research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Variants of the X-phase in the Mn–Co–Ge system

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Ångström Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden
*Correspondence e-mail: vitalii.shtender@kemi.uu.se

Edited by A. Lemmerer, University of the Witwatersrand, South Africa (Received 26 January 2021; accepted 2 March 2021; online 9 March 2021)

We report two new variants of the X-phase (ortho­rhom­bic, space group Pnnm) derived from the Mn–Co–Ge system. Two com­positionally related crystals were investigated by means of single-crystal X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8 inter­metallic com­pounds are part of the homogeneity region of the X-phase and adopt the Mn14(Mn0.11Co0.64Si0.25)23 structure type. The com­position obtained from refinement of the XRD data is in agreement with the EDS results. In the present study, chemical disorder was only detected on the 8h positions. The ordering is com­pared with other members of the X-phase family and shows that the degree of disordering depends on the chemical com­position. No com­pletely ordered variants of the X-phase have yet been reported.

1. Introduction

Topologically close packed (TCP) phases or Frank–Kasper phases as they are also known encom­pass a large number of inter­metallic com­pounds (Dshemuchadse & Steurer, 2015[Dshemuchadse, J. & Steurer, W. (2015). Inorg. Chem. 54, 1120-1128.]; Ovchinnikov et al., 2020[Ovchinnikov, A., Smetana, V. & Mudring, A. V. (2020). J. Phys. Condens. Matter, 32, 243002.]). As a result, TCP phases often appear in various widely used alloys such as steels. In single-crystal superalloys they are reported to reduce microstructural stability, promote creep porosities and induce cracking and crack propagation (Tan et al., 2020[Tan, Z., Yang, L., Wang, X., Du, Y., Ye, L., Hou, G., Yang, Y., Liu, J., Liu, J., Li, J., Zhou, Y. & Sun, X. (2020). Acta Metall. Sin. (Engl. Lett.), 33, 731-740.]). In high-entropy alloys, they often appear in the form of the σ-phase and have been reported to improve strength while providing good ductility (Jo et al., 2018[Jo, Y. H., Choi, W. M., Sohn, S. S., Kim, H. S., Lee, B. J. & Lee, S. (2018). Mater. Sci. Eng. A, 724, 403-410.]). Due to this, control of the formation of these phases is desired as they have a large impact on the mech­anical properties of materials.

Conventional close packing of atoms of the same size create tetra­hedral and octa­hedral inter­stitial holes. When atoms of slightly different sizes pack together, TCPs can arise as they achieve a better packing by forming small non-uniform tetra­hedral inter­stices. The non-uniform nature of the tetra­hedral inter­stices allow for coordination numbers of 12, 14, 15 and 16 (Frank & Kasper, 1958[Frank, F. C. & Kasper, J. S. (1958). Acta Cryst. 11, 184-190.]; Wang & Mar, 2001[Wang, M. & Mar, A. (2001). J. Solid State Chem. 160, 450-459.]; Ovchinnikov et al., 2020[Ovchinnikov, A., Smetana, V. & Mudring, A. V. (2020). J. Phys. Condens. Matter, 32, 243002.]). The Valence Electron Concentration (VEC) also plays a role in determining the structure and stability of the TCP phase, so much so that maps based on the VEC and divergence from the average atomic size can be used to predict the various phases seen (Seiser et al., 2011[Seiser, B., Drautz, R. & Pettifor, D. G. (2011). Acta Mater. 59, 749-763.]; Hammerschmidt et al., 2013[Hammerschmidt, T., Bialon, A. F., Pettifor, D. G. & Drautz, R. (2013). New J. Phys. 15, 115016.]). Theoretical calculations also indicate that magnetism has a minor effect on the structural stability of certain phases (Hammerschmidt et al., 2013[Hammerschmidt, T., Bialon, A. F., Pettifor, D. G. & Drautz, R. (2013). New J. Phys. 15, 115016.]).

The X-phase is a rare structure type that has only been reported for two systems. The Mn–Co–Si system, from which the base structure is derived, was discovered in the 1970s by two independent groups (Yarmolyuk et al., 1970[Yarmolyuk, Y. P., Krypyakevych, P. I. & Gladyshevskii, E. I. (1970). Sov. Phys. Crystallogr. 15, 226-230.]; Manor et al., 1972[Manor, P. C., Shoemaker, C. D. & Shoemaker, D. P. (1972). Acta Cryst. B28, 1211-1218.]). This structure has been reported as Mn15.84Co15.87Si5.29 and Mn44.4Co40.0Si15.1, respectively. In general, these phases are assigned to the Mn14(Mn0.11Co0.64Si0.25)23 structure type (Villars & Cenzual, 2016[Villars, P. & Cenzual, K. (2016). ASM Handbook, Vol. 3, Alloy Phase Diagrams. Materials Park, Ohio: ASM International.]), where seven independent positions relate to Mn and the other nine positions are mixed Co/Mn or Si/Co/Mn. Investigation of the phase diagram of the ternary Mn–Co–Si system at 800 °C revealed the formation of Mn16.5Co14.8Si5.7 (Kuz'ma & Gladyshevskii, 1964[Kuz'ma, Y. B. & Gladyshevskii, E. I. (1964). Russ. J. Inorg. Chem. 9, 373-377.]), while at 1000 °C, the authors reported Mn16.5Co14.8Si5.7, as well as Mn3Co3Si (Y-phase) (Bardos et al., 1966[Bardos, D. I., Malik, R. K., Spiegel, F. X. & Beck, P. A. (1966). Trans. Metall. Soc. AIME, 236, 40-48.]). A rough approximation for the stoichiometry of the X-phase can be given close to 3–3–1, as also used for the Y-phase (Gupta, 2006[Gupta, K. P. (2006). J. Phase Equilibria Diffus. 27, 517-522.]). There has been some discussion as to whether the structure is instead the Y-phase (Manor et al., 1972[Manor, P. C., Shoemaker, C. D. & Shoemaker, D. P. (1972). Acta Cryst. B28, 1211-1218.]; Gupta, 2006[Gupta, K. P. (2006). J. Phase Equilibria Diffus. 27, 517-522.]); the similarity of the diffraction patterns indicates that they might be the same phase with a large homogeneity region. The second system reported in 2001 is com­posed of Nb–Ni–Sb (Wang & Mar, 2001[Wang, M. & Mar, A. (2001). J. Solid State Chem. 160, 450-459.]) and was reported as the Nb28Ni33.5Sb12.5 [Nb14Ni16.75Sb6.25 or Nb14(Ni0.728Sb0.272)23] ternary com­pound, which crystalized in the X-phase structure type.

In this article, the syntheses and crystal structures of two new Mn–Co–Ge com­pounds, representatives of the X-phase, will be discussed.

2. Experimental

2.1. Synthesis

This study was initiated based on separate results obtained during the investigation of Mn2Co3Ge, a com­pound which was selected as a permanent magnet candidate (Vishina et al., 2021[Vishina, A., Hedlund, D., Shtender, V., Delczeg-Czirjak, E. K., Larsen, S. R., Vekilova, O. Y., Huang, S., Vitos, L., Svedlindh, P., Sahlberg, M., Eriksson, O. & Herper, H. C. (2021). Acta Mater. Submitted. (Preprint available at arXiv: 2101.10773.)]). Initial trials revealed the magnetic Heusler phase MnCo2Ge (Buschow et al., 1983[Buschow, K. H. J., van Engen, P. G. & Jongebreur, R. (1983). J. Magn. Magn. Mater. 38, 1-22.]) as being the main com­peting phase in that region of the phase diagram. The synthesis of the Mn2Co3Ge com­pound was achieved by arc melting and negligible loses of Mn (1–3 wt%) were detected in most cases. In the event of larger losses, more Mn was added to com­pensate for the losses and to avoid the formation of MnCo2Ge. It was found that an additional 3 wt% of Mn decreased the amount of MnCo2Ge impurities. Based on this, Mn2Co3Ge alloys with 5, 7 and 10 wt% of excess Mn were prepared. However, while it did reduce the amount of MnCo2Ge, in most cases, it did not result in higher purity of the sought-after phase. The samples of 7 and 10 wt% excess Mn did instead reveal the existence of a new phase, the crystal structure of which is presented herein.

Samples of Mn2Co3Ge+7%Mn and Mn2Co3Ge+10%Mn were synthesized by arc melting Co (99.9+%, Alfa Aesar), Mn (99.7%, Höganäs) and Ge (99.999%, Kurt J. Lesker) under an argon atmosphere. A titanium getter was used to reduce oxygen contamination and the samples were flipped and remelted three times to promote homogeneity. Samples were placed in Al2O3 crucibles and then sealed in evacuated quartz tubes for annealing. Heat treatment was carried out for 7 d at 800 °C, after which samples were quenched with water.

2.2. Characterization

Crystals were picked up from the Mn–Co–Ge alloys by fragmentation and analyzed. A Bruker D8 single-crystal X-ray diffractometer with Mo Kα radiation (λ = 0.71073 Å) up­graded with an Incoatec Microfocus Source (IµS, beam size ∼100 µm at the sample position) and an APEXII CCD area detector (6 × 6 cm) was used to collect single-crystal X-ray diffraction (SCXRD) intensities at room temperature. The final cycle of refinement was carried out anisotropically for all species converging with low residuals and a flat difference Fourier map. The atomic positions were standardized with the use of the program STRUCTURE TIDY implemented in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Additional methods, such as scanning electron microscopy (SEM) on a Zeiss Merlin SEM instrument equipped with a secondary electron (SE) detector and an energy-dispersive X-ray spectrometer (EDS), were employed to confirm the com­position of the title com­pounds. The samples used for electron microscopy analysis were prepared by standard metallographic techniques through grinding with SiC paper. For the final polishing, a mixture of SiO2 and H2O was used. Furthermore, the sample purity was checked by means of powder X-ray diffraction (PXRD) on a Bruker D8 X-ray diffractometer with a Lynx-eye position-sensitive detector and Cu Kα radiation on a zero-background single-crystal Si sample holder. Phase analysis of the X-ray data using the Rietveld method was carried out with FULLPROF software (Rodriguez-Carvajal, 2001[Rodriguez-Carvajal, J. (2001). IUCr Newslett. 26, 12-19.]).

The crystal structures of the new X-phase representatives were solved by single-crystal X-ray diffraction data analysis using the procedures described above. PXRD phase analysis showed that Mn2Co3Ge+7%Mn was a multiphase alloy, while Mn2Co3Ge+10%Mn consisted of a single phase. The elemental com­position obtained from refinement of the crystal structure data was found to be Mn40.2Co41.9Ge17.9 and Mn37.8Co43.9Ge18.3 for the two crystals, respectively, agreeing with EDS results [Mn40.4 (5)Co42.0 (7)Ge17.6 (3) and Mn37.7 (9)Co45.1 (9)Ge17.2 (5)]. Tables 1[link] and 2[link] present crystallographic data and experimental details for Mn14.89 (5)Co15.48 (4)Ge6.62 (2) and Mn14Co16.16 (3)Ge6.84 (3). Anisotropic displacement parameters, inter­atomic distances and angles are provided as supporting information. For simplicity, the limits of com­position in the text will be referred to as Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8.

Table 1
Crystallographic data and structure refinement parameters for the studied Mn–Co–Ge single crystals

Experiments were carried out at 296 K with Mo Kα radiation using a Bruker APEXII CCD diffractometer (see Characterization, §2.2[link]). The absorption correction was mpirical (using intensity measurements) (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]).

  Mn14.9Co15.5Ge6.6 Mn14Co16.2Ge6.8
Compound Mn14.89 (5)Co15.48 (4)Ge6.62 (2) Mn14Co16.16 (3)Ge6.84 (3)
Summary formula Mn29.79 (10)Co30.97 (8)Ge13.25 (4) Mn28Co32.32 (6)Ge13.68 (6)
Empirical formula Mn14Co12Ge5(Mn0.04Co0.15Ge0.07)23 Mn14Co14Ge5(Co0.096Ge0.08)23
Sample code 10 7
Calculated composition Mn40.2Co41.9Ge17.9 Mn37.8Co43.9Ge18.3
EDS composition Mn40.4 (5)Co42.0 (7)Ge17.6 (3) Mn37.7 (9)Co45.1 (9)Ge17.2 (5)
CSD 2057512 2057511
Structure type relation Mn14(Mn0.11Co0.64Si0.25)23 Mn14(Mn0.11Co0.64Si0.25)23
Formula weight, Mr (g mol−1) 4422.90 4436.02
Space group (No.) Pnnm (58) Pnnm (58)
Pearson symbol, Z oP74, 1 oP74, 1
Unit-cell dimensions:    
a (Å) 12.6427 (10) 12.6208 (12)
b (Å) 15.6725 (12) 15.6878 (15)
c (Å) 4.8374 (4) 4.8338 (5)
V3) 958.50 (13) 957.06 (16)
Calculated density, ρ (g cm−3) 7.66 7.70
Absorption coefficient, μ (mm−1) 32.54 32.93
Theta range for data collection (°) 2.070–42.410 2.071–46.877
F(000) 2005 2010
Range in h k l −23 ≤ h ≤ 23 −24 ≤ h ≤ 25
  −29 ≤ k ≤ 29 −25 ≤ k ≤ 32
  −9 ≤ l ≤ 9 −9 ≤ l ≤ 9
Total No. of reflections 22326 38733
Rint/Rσ 0.0299/0.0217 0.0411/0.0255
No. of independent reflections 3686 4648
No. of reflections with I > 2σ(I) 3277 4313
Data/parameters 3686/106 4648/106
Goodness-of-fit on F2 1.103 1.219
Final R indices [I > 2σ(I)] R1 = 0.0219 R1 = 0.0323
  wR2 = 0.0502 wR2 = 0.0779
R indices (all data) R1 = 0.0265 R1 = 0.0359
  wR2 = 0.0515 wR2 = 0.0795
Largest diff. peak and hole (e Å−3) 1.241 and −0.919 2.257 and −1.675
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg and Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and FULLPROF (Rodriguez-Carvajal, 2001[Rodriguez-Carvajal, J. (2001). IUCr Newslett. 26, 12-19.]).

Table 2
Atomic coordinates and equivalent isotropic displacement parameters for the Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8 com­pounds

Ueq is defined as one-third of the trace of the orthogonalized Uij tensor. For Mn14.89 (5)Co15.48 (4)Ge6.62 (2), M1 and M3 are 0.876 (12)Co + 0.124 (12)Mn and 0.90Co + 0.10Mn, respectively, and M2 = 0.594 (5)Co + 0.406 (5)Ge. For Mn14Co16.16 (3)Ge6.84 (3), M2 = 0.540 (7)Co + 0.460 (7)Ge.

Mn14.89 (5)Co15.48 (4)Ge6.62 (2) Mn14Co16.16 (3)Ge6.84 (3)
Atom Site x y z Ueq2) Atom Site x y z Ueq2)
Mn1 4g 0.02666 (3) 0.57115 (2) 0 0.00762 (5) Mn1 4g 0.02630 (3) 0.57128 (2) 0 0.00617 (6)
Mn2 4g 0.08586 (3) 0.73416 (2) 0 0.00681 (5) Mn2 4g 0.08564 (3) 0.73405 (2) 0 0.00553 (5)
Mn3 4g 0.10176 (3) 0.16147 (2) 0 0.00729 (5) Mn3 4g 0.10193 (3) 0.16150 (3) 0 0.00594 (6)
Mn4 4g 0.22070 (3) 0.44440 (2) 0 0.00763 (5) Mn4 4g 0.22075 (3) 0.44428 (2) 0 0.00622 (6)
Mn5 4g 0.28518 (3) 0.26433 (2) 0 0.00710 (5) Mn5 4g 0.28525 (3) 0.26426 (2) 0 0.00566 (6)
Mn6 4g 0.40147 (3) 0.54997 (2) 0 0.00673 (5) Mn6 4g 0.40142 (3) 0.54991 (3) 0 0.00543 (6)
Mn7 4g 0.59950 (3) 0.02711 (2) 0 0.00717 (5) Mn7 4g 0.59952 (3) 0.02717 (2) 0 0.00573 (6)
M1 8h 0.10076 (2) 0.32411 (2) 0.23460 (4) 0.00519 (4) Co1 8h 0.10096 (2) 0.32409 (2) 0.23463 (5) 0.00405 (4)
M2 8h 0.28921 (2) 0.10244 (2) 0.25373 (4) 0.00601 (5) M2 8h 0.28931 (2) 0.10233 (2) 0.25377 (4) 0.00490 (5)
M3 8h 0.41242 (2) 0.39078 (2) 0.24024 (4) 0.00525 (4) Co3 8h 0.41258 (2) 0.39066 (2) 0.24029 (4) 0.00417 (4)
Co4 4g 0.19010 (2) 0.00139 (2) 0 0.00605 (5) Co4 4g 0.19001 (3) 0.00128 (2) 0 0.00458 (5)
Co5 4g 0.44439 (3) 0.13693 (2) 0 0.00660 (5) Co5 4g 0.44448 (3) 0.13683 (2) 0 0.00501 (5)
Co6 4g 0.69785 (3) 0.29091 (2) 0 0.00626 (5) Co6 4g 0.69799 (3) 0.29094 (2) 0 0.00482 (5)
Ge1 4g 0.50766 (2) 0.28512 (2) 0 0.00626 (4) Ge1 4g 0.50782 (2) 0.28499 (2) 0 0.00489 (4)
Ge2 4g 0.75789 (2) 0.14623 (2) 0 0.00624 (4) Ge2 4g 0.75801 (2) 0.14630 (2) 0 0.00472 (5)
Ge3 2a 0 0 0 0.00616 (5) Ge3 2a 0 0 0 0.00474 (6)

3. Results and discussion

Detailed crystal structure chemistry for the previously studied representatives of the Mn14(Mn0.11Co0.64Si0.25)23 structure type are presented elsewhere (Yarmolyuk et al., 1970[Yarmolyuk, Y. P., Krypyakevych, P. I. & Gladyshevskii, E. I. (1970). Sov. Phys. Crystallogr. 15, 226-230.]; Manor et al., 1972[Manor, P. C., Shoemaker, C. D. & Shoemaker, D. P. (1972). Acta Cryst. B28, 1211-1218.]; Wang & Mar, 2001[Wang, M. & Mar, A. (2001). J. Solid State Chem. 160, 450-459.]). In this work, two crystals of similar com­position were studied with the aim of com­paring the ordering/disordering of the atoms in the structure. Two ternary inter­metallic com­pounds with ortho­rhom­bic structures (space group Pnnm) and very negligible changes in the unit-cell parameters indicated a small homogeneity region of the X-phase which was further supported by EDS analysis. The Ge content is mostly stable, while the majority of changes occur along the Mn/Co line. For both com­positions, it was established that Mn occupies seven independent 4g positions. Three Co and two Ge atoms also occupy independent 4g positions, with the final Ge atom occupying the position at 2a. This holds true for the Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8 com­positions.

Differences are present only at the 8h positions which are of higher multiplicity. The studied com­pounds have a large degree of Co/Ge inter­mixing on the 8h position of M2 (see Table 2[link]). This is likely due to the nearest neighbours of M2 (Co/Ge) consisting exclusively of Mn and Co and not Ge [in Fig. 1[link], the outlined icosa­hedra (CN = 12) for M2 are Mn7Co3M22]. No clear Ge—Ge bonds that could relate to the sum of atomic radii (rGe = 1.22 Å; Pearson, 1972[Pearson, W. B. (1972). In The Crystal Chemistry and Physics of Metals and Alloys. New York: Wiley-Interscience.]) could be discerned in this structure. It can only be realized in the case of M2, for which two other M2 are as close as 2.3826 (4) and 2.4548 (4) Å. One of these distances could be regarded as the Ge—Ge, Co—Ge or Co—Co inter­atomic distance since atomic radii of Co and Ge are similar (rCo = 1.25 and rGe = 1.22 Å; Pearson, 1972[Pearson, W. B. (1972). In The Crystal Chemistry and Physics of Metals and Alloys. New York: Wiley-Interscience.]). It should be noted that for other com­pounds of the Mn–Co–Ge and Co–Ge systems, it is common to have shorter Ge—Ge, Co—Ge or Co—Co inter­atomic distances than the sum of the atomic radii (Villars & Cenzual, 2016[Villars, P. & Cenzual, K. (2016). ASM Handbook, Vol. 3, Alloy Phase Diagrams. Materials Park, Ohio: ASM International.]).

[Figure 1]
Figure 1
Schematic presentation of the disordering in the 8h positions with respect to the chemical com­positions for (a) disordered Mn14.9Co15.5Ge6.6, (b) partially disordered Mn14Co16.2Ge6.8 and (c) hypothetically ordered `Mn14Co18Ge5'. All projections of the ortho­rhom­bic unit cells are presented on the ba plane. Atoms names are as used in Table 2[link].

The last two 8h positions (M1 and M3) are a statistical mixture of Mn and Co for Mn14.9Co15.5Ge6.6, while for Mn14Co16.2Ge6.8, they are occupied solely by Co. As the latter is Mn-lean this makes sense. The Mn/Co occupational ratio at the M1 site was refined and the refinement remained stable, while the ratio at M3 had to be constrained due to instability of the refinement. This procedure was deemed applicable as the Fourier map and R factors improved and the calculated com­position corresponded well to results attained from EDS measurements. The unstable Mn/Co occupational ratio at M3 cannot be explained by the smaller volume of the surrounding icosa­hedron and thus the larger electron density. The volume of the M3-related icosa­hedron is 45.6 Å3, while for M1 it is only 43.8 Å3. An alternative explanation can be sought by examining the ligands for each central Mx atom. As was mentioned, the M2 site only has Mn and Co atoms surrounding it, while M1 has two atoms of Ge present and M3 has three Ge atoms (M1@Mn6Co2M12Ge2 and M3@Mn6Co1M32Ge3). Polyhedra for M3 are always in pairs (while others alternate), sharing one of the Ge atoms between them. Considering that Ge is the most electronegative atom in the present case [χGe= 2.01, χCo= 1.88 and χMn= 1.55, according to the Pauling scale (Pauling, 1932[Pauling, L. (1932). J. Am. Chem. Soc. 54, 3570-3582.])] and that the M3—Ge distances [2.3543 (3), 2.3942 (3) and 2.3948 (2) Å] are the shortest in the structure [for com­parison, the M2—M2 distance is 2.3826 (4) Å], this might be a reason why the position of M3 becomes unstable with the introduction of Mn (rMn = 1.27 Å; Pearson, 1972[Pearson, W. B. (1972). In The Crystal Chemistry and Physics of Metals and Alloys. New York: Wiley-Interscience.]). The Co—Ge distances around M3 are in the range 2.3911 (4)–2.4564 (4) Å, which is similar to what is seen for M2, but the shortest Mn—Ge distance of 2.7233 (5) Å in the same area exhibits a sizeable difference [Mn—M2 = 2.6607 (4) Å]. Also, Ge lacks at least one electron in the p-orbital to be half-filled (4p2), while Co has its excess at d (3d74s2, d-orbital more than half-filled) and Mn is stable in the d-orbital (3d54s2, d-orbital half-filled). By introducing Mn with a larger atomic radius than Co we decrease the distance of the central atom to Ge and remove the unpaired electrons of Co from the area near Ge. For this reason, the statistical mixture of Mn/Co in M3, unlike M1, cannot be stable during refinement. To summarize, though many different trials of the refinements were carried out, the presented results were found to be the best statistically that also agreed with EDS results. Nevertheless, the presented arguments are our way of explaining the outlined problem at the M3 site. It is difficult to conclude whether it is refinement instability or chemical/structural instability from the available data. Our results do not allow com­pletely separate Mn and Co since this is not discernible with XRD (difference of only two electrons) and to differentiate between them neutrons are needed.

The studied com­pounds (Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8) are com­positionally related to each other and the other members [Mn15.84Co15.87Si5.29 (Yarmolyuk et al., 1970[Yarmolyuk, Y. P., Krypyakevych, P. I. & Gladyshevskii, E. I. (1970). Sov. Phys. Crystallogr. 15, 226-230.]), Mn16.46Co14.80Si5.75 (Manor et al., 1972[Manor, P. C., Shoemaker, C. D. & Shoemaker, D. P. (1972). Acta Cryst. B28, 1211-1218.]) and Nb14Ni16.78Sb6.22 (Wang & Mar, 2001[Wang, M. & Mar, A. (2001). J. Solid State Chem. 160, 450-459.])] of the X-phase with the Mn14(Mn0.11Co0.64Si0.25)23 structure type. In all cases, the Mn atoms occupied seven independent positions (in the case of Nb14Ni16.78Sb6.22, the Nb atoms occupy the same positions instead). For the first Si-based com­pound, the other positions were occupied by mixed Mn/Co/Si atoms and the z parameters at the 8h positions were fixed (Yarmolyuk et al., 1970[Yarmolyuk, Y. P., Krypyakevych, P. I. & Gladyshevskii, E. I. (1970). Sov. Phys. Crystallogr. 15, 226-230.]). The second Si-based com­pound had a slightly higher degree of ordering, where four positions were shared between Mn/Co/Si and five other positions were only shared between Mn/Co (z at the 8h positions were refined) (Manor et al., 1972[Manor, P. C., Shoemaker, C. D. & Shoemaker, D. P. (1972). Acta Cryst. B28, 1211-1218.]). That inter­mixing is seen for all elements on so many positions is likely related to the lack of the high-quality data, as the studies were carried out in the 1970s. Contrary to those studies, the most recent publication on Nb14Ni16.78Sb6.22 (Wang & Mar, 2001[Wang, M. & Mar, A. (2001). J. Solid State Chem. 160, 450-459.]) presents a very detailed refinement procedure sup­ported by extended Hückel band structure calculations. In terms of numbers of elements and structural features, Nb14Ni16.78Sb6.22 relates closely to the presented Mn14Co16.2Ge6.8 com­pound. The inter­mixing of Ni/Sb on one 8h position is similar to the inter­mixing of Co/Ge presented here. Minor differences are seen on the 4g positions where Ni/Sb was found to inter­mix as well, while only Ge was seen to be present here. This could relate to the difference in the homogeneity regions or the nature of the elements. The same might be applicable for the Si-based com­pounds, but a detailed analysis of these old com­pounds would be needed to confirm this. The currently known X-phases are all of the same structure type, with the minor differences of the ordering/disordering at some crystallographic positions being a key differentiator.

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg and Putz, 2006); software used to prepare material for publication: FULLPROF (Rodriguez-Carvajal, 2001).

Manganese cobalt germanide (Mn14Co16.2Ge6.8) top
Crystal data top
Mn28Co32.32Ge13.68Dx = 7.697 Mg m3
Mr = 4436.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 38733 reflections
a = 12.6208 (12) Åθ = 2.1–46.9°
b = 15.6878 (15) ŵ = 32.93 mm1
c = 4.8338 (5) ÅT = 296 K
V = 957.06 (16) Å3Irregular fragment, metallic
Z = 10.03 × 0.02 × 0.01 mm
F(000) = 2010
Data collection top
Bruker APEXII CCD
diffractometer
4313 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2015)
θmax = 46.9°, θmin = 2.1°
h = 2425
38733 measured reflectionsk = 2532
4648 independent reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0301P)2 + 3.3753P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.080Δρmax = 2.26 e Å3
S = 1.22Δρmin = 1.67 e Å3
4648 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
106 parametersExtinction coefficient: 0.00025 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystals were picked up from the Mn–Co–Ge alloys by fragmentation and analyzed. A Bruker D8 single-crystal X-ray diffractometer with Mo Kα radiation (λ = 0.71073 Å) upgraded with an Incoatec Microfocus Source (IµS, beam size ~ 100µm at the sample position) and an APEXII CCD area detector (6 × 6 cm) was used to collect single-crystal X-ray diffraction (SCXRD) intensities at room temperature. SCXRD data reduction and numerical absorption corrections were performed using the APEX3 software from Bruker (2014). A preliminary ordered model (Mn14Co18Ge5) of the crystal structure was first obtained with the program SHELXT2014 (Sheldrick, 2015a) and refined using the program SHELXL2014 (Sheldrick, 2015b) within the APEX3 software package. The final cycle of refinement was carried out anisotropically for all species converging with low residuals and a flat difference Fourier map. The atomic positions were standardized with the use of the program STRUCTURE TIDY implemented in PLATON (Spek, 2020). Further data, in the form of a CIF file, have been sent to the Cambridge Crystallographic Data Centre (CCDC) (Groom et al., 2016). CIF files are available as supplementary material for the publication. Molecular graphics made in DIAMOND (Brandenburg & Putz, 2005).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.02630 (3)0.57128 (2)0.0000000.00617 (6)
Mn20.08564 (3)0.73405 (2)0.0000000.00553 (5)
Mn30.10193 (3)0.16150 (3)0.0000000.00594 (6)
Mn40.22075 (3)0.44428 (2)0.0000000.00622 (6)
Mn50.28525 (3)0.26426 (2)0.0000000.00566 (6)
Mn60.40142 (3)0.54991 (3)0.0000000.00543 (6)
Mn70.59952 (3)0.02717 (2)0.0000000.00573 (6)
Co10.10096 (2)0.32409 (2)0.23463 (5)0.00405 (4)
Co20.28931 (2)0.10233 (2)0.25377 (4)0.00490 (5)0.540 (7)
Ge220.28931 (2)0.10233 (2)0.25377 (4)0.00490 (5)0.460 (7)
Co30.41258 (2)0.39066 (2)0.24029 (4)0.00417 (4)
Co40.19001 (3)0.00128 (2)0.0000000.00458 (5)
Co50.44448 (3)0.13683 (2)0.0000000.00501 (5)
Co60.69799 (3)0.29094 (2)0.0000000.00482 (5)
Ge10.50782 (2)0.28499 (2)0.0000000.00489 (4)
Ge20.75801 (2)0.14630 (2)0.0000000.00472 (5)
Ge30.0000000.0000000.0000000.00474 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00800 (13)0.00413 (12)0.00638 (12)0.00091 (10)0.0000.000
Mn20.00647 (12)0.00426 (12)0.00587 (12)0.00057 (9)0.0000.000
Mn30.00725 (13)0.00470 (12)0.00587 (12)0.00014 (9)0.0000.000
Mn40.00942 (13)0.00443 (12)0.00482 (12)0.00100 (10)0.0000.000
Mn50.00678 (12)0.00489 (12)0.00532 (12)0.00009 (10)0.0000.000
Mn60.00678 (12)0.00466 (12)0.00486 (12)0.00001 (9)0.0000.000
Mn70.00578 (12)0.00354 (12)0.00787 (13)0.00016 (9)0.0000.000
Co10.00550 (8)0.00446 (8)0.00218 (7)0.00012 (6)0.00007 (6)0.00049 (5)
Co20.00668 (8)0.00436 (8)0.00367 (8)0.00072 (5)0.00102 (5)0.00110 (5)
Ge220.00668 (8)0.00436 (8)0.00367 (8)0.00072 (5)0.00102 (5)0.00110 (5)
Co30.00642 (8)0.00375 (8)0.00233 (7)0.00010 (6)0.00082 (6)0.00088 (5)
Co40.00513 (11)0.00262 (10)0.00599 (11)0.00082 (8)0.0000.000
Co50.00484 (11)0.00480 (11)0.00539 (11)0.00129 (8)0.0000.000
Co60.00573 (11)0.00276 (10)0.00596 (11)0.00068 (8)0.0000.000
Ge10.00619 (9)0.00331 (9)0.00516 (9)0.00175 (7)0.0000.000
Ge20.00476 (9)0.00358 (9)0.00582 (9)0.00096 (7)0.0000.000
Ge30.00497 (12)0.00412 (12)0.00515 (12)0.00154 (9)0.0000.000
Geometric parameters (Å, º) top
Mn1—Mn1i2.3329 (8)Mn5—Co6vii2.7936 (3)
Mn1—Co1ii2.5613 (5)Mn5—Co3ix2.8042 (5)
Mn1—Co1i2.5613 (5)Mn5—Co32.8042 (5)
Mn1—Co5iii2.6523 (3)Mn5—Ge2vii2.8157 (3)
Mn1—Co5iv2.6523 (3)Mn5—Ge2vi2.8157 (3)
Mn1—Co2v2.6589 (5)Mn5—Co22.8214 (5)
Mn1—Co2iv2.6589 (5)Mn5—Co2ix2.8215 (5)
Mn1—Mn22.6611 (6)Mn6—Co3ix2.7587 (5)
Mn1—Mn7iv2.9736 (4)Mn6—Co32.7587 (5)
Mn1—Mn7iii2.9736 (4)Mn6—Co3xi2.7800 (5)
Mn1—Mn7vi3.0135 (4)Mn6—Co3viii2.7800 (5)
Mn1—Mn7vii3.0135 (4)Mn6—Co4iv2.7848 (3)
Mn2—Ge2viii2.7233 (5)Mn6—Co4iii2.7848 (3)
Mn2—Co6viii2.7587 (6)Mn6—Co6viii2.7942 (6)
Mn2—Co3v2.7591 (5)Mn6—Co2iv2.8084 (5)
Mn2—Co3iv2.7591 (5)Mn6—Co2v2.8084 (5)
Mn2—Co1i2.7684 (5)Mn6—Ge3xii2.8288 (3)
Mn2—Co1ii2.7684 (5)Mn6—Ge3xiii2.8288 (3)
Mn2—Ge1iv2.8055 (3)Mn7—Co52.6054 (5)
Mn2—Ge1iii2.8055 (3)Mn7—Co5xiv2.6320 (6)
Mn2—Co2iv2.8597 (5)Mn7—Mn7xiv2.6529 (8)
Mn2—Co2v2.8597 (5)Mn7—Co1xii2.6628 (5)
Mn2—Mn3i2.8791 (6)Mn7—Co1xv2.6628 (5)
Mn3—Co42.7484 (6)Mn7—Co4xiv2.6935 (6)
Mn3—Co1ix2.7916 (5)Mn7—Ge22.7374 (5)
Mn3—Co12.7916 (5)Mn7—Co2xiv2.7570 (4)
Mn3—Co6vii2.8050 (3)Mn7—Co2xvi2.7570 (4)
Mn3—Co6vi2.8050 (3)Co1—Co1ix2.2683 (5)
Mn3—Mn52.8200 (6)Co1—Ge2vii2.4063 (4)
Mn3—Co3x2.8207 (5)Co1—Co5vii2.4334 (4)
Mn3—Co3vii2.8207 (5)Co1—Ge1vii2.4404 (4)
Mn3—Ge1vi2.8209 (3)Co1—Co6vii2.5301 (4)
Mn3—Ge1vii2.8209 (3)Co1—Co1xvii2.5655 (5)
Mn3—Co2ix2.8211 (5)Co2—Co6vii2.3555 (4)
Mn3—Co22.8211 (5)Co2—Co42.3640 (4)
Mn4—Co12.6697 (5)Co2—Co52.3733 (4)
Mn4—Co1ix2.6697 (5)Co2—Co2xvii2.3805 (5)
Mn4—Co2v2.7533 (5)Co2—Co2ix2.4533 (5)
Mn4—Co2iv2.7533 (5)Co3—Co3ix2.3230 (5)
Mn4—Co4iii2.8124 (3)Co3—Ge12.3541 (4)
Mn4—Co4iv2.8124 (3)Co3—Ge2vii2.3913 (4)
Mn4—Co3ix2.8139 (5)Co3—Ge3xii2.3949 (3)
Mn4—Co32.8140 (5)Co3—Co4iii2.5028 (4)
Mn4—Mn62.8188 (6)Co3—Co3xvii2.5108 (5)
Mn4—Ge2vi2.8429 (3)Co4—Ge32.3982 (4)
Mn4—Ge2vii2.8429 (3)Co4—Ge2xiv2.4063 (5)
Mn4—Mn7vi2.8953 (4)Co5—Ge12.4579 (5)
Mn5—Co12.7527 (5)Co6—Ge22.3922 (5)
Mn5—Co1ix2.7528 (5)Co6—Ge12.4020 (5)
Mn5—Co6vi2.7936 (3)
Mn1i—Mn1—Co1ii115.84 (2)Co1xvii—Co1—Mn3113.971 (6)
Mn1i—Mn1—Co1i115.84 (2)Mn7vii—Co1—Mn3175.170 (11)
Co1ii—Mn1—Co1i52.568 (14)Mn4—Co1—Mn3118.049 (13)
Mn1i—Mn1—Co5iii114.282 (11)Mn5—Co1—Mn361.140 (12)
Co1ii—Mn1—Co5iii55.612 (11)Mn2i—Co1—Mn362.370 (12)
Co1i—Mn1—Co5iii104.019 (17)Co6vii—Co2—Co4118.654 (16)
Mn1i—Mn1—Co5iv114.282 (11)Co6vii—Co2—Co5120.187 (15)
Co1ii—Mn1—Co5iv104.019 (17)Co4—Co2—Co5108.793 (13)
Co1i—Mn1—Co5iv55.612 (11)Co6vii—Co2—Co2xvii59.648 (7)
Co5iii—Mn1—Co5iv131.36 (2)Co4—Co2—Co2xvii121.257 (7)
Mn1i—Mn1—Co2v115.13 (2)Co5—Co2—Co2xvii121.122 (7)
Co1ii—Mn1—Co2v103.485 (13)Co6vii—Co2—Co2ix120.352 (7)
Co1i—Mn1—Co2v129.023 (18)Co4—Co2—Co2ix58.742 (7)
Co5iii—Mn1—Co2v53.085 (10)Co5—Co2—Co2ix58.880 (7)
Co5iv—Mn1—Co2v102.427 (16)Co2xvii—Co2—Co2ix180.0
Mn1i—Mn1—Co2iv115.13 (2)Co6vii—Co2—Mn1xix109.407 (13)
Co1ii—Mn1—Co2iv129.023 (18)Co4—Co2—Mn1xix124.986 (15)
Co1i—Mn1—Co2iv103.485 (13)Co5—Co2—Mn1xix63.317 (11)
Co5iii—Mn1—Co2iv102.427 (16)Co2xvii—Co2—Mn1xix63.407 (6)
Co5iv—Mn1—Co2iv53.085 (10)Co2ix—Co2—Mn1xix116.594 (7)
Co2v—Mn1—Co2iv53.185 (13)Co6vii—Co2—Mn4xix113.523 (13)
Mn1i—Mn1—Mn2179.81 (3)Co4—Co2—Mn4xix66.167 (11)
Co1ii—Mn1—Mn263.992 (14)Co5—Co2—Mn4xix117.828 (15)
Co1i—Mn1—Mn263.992 (14)Co2xvii—Co2—Mn4xix64.386 (6)
Co5iii—Mn1—Mn265.723 (11)Co2ix—Co2—Mn4xix115.613 (6)
Co5iv—Mn1—Mn265.723 (11)Mn1xix—Co2—Mn4xix71.448 (13)
Co2v—Mn1—Mn265.031 (13)Co6vii—Co2—Mn7xiv176.066 (11)
Co2iv—Mn1—Mn265.031 (13)Co4—Co2—Mn7xiv62.915 (13)
Mn1i—Mn1—Mn7iv67.972 (13)Co5—Co2—Mn7xiv61.194 (13)
Co1ii—Mn1—Mn7iv100.030 (16)Co2xvii—Co2—Mn7xiv116.419 (6)
Co1i—Mn1—Mn7iv56.928 (12)Co2ix—Co2—Mn7xiv63.582 (6)
Co5iii—Mn1—Mn7iv154.839 (19)Mn1xix—Co2—Mn7xiv67.589 (11)
Co5iv—Mn1—Mn7iv54.816 (11)Mn4xix—Co2—Mn7xiv63.395 (11)
Co2v—Mn1—Mn7iv150.915 (13)Co6vii—Co2—Mn6xix64.825 (13)
Co2iv—Mn1—Mn7iv98.408 (11)Co4—Co2—Mn6xix64.480 (11)
Mn2—Mn1—Mn7iv111.936 (13)Co5—Co2—Mn6xix173.246 (12)
Mn1i—Mn1—Mn7iii67.972 (13)Co2xvii—Co2—Mn6xix64.924 (6)
Co1ii—Mn1—Mn7iii56.928 (11)Co2ix—Co2—Mn6xix115.074 (6)
Co1i—Mn1—Mn7iii100.030 (16)Mn1xix—Co2—Mn6xix120.451 (12)
Co5iii—Mn1—Mn7iii54.816 (11)Mn4xix—Co2—Mn6xix60.894 (13)
Co5iv—Mn1—Mn7iii154.839 (19)Mn7xiv—Co2—Mn6xix114.139 (14)
Co2v—Mn1—Mn7iii98.408 (10)Co6vii—Co2—Mn364.894 (11)
Co2iv—Mn1—Mn7iii150.915 (13)Co4—Co2—Mn363.297 (13)
Mn2—Mn1—Mn7iii111.936 (13)Co5—Co2—Mn3113.076 (13)
Mn7iv—Mn1—Mn7iii108.741 (19)Co2xvii—Co2—Mn3115.773 (6)
Mn1i—Mn1—Mn7vi66.167 (13)Co2ix—Co2—Mn364.226 (6)
Co1ii—Mn1—Mn7vi151.155 (14)Mn1xix—Co2—Mn3171.344 (15)
Co1i—Mn1—Mn7vi99.533 (11)Mn4xix—Co2—Mn3116.462 (14)
Co5iii—Mn1—Mn7vi152.489 (19)Mn7xiv—Co2—Mn3118.397 (12)
Co5iv—Mn1—Mn7vi54.916 (12)Mn6xix—Co2—Mn364.032 (12)
Co2v—Mn1—Mn7vi100.633 (16)Co6vii—Co2—Mn564.585 (11)
Co2iv—Mn1—Mn7vi57.756 (11)Co4—Co2—Mn5111.630 (13)
Mn2—Mn1—Mn7vi113.924 (13)Co5—Co2—Mn565.478 (12)
Mn7iv—Mn1—Mn7vi52.600 (14)Co2xvii—Co2—Mn5115.771 (6)
Mn7iii—Mn1—Mn7vi134.139 (15)Co2ix—Co2—Mn564.230 (6)
Mn1i—Mn1—Mn7vii66.167 (13)Mn1xix—Co2—Mn5112.053 (14)
Co1ii—Mn1—Mn7vii99.533 (11)Mn4xix—Co2—Mn5176.316 (15)
Co1i—Mn1—Mn7vii151.155 (14)Mn7xiv—Co2—Mn5118.640 (12)
Co5iii—Mn1—Mn7vii54.916 (12)Mn6xix—Co2—Mn5115.617 (14)
Co5iv—Mn1—Mn7vii152.489 (19)Mn3—Co2—Mn559.970 (12)
Co2v—Mn1—Mn7vii57.756 (10)Co6vii—Co2—Mn2xix63.005 (14)
Co2iv—Mn1—Mn7vii100.633 (16)Co4—Co2—Mn2xix173.286 (11)
Mn2—Mn1—Mn7vii113.924 (13)Co5—Co2—Mn2xix66.106 (11)
Mn7iv—Mn1—Mn7vii134.139 (15)Co2xvii—Co2—Mn2xix65.404 (6)
Mn7iii—Mn1—Mn7vii52.600 (14)Co2ix—Co2—Mn2xix114.597 (6)
Mn7vi—Mn1—Mn7vii106.649 (18)Mn1xix—Co2—Mn2xix57.522 (13)
Mn1—Mn2—Ge2viii149.91 (2)Mn4xix—Co2—Mn2xix119.753 (12)
Mn1—Mn2—Co6viii98.174 (17)Mn7xiv—Co2—Mn2xix115.902 (15)
Ge2viii—Mn2—Co6viii51.739 (13)Mn6xix—Co2—Mn2xix120.547 (11)
Mn1—Mn2—Co3v148.954 (11)Mn3—Co2—Mn2xix113.947 (14)
Ge2viii—Mn2—Co3v51.714 (10)Mn5—Co2—Mn2xix62.636 (11)
Co6viii—Mn2—Co3v96.807 (14)Co3ix—Co3—Ge160.437 (7)
Mn1—Mn2—Co3iv148.954 (11)Co3ix—Co3—Ge2vii121.667 (7)
Ge2viii—Mn2—Co3iv51.714 (10)Ge1—Co3—Ge2vii120.316 (14)
Co6viii—Mn2—Co3iv96.807 (14)Co3ix—Co3—Ge3xii121.615 (6)
Co3v—Mn2—Co3iv54.130 (13)Ge1—Co3—Ge3xii121.858 (14)
Mn1—Mn2—Co1i56.251 (12)Ge2vii—Co3—Ge3xii105.921 (11)
Ge2viii—Mn2—Co1i147.504 (13)Co3ix—Co3—Co4iii120.106 (7)
Co6viii—Mn2—Co1i142.672 (14)Ge1—Co3—Co4iii179.127 (14)
Co3v—Mn2—Co1i119.124 (16)Ge2vii—Co3—Co4iii58.850 (12)
Co3iv—Mn2—Co1i96.540 (12)Ge3xii—Co3—Co4iii58.587 (10)
Mn1—Mn2—Co1ii56.251 (12)Co3ix—Co3—Co3xvii180.0
Ge2viii—Mn2—Co1ii147.504 (13)Ge1—Co3—Co3xvii119.564 (7)
Co6viii—Mn2—Co1ii142.672 (14)Ge2vii—Co3—Co3xvii58.331 (7)
Co3v—Mn2—Co1ii96.540 (12)Ge3xii—Co3—Co3xvii58.385 (6)
Co3iv—Mn2—Co1ii119.124 (16)Co4iii—Co3—Co3xvii59.893 (7)
Co1i—Mn2—Co1ii48.370 (13)Co3ix—Co3—Mn665.100 (7)
Mn1—Mn2—Ge1iv98.916 (12)Ge1—Co3—Mn6117.135 (12)
Ge2viii—Mn2—Ge1iv96.218 (11)Ge2vii—Co3—Mn6113.515 (14)
Co6viii—Mn2—Ge1iv117.169 (10)Ge3xii—Co3—Mn666.147 (10)
Co3v—Mn2—Ge1iv98.151 (14)Co4iii—Co3—Mn663.697 (11)
Co3iv—Mn2—Ge1iv50.046 (9)Co3xvii—Co3—Mn6114.899 (7)
Co1i—Mn2—Ge1iv51.924 (9)Co3ix—Co3—Mn2xix117.066 (7)
Co1ii—Mn2—Ge1iv95.115 (15)Ge1—Co3—Mn2xix66.001 (11)
Mn1—Mn2—Ge1iii98.916 (12)Ge2vii—Co3—Mn2xix63.373 (12)
Ge2viii—Mn2—Ge1iii96.218 (11)Ge3xii—Co3—Mn2xix113.298 (12)
Co6viii—Mn2—Ge1iii117.169 (10)Co4iii—Co3—Mn2xix113.163 (13)
Co3v—Mn2—Ge1iii50.046 (9)Co3xvii—Co3—Mn2xix62.935 (7)
Co3iv—Mn2—Ge1iii98.151 (14)Mn6—Co3—Mn2xix176.744 (13)
Co1i—Mn2—Ge1iii95.115 (15)Co3ix—Co3—Mn6viii65.305 (6)
Co1ii—Mn2—Ge1iii51.924 (9)Ge1—Co3—Mn6viii66.354 (13)
Ge1iv—Mn2—Ge1iii118.966 (19)Ge2vii—Co3—Mn6viii171.704 (12)
Mn1—Mn2—Co2iv57.446 (13)Ge3xii—Co3—Mn6viii65.785 (10)
Ge2viii—Mn2—Co2iv95.632 (15)Co4iii—Co3—Mn6viii114.451 (15)
Co6viii—Mn2—Co2iv49.533 (10)Co3xvii—Co3—Mn6viii114.696 (7)
Co3v—Mn2—Co2iv145.929 (17)Mn6—Co3—Mn6viii64.120 (15)
Co3iv—Mn2—Co2iv116.717 (12)Mn2xix—Co3—Mn6viii118.807 (14)
Co1i—Mn2—Co2iv93.490 (13)Co3ix—Co3—Mn565.531 (6)
Co1ii—Mn2—Co2iv113.697 (16)Ge1—Co3—Mn565.811 (13)
Ge1iv—Mn2—Co2iv94.547 (10)Ge2vii—Co3—Mn565.067 (10)
Ge1iii—Mn2—Co2iv142.787 (13)Ge3xii—Co3—Mn5170.964 (12)
Mn1—Mn2—Co2v57.446 (13)Co4iii—Co3—Mn5113.676 (16)
Ge2viii—Mn2—Co2v95.632 (16)Co3xvii—Co3—Mn5114.469 (6)
Co6viii—Mn2—Co2v49.533 (10)Mn6—Co3—Mn5115.895 (13)
Co3v—Mn2—Co2v116.717 (12)Mn2xix—Co3—Mn564.117 (11)
Co3iv—Mn2—Co2v145.929 (17)Mn6viii—Co3—Mn5123.228 (12)
Co1i—Mn2—Co2v113.697 (16)Co3ix—Co3—Mn465.621 (6)
Co1ii—Mn2—Co2v93.490 (13)Ge1—Co3—Mn4116.495 (12)
Ge1iv—Mn2—Co2v142.787 (13)Ge2vii—Co3—Mn465.622 (11)
Ge1iii—Mn2—Co2v94.547 (10)Ge3xii—Co3—Mn4113.493 (12)
Co2iv—Mn2—Co2v49.192 (12)Co4iii—Co3—Mn463.555 (11)
Mn1—Mn2—Mn3i108.343 (19)Co3xvii—Co3—Mn4114.378 (6)
Ge2viii—Mn2—Mn3i101.744 (18)Mn6—Co3—Mn460.763 (12)
Co6viii—Mn2—Mn3i153.483 (19)Mn2xix—Co3—Mn4117.449 (14)
Co3v—Mn2—Mn3i59.994 (12)Mn6viii—Co3—Mn4116.988 (13)
Co3iv—Mn2—Mn3i59.994 (12)Mn5—Co3—Mn463.085 (14)
Co1i—Mn2—Mn3i59.207 (13)Co3ix—Co3—Mn3xii116.428 (6)
Co1ii—Mn2—Mn3i59.207 (13)Ge1—Co3—Mn3xii65.340 (11)
Ge1iv—Mn2—Mn3i59.485 (9)Ge2vii—Co3—Mn3xii112.779 (12)
Ge1iii—Mn2—Mn3i59.485 (9)Ge3xii—Co3—Mn3xii65.429 (11)
Co2iv—Mn2—Mn3i149.889 (11)Co4iii—Co3—Mn3xii114.595 (12)
Co2v—Mn2—Mn3i149.889 (11)Co3xvii—Co3—Mn3xii63.573 (6)
Co4—Mn3—Co1ix146.871 (13)Mn6—Co3—Mn3xii119.562 (14)
Co4—Mn3—Co1146.871 (13)Mn2xix—Co3—Mn3xii62.115 (12)
Co1ix—Mn3—Co147.944 (13)Mn6viii—Co3—Mn3xii64.396 (12)
Co4—Mn3—Co6vii93.926 (12)Mn5—Co3—Mn3xii117.693 (14)
Co1ix—Mn3—Co6vii96.253 (15)Mn4—Co3—Mn3xii177.938 (10)
Co1—Mn3—Co6vii53.755 (10)Co2ix—Co4—Co262.515 (14)
Co4—Mn3—Co6vi93.926 (12)Co2ix—Co4—Ge3122.390 (13)
Co1ix—Mn3—Co6vi53.755 (10)Co2—Co4—Ge3122.390 (13)
Co1—Mn3—Co6vi96.252 (15)Co2ix—Co4—Ge2xiv120.047 (15)
Co6vii—Mn3—Co6vi119.00 (2)Co2—Co4—Ge2xiv120.047 (15)
Co4—Mn3—Mn5101.011 (17)Ge3—Co4—Ge2xiv105.342 (14)
Co1ix—Mn3—Mn558.751 (12)Co2ix—Co4—Co3xviii118.617 (9)
Co1—Mn3—Mn558.750 (12)Co2—Co4—Co3xviii178.209 (15)
Co6vii—Mn3—Mn559.556 (10)Ge3—Co4—Co3xviii58.458 (10)
Co6vi—Mn3—Mn559.556 (10)Ge2xiv—Co4—Co3xviii58.262 (11)
Co4—Mn3—Co3x94.438 (14)Co2ix—Co4—Co3xx178.209 (15)
Co1ix—Mn3—Co3x94.616 (12)Co2—Co4—Co3xx118.618 (10)
Co1—Mn3—Co3x116.241 (15)Ge3—Co4—Co3xx58.458 (10)
Co6vii—Mn3—Co3x145.774 (13)Ge2xiv—Co4—Co3xx58.262 (11)
Co6vi—Mn3—Co3x93.431 (11)Co3xviii—Co4—Co3xx60.213 (14)
Mn5—Mn3—Co3x149.423 (11)Co2ix—Co4—Mn7xiv65.692 (13)
Co4—Mn3—Co3vii94.438 (14)Co2—Co4—Mn7xiv65.691 (12)
Co1ix—Mn3—Co3vii116.240 (15)Ge3—Co4—Mn7xiv169.984 (17)
Co1—Mn3—Co3vii94.617 (12)Ge2xiv—Co4—Mn7xiv64.642 (13)
Co6vii—Mn3—Co3vii93.431 (11)Co3xviii—Co4—Mn7xiv113.286 (15)
Co6vi—Mn3—Co3vii145.774 (13)Co3xx—Co4—Mn7xiv113.286 (15)
Mn5—Mn3—Co3vii149.423 (11)Co2ix—Co4—Mn366.490 (13)
Co3x—Mn3—Co3vii52.855 (13)Co2—Co4—Mn366.490 (13)
Co4—Mn3—Ge1vi116.264 (10)Ge3—Co4—Mn366.620 (12)
Co1ix—Mn3—Ge1vi51.544 (9)Ge2xiv—Co4—Mn3171.962 (18)
Co1—Mn3—Ge1vi94.261 (14)Co3xviii—Co4—Mn3115.140 (15)
Co6vii—Mn3—Ge1vi147.255 (18)Co3xx—Co4—Mn3115.140 (15)
Co6vi—Mn3—Ge1vi50.549 (11)Mn7xiv—Co4—Mn3123.397 (17)
Mn5—Mn3—Ge1vi100.099 (12)Co2ix—Co4—Mn6xviii65.517 (11)
Co3x—Mn3—Ge1vi49.326 (9)Co2—Co4—Mn6xviii119.095 (16)
Co3vii—Mn3—Ge1vi96.367 (14)Ge3—Co4—Mn6xviii65.665 (10)
Co4—Mn3—Ge1vii116.264 (10)Ge2xiv—Co4—Mn6xviii112.122 (11)
Co1ix—Mn3—Ge1vii94.261 (14)Co3xviii—Co4—Mn6xviii62.629 (12)
Co1—Mn3—Ge1vii51.545 (9)Co3xx—Co4—Mn6xviii114.263 (16)
Co6vii—Mn3—Ge1vii50.549 (11)Mn7xiv—Co4—Mn6xviii117.004 (10)
Co6vi—Mn3—Ge1vii147.255 (18)Mn3—Co4—Mn6xviii65.280 (10)
Mn5—Mn3—Ge1vii100.099 (12)Co2ix—Co4—Mn6xix119.095 (16)
Co3x—Mn3—Ge1vii96.367 (15)Co2—Co4—Mn6xix65.518 (11)
Co3vii—Mn3—Ge1vii49.326 (9)Ge3—Co4—Mn6xix65.665 (10)
Ge1vi—Mn3—Ge1vii117.917 (18)Ge2xiv—Co4—Mn6xix112.122 (11)
Co4—Mn3—Co2ix50.212 (10)Co3xviii—Co4—Mn6xix114.263 (15)
Co1ix—Mn3—Co2ix97.335 (12)Co3xx—Co4—Mn6xix62.629 (12)
Co1—Mn3—Co2ix118.750 (15)Mn7xiv—Co4—Mn6xix117.004 (10)
Co6vii—Mn3—Co2ix95.732 (15)Mn3—Co4—Mn6xix65.280 (10)
Co6vi—Mn3—Co2ix49.500 (9)Mn6xviii—Co4—Mn6xix120.427 (19)
Mn5—Mn3—Co2ix60.022 (12)Co2ix—Co4—Mn4xix116.542 (16)
Co3x—Mn3—Co2ix114.912 (12)Co2—Co4—Mn4xix63.576 (12)
Co3vii—Mn3—Co2ix143.927 (17)Ge3—Co4—Mn4xix113.441 (11)
Ge1vi—Mn3—Co2ix94.494 (9)Ge2xiv—Co4—Mn4xix65.478 (10)
Ge1vii—Mn3—Co2ix145.433 (13)Co3xviii—Co4—Mn4xix114.698 (16)
Co4—Mn3—Co250.213 (10)Co3xx—Co4—Mn4xix63.620 (12)
Co1ix—Mn3—Co2118.750 (15)Mn7xiv—Co4—Mn4xix63.409 (11)
Co1—Mn3—Co297.334 (12)Mn3—Co4—Mn4xix116.919 (10)
Co6vii—Mn3—Co249.500 (9)Mn6xviii—Co4—Mn4xix177.315 (17)
Co6vi—Mn3—Co295.732 (15)Mn6xix—Co4—Mn4xix60.475 (12)
Mn5—Mn3—Co260.021 (12)Co2—Co5—Co2ix62.242 (15)
Co3x—Mn3—Co2143.928 (17)Co2—Co5—Co1xii117.043 (10)
Co3vii—Mn3—Co2114.913 (12)Co2ix—Co5—Co1xii178.316 (18)
Ge1vi—Mn3—Co2145.433 (13)Co2—Co5—Co1xv178.316 (18)
Ge1vii—Mn3—Co294.495 (9)Co2ix—Co5—Co1xv117.043 (10)
Co2ix—Mn3—Co251.548 (13)Co1xii—Co5—Co1xv63.625 (15)
Co1—Mn4—Co1ix50.280 (14)Co2—Co5—Ge1118.946 (14)
Co1—Mn4—Co2v115.231 (13)Co2ix—Co5—Ge1118.946 (14)
Co1ix—Mn4—Co2v142.520 (19)Co1xii—Co5—Ge159.854 (11)
Co1—Mn4—Co2iv142.521 (19)Co1xv—Co5—Ge159.854 (11)
Co1ix—Mn4—Co2iv115.231 (13)Co2—Co5—Mn7117.980 (16)
Co2v—Mn4—Co2iv51.226 (13)Co2ix—Co5—Mn7117.980 (15)
Co1—Mn4—Co4iii94.947 (10)Co1xii—Co5—Mn763.695 (13)
Co1ix—Mn4—Co4iii144.729 (13)Co1xv—Co5—Mn763.695 (13)
Co2v—Mn4—Co4iii50.256 (9)Ge1—Co5—Mn7112.341 (18)
Co2iv—Mn4—Co4iii95.949 (15)Co2—Co5—Mn7xiv66.610 (12)
Co1—Mn4—Co4iv144.729 (13)Co2ix—Co5—Mn7xiv66.610 (12)
Co1ix—Mn4—Co4iv94.948 (10)Co1xii—Co5—Mn7xiv114.678 (15)
Co2v—Mn4—Co4iv95.949 (15)Co1xv—Co5—Mn7xiv114.678 (15)
Co2iv—Mn4—Co4iv50.256 (9)Ge1—Co5—Mn7xiv173.201 (19)
Co4iii—Mn4—Co4iv118.49 (2)Mn7—Co5—Mn7xiv60.861 (17)
Co1—Mn4—Co3ix116.840 (16)Co2—Co5—Mn1xviii119.820 (16)
Co1ix—Mn4—Co3ix95.785 (13)Co2ix—Co5—Mn1xviii63.598 (12)
Co2v—Mn4—Co3ix119.162 (16)Co1xii—Co5—Mn1xviii117.724 (17)
Co2iv—Mn4—Co3ix97.493 (12)Co1xv—Co5—Mn1xviii60.298 (12)
Co4iii—Mn4—Co3ix96.038 (15)Ge1—Co5—Mn1xviii108.748 (12)
Co4iv—Mn4—Co3ix52.824 (10)Mn7—Co5—Mn1xviii68.876 (11)
Co1—Mn4—Co395.785 (13)Mn7xiv—Co5—Mn1xviii69.535 (11)
Co1ix—Mn4—Co3116.840 (16)Co2—Co5—Mn1xix63.598 (12)
Co2v—Mn4—Co397.494 (12)Co2ix—Co5—Mn1xix119.820 (16)
Co2iv—Mn4—Co3119.162 (16)Co1xii—Co5—Mn1xix60.298 (12)
Co4iii—Mn4—Co352.825 (10)Co1xv—Co5—Mn1xix117.724 (17)
Co4iv—Mn4—Co396.038 (15)Ge1—Co5—Mn1xix108.748 (12)
Co3ix—Mn4—Co348.757 (13)Mn7—Co5—Mn1xix68.876 (11)
Co1—Mn4—Mn6150.847 (11)Mn7xiv—Co5—Mn1xix69.535 (12)
Co1ix—Mn4—Mn6150.847 (11)Mn1xviii—Co5—Mn1xix131.36 (2)
Co2v—Mn4—Mn660.518 (12)Co2—Co5—Mn564.902 (13)
Co2iv—Mn4—Mn660.518 (12)Co2ix—Co5—Mn564.902 (13)
Co4iii—Mn4—Mn659.278 (10)Co1xii—Co5—Mn5113.431 (15)
Co4iv—Mn4—Mn659.278 (10)Co1xv—Co5—Mn5113.431 (15)
Co3ix—Mn4—Mn658.649 (13)Ge1—Co5—Mn564.128 (15)
Co3—Mn4—Mn658.649 (13)Mn7—Co5—Mn5176.469 (18)
Co1—Mn4—Ge2vi95.845 (14)Mn7xiv—Co5—Mn5122.671 (18)
Co1ix—Mn4—Ge2vi51.646 (9)Mn1xviii—Co5—Mn5111.838 (11)
Co2v—Mn4—Ge2vi145.618 (12)Mn1xix—Co5—Mn5111.838 (11)
Co2iv—Mn4—Ge2vi95.178 (10)Co2—Co5—Mn2xix65.075 (11)
Co4iii—Mn4—Ge2vi145.415 (19)Co2ix—Co5—Mn2xix116.430 (16)
Co4iv—Mn4—Ge2vi50.361 (10)Co1xii—Co5—Mn2xix62.083 (11)
Co3ix—Mn4—Ge2vi50.010 (9)Co1xv—Co5—Mn2xix114.558 (15)
Co3—Mn4—Ge2vi93.393 (14)Ge1—Co5—Mn2xix62.781 (10)
Mn6—Mn4—Ge2vi99.209 (12)Mn7—Co5—Mn2xix116.636 (11)
Co1—Mn4—Ge2vii51.646 (9)Mn7xiv—Co5—Mn2xix119.295 (10)
Co1ix—Mn4—Ge2vii95.845 (14)Mn1xviii—Co5—Mn2xix170.869 (17)
Co2v—Mn4—Ge2vii95.178 (10)Mn1xix—Co5—Mn2xix57.285 (12)
Co2iv—Mn4—Ge2vii145.618 (12)Mn5—Co5—Mn2xix62.188 (10)
Co4iii—Mn4—Ge2vii50.361 (10)Co2xii—Co6—Co2xv60.705 (15)
Co4iv—Mn4—Ge2vii145.415 (19)Co2xii—Co6—Ge2121.286 (15)
Co3ix—Mn4—Ge2vii93.393 (14)Co2xv—Co6—Ge2121.286 (15)
Co3—Mn4—Ge2vii50.010 (9)Co2xii—Co6—Ge1121.102 (15)
Mn6—Mn4—Ge2vii99.209 (12)Co2xv—Co6—Ge1121.102 (15)
Ge2vi—Mn4—Ge2vii116.460 (18)Ge2—Co6—Ge1106.231 (16)
Co1—Mn4—Mn7vi99.475 (16)Co2xii—Co6—Co1xv179.656 (18)
Co1ix—Mn4—Mn7vi56.999 (12)Co2xv—Co6—Co1xv119.185 (10)
Co2v—Mn4—Mn7vi101.374 (15)Ge2—Co6—Co1xv58.449 (11)
Co2iv—Mn4—Mn7vi58.365 (11)Ge1—Co6—Co1xv59.242 (11)
Co4iii—Mn4—Mn7vi151.623 (19)Co2xii—Co6—Co1xii119.185 (10)
Co4iv—Mn4—Mn7vi56.293 (11)Co2xv—Co6—Co1xii179.656 (18)
Co3ix—Mn4—Mn7vi98.993 (11)Ge2—Co6—Co1xii58.449 (11)
Co3—Mn4—Mn7vi147.720 (13)Ge1—Co6—Co1xii59.242 (11)
Mn6—Mn4—Mn7vi109.666 (13)Co1xv—Co6—Co1xii60.924 (15)
Ge2vi—Mn4—Mn7vi56.978 (10)Co2xii—Co6—Mn2viii67.463 (13)
Ge2vii—Mn4—Mn7vi150.976 (18)Co2xv—Co6—Mn2viii67.463 (13)
Co1—Mn5—Co1ix48.663 (13)Ge2—Co6—Mn2viii63.368 (13)
Co1—Mn5—Co6vi97.414 (15)Ge1—Co6—Mn2viii169.598 (18)
Co1ix—Mn5—Co6vi54.276 (10)Co1xv—Co6—Mn2viii112.193 (14)
Co1—Mn5—Co6vii54.276 (10)Co1xii—Co6—Mn2viii112.193 (14)
Co1ix—Mn5—Co6vii97.413 (15)Co2xii—Co6—Mn5xii65.815 (12)
Co6vi—Mn5—Co6vii119.80 (2)Co2xv—Co6—Mn5xii117.688 (16)
Co1—Mn5—Co3ix114.443 (16)Ge2—Co6—Mn5xii65.234 (10)
Co1ix—Mn5—Co3ix94.156 (13)Ge1—Co6—Mn5xii112.450 (11)
Co6vi—Mn5—Co3ix94.978 (10)Co1xv—Co6—Mn5xii114.098 (16)
Co6vii—Mn5—Co3ix143.463 (13)Co1xii—Co6—Mn5xii62.037 (11)
Co1—Mn5—Co394.156 (13)Mn2viii—Co6—Mn5xii64.259 (10)
Co1ix—Mn5—Co3114.444 (16)Co2xii—Co6—Mn5xiii117.688 (16)
Co6vi—Mn5—Co3143.463 (13)Co2xv—Co6—Mn5xiii65.815 (11)
Co6vii—Mn5—Co394.979 (10)Ge2—Co6—Mn5xiii65.234 (10)
Co3ix—Mn5—Co348.938 (13)Ge1—Co6—Mn5xiii112.450 (11)
Co1—Mn5—Ge2vii51.190 (9)Co1xv—Co6—Mn5xiii62.037 (12)
Co1ix—Mn5—Ge2vii94.622 (14)Co1xii—Co6—Mn5xiii114.098 (16)
Co6vi—Mn5—Ge2vii148.097 (18)Mn2viii—Co6—Mn5xiii64.259 (10)
Co6vii—Mn5—Ge2vii50.484 (10)Mn5xii—Co6—Mn5xiii119.80 (2)
Co3ix—Mn5—Ge2vii94.195 (14)Co2xii—Co6—Mn6viii65.454 (13)
Co3—Mn5—Ge2vii50.364 (9)Co2xv—Co6—Mn6viii65.454 (13)
Co1—Mn5—Ge2vi94.622 (14)Ge2—Co6—Mn6viii171.779 (18)
Co1ix—Mn5—Ge2vi51.190 (9)Ge1—Co6—Mn6viii65.548 (14)
Co6vi—Mn5—Ge2vi50.484 (10)Co1xv—Co6—Mn6viii114.831 (15)
Co6vii—Mn5—Ge2vi148.097 (18)Co1xii—Co6—Mn6viii114.831 (15)
Co3ix—Mn5—Ge2vi50.363 (9)Mn2viii—Co6—Mn6viii124.853 (17)
Co3—Mn5—Ge2vi94.195 (14)Mn5xii—Co6—Mn6viii117.003 (10)
Ge2vii—Mn5—Ge2vi118.267 (18)Mn5xiii—Co6—Mn6viii117.003 (10)
Co1—Mn5—Mn360.110 (13)Co2xii—Co6—Mn3xiii117.246 (16)
Co1ix—Mn5—Mn360.109 (13)Co2xv—Co6—Mn3xiii65.606 (12)
Co6vi—Mn5—Mn359.955 (10)Ge2—Co6—Mn3xiii112.902 (11)
Co6vii—Mn5—Mn359.955 (10)Ge1—Co6—Mn3xiii65.069 (10)
Co3ix—Mn5—Mn3150.980 (11)Co1xv—Co6—Mn3xiii62.850 (11)
Co3—Mn5—Mn3150.980 (11)Co1xii—Co6—Mn3xiii114.667 (16)
Ge2vii—Mn5—Mn3100.643 (12)Mn2viii—Co6—Mn3xiii117.750 (11)
Ge2vi—Mn5—Mn3100.643 (12)Mn5xii—Co6—Mn3xiii176.662 (18)
Co1—Mn5—Co298.232 (12)Mn5xiii—Co6—Mn3xiii60.488 (11)
Co1ix—Mn5—Co2120.095 (16)Mn6viii—Co6—Mn3xiii64.422 (11)
Co6vi—Mn5—Co295.980 (14)Co2xii—Co6—Mn3xii65.606 (12)
Co6vii—Mn5—Co249.602 (9)Co2xv—Co6—Mn3xii117.246 (16)
Co3ix—Mn5—Co2143.742 (17)Ge2—Co6—Mn3xii112.902 (11)
Co3—Mn5—Co2116.500 (12)Ge1—Co6—Mn3xii65.069 (11)
Ge2vii—Mn5—Co294.455 (9)Co1xv—Co6—Mn3xii114.667 (16)
Ge2vi—Mn5—Co2145.492 (12)Co1xii—Co6—Mn3xii62.850 (12)
Mn3—Mn5—Co260.009 (12)Mn2viii—Co6—Mn3xii117.750 (10)
Co1—Mn5—Co2ix120.095 (16)Mn5xii—Co6—Mn3xii60.488 (11)
Co1ix—Mn5—Co2ix98.231 (12)Mn5xiii—Co6—Mn3xii176.662 (18)
Co6vi—Mn5—Co2ix49.602 (9)Mn6viii—Co6—Mn3xii64.422 (11)
Co6vii—Mn5—Co2ix95.980 (15)Mn3xiii—Co6—Mn3xii119.01 (2)
Co3ix—Mn5—Co2ix116.500 (12)Co3—Ge1—Co3ix59.126 (14)
Co3—Mn5—Co2ix143.742 (17)Co3—Ge1—Co6118.866 (14)
Ge2vii—Mn5—Co2ix145.492 (12)Co3ix—Ge1—Co6118.866 (14)
Ge2vi—Mn5—Co2ix94.455 (10)Co3—Ge1—Co1xv177.514 (12)
Mn3—Mn5—Co2ix60.008 (12)Co3ix—Ge1—Co1xv118.710 (10)
Co2—Mn5—Co2ix51.540 (12)Co6—Ge1—Co1xv62.997 (11)
Co3ix—Mn6—Co349.800 (13)Co3—Ge1—Co1xii118.710 (10)
Co3ix—Mn6—Co3xi115.880 (15)Co3ix—Ge1—Co1xii177.514 (12)
Co3—Mn6—Co3xi94.856 (13)Co6—Ge1—Co1xii62.997 (11)
Co3ix—Mn6—Co3viii94.857 (13)Co1xv—Ge1—Co1xii63.422 (14)
Co3—Mn6—Co3viii115.879 (15)Co3—Ge1—Co5119.993 (14)
Co3xi—Mn6—Co3viii49.392 (13)Co3ix—Ge1—Co5119.992 (14)
Co3ix—Mn6—Co4iv53.674 (10)Co6—Ge1—Co5111.209 (16)
Co3—Mn6—Co4iv97.957 (15)Co1xv—Ge1—Co559.574 (11)
Co3xi—Mn6—Co4iv143.550 (13)Co1xii—Ge1—Co559.574 (11)
Co3viii—Mn6—Co4iv94.541 (10)Co3—Ge1—Mn2xviii114.265 (15)
Co3ix—Mn6—Co4iii97.957 (15)Co3ix—Ge1—Mn2xviii63.952 (11)
Co3—Mn6—Co4iii53.674 (10)Co6—Ge1—Mn2xviii115.542 (10)
Co3xi—Mn6—Co4iii94.541 (11)Co1xv—Ge1—Mn2xviii63.255 (11)
Co3viii—Mn6—Co4iii143.550 (13)Co1xii—Ge1—Mn2xviii117.105 (14)
Co4iv—Mn6—Co4iii120.43 (2)Co5—Ge1—Mn2xviii66.043 (10)
Co3ix—Mn6—Co6viii146.315 (13)Co3—Ge1—Mn2xix63.952 (11)
Co3—Mn6—Co6viii146.316 (13)Co3ix—Ge1—Mn2xix114.265 (14)
Co3xi—Mn6—Co6viii94.561 (15)Co6—Ge1—Mn2xix115.542 (10)
Co3viii—Mn6—Co6viii94.561 (15)Co1xv—Ge1—Mn2xix117.105 (14)
Co4iv—Mn6—Co6viii93.369 (12)Co1xii—Ge1—Mn2xix63.255 (11)
Co4iii—Mn6—Co6viii93.369 (12)Co5—Ge1—Mn2xix66.043 (10)
Co3ix—Mn6—Co2iv97.499 (12)Mn2xviii—Ge1—Mn2xix118.966 (19)
Co3—Mn6—Co2iv119.169 (16)Co3—Ge1—Mn3xii65.334 (12)
Co3xi—Mn6—Co2iv143.380 (17)Co3ix—Ge1—Mn3xii115.349 (14)
Co3viii—Mn6—Co2iv116.646 (12)Co6—Ge1—Mn3xii64.382 (10)
Co4iv—Mn6—Co2iv50.003 (9)Co1xv—Ge1—Mn3xii117.143 (14)
Co4iii—Mn6—Co2iv95.330 (15)Co1xii—Ge1—Mn3xii63.608 (12)
Co6viii—Mn6—Co2iv49.721 (10)Co5—Ge1—Mn3xii114.733 (10)
Co3ix—Mn6—Co2v119.168 (15)Mn2xviii—Ge1—Mn3xii179.217 (15)
Co3—Mn6—Co2v97.499 (12)Mn2xix—Ge1—Mn3xii61.555 (11)
Co3xi—Mn6—Co2v116.646 (12)Co3—Ge1—Mn3xiii115.349 (14)
Co3viii—Mn6—Co2v143.380 (17)Co3ix—Ge1—Mn3xiii65.335 (12)
Co4iv—Mn6—Co2v95.330 (15)Co6—Ge1—Mn3xiii64.382 (10)
Co4iii—Mn6—Co2v50.003 (9)Co1xv—Ge1—Mn3xiii63.608 (12)
Co6viii—Mn6—Co2v49.721 (10)Co1xii—Ge1—Mn3xiii117.143 (14)
Co2iv—Mn6—Co2v50.150 (12)Co5—Ge1—Mn3xiii114.733 (10)
Co3ix—Mn6—Mn460.587 (13)Mn2xviii—Ge1—Mn3xiii61.555 (12)
Co3—Mn6—Mn460.588 (13)Mn2xix—Ge1—Mn3xiii179.217 (15)
Co3xi—Mn6—Mn4151.666 (11)Mn3xii—Ge1—Mn3xiii117.917 (18)
Co3viii—Mn6—Mn4151.666 (11)Co3—Ge1—Mn564.774 (12)
Co4iv—Mn6—Mn460.246 (10)Co3ix—Ge1—Mn564.773 (12)
Co4iii—Mn6—Mn460.246 (10)Co6—Ge1—Mn5175.628 (16)
Co6viii—Mn6—Mn499.327 (18)Co1xv—Ge1—Mn5113.445 (13)
Co2iv—Mn6—Mn458.587 (13)Co1xii—Ge1—Mn5113.445 (13)
Co2v—Mn6—Mn458.587 (13)Co5—Ge1—Mn564.419 (13)
Co3ix—Mn6—Ge3xii94.968 (13)Mn2xviii—Ge1—Mn563.233 (10)
Co3—Mn6—Ge3xii50.739 (7)Mn2xix—Ge1—Mn563.233 (10)
Co3xi—Mn6—Ge3xii50.543 (7)Mn3xii—Ge1—Mn5116.906 (10)
Co3viii—Mn6—Ge3xii94.498 (13)Mn3xiii—Ge1—Mn5116.906 (10)
Co4iv—Mn6—Ge3xii147.984 (17)Co3—Ge1—Mn6viii64.053 (12)
Co4iii—Mn6—Ge3xii50.573 (9)Co3ix—Ge1—Mn6viii64.054 (12)
Co6viii—Mn6—Ge3xii116.411 (9)Co6—Ge1—Mn6viii63.912 (13)
Co2iv—Mn6—Ge3xii145.095 (11)Co1xv—Ge1—Mn6viii116.517 (14)
Co2v—Mn6—Ge3xii95.504 (8)Co1xii—Ge1—Mn6viii116.517 (14)
Mn4—Mn6—Ge3xii101.131 (11)Co5—Ge1—Mn6viii175.121 (16)
Co3ix—Mn6—Ge3xiii50.740 (7)Mn2xviii—Ge1—Mn6viii115.500 (10)
Co3—Mn6—Ge3xiii94.968 (13)Mn2xix—Ge1—Mn6viii115.500 (10)
Co3xi—Mn6—Ge3xiii94.498 (13)Mn3xii—Ge1—Mn6viii63.736 (10)
Co3viii—Mn6—Ge3xiii50.543 (7)Mn3xiii—Ge1—Mn6viii63.736 (10)
Co4iv—Mn6—Ge3xiii50.573 (9)Mn5—Ge1—Mn6viii120.460 (15)
Co4iii—Mn6—Ge3xiii147.984 (17)Co3xii—Ge2—Co3xv63.336 (15)
Co6viii—Mn6—Ge3xiii116.411 (9)Co3xii—Ge2—Co6119.232 (13)
Co2iv—Mn6—Ge3xiii95.504 (8)Co3xv—Ge2—Co6119.232 (13)
Co2v—Mn6—Ge3xiii145.095 (11)Co3xii—Ge2—Co4xiv62.888 (11)
Mn4—Mn6—Ge3xiii101.131 (11)Co3xv—Ge2—Co4xiv62.888 (11)
Ge3xii—Mn6—Ge3xiii117.382 (15)Co6—Ge2—Co4xiv177.361 (17)
Co5—Mn7—Co5xiv119.139 (17)Co3xii—Ge2—Co1xv177.093 (15)
Co5—Mn7—Mn7xiv60.067 (17)Co3xv—Ge2—Co1xv116.039 (11)
Co5xiv—Mn7—Mn7xiv59.072 (16)Co6—Ge2—Co1xv63.644 (11)
Co5—Mn7—Co1xii55.005 (11)Co4xiv—Ge2—Co1xv114.225 (13)
Co5xiv—Mn7—Co1xii149.093 (10)Co3xii—Ge2—Co1xii116.039 (11)
Mn7xiv—Mn7—Co1xii106.741 (19)Co3xv—Ge2—Co1xii177.093 (15)
Co5—Mn7—Co1xv55.005 (11)Co6—Ge2—Co1xii63.644 (11)
Co5xiv—Mn7—Co1xv149.093 (9)Co4xiv—Ge2—Co1xii114.225 (13)
Mn7xiv—Mn7—Co1xv106.741 (19)Co1xv—Ge2—Co1xii64.426 (15)
Co1xii—Mn7—Co1xv57.596 (14)Co3xii—Ge2—Mn2viii64.913 (12)
Co5—Mn7—Co4xiv148.216 (19)Co3xv—Ge2—Mn2viii64.913 (12)
Co5xiv—Mn7—Co4xiv92.644 (16)Co6—Ge2—Mn2viii64.893 (15)
Mn7xiv—Mn7—Co4xiv151.72 (3)Co4xiv—Ge2—Mn2viii117.746 (17)
Co1xii—Mn7—Co4xiv97.961 (14)Co1xv—Ge2—Mn2viii117.633 (13)
Co1xv—Mn7—Co4xiv97.961 (14)Co1xii—Ge2—Mn2viii117.633 (13)
Co5—Mn7—Ge295.625 (17)Co3xii—Ge2—Mn7115.504 (14)
Co5xiv—Mn7—Ge2145.236 (18)Co3xv—Ge2—Mn7115.504 (14)
Mn7xiv—Mn7—Ge2155.69 (3)Co6—Ge2—Mn7114.595 (16)
Co1xii—Mn7—Ge252.900 (11)Co4xiv—Ge2—Mn762.766 (14)
Co1xv—Mn7—Ge252.900 (11)Co1xv—Ge2—Mn761.958 (12)
Co4xiv—Mn7—Ge252.592 (12)Co1xii—Ge2—Mn761.958 (12)
Co5—Mn7—Co2xiv150.316 (10)Mn2viii—Ge2—Mn7179.488 (16)
Co5xiv—Mn7—Co2xiv52.198 (11)Co3xii—Ge2—Mn5xii64.568 (11)
Mn7xiv—Mn7—Co2xiv104.19 (2)Co3xv—Ge2—Mn5xii118.154 (14)
Co1xii—Mn7—Co2xiv148.941 (17)Co6—Ge2—Mn5xii64.280 (10)
Co1xv—Mn7—Co2xiv115.339 (11)Co4xiv—Ge2—Mn5xii116.494 (10)
Co4xiv—Mn7—Co2xiv51.393 (10)Co1xv—Ge2—Mn5xii117.515 (14)
Ge2—Mn7—Co2xiv97.541 (15)Co1xii—Ge2—Mn5xii63.053 (11)
Co5—Mn7—Co2xvi150.316 (10)Mn2viii—Ge2—Mn5xii64.411 (10)
Co5xiv—Mn7—Co2xvi52.198 (11)Mn7—Ge2—Mn5xii115.430 (10)
Mn7xiv—Mn7—Co2xvi104.19 (2)Co3xii—Ge2—Mn5xiii118.154 (14)
Co1xii—Mn7—Co2xvi115.339 (11)Co3xv—Ge2—Mn5xiii64.568 (11)
Co1xv—Mn7—Co2xvi148.941 (17)Co6—Ge2—Mn5xiii64.280 (10)
Co4xiv—Mn7—Co2xvi51.393 (10)Co4xiv—Ge2—Mn5xiii116.494 (10)
Ge2—Mn7—Co2xvi97.541 (15)Co1xv—Ge2—Mn5xiii63.053 (11)
Co2xiv—Mn7—Co2xvi52.838 (13)Co1xii—Ge2—Mn5xiii117.515 (14)
Co5—Mn7—Mn4xii107.142 (13)Mn2viii—Ge2—Mn5xiii64.411 (10)
Co5xiv—Mn7—Mn4xii105.230 (13)Mn7—Ge2—Mn5xiii115.430 (10)
Mn7xiv—Mn7—Mn4xii123.375 (10)Mn5xii—Ge2—Mn5xiii118.268 (18)
Co1xii—Mn7—Mn4xii57.231 (11)Co3xii—Ge2—Mn4xiii117.392 (14)
Co1xv—Mn7—Mn4xii105.248 (16)Co3xv—Ge2—Mn4xiii64.367 (12)
Co4xiv—Mn7—Mn4xii60.297 (11)Co6—Ge2—Mn4xiii114.946 (10)
Ge2—Mn7—Mn4xii60.546 (10)Co4xiv—Ge2—Mn4xiii64.162 (10)
Co2xiv—Mn7—Mn4xii102.502 (15)Co1xv—Ge2—Mn4xiii60.464 (11)
Co2xvi—Mn7—Mn4xii58.240 (11)Co1xii—Ge2—Mn4xiii114.421 (15)
Co5—Mn7—Mn4xiii107.142 (13)Mn2viii—Ge2—Mn4xiii117.669 (10)
Co5xiv—Mn7—Mn4xiii105.230 (13)Mn7—Ge2—Mn4xiii62.476 (10)
Mn7xiv—Mn7—Mn4xiii123.375 (10)Mn5xii—Ge2—Mn4xiii177.474 (16)
Co1xii—Mn7—Mn4xiii105.248 (16)Mn5xiii—Ge2—Mn4xiii62.582 (12)
Co1xv—Mn7—Mn4xiii57.231 (11)Co3xii—Ge2—Mn4xii64.367 (12)
Co4xiv—Mn7—Mn4xiii60.297 (11)Co3xv—Ge2—Mn4xii117.392 (14)
Ge2—Mn7—Mn4xiii60.546 (10)Co6—Ge2—Mn4xii114.946 (10)
Co2xiv—Mn7—Mn4xiii58.240 (11)Co4xiv—Ge2—Mn4xii64.162 (10)
Co2xvi—Mn7—Mn4xiii102.502 (15)Co1xv—Ge2—Mn4xii114.421 (15)
Mn4xii—Mn7—Mn4xiii113.18 (2)Co1xii—Ge2—Mn4xii60.464 (11)
Co5—Mn7—Mn1xviii56.307 (10)Mn2viii—Ge2—Mn4xii117.669 (10)
Co5xiv—Mn7—Mn1xviii96.591 (13)Mn7—Ge2—Mn4xii62.476 (10)
Mn7xiv—Mn7—Mn1xviii64.473 (12)Mn5xii—Ge2—Mn4xii62.582 (12)
Co1xii—Mn7—Mn1xviii101.025 (15)Mn5xiii—Ge2—Mn4xii177.474 (16)
Co1xv—Mn7—Mn1xviii53.712 (11)Mn4xiii—Ge2—Mn4xii116.459 (18)
Co4xiv—Mn7—Mn1xviii124.418 (10)Co3xviii—Ge3—Co3vii180.000 (13)
Ge2—Mn7—Mn1xviii103.377 (13)Co3xviii—Ge3—Co3x116.771 (13)
Co2xiv—Mn7—Mn1xviii94.683 (11)Co3vii—Ge3—Co3x63.229 (13)
Co2xvi—Mn7—Mn1xviii143.602 (15)Co3xviii—Ge3—Co3xx63.229 (13)
Mn4xii—Mn7—Mn1xviii157.625 (19)Co3vii—Ge3—Co3xx116.771 (13)
Mn4xiii—Mn7—Mn1xviii64.388 (12)Co3x—Ge3—Co3xx180.000 (13)
Co1ix—Co1—Ge2vii122.215 (7)Co3xviii—Ge3—Co4xxi117.046 (9)
Co1ix—Co1—Co5vii121.811 (8)Co3vii—Ge3—Co4xxi62.954 (9)
Ge2vii—Co1—Co5vii109.809 (13)Co3x—Ge3—Co4xxi62.954 (9)
Co1ix—Co1—Ge1vii121.709 (7)Co3xx—Ge3—Co4xxi117.046 (9)
Ge2vii—Co1—Ge1vii104.593 (12)Co3xviii—Ge3—Co462.955 (9)
Co5vii—Co1—Ge1vii60.572 (12)Co3vii—Ge3—Co4117.045 (9)
Co1ix—Co1—Co6vii120.463 (7)Co3x—Ge3—Co4117.045 (9)
Ge2vii—Co1—Co6vii57.907 (12)Co3xx—Ge3—Co462.955 (9)
Co5vii—Co1—Co6vii107.775 (13)Co4xxi—Ge3—Co4180.0
Ge1vii—Co1—Co6vii57.762 (12)Co3xviii—Ge3—Mn6vi63.673 (11)
Co1ix—Co1—Mn1i63.716 (7)Co3vii—Ge3—Mn6vi116.327 (11)
Ge2vii—Co1—Mn1i128.970 (15)Co3x—Ge3—Mn6vi63.113 (11)
Co5vii—Co1—Mn1i64.089 (11)Co3xx—Ge3—Mn6vi116.887 (11)
Ge1vii—Co1—Mn1i112.336 (15)Co4xxi—Ge3—Mn6vi63.762 (8)
Co6vii—Co1—Mn1i170.093 (15)Co4—Ge3—Mn6vi116.238 (8)
Co1ix—Co1—Co1xvii180.0Co3xviii—Ge3—Mn6xix116.327 (11)
Ge2vii—Co1—Co1xvii57.787 (7)Co3vii—Ge3—Mn6xix63.673 (11)
Co5vii—Co1—Co1xvii58.187 (8)Co3x—Ge3—Mn6xix116.887 (11)
Ge1vii—Co1—Co1xvii58.289 (7)Co3xx—Ge3—Mn6xix63.113 (11)
Co6vii—Co1—Co1xvii59.537 (7)Co4xxi—Ge3—Mn6xix116.238 (8)
Mn1i—Co1—Co1xvii116.283 (7)Co4—Ge3—Mn6xix63.762 (8)
Co1ix—Co1—Mn7vii118.800 (7)Mn6vi—Ge3—Mn6xix180.000 (14)
Ge2vii—Co1—Mn7vii65.142 (12)Co3xviii—Ge3—Mn6vii116.887 (11)
Co5vii—Co1—Mn7vii61.299 (13)Co3vii—Ge3—Mn6vii63.113 (11)
Ge1vii—Co1—Mn7vii110.976 (13)Co3x—Ge3—Mn6vii116.327 (11)
Co6vii—Co1—Mn7vii112.585 (13)Co3xx—Ge3—Mn6vii63.673 (11)
Mn1i—Co1—Mn7vii69.360 (12)Co4xxi—Ge3—Mn6vii63.762 (8)
Co1xvii—Co1—Mn7vii61.202 (7)Co4—Ge3—Mn6vii116.238 (8)
Co1ix—Co1—Mn464.861 (7)Mn6vi—Ge3—Mn6vii117.381 (15)
Ge2vii—Co1—Mn467.892 (11)Mn6xix—Ge3—Mn6vii62.619 (15)
Co5vii—Co1—Mn4120.371 (16)Co3xviii—Ge3—Mn6xviii63.113 (11)
Ge1vii—Co1—Mn4172.449 (13)Co3vii—Ge3—Mn6xviii116.887 (11)
Co6vii—Co1—Mn4116.423 (16)Co3x—Ge3—Mn6xviii63.673 (11)
Mn1i—Co1—Mn473.406 (15)Co3xx—Ge3—Mn6xviii116.327 (11)
Co1xvii—Co1—Mn4115.141 (7)Co4xxi—Ge3—Mn6xviii116.238 (8)
Mn7vii—Co1—Mn465.771 (12)Co4—Ge3—Mn6xviii63.762 (8)
Co1ix—Co1—Mn565.669 (7)Mn6vi—Ge3—Mn6xviii62.619 (15)
Ge2vii—Co1—Mn565.758 (11)Mn6xix—Ge3—Mn6xviii117.381 (15)
Co5vii—Co1—Mn5171.438 (13)Mn6vii—Ge3—Mn6xviii180.00 (2)
Ge1vii—Co1—Mn5112.613 (14)Co3xviii—Ge3—Mn3115.470 (10)
Co6vii—Co1—Mn563.686 (10)Co3vii—Ge3—Mn364.530 (10)
Mn1i—Co1—Mn5124.467 (12)Co3x—Ge3—Mn364.530 (10)
Co1xvii—Co1—Mn5114.332 (7)Co3xx—Ge3—Mn3115.470 (10)
Mn7vii—Co1—Mn5120.198 (14)Co4xxi—Ge3—Mn3117.398 (12)
Mn4—Co1—Mn565.622 (14)Co4—Ge3—Mn362.602 (12)
Co1ix—Co1—Mn2i65.814 (6)Mn6vi—Ge3—Mn3116.482 (8)
Ge2vii—Co1—Mn2i169.331 (13)Mn6xix—Ge3—Mn363.518 (8)
Co5vii—Co1—Mn2i66.959 (12)Mn6vii—Ge3—Mn3116.482 (8)
Ge1vii—Co1—Mn2i64.820 (10)Mn6xviii—Ge3—Mn363.518 (8)
Co6vii—Co1—Mn2i112.608 (15)Co3xviii—Ge3—Mn3xxi64.531 (10)
Mn1i—Co1—Mn2i59.755 (14)Co3vii—Ge3—Mn3xxi115.469 (10)
Co1xvii—Co1—Mn2i114.183 (6)Co3x—Ge3—Mn3xxi115.469 (10)
Mn7vii—Co1—Mn2i118.706 (14)Co3xx—Ge3—Mn3xxi64.531 (10)
Mn4—Co1—Mn2i122.711 (12)Co4xxi—Ge3—Mn3xxi62.602 (12)
Mn5—Co1—Mn2i115.954 (13)Co4—Ge3—Mn3xxi117.399 (12)
Co1ix—Co1—Mn366.028 (7)Mn6vi—Ge3—Mn3xxi63.517 (8)
Ge2vii—Co1—Mn3112.912 (13)Mn6xix—Ge3—Mn3xxi116.483 (8)
Co5vii—Co1—Mn3116.614 (14)Mn6vii—Ge3—Mn3xxi63.518 (8)
Ge1vii—Co1—Mn364.847 (10)Mn6xviii—Ge3—Mn3xxi116.482 (8)
Co6vii—Co1—Mn363.393 (11)Mn3—Ge3—Mn3xxi180.0
Mn1i—Co1—Mn3114.106 (13)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1, y+1, z; (ix) x, y, z; (x) x1/2, y+1/2, z1/2; (xi) x+1, y+1, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y+1/2, z1/2; (xiv) x+1, y, z; (xv) x+1/2, y+1/2, z1/2; (xvi) x+1, y, z; (xvii) x, y, z+1; (xviii) x+1/2, y1/2, z1/2; (xix) x+1/2, y1/2, z+1/2; (xx) x+1/2, y1/2, z+1/2; (xxi) x, y, z.
Manganese cobalt germanide (Mn14.9Co15.5Ge6.6) top
Crystal data top
Mn29.79Co30.97Ge13.25Dx = 7.662 Mg m3
Mr = 4422.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 22326 reflections
a = 12.6427 (10) Åθ = 2.1–42.4°
b = 15.6725 (12) ŵ = 32.54 mm1
c = 4.8374 (4) ÅT = 296 K
V = 958.50 (13) Å3Irregular fragment, metallic
Z = 10.03 × 0.02 × 0.01 mm
F(000) = 2005
Data collection top
Bruker APEXII CCD
diffractometer
3277 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2015)
θmax = 42.4°, θmin = 2.1°
h = 2323
22326 measured reflectionsk = 2929
3686 independent reflectionsl = 99
Refinement top
Refinement on F2106 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0166P)2 + 1.7225P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max = 0.002
S = 1.10Δρmax = 1.24 e Å3
3686 reflectionsΔρmin = 0.92 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystals were picked up from the Mn–Co–Ge alloys by fragmentation and analyzed. A Bruker D8 single-crystal X-ray diffractometer with Mo Kα radiation (λ = 0.71073 Å) upgraded with an Incoatec Microfocus Source (IµS, beam size ~ 100µm at the sample position) and an APEXII CCD area detector (6 × 6 cm) was used to collect single-crystal X-ray diffraction (SCXRD) intensities at room temperature. SCXRD data reduction and numerical absorption corrections were performed using the APEX3 software from Bruker (2014). A preliminary ordered model (Mn14Co18Ge5) of the crystal structure was first obtained with the program SHELXT2014 (Sheldrick, 2015a) and refined using the program SHELXL2014 (Sheldrick, 2015b) within the APEX3 software package. The final cycle of refinement was carried out anisotropically for all species converging with low residuals and a flat difference Fourier map. The atomic positions were standardized with the use of the program STRUCTURE TIDY implemented in PLATON (Spek, 2020). Further data, in the form of a CIF file, have been sent to the Cambridge Crystallographic Data Centre (CCDC) (Groom et al., 2016). CIF files are available as supplementary material for the publication. Molecular graphics made in DIAMOND (Brandenburg & Putz, 2005).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.02665 (3)0.57115 (2)0.0000000.00762 (5)
Mn20.08586 (3)0.73416 (2)0.0000000.00681 (5)
Mn30.10176 (3)0.16147 (2)0.0000000.00729 (5)
Mn40.22070 (3)0.44440 (2)0.0000000.00763 (5)
Mn50.28518 (3)0.26433 (2)0.0000000.00710 (5)
Mn60.40147 (3)0.54997 (2)0.0000000.00673 (5)
Mn70.59950 (3)0.02711 (2)0.0000000.00717 (5)
Co10.10076 (2)0.32411 (2)0.23460 (4)0.00519 (4)0.876 (12)
Mn110.10076 (2)0.32411 (2)0.23460 (4)0.00519 (4)0.124 (12)
Co20.28921 (2)0.10244 (2)0.25373 (4)0.00601 (5)0.594 (5)
Ge220.28921 (2)0.10244 (2)0.25373 (4)0.00601 (5)0.406 (5)
Co30.41242 (2)0.39078 (2)0.24024 (4)0.00525 (4)0.9
Mn330.41242 (2)0.39078 (2)0.24024 (4)0.00525 (4)0.1
Co40.19010 (2)0.00139 (2)0.0000000.00605 (5)
Co50.44439 (2)0.13693 (2)0.0000000.00660 (5)
Co60.69785 (2)0.29091 (2)0.0000000.00626 (5)
Ge10.50766 (2)0.28512 (2)0.0000000.00626 (4)
Ge20.75789 (2)0.14623 (2)0.0000000.00624 (4)
Ge30.0000000.0000000.0000000.00616 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00776 (12)0.00632 (11)0.00877 (12)0.00090 (10)0.0000.000
Mn20.00568 (11)0.00643 (11)0.00831 (12)0.00049 (9)0.0000.000
Mn30.00671 (12)0.00690 (12)0.00826 (11)0.00025 (9)0.0000.000
Mn40.00888 (13)0.00681 (11)0.00721 (12)0.00104 (10)0.0000.000
Mn50.00615 (12)0.00746 (11)0.00771 (12)0.00006 (9)0.0000.000
Mn60.00600 (11)0.00692 (12)0.00728 (11)0.00017 (9)0.0000.000
Mn70.00517 (11)0.00606 (12)0.01029 (12)0.00008 (9)0.0000.000
Co10.00467 (8)0.00666 (8)0.00424 (7)0.00006 (6)0.00005 (6)0.00053 (5)
Mn110.00467 (8)0.00666 (8)0.00424 (7)0.00006 (6)0.00005 (6)0.00053 (5)
Co20.00573 (8)0.00671 (8)0.00560 (7)0.00075 (5)0.00089 (5)0.00113 (5)
Ge220.00573 (8)0.00671 (8)0.00560 (7)0.00075 (5)0.00089 (5)0.00113 (5)
Co30.00542 (7)0.00591 (8)0.00442 (7)0.00017 (6)0.00076 (5)0.00078 (5)
Mn330.00542 (7)0.00591 (8)0.00442 (7)0.00017 (6)0.00076 (5)0.00078 (5)
Co40.00450 (10)0.00521 (10)0.00844 (11)0.00084 (8)0.0000.000
Co50.00448 (10)0.00723 (11)0.00807 (11)0.00127 (8)0.0000.000
Co60.00516 (10)0.00540 (10)0.00824 (11)0.00066 (8)0.0000.000
Ge10.00568 (8)0.00574 (8)0.00735 (8)0.00174 (6)0.0000.000
Ge20.00424 (8)0.00610 (8)0.00838 (8)0.00089 (6)0.0000.000
Ge30.00428 (11)0.00669 (12)0.00750 (11)0.00157 (9)0.0000.000
Geometric parameters (Å, º) top
Mn1—Mn1i2.3298 (7)Mn5—Co3ix2.8046 (4)
Mn1—Co1ii2.5646 (4)Mn5—Co32.8046 (4)
Mn1—Co1i2.5646 (4)Mn5—Ge2vii2.8167 (3)
Mn1—Co5iii2.6546 (3)Mn5—Ge2vi2.8167 (3)
Mn1—Co5iv2.6546 (3)Mn5—Co2ix2.8190 (4)
Mn1—Co2v2.6607 (4)Mn5—Co22.8190 (4)
Mn1—Co2iv2.6607 (4)Mn6—Co3ix2.7556 (4)
Mn1—Mn22.6621 (5)Mn6—Co32.7556 (4)
Mn1—Mn7iv2.9783 (3)Mn6—Co3x2.7837 (4)
Mn1—Mn7iii2.9783 (3)Mn6—Co3viii2.7837 (4)
Mn1—Mn7vi3.0117 (3)Mn6—Co4iv2.7875 (3)
Mn1—Mn7vii3.0117 (3)Mn6—Co4iii2.7875 (3)
Mn2—Ge2viii2.7233 (4)Mn6—Co6viii2.7922 (5)
Mn2—Co3v2.7577 (4)Mn6—Co2iv2.8120 (4)
Mn2—Co3iv2.7577 (4)Mn6—Co2v2.8120 (4)
Mn2—Co6viii2.7626 (5)Mn6—Ge1viii2.8284 (5)
Mn2—Co1i2.7728 (4)Mn7—Co52.6091 (5)
Mn2—Co1ii2.7728 (4)Mn7—Co5xi2.6301 (5)
Mn2—Ge1iv2.8082 (3)Mn7—Mn7xi2.6556 (7)
Mn2—Ge1iii2.8082 (3)Mn7—Co1xii2.6618 (4)
Mn2—Co2iv2.8593 (4)Mn7—Co1xiii2.6618 (4)
Mn2—Co2v2.8593 (4)Mn7—Co4xi2.6973 (5)
Mn2—Mn3i2.8813 (5)Mn7—Ge22.7377 (4)
Mn3—Co42.7461 (5)Mn7—Co2xi2.7584 (4)
Mn3—Co12.7903 (4)Mn7—Co2xiv2.7584 (4)
Mn3—Co1ix2.7903 (4)Co1—Co1ix2.2697 (4)
Mn3—Co6vii2.8077 (3)Co1—Ge2vii2.4105 (3)
Mn3—Co6vi2.8077 (3)Co1—Co5vii2.4350 (3)
Mn3—Ge1vi2.8224 (3)Co1—Ge1vii2.4422 (3)
Mn3—Ge1vii2.8224 (3)Co1—Co6vii2.5307 (3)
Mn3—Mn52.8243 (5)Co1—Co1xv2.5677 (4)
Mn3—Co2ix2.8247 (4)Co2—Co6vii2.3552 (3)
Mn3—Co22.8247 (4)Co2—Co42.3632 (3)
Mn4—Co1ix2.6723 (4)Co2—Co52.3765 (3)
Mn4—Co12.6723 (4)Co2—Co2xv2.3826 (4)
Mn4—Co2v2.7514 (4)Co2—Co2ix2.4548 (4)
Mn4—Co2iv2.7514 (4)Co3—Co3ix2.3242 (4)
Mn4—Co4iii2.8142 (3)Co3—Ge12.3543 (3)
Mn4—Co4iv2.8142 (3)Co3—Ge2vii2.3942 (3)
Mn4—Co3ix2.8162 (4)Co3—Ge3xii2.3948 (2)
Mn4—Co32.8163 (4)Co3—Co4iii2.5028 (3)
Mn4—Mn62.8215 (5)Co3—Co3xv2.5132 (4)
Mn4—Ge2vi2.8441 (3)Co4—Ge32.4035 (4)
Mn5—Co1ix2.7571 (4)Co4—Ge2xi2.4053 (4)
Mn5—Co12.7571 (4)Co5—Ge12.4564 (4)
Mn5—Co6vi2.7962 (3)Co6—Ge22.3911 (4)
Mn5—Co6vii2.7962 (3)Co6—Ge12.4063 (4)
Mn1i—Mn1—Co1ii115.53 (2)Co6vii—Co2—Mn7xi176.035 (10)
Mn1i—Mn1—Co1i115.53 (2)Co4—Co2—Mn7xi63.003 (11)
Co1ii—Mn1—Co1i52.528 (12)Co5—Co2—Mn7xi61.087 (11)
Mn1i—Mn1—Co5iii114.306 (10)Co2xv—Co2—Mn7xi116.422 (6)
Co1ii—Mn1—Co5iii55.589 (9)Co2ix—Co2—Mn7xi63.579 (5)
Co1i—Mn1—Co5iii103.961 (14)Mn1xviii—Co2—Mn7xi67.497 (10)
Mn1i—Mn1—Co5iv114.306 (10)Mn4xviii—Co2—Mn7xi63.463 (9)
Co1ii—Mn1—Co5iv103.961 (14)Co6vii—Co2—Mn6xviii64.713 (11)
Co1i—Mn1—Co5iv55.589 (10)Co4—Co2—Mn6xviii64.499 (9)
Co5iii—Mn1—Co5iv131.329 (19)Co5—Co2—Mn6xviii173.252 (10)
Mn1i—Mn1—Co2v115.43 (2)Co2xv—Co2—Mn6xviii64.934 (5)
Co1ii—Mn1—Co2v103.503 (11)Co2ix—Co2—Mn6xviii115.065 (5)
Co1i—Mn1—Co2v129.031 (15)Mn1xviii—Co2—Mn6xviii120.433 (11)
Co5iii—Mn1—Co2v53.118 (9)Mn4xviii—Co2—Mn6xviii60.936 (11)
Co5iv—Mn1—Co2v102.459 (14)Mn7xi—Co2—Mn6xviii114.237 (12)
Mn1i—Mn1—Co2iv115.43 (2)Co6vii—Co2—Mn564.697 (9)
Co1ii—Mn1—Co2iv129.031 (15)Co4—Co2—Mn5111.558 (11)
Co1i—Mn1—Co2iv103.503 (11)Co5—Co2—Mn565.503 (11)
Co5iii—Mn1—Co2iv102.459 (14)Co2xv—Co2—Mn5115.811 (5)
Co5iv—Mn1—Co2iv53.118 (9)Co2ix—Co2—Mn564.189 (5)
Co2v—Mn1—Co2iv53.197 (11)Mn1xviii—Co2—Mn5112.126 (12)
Mn1i—Mn1—Mn2179.52 (3)Mn4xviii—Co2—Mn5176.351 (13)
Co1ii—Mn1—Mn264.048 (12)Mn7xi—Co2—Mn5118.556 (10)
Co1i—Mn1—Mn264.048 (12)Mn6xviii—Co2—Mn5115.607 (12)
Co5iii—Mn1—Mn265.706 (10)Co6vii—Co2—Mn364.907 (9)
Co5iv—Mn1—Mn265.706 (10)Co4—Co2—Mn363.187 (12)
Co2v—Mn1—Mn264.983 (11)Co5—Co2—Mn3113.187 (11)
Co2iv—Mn1—Mn264.983 (11)Co2xv—Co2—Mn3115.754 (5)
Mn1i—Mn1—Mn7iv67.870 (11)Co2ix—Co2—Mn364.244 (6)
Co1ii—Mn1—Mn7iv99.865 (14)Mn1xviii—Co2—Mn3171.499 (13)
Co1i—Mn1—Mn7iv56.811 (10)Mn4xviii—Co2—Mn3116.408 (12)
Co5iii—Mn1—Mn7iv154.660 (16)Mn7xi—Co2—Mn3118.403 (10)
Co5iv—Mn1—Mn7iv54.822 (10)Mn6xviii—Co2—Mn363.933 (10)
Co2v—Mn1—Mn7iv151.030 (11)Mn5—Co2—Mn360.058 (10)
Co2iv—Mn1—Mn7iv98.491 (9)Co6vii—Co2—Mn2xviii63.112 (12)
Mn2—Mn1—Mn7iv111.899 (11)Co4—Co2—Mn2xviii173.281 (9)
Mn1i—Mn1—Mn7iii67.870 (11)Co5—Co2—Mn2xviii66.106 (9)
Co1ii—Mn1—Mn7iii56.811 (10)Co2xv—Co2—Mn2xviii65.378 (5)
Co1i—Mn1—Mn7iii99.865 (14)Co2ix—Co2—Mn2xviii114.623 (5)
Co5iii—Mn1—Mn7iii54.822 (10)Mn1xviii—Co2—Mn2xviii57.534 (11)
Co5iv—Mn1—Mn7iii154.660 (16)Mn4xviii—Co2—Mn2xviii119.653 (11)
Co2v—Mn1—Mn7iii98.491 (9)Mn7xi—Co2—Mn2xviii115.791 (13)
Co2iv—Mn1—Mn7iii151.030 (11)Mn6xviii—Co2—Mn2xviii120.545 (10)
Mn2—Mn1—Mn7iii111.899 (11)Mn5—Co2—Mn2xviii62.713 (9)
Mn7iv—Mn1—Mn7iii108.605 (16)Mn3—Co2—Mn2xviii114.082 (12)
Mn1i—Mn1—Mn7vi66.355 (11)Co3ix—Co3—Ge160.422 (6)
Co1ii—Mn1—Mn7vi151.018 (12)Co3ix—Co3—Ge2vii121.656 (6)
Co1i—Mn1—Mn7vi99.440 (9)Ge1—Co3—Ge2vii120.393 (12)
Co5iii—Mn1—Mn7vi152.641 (16)Co3ix—Co3—Ge3xii121.650 (6)
Co5iv—Mn1—Mn7vi54.876 (10)Ge1—Co3—Ge3xii121.689 (12)
Co2v—Mn1—Mn7vi100.733 (13)Ge2vii—Co3—Ge3xii105.968 (10)
Co2iv—Mn1—Mn7vi57.797 (9)Co3ix—Co3—Co4iii120.136 (6)
Mn2—Mn1—Mn7vi113.875 (11)Ge1—Co3—Co4iii179.133 (12)
Mn7iv—Mn1—Mn7vi52.632 (12)Ge2vii—Co3—Co4iii58.786 (10)
Mn7iii—Mn1—Mn7vi134.225 (13)Ge3xii—Co3—Co4iii58.730 (9)
Mn1i—Mn1—Mn7vii66.355 (12)Co3ix—Co3—Co3xv180.0
Co1ii—Mn1—Mn7vii99.440 (9)Ge1—Co3—Co3xv119.578 (6)
Co1i—Mn1—Mn7vii151.018 (12)Ge2vii—Co3—Co3xv58.342 (6)
Co5iii—Mn1—Mn7vii54.876 (10)Ge3xii—Co3—Co3xv58.351 (5)
Co5iv—Mn1—Mn7vii152.641 (16)Co4iii—Co3—Co3xv59.863 (6)
Co2v—Mn1—Mn7vii57.797 (9)Co3ix—Co3—Mn665.056 (6)
Co2iv—Mn1—Mn7vii100.733 (13)Ge1—Co3—Mn6117.022 (11)
Mn2—Mn1—Mn7vii113.875 (11)Ge2vii—Co3—Mn6113.562 (12)
Mn7iv—Mn1—Mn7vii134.225 (13)Ge3xii—Co3—Mn666.260 (8)
Mn7iii—Mn1—Mn7vii52.632 (12)Co4iii—Co3—Mn663.811 (9)
Mn7vi—Mn1—Mn7vii106.855 (16)Co3xv—Co3—Mn6114.944 (6)
Mn1—Mn2—Ge2viii149.830 (17)Co3ix—Co3—Mn2xviii117.108 (6)
Mn1—Mn2—Co3v148.918 (10)Ge1—Co3—Mn2xviii66.094 (9)
Ge2viii—Mn2—Co3v51.797 (9)Ge2vii—Co3—Mn2xviii63.359 (10)
Mn1—Mn2—Co3iv148.918 (10)Ge3xii—Co3—Mn2xviii113.171 (10)
Ge2viii—Mn2—Co3iv51.797 (9)Co4iii—Co3—Mn2xviii113.070 (11)
Co3v—Mn2—Co3iv54.215 (12)Co3xv—Co3—Mn2xviii62.893 (6)
Mn1—Mn2—Co6viii98.155 (15)Mn6—Co3—Mn2xviii176.772 (11)
Ge2viii—Mn2—Co6viii51.675 (11)Co3ix—Co3—Mn6viii65.326 (6)
Co3v—Mn2—Co6viii96.820 (12)Ge1—Co3—Mn6viii66.190 (11)
Co3iv—Mn2—Co6viii96.820 (12)Ge2vii—Co3—Mn6viii171.747 (11)
Mn1—Mn2—Co1i56.266 (10)Ge3xii—Co3—Mn6viii65.783 (8)
Ge2viii—Mn2—Co1i147.559 (11)Co4iii—Co3—Mn6viii114.599 (13)
Co3v—Mn2—Co1i119.104 (14)Co3xv—Co3—Mn6viii114.676 (5)
Co3iv—Mn2—Co1i96.513 (10)Mn6—Co3—Mn6viii64.175 (13)
Co6viii—Mn2—Co1i142.693 (13)Mn2xviii—Co3—Mn6viii118.717 (12)
Mn1—Mn2—Co1ii56.266 (10)Co3ix—Co3—Mn565.520 (6)
Ge2viii—Mn2—Co1ii147.559 (11)Ge1—Co3—Mn565.905 (11)
Co3v—Mn2—Co1ii96.513 (10)Ge2vii—Co3—Mn565.053 (9)
Co3iv—Mn2—Co1ii119.104 (14)Ge3xii—Co3—Mn5171.003 (10)
Co6viii—Mn2—Co1ii142.693 (12)Co4iii—Co3—Mn5113.606 (13)
Co1i—Mn2—Co1ii48.318 (11)Co3xv—Co3—Mn5114.479 (5)
Mn1—Mn2—Ge1iv98.890 (10)Mn6—Co3—Mn5115.861 (11)
Ge2viii—Mn2—Ge1iv96.295 (10)Mn2xviii—Co3—Mn564.174 (10)
Co3v—Mn2—Ge1iv98.201 (12)Mn6viii—Co3—Mn5123.198 (10)
Co3iv—Mn2—Ge1iv50.038 (7)Co3ix—Co3—Mn465.628 (6)
Co6viii—Mn2—Ge1iv117.206 (9)Ge1—Co3—Mn4116.509 (10)
Co1i—Mn2—Ge1iv51.896 (8)Ge2vii—Co3—Mn465.581 (9)
Co1ii—Mn2—Ge1iv95.045 (13)Ge3xii—Co3—Mn4113.654 (10)
Mn1—Mn2—Ge1iii98.890 (10)Co4iii—Co3—Mn463.566 (9)
Ge2viii—Mn2—Ge1iii96.295 (10)Co3xv—Co3—Mn4114.370 (6)
Co3v—Mn2—Ge1iii50.038 (8)Mn6—Co3—Mn460.834 (11)
Co3iv—Mn2—Ge1iii98.201 (12)Mn2xviii—Co3—Mn4117.412 (12)
Co6viii—Mn2—Ge1iii117.206 (8)Mn6viii—Co3—Mn4117.108 (11)
Co1i—Mn2—Ge1iii95.045 (12)Mn5—Co3—Mn463.012 (11)
Co1ii—Mn2—Ge1iii51.896 (8)Co3ix—Co3—Mn3xii116.414 (6)
Ge1iv—Mn2—Ge1iii118.928 (16)Ge1—Co3—Mn3xii65.309 (9)
Mn1—Mn2—Co2iv57.485 (11)Ge2vii—Co3—Mn3xii112.814 (11)
Ge2viii—Mn2—Co2iv95.523 (13)Ge3xii—Co3—Mn3xii65.291 (9)
Co3v—Mn2—Co2iv145.906 (15)Co4iii—Co3—Mn3xii114.601 (11)
Co3iv—Mn2—Co2iv116.643 (10)Co3xv—Co3—Mn3xii63.588 (6)
Co6viii—Mn2—Co2iv49.498 (9)Mn6—Co3—Mn3xii119.512 (12)
Co1i—Mn2—Co2iv93.539 (11)Mn2xviii—Co3—Mn3xii62.132 (11)
Co1ii—Mn2—Co2iv113.751 (14)Mn6viii—Co3—Mn3xii64.289 (10)
Ge1iv—Mn2—Co2iv94.534 (8)Mn5—Co3—Mn3xii117.743 (12)
Ge1iii—Mn2—Co2iv142.822 (11)Mn4—Co3—Mn3xii177.948 (9)
Mn1—Mn2—Co2v57.485 (11)Co2ix—Co4—Co262.582 (12)
Ge2viii—Mn2—Co2v95.523 (13)Co2ix—Co4—Ge3122.431 (12)
Co3v—Mn2—Co2v116.643 (10)Co2—Co4—Ge3122.432 (12)
Co3iv—Mn2—Co2v145.906 (15)Co2ix—Co4—Ge2xi119.978 (13)
Co6viii—Mn2—Co2v49.498 (9)Co2—Co4—Ge2xi119.977 (13)
Co1i—Mn2—Co2v113.751 (14)Ge3—Co4—Ge2xi105.345 (12)
Co1ii—Mn2—Co2v93.539 (11)Co2ix—Co4—Co3xvii118.553 (8)
Ge1iv—Mn2—Co2v142.822 (11)Co2—Co4—Co3xvii178.226 (13)
Ge1iii—Mn2—Co2v94.534 (8)Ge3—Co4—Co3xvii58.391 (8)
Co2iv—Mn2—Co2v49.245 (10)Ge2xi—Co4—Co3xvii58.353 (10)
Mn1—Mn2—Mn3i108.261 (16)Co2ix—Co4—Co3xix178.226 (13)
Ge2viii—Mn2—Mn3i101.909 (15)Co2—Co4—Co3xix118.553 (8)
Co3v—Mn2—Mn3i60.078 (10)Ge3—Co4—Co3xix58.391 (8)
Co3iv—Mn2—Mn3i60.078 (10)Ge2xi—Co4—Co3xix58.353 (10)
Co6viii—Mn2—Mn3i153.584 (17)Co3xvii—Co4—Co3xix60.276 (12)
Co1i—Mn2—Mn3i59.104 (11)Co2ix—Co4—Mn7xi65.676 (11)
Co1ii—Mn2—Mn3i59.104 (11)Co2—Co4—Mn7xi65.676 (11)
Ge1iv—Mn2—Mn3i59.466 (8)Ge3—Co4—Mn7xi169.945 (15)
Ge1iii—Mn2—Mn3i59.466 (8)Ge2xi—Co4—Mn7xi64.599 (12)
Co2iv—Mn2—Mn3i149.842 (10)Co3xvii—Co4—Mn7xi113.326 (13)
Co2v—Mn2—Mn3i149.842 (10)Co3xix—Co4—Mn7xi113.326 (13)
Co4—Mn3—Co1146.763 (12)Co2ix—Co4—Mn366.636 (11)
Co4—Mn3—Co1ix146.763 (12)Co2—Co4—Mn366.637 (11)
Co1—Mn3—Co1ix47.997 (11)Ge3—Co4—Mn366.522 (10)
Co4—Mn3—Co6vii93.834 (11)Ge2xi—Co4—Mn3171.867 (16)
Co1—Mn3—Co6vii53.753 (9)Co3xvii—Co4—Mn3114.970 (13)
Co1ix—Mn3—Co6vii96.284 (13)Co3xix—Co4—Mn3114.970 (13)
Co4—Mn3—Co6vi93.834 (11)Mn7xi—Co4—Mn3123.533 (15)
Co1—Mn3—Co6vi96.284 (13)Co2ix—Co4—Mn6xvii65.577 (10)
Co1ix—Mn3—Co6vi53.753 (9)Co2—Co4—Mn6xvii119.202 (14)
Co6vii—Mn3—Co6vi118.959 (17)Ge3—Co4—Mn6xvii65.617 (9)
Co4—Mn3—Ge1vi116.257 (9)Ge2xi—Co4—Mn6xvii112.101 (10)
Co1—Mn3—Ge1vi94.339 (12)Co3xvii—Co4—Mn6xvii62.511 (10)
Co1ix—Mn3—Ge1vi51.582 (8)Co3xix—Co4—Mn6xvii114.188 (14)
Co6vii—Mn3—Ge1vi147.326 (16)Mn7xi—Co4—Mn6xvii117.054 (9)
Co6vi—Mn3—Ge1vi50.603 (9)Mn3—Co4—Mn6xvii65.266 (9)
Co4—Mn3—Ge1vii116.257 (8)Co2ix—Co4—Mn6xviii119.201 (14)
Co1—Mn3—Ge1vii51.581 (8)Co2—Co4—Mn6xviii65.577 (10)
Co1ix—Mn3—Ge1vii94.339 (12)Ge3—Co4—Mn6xviii65.617 (9)
Co6vii—Mn3—Ge1vii50.603 (9)Ge2xi—Co4—Mn6xviii112.101 (10)
Co6vi—Mn3—Ge1vii147.326 (16)Co3xvii—Co4—Mn6xviii114.188 (13)
Ge1vi—Mn3—Ge1vii117.952 (15)Co3xix—Co4—Mn6xviii62.511 (10)
Co4—Mn3—Mn5100.809 (15)Mn7xi—Co4—Mn6xviii117.054 (9)
Co1—Mn3—Mn558.817 (10)Mn3—Co4—Mn6xviii65.266 (9)
Co1ix—Mn3—Mn558.817 (10)Mn6xvii—Co4—Mn6xviii120.387 (17)
Co6vii—Mn3—Mn559.534 (9)Co2ix—Co4—Mn4xviii116.529 (14)
Co6vi—Mn3—Mn559.534 (8)Co2—Co4—Mn4xviii63.503 (10)
Ge1vi—Mn3—Mn5100.181 (10)Ge3—Co4—Mn4xviii113.442 (9)
Ge1vii—Mn3—Mn5100.181 (11)Ge2xi—Co4—Mn4xviii65.489 (9)
Co4—Mn3—Co2ix50.176 (9)Co3xvii—Co4—Mn4xviii114.783 (13)
Co1—Mn3—Co2ix118.666 (13)Co3xix—Co4—Mn4xviii63.649 (10)
Co1ix—Mn3—Co2ix97.253 (10)Mn7xi—Co4—Mn4xviii63.400 (9)
Co6vii—Mn3—Co2ix95.644 (13)Mn3—Co4—Mn4xviii116.933 (9)
Co6vi—Mn3—Co2ix49.435 (8)Mn6xvii—Co4—Mn4xviii177.285 (15)
Ge1vi—Mn3—Co2ix94.497 (8)Mn6xviii—Co4—Mn4xviii60.485 (10)
Ge1vii—Mn3—Co2ix145.401 (11)Co2—Co5—Co2ix62.191 (13)
Mn5—Mn3—Co2ix59.872 (11)Co2—Co5—Co1xii117.062 (9)
Co4—Mn3—Co250.176 (9)Co2ix—Co5—Co1xii178.331 (15)
Co1—Mn3—Co297.253 (10)Co2—Co5—Co1xiii178.332 (15)
Co1ix—Mn3—Co2118.665 (13)Co2ix—Co5—Co1xiii117.063 (9)
Co6vii—Mn3—Co249.435 (8)Co1xii—Co5—Co1xiii63.639 (13)
Co6vi—Mn3—Co295.644 (13)Co2—Co5—Ge1118.937 (12)
Ge1vi—Mn3—Co2145.400 (11)Co2ix—Co5—Ge1118.937 (12)
Ge1vii—Mn3—Co294.497 (8)Co1xii—Co5—Ge159.904 (9)
Mn5—Mn3—Co259.872 (11)Co1xiii—Co5—Ge159.904 (9)
Co2ix—Mn3—Co251.510 (11)Co2—Co5—Mn7118.064 (13)
Co1ix—Mn4—Co150.260 (12)Co2ix—Co5—Mn7118.064 (13)
Co1ix—Mn4—Co2v142.479 (16)Co1xii—Co5—Mn763.591 (11)
Co1—Mn4—Co2v115.174 (11)Co1xiii—Co5—Mn763.591 (11)
Co1ix—Mn4—Co2iv115.174 (11)Ge1—Co5—Mn7112.269 (15)
Co1—Mn4—Co2iv142.478 (16)Co2—Co5—Mn7xi66.640 (10)
Co2v—Mn4—Co2iv51.314 (11)Co2ix—Co5—Mn7xi66.640 (10)
Co1ix—Mn4—Co4iii144.716 (12)Co1xii—Co5—Mn7xi114.609 (13)
Co1—Mn4—Co4iii94.953 (8)Co1xiii—Co5—Mn7xi114.609 (13)
Co2v—Mn4—Co4iii50.234 (8)Ge1—Co5—Mn7xi173.179 (16)
Co2iv—Mn4—Co4iii96.005 (13)Mn7—Co5—Mn7xi60.909 (15)
Co1ix—Mn4—Co4iv94.952 (9)Co2—Co5—Mn1xvii119.743 (14)
Co1—Mn4—Co4iv144.716 (11)Co2ix—Co5—Mn1xvii63.575 (10)
Co2v—Mn4—Co4iv96.005 (13)Co1xii—Co5—Mn1xvii117.763 (14)
Co2iv—Mn4—Co4iv50.234 (8)Co1xiii—Co5—Mn1xvii60.331 (10)
Co4iii—Mn4—Co4iv118.511 (17)Ge1—Co5—Mn1xvii108.800 (10)
Co1ix—Mn4—Co3ix95.892 (11)Mn7—Co5—Mn1xvii68.911 (10)
Co1—Mn4—Co3ix116.945 (14)Mn7xi—Co5—Mn1xvii69.483 (10)
Co2v—Mn4—Co3ix119.107 (14)Co2—Co5—Mn1xviii63.574 (10)
Co2iv—Mn4—Co3ix97.418 (10)Co2ix—Co5—Mn1xviii119.743 (14)
Co4iii—Mn4—Co3ix95.997 (13)Co1xii—Co5—Mn1xviii60.331 (10)
Co4iv—Mn4—Co3ix52.784 (9)Co1xiii—Co5—Mn1xviii117.763 (14)
Co1ix—Mn4—Co3116.945 (14)Ge1—Co5—Mn1xviii108.800 (10)
Co1—Mn4—Co395.893 (11)Mn7—Co5—Mn1xviii68.911 (10)
Co2v—Mn4—Co397.418 (10)Mn7xi—Co5—Mn1xviii69.483 (10)
Co2iv—Mn4—Co3119.107 (14)Mn1xvii—Co5—Mn1xviii131.327 (19)
Co4iii—Mn4—Co352.784 (9)Co2—Co5—Mn564.791 (11)
Co4iv—Mn4—Co395.997 (13)Co2ix—Co5—Mn564.791 (11)
Co3ix—Mn4—Co348.742 (11)Co1xii—Co5—Mn5113.564 (13)
Co1ix—Mn4—Mn6150.846 (10)Co1xiii—Co5—Mn5113.564 (13)
Co1—Mn4—Mn6150.847 (10)Ge1—Co5—Mn564.232 (12)
Co2v—Mn4—Mn660.592 (11)Mn7—Co5—Mn5176.502 (16)
Co2iv—Mn4—Mn660.592 (10)Mn7xi—Co5—Mn5122.589 (16)
Co4iii—Mn4—Mn659.288 (8)Mn1xvii—Co5—Mn5111.802 (10)
Co4iv—Mn4—Mn659.288 (8)Mn1xviii—Co5—Mn5111.802 (10)
Co3ix—Mn4—Mn658.521 (11)Co2—Co5—Mn2xviii65.012 (10)
Co3—Mn4—Mn658.521 (11)Co2ix—Co5—Mn2xviii116.346 (14)
Co1ix—Mn4—Ge2vi51.708 (8)Co1xii—Co5—Mn2xviii62.162 (10)
Co1—Mn4—Ge2vi95.891 (12)Co1xiii—Co5—Mn2xviii114.666 (13)
Co2v—Mn4—Ge2vi145.625 (11)Ge1—Co5—Mn2xviii62.846 (9)
Co2iv—Mn4—Ge2vi95.101 (8)Mn7—Co5—Mn2xviii116.628 (9)
Co4iii—Mn4—Ge2vi145.407 (16)Mn7xi—Co5—Mn2xviii119.241 (9)
Co4iv—Mn4—Ge2vi50.310 (8)Mn1xvii—Co5—Mn2xviii170.950 (14)
Co3ix—Mn4—Ge2vi50.043 (8)Mn1xviii—Co5—Mn2xviii57.275 (10)
Co3—Mn4—Ge2vi93.420 (12)Mn5—Co5—Mn2xviii62.209 (9)
Mn6—Mn4—Ge2vi99.146 (10)Co2xii—Co6—Co2xiii60.771 (13)
Co1ix—Mn5—Co148.611 (11)Co2xii—Co6—Ge2121.153 (13)
Co1ix—Mn5—Co6vi54.217 (9)Co2xiii—Co6—Ge2121.153 (13)
Co1—Mn5—Co6vi97.317 (13)Co2xii—Co6—Ge1121.118 (13)
Co1ix—Mn5—Co6vii97.317 (13)Co2xiii—Co6—Ge1121.118 (13)
Co1—Mn5—Co6vii54.217 (9)Ge2—Co6—Ge1106.347 (14)
Co6vi—Mn5—Co6vii119.766 (17)Co2xii—Co6—Co1xiii179.649 (16)
Co1ix—Mn5—Co3ix94.265 (11)Co2xiii—Co6—Co1xiii119.129 (8)
Co1—Mn5—Co3ix114.550 (14)Ge2—Co6—Co1xiii58.568 (10)
Co6vi—Mn5—Co3ix94.982 (9)Ge1—Co6—Co1xiii59.232 (9)
Co6vii—Mn5—Co3ix143.484 (12)Co2xii—Co6—Co1xii119.129 (8)
Co1ix—Mn5—Co3114.550 (14)Co2xiii—Co6—Co1xii179.649 (16)
Co1—Mn5—Co394.266 (11)Ge2—Co6—Co1xii58.568 (10)
Co6vi—Mn5—Co3143.484 (11)Ge1—Co6—Co1xii59.232 (9)
Co6vii—Mn5—Co394.982 (9)Co1xiii—Co6—Co1xii60.970 (12)
Co3ix—Mn5—Co348.958 (11)Co2xii—Co6—Mn2viii67.390 (11)
Co1ix—Mn5—Ge2vii94.633 (12)Co2xiii—Co6—Mn2viii67.390 (11)
Co1—Mn5—Ge2vii51.236 (8)Ge2—Co6—Mn2viii63.315 (11)
Co6vi—Mn5—Ge2vii148.049 (16)Ge1—Co6—Mn2viii169.662 (16)
Co6vii—Mn5—Ge2vii50.427 (9)Co1xiii—Co6—Mn2viii112.260 (13)
Co3ix—Mn5—Ge2vii94.269 (12)Co1xii—Co6—Mn2viii112.260 (13)
Co3—Mn5—Ge2vii50.417 (8)Co2xii—Co6—Mn6viii65.585 (11)
Co1ix—Mn5—Ge2vi51.235 (8)Co2xiii—Co6—Mn6viii65.585 (11)
Co1—Mn5—Ge2vi94.633 (12)Ge2—Co6—Mn6viii171.782 (16)
Co6vi—Mn5—Ge2vi50.427 (9)Ge1—Co6—Mn6viii65.435 (12)
Co6vii—Mn5—Ge2vi148.049 (16)Co1xiii—Co6—Mn6viii114.712 (13)
Co3ix—Mn5—Ge2vi50.417 (8)Co1xii—Co6—Mn6viii114.712 (13)
Co3—Mn5—Ge2vi94.269 (12)Mn2viii—Co6—Mn6viii124.903 (15)
Ge2vii—Mn5—Ge2vi118.343 (15)Co2xii—Co6—Mn5xii65.707 (10)
Co1ix—Mn5—Co2ix98.158 (10)Co2xiii—Co6—Mn5xii117.623 (14)
Co1—Mn5—Co2ix120.021 (14)Ge2—Co6—Mn5xii65.231 (9)
Co6vi—Mn5—Co2ix49.596 (8)Ge1—Co6—Mn5xii112.512 (10)
Co6vii—Mn5—Co2ix96.031 (13)Co1xiii—Co6—Mn5xii114.191 (14)
Co3ix—Mn5—Co2ix116.438 (10)Co1xii—Co6—Mn5xii62.104 (10)
Co3—Mn5—Co2ix143.712 (15)Mn2viii—Co6—Mn5xii64.224 (9)
Ge2vii—Mn5—Co2ix145.485 (11)Mn6viii—Co6—Mn5xii117.008 (9)
Ge2vi—Mn5—Co2ix94.371 (8)Co2xii—Co6—Mn5xvi117.623 (14)
Co1ix—Mn5—Co2120.022 (14)Co2xiii—Co6—Mn5xvi65.707 (10)
Co1—Mn5—Co298.158 (10)Ge2—Co6—Mn5xvi65.231 (9)
Co6vi—Mn5—Co296.031 (13)Ge1—Co6—Mn5xvi112.512 (10)
Co6vii—Mn5—Co249.596 (8)Co1xiii—Co6—Mn5xvi62.104 (10)
Co3ix—Mn5—Co2143.712 (15)Co1xii—Co6—Mn5xvi114.191 (14)
Co3—Mn5—Co2116.437 (10)Mn2viii—Co6—Mn5xvi64.224 (9)
Ge2vii—Mn5—Co294.372 (8)Mn6viii—Co6—Mn5xvi117.008 (9)
Ge2vi—Mn5—Co2145.485 (11)Mn5xii—Co6—Mn5xvi119.767 (17)
Co2ix—Mn5—Co251.621 (11)Co2xii—Co6—Mn3xvi117.340 (14)
Co3ix—Mn6—Co349.887 (11)Co2xiii—Co6—Mn3xvi65.657 (10)
Co3ix—Mn6—Co3x115.825 (13)Ge2—Co6—Mn3xvi112.920 (10)
Co3—Mn6—Co3x94.790 (11)Ge1—Co6—Mn3xvi65.014 (9)
Co3ix—Mn6—Co3viii94.791 (11)Co1xiii—Co6—Mn3xvi62.771 (10)
Co3—Mn6—Co3viii115.825 (13)Co1xii—Co6—Mn3xvi114.613 (14)
Co3x—Mn6—Co3viii49.349 (11)Mn2viii—Co6—Mn3xvi117.784 (9)
Co3ix—Mn6—Co4iv53.679 (8)Mn6viii—Co6—Mn3xvi64.403 (9)
Co3—Mn6—Co4iv98.022 (13)Mn5xii—Co6—Mn3xvi176.675 (16)
Co3x—Mn6—Co4iv143.553 (11)Mn5xvi—Co6—Mn3xvi60.529 (10)
Co3viii—Mn6—Co4iv94.585 (9)Co2xii—Co6—Mn3xii65.657 (10)
Co3ix—Mn6—Co4iii98.022 (13)Co2xiii—Co6—Mn3xii117.340 (14)
Co3—Mn6—Co4iii53.679 (8)Ge2—Co6—Mn3xii112.920 (10)
Co3x—Mn6—Co4iii94.585 (9)Ge1—Co6—Mn3xii65.014 (9)
Co3viii—Mn6—Co4iii143.553 (11)Co1xiii—Co6—Mn3xii114.613 (14)
Co4iv—Mn6—Co4iii120.386 (17)Co1xii—Co6—Mn3xii62.771 (10)
Co3ix—Mn6—Co6viii146.220 (11)Mn2viii—Co6—Mn3xii117.784 (9)
Co3—Mn6—Co6viii146.221 (11)Mn6viii—Co6—Mn3xii64.403 (9)
Co3x—Mn6—Co6viii94.715 (13)Mn5xii—Co6—Mn3xii60.529 (10)
Co3viii—Mn6—Co6viii94.715 (13)Mn5xvi—Co6—Mn3xii176.675 (16)
Co4iv—Mn6—Co6viii93.274 (11)Mn3xvi—Co6—Mn3xii118.958 (17)
Co4iii—Mn6—Co6viii93.274 (11)Co3—Ge1—Co3ix59.156 (12)
Co3ix—Mn6—Co2iv97.420 (10)Co3—Ge1—Co6118.982 (12)
Co3—Mn6—Co2iv119.110 (13)Co3ix—Ge1—Co6118.983 (12)
Co3x—Mn6—Co2iv143.508 (15)Co3—Ge1—Co1xiii177.501 (10)
Co3viii—Mn6—Co2iv116.758 (10)Co3ix—Ge1—Co1xiii118.691 (8)
Co4iv—Mn6—Co2iv49.922 (8)Co6—Ge1—Co1xiii62.922 (9)
Co4iii—Mn6—Co2iv95.244 (13)Co3—Ge1—Co1xii118.690 (8)
Co6viii—Mn6—Co2iv49.700 (9)Co3ix—Ge1—Co1xii177.500 (10)
Co3ix—Mn6—Co2v119.109 (13)Co6—Ge1—Co1xii62.922 (10)
Co3—Mn6—Co2v97.421 (10)Co1xiii—Ge1—Co1xii63.430 (12)
Co3x—Mn6—Co2v116.758 (10)Co3—Ge1—Co5119.905 (12)
Co3viii—Mn6—Co2v143.508 (15)Co3ix—Ge1—Co5119.904 (12)
Co4iv—Mn6—Co2v95.243 (13)Co6—Ge1—Co5111.164 (13)
Co4iii—Mn6—Co2v49.922 (8)Co1xiii—Ge1—Co559.614 (10)
Co6viii—Mn6—Co2v49.700 (9)Co1xii—Ge1—Co559.614 (10)
Co2iv—Mn6—Co2v50.131 (11)Co3—Ge1—Mn2xvii114.197 (12)
Co3ix—Mn6—Mn460.644 (11)Co3ix—Ge1—Mn2xvii63.868 (10)
Co3—Mn6—Mn460.645 (11)Co6—Ge1—Mn2xvii115.560 (9)
Co3x—Mn6—Mn4151.676 (9)Co1xiii—Ge1—Mn2xvii63.308 (10)
Co3viii—Mn6—Mn4151.676 (9)Co1xii—Ge1—Mn2xvii117.153 (12)
Co4iv—Mn6—Mn460.226 (8)Co5—Ge1—Mn2xvii66.048 (8)
Co4iii—Mn6—Mn460.226 (9)Co3—Ge1—Mn2xviii63.868 (10)
Co6viii—Mn6—Mn499.175 (15)Co3ix—Ge1—Mn2xviii114.196 (13)
Co2iv—Mn6—Mn458.470 (11)Co6—Ge1—Mn2xviii115.560 (9)
Co2v—Mn6—Mn458.470 (11)Co1xiii—Ge1—Mn2xviii117.153 (12)
Co3ix—Mn6—Ge1viii143.795 (12)Co1xii—Ge1—Mn2xviii63.308 (10)
Co3—Mn6—Ge1viii143.795 (12)Co5—Ge1—Mn2xviii66.048 (9)
Co3x—Mn6—Ge1viii49.600 (8)Mn2xvii—Ge1—Mn2xviii118.929 (16)
Co3viii—Mn6—Ge1viii49.600 (8)Co3—Ge1—Mn3xii65.413 (10)
Co4iv—Mn6—Ge1viii114.724 (9)Co3ix—Ge1—Mn3xii115.463 (12)
Co4iii—Mn6—Ge1viii114.724 (9)Co6—Ge1—Mn3xii64.381 (8)
Co6viii—Mn6—Ge1viii50.690 (11)Co1xiii—Ge1—Mn3xii117.081 (12)
Co2iv—Mn6—Ge1viii94.643 (12)Co1xii—Ge1—Mn3xii63.529 (10)
Co2v—Mn6—Ge1viii94.643 (12)Co5—Ge1—Mn3xii114.688 (9)
Mn4—Mn6—Ge1viii149.866 (16)Mn2xvii—Ge1—Mn3xii179.256 (13)
Co5—Mn7—Co5xi119.090 (15)Mn2xviii—Ge1—Mn3xii61.556 (10)
Co5—Mn7—Mn7xi59.937 (15)Co3—Ge1—Mn3xvi115.463 (13)
Co5xi—Mn7—Mn7xi59.153 (14)Co3ix—Ge1—Mn3xvi65.414 (10)
Co5—Mn7—Co1xii55.019 (10)Co6—Ge1—Mn3xvi64.381 (9)
Co5xi—Mn7—Co1xii149.038 (8)Co1xiii—Ge1—Mn3xvi63.529 (10)
Mn7xi—Mn7—Co1xii106.620 (16)Co1xii—Ge1—Mn3xvi117.081 (12)
Co5—Mn7—Co1xiii55.018 (10)Co5—Ge1—Mn3xvi114.688 (9)
Co5xi—Mn7—Co1xiii149.038 (8)Mn2xvii—Ge1—Mn3xvi61.556 (10)
Mn7xi—Mn7—Co1xiii106.620 (16)Mn2xviii—Ge1—Mn3xvi179.256 (13)
Co1xii—Mn7—Co1xiii57.676 (12)Mn3xii—Ge1—Mn3xvi117.953 (16)
Co5—Mn7—Co4xi148.264 (17)Co3—Ge1—Mn6viii64.211 (10)
Co5xi—Mn7—Co4xi92.646 (14)Co3ix—Ge1—Mn6viii64.212 (10)
Mn7xi—Mn7—Co4xi151.80 (2)Co6—Ge1—Mn6viii63.874 (12)
Co1xii—Mn7—Co4xi98.002 (12)Co1xiii—Ge1—Mn6viii116.408 (12)
Co1xiii—Mn7—Co4xi98.002 (12)Co1xii—Ge1—Mn6viii116.408 (12)
Co5—Mn7—Ge295.736 (15)Co5—Ge1—Mn6viii175.038 (14)
Co5xi—Mn7—Ge2145.174 (16)Mn2xvii—Ge1—Mn6viii115.523 (8)
Mn7xi—Mn7—Ge2155.67 (2)Mn2xviii—Ge1—Mn6viii115.523 (9)
Co1xii—Mn7—Ge253.008 (9)Mn3xii—Ge1—Mn6viii63.754 (8)
Co1xiii—Mn7—Ge253.008 (9)Mn3xvi—Ge1—Mn6viii63.754 (8)
Co4xi—Mn7—Ge252.528 (11)Co6—Ge2—Co3xii119.262 (11)
Co5—Mn7—Co2xi150.333 (9)Co6—Ge2—Co3xiii119.262 (11)
Co5xi—Mn7—Co2xi52.274 (10)Co3xii—Ge2—Co3xiii63.317 (13)
Mn7xi—Mn7—Co2xi104.340 (17)Co6—Ge2—Co4xi177.355 (15)
Co1xii—Mn7—Co2xi148.909 (15)Co3xii—Ge2—Co4xi62.862 (9)
Co1xiii—Mn7—Co2xi115.285 (9)Co3xiii—Ge2—Co4xi62.862 (9)
Co4xi—Mn7—Co2xi51.319 (9)Co6—Ge2—Co1xiii63.612 (9)
Ge2—Mn7—Co2xi97.402 (13)Co3xii—Ge2—Co1xiii177.092 (13)
Co5—Mn7—Co2xiv150.333 (9)Co3xiii—Ge2—Co1xiii116.081 (9)
Co5xi—Mn7—Co2xiv52.274 (10)Co4xi—Ge2—Co1xiii114.252 (11)
Mn7xi—Mn7—Co2xiv104.340 (17)Co6—Ge2—Co1xii63.612 (9)
Co1xii—Mn7—Co2xiv115.285 (10)Co3xii—Ge2—Co1xii116.081 (9)
Co1xiii—Mn7—Co2xiv148.909 (15)Co3xiii—Ge2—Co1xii177.092 (13)
Co4xi—Mn7—Co2xiv51.319 (9)Co4xi—Ge2—Co1xii114.252 (11)
Ge2—Mn7—Co2xiv97.402 (13)Co1xiii—Ge2—Co1xii64.363 (13)
Co2xi—Mn7—Co2xiv52.842 (11)Co6—Ge2—Mn2viii65.009 (13)
Co5—Mn7—Mn4xii107.205 (11)Co3xii—Ge2—Mn2viii64.843 (11)
Co5xi—Mn7—Mn4xii105.200 (11)Co3xiii—Ge2—Mn2viii64.843 (10)
Mn7xi—Mn7—Mn4xii123.386 (9)Co4xi—Ge2—Mn2viii117.636 (14)
Co1xii—Mn7—Mn4xii57.268 (9)Co1xiii—Ge2—Mn2viii117.714 (12)
Co1xiii—Mn7—Mn4xii105.334 (13)Co1xii—Ge2—Mn2viii117.714 (12)
Co4xi—Mn7—Mn4xii60.267 (9)Co6—Ge2—Mn7114.484 (14)
Ge2—Mn7—Mn4xii60.538 (9)Co3xii—Ge2—Mn7115.570 (12)
Co2xi—Mn7—Mn4xii102.420 (13)Co3xiii—Ge2—Mn7115.570 (12)
Co2xiv—Mn7—Mn4xii58.150 (10)Co4xi—Ge2—Mn762.872 (12)
Co5—Mn7—Mn4xvi107.205 (11)Co1xiii—Ge2—Mn761.881 (10)
Co5xi—Mn7—Mn4xvi105.200 (11)Co1xii—Ge2—Mn761.881 (10)
Mn7xi—Mn7—Mn4xvi123.386 (9)Mn2viii—Ge2—Mn7179.493 (13)
Co1xii—Mn7—Mn4xvi105.334 (13)Co6—Ge2—Mn5xii64.342 (8)
Co1xiii—Mn7—Mn4xvi57.268 (9)Co3xii—Ge2—Mn5xii64.529 (9)
Co4xi—Mn7—Mn4xvi60.267 (9)Co3xiii—Ge2—Mn5xii118.121 (13)
Ge2—Mn7—Mn4xvi60.538 (9)Co4xi—Ge2—Mn5xii116.436 (8)
Co2xi—Mn7—Mn4xvi58.150 (9)Co1xiii—Ge2—Mn5xii117.538 (12)
Co2xiv—Mn7—Mn4xvi102.420 (13)Co1xii—Ge2—Mn5xii63.105 (10)
Mn4xii—Mn7—Mn4xvi113.160 (17)Mn2viii—Ge2—Mn5xii64.445 (8)
Co5—Mn7—Mn1xvii56.266 (8)Mn7—Ge2—Mn5xii115.399 (9)
Co5xi—Mn7—Mn1xvii96.518 (11)Co6—Ge2—Mn5xvi64.342 (8)
Mn7xi—Mn7—Mn1xvii64.331 (10)Co3xii—Ge2—Mn5xvi118.121 (12)
Co1xii—Mn7—Mn1xvii101.065 (13)Co3xiii—Ge2—Mn5xvi64.529 (9)
Co1xiii—Mn7—Mn1xvii53.737 (9)Co4xi—Ge2—Mn5xvi116.436 (9)
Co4xi—Mn7—Mn1xvii124.506 (8)Co1xiii—Ge2—Mn5xvi63.105 (10)
Ge2—Mn7—Mn1xvii103.513 (11)Co1xii—Ge2—Mn5xvi117.538 (12)
Co2xi—Mn7—Mn1xvii94.725 (9)Mn2viii—Ge2—Mn5xvi64.445 (9)
Co2xiv—Mn7—Mn1xvii143.619 (13)Mn7—Ge2—Mn5xvi115.399 (9)
Mn4xii—Mn7—Mn1xvii157.713 (16)Mn5xii—Ge2—Mn5xvi118.342 (15)
Mn4xvi—Mn7—Mn1xvii64.509 (10)Co6—Ge2—Mn4xvi114.905 (9)
Co1ix—Co1—Ge2vii122.180 (6)Co3xii—Ge2—Mn4xvi117.402 (12)
Co1ix—Co1—Co5vii121.821 (7)Co3xiii—Ge2—Mn4xvi64.375 (10)
Ge2vii—Co1—Co5vii109.870 (11)Co4xi—Ge2—Mn4xvi64.201 (9)
Co1ix—Co1—Ge1vii121.716 (6)Co1xiii—Ge2—Mn4xvi60.469 (9)
Ge2vii—Co1—Ge1vii104.617 (10)Co1xii—Ge2—Mn4xvi114.394 (13)
Co5vii—Co1—Ge1vii60.484 (11)Mn2viii—Ge2—Mn4xvi117.625 (9)
Co1ix—Co1—Co6vii120.484 (6)Mn7—Ge2—Mn4xvi62.518 (9)
Ge2vii—Co1—Co6vii57.820 (10)Mn5xii—Ge2—Mn4xvi177.498 (13)
Co5vii—Co1—Co6vii107.755 (11)Mn5xvi—Ge2—Mn4xvi62.516 (10)
Ge1vii—Co1—Co6vii57.844 (11)Co6—Ge2—Mn4xii114.905 (9)
Co1ix—Co1—Mn1i63.736 (6)Co3xii—Ge2—Mn4xii64.375 (10)
Ge2vii—Co1—Mn1i129.042 (13)Co3xiii—Ge2—Mn4xii117.402 (12)
Co5vii—Co1—Mn1i64.080 (9)Co4xi—Ge2—Mn4xii64.201 (8)
Ge1vii—Co1—Mn1i112.246 (13)Co1xiii—Ge2—Mn4xii114.394 (13)
Co6vii—Co1—Mn1i170.084 (13)Co1xii—Ge2—Mn4xii60.469 (9)
Co1ix—Co1—Co1xv180.0Mn2viii—Ge2—Mn4xii117.625 (9)
Ge2vii—Co1—Co1xv57.818 (6)Mn7—Ge2—Mn4xii62.518 (8)
Co5vii—Co1—Co1xv58.180 (7)Mn5xii—Ge2—Mn4xii62.516 (10)
Ge1vii—Co1—Co1xv58.285 (6)Mn5xvi—Ge2—Mn4xii177.498 (13)
Co6vii—Co1—Co1xv59.515 (6)Mn4xvi—Ge2—Mn4xii116.520 (15)
Mn1i—Co1—Co1xv116.265 (6)Co3xvii—Ge3—Co3vii180.000 (11)
Co1ix—Co1—Mn7vii118.837 (6)Co3xvii—Ge3—Co3xx116.701 (11)
Ge2vii—Co1—Mn7vii65.110 (10)Co3vii—Ge3—Co3xx63.299 (11)
Co5vii—Co1—Mn7vii61.391 (11)Co3xvii—Ge3—Co3xix63.299 (11)
Ge1vii—Co1—Mn7vii110.953 (11)Co3vii—Ge3—Co3xix116.701 (11)
Co6vii—Co1—Mn7vii112.468 (11)Co3xx—Ge3—Co3xix180.000 (11)
Mn1i—Co1—Mn7vii69.452 (10)Co3xvii—Ge3—Co462.879 (8)
Co1xv—Co1—Mn7vii61.162 (6)Co3vii—Ge3—Co4117.121 (8)
Co1ix—Co1—Mn464.869 (6)Co3xx—Ge3—Co4117.121 (8)
Ge2vii—Co1—Mn467.822 (9)Co3xix—Ge3—Co462.879 (8)
Co5vii—Co1—Mn4120.509 (13)Co3xvii—Ge3—Co4xxi117.120 (8)
Ge1vii—Co1—Mn4172.407 (11)Co3vii—Ge3—Co4xxi62.880 (8)
Co6vii—Co1—Mn4116.276 (13)Co3xx—Ge3—Co4xxi62.880 (8)
Mn1i—Co1—Mn473.558 (13)Co3xix—Ge3—Co4xxi117.120 (8)
Co1xv—Co1—Mn4115.129 (6)Co4—Ge3—Co4xxi180.0
Mn7vii—Co1—Mn465.811 (10)Co3xvii—Ge3—Mn6vi63.733 (9)
Co1ix—Co1—Mn565.694 (6)Co3vii—Ge3—Mn6vi116.267 (9)
Ge2vii—Co1—Mn565.659 (9)Co3xx—Ge3—Mn6vi62.997 (9)
Co5vii—Co1—Mn5171.409 (11)Co3xix—Ge3—Mn6vi117.003 (9)
Ge1vii—Co1—Mn5112.691 (12)Co4—Ge3—Mn6vi116.262 (7)
Co6vii—Co1—Mn563.679 (9)Co4xxi—Ge3—Mn6vi63.737 (7)
Mn1i—Co1—Mn5124.506 (11)Co3xvii—Ge3—Mn6xviii116.267 (9)
Co1xv—Co1—Mn5114.305 (6)Co3vii—Ge3—Mn6xviii63.733 (9)
Mn7vii—Co1—Mn5120.081 (12)Co3xx—Ge3—Mn6xviii117.003 (9)
Mn4—Co1—Mn565.484 (12)Co3xix—Ge3—Mn6xviii62.997 (9)
Co1ix—Co1—Mn2i65.842 (6)Co4—Ge3—Mn6xviii63.738 (7)
Ge2vii—Co1—Mn2i169.331 (11)Co4xxi—Ge3—Mn6xviii116.263 (7)
Co5vii—Co1—Mn2i66.896 (11)Mn6vi—Ge3—Mn6xviii180.000 (18)
Ge1vii—Co1—Mn2i64.798 (9)Co3xvii—Ge3—Mn6xvii62.997 (9)
Co6vii—Co1—Mn2i112.689 (13)Co3vii—Ge3—Mn6xvii117.003 (9)
Mn1i—Co1—Mn2i59.687 (12)Co3xx—Ge3—Mn6xvii63.733 (9)
Co1xv—Co1—Mn2i114.160 (5)Co3xix—Ge3—Mn6xvii116.267 (9)
Mn7vii—Co1—Mn2i118.741 (12)Co4—Ge3—Mn6xvii63.738 (7)
Mn4—Co1—Mn2i122.778 (11)Co4xxi—Ge3—Mn6xvii116.263 (7)
Mn5—Co1—Mn2i116.052 (11)Mn6vi—Ge3—Mn6xvii62.626 (13)
Co1ix—Co1—Mn366.002 (5)Mn6xviii—Ge3—Mn6xvii117.374 (13)
Ge2vii—Co1—Mn3112.894 (11)Co3xvii—Ge3—Mn6vii117.003 (9)
Co5vii—Co1—Mn3116.565 (13)Co3vii—Ge3—Mn6vii62.997 (9)
Ge1vii—Co1—Mn364.889 (9)Co3xx—Ge3—Mn6vii116.267 (9)
Co6vii—Co1—Mn363.475 (9)Co3xix—Ge3—Mn6vii63.733 (9)
Mn1i—Co1—Mn3114.054 (11)Co4—Ge3—Mn6vii116.262 (7)
Co1xv—Co1—Mn3113.999 (5)Co4xxi—Ge3—Mn6vii63.737 (7)
Mn7vii—Co1—Mn3175.160 (9)Mn6vi—Ge3—Mn6vii117.374 (13)
Mn4—Co1—Mn3117.981 (11)Mn6xviii—Ge3—Mn6vii62.626 (13)
Mn5—Co1—Mn361.207 (11)Mn6xvii—Ge3—Mn6vii180.000 (18)
Mn2i—Co1—Mn362.387 (11)Co3xvii—Ge3—Mn3115.316 (9)
Co6vii—Co2—Co4118.573 (14)Co3vii—Ge3—Mn364.684 (9)
Co6vii—Co2—Co5120.310 (13)Co3xx—Ge3—Mn364.684 (9)
Co4—Co2—Co5108.778 (11)Co3xix—Ge3—Mn3115.316 (9)
Co6vii—Co2—Co2xv59.614 (6)Co4—Ge3—Mn362.532 (10)
Co4—Co2—Co2xv121.291 (6)Co4xxi—Ge3—Mn3117.469 (10)
Co5—Co2—Co2xv121.096 (6)Mn6vi—Ge3—Mn3116.485 (7)
Co6vii—Co2—Co2ix120.385 (7)Mn6xviii—Ge3—Mn363.515 (7)
Co4—Co2—Co2ix58.708 (6)Mn6xvii—Ge3—Mn363.515 (7)
Co5—Co2—Co2ix58.905 (6)Mn6vii—Ge3—Mn3116.485 (7)
Co2xv—Co2—Co2ix179.999 (17)Co3xvii—Ge3—Mn3xxi64.683 (9)
Co6vii—Co2—Mn1xviii109.476 (11)Co3vii—Ge3—Mn3xxi115.317 (9)
Co4—Co2—Mn1xviii124.958 (13)Co3xx—Ge3—Mn3xxi115.316 (9)
Co5—Co2—Mn1xviii63.309 (10)Co3xix—Ge3—Mn3xxi64.684 (9)
Co2xv—Co2—Mn1xviii63.402 (6)Co4—Ge3—Mn3xxi117.467 (10)
Co2ix—Co2—Mn1xviii116.599 (6)Co4xxi—Ge3—Mn3xxi62.532 (10)
Co6vii—Co2—Mn4xviii113.425 (11)Mn6vi—Ge3—Mn3xxi63.516 (7)
Co4—Co2—Mn4xviii66.261 (9)Mn6xviii—Ge3—Mn3xxi116.484 (7)
Co5—Co2—Mn4xviii117.773 (12)Mn6xvii—Ge3—Mn3xxi116.484 (7)
Co2xv—Co2—Mn4xviii64.343 (5)Mn6vii—Ge3—Mn3xxi63.516 (7)
Co2ix—Co2—Mn4xviii115.657 (6)Mn3—Ge3—Mn3xxi180.0
Mn1xviii—Co2—Mn4xviii71.342 (11)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1, y+1, z; (ix) x, y, z; (x) x+1, y+1, z; (xi) x+1, y, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y+1/2, z1/2; (xiv) x+1, y, z; (xv) x, y, z+1; (xvi) x+1/2, y+1/2, z1/2; (xvii) x+1/2, y1/2, z1/2; (xviii) x+1/2, y1/2, z+1/2; (xix) x+1/2, y1/2, z+1/2; (xx) x1/2, y+1/2, z1/2; (xxi) x, y, z.
Atomic coordinates and equivalent isotropic displacement parameters for the Mn14.9Co15.5Ge6.6 and Mn14Co16.2Ge6.8 compound top
Ueq is defined as one-third of the trace of the orthogonalized Uij tensor. For Mn14.89 (5)Co15.48 (4)Ge6.62 (2), M1 and M3 are 0.876 (12)Co + 0.124 (12)Mn and 0.90Co + 0.10Mn, respectively, and M2 = 0.594 (5)Co + 0.406 (5)Ge. For Mn14Co16.16 (3)Ge6.84 (3), M2 = 0.540 (7)Co + 0.460 (7)Ge.
AtomSitexyzUeq2)AtomSitexyzUeq2)
Mn14.89 (5)Co15.48 (4)Ge6.62 (2)Mn14Co16.16 (3)Ge6.84 (3)
Mn14g0.02666 (3)0.57115 (2)00.00762 (5)Mn14g0.02630 (3)0.57128 (2)00.00617 (6)
Mn24g0.08586 (3)0.73416 (2)00.00681 (5)Mn24g0.08564 (3)0.73405 (2)00.00553 (5)
Mn34g0.10176 (3)0.16147 (2)00.00729 (5)Mn34g0.10193 (3)0.16150 (3)00.00594 (6)
Mn44g0.22070 (3)0.44440 (2)00.00763 (5)Mn44g0.22075 (3)0.44428 (2)00.00622 (6)
Mn54g0.28518 (3)0.26433 (2)00.00710 (5)Mn54g0.28525 (3)0.26426 (2)00.00566 (6)
Mn64g0.40147 (3)0.54997 (2)00.00673 (5)Mn64g0.40142 (3)0.54991 (3)00.00543 (6)
Mn74g0.59950 (3)0.02711 (2)00.00717 (5)Mn74g0.59952 (3)0.02717 (2)00.00573 (6)
M18h0.10076 (2)0.32411 (2)0.23460 (4)0.00519 (4)Co18h0.10096 (2)0.32409 (2)0.23463 (5)0.00405 (4)
M28h0.28921 (2)0.10244 (2)0.25373 (4)0.00601 (5)M28h0.28931 (2)0.10233 (2)0.25377 (4)0.00490 (5)
M38h0.41242 (2)0.39078 (2)0.24024 (4)0.00525 (4)Co38h0.41258 (2)0.39066 (2)0.24029 (4)0.00417 (4)
Co44g0.19010 (2)0.00139 (2)00.00605 (5)Co44g0.19001 (3)0.00128 (2)00.00458 (5)
Co54g0.44439 (3)0.13693 (2)00.00660 (5)Co54g0.44448 (3)0.13683 (2)00.00501 (5)
Co64g0.69785 (3)0.29091 (2)00.00626 (5)Co64g0.69799 (3)0.29094 (2)00.00482 (5)
Ge14g0.50766 (2)0.28512 (2)00.00626 (4)Ge14g0.50782 (2)0.28499 (2)00.00489 (4)
Ge24g0.75789 (2)0.14623 (2)00.00624 (4)Ge24g0.75801 (2)0.14630 (2)00.00472 (5)
Ge32a0000.00616 (5)Ge32a0000.00474 (6)
Crystallographic data and structure refinement parameters for the studied Mn–Co–Ge single crystals top
CompoundMn14.89 (5)Co15.48 (4)Ge6.62 (2)Mn14Co16.16 (3)Ge6.84 (3)
Summary formulaMn29.79 (10)Co30.97 (8)Ge13.25 (4)Mn28Co32.32 (6)Ge13.68 (6)
Empirical formulaMn14Co12Ge5(Mn0.04Co0.15Ge0.07)23Mn14Co14Ge5(Co0.096Ge0.08)23
Sample code107
Calculated compositionMn40.2Co41.9Ge17.9Mn37.8Co43.9Ge18.3
EDS compositionMn40.4 (5)Co42.0 (7)Ge17.6 (3)Mn37.7 (9)Co45.1 (9)Ge17.2 (5)
CSD20575122057511
Structure type relationMn14(Mn0.11Co0.64Si0.25)23Mn14(Mn0.11Co0.64Si0.25)23
Formula weight, Mr (g mol-1)4422.904436.02
Space group (No.)Pnnm (58)Pnnm (58)
Pearson symbol, ZoP74, 1oP74, 1
Unit-cell dimensions:
a (Å)12.6427 (10)12.6208 (12)
b (Å)15.6725 (12)15.6878 (15)
c (Å)4.8374 (4)4.8338 (5)
V3)958.50 (13)957.06 (16)
Calculated density, ρ (g cm-3)7.667.70
Absorption coefficient, µ (mm-1)32.5432.93
Theta range for data collection (°)2.070–42.4102.071–46.877
F(000)20052010
Range in h k l-23 h 23-24 h 25
-29 k 29-25 k 32
-9 l 9-9 l 9
Total No. of reflections2232638733
Rint/Rσ0.0299/0.02170.0411/0.0255
No. of independent reflections36864648
No. of reflections with I > 2σ(I)32774313
Data/parameters3686/1064648/106
Goodness-of-fit on F21.1031.219
Final R indices [I > 2σ(I)]R1 = 0.0219R1 = 0.0323
wR2 = 0.0502wR2 = 0.0779
R indices (all data)R1 = 0.0265R1 = 0.0359
wR2 = 0.0515wR2 = 0.0795
Largest diff. peak and hole (e Å-3)1.241 and -0.9192.257 and -1.675
 

Acknowledgements

This work was supported by the Swedish Foundation for Strategic Research, which is gratefully acknowledged. This work was funded through SweGRIDS, by the Swedish Energy Agency and Höganäs AB.

Funding information

Funding for this research was provided by: Swedish Foundation for Strategic Research (project `SSF Magnetic materials for green energy technology'; EM16-0039).

References

First citationBardos, D. I., Malik, R. K., Spiegel, F. X. & Beck, P. A. (1966). Trans. Metall. Soc. AIME, 236, 40–48.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuschow, K. H. J., van Engen, P. G. & Jongebreur, R. (1983). J. Magn. Magn. Mater. 38, 1–22.  CrossRef ICSD CAS Web of Science Google Scholar
First citationDshemuchadse, J. & Steurer, W. (2015). Inorg. Chem. 54, 1120–1128.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrank, F. C. & Kasper, J. S. (1958). Acta Cryst. 11, 184–190.  CrossRef IUCr Journals Web of Science Google Scholar
First citationGupta, K. P. (2006). J. Phase Equilibria Diffus. 27, 517–522.  CrossRef CAS Google Scholar
First citationHammerschmidt, T., Bialon, A. F., Pettifor, D. G. & Drautz, R. (2013). New J. Phys. 15, 115016.  Web of Science CrossRef Google Scholar
First citationJo, Y. H., Choi, W. M., Sohn, S. S., Kim, H. S., Lee, B. J. & Lee, S. (2018). Mater. Sci. Eng. A, 724, 403–410.  Web of Science CrossRef CAS Google Scholar
First citationKuz'ma, Y. B. & Gladyshevskii, E. I. (1964). Russ. J. Inorg. Chem. 9, 373–377.  Google Scholar
First citationManor, P. C., Shoemaker, C. D. & Shoemaker, D. P. (1972). Acta Cryst. B28, 1211–1218.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationOvchinnikov, A., Smetana, V. & Mudring, A. V. (2020). J. Phys. Condens. Matter, 32, 243002.  Web of Science CrossRef PubMed Google Scholar
First citationPauling, L. (1932). J. Am. Chem. Soc. 54, 3570–3582.  CrossRef CAS Google Scholar
First citationPearson, W. B. (1972). In The Crystal Chemistry and Physics of Metals and Alloys. New York: Wiley-Interscience.  Google Scholar
First citationRodriguez-Carvajal, J. (2001). IUCr Newslett. 26, 12–19.  Google Scholar
First citationSeiser, B., Drautz, R. & Pettifor, D. G. (2011). Acta Mater. 59, 749–763.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Z., Yang, L., Wang, X., Du, Y., Ye, L., Hou, G., Yang, Y., Liu, J., Liu, J., Li, J., Zhou, Y. & Sun, X. (2020). Acta Metall. Sin. (Engl. Lett.), 33, 731–740.  Web of Science CrossRef CAS Google Scholar
First citationVillars, P. & Cenzual, K. (2016). ASM Handbook, Vol. 3, Alloy Phase Diagrams. Materials Park, Ohio: ASM International.  Google Scholar
First citationVishina, A., Hedlund, D., Shtender, V., Delczeg-Czirjak, E. K., Larsen, S. R., Vekilova, O. Y., Huang, S., Vitos, L., Svedlindh, P., Sahlberg, M., Eriksson, O. & Herper, H. C. (2021). Acta Mater. Submitted. (Preprint available at arXiv: 2101.10773.)  Google Scholar
First citationWang, M. & Mar, A. (2001). J. Solid State Chem. 160, 450–459.  Web of Science CrossRef ICSD CAS Google Scholar
First citationYarmolyuk, Y. P., Krypyakevych, P. I. & Gladyshevskii, E. I. (1970). Sov. Phys. Crystallogr. 15, 226–230.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds