism was found to be linked to the dihedral angle, with 1A [Φ = 1.8 (2)°] showing a greater colour change upon cooling than observed for 1B [Φ = 45.6 (1)°].

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX (Dolomanov et al., 2009); software used to prepare material for publication: OLEX (Dolomanov et al., 2009).

(E)-4-Bromo-2-((phenylimino)methyl]phenol (1A) top
Crystal data top
C13H10BrNODx = 1.694 Mg m3
Mr = 276.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 5409 reflections
a = 12.2768 (3) Åθ = 2.7–30.6°
b = 4.4829 (1) ŵ = 3.77 mm1
c = 19.6694 (4) ÅT = 120 K
V = 1082.52 (4) Å3Block, orange
Z = 40.46 × 0.20 × 0.05 mm
F(000) = 552
Data collection top
Xcalibur, Sapphire3, Gemini ultra
diffractometer
2215 independent reflections
Radiation source: Enhance (Mo) X-ray Source2133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.1511 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 1515
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
k = 55
Tmin = 0.383, Tmax = 0.847l = 2424
13133 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.2498P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.39 e Å3
2215 reflectionsΔρmin = 0.23 e Å3
149 parametersAbsolute structure: Flack x determined using 993 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.006 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction measurements for 1A were collected at 120 (2) K and 1B were collected at 150 (2) K on an Oxford Diffraction diffractometer. Both datasets were collected using Mo Kα radiation (λ = 0.71073 Å) and recorded on a CCD detector. The structures were solved using direct methods in ShelXS (Sheldrick, 2008). All structures were refined by full matrix least squares on F2 using SHELXL (Sheldrick, 2008; Sheldrick, 2015) in Olex2 (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42487 (2)1.04053 (7)0.52257 (3)0.01818 (11)
C40.3325 (3)0.8715 (8)0.45495 (18)0.0151 (7)
C50.3746 (3)0.6746 (8)0.40824 (17)0.0136 (7)
H50.4499690.6270950.4090900.016*
C30.2233 (3)0.9502 (8)0.45376 (19)0.0174 (8)
H30.1953601.0879040.4860750.021*
C60.3066 (3)0.5436 (8)0.35936 (19)0.0139 (7)
C20.1551 (3)0.8270 (9)0.40524 (19)0.0188 (8)
H20.0804420.8820220.4039830.023*
C10.1956 (3)0.6224 (9)0.35818 (18)0.0161 (8)
O10.1258 (3)0.5046 (6)0.31239 (14)0.0199 (6)
C70.3514 (3)0.3292 (8)0.31122 (18)0.0145 (7)
H70.4273000.2880240.3116120.017*
N10.2898 (2)0.1953 (6)0.26834 (14)0.0138 (6)
C80.3316 (3)0.0169 (7)0.2211 (2)0.0139 (8)
C130.2578 (3)0.1317 (8)0.17480 (18)0.0171 (7)
H130.1840460.0681480.1759470.021*
C110.3978 (4)0.4362 (8)0.1251 (2)0.0193 (8)
H110.4203420.5779640.0920260.023*
C90.4398 (3)0.1160 (9)0.2201 (2)0.0176 (8)
H90.4907780.0403190.2521500.021*
C100.4724 (3)0.3257 (8)0.17207 (19)0.0187 (8)
H100.5457170.3935450.1713270.022*
C120.2912 (3)0.3398 (9)0.12650 (19)0.0200 (8)
H120.2402930.4154700.0944600.024*
H10.161 (3)0.369 (8)0.291 (2)0.036 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01826 (17)0.02317 (18)0.01312 (16)0.00238 (12)0.0012 (2)0.0025 (3)
C40.0181 (19)0.0169 (17)0.0104 (17)0.0043 (15)0.0021 (13)0.0006 (15)
C50.0115 (17)0.0143 (17)0.0149 (17)0.0001 (14)0.0009 (14)0.0041 (14)
C30.019 (2)0.0194 (18)0.0138 (18)0.0009 (15)0.0035 (16)0.0029 (15)
C60.0147 (18)0.0149 (17)0.0122 (18)0.0005 (14)0.0009 (14)0.0048 (14)
C20.0167 (19)0.0221 (19)0.0175 (19)0.0039 (16)0.0023 (15)0.0003 (16)
C10.0161 (18)0.0187 (18)0.0135 (18)0.0012 (15)0.0011 (15)0.0029 (15)
O10.0129 (14)0.0282 (15)0.0186 (14)0.0013 (11)0.0026 (11)0.0074 (12)
C70.0129 (17)0.0149 (17)0.0156 (17)0.0004 (15)0.0007 (14)0.0036 (15)
N10.0157 (15)0.0138 (15)0.0120 (13)0.0003 (11)0.0005 (13)0.0007 (12)
C80.017 (2)0.0127 (17)0.0115 (18)0.0014 (14)0.0011 (13)0.0018 (14)
C130.0175 (19)0.0157 (16)0.0181 (18)0.0025 (15)0.0012 (15)0.0031 (15)
C110.028 (2)0.0154 (19)0.0144 (19)0.0009 (16)0.0066 (16)0.0014 (15)
C90.0182 (19)0.0170 (18)0.0176 (19)0.0005 (15)0.0007 (14)0.0001 (15)
C100.0173 (19)0.0197 (19)0.0190 (19)0.0019 (15)0.0048 (15)0.0026 (16)
C120.025 (2)0.0184 (19)0.0170 (18)0.0016 (16)0.0010 (16)0.0016 (16)
Geometric parameters (Å, º) top
Br1—C41.905 (4)C7—N11.282 (4)
C4—C51.375 (5)N1—C81.425 (5)
C4—C31.387 (5)C8—C131.384 (5)
C5—H50.9500C8—C91.401 (5)
C5—C61.402 (5)C13—H130.9500
C3—H30.9500C13—C121.393 (5)
C3—C21.384 (6)C11—H110.9500
C6—C11.408 (5)C11—C101.393 (6)
C6—C71.457 (5)C11—C121.379 (6)
C2—H20.9500C9—H90.9500
C2—C11.394 (5)C9—C101.392 (5)
C1—O11.350 (5)C10—H100.9500
O1—H10.857 (14)C12—H120.9500
C7—H70.9500
C5—C4—Br1119.9 (3)N1—C7—H7119.5
C5—C4—C3121.0 (3)C7—N1—C8121.9 (3)
C3—C4—Br1119.1 (3)C13—C8—N1116.2 (3)
C4—C5—H5119.9C13—C8—C9119.6 (4)
C4—C5—C6120.2 (3)C9—C8—N1124.2 (3)
C6—C5—H5119.9C8—C13—H13119.8
C4—C3—H3120.2C8—C13—C12120.4 (4)
C2—C3—C4119.6 (3)C12—C13—H13119.8
C2—C3—H3120.2C10—C11—H11120.0
C5—C6—C1118.8 (3)C12—C11—H11120.0
C5—C6—C7119.8 (3)C12—C11—C10119.9 (4)
C1—C6—C7121.3 (3)C8—C9—H9120.1
C3—C2—H2119.8C10—C9—C8119.7 (4)
C3—C2—C1120.3 (4)C10—C9—H9120.1
C1—C2—H2119.8C11—C10—H10119.9
C2—C1—C6119.9 (3)C9—C10—C11120.1 (4)
O1—C1—C6121.8 (3)C9—C10—H10119.9
O1—C1—C2118.3 (3)C13—C12—H12119.9
C1—O1—H1107 (3)C11—C12—C13120.2 (4)
C6—C7—H7119.5C11—C12—H12119.9
N1—C7—C6120.9 (3)
Br1—C4—C5—C6178.4 (3)C1—C6—C7—N13.3 (5)
Br1—C4—C3—C2179.5 (3)C7—C6—C1—C2179.6 (3)
C4—C5—C6—C11.4 (5)C7—C6—C1—O10.3 (6)
C4—C5—C6—C7178.4 (3)C7—N1—C8—C13176.1 (3)
C4—C3—C2—C10.7 (6)C7—N1—C8—C95.1 (5)
C5—C4—C3—C20.6 (6)N1—C8—C13—C12179.8 (3)
C5—C6—C1—C20.1 (5)N1—C8—C9—C10179.6 (3)
C5—C6—C1—O1179.9 (3)C8—C13—C12—C110.9 (6)
C5—C6—C7—N1176.4 (3)C8—C9—C10—C110.1 (6)
C3—C4—C5—C61.6 (5)C13—C8—C9—C100.8 (6)
C3—C2—C1—C60.9 (6)C9—C8—C13—C121.3 (6)
C3—C2—C1—O1179.0 (3)C10—C11—C12—C130.1 (5)
C6—C7—N1—C8179.5 (3)C12—C11—C10—C90.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.82 (3)2.593 (4)150 (5)
(E)-4-Bromo-2-((phenylimino)methyl]phenol (1B) top
Crystal data top
C13H10BrNOF(000) = 552
Mr = 276.13Dx = 1.659 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 25.8944 (13) ÅCell parameters from 3202 reflections
b = 6.9439 (4) Åθ = 3.0–30.7°
c = 6.1499 (4) ŵ = 3.69 mm1
β = 91.381 (5)°T = 150 K
V = 1105.48 (11) Å3Block, yellow
Z = 40.58 × 0.49 × 0.22 mm
Data collection top
Xcalibur, Sapphire3, Gemini ultra
diffractometer
2254 independent reflections
Radiation source: Enhance (Mo) X-ray Source2142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 16.1511 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 3232
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
k = 88
Tmin = 0.190, Tmax = 0.585l = 77
7049 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.95 e Å3
2254 reflectionsΔρmin = 0.34 e Å3
148 parametersAbsolute structure: Flack x determined using 1007 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.010 (19)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15729 (2)0.68317 (7)0.23237 (2)0.0279 (2)
C50.2655 (3)0.6834 (8)0.3219 (12)0.0199 (13)
H50.2680300.6352130.1779960.024*
C20.2577 (3)0.8229 (8)0.7462 (12)0.0211 (15)
H20.2548200.8708320.8900330.025*
C40.2176 (3)0.7189 (9)0.4073 (11)0.0209 (13)
C30.2131 (3)0.7895 (8)0.6189 (12)0.0227 (13)
H30.1799860.8145940.6757620.027*
C60.3105 (3)0.7189 (9)0.4487 (11)0.0205 (13)
O10.3481 (2)0.8190 (6)0.7919 (9)0.0261 (11)
H10.375 (4)0.789 (12)0.720 (18)0.031*
N10.4028 (3)0.7276 (11)0.4603 (12)0.0217 (14)
C70.3609 (3)0.6969 (8)0.3496 (12)0.0206 (13)
H70.3627600.6594950.2013660.025*
C10.3059 (3)0.7863 (8)0.6634 (12)0.0214 (13)
C80.4511 (3)0.7333 (9)0.3593 (11)0.0201 (12)
C100.5062 (3)0.8319 (8)0.0687 (12)0.0225 (14)
H100.5104730.8893860.0698990.027*
C90.4569 (3)0.8171 (8)0.1546 (12)0.0217 (14)
H90.4275850.8636410.0747060.026*
C120.5427 (3)0.6791 (9)0.3880 (13)0.0248 (15)
H120.5719570.6305450.4665790.030*
C130.4940 (3)0.6661 (8)0.4764 (12)0.0221 (14)
H130.4900360.6115190.6165810.027*
C110.5489 (3)0.7631 (11)0.1843 (13)0.0257 (15)
H110.5823590.7731630.1249730.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0212 (3)0.0346 (3)0.0276 (3)0.0000 (4)0.0036 (2)0.0023 (4)
C50.020 (3)0.017 (3)0.023 (4)0.000 (2)0.000 (3)0.002 (2)
C20.030 (4)0.016 (3)0.017 (4)0.004 (3)0.001 (3)0.000 (2)
C40.025 (3)0.020 (3)0.018 (3)0.003 (2)0.000 (2)0.000 (2)
C30.025 (3)0.020 (3)0.024 (3)0.004 (2)0.005 (3)0.002 (2)
C60.025 (3)0.017 (3)0.020 (3)0.001 (2)0.001 (2)0.000 (2)
O10.023 (3)0.035 (3)0.021 (3)0.0002 (19)0.004 (2)0.0046 (19)
N10.025 (3)0.020 (3)0.020 (3)0.003 (2)0.000 (2)0.001 (2)
C70.025 (4)0.017 (3)0.020 (3)0.000 (2)0.001 (3)0.000 (2)
C10.027 (4)0.017 (3)0.021 (3)0.001 (2)0.001 (3)0.004 (2)
C80.024 (3)0.014 (3)0.022 (3)0.000 (2)0.000 (2)0.001 (2)
C100.027 (4)0.019 (3)0.022 (3)0.002 (2)0.003 (3)0.000 (2)
C90.023 (3)0.017 (3)0.025 (4)0.001 (2)0.002 (3)0.001 (2)
C120.020 (4)0.023 (3)0.031 (4)0.001 (2)0.004 (3)0.001 (2)
C130.026 (4)0.018 (3)0.021 (4)0.001 (2)0.007 (3)0.001 (2)
C110.026 (4)0.016 (4)0.036 (4)0.005 (3)0.004 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—C41.891 (7)N1—C81.410 (10)
C5—H50.9500C7—H70.9500
C5—C41.380 (10)C8—C91.398 (10)
C5—C61.409 (10)C8—C131.391 (10)
C2—H20.9500C10—H100.9500
C2—C31.398 (11)C10—C91.398 (10)
C2—C11.383 (11)C10—C111.385 (11)
C4—C31.398 (9)C9—H90.9500
C3—H30.9500C12—H120.9500
C6—C71.463 (9)C12—C131.388 (11)
C6—C11.409 (10)C12—C111.395 (11)
O1—H10.86 (11)C13—H130.9500
O1—C11.351 (9)C11—H110.9500
N1—C71.284 (10)
C4—C5—H5120.1O1—C1—C2118.5 (7)
C4—C5—C6119.8 (6)O1—C1—C6121.2 (6)
C6—C5—H5120.1C9—C8—N1121.6 (7)
C3—C2—H2119.9C13—C8—N1118.0 (7)
C1—C2—H2119.9C13—C8—C9120.2 (6)
C1—C2—C3120.3 (7)C9—C10—H10119.8
C5—C4—Br1119.8 (5)C11—C10—H10119.8
C5—C4—C3120.9 (6)C11—C10—C9120.4 (7)
C3—C4—Br1119.3 (5)C8—C9—H9120.3
C2—C3—H3120.2C10—C9—C8119.3 (7)
C4—C3—C2119.5 (6)C10—C9—H9120.3
C4—C3—H3120.2C13—C12—H12119.9
C5—C6—C7119.1 (6)C13—C12—C11120.3 (7)
C5—C6—C1119.3 (6)C11—C12—H12119.9
C1—C6—C7121.4 (6)C8—C13—H13120.0
C1—O1—H1108 (7)C12—C13—C8119.9 (7)
C7—N1—C8121.1 (7)C12—C13—H13120.0
C6—C7—H7119.6C10—C11—C12119.8 (7)
N1—C7—C6120.8 (7)C10—C11—H11120.1
N1—C7—H7119.6C12—C11—H11120.1
C2—C1—C6120.2 (7)
Br1—C4—C3—C2177.7 (5)C7—C6—C1—C2173.9 (5)
C5—C4—C3—C20.6 (9)C7—C6—C1—O15.2 (9)
C5—C6—C7—N1179.8 (6)C7—N1—C8—C938.4 (11)
C5—C6—C1—C22.0 (9)C7—N1—C8—C13146.6 (7)
C5—C6—C1—O1178.8 (5)C1—C2—C3—C40.0 (9)
C4—C5—C6—C7174.6 (6)C1—C6—C7—N14.2 (10)
C4—C5—C6—C11.4 (9)C8—N1—C7—C6171.0 (6)
C3—C2—C1—C61.3 (9)C9—C8—C13—C121.2 (9)
C3—C2—C1—O1179.5 (5)C9—C10—C11—C120.2 (10)
C6—C5—C4—Br1176.9 (4)C13—C8—C9—C100.3 (9)
C6—C5—C4—C30.1 (9)C13—C12—C11—C100.7 (10)
N1—C8—C9—C10175.2 (6)C11—C10—C9—C80.4 (9)
N1—C8—C13—C12176.3 (6)C11—C12—C13—C81.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (11)1.82 (11)2.590 (10)148 (10)
 

Footnotes

Died 6th December 2019

Acknowledgements

The authors gratefully acknowledge funding for HEM from the EPSRC and from Durham University, and useful discussions with Professor Jonathan Steed of Durham University.

References

First citationBregman, J., Leiserowitz, L. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2068–2085.  CSD CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442–2446.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035–4038.  Web of Science CrossRef CAS Google Scholar
First citationFujiwara, T., Harada, J. & Ogawa, K. (2009). J. Phys. Chem. A, 113, 1822–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationJohmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297–304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgawa, K., Harada, J., Fujiwara, T. & Yoshida, S. (2001). J. Phys. Chem. A, 105, 3425–3427.  Web of Science CrossRef CAS Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationÖzek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177–o180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRobert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327–4342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). IUCrData, 2, x171671.  Google Scholar
First citationSwetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2019). IUCrData, 4, x190788.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/Google Scholar
First citationYan, X.-X., Lu, L. & Zhu, M. (2014). Acta Cryst. E70, o853.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds