research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(NH4)Mg(HSO4)(SO4)(H2O)2 and NaSc(CrO4)2(H2O)2, two crystal structures com­prising kröhnkite-type chains, and the temperature-induced phase transition (NH4)Mg(HSO4)(SO4)(H2O)2 [\rightleftharpoons] (NH4)MgH(SO4)2(H2O)2

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, bMineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria, and cInstitut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by A. Lemmerer, University of the Witwatersrand, South Africa (Received 15 December 2020; accepted 11 February 2021; online 22 February 2021)

The crystal structure of the mineral kröhnkite, Na2Cu(SO4)2(H2O)2, contains infinite chains com­posed of [CuO4(OH2)2] octa­hedra corner-linked with SO4 tetra­hedra. Such or similar tetra­hedral–octa­hedral `kröhnkite-type' chains are present in the crystal structures of numerous com­pounds with the com­position AnM(XO4)2(H2O)2. The title com­pounds, (NH4)Mg(HSO4)(SO4)(H2O)2, ammonium magnesium hydrogen sulfate sulfate dihydrate, and NaSc(CrO4)2(H2O)2, sodium scandium bis­(chromate) dihydrate, are members of the large family with such kröhnkite-type chains. At 100 K, (NH4)Mg(HSO4)(SO4)(H2O)2 has an unprecedented triclinic crystal structure and contains [MgO4(OH2)2] octa­hedra linked by SO3(OH) and SO4 tetra­hedra into chains extending parallel to [[\overline{1}]10]. Adjacent chains are linked by very strong hydrogen bonds between SO3(OH) and SO4 tetra­hedra into layers parallel to (111). Ammonium cations and water mol­ecules connect adjacent layers through hydrogen-bonding inter­actions of medium-to-weak strength into a three-dimensional network. (NH4)Mg(HSO4)(SO4)(H2O)2 shows a reversible phase transition and crystallizes at room temperature in structure type E in the classification scheme for structures with kröhnkite-type chains, with half of the unit-cell volume for the resulting triclinic cell, and with disordered H atoms of the ammonium tetra­hedron and the H atom between two symmetry-related sulfate groups. IR spectroscopic room-temperature data for the latter phase are provided. Monoclinic NaSc(CrO4)2(H2O)2 adopts structure type F1 in the classification scheme for structures with kröhnkite-type chains. Here, [ScO4(OH2)2] octa­hedra (point group symmetry [\overline{1}]) are linked by CrO4 tetra­­hedra into chains parallel to [010]. The Na+ cations (site symmetry 2) have a [6 + 2] coordination and connect adjacent chains into a three-dimensional frame­work that is consolidated by medium–strong hydrogen bonds involving the water mol­ecules. Qu­anti­tative structural com­parisons are made between NaSc(CrO4)2(H2O)2 and its isotypic NaM(CrO4)2(H2O)2 (M = Al and Fe) analogues.

1. Introduction

Compounds com­prising tetra­hedral oxoanions (XO4) and two types of cations, viz. a larger cation A and a smaller cation M, often exist as dihydrates with the general formula AnM(XO4)2(H2O)2 (n = 1 or 2) when crystallized from aqueous solutions or under hydro­thermal conditions. Irrespective of the chemical nature of A, M or X, the crystal structures of AnM(XO4)2(H2O)2 com­pounds frequently com­prise infinite chains com­posed of more or less distorted [MO4(OH2)2] octa­hedra corner-linked by XO4 tetra­hedra, a structural motif that is known from the mineral kröhnkite [Na2Cu(SO4)2(H2O)2; Dahlman, 1952[Dahlman, B. (1952). Ark. Mineral. Geol. 1, 339-366.]]. An astonishingly large number of natural and synthetic hydrated oxysalts with this formula type is known to contain such `kröhnkite-type' chains in their crystal structures. The widespread occurence of this motif is associated with its flexible nature and assemblies of the corner-sharing octa­hedral–tetra­hedral building units within a chain.

Reviews on natural and synthetic com­pounds with kröhnkite-type chains were given in four subsequent reports (Fleck et al., 2002a[Fleck, M., Kolitsch, U. & Hertweck, B. (2002a). Z. Kristallogr. 217, 435-443.]; Fleck & Kolitsch, 2003[Fleck, M. & Kolitsch, U. (2003). Z. Kristallogr. 218, 553-567.]; Kolitsch & Fleck, 2005[Kolitsch, U. & Fleck, M. (2005). Z. Kristallogr. 220, 31-41.], 2006[Kolitsch, U. & Fleck, M. (2006). Eur. J. Mineral. 18, 471-482.]). In general, com­pounds with the com­position AnM(XO4)2(H2O)2, where A = NaI, KI, RbI, CsI, NH4, HI, CaII or SrII; M = MgII, CrII, MnII, FeII, CoII, NiII, CuII, ZnII, CdII, AlIII, FeIII, ScIII, InIII or TlIII and X = PV, AsV, SVI, SeVI, CrVI, MoVI or WVI, containing kröhnkite-type chains, can be subdivided into eight major structure types denoted as AH, for which more than 70 representatives are known up to date. Table 1[link] com­piles the most important parameters for these structure types, based on all representatives reported until the end of 2020, including the new type E1 described herein.

Table 1
Comparative com­pilation of structure types with kröhnkite-type chains

Type Generalized formula(e) Space group Z Generalized unit-cell parameters (Å, °) No. of representatives
A M1II2M2II(TO4)2(H2O)2: M1 = Ca, Sr; MII = Mg, Mn, Fe, Co, Ni, Zn; T = P, As. M1I2M2II(TO4)2(H2O)2: M1 = Na, K, NH4; MII = Mg, Fe, Co, Ni, Cu, Zn; T = S, Se, Cr, Mo, W P[\overline{1}] 1 a ≃ 5.7–7.1, b ≃ 6.7–7.9, c ≃ 5.3–6.0, α ≃ 93–105, β ≃ 105–112, γ ≃ 103–111 32
B M1II2M2II(TO4)2(H2O)2: M1 = Ca; M2 = Mn, Fe; T = P P[\overline{1}] 1 a ≃ 5.8–6.0, b ≃ 6.5–6.6, c ≃ 5.5, α ≃ 102–103, β ≃ 108–109, γ ≃ 90–91 2
C M1I2M2II(TO4)2(H2O)2: M1 = K, Rb; M2 = Mn, Cd; T = S, Se, Cr P[\overline{1}] 2 a ≃ 6.6–6.9, b ≃ 7.3–7.7, c ≃ 10.7–11.4, α ≃ 72–73, β ≃ 74–75, γ ≃ 70 4
C1 K2Fe(SO4)2(H2O)2 P1a 2 a ≃ 6.6, b ≃ 7.3, c ≃ 10.7, α ≃ 73, β ≃ 74, γ ≃ 70 1
D M1II2M2II(TO4)2(H2O)2: M1 = Ca; M2 = Mg, Mn, Co, Cu, Zn; T = As. M1I2M2II(TO4)2(H2O)2: M1 = Na, NH4, Rb; M2 = Cr, Mn, Fe, Cu, Cd; T = S, Se, Cr, Mo P21/c 2 a ≃ 5.8–6.8, b ≃ 12.8–14.3, c ≃ 5.4–5.9, β ≃ 106–111 14
E M1IM2IIH(TO4)2(H2O)2: M1 = K, NH4, Cs; M2 = Mg, Mn, Fe, Co, Zn; T = S, Se P[\overline{1}] 1 a ≃ 4.6–4.8, b ≃ 5.7–5.9, c ≃ 8.1–8.6, α ≃ 103–104, β ≃ 96–100, γ ≃ 94–97 8
E1b (NH4)Mg(HSO4)(SO4)(H2O)2 (at 100 K) P[\overline{1}] 2 a ≃ 7.1, b ≃ 7.7, c ≃ 8.3, α ≃ 84.6, β ≃ 73.3, γ ≃ 77.4 1
F1c M1IM2III(TO4)2(H2O)2: M1 = Na; M2 = Al, Sc, Fe; T = Cr C2/c 4 a ≃ 14.1–14.5, b ≃ 5.3–5.6, c ≃ 10.7–10.8, β ≃ 109–110 3
F2c M1IM2III(TO4)2(H2O)2: M1 = Na, K, NH4, Tl; M2 = Al, Fe, In; T = Cr C2/m 2 a ≃ 10.7–11.0, b ≃ 5.4–5.6, c ≃ 7.5–7.6, β ≃ 114 5
G AgSc(CrO4)2(H2O)2 P[\overline{1}] 1 a ≃ 5.6, b ≃ 6.1, c ≃ 7.4, α ≃ 111, β ≃ 90, γ ≃ 117 1
Hd K2Zn(CrO4)2(H2O)2 C2/c 4 a ≃ 15.0, b ≃ 5.7, c ≃ 12.3, β ≃ 117 1
Notes: (a) Type C1 is represented only by the low-temperature modification of K2Fe(SO4)2(H2O)2 and has an uncertain space group. (b) Type E1 is described for the first time in the present work; it is an ordered variant of type E (see text). (c) Types F1 and F2 are closely related (see text). (d) Type H (Stoilova et al., 2008[Stoilova, D., Wildner, M., Marinova, D. & Georgiev, M. (2008). J. Mol. Struct. 892, 239-245.]) is closely related to type A.

We report here two new representatives of com­pounds with kröhnkite-type chains, viz. (NH4)Mg(HSO4)(SO4)(H2O)2 and NaSc(CrO4)2(H2O)2.

