research papers
1
of a calcium(II)–pyrroloquinoline quinone (PQQ) complex outside a protein environmentaDepartment of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich, Bavaria 81377, Germany
*Correspondence e-mail: lena.daumann@cup.lmu.de
Pyrroloquinoline quinone (PQQ) is an important cofactor of calcium- and lanthanide-dependent alcohol dehydrogenases, and has been known for over 30 years. Crystal structures of Ca–MDH enzymes (MDH is methanol dehydrogenase) have been known for some time; however, crystal structures of PQQ with biorelevant metal ions have been lacking in the literature for decades. We report here the first μ-4,5-dioxo-4,5-dihydro-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylato)tricalcium(II)] dihydrate], {[Ca3(C14H3N2O8)2(H2O)11]·2H2O}n. The complex crystallized as Ca3PQQ2·13H2O with Ca2+ in three different positions and PQQ3−, including an extensive hydrogen-bond network. Similarities and differences to the recently reported structure with biorelevant europium (Eu2PQQ2) are discussed.
analysis of a Ca–PQQ complex outside the protein environment, namely, poly[[undecaaquabis(Keywords: pyrroloquinoline quinone; calcium; PQQ; methanol dehydrogenase; crystal structure.
CCDC reference: 2019890
1. Introduction
Pyrroloquinoline quinone (PQQ) is the redox cofactor of glucose dehydrogenase enzymes and alcohol dehydrogenases. In particular, the methanol dehydrogenase (MDH) enzymes, which catalyze the oxidation of methanol for the energy household of many methano- and methylotrophic microorganisms, have attracted attention recently. For proper functionality, a metal ion is needed, which acts as a ). The Ca-dependent MDH, encoded by the mxaF gene, was first discovered by Anthony & Zatman (1964a,b).
and which is coordinated by PQQ and several amino acids in the enzymatic active site (Fig. 1After the structure of MDH was elucidated in 1978–79 (Duine et al., 1978; Westerling et al., 1979; Salisbury et al., 1979), the cofactor attracted much attention in the following years, with articles published concerning its total synthesis (Corey & Tramontano, 1981), redox chemistry (Eckert et al., 1982), metal coordination (Noar et al., 1985) and small-molecule interaction (van Koningsveld et al., 1985). Itoh and co-workers published several articles presenting the interaction of PQQ with Ca and other alkaline earth metals (Itoh et al., 1997, 1998), and the synthesis of model compounds, mimicking the active site of MDH (Itoh et al., 2000). Those publications contributed to a better understanding of the functionality and reactivity of PQQ. However, no crystal structures were presented in those studies, which would reveal in-depth structural information of PQQ–metal interactions. While no Ca–PQQ structure has been published to date, in addition, few other crystal structures exist for PQQ with other metals. Outside of the Ca–MDH network (Blake et al., 1994; Williams et al., 2005), several structures were published with sodium (Ishida et al., 1989; Ikemoto et al., 2012; Ikemoto et al., 2017), with PQQ structural analogs and iron (Tommasi et al., 1995), with copper and terpyridine (terpy) as co-ligand (Nakamura et al., 1994), with copper and triphenylphosphine (Wanner et al., 1999), with ruthenium and terpy (Mitome et al., 2015), and with ruthenium, silver and terpy (Mitome et al., 2013). In 2014, Pol et al. reported a new kind of MDH, found in the extremophile Methylacidiphilum fumariolicum SolV (SolV), which is native to volcanic mudpots close to the Solfatara crater in Italy (Pol et al., 2014). This MDH turned out to be strictly dependent on lanthanides (Pol et al., 2014; Lumpe et al., 2018; Bogart et al., 2015). While SolV was originally thought to be a biological curiosity, more and more organisms in all kinds of ecosystems were found to be lanthanide dependent in the following years, not restricted to such extreme environments like SolV (Keltjens et al., 2014; Ramachandran & Walsh, 2015; Taubert et al., 2015). This also pushed lanthanide bioinorganic chemistry as a new and emerging scientific field with several reviews published (Skovran & Martinez-Gomez, 2015; Cheisson & Schelter, 2019; Chistoserdova, 2019; Cotruvo, 2019; Daumann, 2019; Picone & Op den Camp, 2019; Semrau et al., 2018). Recently, also, the first of a europium–PQQ complex outside the MDH network was published through a collaborative effort and was reported as an Eu2PQQ2 structure (Lumpe et al., 2020) (Fig. 2). In light of those advances and the still scarce structural information available about PQQ–metal interactions, we present here the first of a Ca–PQQ complex without the need of structural PQQ analogs or additional co-ligands. The molecular formula of the complex is Ca3PQQ2·13H2O.
2. Experimental
2.1. Materials
CaCl2·2H2O (99%) was purchased from VWR. Na2PQQ·H2O was extracted from Doctor's Best Science-Based Nutrition BioPQQ capsules, as described previously (Lumpe & Daumann, 2019). Milli-Q-grade water (pH 5.5), obtained from a Millipore Synergy UV system from Merck (Darmstadt, Germany), was used for all experiments.
2.2. Crystal growth and analysis
Na2PQQ·H2O (32.8 mg, 0.08 mmol) was dissolved in H2O (12 ml). CaCl2·2H2O (2.0 equiv., 23.6 mg, 0.16 mmol) was added as a solid. The metal addition led to precipitation of a pale-grey–brown solid, which was centrifuged, removed and analyzed as a 1:1 PQQ–Ca complex, as described in our previous article (Lumpe & Daumann, 2019). From the supernatant, consisting of a highly diluted aqueous mixture of Na2PQQ and CaCl2, small dark crystals, suitable for X-ray crystallography, grew over a period of several months. To obtain more crystalline material of better quality, a procedure from our recent publication (Lumpe et al., 2020) was implemented. Na2PQQ·H2O (24.2 mg, 61.8 µmol) was completely dissolved in H2O (4 ml) at 80 °C in an ultrasonic bath. CaCl2·2H2O (27.3 mg, 185.4 µmol, 3 equiv.) was dissolved in a small amount of water (0.2 ml) and was added to the Na2PQQ solution at 80 °C, which caused precipitation of a grey–brown solid. The mixture was placed directly in a drying oven at 80 °C, which was then switched off and the reaction mixture allowed to cool slowly. After 1 d, small dark crystals had grown between the bulk precipitate. The crystals grew in size over the next few days while consuming the surrounding bulk precipitate. Crystals suitable for X-ray were then picked out of the reaction mixture. The crystal used for analysis was selected in paraffin oil to prevent dehydration and then placed and measured on a Mitegen Microloop. The crystals obtained from both methods showed the same structure depicted in Fig. 3.
IR (diamond ATR, neat): /cm−1 3643–2746 (w, broad), 1923–1714 (w, broad), 1686 (w), 1658 (w), 1605 (s), 1577 (m), 1553 (m), 1536 (m), 1498 (m), 1426 (w), 1400 (m), 1348 (s), 1277 (m), 1246 (m), 1191 (m), 1151 (m), 1132 (w), 1086 (w), 1027 (w), 972 (w), 951 (w), 926 (w), 868 (w), 824 (w), 767 (w), 719 (w), 700 (w), 669 (w). Elemental analysis (CHN) calculated (%) for Ca3PQQ2·11H2O or C28H28Ca3N4O27: C 34.57, H 2.90, N 5.76; found: C 34.30, H 3.20, N 6.06. Crystals were picked out of the reaction mixture and then dried for 1 d on filter paper prior to elemental analysis.
2.3. Refinement
Crystal data, data collection and structure . Four reflections have been omitted from the Three of them are hidden by the beam stop and show no intensity. A further omitted reflection of higher order (090) has a significantly higher Fo2 (63.72) compared to its Fc2 (1.09). This behaviour is observed quite often for reflections of higher order when multigraded X-ray mirrors are used as monochromators. All C-bound H atoms have been calculated in ideal geometry riding on their parent atoms, while the O- and N-bound H atoms were refined freely. Full details of the strategy can be found in the embedded instruction file in the CIF.
details are summarized in Table 13. Results and discussion
3.1. Investigation of PQQ–Ca complexation
In our previous article, PQQ–metal complexes were reported with the trivalent lanthanides La3+, Eu3+ and Lu3+, and with Ca2+ (Lumpe & Daumann, 2019). Regardless of the excess of added metal salt, 1:1 complexes were identified by elemental analysis. While no further structural information could be provided in that study, we were recently able to verify the proposed stoichiometry by the of an Eu–PQQ complex with the net formula Eu2PQQ2·12H2O (Lumpe et al., 2020). The Eu3+ ion is coordinated by PQQ in the same fashion as in MDH, with participation of N2, O4 and O5, in addition to the participation of O1 (Fig. 2). The latter residue is not utilized in the enzyme for metal coordination.
From a similar experimental approach using Ca2+ instead of Eu3+, single crystals suitable for X-ray analysis were grown over a period of several days. Fig. 3 illustrates the composition of the the charges of two triply deprotonated PQQ units are balanced by three Ca2+ ions supplemented by 13 water molecules. The structural motif depicted in Fig. 2 – the formation of binuclear units by means of two PQQ ligands acting as linkers between the metal centres – is realized in Ca3PQQ2·13H2O in a comparable fashion for two of the three Ca ions (Ca1 and Ca3). Ca1 is coordinated by PQQ in a similar fashion to Eu; however, the coordination sphere is completed by a carboxylate group of a nearby pyridine moiety of PQQ (instead of a carboxylate of a pyrrole ring). Ca3, on the other hand, uses the same pocket and residues as Eu; however, this interaction is assisted by a hydrogen bond of a Ca3-bound water molecule to the carboxylate group of the pyrrole ring (Fig. 3b, green arrows). In the structure, these two types of alternating Ca1 and Ca3 units are connected via Ca1 into strands along [11]. The charge of the Ca2PQQ2 unit is balanced by Ca2, which is coordinated solely by water molecules and carboxylate groups, however, never in the biologically relevant ONO pocket of PQQ. All N—H and O—H donor groups are involved in classical hydrogen bonds with either carboxylate groups, keto groups or water molecules, acting as acceptors establishing a three-dimensional network (see Table 2 for hydrogen-bond details).
|
Interestingly, while the elemental analysis of the initially precipitated (amorphous) solid showed a 1:1 Ca–PQQ stoichiometry (Lumpe & Daumann, 2019), the present structure from slowly crystallized material reveals a network of three different Ca2+ ions and two differently-coordinated PQQ anionic ligands, resulting in a 3:2 stoichiometry. Also, in the Ca–PQQ structure, both PQQ molecules coordinate in the same fashion as in the MDH enzyme (Fig. 1), in addition to the participation of several carboxylate groups. One of the PQQ ligands coordinates to calcium with the participation of all three carboxylate groups: Ca1 via O8, N2, O5 and O4, and Ca2 via O1 and O2 in a bidentate manner. The second PQQ molecule coordinates with only two of the three carboxylate groups and coordinates Ca1 with O14, Ca2 with O15 and Ca3 with N4, O12 and O13. In total, 13 water molecules are present in the of which 11 directly coordinate to atoms Ca1–Ca3 and two water molecules (O28 and O29) have no direct coordination partners. Interestingly, elemental analysis of the dried crystalline material fits best to only 11 water molecules, most likely due to the disappearance of the two noncoordinating water molecules during the drying process. Ca1 and Ca2 show pentagonal–bipyramidal geometries, with coordination numbers (CNs) of 7 and Ca3 shows a distorted geometry with a CN of 8. All metal-to-ligand bond lengths and angles of Ca3PQQ2 are given in Table 3, in addition to the values for Eu2PQQ2. The known PQQ–water adduct (diol in C5 position), which is formed to some extent in aqueous solution (Dekker et al., 1982), is not present in the complex, and this is in line with all known crystal structures of PQQ, to the best of our knowledge.
|
In the Eu2PQQ2 complex, the Eu ions are coordinated in a similar fashion by PQQ. The bonds to Eu are up to 0.141 Å longer than to Ca1 and Ca3. The CN of Eu in the complex is 9, which corresponds to an ionic radius of 1.12 Å according to Shannon (1976), while the ionic radius of Ca is 1.06 Å for a CN of 7 and 1.12 Å for a CN of 8. Therefore, the larger bond lengths to Eu can hardly be explained by different ionic radii, which are overall similar, but by differences in the CNs and different participation in coordination of a second PQQ molecule.
The IR spectra of the precipitated Ca–PQQ amorphous solid, Eu2PQQ2 and Ca3PQQ2 crystals were recorded and compared (Fig. 4). The spectra can be roughly divided into two areas. While PQQ C=O stretching vibrations of the carboxylate and quinone groups absorb in the range 1750–1600 cm−1 (Zhejiang Hisun Pharmaceutical Co. Ltd, 2020), the peaks with smaller wavenumbers are largely related to PQQ lattice vibrations. While the heights of the large absorption bands in the range 3600–2600 cm−1 are a direct result of the different amounts and coordination modes of cocrystallized water, the differences in the area 1750–1550 cm−1 further indicate the different coordination modes already depicted in the crystal structures.
4. Conclusion
We present here the first 3 (with all three carboxyl groups esterified) prevented participation of (nonbiogenic) carboxyl groups in complexation. This is not the case in the presented structure, where calcium is coordinated by PQQ in the same pocket as in MDH, in addition to further carboxyl-group participation, spanning a three-dimensional coordination network. However, considering the few crystal structures of PQQ complexes reported over the years, we are confident that the presented structure will help to better explain the coordination behaviour of PQQ outside the MDH enzyme and help guide the design of mononuclear model complexes for these fascinating enzymes.
of PQQ with the biologically relevant metal ion calcium. The complex consists of PQQ and the metal ion alone, unlike previously reported structures with other metal ions. Those complexes often needed additional co-ligands, which limited the use of the structures for comparison with the biologically active site. However, in particular, the use of methylated PQQMeSupporting information
CCDC reference: 2019890
https://doi.org/10.1107/S2053229620014278/yo3076sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229620014278/yo3076Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).[Ca3(C14H3N2O8)2(H2O)11]·2H2O | Z = 2 |
Mr = 1008.81 | F(000) = 1040 |
Triclinic, P1 | Dx = 1.802 Mg m−3 |
a = 6.9363 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 15.9791 (7) Å | Cell parameters from 9854 reflections |
c = 16.9786 (7) Å | θ = 2.7–27.1° |
α = 90.844 (1)° | µ = 0.56 mm−1 |
β = 93.106 (1)° | T = 109 K |
γ = 98.296 (2)° | Rod, brown |
V = 1858.93 (14) Å3 | 0.10 × 0.02 × 0.01 mm |
Bruker D8 Venture TXS diffractometer | 8166 independent reflections |
Radiation source: rotating anode (TXS), Bruker TXS | 7023 reflections with I > 2σ(I) |
Focusing mirrors monochromator | Rint = 0.043 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 27.1°, θmin = 2.9° |
mix of phi and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −20→20 |
Tmin = 0.88, Tmax = 0.99 | l = −21→21 |
33048 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0198P)2 + 1.5469P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
8166 reflections | Δρmax = 0.39 e Å−3 |
689 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H(C) constr, H(O,N) refall The X-ray intensity data of Ca3PQQ2.13H2O were measured on a Bruker D8 Venture TXS system equipped with a multilayer mirror monochromator and an Mo Kα rotating anode X-ray tube (λ = 0.71073 Å). The frames were integrated with the Bruker SAINT software package (Bruker, 2012). Data were corrected for absorption effects using the multi-scan method (SADABS; Sheldrick, 1996). The structure was solved and refined using the Bruker SHELXTL software package (Sheldrick, 2015). The figures have been drawn at the 50% ellipsoid probability level (Farrugia, 2012). CCDC reference number 2019890 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0551 (2) | 0.15843 (11) | 0.45568 (10) | 0.0109 (3) | |
C2 | 0.0302 (2) | 0.23438 (11) | 0.50409 (10) | 0.0109 (3) | |
C3 | 0.0676 (3) | 0.24585 (11) | 0.58398 (10) | 0.0118 (3) | |
H3 | 0.044989 | 0.204050 | 0.622953 | 0.014* | |
C4 | 0.1464 (2) | 0.33192 (10) | 0.59713 (10) | 0.0106 (3) | |
C5 | 0.2090 (3) | 0.37785 (11) | 0.67020 (10) | 0.0112 (3) | |
C6 | 0.2975 (2) | 0.47079 (11) | 0.66033 (10) | 0.0101 (3) | |
C7 | 0.2934 (2) | 0.50827 (10) | 0.57991 (10) | 0.0093 (3) | |
C8 | 0.3650 (2) | 0.63184 (10) | 0.51260 (10) | 0.0092 (3) | |
C9 | 0.2907 (2) | 0.59109 (10) | 0.44200 (10) | 0.0097 (3) | |
H9A | 0.286091 | 0.622433 | 0.394992 | 0.012* | |
C10 | 0.2233 (2) | 0.50464 (11) | 0.43996 (10) | 0.0095 (3) | |
C11 | 0.2231 (2) | 0.46006 (10) | 0.51131 (10) | 0.0085 (3) | |
C12 | 0.1552 (2) | 0.37072 (11) | 0.52343 (10) | 0.0095 (3) | |
C13 | 0.4498 (2) | 0.72499 (10) | 0.51886 (10) | 0.0096 (3) | |
C14 | 0.1589 (2) | 0.46574 (10) | 0.35822 (10) | 0.0092 (3) | |
C15 | 0.8745 (2) | −0.19201 (10) | −0.04981 (10) | 0.0101 (3) | |
C16 | 0.8334 (2) | −0.10395 (10) | −0.06229 (10) | 0.0091 (3) | |
C17 | 0.8475 (2) | −0.05705 (10) | −0.12909 (10) | 0.0097 (3) | |
H17 | 0.881560 | −0.075253 | −0.179338 | 0.012* | |
C18 | 0.8015 (2) | 0.02382 (11) | −0.10895 (10) | 0.0096 (3) | |
C19 | 0.7972 (2) | 0.09630 (11) | −0.15653 (10) | 0.0107 (3) | |
C20 | 0.7502 (2) | 0.17425 (11) | −0.11221 (9) | 0.0095 (3) | |
C21 | 0.6921 (2) | 0.16752 (10) | −0.02863 (9) | 0.0083 (3) | |
C22 | 0.5978 (2) | 0.24379 (10) | 0.07438 (9) | 0.0089 (3) | |
C23 | 0.6126 (2) | 0.17681 (10) | 0.12466 (10) | 0.0099 (3) | |
H23 | 0.584351 | 0.182354 | 0.178455 | 0.012* | |
C24 | 0.6684 (2) | 0.10142 (10) | 0.09720 (10) | 0.0088 (3) | |
C25 | 0.7027 (2) | 0.09418 (10) | 0.01609 (9) | 0.0077 (3) | |
C26 | 0.7593 (2) | 0.02301 (10) | −0.02847 (9) | 0.0085 (3) | |
C27 | 0.5362 (2) | 0.32716 (10) | 0.09921 (9) | 0.0093 (3) | |
C28 | 0.6930 (2) | 0.03531 (11) | 0.15995 (10) | 0.0098 (3) | |
N1 | 0.0833 (2) | 0.31067 (9) | 0.46858 (9) | 0.0101 (3) | |
N2 | 0.3651 (2) | 0.59035 (9) | 0.58038 (8) | 0.0090 (3) | |
H2 | 0.084 (3) | 0.3176 (13) | 0.4186 (13) | 0.015 (5)* | |
N3 | 0.7800 (2) | −0.05460 (9) | −0.00212 (8) | 0.0086 (3) | |
N4 | 0.6427 (2) | 0.23938 (9) | −0.00095 (8) | 0.0086 (3) | |
H4 | 0.748 (4) | −0.0682 (15) | 0.0449 (15) | 0.030 (6)* | |
O1 | −0.06633 (18) | 0.16506 (7) | 0.38093 (7) | 0.0128 (3) | |
O2 | −0.11654 (18) | 0.09119 (7) | 0.48944 (7) | 0.0136 (3) | |
O3 | 0.2007 (2) | 0.34951 (8) | 0.73630 (7) | 0.0169 (3) | |
O4 | 0.37574 (18) | 0.51241 (7) | 0.71690 (7) | 0.0127 (3) | |
O5 | 0.52358 (18) | 0.75182 (7) | 0.58571 (7) | 0.0120 (2) | |
O6 | 0.4405 (2) | 0.76768 (8) | 0.45848 (7) | 0.0164 (3) | |
O7 | 0.06140 (18) | 0.50722 (8) | 0.31437 (7) | 0.0130 (3) | |
O8 | 0.21731 (18) | 0.39705 (7) | 0.34077 (7) | 0.0125 (3) | |
O9 | 0.87842 (18) | −0.21856 (8) | 0.01978 (7) | 0.0136 (3) | |
O10 | 0.90747 (19) | −0.23220 (8) | −0.11050 (7) | 0.0151 (3) | |
O11 | 0.8269 (2) | 0.10239 (8) | −0.22705 (7) | 0.0171 (3) | |
O12 | 0.76438 (18) | 0.24116 (7) | −0.14539 (7) | 0.0125 (3) | |
O13 | 0.53948 (18) | 0.38361 (7) | 0.04724 (7) | 0.0123 (3) | |
O14 | 0.48287 (18) | 0.33522 (7) | 0.16717 (7) | 0.0122 (2) | |
O15 | 0.74044 (19) | 0.06498 (8) | 0.22821 (7) | 0.0151 (3) | |
O16 | 0.66342 (19) | −0.04197 (7) | 0.14100 (7) | 0.0134 (3) | |
O17 | 0.2228 (2) | 0.21676 (8) | 0.26500 (8) | 0.0155 (3) | |
H171 | 0.173 (4) | 0.2165 (17) | 0.2180 (17) | 0.042 (8)* | |
H172 | 0.130 (4) | 0.1974 (16) | 0.2943 (15) | 0.032 (7)* | |
O18 | 0.7774 (2) | 0.29042 (9) | 0.29412 (8) | 0.0191 (3) | |
H181 | 0.851 (4) | 0.3119 (16) | 0.2567 (16) | 0.035 (7)* | |
H182 | 0.823 (4) | 0.2513 (19) | 0.3180 (17) | 0.048 (8)* | |
O19 | 0.4610 (2) | 0.08055 (9) | 0.37538 (8) | 0.0166 (3) | |
H191 | 0.352 (4) | 0.0580 (17) | 0.3624 (15) | 0.038 (8)* | |
H192 | 0.460 (4) | 0.1327 (18) | 0.3851 (15) | 0.037 (7)* | |
O20 | 1.07981 (19) | −0.01918 (8) | 0.36462 (8) | 0.0138 (3) | |
H201 | 1.099 (4) | −0.0466 (18) | 0.3251 (18) | 0.049 (9)* | |
H202 | 1.095 (4) | −0.0465 (17) | 0.4056 (17) | 0.041 (8)* | |
O21 | 0.6842 (2) | −0.11057 (9) | 0.28711 (8) | 0.0191 (3) | |
H211 | 0.601 (4) | −0.1501 (18) | 0.2910 (15) | 0.037 (8)* | |
H212 | 0.679 (4) | −0.0997 (17) | 0.2380 (17) | 0.042 (8)* | |
O22 | 0.6175 (2) | −0.07062 (9) | 0.45523 (8) | 0.0218 (3) | |
H221 | 0.616 (4) | −0.0567 (18) | 0.4984 (18) | 0.048 (9)* | |
H222 | 0.563 (4) | −0.1236 (19) | 0.4537 (16) | 0.047 (8)* | |
O23 | 0.3675 (2) | 0.26664 (9) | −0.13577 (9) | 0.0155 (3) | |
H231 | 0.307 (4) | 0.2808 (16) | −0.1708 (16) | 0.033 (7)* | |
H232 | 0.291 (4) | 0.2457 (17) | −0.1028 (16) | 0.039 (8)* | |
O24 | 0.6812 (2) | 0.39272 (9) | −0.22016 (8) | 0.0182 (3) | |
H241 | 0.768 (4) | 0.4241 (17) | −0.2383 (15) | 0.036 (8)* | |
H242 | 0.678 (4) | 0.3485 (19) | −0.2459 (16) | 0.043 (8)* | |
O25 | 0.34868 (19) | 0.45056 (8) | −0.11501 (8) | 0.0143 (3) | |
H251 | 0.367 (4) | 0.5014 (18) | −0.0984 (16) | 0.040 (8)* | |
H252 | 0.336 (4) | 0.4522 (17) | −0.1628 (18) | 0.043 (8)* | |
O26 | 0.7643 (2) | 0.51788 (8) | −0.07189 (8) | 0.0177 (3) | |
H261 | 0.865 (5) | 0.5441 (19) | −0.0459 (18) | 0.054 (9)* | |
H262 | 0.684 (4) | 0.5490 (17) | −0.0700 (15) | 0.035 (7)* | |
O27 | 0.9930 (2) | 0.37549 (9) | −0.04551 (8) | 0.0152 (3) | |
H271 | 1.082 (4) | 0.3989 (18) | −0.0735 (16) | 0.043 (8)* | |
H272 | 1.021 (4) | 0.3284 (17) | −0.0340 (14) | 0.031 (7)* | |
O28 | 0.9475 (2) | 0.36727 (10) | 0.17111 (9) | 0.0212 (3) | |
H281 | 1.013 (5) | 0.333 (2) | 0.1450 (19) | 0.067 (10)* | |
H282 | 1.030 (5) | 0.409 (2) | 0.182 (2) | 0.069 (11)* | |
O29 | 0.6350 (2) | 0.24139 (9) | −0.30317 (9) | 0.0210 (3) | |
H291 | 0.640 (4) | 0.2383 (16) | −0.3524 (16) | 0.034 (7)* | |
H292 | 0.711 (4) | 0.2134 (17) | −0.2848 (16) | 0.039 (8)* | |
Ca1 | 0.47149 (5) | 0.33132 (2) | 0.29935 (2) | 0.00881 (8) | |
Ca2 | 0.75264 (5) | 0.02017 (2) | 0.35950 (2) | 0.00913 (8) | |
Ca3 | 0.63978 (5) | 0.37014 (2) | −0.08465 (2) | 0.00934 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0099 (8) | 0.0095 (8) | 0.0132 (8) | 0.0014 (7) | 0.0000 (6) | −0.0006 (6) |
C2 | 0.0104 (8) | 0.0087 (8) | 0.0134 (8) | −0.0004 (7) | 0.0022 (6) | 0.0016 (6) |
C3 | 0.0136 (8) | 0.0088 (8) | 0.0126 (8) | −0.0004 (7) | 0.0013 (7) | 0.0009 (6) |
C4 | 0.0111 (8) | 0.0075 (8) | 0.0126 (8) | −0.0004 (6) | −0.0009 (7) | 0.0013 (6) |
C5 | 0.0119 (8) | 0.0090 (8) | 0.0126 (8) | 0.0011 (7) | −0.0006 (7) | 0.0010 (6) |
C6 | 0.0095 (8) | 0.0113 (8) | 0.0096 (8) | 0.0026 (7) | 0.0007 (6) | −0.0005 (6) |
C7 | 0.0081 (8) | 0.0078 (8) | 0.0119 (8) | 0.0010 (6) | 0.0006 (6) | 0.0012 (6) |
C8 | 0.0093 (8) | 0.0074 (8) | 0.0109 (8) | 0.0009 (6) | 0.0011 (6) | 0.0008 (6) |
C9 | 0.0099 (8) | 0.0101 (8) | 0.0090 (8) | 0.0013 (7) | 0.0001 (6) | 0.0016 (6) |
C10 | 0.0071 (8) | 0.0105 (8) | 0.0108 (8) | 0.0013 (6) | 0.0004 (6) | −0.0003 (6) |
C11 | 0.0068 (8) | 0.0077 (8) | 0.0108 (8) | 0.0003 (6) | 0.0004 (6) | −0.0002 (6) |
C12 | 0.0071 (8) | 0.0093 (8) | 0.0117 (8) | 0.0005 (6) | 0.0005 (6) | −0.0013 (6) |
C13 | 0.0094 (8) | 0.0081 (8) | 0.0110 (8) | 0.0002 (6) | 0.0019 (6) | −0.0007 (6) |
C14 | 0.0083 (8) | 0.0085 (8) | 0.0096 (8) | −0.0034 (6) | 0.0022 (6) | −0.0003 (6) |
C15 | 0.0061 (8) | 0.0084 (8) | 0.0152 (8) | −0.0010 (6) | −0.0001 (6) | 0.0000 (6) |
C16 | 0.0072 (8) | 0.0095 (8) | 0.0103 (8) | 0.0008 (6) | −0.0006 (6) | −0.0024 (6) |
C17 | 0.0080 (8) | 0.0093 (8) | 0.0115 (8) | 0.0009 (6) | 0.0000 (6) | −0.0024 (6) |
C18 | 0.0090 (8) | 0.0105 (8) | 0.0091 (8) | 0.0012 (6) | −0.0012 (6) | −0.0011 (6) |
C19 | 0.0117 (8) | 0.0113 (8) | 0.0091 (8) | 0.0023 (7) | −0.0001 (6) | −0.0011 (6) |
C20 | 0.0094 (8) | 0.0107 (8) | 0.0082 (8) | 0.0014 (6) | −0.0012 (6) | 0.0001 (6) |
C21 | 0.0070 (8) | 0.0081 (8) | 0.0091 (8) | −0.0007 (6) | −0.0009 (6) | −0.0010 (6) |
C22 | 0.0086 (8) | 0.0083 (8) | 0.0093 (8) | 0.0001 (6) | −0.0005 (6) | −0.0001 (6) |
C23 | 0.0112 (8) | 0.0102 (8) | 0.0079 (8) | 0.0003 (7) | 0.0003 (6) | −0.0005 (6) |
C24 | 0.0071 (8) | 0.0095 (8) | 0.0093 (8) | −0.0002 (6) | −0.0011 (6) | 0.0004 (6) |
C25 | 0.0054 (7) | 0.0079 (8) | 0.0093 (8) | 0.0002 (6) | −0.0011 (6) | 0.0009 (6) |
C26 | 0.0064 (8) | 0.0090 (8) | 0.0098 (8) | 0.0004 (6) | −0.0008 (6) | 0.0003 (6) |
C27 | 0.0090 (8) | 0.0087 (8) | 0.0093 (8) | −0.0008 (6) | −0.0012 (6) | −0.0009 (6) |
C28 | 0.0100 (8) | 0.0106 (8) | 0.0089 (8) | 0.0006 (7) | 0.0024 (6) | 0.0017 (6) |
N1 | 0.0122 (7) | 0.0086 (7) | 0.0087 (7) | −0.0003 (6) | 0.0002 (6) | −0.0008 (6) |
N2 | 0.0079 (7) | 0.0079 (7) | 0.0112 (7) | 0.0008 (5) | 0.0001 (5) | 0.0004 (5) |
N3 | 0.0103 (7) | 0.0074 (7) | 0.0080 (7) | 0.0004 (6) | 0.0005 (5) | 0.0004 (5) |
N4 | 0.0086 (7) | 0.0084 (7) | 0.0088 (7) | 0.0015 (5) | −0.0003 (5) | 0.0003 (5) |
O1 | 0.0168 (6) | 0.0104 (6) | 0.0104 (6) | −0.0005 (5) | 0.0003 (5) | 0.0006 (5) |
O2 | 0.0190 (7) | 0.0086 (6) | 0.0117 (6) | −0.0022 (5) | 0.0001 (5) | 0.0010 (5) |
O3 | 0.0247 (7) | 0.0132 (6) | 0.0115 (6) | −0.0004 (5) | −0.0031 (5) | 0.0037 (5) |
O4 | 0.0152 (6) | 0.0110 (6) | 0.0111 (6) | −0.0003 (5) | −0.0018 (5) | −0.0002 (5) |
O5 | 0.0172 (6) | 0.0082 (6) | 0.0096 (6) | −0.0005 (5) | −0.0016 (5) | −0.0004 (5) |
O6 | 0.0270 (7) | 0.0093 (6) | 0.0108 (6) | −0.0036 (5) | −0.0029 (5) | 0.0029 (5) |
O7 | 0.0153 (6) | 0.0127 (6) | 0.0108 (6) | 0.0022 (5) | −0.0022 (5) | 0.0006 (5) |
O8 | 0.0133 (6) | 0.0115 (6) | 0.0126 (6) | 0.0020 (5) | 0.0008 (5) | −0.0026 (5) |
O9 | 0.0154 (6) | 0.0116 (6) | 0.0142 (6) | 0.0027 (5) | 0.0016 (5) | 0.0039 (5) |
O10 | 0.0199 (7) | 0.0110 (6) | 0.0150 (6) | 0.0052 (5) | −0.0014 (5) | −0.0032 (5) |
O11 | 0.0295 (7) | 0.0152 (6) | 0.0085 (6) | 0.0080 (6) | 0.0053 (5) | 0.0013 (5) |
O12 | 0.0185 (6) | 0.0098 (6) | 0.0095 (6) | 0.0028 (5) | 0.0014 (5) | 0.0024 (5) |
O13 | 0.0193 (7) | 0.0092 (6) | 0.0096 (6) | 0.0051 (5) | 0.0026 (5) | 0.0015 (5) |
O14 | 0.0161 (6) | 0.0120 (6) | 0.0088 (6) | 0.0022 (5) | 0.0024 (5) | −0.0006 (5) |
O15 | 0.0236 (7) | 0.0125 (6) | 0.0092 (6) | 0.0029 (5) | −0.0010 (5) | 0.0009 (5) |
O16 | 0.0206 (7) | 0.0088 (6) | 0.0108 (6) | 0.0020 (5) | 0.0022 (5) | 0.0016 (5) |
O17 | 0.0171 (7) | 0.0154 (7) | 0.0123 (6) | −0.0029 (5) | −0.0003 (6) | −0.0010 (5) |
O18 | 0.0175 (7) | 0.0242 (8) | 0.0178 (7) | 0.0091 (6) | 0.0042 (6) | 0.0068 (6) |
O19 | 0.0143 (7) | 0.0103 (7) | 0.0247 (7) | 0.0012 (6) | 0.0002 (6) | −0.0026 (5) |
O20 | 0.0164 (7) | 0.0133 (6) | 0.0116 (6) | 0.0024 (5) | 0.0001 (5) | −0.0013 (5) |
O21 | 0.0323 (8) | 0.0115 (7) | 0.0108 (7) | −0.0053 (6) | −0.0008 (6) | 0.0016 (5) |
O22 | 0.0384 (9) | 0.0119 (7) | 0.0127 (7) | −0.0064 (6) | 0.0073 (6) | −0.0008 (5) |
O23 | 0.0165 (7) | 0.0166 (7) | 0.0128 (7) | 0.0001 (6) | −0.0001 (6) | 0.0041 (5) |
O24 | 0.0285 (8) | 0.0130 (7) | 0.0132 (6) | 0.0013 (6) | 0.0066 (6) | 0.0013 (6) |
O25 | 0.0204 (7) | 0.0112 (7) | 0.0114 (7) | 0.0028 (5) | −0.0005 (5) | −0.0005 (5) |
O26 | 0.0158 (7) | 0.0117 (6) | 0.0255 (7) | 0.0033 (6) | −0.0026 (6) | −0.0011 (6) |
O27 | 0.0145 (7) | 0.0110 (6) | 0.0204 (7) | 0.0026 (5) | 0.0013 (5) | 0.0024 (5) |
O28 | 0.0222 (8) | 0.0179 (7) | 0.0239 (7) | 0.0028 (6) | 0.0040 (6) | −0.0008 (6) |
O29 | 0.0337 (9) | 0.0179 (7) | 0.0101 (7) | 0.0007 (6) | −0.0029 (6) | 0.0014 (5) |
Ca1 | 0.01094 (16) | 0.00795 (16) | 0.00727 (16) | 0.00073 (13) | 0.00000 (12) | −0.00028 (12) |
Ca2 | 0.01122 (17) | 0.00735 (16) | 0.00825 (16) | −0.00045 (13) | 0.00028 (12) | 0.00033 (12) |
Ca3 | 0.01280 (17) | 0.00742 (16) | 0.00802 (16) | 0.00195 (13) | 0.00126 (13) | 0.00085 (12) |
C1—O2 | 1.256 (2) | C28—O15 | 1.255 (2) |
C1—O1 | 1.274 (2) | C28—O16 | 1.256 (2) |
C1—C2 | 1.486 (2) | N1—H2 | 0.86 (2) |
C1—Ca2i | 2.8519 (17) | N2—Ca1ii | 2.5069 (14) |
C2—C3 | 1.372 (2) | N3—H4 | 0.86 (2) |
C2—N1 | 1.379 (2) | N4—Ca3 | 2.5460 (14) |
C3—C4 | 1.415 (2) | O1—Ca2i | 2.4812 (12) |
C3—H3 | 0.9500 | O2—Ca2i | 2.5279 (12) |
C4—C12 | 1.405 (2) | O4—Ca1ii | 2.5928 (12) |
C4—C5 | 1.445 (2) | O5—Ca1ii | 2.3784 (12) |
C5—O3 | 1.217 (2) | O8—Ca1 | 2.3137 (12) |
C5—C6 | 1.538 (2) | O12—Ca3 | 2.5703 (12) |
C6—O4 | 1.216 (2) | O13—Ca3 | 2.3963 (12) |
C6—C7 | 1.500 (2) | O14—Ca1 | 2.2514 (12) |
C7—N2 | 1.334 (2) | O15—Ca2 | 2.3522 (12) |
C7—C11 | 1.411 (2) | O17—Ca1 | 2.3694 (13) |
C8—N2 | 1.337 (2) | O17—H171 | 0.85 (3) |
C8—C9 | 1.393 (2) | O17—H172 | 0.86 (3) |
C8—C13 | 1.520 (2) | O18—Ca1 | 2.3145 (14) |
C9—C10 | 1.392 (2) | O18—H181 | 0.88 (3) |
C9—H9A | 0.9500 | O18—H182 | 0.84 (3) |
C10—C11 | 1.414 (2) | O19—Ca2 | 2.3894 (14) |
C10—C14 | 1.529 (2) | O19—H191 | 0.81 (3) |
C11—C12 | 1.458 (2) | O19—H192 | 0.85 (3) |
C12—N1 | 1.350 (2) | O20—Ca2 | 2.4382 (13) |
C13—O6 | 1.244 (2) | O20—H201 | 0.82 (3) |
C13—O5 | 1.262 (2) | O20—H202 | 0.84 (3) |
C14—O7 | 1.241 (2) | O21—Ca2 | 2.3824 (14) |
C14—O8 | 1.260 (2) | O21—H211 | 0.80 (3) |
C15—O10 | 1.255 (2) | O21—H212 | 0.85 (3) |
C15—O9 | 1.261 (2) | O22—Ca2 | 2.3383 (14) |
C15—C16 | 1.491 (2) | O22—H221 | 0.76 (3) |
C16—C17 | 1.369 (2) | O22—H222 | 0.87 (3) |
C16—N3 | 1.380 (2) | O23—Ca3 | 2.4362 (14) |
C17—C18 | 1.416 (2) | O23—H231 | 0.76 (3) |
C17—H17 | 0.9500 | O23—H232 | 0.83 (3) |
C18—C26 | 1.413 (2) | O24—Ca3 | 2.3607 (13) |
C18—C19 | 1.425 (2) | O24—H241 | 0.81 (3) |
C19—O11 | 1.229 (2) | O24—H242 | 0.82 (3) |
C19—C20 | 1.530 (2) | O25—Ca3 | 2.5787 (14) |
C20—O12 | 1.210 (2) | O25—H251 | 0.85 (3) |
C20—C21 | 1.497 (2) | O25—H252 | 0.81 (3) |
C21—N4 | 1.331 (2) | O26—Ca3 | 2.3962 (14) |
C21—C25 | 1.414 (2) | O26—H261 | 0.86 (3) |
C22—N4 | 1.336 (2) | O26—H262 | 0.80 (3) |
C22—C23 | 1.391 (2) | O27—Ca3 | 2.4924 (14) |
C22—C27 | 1.517 (2) | O27—H271 | 0.85 (3) |
C23—C24 | 1.399 (2) | O27—H272 | 0.83 (3) |
C23—H23 | 0.9500 | O28—H281 | 0.89 (4) |
C24—C25 | 1.416 (2) | O28—H282 | 0.83 (4) |
C24—C28 | 1.531 (2) | O29—H291 | 0.84 (3) |
C25—C26 | 1.468 (2) | O29—H292 | 0.79 (3) |
C26—N3 | 1.349 (2) | Ca2—H212 | 2.77 (3) |
C27—O14 | 1.241 (2) | Ca3—H242 | 2.79 (3) |
C27—O13 | 1.270 (2) | ||
O2—C1—O1 | 122.57 (16) | Ca2—O20—H202 | 108.7 (19) |
O2—C1—C2 | 119.37 (15) | H201—O20—H202 | 111 (3) |
O1—C1—C2 | 118.05 (15) | Ca2—O21—H211 | 131.1 (19) |
O2—C1—Ca2i | 62.38 (9) | Ca2—O21—H212 | 108.2 (18) |
O1—C1—Ca2i | 60.30 (9) | H211—O21—H212 | 104 (2) |
C2—C1—Ca2i | 174.96 (12) | Ca2—O22—H221 | 122 (2) |
C3—C2—N1 | 108.35 (15) | Ca2—O22—H222 | 133.1 (18) |
C3—C2—C1 | 131.39 (16) | H221—O22—H222 | 105 (3) |
N1—C2—C1 | 120.24 (15) | Ca3—O23—H231 | 115.6 (19) |
C2—C3—C4 | 106.75 (15) | Ca3—O23—H232 | 116.1 (18) |
C2—C3—H3 | 126.6 | H231—O23—H232 | 108 (3) |
C4—C3—H3 | 126.6 | Ca3—O24—H241 | 125.7 (19) |
C12—C4—C3 | 107.73 (15) | Ca3—O24—H242 | 113.0 (19) |
C12—C4—C5 | 122.41 (15) | H241—O24—H242 | 104 (3) |
C3—C4—C5 | 129.85 (15) | Ca3—O25—H251 | 114.2 (18) |
O3—C5—C4 | 126.34 (16) | Ca3—O25—H252 | 106 (2) |
O3—C5—C6 | 118.97 (15) | H251—O25—H252 | 106 (3) |
C4—C5—C6 | 114.67 (14) | Ca3—O26—H261 | 131 (2) |
O4—C6—C7 | 120.52 (15) | Ca3—O26—H262 | 115.5 (19) |
O4—C6—C5 | 120.10 (15) | H261—O26—H262 | 105 (3) |
C7—C6—C5 | 119.34 (14) | Ca3—O27—H271 | 122.3 (18) |
N2—C7—C11 | 124.30 (15) | Ca3—O27—H272 | 112.4 (17) |
N2—C7—C6 | 113.14 (14) | H271—O27—H272 | 107 (2) |
C11—C7—C6 | 122.55 (15) | H281—O28—H282 | 103 (3) |
N2—C8—C9 | 121.27 (15) | H291—O29—H292 | 107 (3) |
N2—C8—C13 | 115.32 (14) | O14—Ca1—O8 | 110.58 (4) |
C9—C8—C13 | 123.41 (15) | O14—Ca1—O18 | 83.93 (5) |
C10—C9—C8 | 120.33 (15) | O8—Ca1—O18 | 160.87 (5) |
C10—C9—H9A | 119.8 | O14—Ca1—O17 | 81.08 (5) |
C8—C9—H9A | 119.8 | O8—Ca1—O17 | 84.33 (5) |
C9—C10—C11 | 118.83 (15) | O18—Ca1—O17 | 110.98 (5) |
C9—C10—C14 | 115.60 (14) | O14—Ca1—O5ii | 147.08 (4) |
C11—C10—C14 | 125.56 (15) | O8—Ca1—O5ii | 92.68 (4) |
C7—C11—C10 | 116.10 (15) | O18—Ca1—O5ii | 79.85 (5) |
C7—C11—C12 | 115.64 (14) | O17—Ca1—O5ii | 78.35 (4) |
C10—C11—C12 | 128.24 (15) | O14—Ca1—N2ii | 139.18 (5) |
N1—C12—C4 | 106.95 (15) | O8—Ca1—N2ii | 80.01 (4) |
N1—C12—C11 | 127.93 (15) | O18—Ca1—N2ii | 80.87 (5) |
C4—C12—C11 | 125.07 (15) | O17—Ca1—N2ii | 139.74 (5) |
O6—C13—O5 | 126.02 (15) | O5ii—Ca1—N2ii | 65.71 (4) |
O6—C13—C8 | 117.71 (14) | O14—Ca1—O4ii | 79.80 (4) |
O5—C13—C8 | 116.27 (14) | O8—Ca1—O4ii | 80.92 (4) |
O7—C14—O8 | 126.49 (15) | O18—Ca1—O4ii | 89.87 (5) |
O7—C14—C10 | 116.37 (15) | O17—Ca1—O4ii | 149.89 (4) |
O8—C14—C10 | 117.05 (14) | O5ii—Ca1—O4ii | 128.25 (4) |
O10—C15—O9 | 126.01 (16) | N2ii—Ca1—O4ii | 62.59 (4) |
O10—C15—C16 | 115.89 (15) | O22—Ca2—O15 | 148.18 (5) |
O9—C15—C16 | 118.07 (15) | O22—Ca2—O21 | 78.62 (5) |
C17—C16—N3 | 108.57 (14) | O15—Ca2—O21 | 77.75 (5) |
C17—C16—C15 | 129.10 (15) | O22—Ca2—O19 | 81.60 (5) |
N3—C16—C15 | 122.28 (15) | O15—Ca2—O19 | 87.27 (5) |
C16—C17—C18 | 106.85 (15) | O21—Ca2—O19 | 110.91 (5) |
C16—C17—H17 | 126.6 | O22—Ca2—O20 | 98.71 (5) |
C18—C17—H17 | 126.6 | O15—Ca2—O20 | 98.27 (5) |
C26—C18—C17 | 107.48 (14) | O21—Ca2—O20 | 80.94 (5) |
C26—C18—C19 | 122.96 (15) | O19—Ca2—O20 | 167.84 (5) |
C17—C18—C19 | 129.55 (15) | O22—Ca2—O1iii | 127.21 (5) |
O11—C19—C18 | 127.61 (16) | O15—Ca2—O1iii | 81.48 (4) |
O11—C19—C20 | 118.19 (15) | O21—Ca2—O1iii | 151.55 (5) |
C18—C19—C20 | 114.20 (14) | O19—Ca2—O1iii | 87.10 (5) |
O12—C20—C21 | 121.02 (15) | O20—Ca2—O1iii | 83.06 (4) |
O12—C20—C19 | 118.84 (15) | O22—Ca2—O2iii | 75.46 (5) |
C21—C20—C19 | 120.12 (14) | O15—Ca2—O2iii | 133.97 (4) |
N4—C21—C25 | 124.89 (15) | O21—Ca2—O2iii | 145.39 (5) |
N4—C21—C20 | 112.30 (14) | O19—Ca2—O2iii | 87.61 (5) |
C25—C21—C20 | 122.68 (15) | O20—Ca2—O2iii | 80.74 (4) |
N4—C22—C23 | 121.19 (15) | O1iii—Ca2—O2iii | 52.58 (4) |
N4—C22—C27 | 114.53 (14) | O22—Ca2—C1iii | 101.03 (5) |
C23—C22—C27 | 124.27 (15) | O15—Ca2—C1iii | 107.87 (5) |
C22—C23—C24 | 120.98 (15) | O21—Ca2—C1iii | 162.54 (5) |
C22—C23—H23 | 119.5 | O19—Ca2—C1iii | 86.13 (5) |
C24—C23—H23 | 119.5 | O20—Ca2—C1iii | 81.88 (5) |
C23—C24—C25 | 118.04 (15) | O1iii—Ca2—C1iii | 26.49 (4) |
C23—C24—C28 | 115.57 (14) | O2iii—Ca2—C1iii | 26.12 (4) |
C25—C24—C28 | 126.36 (14) | O22—Ca2—H212 | 94.6 (6) |
C21—C25—C24 | 115.99 (15) | O15—Ca2—H212 | 60.7 (6) |
C21—C25—C26 | 114.23 (14) | O21—Ca2—H212 | 17.0 (6) |
C24—C25—C26 | 129.67 (15) | O19—Ca2—H212 | 107.9 (6) |
N3—C26—C18 | 106.92 (14) | O20—Ca2—H212 | 84.2 (6) |
N3—C26—C25 | 127.74 (15) | O1iii—Ca2—H212 | 137.7 (6) |
C18—C26—C25 | 125.34 (15) | O2iii—Ca2—H212 | 160.4 (6) |
O14—C27—O13 | 124.61 (15) | C1iii—Ca2—H212 | 160.5 (6) |
O14—C27—C22 | 118.79 (14) | O24—Ca3—O26 | 83.48 (5) |
O13—C27—C22 | 116.58 (14) | O24—Ca3—O13 | 161.79 (5) |
O15—C28—O16 | 125.31 (15) | O26—Ca3—O13 | 85.73 (5) |
O15—C28—C24 | 114.92 (14) | O24—Ca3—O23 | 82.50 (5) |
O16—C28—C24 | 119.76 (14) | O26—Ca3—O23 | 144.90 (5) |
C12—N1—C2 | 110.20 (15) | O13—Ca3—O23 | 98.26 (5) |
C12—N1—H2 | 124.5 (14) | O24—Ca3—O27 | 96.15 (5) |
C2—N1—H2 | 124.9 (14) | O26—Ca3—O27 | 75.13 (5) |
C7—N2—C8 | 119.04 (14) | O13—Ca3—O27 | 95.21 (4) |
C7—N2—Ca1ii | 123.03 (11) | O23—Ca3—O27 | 138.35 (5) |
C8—N2—Ca1ii | 117.70 (11) | O24—Ca3—N4 | 132.11 (5) |
C26—N3—C16 | 110.18 (14) | O26—Ca3—N4 | 137.02 (5) |
C26—N3—H4 | 119.6 (16) | O13—Ca3—N4 | 64.53 (4) |
C16—N3—H4 | 129.8 (16) | O23—Ca3—N4 | 73.39 (5) |
C21—N4—C22 | 118.67 (14) | O27—Ca3—N4 | 77.41 (5) |
C21—N4—Ca3 | 122.66 (11) | O24—Ca3—O12 | 70.98 (4) |
C22—N4—Ca3 | 118.65 (11) | O26—Ca3—O12 | 134.27 (5) |
C1—O1—Ca2i | 93.21 (10) | O13—Ca3—O12 | 126.46 (4) |
C1—O2—Ca2i | 91.50 (10) | O23—Ca3—O12 | 69.44 (4) |
C6—O4—Ca1ii | 120.35 (11) | O27—Ca3—O12 | 70.85 (4) |
C13—O5—Ca1ii | 124.78 (10) | N4—Ca3—O12 | 62.01 (4) |
C14—O8—Ca1 | 146.93 (11) | O24—Ca3—O25 | 81.28 (5) |
C20—O12—Ca3 | 121.20 (11) | O26—Ca3—O25 | 73.38 (5) |
C27—O13—Ca3 | 125.58 (10) | O13—Ca3—O25 | 81.59 (4) |
C27—O14—Ca1 | 161.86 (11) | O23—Ca3—O25 | 72.78 (5) |
C28—O15—Ca2 | 139.74 (11) | O27—Ca3—O25 | 148.49 (5) |
Ca1—O17—H171 | 115.5 (18) | N4—Ca3—O25 | 127.07 (4) |
Ca1—O17—H172 | 125.2 (16) | O12—Ca3—O25 | 135.26 (4) |
H171—O17—H172 | 107 (2) | O24—Ca3—H242 | 15.8 (6) |
Ca1—O18—H181 | 117.1 (16) | O26—Ca3—H242 | 98.7 (6) |
Ca1—O18—H182 | 129 (2) | O13—Ca3—H242 | 168.8 (6) |
H181—O18—H182 | 113 (3) | O23—Ca3—H242 | 72.2 (6) |
Ca2—O19—H191 | 125.4 (19) | O27—Ca3—H242 | 95.9 (6) |
Ca2—O19—H192 | 123.7 (18) | N4—Ca3—H242 | 116.6 (6) |
H191—O19—H192 | 109 (3) | O12—Ca3—H242 | 56.6 (6) |
Ca2—O20—H201 | 112 (2) | O25—Ca3—H242 | 89.7 (6) |
O2—C1—C2—C3 | 4.2 (3) | C27—C22—C23—C24 | 179.30 (15) |
O1—C1—C2—C3 | −177.26 (18) | C22—C23—C24—C25 | −2.2 (2) |
O2—C1—C2—N1 | −174.51 (15) | C22—C23—C24—C28 | 175.81 (15) |
O1—C1—C2—N1 | 4.0 (2) | N4—C21—C25—C24 | −3.8 (2) |
N1—C2—C3—C4 | −0.1 (2) | C20—C21—C25—C24 | 171.68 (15) |
C1—C2—C3—C4 | −178.94 (18) | N4—C21—C25—C26 | 179.55 (15) |
C2—C3—C4—C12 | −0.2 (2) | C20—C21—C25—C26 | −5.0 (2) |
C2—C3—C4—C5 | 179.25 (18) | C23—C24—C25—C21 | 4.9 (2) |
C12—C4—C5—O3 | 177.69 (17) | C28—C24—C25—C21 | −172.84 (15) |
C3—C4—C5—O3 | −1.7 (3) | C23—C24—C25—C26 | −179.05 (16) |
C12—C4—C5—C6 | −3.6 (2) | C28—C24—C25—C26 | 3.2 (3) |
C3—C4—C5—C6 | 176.96 (17) | C17—C18—C26—N3 | 0.23 (19) |
O3—C5—C6—O4 | 7.4 (3) | C19—C18—C26—N3 | −179.13 (15) |
C4—C5—C6—O4 | −171.33 (16) | C17—C18—C26—C25 | −179.41 (15) |
O3—C5—C6—C7 | −174.98 (16) | C19—C18—C26—C25 | 1.2 (3) |
C4—C5—C6—C7 | 6.2 (2) | C21—C25—C26—N3 | −179.48 (16) |
O4—C6—C7—N2 | −5.9 (2) | C24—C25—C26—N3 | 4.4 (3) |
C5—C6—C7—N2 | 176.54 (14) | C21—C25—C26—C18 | 0.1 (2) |
O4—C6—C7—C11 | 173.13 (16) | C24—C25—C26—C18 | −176.01 (16) |
C5—C6—C7—C11 | −4.4 (2) | N4—C22—C27—O14 | 176.56 (15) |
N2—C8—C9—C10 | −3.1 (3) | C23—C22—C27—O14 | −4.9 (2) |
C13—C8—C9—C10 | 177.06 (15) | N4—C22—C27—O13 | −2.0 (2) |
C8—C9—C10—C11 | 3.0 (2) | C23—C22—C27—O13 | 176.54 (15) |
C8—C9—C10—C14 | −175.77 (15) | C23—C24—C28—O15 | −28.3 (2) |
N2—C7—C11—C10 | −2.8 (3) | C25—C24—C28—O15 | 149.54 (17) |
C6—C7—C11—C10 | 178.32 (15) | C23—C24—C28—O16 | 150.92 (16) |
N2—C7—C11—C12 | 178.55 (15) | C25—C24—C28—O16 | −31.3 (2) |
C6—C7—C11—C12 | −0.4 (2) | C4—C12—N1—C2 | −0.58 (19) |
C9—C10—C11—C7 | −0.2 (2) | C11—C12—N1—C2 | −178.32 (16) |
C14—C10—C11—C7 | 178.43 (15) | C3—C2—N1—C12 | 0.5 (2) |
C9—C10—C11—C12 | 178.31 (16) | C1—C2—N1—C12 | 179.42 (15) |
C14—C10—C11—C12 | −3.1 (3) | C11—C7—N2—C8 | 2.7 (3) |
C3—C4—C12—N1 | 0.49 (19) | C6—C7—N2—C8 | −178.26 (14) |
C5—C4—C12—N1 | −179.02 (16) | C11—C7—N2—Ca1ii | −171.66 (12) |
C3—C4—C12—C11 | 178.31 (16) | C6—C7—N2—Ca1ii | 7.34 (19) |
C5—C4—C12—C11 | −1.2 (3) | C9—C8—N2—C7 | 0.3 (2) |
C7—C11—C12—N1 | −179.28 (16) | C13—C8—N2—C7 | −179.89 (15) |
C10—C11—C12—N1 | 2.2 (3) | C9—C8—N2—Ca1ii | 175.00 (12) |
C7—C11—C12—C4 | 3.4 (2) | C13—C8—N2—Ca1ii | −5.19 (19) |
C10—C11—C12—C4 | −175.13 (17) | C18—C26—N3—C16 | −0.16 (19) |
N2—C8—C13—O6 | −175.07 (15) | C25—C26—N3—C16 | 179.48 (16) |
C9—C8—C13—O6 | 4.7 (3) | C17—C16—N3—C26 | 0.02 (19) |
N2—C8—C13—O5 | 4.8 (2) | C15—C16—N3—C26 | 177.55 (15) |
C9—C8—C13—O5 | −175.37 (16) | C25—C21—N4—C22 | −0.5 (2) |
C9—C10—C14—O7 | −42.5 (2) | C20—C21—N4—C22 | −176.42 (14) |
C11—C10—C14—O7 | 138.90 (17) | C25—C21—N4—Ca3 | 177.66 (12) |
C9—C10—C14—O8 | 134.37 (16) | C20—C21—N4—Ca3 | 1.78 (18) |
C11—C10—C14—O8 | −44.3 (2) | C23—C22—N4—C21 | 3.7 (2) |
O10—C15—C16—C17 | −8.1 (3) | C27—C22—N4—C21 | −177.79 (14) |
O9—C15—C16—C17 | 170.08 (16) | C23—C22—N4—Ca3 | −174.62 (12) |
O10—C15—C16—N3 | 174.93 (15) | C27—C22—N4—Ca3 | 3.93 (18) |
O9—C15—C16—N3 | −6.9 (2) | O2—C1—O1—Ca2i | 3.95 (18) |
N3—C16—C17—C18 | 0.13 (18) | C2—C1—O1—Ca2i | −174.56 (14) |
C15—C16—C17—C18 | −177.18 (16) | O1—C1—O2—Ca2i | −3.87 (17) |
C16—C17—C18—C26 | −0.22 (19) | C2—C1—O2—Ca2i | 174.62 (14) |
C16—C17—C18—C19 | 179.08 (17) | C7—C6—O4—Ca1ii | 1.8 (2) |
C26—C18—C19—O11 | −178.07 (17) | C5—C6—O4—Ca1ii | 179.39 (11) |
C17—C18—C19—O11 | 2.7 (3) | O6—C13—O5—Ca1ii | 177.84 (13) |
C26—C18—C19—C20 | 2.1 (2) | C8—C13—O5—Ca1ii | −2.1 (2) |
C17—C18—C19—C20 | −177.06 (16) | O7—C14—O8—Ca1 | 97.5 (2) |
O11—C19—C20—O12 | −7.9 (2) | C10—C14—O8—Ca1 | −79.0 (2) |
C18—C19—C20—O12 | 171.94 (15) | C21—C20—O12—Ca3 | −10.8 (2) |
O11—C19—C20—C21 | 173.47 (15) | C19—C20—O12—Ca3 | 170.58 (11) |
C18—C19—C20—C21 | −6.7 (2) | O14—C27—O13—Ca3 | −179.65 (12) |
O12—C20—C21—N4 | 6.0 (2) | C22—C27—O13—Ca3 | −1.2 (2) |
C19—C20—C21—N4 | −175.40 (14) | O13—C27—O14—Ca1 | −135.4 (3) |
O12—C20—C21—C25 | −170.03 (15) | C22—C27—O14—Ca1 | 46.2 (4) |
C19—C20—C21—C25 | 8.6 (2) | O16—C28—O15—Ca2 | −14.3 (3) |
N4—C22—C23—C24 | −2.3 (3) | C24—C28—O15—Ca2 | 164.88 (12) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···O8 | 0.86 (2) | 2.01 (2) | 2.7232 (19) | 139.6 (19) |
N3—H4···O16 | 0.86 (2) | 1.83 (2) | 2.6163 (19) | 151 (2) |
O17—H171···O10iv | 0.85 (3) | 1.91 (3) | 2.7543 (18) | 170 (3) |
O17—H172···O1 | 0.86 (3) | 2.08 (3) | 2.9287 (19) | 170 (2) |
O18—H181···O28 | 0.88 (3) | 1.82 (3) | 2.681 (2) | 166 (2) |
O18—H182···O1iii | 0.84 (3) | 1.97 (3) | 2.8107 (19) | 176 (3) |
O19—H191···O20i | 0.81 (3) | 2.10 (3) | 2.8789 (19) | 161 (3) |
O19—H192···O5ii | 0.85 (3) | 1.89 (3) | 2.7350 (18) | 174 (3) |
O20—H201···O11v | 0.82 (3) | 2.00 (3) | 2.8221 (18) | 173 (3) |
O20—H202···O2vi | 0.84 (3) | 1.94 (3) | 2.7620 (18) | 169 (3) |
O21—H211···O29iv | 0.80 (3) | 2.05 (3) | 2.845 (2) | 173 (3) |
O21—H212···O16 | 0.85 (3) | 1.90 (3) | 2.7320 (18) | 163 (3) |
O22—H221···O19vi | 0.76 (3) | 2.26 (3) | 2.958 (2) | 152 (3) |
O22—H222···O6vii | 0.87 (3) | 1.83 (3) | 2.6985 (19) | 175 (3) |
O23—H231···O3viii | 0.76 (3) | 2.10 (3) | 2.8398 (19) | 164 (3) |
O23—H232···O9iv | 0.83 (3) | 1.90 (3) | 2.7217 (19) | 169 (3) |
O24—H241···O7ix | 0.81 (3) | 2.03 (3) | 2.8040 (19) | 163 (3) |
O24—H242···O29 | 0.82 (3) | 1.93 (3) | 2.750 (2) | 172 (3) |
O25—H251···O13ix | 0.85 (3) | 2.02 (3) | 2.8578 (18) | 168 (3) |
O25—H252···O3viii | 0.81 (3) | 2.41 (3) | 3.0258 (19) | 133 (2) |
O25—H252···O4viii | 0.81 (3) | 2.28 (3) | 3.0405 (18) | 155 (3) |
O26—H261···O27x | 0.86 (3) | 2.11 (3) | 2.9018 (19) | 154 (3) |
O26—H262···O13ix | 0.80 (3) | 2.06 (3) | 2.8506 (19) | 170 (3) |
O27—H271···O25iii | 0.85 (3) | 2.08 (3) | 2.9022 (19) | 164 (3) |
O27—H272···O9v | 0.83 (3) | 1.99 (3) | 2.8125 (18) | 171 (2) |
O28—H281···O10v | 0.89 (4) | 1.88 (4) | 2.721 (2) | 159 (3) |
O28—H282···O26x | 0.83 (4) | 2.59 (3) | 3.098 (2) | 121 (3) |
O29—H291···O6ix | 0.84 (3) | 1.85 (3) | 2.6582 (19) | 160 (3) |
O29—H292···O11 | 0.79 (3) | 2.27 (3) | 3.021 (2) | 159 (3) |
O29—H292···O12 | 0.79 (3) | 2.40 (3) | 2.7789 (19) | 110 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z; (v) −x+2, −y, −z; (vi) −x+1, −y, −z+1; (vii) x, y−1, z; (viii) x, y, z−1; (ix) −x+1, −y+1, −z; (x) −x+2, −y+1, −z. |
For symmetry data for Eu2PQQ2.12H2O, please see (Lumpe et al., 2020). |
Ca3PQQ2.13H2O | Eu2PQQ2.12H2O | ||
Ca1i—O4 | 2.5928 (12) | Eu1—O4 | 2.584 (2) |
Ca1i—N2 | 2.5069 (14) | Eu1—N2 | 2.648 (2) |
Ca1i—O5 | 2.3784 (12) | Eu1—O5 | 2.440 (2) |
Ca1—O14 | 2.2514 (12) | Eu1—O1 | 2.409 (2) |
Ca1—O8 | 2.3137 (12) | Eu1—Owater (5 bonds) | 2.389 (2)–2.464 (2) |
Ca1—O17 | 2.3694 (13) | ||
Ca1—O18 | 2.3145 (14) | Ca3—O12 | 2.5703 (12) |
Ca2ii—O1 | 2.4812 (12) | Ca3—N4 | 2.5460 (14) |
Ca2ii—O2 | 2.5279 (12) | Ca3—O13 | 2.3963 (12) |
Ca2—O15 | 2.3522 (12) | Ca3—O23 | 2.4362 (14) |
Ca2—O19 | 2.3894 (14) | Ca3—O24 | 2.3607 (13) |
Ca2—O20 | 2.4382 (13) | Ca3—O25 | 2.5787 (14) |
Ca2—O21 | 2.3824 (14) | Ca3—O26 | 2.3962 (14) |
Ca2—O22 | 2.3383 (14) | Ca3—O27 | 2.4924 (14) |
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z. |
Footnotes
1Dedicated to Professor Wolfgang Kaim on the occasion of his 70th birthday.
Acknowledgements
Open access funding enabled and organized by Projekt DEAL.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 392552271 to LJD).
References
Anthony, C. & Zatman, L. J. (1964a). Biochem. J. 92, 609–614. CrossRef CAS PubMed Web of Science Google Scholar
Anthony, C. & Zatman, L. J. (1964b). Biochem. J. 92, 614–621. CrossRef CAS PubMed Web of Science Google Scholar
Blake, C. C. F., Ghosh, M., Harlos, K., Avezoux, A. & Anthony, C. (1994). Nat. Struct. Mol. Biol. 1, 102–105. CrossRef CAS Web of Science Google Scholar
Bogart, J. A., Lewis, A. J. & Schelter, E. J. (2015). Chem. Eur. J. 21, 1743–1748. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheisson, T. & Schelter, E. J. (2019). Science, 363, 489–493. Web of Science CrossRef CAS PubMed Google Scholar
Chistoserdova, L. (2019). Mol. Microbiol. 111, 1127–1131. Web of Science CrossRef CAS PubMed Google Scholar
Corey, E. J. & Tramontano, A. (1981). J. Am. Chem. Soc. 103, 5599–5600. CrossRef CAS Web of Science Google Scholar
Cotruvo, J. A. (2019). ACS Cent. Sci. 9, 1496–1506. Web of Science CrossRef Google Scholar
Daumann, L. J. (2019). Angew. Chem. Int. Ed. 58, 12795–12802. Web of Science CrossRef CAS Google Scholar
Dekker, R. H., Duine, J. A., Frank, J., Verwiel, P. E. J. & Westerling, J. (1982). Eur. J. Biochem. 125, 69–73. CrossRef CAS PubMed Web of Science Google Scholar
Duine, J. A., Frank, J. & Westerling, J. (1978). Biochim. Biophys. Acta Enzymol. 524, 277–287. CrossRef CAS Web of Science Google Scholar
Eckert, T. S., Bruice, T. C., Gainor, J. A. & Weinreb, S. M. (1982). Proc. Natl Acad. Sci. USA, 79, 2533–2536. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ikemoto, K., Sakamoto, H. & Nakano, M. (2012). Chem. Cent. J. 6, 57. Web of Science CSD CrossRef PubMed Google Scholar
Ikemoto, K., Sakamoto, Y., Tanaka, R., Ogata, K., Matsushita, N. & Nakamura, S. (2017). Cryst. Growth Des. 17, 4118–4123. Web of Science CSD CrossRef CAS Google Scholar
Ishida, T., Doi, M., Tomita, K., Hayashi, H., Inoue, M. & Urakami, T. (1989). J. Am. Chem. Soc. 111, 6822–6828. CSD CrossRef CAS Web of Science Google Scholar
Itoh, S., Kawakami, H. & Fukuzumi, S. (1997). J. Am. Chem. Soc. 119, 439–440. CrossRef CAS Web of Science Google Scholar
Itoh, S., Kawakami, H. & Fukuzumi, S. (1998). Biochemistry, 37, 6562–6571. Web of Science CrossRef CAS PubMed Google Scholar
Itoh, S., Kawakami, H. & Fukuzumi, S. (2000). J. Mol. Catal. B Enzym. 8, 85–94. Web of Science CrossRef CAS Google Scholar
Keltjens, J. T., Pol, A., Reimann, J. & Op den Camp, H. J. M. (2014). Appl. Microbiol. Biotechnol. 98, 6163–6183. Web of Science CrossRef CAS PubMed Google Scholar
Koningsveld, H. van, Jansen, J. C., Jongejan, J. A., Frank, J. Jzn. & Duine, J. A. (1985). Acta Cryst. C41, 89–92. CSD CrossRef Web of Science IUCr Journals Google Scholar
Lumpe, H. & Daumann, L. J. (2019). Inorg. Chem. 58, 8432–8441. Web of Science CrossRef CAS PubMed Google Scholar
Lumpe, H., Menke, A., Haisch, C., Mayer, P., Kabelitz, A., Yusenko, K. V., Guilherme Buzanich, A., Block, T., Pöttgen, R., Emmerling, F. & Daumann, L. J. (2020). Chem. Eur. J. 26, 10133–10139. CSD CrossRef CAS PubMed Google Scholar
Lumpe, H., Pol, A., Op den Camp, H. J. M. & Daumann, L. J. (2018). Dalton Trans. 47, 10463–10472. Web of Science CrossRef CAS PubMed Google Scholar
Mitome, H., Ishizuka, T., Shiota, Y., Yoshizawa, K. & Kojima, T. (2013). Inorg. Chem. 52, 2274–2276. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mitome, H., Ishizuka, T., Shiota, Y., Yoshizawa, K. & Kojima, T. (2015). Dalton Trans. 44, 3151–3158. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nakamura, N., Kohzuma, T., Kuma, H. & Suzuki, S. (1994). Inorg. Chem. 33, 1594–1599. CSD CrossRef CAS Web of Science Google Scholar
Noar, J. B., Rodriguez, E. J. & Bruice, T. C. (1985). J. Am. Chem. Soc. 107, 7198–7199. CrossRef CAS Web of Science Google Scholar
Picone, N. & Op den Camp, H. J. M. (2019). Curr. Opin. Chem. Biol. 49, 39–44. Web of Science CrossRef CAS PubMed Google Scholar
Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M. & Op den Camp, H. J. M. (2014). Environ. Microbiol. 16, 255–264. Web of Science CrossRef CAS PubMed Google Scholar
Ramachandran, A. & Walsh, D. A. (2015). FEMS Microbiol. Ecol. 91, fiv105/1–fiv105/10. Google Scholar
Salisbury, S. A., Forrest, H. S., Cruse, W. B. T. & Kennard, O. (1979). Nature, 280, 843–844. CrossRef CAS PubMed Web of Science Google Scholar
Semrau, J. D., DiSpirito, A. A., Gu, W. & Yoon, S. (2018). Appl. Environ. Microbiol. 84, e02289-17. Web of Science CrossRef PubMed Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skovran, E. & Martinez-Gomez, N. C. (2015). Science, 348, 862–863. Web of Science CrossRef CAS PubMed Google Scholar
Taubert, M., Grob, C., Howat, A. M., Burns, O. J., Dixon, J. L., Chen, Y. & Murrell, J. C. (2015). Environ. Microbiol. 17, 3937–3948. Web of Science CrossRef CAS PubMed Google Scholar
Tommasi, L., Shechter-Barloy, L., Varech, D., Battioni, J. P., Donnadieu, B., Verelst, M., Bousseksou, A., Mansuy, D. & Tuchagues, J. P. (1995). Inorg. Chem. 34, 1514–1523. CSD CrossRef CAS Web of Science Google Scholar
Wanner, M., Sixt, T., Klinkhammer, K.-W. & Kaim, W. (1999). Inorg. Chem. 38, 2753–2755. Web of Science CSD CrossRef CAS Google Scholar
Westerling, J., Frank, J. & Duine, J. A. (1979). Biochem. Biophys. Res. Commun. 87, 719–724. CrossRef CAS PubMed Web of Science Google Scholar
Williams, P. A., Coates, L., Mohammed, F., Gill, R., Erskine, P. T., Coker, A., Wood, S. P., Anthony, C. & Cooper, J. B. (2005). Acta Cryst. D61, 75–79. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhejiang Hisun Pharmaceutical Co. Ltd (2020). GRAS Exemption Claim for Pyrroloquinoline Quinone (PQQ) Disodium Salt; https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm508141.pdf. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.