2. Experimental

2.1. Synthesis and crystallization

2.1.1. (NH4)Mg(HSO4)(SO4)(H2O)2

A stoichiometric mixture of MgSO4(H2O)7, TeO2 and KOH (ratio 2:1:2 mmol; all reagents from Merck) was placed in a Teflon container with 6 ml capacity that was filled to approximately two-thirds of its volume with water. The container was closed, placed in a steel autoclave and heated at 480 K under autogenous pressure for 4 d. After slow cooling to room temperature within 1 d, the colourless reaction product was filtered off, washed with water and ethanol, and was dried in air. Inspection under a polarizing microscope revealed a microcrystalline solid with only very few crystals visible (diameter ≃ 0.1 mm). Powder X-ray diffraction (PXRD) of the bulk revealed spiro­ffite-type Mg2Te3O8 (Lin et al., 2013[Lin, W.-F., Xing, Q.-J., Ma, J., Zou, J.-P., Lei, S.-L., Luo, X.-B. & Guo, G.-C. (2013). Z. Anorg. Allg. Chem. 639, 31-34.]) as the main product, and MgTe2O5 (Weil, 2005[Weil, M. (2005). Acta Cryst. E61, i237-i239.]) as a minor product. The grown crystals correspond to the title com­pound. Structure refinement showed NH4+ cations present in the structure. The source of ammonium remains unclear; most probably, ammonium cations were left in the cracks of the Teflon container from previous reactions in ammonia solution.

For a directed synthesis of (NH4)Mg(HSO4)(SO4)(H2O)2, equimolar aqueous solutions of NH4HSO4 and MgSO4(H2O)7 were mixed at room temperature and stirred for homogeneity. The used NH4HSO4 was freshly prepared by slowly adding concentrated ammonia solution to concentrated sulfuric acid in stoichiometric amounts and recrystallization of the colourless product from water; its purity was checked by PXRD. The mixed NH4HSO4 and MgSO4 solutions were evaporated to dryness at 353 K in a drying oven and also much more slowly at room temperature. Semi-qu­anti­taive phase analysis using the Rietveld method with HighScore Plus (Degen et al., 2014[Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). Powder Diffr. 29 (Suppl. 2), S13-S18.]) revealed a phase mixture of (NH4)MgH(SO4)2(H2O)2 and synthetic boussingaultite [(NH4)2Mg(SO4)2(H2O)6] in a ratio of ≃94:6 wt% for the sample dried at 353 K, and in a ratio of 91:9 wt% for the sample dried at room temperature.

A mid-range IR spectrum was recorded at room temperature for selected crystals of (NH4)MgH(SO4)2(H2O)2 in the attenuated total reflectance (ATR) technique in the range 4000–450 cm−1 on a PerkinElmer Spectrum Two FT–IR spec­trometer with a UATR accessory (diamond detector crystal) attached.

2.1.2. NaSc(CrO4)2(H2O)2

Small tabular orange crystals with a rhombus-shaped outline crystallized at room tem­pera­ture from an acidic aqueous solution (pH about 4) containing dissolved reagent-grade Na2CO3 (Merck), Sc2O3 (99.99%, alphametall, Germany) and reagent-grade CrO3 (Merck). The crystals were often arranged in radiating clusters. They were associated with pale orange–yellow blade-shaped crystals of Na2Cr2O7·2H2O (Casari et al., 2007[Casari, B. M., Eriksson, A. K. & Langer, V. (2007). Z. Naturforsch. Teil B, 62, 771-777.]).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Experiments were carried out with Mo Kα radiation. All H-atom parameters were refined.

  (NH4)Mg(HSO4)(SO4)(H2O)2 at 100 K (NH4)MgH(SO4)2(H2O)2 at 296 K NaSc(CrO4)2(H2O)2
Crystal data
Chemical formula (NH4)Mg(HSO4)(SO4)(H2O)2 (NH4)Mg(HSO4)(SO4)(H2O)2 NaSc(CrO4)2(H2O)2
Mr 271.51 271.51 335.98
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 100 296 293
a, b, c (Å) 7.0631 (7), 7.7065 (7), 8.3372 (8) 4.6771 (1), 5.7697 (1), 8.3697 (2) 14.505 (3), 5.563 (1), 10.763 (2)
α, β, γ (°) 84.603 (3), 73.339 (3), 77.387 (3) 104.208 (1), 98.189 (1), 94.508 (1) 90, 109.82 (3), 90
V3) 424.03 (7) 215.20 (1) 817.0 (3)
Z 2 1 4
μ (mm−1) 0.75 0.73 3.51
Crystal size (mm) 0.12 × 0.09 × 0.02 0.12 × 0.09 × 0.01 0.17 × 0.10 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.708, 0.747 0.699, 0.747 0.755, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 30998, 4431, 3120 11147, 1940, 1843 3418, 1783, 1372
Rint 0.051 0.024 0.017
(sin θ/λ)max−1) 0.864 0.812 0.805
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.02 0.019, 0.054, 1.18 0.027, 0.081, 1.08
No. of reflections 4431 1940 1783
No. of parameters 163 95 75
No. of restraints 0 0 2
Δρmax, Δρmin (e Å−3) 0.52, −0.54 0.30, −0.47 1.06, −0.69
Computer programs: APEX2 (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For the refinement of (NH4)Mg(HSO4)(SO4)(H2O)2 (100 K data), all H atoms were located from difference Fourier maps and were refined freely. Reflections [\overline{2}]03, 102, 100 and 230 were obstructed by the beam stop and were therefore omitted from the refinement. For the structure analysis of (NH4)MgH(SO4)2(H2O)2 (296 K data), a different crystal was measured (resulting in a different orienting matrix; see Fig. 1[link]). For refinement, the starting coordinates and labelling of atoms were adapted from the isotypic Fe com­pound (Heinicke et al., 2004[Heinicke, F., Lerner, H.-W. & Bolte, M. (2004). Acta Cryst. E60, i84-i85.]). In this structure, the H atoms (H1A–H1D) bonded to N atoms are all disordered over two equally occupied sites. The H1O atom located between two symmetry-related SO4 tetra­hedra was clearly discernible from a difference Fourier map; it is disordered across the inversion centre with an occupancy of 0.5 for the two H-atom sites. All H atoms in this structure were refined freely.

[Figure 1]
Figure 1
The hk1 plane of reciprocal space of (NH4)Mg(HSO4)(SO4)(H2O)2 [100 K data in parts (a)/(b)] and of (NH4)MgH(SO4)2(H2O)2 [296 K data in part (c)] reconstructed from CCD data. (a) The small cell with matching reflections is marked with orange circles; no superstructure reflections are visible. (b) The actual supercell with matching reflections is marked with green circles. (c) The actual small cell is marked with orange circles without superstructure reflections.

For refinement of NaSc(CrO4)2(H2O)2, the coordinates and labelling of atoms were taken from isotypic NaFe(CrO4)2(H2O)2 (Hardy & Gravereau, 1970[Hardy, A. M. & Gravereau, P. (1970). C. R. Acad. Sci. Paris Sér. C, 271, 1304-1307.]). The H atoms of the water mol­ecule were located from a difference Fourier map and were refined with a constraint of O—H = 0.90 ± 0.03 Å.

3. Results and discussion

3.1. (NH4)Mg(HSO4)(SO4)(H2O)2

3.1.1. Structure analysis

(NH4)Mg(HSO4)(SO4)(H2O)2 was obtained serendipitously from a hydro­thermal synthesis intended to crystallize a com­pound in the system Mg–SVI–TeIV–O–H (Weil & Shirkhanlou, 2017[Weil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. 643, 749-756.]). A subsequently performed directed synthesis yielded this material in >90% yield by evaporation of an aqueous solution containing equimolar amounts of NH4HSO4 and MgSO4.

(NH4)Mg(HSO4)(SO4)(H2O)2 is the fourth com­pound in the NH3–MgO–SO3–H2O system. The three other known members are the two minerals boussingaultite, i.e. (NH4)2Mg(SO4)2(H2O)6 (Maslen et al., 1988[Maslen, E. N., Ridout, S. C., Watson, K. J. & Moore, F. H. (1988). Acta Cryst. C44, 409-412.]), and efremovite, i.e. (NH4)2Mg2(SO4)3 (Shcherbakova & Bazhenova, 1989[Shcherbakova, Y. P. & Bazhenova, L. F. (1989). Zap. Vseross. Mineral. O-va, 118, 84-87.]), and synthetic (NH4)2Mg3(OH)2(SO4)3(H2O)2 (Marri et al., 2017[Marri, S. R., Mahana, S., Topwal, D. & Behera, J. N. (2017). Dalton Trans. 46, 1105-1111.]). Monoclinic boussingaultite is a representative of the picromerite group and crystallizes isotypically with many other synthetic AI2MII(XO4)2(H2O)6 com­pounds (AI = NH4, K, Rb, Cs or Tl; MII = Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn or Cd; X = S, Se or Cr), commonly known as Tutton's salts [crystal structure first determined by Hofmann (1931[Hofmann, W. (1931). Z. Kristallogr. 78, 279-333.])]. Efremovite adopts the cubic langbeinite structure type (Zemann & Zemann, 1957[Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.]), and ortho­rhom­bic (NH4)2Mg3(OH)2(SO4)3(H2O)2 is isotypic with its cadmium analogue (NH4)2Cd3(OH)2(SO4)3(H2O)2 (Yin, 2011[Yin, X. (2011). Acta Cryst. E67, i31.]).

(NH4)Mg(HSO4)(SO4)(H2O)2 is an unprecedented mem­ber within the family of com­pounds with kröhnkite-type chains and crystallizes in a unique structure type at 100 K, here denoted as E1 in order to conform to the classification of compounds with kröhnkite-type chains (Fleck et al., 2002a[Fleck, M., Kolitsch, U. & Hertweck, B. (2002a). Z. Kristallogr. 217, 435-443.]; Table 1[link]). All atoms in the triclinic structure are situated on general positions. [MgO4(OH2)] octa­hedra are corner-linked by SO3(OH) and SO4 tetra­hedra into chains running parallel to [[\overline{1}]10] (Fig. 2[link]). Adjacent chains are joined by hydrogen bonds between hydrogen sulfate and sulfate tetra­hedra into sheets extending parallel to (111). Ammonium cations, situated between the sheets, and water mol­ecules are also involved in hydrogen bonding and consolidate the three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
The kröhnkite-type chain in the crystal structure of (NH4)Mg(HSO4)(SO4)(H2O)2 at 100 K. [MgO4(OH2)2] octa­hedra are blue, SO3(OH) tetra­hedra are orange and SO4 tetra­hedra are red. Displacement ellipsoids are drawn at the 74% probability level and H atoms are given as grey spheres of arbitrary radius. [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y, −z + 1.]
[Figure 3]
Figure 3
The crystal structure of (NH4)Mg(HSO4)(SO4)(H2O)2 at 100 K in a projection along [[\overline{1}]10]. [MgO4(OH2)2] octa­hedra are blue, SO4 tetra­hedra are red, SO3(OH) tetra­hedra are orange and ammonium groups are green. The strong hydrogen bond between the SO3(OH) and SO4 tetra­hedra is indicated by green lines, hydrogen bonds involving water mol­ecules by white lines and those involving the ammonium cations by yellow lines. Displacement ellipsoids are drawn at the 74% probability level.

The Mg—O bond lengths in the [MgO4(OH2)2] octa­hedron scatter only slightly [range 2.0382 (9)–2.0715 (9) Å; Table 3[link]], with the two trans-aligned water mol­ecules (O9 and O19) in the axial positions. The mean Mg—O distance of 2.061 Å fits well into the grand mean value of 2.09 (6) Å for six-coordinate MgII (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). The SO4 tetra­hedron (centred by atom S1) is slightly distorted, with bond lengths and angles in the ranges 1.4659 (9)–1.4901 (9) Å (mean 1.476 Å) and 106.87 (5)–111.52 (5)° (mean 109.5°), respectively. The bond-length values are in very good agreement with those given in a review on the sulfate group, for which the grand mean S—O distance is 1.473 Å, with minimum and maximum S—O distances of 1.430 and 1.501 Å, respectively (Hawthorne et al., 2000[Hawthorne, F. C., Krivovichev, S. V. & Burns, P. C. (2000). Rev. Mineral. Geochem. 40, 1-112.]). The longest bond in the S1O4 tetra­hedron is that to atom O4, acting as an acceptor atom for a hydrogen bond involving the OH group of the hydrogen sulfate group. The corresponding S2O3(OH) tetra­hedron shows the typical S—O bond-length distribution where the bond to the OH group (O8) is considerably elongated. The S2—O8 bond of 1.5474 (9) Å is about 0.09 Å longer than the mean bond length (1.456 Å) of the remaining three bonds, in good agreement with other structures com­prising a hydrogen sulfate anion, e.g. Mg(HSO4)2(H2O) (Worzala et al., 1991[Worzala, H., Schneider, M., Kemnitz, E. & Trojanov, S. I. (1991). Z. Anorg. Allg. Chem. 596, 167-171.]) or Th(HSO4)2(SO4) (Betke & Wickleder, 2012[Betke, U. & Wickleder, M. (2012). Eur. J. Inorg. Chem. 2012, 306-317.]). In the magnesium com­pound, with its two independent SO3(OH) tetra­hedra, mean values of 1.448 Å for the S—O and 1.550 Å for the S—OH bond lengths are found, and for the thorium com­pound, the corresponding mean values are 1.452 and 1.533 Å, respectively, for two independent SO3(OH) tetra­hedra; the SO4 group in the thorium com­pound has a mean S—O bond length of 1.467 Å.

Table 3
Selected bond lengths (Å) for (NH4)Mg(HSO4)(SO4)(H2O)2 at 100 K

Mg1—O2 2.0382 (9) S1—O2 1.4685 (8)
Mg1—O7 2.0601 (9) S1—O3 1.4775 (8)
Mg1—O3i 2.0630 (9) S1—O4 1.4901 (9)
Mg1—O10 2.0645 (9) S2—O5 1.4480 (9)
Mg1—O9 2.0660 (10) S2—O6 1.4583 (8)
Mg1—O6ii 2.0715 (9) S2—O7 1.4611 (8)
S1—O1 1.4659 (9) S2—O8 1.5474 (9)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y, -z+1].

In the crystal structure of (NH4)Mg(HSO4)(SO4)(H2O)2, the short hydrogen bond between the S2O3(OH) and the S1O4 tetra­hedra [O8⋯O4iii = 2.5048 (12) Å; Table 4[link]] is linear [177 (3)°] and considered as strong (Jeffrey, 1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.]). In com­parison, the other types of O—H⋯O hydrogen-bonding inter­actions are much weaker and are connected with the two water mol­ecules. One of the water mol­ecules (O9) is involved in a slightly bent hydrogen bond of medium strength to atom O1iv and in a weak trifurcated hydrogen bond to O2i, O5v and O7v; numerical values of these inter­actions, as well as symmetry codes, are collated in Table 4[link]. The other water mol­ecule (O10) is the donor of one medium–strong and slightly bent hydrogen bond to O5vii, and of a weak bifurcated hydrogen bond to O1vi and O2vi. As expected, the ammonium cation is also engaged in hydrogen bonding. All of its H atoms are accepted in a more or less linear manner [N—H⋯O angles range from 168.2 (15) to 179.2 (18)°] by the O atoms of the sulfate group (O4v, O1i and O3iii) and, inter­estingly, by the OH group of the hydrogen sulfate anion (O8viii). The latter hydrogen bond is much more bent [154.4 (16)°], most probably due to steric reasons to avoid a too close contact with the H atom of the hy­droxy group.

Table 4
Hydrogen-bond geometry (Å, °) for (NH4)Mg(HSO4)(SO4)(H2O)2 at 100 K

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1O⋯O4iii 0.91 (3) 1.59 (3) 2.5048 (12) 177 (3)
O9—H1W⋯O1iv 0.81 (2) 2.02 (2) 2.7623 (13) 154 (2)
O9—H2W⋯O2i 0.78 (3) 2.56 (3) 3.1278 (12) 132 (2)
O9—H2W⋯O5v 0.78 (3) 2.62 (3) 3.2887 (12) 146 (2)
O9—H2W⋯O7v 0.78 (3) 2.55 (3) 2.9578 (12) 115 (2)
O10—H3W⋯O1vi 0.77 (2) 2.38 (2) 3.0970 (12) 156 (2)
O10—H3W⋯O2vi 0.77 (2) 2.64 (2) 3.0615 (12) 117 (2)
O10—H4W⋯O5vii 0.80 (2) 1.95 (2) 2.7125 (13) 160.5 (19)
N1—H1N⋯O4v 0.896 (19) 2.108 (19) 2.9913 (14) 168.2 (15)
N1—H2N⋯O1i 0.85 (2) 2.04 (2) 2.8920 (14) 179.2 (18)
N1—H3N⋯O3iii 0.868 (19) 1.98 (2) 2.8451 (14) 170.5 (18)
N1—H4N⋯O8viii 0.870 (19) 2.229 (19) 3.0368 (14) 154.4 (16)
Symmetry codes: (i) [-x, -y+1, -z+1]; (iii) [x+1, y, z-1]; (iv) x+1, y, z; (v) [-x+1, -y+1, -z+1]; (vi) [-x, -y, -z+1]; (vii) [x-1, y, z]; (viii) x, y+1, z.

Bond-valence sums (BVSs; Brown, 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]), calculated with the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), amount to 2.22 valence units (v.u.) for Mg, 5.98 v.u. for S1 and 5.96 v.u. for S2, in good agreement with the formal charges of +II and +VI, respectively.

3.1.2. Phase transition

As mentioned above, at 100 K, (NH4)Mg(HSO4)(SO4)(H2O)2 crystallizes in an own structure type, denoted as E1. Between 100 K and room temperature, the crystal is transformed into a triclinic structure corresponding to type E (space group P[\overline{1}], Z = 1) in the classification of com­pounds with kröhnkite-type chains (Table 1[link]). Next to the six isotypic sulfates KFeH(SO4)2(H2O)2 (Fleck et al., 2002b[Fleck, M., Kolitsch, U., Hertweck, B., Giester, G., Wildner, M., Prem, M. & Wohlschläger, A. (2002b). Z. Kristallogr. 217, 242-248.]), KMgH(SO4)2(H2O)2 (Macíček et al., 1994[Macíček, J., Gradinarov, S., Bontchev, R. & Balarew, C. (1994). Acta Cryst. C50, 1185-1188.]), KZnH(SO4)2(H2O)2, KMnH(SO4)2(H2O)2, CsMnH(SO4)2(H2O)2 (Troy­anov et al., 2002[Troyanov, S. I., Morozov, I. V. & Kemnitz, E. (2002). Crystallogr. Rep. 47, 768-772.]) and NH4FeH(SO4)2(H2O)2 (Heinicke et al., 2004[Heinicke, F., Lerner, H.-W. & Bolte, M. (2004). Acta Cryst. E60, i84-i85.]), and the selenate KMgH(SeO4)2(H2O)2 (Troyanov et al., 2002[Troyanov, S. I., Morozov, I. V. & Kemnitz, E. (2002). Crystallogr. Rep. 47, 768-772.]), (NH4)Mg(HSO4)(SO4)(H2O)2, or more precisely (NH4)MgH(SO4)2(H2O)2 at this temperature, is the eighth member of this structure type. The [MIIO4(OH2)2] octa­hedron in these structures (Fig. 4[link] and Table 5[link]) is located on an inversion centre, just like the A cation (for A = NH4; the H sites are disordered). A peculiarity of type E pertains to the dynamically disordered H atom between two symmetry-related sulfate groups, defining a short asymmetrical hydrogen bond with O⋯O contacts around 2.5 Å (Table 6[link]). In com­parison, in the crystal structure of (NH4)Mg(HSO4)(SO4)(H2O)2 at 100 K, the H atom is ordered between two sulfate tetra­hedra, defining distinct SO3OH and SO4 groups. This ordering is accom­panied by a doubling of the unit-cell volume of the type E1 relative. The bond lengths of the principal building units in the disordered room-temperature structure (Table 5[link]; mean values for the Mg—O and S—O bond are 2.065 and 1.474 Å, respectively) are similar to those in the ordered low-temperature structure. Although the S—O(H) bond (O1) in the disordered structure is still the longest in the SO4 tetra­hedron, it is about 0.03 Å shorter than the S—OH bond (O8) in the ordered structure. On the other hand, the O1⋯O1iv distance of the hydrogen bond with the disordered H1O atom [2.4790 (12) Å] is considerably shorter than the corresponding value in the ordered structure [2.5048 (12) Å], indicating a very strong hydrogen bond (Jeffrey, 1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.]) for (NH4)MgH(SO4)2(H2O)2.

Table 5
Selected bond lengths (Å) for (NH4)MgH(SO4)2(H2O)2 at 296 K

Mg1—O2 2.0509 (6) S1—O2 1.4604 (6)
Mg1—O4i 2.0720 (6) S1—O4 1.4651 (6)
Mg1—O5 2.0731 (6) S1—O1 1.5164 (6)
S1—O3 1.4525 (6)    
Symmetry code: (i) x+1, y, z.

Table 6
Hydrogen-bond geometry (Å, °) for (NH4)MgH(SO4)2(H2O)2 at 296 K

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O2ii 0.81 (2) 2.52 (2) 3.0010 (9) 118.9 (19)
O5—H5A⋯O3iii 0.78 (2) 2.05 (2) 2.7684 (9) 154.0 (19)
O5—H5B⋯O3ii 0.81 (2) 2.42 (2) 3.1678 (10) 152 (2)
N1—H1A⋯O3iv 0.90 (5) 2.03 (5) 2.9260 (6) 175 (5)
N1—H1C⋯O1 0.89 (6) 2.28 (6) 3.1536 (7) 164 (4)
N1—H1B⋯O1v 0.83 (5) 2.30 (5) 3.1122 (8) 164 (5)
N1—H1D⋯O4v 0.82 (5) 2.08 (5) 2.9042 (6) 173 (5)
O1—H1O⋯O1iv 0.84 (3) 1.64 (3) 2.4790 (12) 176 (4)
Symmetry codes: (ii) [-x, -y-1, -z]; (iii) [-x-1, -y-1], [-z]; (iv) [-x-1, -y-1], [-z-1]; (v) [-x-1, -y, -z-1].
[Figure 4]
Figure 4
The crystal structure of (NH4)MgH(SO4)2(H2O)2 at 296 K in a projection along [100]. Displacement ellipsoids and colour codes are as in Fig. 2[link], except for the SO4 tetra­hedra which are lilac. The disordered ammonium group and the H1O atom disordered between two sulfate tetra­hedra are shown.

The crystal structure of (NH4)Mg(HSO4)(SO4)(H2O)2 at 100 K represents a twofold superstructure with ordered H atoms for the ammonium and hydrogen sulfate groups relative to the crystal structure of (NH4)MgH(SO4)2(H2O)2 at 296 K with a halved unit-cell volume. The subcell of the latter is related to the doubled cell of the (NH4)Mg(HSO4)(SO4)(H2O)2 superstructure by application of the matrix ([\overline{1}] [\overline{1}] 0, 1 [\overline{1}] 0, 0 0 1); the symmetry relationship between the substructure and the superstructure is of isomorphic type with index 2 (i2) (Müller, 2013[Müller, U. (2013). In Symmetry Relationships between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford University Press.]). Fig. 1[link] shows the hk1 plane of reciprocal space of (NH4)Mg(HSO4)(SO4)(H2O)2 and the relation of the subcell (Fig. 1[link]a) and the cell of the actual superstructure (Fig. 1[link]b); the missing reflections for the subcell clearly indicate that the doubled cell is correct at this temperature. Fig. 1[link](c) shows the hk1 plane of reciprocal space of (NH4)MgH(SO4)2(H2O)2 without noticeable superstructure reflections for the room-temperature data set. Investigations of the exact ordering temperatures for this reversible phase transition upon cooling and heating, as well as a systematic study of other (NH4)MII(HSO4)(SO4)(H2O)2 [\rightleftharpoons] (NH4)MIIH(SO4)2(H2O)2 (M = first-row transition metals) phases, are underway.

3.1.3. IR spectroscopy

The IR spectrum of (NH4)MgH(SO4)2(H2O)2 shows similarities to that of synthetic boussingaultite (Jayakumar et al., 1988[Jayakumar, V. S., Sekar, G., Rajagopal, P. & Aruldhas, G. (1988). Phys. Status Solidi A, 109, 635-640.]) and is displayed in Fig. 5[link]. Wavenumbers/cm−1: 3547 (w), 3403 (br), 3235 (br), 3100 (w), 2866 (vw), 1753 (vw), 1627 (m), 1429 (m), 1146 (s), 1044 (sh), 918 (m), 884 (m), ≃600 (sh) (br = broad; m = medium; s = strong; sh = shoulder; w = weak; vw = very weak).

[Figure 5]
Figure 5
IR spectrum of (NH4)MgH(SO4)2(H2O)2 at room temperature.

In the wavenumber range 3700–2500 cm−1, bands due to O—H stretching vibrations of the H2O groups overlap with various bands of the NH4 group. The bands at 3547 and 3403 cm−1 are assigned to the O—H stretching vibrations, while the band at 2335 cm−1 is tentatively assigned to the ν3(NH4) stretching vibration, and the shoulder at 3100 cm−1 to the ν1(NH4) stretch, the shoulder possibly also to an additional combination band ν2 + ν4(NH4). The very small band at 2866 cm−1 is probably caused by a combination band 2ν4(NH4). The very strong hydrogen bonding involving the protonated {H(SO4)2} group is reflected by an extremely broad band in the range between roughly 1200 and 1000 cm−1 (Beran & Libowitzky, 1999[Beran, A. & Libowitzky, E. (1999). NATO Sci. Ser. C, 543, 493-508.]; Libowitzky, 1999[Libowitzky, E. (1999). Monatsh. Chem. 130, 1047-1059.]), which appears `hidden' in the background. The wavenumber range between 1800 and 1250 cm−1 contains bands due to the ν2(NH4) bending vibration (1627 cm−1, possibly also the very small band at 1753 cm−1) and the ν4(NH4) bending vibration (1429 cm−1). The range 1250–700 cm−1 shows bands due to vibrations of the SO4/HSO4 groups. The band at 1146 cm−1 is due to the ν3(SO4) stretching vibration, while the bands at 1044, 918 and 884 cm−1 are assigned to the ν1(SO4) stretching vibration. The shoulder at ∼600 cm−1 is problably due to the ν4(SO4) vibration. The ν2(SO4) bending vibration will cause bands <500 cm−1, where the spectrum is cut off and where bands due to vibrations of the MgO6 octa­hedron, the librational modes of the NH4 group and lattice modes are expected. Note that the presence of `forbidden' SO4 and NH4 vibrations in the IR spectrum is in agreement with the presence of distorted shapes for these two building units.

3.2. NaSc(CrO4)2(H2O)2

3.2.1. Structure analysis

NaSc(CrO4)2(H2O)2 adopts type F (subtype F1) of the classification scheme for structures with kröhnkite-type chains (Table 1[link]). Subtype F1 (space group C2/c, Z = 2) can be considered as a superstructure of subtype F2 (space group C2/m, Z = 1) that has a halved unit-cell volume relative to F1 [transformation matrix F1→F2 is (0 0 1, 0 1 0, [\overline{1 \over 2}] 0 [\overline{1 \over 2}])]. The group–subgroup relationship between subtypes F2 and F1 is klassengleich with index 2 (k2) (Müller, 2013[Müller, U. (2013). In Symmetry Relationships between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford University Press.]). In the crystal structure of NaSc(CrO4)2(H2O)2, [ScO4(OH2)2] octa­hedra (point-group symmetry [\overline{1}]) are linked by CrO4 tetra­hedra into chains running parallel to [010] (Fig. 6[link]). The NaI cations (site symmetry 2) connect adjacent chains into a three-dimensional framework that is stabilized by hydrogen bonds between water mol­ecules and sulfate O atoms (Fig. 7[link]).

[Figure 6]
Figure 6
The kröhnkite-type chain in the crystal structure of NaSc(CrO4)2(H2O)2. [ScO4(OH2)2] octa­hedra are blue and CrO4 tetra­hedra are yellow. Displacement ellipsoids are drawn at the 74% probability level and H atoms are given as grey spheres of arbitrary radius. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) x, y + 1, z; (iii) x, −y + 1, z − [{1\over 2}]; (iv) −x + [{1\over 2}], −y + [{1\over 2}], −z.]
[Figure 7]
Figure 7
The crystal structure of NaSc(CrO4)2(H2O)2 in a projection along [010]. Colour codes and the probability level of displacement ellipsoids are as in Fig. 3[link]. Hydrogen bonds are indicated as green lines.

In the [ScO4(OH2)2] octa­hedron, the longest bond [2.1222 (14) Å] is that to the axially bound O5 atom of the water mol­ecule, whereas the equatorial O atoms (O3 and O4), which are also part of a CrO4 tetra­hedron, have shorter Sc—O bonds, with a mean of 2.076 Å (Table 7[link]). The overall mean value for the Sc—O bond lengths is 2.091 Å, which matches very well the literature values of 2.10 (7) and 2.098 (41) Å given by Serezhkin et al. (2003[Serezhkin, V. N., Kryuchkova, G. V. & Kazakevich, V. S. (2003). Russ. J. Inorg. Chem. 48, 1199-1206.]) and Gagné & Hawthorne (2020[Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581-629.]), respectively. In the CrO4 tetra­hedron, the longest Cr—O bonds (≃1.69 Å) are realized for O1 and O2, which are part of the kröhnkite chains. The other two O atoms (O3 and O4) have considerably shorter Cr—O bonds (≃1.62 Å) and are the acceptor atoms for two nearly linear hydrogen bonds of medium–strong nature involving both water H atoms (Table 8[link]). Again, the mean Cr—O bond length of 1.651 Å is in very good agreement with the literature value of 1.65 (6) Å (Gagné & Hawthorne, 2020[Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581-629.]). The NaI cation shows a [6 + 2] coordination with the six closer O atoms defining a distorted octa­hedron (O1, O2 and their symmetry-related counterparts in equatorial sites, and O3 and its symmetry-related counterpart in axial sites), with the two remote O4 atoms capping two faces of the octa­hedron (Table 7[link]). Notably, the water mol­ecule is not part of the coordination sphere of Na. The mean Na—O bond length is 2.678 Å, somewhat longer than that of the literature value of 2.60 (19) Å for eightfold-coordinated NaI (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). This elongation is also reflected in the slight underbonding of Na1 in the structure (BVS = 0.83 v.u.), with a deviation of 17% from the expected value of +I. ScIII and CrVI, on the other hand, have BVS values of 3.12 and 5.92 v.u., respectively, and deviate much less (by about 4 and 2%) from the expected values.

Table 7
Selected bond lengths (Å) for NaSc(CrO4)2(H2O)2

Na—O3i 2.5201 (15) Sc—O5 2.1222 (14)
Na—O2i 2.5358 (15) Cr—O4 1.6045 (14)
Na—O1ii 2.7207 (17) Cr—O3iv 1.6204 (14)
Na—O4i 2.9360 (18) Cr—O1iv 1.6829 (12)
Sc—O1iii 2.0747 (12) Cr—O2v 1.6960 (11)
Sc—O2 2.0772 (12)    
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}], [-z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) x, y+1, z.

Table 8
Hydrogen-bond geometry (Å, °) for NaSc(CrO4)2(H2O)2

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O4vi 0.82 (3) 1.86 (3) 2.682 (2) 179 (3)
O5—H2⋯O3 0.82 (2) 1.97 (3) 2.765 (2) 164 (3)
Symmetry code: (vi) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

NaSc(CrO4)2(H2O)2 is isotypic with NaAl(CrO4)2(H2O)2 (Cudennec & Riou, 1977[Cudennec, Y. & Riou, A. (1977). C. R. Acad. Sci. Paris Sér. C, 284, 565-568.]) and NaFe(CrO4)2(H2O)2 (Hardy & Gravereau, 1970[Hardy, A. M. & Gravereau, P. (1970). C. R. Acad. Sci. Paris Sér. C, 271, 1304-1307.]), the only other members of structure type F1 in the classification of structures with kröhnkite-type chains. The title scandium com­pound is the first of this series for which the H atoms have been localized, thus making an unambiguous assignment of the hydrogen-bonding scheme possible (see above). For a qu­anti­tative structural com­parison of the three isotypic NaM(CrO4)2(H2O)2 (M = Sc, Al or Fe) structures, the program com­pstru (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]), available at the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]), was used. With NaSc(CrO4)2(H2O)2 as the reference structure, Table 9[link] com­piles the absolute distances between paired atoms and numerical values regarding the arithmetic mean of the distance between paired atoms, the degree of lattice distortion (Δ) and the measure of similarity (S). There is no clear trend as to the largest displacement of an atom pair in the three crystal structures. Whereas the water O atom (O5) in the M = Al structure shows the largest displacement, it is O1 in the M = Fe structure. In general, the rather low values of S indicate high similarities between NaSc(CrO4)2(H2O)2 and the two NaM(CrO4)2(H2O)2 (M = Al and Fe) structures, whereby the M = Fe structure has a higher absolute similarity to NaSc(CrO4)2(H2O)2. Most likely, this behaviour is related to the ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of the three MIII cations. For coordination number 6, the ionic radius of ScIII (0.745 Å) is closer to that of FeIII (0.645 Å, assuming a high-spin state) than to that of AlIII (0.535 Å).

Table 9
Absolute atomic displacements (Å), arithmetic mean (dav, Å), degree of lattice distortion (S) and measure of similarity (Δ) in the isotypic NaM(CrO4)(H2O)2 (M = Al and Fe) structures relative to NaSc(CrO4)2(H2O)2a

  M = Alb M = Fec
Na1 0.0595 0.0773
M1 0 0
Cr1 0.0839 0.0536
O1 0.1477 0.1608
O2 0.1227 0.1436
O3 0.0595 0.0395
O4 0.0395 0.0520
O5 0.1916 0.0751
     
dav 0.0964 0.0805
Δ 0.023 0.019
S 0.0186 0.0107
Notes: (a) H atoms were omitted from com­parison because in the M = Al and Fe structures, H atoms were not localized. (b) Unit-cell parameters a = 14.080 (10), b = 5.338 (3), c = 10.655 (6) Å and β = 110.33 (5)° (Cudennec & Riou, 1977[Cudennec, Y. & Riou, A. (1977). C. R. Acad. Sci. Paris Sér. C, 284, 565-568.]). (c) Unit-cell parameters a = 14.247 (2), b = 5.425 (5), c = 10.689 (2) Å and β = 109.30 (1)° (Hardy & Gravereau, 1970[Hardy, A. M. & Gravereau, P. (1970). C. R. Acad. Sci. Paris Sér. C, 271, 1304-1307.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016) for NH4MgHSO4SO4H2O2_100K, NH4MgHSO42H2O_296K; COLLECT (Nonius, 2003) for NaScCrO42H2O2. Cell refinement: APEX2 (Bruker, 2016) for NH4MgHSO4SO4H2O2_100K, NH4MgHSO42H2O_296K; SCALEPACK (Otwinowski et al., 2003) for NaScCrO42H2O2. Data reduction: APEX2 (Bruker, 2016) for NH4MgHSO4SO4H2O2_100K, NH4MgHSO42H2O_296K; DENZO and SCALEPACK (Otwinowski et al., 2003) for NaScCrO42H2O2. Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for NH4MgHSO4SO4H2O2_100K, NH4MgHSO42H2O_296K; SHELXS97 (Sheldrick, 2008) for NaScCrO42H2O2. For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Ammonium magnesium hydrogen sulfate sulfate dihydrate (NH4MgHSO4SO4H2O2_100K) top
Crystal data top
(NH4)Mg(HSO4)(SO4)(H2O)2Z = 2
Mr = 271.51F(000) = 280
Triclinic, P1Dx = 2.127 Mg m3
a = 7.0631 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7065 (7) ÅCell parameters from 5976 reflections
c = 8.3372 (8) Åθ = 2.6–36.8°
α = 84.603 (3)°µ = 0.75 mm1
β = 73.339 (3)°T = 100 K
γ = 77.387 (3)°Pinacoid, colourless
V = 424.03 (7) Å30.12 × 0.09 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3120 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 37.9°, θmin = 2.6°
Tmin = 0.708, Tmax = 0.747h = 1212
30998 measured reflectionsk = 1313
4431 independent reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.0561P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4431 reflectionsΔρmax = 0.52 e Å3
163 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.25213 (6)0.25317 (5)0.49234 (5)0.00567 (7)
S10.19941 (4)0.38328 (3)0.73690 (3)0.00502 (6)
S20.70853 (4)0.10199 (3)0.26420 (3)0.00530 (6)
O10.39760 (12)0.34252 (11)0.75373 (10)0.00958 (15)
O20.05079 (12)0.28210 (10)0.59864 (10)0.00822 (14)
O30.20153 (13)0.57529 (10)0.70321 (10)0.00806 (14)
O40.14301 (13)0.33542 (11)0.89683 (10)0.00882 (15)
O50.90861 (12)0.13643 (11)0.23946 (11)0.01002 (15)
O60.68946 (12)0.08145 (10)0.31322 (10)0.00829 (15)
O70.55714 (12)0.22644 (10)0.38042 (10)0.00864 (15)
O80.66111 (13)0.12937 (11)0.09245 (10)0.00890 (15)
O90.26987 (14)0.45448 (11)0.63118 (11)0.00911 (15)
O100.23916 (13)0.04746 (11)0.35662 (11)0.00886 (15)
N10.75582 (17)0.73990 (14)0.00652 (14)0.00946 (16)
H1W0.369 (3)0.456 (3)0.660 (3)0.030 (5)*
H2W0.220 (4)0.554 (3)0.621 (3)0.052 (7)*
H3W0.289 (4)0.051 (3)0.354 (3)0.038 (6)*
H4W0.143 (3)0.048 (2)0.324 (2)0.020 (5)*
H1O0.735 (4)0.204 (4)0.024 (3)0.080 (9)*
H1N0.863 (3)0.707 (2)0.047 (2)0.018 (4)*
H2N0.650 (3)0.717 (2)0.078 (2)0.025 (5)*
H3N0.784 (3)0.688 (2)0.088 (2)0.020 (4)*
H4N0.726 (3)0.855 (3)0.002 (2)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00613 (15)0.00512 (15)0.00574 (16)0.00112 (12)0.00169 (12)0.00014 (12)
S10.00499 (11)0.00546 (10)0.00472 (11)0.00155 (8)0.00140 (8)0.00075 (8)
S20.00537 (11)0.00583 (11)0.00482 (11)0.00165 (8)0.00150 (8)0.00079 (8)
O10.0057 (3)0.0144 (4)0.0092 (4)0.0041 (3)0.0018 (3)0.0010 (3)
O20.0072 (3)0.0083 (3)0.0085 (3)0.0008 (3)0.0011 (3)0.0020 (3)
O30.0121 (4)0.0046 (3)0.0078 (3)0.0014 (3)0.0038 (3)0.0006 (3)
O40.0106 (4)0.0106 (3)0.0068 (3)0.0046 (3)0.0046 (3)0.0046 (3)
O50.0059 (3)0.0143 (4)0.0106 (4)0.0042 (3)0.0026 (3)0.0021 (3)
O60.0115 (4)0.0059 (3)0.0079 (3)0.0018 (3)0.0039 (3)0.0018 (3)
O70.0074 (3)0.0075 (3)0.0104 (4)0.0016 (3)0.0009 (3)0.0020 (3)
O80.0118 (4)0.0110 (3)0.0056 (3)0.0054 (3)0.0039 (3)0.0035 (3)
O90.0098 (4)0.0076 (3)0.0114 (4)0.0016 (3)0.0053 (3)0.0007 (3)
O100.0081 (4)0.0069 (3)0.0128 (4)0.0007 (3)0.0049 (3)0.0020 (3)
N10.0102 (4)0.0101 (4)0.0082 (4)0.0035 (3)0.0015 (3)0.0010 (3)
Geometric parameters (Å, º) top
Mg1—O22.0382 (9)S2—O71.4611 (8)
Mg1—O72.0601 (9)S2—O81.5474 (9)
Mg1—O3i2.0630 (9)O8—H1O0.91 (3)
Mg1—O102.0645 (9)O9—H1W0.81 (2)
Mg1—O92.0660 (10)O9—H2W0.78 (3)
Mg1—O6ii2.0715 (9)O10—H3W0.77 (2)
S1—O11.4659 (9)O10—H4W0.80 (2)
S1—O21.4685 (8)N1—H1N0.896 (19)
S1—O31.4775 (8)N1—H2N0.85 (2)
S1—O41.4901 (9)N1—H3N0.868 (19)
S2—O51.4480 (9)N1—H4N0.870 (19)
S2—O61.4583 (8)
O2—Mg1—O7178.82 (4)O5—S2—O7111.08 (5)
O2—Mg1—O3i90.48 (4)O6—S2—O7111.15 (5)
O7—Mg1—O3i88.37 (4)O5—S2—O8107.57 (5)
O2—Mg1—O1088.76 (4)O6—S2—O8103.50 (5)
O7—Mg1—O1090.94 (4)O7—S2—O8108.31 (5)
O3i—Mg1—O1088.11 (4)S1—O2—Mg1135.68 (5)
O2—Mg1—O991.90 (4)S1—O3—Mg1i132.86 (5)
O7—Mg1—O988.42 (4)S2—O6—Mg1ii134.27 (5)
O3i—Mg1—O993.19 (4)S2—O7—Mg1134.89 (5)
O10—Mg1—O9178.53 (4)S2—O8—H1O110.9 (17)
O2—Mg1—O6ii90.93 (4)Mg1—O9—H1W122.6 (15)
O7—Mg1—O6ii90.23 (4)Mg1—O9—H2W124.0 (19)
O3i—Mg1—O6ii178.55 (4)H1W—O9—H2W105 (2)
O10—Mg1—O6ii92.25 (4)Mg1—O10—H3W132.2 (17)
O9—Mg1—O6ii86.43 (4)Mg1—O10—H4W121.5 (14)
O1—S1—O2108.73 (5)H3W—O10—H4W102 (2)
O1—S1—O3111.52 (5)H1N—N1—H2N111.1 (17)
O2—S1—O3109.47 (5)H1N—N1—H3N107.9 (16)
O1—S1—O4109.60 (5)H2N—N1—H3N113.2 (19)
O2—S1—O4110.65 (5)H1N—N1—H4N109.1 (17)
O3—S1—O4106.87 (5)H2N—N1—H4N101.8 (17)
O5—S2—O6114.71 (5)H3N—N1—H4N113.6 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1O···O4iii0.91 (3)1.59 (3)2.5048 (12)177 (3)
O9—H1W···O1iv0.81 (2)2.02 (2)2.7623 (13)154 (2)
O9—H2W···O2i0.78 (3)2.56 (3)3.1278 (12)132 (2)
O9—H2W···O5v0.78 (3)2.62 (3)3.2887 (12)146 (2)
O9—H2W···O7v0.78 (3)2.55 (3)2.9578 (12)115 (2)
O10—H3W···O1vi0.77 (2)2.38 (2)3.0970 (12)156 (2)
O10—H3W···O2vi0.77 (2)2.64 (2)3.0615 (12)117 (2)
O10—H4W···O5vii0.80 (2)1.95 (2)2.7125 (13)160.5 (19)
N1—H1N···O4v0.896 (19)2.108 (19)2.9913 (14)168.2 (15)
N1—H2N···O1i0.85 (2)2.04 (2)2.8920 (14)179.2 (18)
N1—H3N···O3iii0.868 (19)1.98 (2)2.8451 (14)170.5 (18)
N1—H4N···O8viii0.870 (19)2.229 (19)3.0368 (14)154.4 (16)
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y, z+1; (vii) x1, y, z; (viii) x, y+1, z.
Ammonium magnesium hydrogen sulfate sulfate dihydrate (NH4MgHSO42H2O_296K) top
Crystal data top
(NH4)Mg(HSO4)(SO4)(H2O)2Z = 1
Mr = 271.51F(000) = 140
Triclinic, P1Dx = 2.095 Mg m3
a = 4.6771 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.7697 (1) ÅCell parameters from 7912 reflections
c = 8.3697 (2) Åθ = 2.6–35.3°
α = 104.208 (1)°µ = 0.73 mm1
β = 98.189 (1)°T = 296 K
γ = 94.508 (1)°Plate, colourless
V = 215.20 (1) Å30.12 × 0.09 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1843 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 35.3°, θmin = 3.7°
Tmin = 0.699, Tmax = 0.747h = 77
11147 measured reflectionsk = 99
1940 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.0476P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
1940 reflectionsΔρmax = 0.30 e Å3
95 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.0000000.0000000.0000000.01247 (7)
S10.59079 (4)0.31416 (3)0.23679 (2)0.01173 (5)
O10.51060 (17)0.30087 (12)0.40386 (8)0.02378 (13)
O20.32610 (14)0.27473 (11)0.11297 (9)0.02162 (12)
O30.74294 (16)0.55094 (11)0.25509 (9)0.02480 (13)
O40.76973 (14)0.11827 (12)0.19257 (8)0.02018 (11)
O50.18095 (15)0.22150 (12)0.13791 (9)0.02120 (12)
H5A0.087 (4)0.321 (3)0.162 (2)0.049 (5)*
H5B0.333 (5)0.281 (4)0.133 (3)0.060 (6)*
N10.0000000.0000000.5000000.0263 (2)
H1A0.069 (11)0.139 (9)0.578 (6)0.063 (12)*0.5
H1B0.132 (11)0.088 (9)0.505 (7)0.061 (13)*0.5
H1C0.139 (12)0.062 (9)0.454 (7)0.069 (13)*0.5
H1D0.076 (12)0.023 (10)0.589 (6)0.060 (13)*0.5
H1O0.510 (7)0.438 (5)0.467 (4)0.029 (7)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.01185 (14)0.01281 (15)0.01307 (15)0.00322 (11)0.00293 (11)0.00293 (11)
S10.01341 (7)0.01017 (7)0.01104 (7)0.00074 (5)0.00381 (5)0.00085 (5)
O10.0404 (4)0.0175 (3)0.0157 (2)0.0039 (2)0.0159 (2)0.0022 (2)
O20.0170 (2)0.0185 (3)0.0266 (3)0.00044 (19)0.0042 (2)0.0056 (2)
O30.0303 (3)0.0159 (2)0.0246 (3)0.0093 (2)0.0071 (2)0.0010 (2)
O40.0218 (3)0.0237 (3)0.0188 (2)0.0125 (2)0.0094 (2)0.0061 (2)
O50.0202 (3)0.0193 (3)0.0282 (3)0.0060 (2)0.0048 (2)0.0123 (2)
N10.0342 (6)0.0223 (5)0.0204 (5)0.0016 (4)0.0022 (4)0.0059 (4)
Geometric parameters (Å, º) top
Mg1—O22.0509 (6)O5—H5A0.78 (2)
Mg1—O2i2.0509 (6)O5—H5B0.81 (2)
Mg1—O4ii2.0720 (6)N1—H1A0.90 (5)
Mg1—O4iii2.0720 (6)N1—H1B0.83 (5)
Mg1—O52.0731 (6)N1—H1C0.89 (6)
Mg1—O5i2.0731 (6)N1—H1D0.82 (5)
S1—O31.4525 (6)N1—H1Aiv0.90 (5)
S1—O21.4604 (6)N1—H1Biv0.83 (5)
S1—O41.4651 (6)N1—H1Civ0.89 (6)
S1—O11.5164 (6)N1—H1Div0.82 (5)
O1—H1O0.84 (3)
O2—Mg1—O2i180.0H1A—N1—H1C78 (4)
O2—Mg1—O4ii90.33 (3)H1B—N1—H1C75 (4)
O2i—Mg1—O4ii89.67 (3)H1A—N1—H1D67 (4)
O2—Mg1—O4iii89.67 (3)H1B—N1—H1D58 (4)
O2i—Mg1—O4iii90.33 (3)H1C—N1—H1D108 (4)
O4ii—Mg1—O4iii180.0H1A—N1—H1Aiv179.999 (12)
O2—Mg1—O588.48 (3)H1B—N1—H1Aiv75 (4)
O2i—Mg1—O591.52 (3)H1C—N1—H1Aiv102 (4)
O4ii—Mg1—O587.09 (3)H1D—N1—H1Aiv113 (4)
O4iii—Mg1—O592.91 (3)H1A—N1—H1Biv75 (4)
O2—Mg1—O5i91.52 (3)H1B—N1—H1Biv180.00 (3)
O2i—Mg1—O5i88.48 (3)H1C—N1—H1Biv105 (4)
O4ii—Mg1—O5i92.91 (3)H1D—N1—H1Biv122 (4)
O4iii—Mg1—O5i87.09 (3)H1Aiv—N1—H1Biv105 (4)
O5—Mg1—O5i180.00 (2)H1A—N1—H1Civ102 (4)
O3—S1—O2109.75 (4)H1B—N1—H1Civ105 (4)
O3—S1—O4113.42 (4)H1C—N1—H1Civ179.999 (12)
O2—S1—O4110.24 (4)H1D—N1—H1Civ72 (4)
O3—S1—O1108.87 (4)H1Aiv—N1—H1Civ78 (4)
O2—S1—O1109.29 (4)H1Biv—N1—H1Civ75 (4)
O4—S1—O1105.10 (4)H1A—N1—H1Div113 (4)
S1—O1—H1O112 (2)H1B—N1—H1Div122 (4)
S1—O2—Mg137.25 (4)H1C—N1—H1Div72 (4)
S1—O4—Mgv135.08 (4)H1D—N1—H1Div179.999 (17)
Mg—O5—H5A122.3 (15)H1Aiv—N1—H1Div67 (4)
Mg—O5—H5B129.2 (15)H1Biv—N1—H1Div58 (4)
H5A—O5—H5B100 (2)H1Civ—N1—H1Div108 (4)
H1A—N1—H1B105 (4)
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y, z1; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2vi0.81 (2)2.52 (2)3.0010 (9)118.9 (19)
O5—H5A···O3vii0.78 (2)2.05 (2)2.7684 (9)154.0 (19)
O5—H5B···O3vi0.81 (2)2.42 (2)3.1678 (10)152 (2)
N1—H1A···O3viii0.90 (5)2.03 (5)2.9260 (6)175 (5)
N1—H1C···O10.89 (6)2.28 (6)3.1536 (7)164 (4)
N1—H1B···O1ix0.83 (5)2.30 (5)3.1122 (8)164 (5)
N1—H1D···O4ix0.82 (5)2.08 (5)2.9042 (6)173 (5)
O1—H1O···O1viii0.84 (3)1.64 (3)2.4790 (12)176 (4)
Symmetry codes: (vi) x, y1, z; (vii) x1, y1, z; (viii) x1, y1, z1; (ix) x1, y, z1.
Sodium scandium bis(chromate) dihydrate (NaScCrO42H2O2) top
Crystal data top
NaSc(CrO4)2(H2O)2F(000) = 656
Mr = 335.98Dx = 2.731 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.505 (3) ÅCell parameters from 1933 reflections
b = 5.563 (1) Åθ = 3.0–34.9°
c = 10.763 (2) ŵ = 3.51 mm1
β = 109.82 (3)°T = 293 K
V = 817.0 (3) Å3Plate, orange
Z = 40.17 × 0.10 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1372 reflections with I > 2σ(I)
φ and ω scansRint = 0.017
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
θmax = 34.9°, θmin = 3.0°
Tmin = 0.755, Tmax = 0.949h = 2323
3418 measured reflectionsk = 88
1783 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.039P)2 + 0.8547P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.06 e Å3
1783 reflectionsΔρmin = 0.69 e Å3
75 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0016 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na0.0000000.7736 (2)0.2500000.0316 (3)
Sc0.2500000.2500000.0000000.01231 (10)
Cr0.40774 (2)0.75898 (4)0.04494 (2)0.01252 (9)
O10.34782 (10)0.4739 (2)0.58227 (12)0.0244 (3)
O20.36740 (9)0.0218 (2)0.08791 (11)0.0212 (2)
O30.39085 (11)0.2399 (2)0.38820 (13)0.0241 (3)
O40.52248 (9)0.7300 (2)0.12625 (15)0.0279 (3)
O50.21670 (10)0.2416 (2)0.17735 (13)0.0217 (3)
H10.1575 (19)0.237 (5)0.162 (4)0.075 (12)*
H20.262 (2)0.224 (5)0.247 (3)0.070 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na0.0255 (6)0.0418 (7)0.0261 (6)0.0000.0068 (4)0.000
Sc0.01293 (17)0.00985 (16)0.01428 (17)0.00036 (11)0.00479 (13)0.00011 (11)
Cr0.01109 (13)0.01064 (12)0.01520 (13)0.00011 (7)0.00361 (8)0.00014 (7)
O10.0299 (6)0.0191 (5)0.0244 (6)0.0129 (5)0.0096 (5)0.0030 (4)
O20.0232 (5)0.0163 (5)0.0219 (6)0.0074 (4)0.0049 (4)0.0009 (4)
O30.0316 (7)0.0247 (6)0.0172 (5)0.0000 (4)0.0100 (5)0.0001 (4)
O40.0126 (5)0.0356 (7)0.0322 (7)0.0034 (4)0.0035 (5)0.0004 (5)
O50.0157 (5)0.0326 (7)0.0175 (5)0.0002 (4)0.0062 (4)0.0017 (4)
Geometric parameters (Å, º) top
Na—O3i2.5201 (16)Sc—O2vii2.0772 (12)
Na—O3ii2.5201 (15)Sc—O22.0772 (12)
Na—O2i2.5358 (15)Sc—O52.1222 (14)
Na—O2ii2.5358 (15)Sc—O5vii2.1222 (14)
Na—O1iii2.7207 (17)Cr—O41.6045 (14)
Na—O1iv2.7207 (17)Cr—O3v1.6204 (14)
Na—O4ii2.9360 (18)Cr—O1v1.6829 (12)
Na—O4i2.9360 (18)Cr—O2viii1.6960 (11)
Sc—O1v2.0747 (12)O5—H10.82 (3)
Sc—O1vi2.0747 (12)O5—H20.82 (2)
O3i—Na—O3ii171.47 (7)O1vi—Sc—O2vii85.51 (6)
O3i—Na—O2i83.30 (5)O1v—Sc—O285.51 (6)
O3ii—Na—O2i91.98 (5)O1vi—Sc—O294.49 (6)
O3i—Na—O2ii91.98 (5)O2vii—Sc—O2180.0
O3ii—Na—O2ii83.30 (5)O1v—Sc—O587.91 (5)
O2i—Na—O2ii112.92 (7)O1vi—Sc—O592.09 (5)
O3i—Na—O1iii100.22 (5)O2vii—Sc—O591.24 (5)
O3ii—Na—O1iii84.22 (4)O2—Sc—O588.76 (5)
O2i—Na—O1iii175.72 (4)O1v—Sc—O5vii92.09 (5)
O2ii—Na—O1iii64.74 (4)O1vi—Sc—O5vii87.91 (5)
O3i—Na—O1iv84.22 (4)O2vii—Sc—O5vii88.76 (5)
O3ii—Na—O1iv100.22 (5)O2—Sc—O5vii91.24 (5)
O2i—Na—O1iv64.74 (4)O5—Sc—O5vii180.0
O2ii—Na—O1iv175.72 (4)O4—Cr—O3v109.32 (8)
O1iii—Na—O1iv117.83 (7)O4—Cr—O1v108.45 (7)
O3i—Na—O4ii66.92 (4)O3v—Cr—O1v110.09 (6)
O3ii—Na—O4ii121.38 (5)O4—Cr—O2viii109.14 (6)
O2i—Na—O4ii127.94 (4)O3v—Cr—O2viii109.65 (6)
O2ii—Na—O4ii109.92 (4)O1v—Cr—O2viii110.16 (7)
O1iii—Na—O4ii56.12 (4)Crix—O1—Scii143.31 (7)
O1iv—Na—O4ii70.41 (5)Crix—O1—Naiii100.80 (6)
O3i—Na—O4i121.38 (5)Scii—O1—Naiii100.64 (5)
O3ii—Na—O4i66.92 (4)Crx—O2—Sc135.07 (7)
O2i—Na—O4i109.92 (4)Crx—O2—Naxi114.36 (6)
O2ii—Na—O4i127.94 (4)Sc—O2—Naxi106.80 (5)
O1iii—Na—O4i70.41 (5)Crix—O3—Naxi135.29 (8)
O1iv—Na—O4i56.12 (4)Cr—O4—Naxi94.60 (6)
O4ii—Na—O4i60.30 (6)Sc—O5—H1111 (3)
O1v—Sc—O1vi180.00 (11)Sc—O5—H2118 (3)
O1v—Sc—O2vii94.49 (6)H1—O5—H2130 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y+3/2, z1/2; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z; (ix) x, y+1, z+1/2; (x) x, y1, z; (xi) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O4xii0.82 (3)1.86 (3)2.682 (2)179 (3)
O5—H2···O30.82 (2)1.97 (3)2.765 (2)164 (3)
Symmetry code: (xii) x1/2, y1/2, z.
Comparative compilation of structure types with kröhnkite-type chains top
TypeGeneralized formula(e)Space groupZGeneralised unit-cell parameters (Å, °)No. of representatives
AM1II2M2II(TO4)2(H2O)2: M1 = Ca, Sr; MII = Mg, Mn, Fe, Co, Ni, Zn; T = P, As. M1I2M2II(TO4)2(H2O)2: M1 = Na, K, NH4; MII = Mg, Fe, Co, Ni, Cu, Zn; T = S, Se, Cr, Mo, WP11a 5.7–7.1, b 6.7–7.9, c 5.3–6.0, α 93–105, β 105–112, γ 103–11132
BM1II2M2II(TO4)2(H2O)2: M1 = Ca; M2 = Mn, Fe; T = PP11a 5.8–6.0, b 6.5–6.6, c 5.5, α 102–103, β 108–109, γ 90–912
CM1I2M2II(TO4)2(H2O)2: M1 = K, Rb; M2 = Mn, Cd; T = S, Se, CrP12a 6.6–6.9, b 7.3–7.7, c 10.7–11.4, α 72–73, β 74–75, γ 704
C1K2Fe(SO4)2(H2O)2P1 (?) a2a 6.6, b 7.3, c 10.7, α 73, β 74, γ 701
DM1II2M2II(TO4)2(H2O)2: M1 = Ca; M2 = Mg, Mn, Co, Cu, Zn; T = As M1I2M2II(TO4)2(H2O)2: M1 = Na, NH4, Rb; M2 = Cr, Mn, Fe, Cu, Cd; T = S, Se, Cr, MoP21/c2a 5.8–6.8, b 12.8–14.3, c 5.4–5.9, β 106–11114
EM1IM2IIH(TO4)2(H2O)2: M1 = K, NH4, Cs; M2 = Mg, Mn, Fe, Co, Zn; T = S, SeP11a 4.6–4.8, b 5.7–5.9, c 8.1–8.6, α 103–104, β 96–100, γ 94–97708
E1b(NH4)Mg(HSO4)(SO4)(H2O)2 (at 100 K)P12a 7.1, b 7.7, c 8.3, α 84.6, β 73.3, γ 77.41
F1cM1IM2III(TO4)2(H2O)2: M1 = Na; M2 = Al, Sc, Fe; T = CrC2/c4a 14.1–14.5, b 5.3–5.6, c 10.7–10.8, β 109–1103
F2cM1IM2III(TO4)2(H2O)2: M1 = Na, K, NH4, Tl; M2 = Al, Fe, In; T = CrC2/m2a 10.7–11.0, b 5.4–5.6, c 7.5–7.6, β 1145
GAgSc(CrO4)2(H2O)2P11a 5.6, b 6.1, c 7.4, α 111, β 90, γ 1171
HdK2Zn(CrO4)2(H2O)2C2/c4a 15.0, b 5.7, c 12.3, β 1171
Notes: (a) The type C1 is represented only by the low-temperature modification of K2Fe(SO4)2(H2O)2 and has an uncertain space group. (b) The type E1 is described for the first time in the present work; it is an ordered variant of type E (see text). (c) The types F1 and F2 are closely related (see text). (d) The type H (Stoilova et al., 2008) is closely related to the type A.
Absolute atomic displacements (Å), arithmetic mean (dav, Å), degree of lattice distortion (S) and measure of similarity (Δ) in the isotypic NaM(CrO4)(H2O)2 (M = Al and Fe) structures relative to NaSc(CrO4)2(H2O)2a top
M = AlbM = Fec
Na10.05950.0773
M100
Cr10.08390.0536
O10.14770.1608
O20.12270.1436
O30.05950.0395
O40.03950.0520
O50.19160.0751
dav0.09640.0805
Δ0.0230.019
S0.01860.0107
Notes: (a) H atoms were omitted from comparison because in the M = Al and Fe structures, H atoms were not localised. (b) Lattice parameters a = 14.080 (10), b = 5.338 (3), c = 10.655 (6) Å and β = 110.33 (5)° (Cudennec & Riou, 1977). (c) a = 14.247 (2), b = 5.425 (5), c = 10.689 (2) Å and β = 109.30 (1)° (Hardy & Gravereau, 1970).
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for support and for providing access to the single-crystal and powder X-ray diffractometers. We thank two anonymous reviewers for their construtive criticism that helped to improve the manuscript.

References

First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBeran, A. & Libowitzky, E. (1999). NATO Sci. Ser. C, 543, 493–508.  CAS Google Scholar
First citationBetke, U. & Wickleder, M. (2012). Eur. J. Inorg. Chem. 2012, 306–317.  CrossRef ICSD CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasari, B. M., Eriksson, A. K. & Langer, V. (2007). Z. Naturforsch. Teil B, 62, 771–777.  CrossRef CAS Google Scholar
First citationCudennec, Y. & Riou, A. (1977). C. R. Acad. Sci. Paris Sér. C, 284, 565–568.  CAS Google Scholar
First citationDahlman, B. (1952). Ark. Mineral. Geol. 1, 339–366.  CAS Google Scholar
First citationDegen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). Powder Diffr. 29 (Suppl. 2), S13–S18.  Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFleck, M. & Kolitsch, U. (2003). Z. Kristallogr. 218, 553–567.  Web of Science CrossRef ICSD CAS Google Scholar
First citationFleck, M., Kolitsch, U. & Hertweck, B. (2002a). Z. Kristallogr. 217, 435–443.  CAS Google Scholar
First citationFleck, M., Kolitsch, U., Hertweck, B., Giester, G., Wildner, M., Prem, M. & Wohlschläger, A. (2002b). Z. Kristallogr. 217, 242–248.  CAS Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629.  CrossRef PubMed IUCr Journals Google Scholar
First citationHardy, A. M. & Gravereau, P. (1970). C. R. Acad. Sci. Paris Sér. C, 271, 1304–1307.  CAS Google Scholar
First citationHawthorne, F. C., Krivovichev, S. V. & Burns, P. C. (2000). Rev. Mineral. Geochem. 40, 1–112.  Web of Science CrossRef CAS Google Scholar
First citationHeinicke, F., Lerner, H.-W. & Bolte, M. (2004). Acta Cryst. E60, i84–i85.  CrossRef ICSD IUCr Journals Google Scholar
First citationHofmann, W. (1931). Z. Kristallogr. 78, 279–333.  CAS Google Scholar
First citationJayakumar, V. S., Sekar, G., Rajagopal, P. & Aruldhas, G. (1988). Phys. Status Solidi A, 109, 635–640.  CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.  Google Scholar
First citationKolitsch, U. & Fleck, M. (2005). Z. Kristallogr. 220, 31–41.  CAS Google Scholar
First citationKolitsch, U. & Fleck, M. (2006). Eur. J. Mineral. 18, 471–482.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLibowitzky, E. (1999). Monatsh. Chem. 130, 1047–1059.  Web of Science CrossRef CAS Google Scholar
First citationLin, W.-F., Xing, Q.-J., Ma, J., Zou, J.-P., Lei, S.-L., Luo, X.-B. & Guo, G.-C. (2013). Z. Anorg. Allg. Chem. 639, 31–34.  Web of Science CrossRef ICSD CAS Google Scholar
First citationMacíček, J., Gradinarov, S., Bontchev, R. & Balarew, C. (1994). Acta Cryst. C50, 1185–1188.  CrossRef ICSD Web of Science IUCr Journals Google Scholar
First citationMarri, S. R., Mahana, S., Topwal, D. & Behera, J. N. (2017). Dalton Trans. 46, 1105–1111.  CSD CrossRef CAS PubMed Google Scholar
First citationMaslen, E. N., Ridout, S. C., Watson, K. J. & Moore, F. H. (1988). Acta Cryst. C44, 409–412.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationMüller, U. (2013). In Symmetry Relationships between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford University Press.  Google Scholar
First citationNonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSerezhkin, V. N., Kryuchkova, G. V. & Kazakevich, V. S. (2003). Russ. J. Inorg. Chem. 48, 1199–1206.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShcherbakova, Y. P. & Bazhenova, L. F. (1989). Zap. Vseross. Mineral. O-va, 118, 84–87.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoilova, D., Wildner, M., Marinova, D. & Georgiev, M. (2008). J. Mol. Struct. 892, 239–245.  CrossRef ICSD CAS Google Scholar
First citationTroyanov, S. I., Morozov, I. V. & Kemnitz, E. (2002). Crystallogr. Rep. 47, 768–772.  CrossRef CAS Google Scholar
First citationWeil, M. (2005). Acta Cryst. E61, i237–i239.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. 643, 749–756.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWorzala, H., Schneider, M., Kemnitz, E. & Trojanov, S. I. (1991). Z. Anorg. Allg. Chem. 596, 167–171.  CrossRef ICSD CAS Google Scholar
First citationYin, X. (2011). Acta Cryst. E67, i31.  CrossRef ICSD IUCr Journals Google Scholar
First citationZemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds