research papers
Anthelmintic Combretum glutinosum Perr. ex DC (Combretaceae) leaves
and other compounds fromaLaboratoire de Pharmacognosie et des Huiles Essentielles, Facultés des Sciences et Techniques, Université d'Abomey Calavi, 01 BP: 918 ISBA Cotonou, Benin, bDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, cLaboratoire d'Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d'Abomey Calavi, 01 BP: 526 Cotonou, Benin, and dDepartment of Chemistry, Higher Teacher Training College, University of Yaounde I, PO Box 47, 4124 Yaounde, Cameroon
*Correspondence e-mail: eleoyayi@yahoo.fr, anthony.linden@chem.uzh.ch
A chemical study of the hydro-ethanol extract of the leaves of Combretum glutinosum resulted in the isolation of nine compounds, including 5-demethylsinensetin (1), umuhengerin (2), (20S,24R)-ocotillone (3), lupeol (4), β-sitosterol (5), oleanolic acid (6), betulinic acid (7), corymbosin (8) and β-sitosterol glucoside (9). Four compounds have been isolated for the first time from the genus Combretum [viz. (1), (2), (3) and (8)]. The crystal structures of flavonoid (2), C20H20O8, Z′ = 2, and triterpene (3), C30H50O3, Z′ = 1, have been determined for the first time; the latter confirmed the of native (20S,24R)-ocotillone previously derived from the crystal structures of related derivatives. The molecules of (3) are linked into supramolecular chains by intermolecular O—H⋯O hydrogen bonds. The crude extracts obtained by aqueous decoction and hydro-ethanolic maceration, as well as the nine isolated compounds, were tested for their anthelmintic activity on the larvae and adult worms of Haemonchus contortus, a hematophage that causes parasitic disorders in small ruminants. The evaluated anthelmintic activity showed that the extracts at different doses, as well as all the compounds tested at 150 µg ml−1, inhibited the migration of the larvae and the motility of the adult worms of the parasite compared with the phosphate buffer solution negative reference control. The best activity was obtained with (1), (2) and (8) on both stages of the parasite. The flavones that showed good activity can be used for the further development of other derivatives, which could increase the anthelmintic efficacy.
1. Introduction
Combretaceae are trees, shrubs or often lianas widely distributed in subtropical to tropical regions. This family consists of 18 genera, including 370 species of Combretum (Malgras, 1992; McGaw et al., 2001, Amadou, 2004). These species are widely used in traditional medicine for their numerous pharmacological properties (Komlan, 2002). C. glutinosum is a tree of the genus Combretum belonging to the family Combretaceae. This plant is most often present in tree savannas, normally on shallow soils (Akoègninou et al., 2006). It is distributed in tropical Africa from Mauritania to Uganda, passing through, for example, Senegal, Cameroon and Chad. In Bénin, the plant is spread in the North in Kandi, Kétou, Toukountouna, south of Malanville, Bessassi and Porga, and in the Pendrari Park (Akoègninou et al., 2006). This species is among the most widely used of the medicinal plants in West Africa (Kerharo & Adam, 1974). It has been reported by Toklo et al. (2021) that it is used in the treatment of malaria, dysentery, diarrhea, bronchitis and hypertension. The traditional uses of this plant have led to numerous pharmacological studies, including antibacterial, antifungal, anthelmintic, antimalarial and antidrepanosite properties (Baba-Moussa et al., 1999; Ouattara et al., 2006; Usman et al., 2017; Sall et al., 2017; Alowanou et al., 2019). Previous phytochemical studies of the genus Combretum led to the isolation of tannins, and (Jossang et al., 1994; Dawe et al., 2013; Roy et al., 2014, Amako et al., 2016; Sene et al., 2018; N'Diaye et al., 2017; Balde et al., 2019). In the search for a new active ingredient effective against increasing biological resistance to synthetic anthelmintics, the study reported here was undertaken on the leaves of C. glutinosum, which were obtained from plants in Bénin. The search for bioactive from the leaves revealed nine known compounds (Scheme 1), of which the crystal structures of two, one flavonoid and one triterpene, have been determined for the first time. The biological activity of these compounds on the larvae and adult worms of H. contortus, a hematophage that causes parasitic disorders in small ruminants, has also been investigated.
2. Experimental
2.1. Chromatographic and spectroscopic analysis
3) and/or deuterated methanol (MeOD) using a Bruker DRX 500 NMR spectrometer (Bruker, Rheinstetten, Germany); the chemical shifts (δ) are given in ppm relative to tetramethylsilane (TMS) (Sigma–Aldrich, Germany) as the internal standard.
was performed using 230–400 mesh silica gel (Merck, Darmstadt, Germany), 70–230 mesh silica gel (Merck) and sephadex LH-20 (Sigma–Aldrich). (TLC) was performed on a pre-coated aluminium sheet of silica gel 60 F254 (Merck). The spots of compounds were detected using UV lamps at two wavelengths (254 and 365 nm) and then fixed using a 10% sulfuric acid spray reagent, followed by heating to 373 K. The high-resolution mass spectra were recorded in positive mode using a QTOF (Bruker, Germany) equipped with an HESI source. The spectrometer operates in positive mode (mass range 100–1500, with a scan rate of 1.00 Hz), with automatic gain control to provide high accuracy mass measurements within the NMR spectra were recorded in deuterated chloroform (CDCl2.2. Collection of plant material, extraction and isolation of compounds
The leaves of C. glutinosum were collected in April 2018 in Kandi (in northern Bénin) and identified at the national herbarium of the University of Abomey–Calavi. A reference specimen was stored under the accession number YH 241/HNB after authentication.
The leaves were dried in the shade for two weeks before pulverization. The leaf powder (500 g) was macerated three times in 10 l of an ethanol/water (7:3 v/v) mixture at room temperature for 72 h. After filtration, the crude extract (67 g) was obtained by evaporation of the solvent under reduced pressure using a rotary evaporator equipped with a vacuum pump. Different systems were used for TLC of the extract in order to find the best separation system. The extract was separated directly by silica-gel The column was eluted with mixtures of hexane–ethyl acetate (hex/EtOAc) and methanol with increasing polarity to give 92 fractions of 200 ml each. They were grouped on the basis of their TLC profile into five main fractions, i.e. FCG1 (Hex/EtOAc 10%, 5.3 g), FCG2 (Hex/EtOAc 20%, 12.9 g), FCG3 (Hex/EtOAc 30%, 5.6 g), FCG4 (Hex/EtOAc 40–50%, 5 g) and FCG5 (MeOH, 21.6 g), with one pure compound, lupeol [(4); 13 mg], obtained in the hex/EtOAc 10% system.
The FCG2 fraction was purified by silica-gel v/v) to give betulinic acid [(7); 35 mg], oleanolic acid [(6); 12 mg], β-sitosterol [(5); 26 mg], and (20S,24R)-ocotillone [(3); 55 mg], as well as two subfractions, FCG2-1 and FCG2-2. The FCG2-1 subfraction (2.1 g) was separated on a Sephadex LH-20 column by eluting with dichloromethane–methanol (4:6 v/v) to yield corymbosin [(8); 6 mg].
using an isocratic system of hex/EtOAc (17:3Based on the TLC profiles, the FCG2-2 subfraction was combined with the FCG3 fraction and subjected to silica-gel 1); 17 mg] and umuhengerin [(2) 22 mg]. The FCG4 fraction was also eluted with a mixture of ethyl acetate and 5% methanol to give eight subfractions (FCG4 1–8), which all contained an impure compound (CCG20). The FCG4-2 fraction was passed through a Sephadex LH-20 column and eluted with methanol to give solely pure CCG20, which was identified as β-sitosterol glucoside [(9); 48 mg].
using a of hex/EtOAc with increasing polarity to obtain the compounds 5-demethylsinensetin [(Colourless needle-like crystals of (2) and colourless plate-like crystals of (3) were obtained by slow diffusion of dichloromethane into their solutions in methanol. Selected crystals were mounted on cryo loops.
2.3. Aqueous extract
An aqueous extract was obtained by boiling 100 g of C. glutinosum leaf powder in 1000 ml of distilled water brought to the boil for 30 min. After decantation, the mixture was filtered on Whatman paper and the filtrate obtained was evaporated under vacuum to obtain the dry extract.
2.4. Anthelmintic tests
2.4.1. Test for inhibition of larval migration and motility of adult worms
The test of larval migration and motility of adult worms in the presence of the samples was evaluated following the procedure of Hounzangbe-Adote et al. (2005). The observation of the worms in the presence of the extracts was done every 6 h and every 3 h in the presence of the compounds. The concentration of the tested compounds was 150 µg ml−1 in phosphate buffer solution (PBS, pH 7 and 0.15 M), analogous to that used by Brunet & Hoste (2006). Levamisole and PBS were used as positive and negative reference controls, respectively.
2.4.2. Statistical analysis
The different values were included in a two-criteria repeated measures analysis of variance model. The comparison of means for the different tests was done using the SNK procedure, which runs the Student–Newman–Keuls test in the R software. Differences were considered significant at the 5% level.
2.5. Refinement
Crystal data, data collection and structure 2) and (3) are summarized in Table 1. For both structures, the hydroxy H atoms were located in a difference Fourier map and their positions were refined freely along with individual isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.99 (methylene) or 1.00 Å (methine) and with Uiso(H) = 1.2Ueq(C). The of (3) was determined confidently from the diffraction experiment by of the parameter using the intensity quotients method (Parsons et al., 2013). For (2), one reflection was omitted from the final cycles of because its observed intensity was much lower than the calculated value as a result of being partially obscured by the beam stop; a correction for was also applied.
details for (3. Results and discussion
3.1. Identification of compounds
Repeated C. glutinosum leaf hydro-ethanol extract followed by silica-gel and sephadex LH-20 column purification yielded nine known compounds: 5-demethylsinensetin, (1) (Khazneh et al., 2016), umuhengerin, (2) (Rwangabo et al., 1988; Imbenzi et al., 2014), (20S,24R)-ocotillone, (3) (Aalbersberg et al., 1991), lupeol, (4) (Sholichin et al., 1980; Banskota et al., 2000; Balde et al., 2019), β-sitosterol, (5) (Rubinstein et al., 1976; Banskota et al., 2000), oleanolic acid, (6) (Mahato & Kundu, 1994), betulinic acid, (7) (Sholichin et al., 1980; Banskota et al., 2000), corymbosin, (8) (Çitoğlu et al., 2003), and β-sitosterol glucoside, (9) (Adnyana et al., 2000) (Scheme 1). The structures of the compounds were established by interpretation of their spectroscopic data, mainly 1D NMR [1H, 13C and DEPT (distortionless enhancement by polarization transfer)], 2D NMR [COSY (correlated spectroscopy), HSQC (heteronuclear single quantum coherence) and HMBC (heteronuclear multiple bond correlation)] and and by comparison with literature data. Although all of these compounds are known, compounds (1), (2), (3) and (8) have been isolated for the first time from the genus Combretum and the crystal structures of compounds (2) and (3), previously undetermined, have been established.
of3.2. The crystal structures of (2) and (3)
The flavonoid umuhengerin, (2), was originally isolated from the leaves of Lantana trifolia L. (Verbenaceae) and found to display in vitro antibacterial and antifungal properties (Rwangabo et al., 1988). In the of (2), there are two symmetry-independent molecules in the (Fig. 1). The conformations of these molecules differ primarily in the orientations of the C6/C26 and C14/C34 methoxy groups, which are the substituents adjacent to the hydroxy group and at the 4-position of the trimethoxyphenyl ring, respectively. In the former case, these methoxy C—O torsion angles differ by 15.7 (3)°, while the rotation is 164.81 (3)° in the latter case (calculated when one molecule is overlaid with the inverted form of the other molecule, as allowed by the space-group symmetry). Apart from the methyl groups of these methoxy substituents, both flavonoid molecules are essentially planar, with r.m.s. deviations of all ring C and O atoms of 0.27 and 0.14 Å for the molecules containing atoms O1 and O21, respectively, although there may be a little bowing along the axis of the three-ring system. The dihedral angles between the individual planes of the phenyl and fused rings are 7.18 (8) and 3.05 (8)°, respectively.
The hydroxy group in each independent flavonoid molecule forms an intramolecular hydrogen bond with the adjacent carbonyl O atom (Table 2). In the crystal packing, the molecules form stacks, each of which consists of repeats of just one of the independent molecules. The molecules containing atom O1 lie tilted within an otherwise uniform column that runs parallel to the [100] direction. The molecular plane is tilted by approximately 45° with respect to the stacking direction. Nonetheless, there are no significant π–π interactions, because the ring offsets resulting from the tilting preclude significant overlap of the ring systems. The molecules containing atom O21 also stack parallel to the [100] direction in a similar 45°-tilted fashion, but the orientation of the tilted planes differs from that in the O1-containing stacks (Fig. 2); the normals to the molecular planes in the two independent stacks point in different directions. Each type of stack runs parallel to another stack of the same kind related by a centre of inversion to give a centrosymmetric double-stack pair. As the planes of the molecules in the two independent types of pairs of stacks are oriented differently, π–π interactions between the stacks are precluded and the stacks are not intertwined with one another.
|
The Cambridge Structural Database (CSD, Version 2020.3.0 with May 2021 update; Groom et al., 2016) contains data for six closely related flavones with hydroxy or methoxy substituents at least at the 5-, 6-, 7-, 3′- and 4′-positions. The ring systems in four of these structures are planar, with perhaps a tendency towards a slight bowing along the axis of the three-ring system, similar to that observed in (2), as seen solely from visual inspection. These structures are 5,7,4′-trihydroxy-6,3′,5′-trimethoxyflavone ethyl acetate solvate (Martinez-Vazquez et al., 1993), 5,3′-dihydroxy-6,7,4′-trimethoxyflavone (Parvez et al., 2001), 5,7-dihydroxy-6,3′,4′-trimethoxyflavone (Suleimenov et al., 2005) and 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone (Adizov et al., 2013; Turdybekov et al., 2014). In the structure of 5,6,7,2′,3′,4′-hexamethoxyflavone (Butler et al., 2018), the bowing within the fused rings appears to be more prominent. In the structure of 5,3′-dihydroxy-6,7,2′,4′,5′-pentamethoxyflavone (Al-Yahya et al., 1987), the individual planes of the phenyl and fused rings are significantly tilted from one another, with a dihedral angle of 12.23 (14)°; this is the only example with four substituents on the phenyl ring (three methoxy and one hydroxy).
The S,24R)-ocotillone, (3), has one molecule in the (Fig. 3). In the chosen crystal, the compound is enantiomerically pure and the of the molecule was determined independently by the diffraction experiment; the value of the parameter (Parsons et al., 2013) was −0.07 (4). According to the numbering of the atoms used in the model, the of the stereogenic C atoms of the molecule is established as follows: 5R,8R,9R,10R,13R,14R,17S,20S,24R. The isolation and identification of 20S- and 20R-ocotillones have been reported on several occasions (Bisset et al., 1966, 1967; Betancor et al., 1983; Aalbersberg et al., 1991). The isolation of the corresponding alcohol, ocotillol, appears to be mentioned for the first time by Warnhoff & Halls (1965). The of (20S,24R)-ocotillone was deduced from an X-ray of a bromobenzoyl derivative of the corresponding ocotillol (Yamauchi et al., 1969). The determination of (3) is the first time the has been confirmed crystallographically for the native (20S,24R)-ocotillone.
of the triterpene (20The core of the molecule of (3) consists of five rings, including four fused rings, cyclohexane rings A (atoms C1–C5/C10), B (C5–C10) and C (C8/C9/C11–C14), and cyclopentane ring D (C13–C17), plus furan ring E (O18/C20–C24) attached to the fused rings at atom C17. An isopropanol substituent is present at atom C24 of the furan ring. Thus, compound (3) is (5R,8R,9R,10R,13R,14R,17S)-17-[(2S,5R)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-4,4,8,10,14-pentamethyl-1,2,5,6,7,9,11,12,13,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one. Rings A, B and C adopt a chair conformation, with ring A being the most distorted because of the presence of the sp2-hybridized keto C atom. The puckering parameters (Cremer & Pople, 1975) for ring A are θ = 15.82 (18)° and φ = 322.1 (7)° for the atom sequence C1—C2—C3—C4—C5—C10. For ring B, θ = 11.01 (15)° and φ = 17.2 (8)° for the atom sequence C5—C6—C7—C8—C9—C10 and for ring C, θ = 6.30 (15)° and φ = 8.5 (13)° for the atom sequence C8—C9—C11—C12—C13—C14. Ring D has a near-ideal half-chair conformation twisted on C13—C14 [φ2 = 197.8 (4)° for the atom sequence C13—C14—C15—C16—C17], while ring E has a slightly distorted with atom O20 as the envelope flap [φ2 = 188.6 (4)° for the atom sequence O20—C21—C22—C23—C24]. The A/B, B/C and C/D ring junctions are all trans-fused to each other along the C5—C10, C8—C9 and C13—C14 bonds, respectively. This brings the methyl groups at C8 and C10 into cis positions, while the methyl groups at C8 and C14 are trans to one another. The furan substituent at the cyclopropane ring lies trans to the C14 methyl group.
Intermolecular O—H⋯O hydrogen bonds involving the hydroxy group and the ketone O atom link the molecules into extended wave-like chains (Table 3 and Fig. 4), which run parallel to the [001] direction and can be described by a graph-set motif (Bernstein et al., 1995) of C(16).
3.3. Anthelmintic activity
3.3.1. About the extracts
The crude extracts obtained by aqueous decoction and hydro-ethanolic maceration, as well as the nine isolated compounds, were tested for their anthelmintic activity on the larvae and adult worms of H. contortus. The larval migration inhibition technique applied is based on the measurement of the migration rate of parasite larvae through a membrane after contact with the tested extract. At different doses, aqueous and hydro-ethanol extracts of C. glutinosum significantly inhibited in vitro larval migration of H. contortus (p < 0.001) (Fig. 5). This effect is independent of the dose and does not vary with the extraction solvent (p > 0.05). However, the aqueous extract appeared to be more effective than the hydro-ethanolic extract (Fig. 5). Similarly, both extracts significantly reduced the motility of adult H. contortus worms (p < 0.001). Although the inhibition effect did not vary with dose and extraction solvent (p > 0.05), it did vary with time (p < 0.001) and, paradoxically, the hydro-ethanolic extract appeared to inhibit adult worm motility more (Table 4). In order to know the chemical composition of these two extracts for the identification of the active principle, the present work was continued with the hydro-ethanolic extract and the compounds isolated therefrom were tested on H. contortus larvae and worms.
|
3.3.2. On the compounds
In vitro, the effect of the compounds was evaluated on H. contortus larvae and adult worms. All the compounds inhibited the migration of H. contortus larvae (Fig. 6) and the three isolated seem to present the best results with inhibition percentages of 75.37, 53.26 and 47.73%, respectively, for compounds (1), (2) and (8), although they are all less active than the reference drug levamisol (95.97%). For the adult worms observed every 3 h with a magnifying glass after their contact with the tested compounds, the total inhibition of their motility was observed with the positive reference control (levamisol) after just 3 h of exposure. This inhibition was total at 12 h with compounds (1), (2), (4), (5) and (8). On the other hand, in phosphate buffer solution (PBS), 75% of adult worms were still mobile after 18 h (Table 5). Statistical analysis showed that the compounds inhibited the larval migration and motility of H. contortus adult worms within the same time as levamisole, compared with the negative control (p < 0.001). On adult worms, the inhibitory effect varied with time (p < 0.001) and in particular, 5-demethylsinensetin, (1), would be responsible for the known anthelmintic activity of the plant.
|
Indeed, the class of polyphenols is strongly suspected as being the active agent in the anthelmintic effect of plants (Ayers et al., 2008). Condensed tannins are frequently reported as being responsible for such effects, for example, in the report by Hoste et al. (2018). Nonetheless, other reports do link anthelmintic properties to (Paolini et al., 2003; Barrau et al., 2005). Given the results of the in vivo tests, the known anthelmintic activity of C. glutinosum appears to be related to the presence of the isolated from this plant. Thus, following the report that C. glutinosum is an anthelmintic plant (Alowanou et al., 2019), the present study has allowed the anthelmintic capacity of the different compounds isolated from this plant to be ranked and highlighted. It appears that these compounds, although less active than the positive reference control, have a larvicidal and vermicidal effect on H. contortus, with 5-demethylsinensetin, (1), being the most active. The decrease in the migration of infesting larvae and the reduction of the motility of adult worms could disrupt their settlement in the mucosal wall of the digestive tract and thus ensure their progressive elimination from the infested animal (Dedehou et al., 2014). These results could serve as a basis for a leading to the proposal of a new compound with a broader spectrum of activity than current commercially available anthelmintics.
4. Conclusion
The phytochemical investigation of the leaves of C. glutinosum led to the isolation of nine known compounds, which were characterized using spectroscopic analyses and by comparison with literature data. The crystal structures of two compounds were described for the first time in the present work and four compounds have been isolated for the first time from the genus Combretum. The isolated from the plant presented the best in vitro activity on H. contortus. The results of this study could be verified in vivo on sheep in order to gain further insight into and enhance the status of this plant.
Supporting information
https://doi.org/10.1107/S2053229621007841/ov3154sup1.cif
contains datablocks 2, 3, global. DOI:Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2053229621007841/ov31542sup2.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2053229621007841/ov31543sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229621007841/ov31542sup4.mol
Supporting information file. DOI: https://doi.org/10.1107/S2053229621007841/ov31542sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229621007841/ov31543sup6.cml
For both structures, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2021); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2021); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2021); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and PLATON (Spek, 2020).C20H20O8 | F(000) = 816 |
Mr = 388.36 | Dx = 1.466 Mg m−3 |
Triclinic, P1 | Melting point: 466 K |
a = 4.97902 (15) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 18.5654 (5) Å | Cell parameters from 10239 reflections |
c = 19.1368 (3) Å | θ = 3.3–78.2° |
α = 89.5065 (18)° | µ = 0.96 mm−1 |
β = 84.322 (2)° | T = 160 K |
γ = 89.375 (2)° | Needle, pale yellow |
V = 1760.12 (8) Å3 | 0.17 × 0.03 × 0.01 mm |
Z = 4 |
Rigaku Oxford Diffraction XtaLAB Synergy dual radiation diffractometer | 6662 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray source | 5215 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.060 |
Detector resolution: 5.81 pixels mm-1 | θmax = 70.1°, θmin = 3.3° |
ω scans | h = −6→6 |
Absorption correction: gaussian Numerical absorption correction based on Gaussian integration over a multifaceted crystal model (Coppens et al., 1965) plus an empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis PRO; Rigaku Oxford Diffraction, 2021) | k = −22→22 |
Tmin = 0.694, Tmax = 1.000 | l = −23→22 |
34916 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0439P)2 + 0.954P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
6661 reflections | Δρmax = 0.44 e Å−3 |
524 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.00064 (15) |
Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch The financial support from the Swiss National Science Foundation (R'Equip grant no. 206021_164018) and the University of Zurich for the purchase of the X-ray diffractometer used in this work is gratefully acknowledged. Solvent used: dichloromethane / MeOH Cooling Device: Oxford Cryosystems Cryostream 800 Crystal mount: on a cryo-loop Frames collected: 5692 Seconds exposure per frame: 3.5-14.0 Degrees rotation per frame: 0.5 Crystal-detector distance (mm): 32.0 Client: Placide Toklo Sample code: G10 (L2102) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. There are two symmetry-independent molecules in the asymmetric unit. Their conformations differ mainly in the orientations of the C6/C26 and C14/C34 methoxy groups. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8422 (3) | 0.85801 (7) | 0.42135 (7) | 0.0221 (3) | |
O4 | 1.3522 (3) | 1.02957 (7) | 0.40490 (7) | 0.0257 (3) | |
O5 | 1.1747 (3) | 1.06246 (8) | 0.28553 (8) | 0.0273 (3) | |
H5 | 1.259 (6) | 1.0611 (16) | 0.3243 (16) | 0.052 (9)* | |
O6 | 0.8350 (3) | 1.03119 (7) | 0.18570 (7) | 0.0259 (3) | |
O7 | 0.5323 (3) | 0.91317 (8) | 0.19914 (7) | 0.0278 (3) | |
O13 | 0.6742 (3) | 0.63636 (8) | 0.56501 (8) | 0.0324 (4) | |
O14 | 0.9692 (3) | 0.64850 (8) | 0.67492 (7) | 0.0280 (3) | |
O15 | 1.2499 (3) | 0.76492 (8) | 0.69432 (7) | 0.0264 (3) | |
C2 | 1.0127 (4) | 0.87011 (10) | 0.47147 (9) | 0.0197 (4) | |
C3 | 1.1858 (4) | 0.92593 (11) | 0.46730 (10) | 0.0222 (4) | |
H3 | 1.302837 | 0.931941 | 0.503074 | 0.027* | |
C4 | 1.1959 (4) | 0.97653 (10) | 0.40948 (10) | 0.0205 (4) | |
C4A | 1.0182 (4) | 0.96151 (10) | 0.35638 (10) | 0.0199 (4) | |
C5 | 1.0124 (4) | 1.00467 (10) | 0.29491 (10) | 0.0216 (4) | |
C6 | 0.8454 (4) | 0.98775 (10) | 0.24420 (10) | 0.0219 (4) | |
C7 | 0.6810 (4) | 0.92629 (11) | 0.25317 (10) | 0.0227 (4) | |
C8 | 0.6811 (4) | 0.88307 (11) | 0.31284 (10) | 0.0220 (4) | |
H8 | 0.569965 | 0.841766 | 0.318877 | 0.026* | |
C8A | 0.8482 (4) | 0.90209 (10) | 0.36319 (10) | 0.0202 (4) | |
C9 | 1.0055 (5) | 1.00522 (12) | 0.12617 (11) | 0.0323 (5) | |
H91 | 0.992408 | 1.037996 | 0.086210 | 0.048* | |
H92 | 0.947640 | 0.957036 | 0.113962 | 0.048* | |
H93 | 1.192845 | 1.002897 | 0.137705 | 0.048* | |
C10 | 0.3684 (4) | 0.84999 (11) | 0.20370 (11) | 0.0280 (5) | |
H101 | 0.283392 | 0.844604 | 0.160018 | 0.042* | |
H102 | 0.228375 | 0.854585 | 0.243201 | 0.042* | |
H103 | 0.481453 | 0.807570 | 0.210999 | 0.042* | |
C11 | 0.9878 (4) | 0.81357 (10) | 0.52674 (10) | 0.0205 (4) | |
C12 | 0.8257 (4) | 0.75395 (11) | 0.51883 (10) | 0.0229 (4) | |
H12 | 0.722807 | 0.751012 | 0.479732 | 0.028* | |
C13 | 0.8161 (4) | 0.69871 (11) | 0.56883 (10) | 0.0246 (4) | |
C14 | 0.9623 (4) | 0.70409 (10) | 0.62693 (10) | 0.0218 (4) | |
C15 | 1.1193 (4) | 0.76461 (11) | 0.63504 (10) | 0.0211 (4) | |
C16 | 1.1352 (4) | 0.81938 (11) | 0.58467 (10) | 0.0216 (4) | |
H16 | 1.244991 | 0.860170 | 0.589721 | 0.026* | |
C17 | 0.5090 (5) | 0.63036 (13) | 0.50876 (12) | 0.0356 (5) | |
H171 | 0.622361 | 0.632223 | 0.463913 | 0.053* | |
H172 | 0.377958 | 0.670236 | 0.510834 | 0.053* | |
H173 | 0.413018 | 0.584477 | 0.512823 | 0.053* | |
C18 | 0.7326 (5) | 0.64279 (12) | 0.72304 (11) | 0.0326 (5) | |
H181 | 0.577442 | 0.632168 | 0.697239 | 0.049* | |
H182 | 0.700503 | 0.688358 | 0.748115 | 0.049* | |
H183 | 0.757423 | 0.603916 | 0.756847 | 0.049* | |
C19 | 1.4212 (4) | 0.82473 (11) | 0.70315 (11) | 0.0269 (4) | |
H191 | 1.563147 | 0.826701 | 0.663895 | 0.040* | |
H192 | 1.503526 | 0.819113 | 0.747337 | 0.040* | |
H193 | 1.314256 | 0.869417 | 0.704262 | 0.040* | |
O21 | 0.6336 (3) | 0.41743 (7) | 0.14003 (7) | 0.0228 (3) | |
O24 | 0.1754 (3) | 0.40137 (8) | −0.02513 (7) | 0.0293 (3) | |
O25 | 0.3923 (3) | 0.27616 (8) | −0.05320 (7) | 0.0304 (3) | |
H25 | 0.277 (7) | 0.3183 (18) | −0.0513 (16) | 0.060 (9)* | |
O26 | 0.7475 (3) | 0.16941 (8) | −0.01936 (7) | 0.0274 (3) | |
O27 | 1.0071 (3) | 0.18272 (7) | 0.09442 (7) | 0.0255 (3) | |
O33 | 0.7591 (3) | 0.57926 (8) | 0.33934 (7) | 0.0285 (3) | |
O34 | 0.4623 (3) | 0.69559 (8) | 0.32162 (7) | 0.0277 (3) | |
O35 | 0.1347 (3) | 0.70599 (8) | 0.21774 (7) | 0.0291 (3) | |
C22 | 0.4571 (4) | 0.47098 (10) | 0.12585 (10) | 0.0222 (4) | |
C23 | 0.3019 (4) | 0.46705 (10) | 0.07207 (10) | 0.0227 (4) | |
H23 | 0.180196 | 0.505462 | 0.064500 | 0.027* | |
C24 | 0.3164 (4) | 0.40596 (11) | 0.02590 (10) | 0.0237 (4) | |
C24A | 0.5018 (4) | 0.34887 (11) | 0.04278 (10) | 0.0227 (4) | |
C25 | 0.5328 (4) | 0.28491 (11) | 0.00271 (10) | 0.0235 (4) | |
C26 | 0.7070 (4) | 0.23045 (11) | 0.02062 (10) | 0.0234 (4) | |
C27 | 0.8500 (4) | 0.23940 (11) | 0.07986 (10) | 0.0226 (4) | |
C28 | 0.8242 (4) | 0.30238 (11) | 0.11937 (10) | 0.0235 (4) | |
H28 | 0.922459 | 0.308319 | 0.158985 | 0.028* | |
C28A | 0.6515 (4) | 0.35595 (10) | 0.09928 (10) | 0.0223 (4) | |
C29 | 0.5399 (5) | 0.11670 (13) | −0.00512 (14) | 0.0411 (6) | |
H291 | 0.574139 | 0.076188 | −0.037390 | 0.062* | |
H292 | 0.364031 | 0.138599 | −0.011647 | 0.062* | |
H293 | 0.539726 | 0.099334 | 0.043389 | 0.062* | |
C30 | 1.1603 (4) | 0.18836 (12) | 0.15355 (10) | 0.0264 (4) | |
H301 | 1.286255 | 0.228525 | 0.146054 | 0.040* | |
H302 | 1.261785 | 0.143480 | 0.159052 | 0.040* | |
H303 | 1.037808 | 0.196933 | 0.196033 | 0.040* | |
C31 | 0.4562 (4) | 0.53040 (11) | 0.17705 (10) | 0.0221 (4) | |
C32 | 0.6212 (4) | 0.52478 (11) | 0.23269 (10) | 0.0246 (4) | |
H32 | 0.736495 | 0.484111 | 0.236443 | 0.030* | |
C33 | 0.6130 (4) | 0.57957 (11) | 0.28203 (10) | 0.0232 (4) | |
C34 | 0.4487 (4) | 0.64015 (11) | 0.27564 (10) | 0.0238 (4) | |
C35 | 0.2863 (4) | 0.64500 (11) | 0.21945 (10) | 0.0243 (4) | |
C36 | 0.2899 (4) | 0.58987 (11) | 0.17089 (10) | 0.0246 (4) | |
H36 | 0.178331 | 0.592921 | 0.133453 | 0.030* | |
C37 | 0.9133 (5) | 0.51605 (12) | 0.35099 (12) | 0.0344 (5) | |
H371 | 1.055913 | 0.510170 | 0.312294 | 0.052* | |
H372 | 0.795294 | 0.474012 | 0.353395 | 0.052* | |
H373 | 0.994727 | 0.520461 | 0.395305 | 0.052* | |
C38 | 0.2177 (5) | 0.71117 (14) | 0.36545 (12) | 0.0370 (5) | |
H381 | 0.080883 | 0.729958 | 0.336433 | 0.056* | |
H382 | 0.253563 | 0.747195 | 0.400399 | 0.056* | |
H383 | 0.151818 | 0.666988 | 0.389418 | 0.056* | |
C39 | −0.0272 (5) | 0.71420 (12) | 0.16030 (11) | 0.0283 (5) | |
H391 | 0.089433 | 0.713598 | 0.115945 | 0.042* | |
H392 | −0.126193 | 0.760117 | 0.164593 | 0.042* | |
H393 | −0.155624 | 0.674506 | 0.161066 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0252 (7) | 0.0241 (7) | 0.0172 (6) | −0.0027 (6) | −0.0031 (5) | 0.0053 (5) |
O4 | 0.0301 (8) | 0.0240 (7) | 0.0230 (7) | −0.0068 (6) | −0.0027 (6) | 0.0032 (6) |
O5 | 0.0336 (8) | 0.0245 (7) | 0.0242 (7) | −0.0066 (6) | −0.0048 (6) | 0.0068 (6) |
O6 | 0.0328 (8) | 0.0246 (7) | 0.0200 (7) | 0.0032 (6) | −0.0023 (6) | 0.0068 (6) |
O7 | 0.0326 (8) | 0.0292 (8) | 0.0228 (7) | −0.0061 (6) | −0.0088 (6) | 0.0040 (6) |
O13 | 0.0427 (9) | 0.0273 (8) | 0.0282 (8) | −0.0129 (7) | −0.0071 (7) | 0.0029 (6) |
O14 | 0.0317 (8) | 0.0240 (7) | 0.0269 (7) | 0.0011 (6) | 0.0020 (6) | 0.0105 (6) |
O15 | 0.0323 (8) | 0.0267 (7) | 0.0209 (7) | −0.0050 (6) | −0.0066 (6) | 0.0072 (6) |
C2 | 0.0208 (10) | 0.0233 (10) | 0.0145 (9) | 0.0033 (8) | 0.0000 (7) | 0.0009 (7) |
C3 | 0.0250 (10) | 0.0241 (10) | 0.0172 (9) | 0.0000 (8) | −0.0009 (8) | 0.0015 (8) |
C4 | 0.0210 (10) | 0.0209 (10) | 0.0189 (9) | 0.0014 (8) | 0.0017 (8) | −0.0010 (7) |
C4A | 0.0206 (10) | 0.0207 (9) | 0.0177 (9) | 0.0021 (7) | 0.0002 (7) | 0.0010 (7) |
C5 | 0.0253 (10) | 0.0172 (9) | 0.0216 (9) | 0.0007 (8) | 0.0018 (8) | 0.0014 (7) |
C6 | 0.0254 (10) | 0.0221 (10) | 0.0178 (9) | 0.0032 (8) | −0.0005 (8) | 0.0032 (7) |
C7 | 0.0229 (10) | 0.0249 (10) | 0.0201 (9) | 0.0019 (8) | −0.0021 (8) | −0.0010 (8) |
C8 | 0.0207 (10) | 0.0227 (10) | 0.0223 (10) | −0.0034 (8) | 0.0000 (8) | 0.0008 (8) |
C8A | 0.0235 (10) | 0.0212 (9) | 0.0153 (9) | 0.0016 (8) | 0.0017 (7) | 0.0026 (7) |
C9 | 0.0442 (14) | 0.0327 (12) | 0.0188 (10) | 0.0012 (10) | 0.0021 (9) | 0.0041 (8) |
C10 | 0.0302 (11) | 0.0270 (11) | 0.0276 (11) | −0.0033 (9) | −0.0073 (9) | −0.0007 (8) |
C11 | 0.0224 (10) | 0.0205 (9) | 0.0174 (9) | 0.0036 (8) | 0.0025 (7) | 0.0025 (7) |
C12 | 0.0248 (10) | 0.0259 (10) | 0.0177 (9) | −0.0009 (8) | −0.0006 (8) | 0.0018 (8) |
C13 | 0.0260 (11) | 0.0230 (10) | 0.0240 (10) | −0.0038 (8) | 0.0015 (8) | 0.0007 (8) |
C14 | 0.0240 (10) | 0.0214 (10) | 0.0189 (9) | 0.0021 (8) | 0.0021 (8) | 0.0059 (7) |
C15 | 0.0223 (10) | 0.0234 (10) | 0.0171 (9) | 0.0027 (8) | 0.0007 (7) | 0.0024 (7) |
C16 | 0.0245 (10) | 0.0222 (10) | 0.0173 (9) | 0.0005 (8) | 0.0015 (8) | 0.0015 (7) |
C17 | 0.0410 (14) | 0.0377 (13) | 0.0283 (11) | −0.0137 (10) | −0.0029 (10) | −0.0006 (10) |
C18 | 0.0373 (13) | 0.0335 (12) | 0.0251 (11) | −0.0027 (10) | 0.0062 (9) | 0.0093 (9) |
C19 | 0.0287 (11) | 0.0270 (11) | 0.0261 (10) | −0.0027 (9) | −0.0085 (9) | 0.0030 (8) |
O21 | 0.0258 (7) | 0.0213 (7) | 0.0215 (7) | 0.0012 (6) | −0.0028 (6) | −0.0014 (5) |
O24 | 0.0345 (9) | 0.0306 (8) | 0.0240 (7) | 0.0027 (6) | −0.0100 (6) | −0.0028 (6) |
O25 | 0.0376 (9) | 0.0312 (8) | 0.0237 (7) | 0.0050 (7) | −0.0103 (6) | −0.0059 (6) |
O26 | 0.0307 (8) | 0.0291 (8) | 0.0220 (7) | 0.0015 (6) | −0.0008 (6) | −0.0060 (6) |
O27 | 0.0324 (8) | 0.0233 (7) | 0.0218 (7) | 0.0071 (6) | −0.0078 (6) | −0.0015 (6) |
O33 | 0.0359 (9) | 0.0262 (7) | 0.0246 (7) | 0.0039 (6) | −0.0094 (6) | −0.0047 (6) |
O34 | 0.0301 (8) | 0.0262 (7) | 0.0270 (7) | −0.0012 (6) | −0.0034 (6) | −0.0066 (6) |
O35 | 0.0354 (9) | 0.0265 (8) | 0.0268 (7) | 0.0062 (6) | −0.0100 (6) | −0.0043 (6) |
C22 | 0.0239 (10) | 0.0212 (10) | 0.0207 (9) | −0.0026 (8) | 0.0016 (8) | 0.0023 (8) |
C23 | 0.0253 (10) | 0.0199 (9) | 0.0226 (10) | 0.0002 (8) | −0.0009 (8) | 0.0004 (8) |
C24 | 0.0251 (10) | 0.0272 (10) | 0.0183 (9) | −0.0034 (8) | −0.0001 (8) | 0.0017 (8) |
C24A | 0.0234 (10) | 0.0227 (10) | 0.0210 (9) | −0.0017 (8) | 0.0024 (8) | 0.0007 (8) |
C25 | 0.0244 (10) | 0.0309 (11) | 0.0153 (9) | −0.0040 (8) | −0.0017 (8) | 0.0009 (8) |
C26 | 0.0263 (11) | 0.0263 (10) | 0.0169 (9) | 0.0017 (8) | 0.0019 (8) | −0.0018 (8) |
C27 | 0.0226 (10) | 0.0246 (10) | 0.0196 (9) | 0.0010 (8) | 0.0021 (8) | 0.0025 (8) |
C28 | 0.0246 (10) | 0.0269 (10) | 0.0189 (9) | −0.0001 (8) | −0.0012 (8) | −0.0015 (8) |
C28A | 0.0252 (10) | 0.0224 (10) | 0.0187 (9) | −0.0024 (8) | 0.0022 (8) | −0.0019 (8) |
C29 | 0.0437 (14) | 0.0321 (12) | 0.0456 (14) | −0.0049 (11) | 0.0065 (11) | −0.0107 (11) |
C30 | 0.0290 (11) | 0.0305 (11) | 0.0201 (10) | 0.0005 (9) | −0.0050 (8) | 0.0006 (8) |
C31 | 0.0239 (10) | 0.0246 (10) | 0.0169 (9) | −0.0070 (8) | 0.0034 (8) | −0.0007 (8) |
C32 | 0.0270 (11) | 0.0236 (10) | 0.0227 (10) | −0.0034 (8) | 0.0013 (8) | −0.0004 (8) |
C33 | 0.0262 (11) | 0.0269 (10) | 0.0162 (9) | −0.0054 (8) | −0.0002 (8) | −0.0004 (8) |
C34 | 0.0270 (11) | 0.0252 (10) | 0.0190 (9) | −0.0062 (8) | 0.0002 (8) | −0.0013 (8) |
C35 | 0.0272 (11) | 0.0220 (10) | 0.0230 (10) | −0.0028 (8) | 0.0022 (8) | −0.0016 (8) |
C36 | 0.0277 (11) | 0.0244 (10) | 0.0215 (10) | −0.0029 (8) | −0.0002 (8) | 0.0007 (8) |
C37 | 0.0409 (13) | 0.0297 (11) | 0.0337 (12) | 0.0084 (10) | −0.0100 (10) | −0.0014 (9) |
C38 | 0.0369 (13) | 0.0446 (14) | 0.0288 (12) | 0.0055 (11) | 0.0007 (10) | −0.0104 (10) |
C39 | 0.0299 (11) | 0.0298 (11) | 0.0258 (10) | 0.0010 (9) | −0.0054 (9) | −0.0018 (9) |
O1—C2 | 1.364 (2) | O21—C22 | 1.363 (2) |
O1—C8A | 1.374 (2) | O21—C28A | 1.385 (2) |
O4—C4 | 1.259 (2) | O24—C24 | 1.262 (2) |
O5—C5 | 1.350 (2) | O25—C25 | 1.347 (2) |
O5—H5 | 0.89 (3) | O25—H25 | 0.96 (3) |
O6—C6 | 1.379 (2) | O26—C26 | 1.375 (2) |
O6—C9 | 1.435 (3) | O26—C29 | 1.436 (3) |
O7—C7 | 1.355 (2) | O27—C27 | 1.348 (2) |
O7—C10 | 1.433 (3) | O27—C30 | 1.431 (2) |
O13—C13 | 1.369 (2) | O33—C33 | 1.375 (2) |
O13—C17 | 1.424 (3) | O33—C37 | 1.423 (3) |
O14—C14 | 1.378 (2) | O34—C34 | 1.366 (2) |
O14—C18 | 1.426 (3) | O34—C38 | 1.437 (3) |
O15—C15 | 1.363 (2) | O35—C35 | 1.356 (2) |
O15—C19 | 1.428 (3) | O35—C39 | 1.432 (3) |
C2—C3 | 1.352 (3) | C22—C23 | 1.350 (3) |
C2—C11 | 1.481 (3) | C22—C31 | 1.481 (3) |
C3—C4 | 1.443 (3) | C23—C24 | 1.441 (3) |
C3—H3 | 0.9500 | C23—H23 | 0.9500 |
C4—C4A | 1.443 (3) | C24—C24A | 1.453 (3) |
C4A—C8A | 1.395 (3) | C24A—C28A | 1.381 (3) |
C4A—C5 | 1.420 (3) | C24A—C25 | 1.418 (3) |
C5—C6 | 1.379 (3) | C25—C26 | 1.388 (3) |
C6—C7 | 1.411 (3) | C26—C27 | 1.409 (3) |
C7—C8 | 1.390 (3) | C27—C28 | 1.396 (3) |
C8—C8A | 1.384 (3) | C28—C28A | 1.384 (3) |
C8—H8 | 0.9500 | C28—H28 | 0.9500 |
C9—H91 | 0.9800 | C29—H291 | 0.9800 |
C9—H92 | 0.9800 | C29—H292 | 0.9800 |
C9—H93 | 0.9800 | C29—H293 | 0.9800 |
C10—H101 | 0.9800 | C30—H301 | 0.9800 |
C10—H102 | 0.9800 | C30—H302 | 0.9800 |
C10—H103 | 0.9800 | C30—H303 | 0.9800 |
C11—C16 | 1.394 (3) | C31—C36 | 1.384 (3) |
C11—C12 | 1.395 (3) | C31—C32 | 1.410 (3) |
C12—C13 | 1.395 (3) | C32—C33 | 1.391 (3) |
C12—H12 | 0.9500 | C32—H32 | 0.9500 |
C13—C14 | 1.392 (3) | C33—C34 | 1.395 (3) |
C14—C15 | 1.394 (3) | C34—C35 | 1.410 (3) |
C15—C16 | 1.393 (3) | C35—C36 | 1.387 (3) |
C16—H16 | 0.9500 | C36—H36 | 0.9500 |
C17—H171 | 0.9800 | C37—H371 | 0.9800 |
C17—H172 | 0.9800 | C37—H372 | 0.9800 |
C17—H173 | 0.9800 | C37—H373 | 0.9800 |
C18—H181 | 0.9800 | C38—H381 | 0.9800 |
C18—H182 | 0.9800 | C38—H382 | 0.9800 |
C18—H183 | 0.9800 | C38—H383 | 0.9800 |
C19—H191 | 0.9800 | C39—H391 | 0.9800 |
C19—H192 | 0.9800 | C39—H392 | 0.9800 |
C19—H193 | 0.9800 | C39—H393 | 0.9800 |
C2—O1—C8A | 119.99 (15) | C22—O21—C28A | 119.46 (15) |
C5—O5—H5 | 102 (2) | C25—O25—H25 | 102.5 (19) |
C6—O6—C9 | 112.55 (15) | C26—O26—C29 | 113.59 (16) |
C7—O7—C10 | 117.56 (15) | C27—O27—C30 | 117.56 (15) |
C13—O13—C17 | 117.24 (16) | C33—O33—C37 | 117.01 (16) |
C14—O14—C18 | 114.50 (16) | C34—O34—C38 | 115.63 (17) |
C15—O15—C19 | 116.81 (15) | C35—O35—C39 | 116.94 (16) |
C3—C2—O1 | 122.21 (17) | C23—C22—O21 | 122.18 (17) |
C3—C2—C11 | 126.43 (18) | C23—C22—C31 | 126.15 (18) |
O1—C2—C11 | 111.31 (17) | O21—C22—C31 | 111.65 (17) |
C2—C3—C4 | 121.18 (18) | C22—C23—C24 | 121.52 (19) |
C2—C3—H3 | 119.4 | C22—C23—H23 | 119.2 |
C4—C3—H3 | 119.4 | C24—C23—H23 | 119.2 |
O4—C4—C3 | 122.45 (18) | O24—C24—C23 | 122.70 (19) |
O4—C4—C4A | 122.08 (17) | O24—C24—C24A | 121.89 (18) |
C3—C4—C4A | 115.46 (17) | C23—C24—C24A | 115.40 (17) |
C8A—C4A—C5 | 117.33 (18) | C28A—C24A—C25 | 118.42 (18) |
C8A—C4A—C4 | 120.46 (17) | C28A—C24A—C24 | 120.02 (18) |
C5—C4A—C4 | 122.19 (18) | C25—C24A—C24 | 121.56 (18) |
O5—C5—C6 | 119.56 (17) | O25—C25—C26 | 119.12 (18) |
O5—C5—C4A | 119.64 (18) | O25—C25—C24A | 120.29 (19) |
C6—C5—C4A | 120.80 (18) | C26—C25—C24A | 120.59 (18) |
O6—C6—C5 | 120.40 (18) | O26—C26—C25 | 121.26 (18) |
O6—C6—C7 | 120.07 (18) | O26—C26—C27 | 119.84 (18) |
C5—C6—C7 | 119.53 (17) | C25—C26—C27 | 118.87 (18) |
O7—C7—C8 | 124.16 (18) | O27—C27—C28 | 124.22 (18) |
O7—C7—C6 | 114.70 (17) | O27—C27—C26 | 114.54 (17) |
C8—C7—C6 | 121.12 (18) | C28—C27—C26 | 121.24 (18) |
C8A—C8—C7 | 117.91 (18) | C28A—C28—C27 | 118.23 (18) |
C8A—C8—H8 | 121.0 | C28A—C28—H28 | 120.9 |
C7—C8—H8 | 121.0 | C27—C28—H28 | 120.9 |
O1—C8A—C8 | 116.08 (17) | C24A—C28A—C28 | 122.62 (18) |
O1—C8A—C4A | 120.61 (17) | C24A—C28A—O21 | 121.36 (18) |
C8—C8A—C4A | 123.30 (17) | C28—C28A—O21 | 116.01 (17) |
O6—C9—H91 | 109.5 | O26—C29—H291 | 109.5 |
O6—C9—H92 | 109.5 | O26—C29—H292 | 109.5 |
H91—C9—H92 | 109.5 | H291—C29—H292 | 109.5 |
O6—C9—H93 | 109.5 | O26—C29—H293 | 109.5 |
H91—C9—H93 | 109.5 | H291—C29—H293 | 109.5 |
H92—C9—H93 | 109.5 | H292—C29—H293 | 109.5 |
O7—C10—H101 | 109.5 | O27—C30—H301 | 109.5 |
O7—C10—H102 | 109.5 | O27—C30—H302 | 109.5 |
H101—C10—H102 | 109.5 | H301—C30—H302 | 109.5 |
O7—C10—H103 | 109.5 | O27—C30—H303 | 109.5 |
H101—C10—H103 | 109.5 | H301—C30—H303 | 109.5 |
H102—C10—H103 | 109.5 | H302—C30—H303 | 109.5 |
C16—C11—C12 | 120.92 (18) | C36—C31—C32 | 120.70 (18) |
C16—C11—C2 | 119.42 (18) | C36—C31—C22 | 119.96 (18) |
C12—C11—C2 | 119.61 (17) | C32—C31—C22 | 119.32 (18) |
C13—C12—C11 | 119.40 (19) | C33—C32—C31 | 119.15 (19) |
C13—C12—H12 | 120.3 | C33—C32—H32 | 120.4 |
C11—C12—H12 | 120.3 | C31—C32—H32 | 120.4 |
O13—C13—C14 | 115.32 (17) | O33—C33—C32 | 124.41 (19) |
O13—C13—C12 | 124.60 (19) | O33—C33—C34 | 115.10 (17) |
C14—C13—C12 | 120.07 (19) | C32—C33—C34 | 120.49 (19) |
O14—C14—C13 | 121.26 (18) | O34—C34—C33 | 118.92 (18) |
O14—C14—C15 | 118.58 (18) | O34—C34—C35 | 121.41 (18) |
C13—C14—C15 | 120.03 (17) | C33—C34—C35 | 119.54 (18) |
O15—C15—C16 | 124.40 (18) | O35—C35—C36 | 124.79 (19) |
O15—C15—C14 | 115.18 (17) | O35—C35—C34 | 115.04 (17) |
C16—C15—C14 | 120.42 (18) | C36—C35—C34 | 120.17 (19) |
C15—C16—C11 | 119.13 (19) | C31—C36—C35 | 119.93 (19) |
C15—C16—H16 | 120.4 | C31—C36—H36 | 120.0 |
C11—C16—H16 | 120.4 | C35—C36—H36 | 120.0 |
O13—C17—H171 | 109.5 | O33—C37—H371 | 109.5 |
O13—C17—H172 | 109.5 | O33—C37—H372 | 109.5 |
H171—C17—H172 | 109.5 | H371—C37—H372 | 109.5 |
O13—C17—H173 | 109.5 | O33—C37—H373 | 109.5 |
H171—C17—H173 | 109.5 | H371—C37—H373 | 109.5 |
H172—C17—H173 | 109.5 | H372—C37—H373 | 109.5 |
O14—C18—H181 | 109.5 | O34—C38—H381 | 109.5 |
O14—C18—H182 | 109.5 | O34—C38—H382 | 109.5 |
H181—C18—H182 | 109.5 | H381—C38—H382 | 109.5 |
O14—C18—H183 | 109.5 | O34—C38—H383 | 109.5 |
H181—C18—H183 | 109.5 | H381—C38—H383 | 109.5 |
H182—C18—H183 | 109.5 | H382—C38—H383 | 109.5 |
O15—C19—H191 | 109.5 | O35—C39—H391 | 109.5 |
O15—C19—H192 | 109.5 | O35—C39—H392 | 109.5 |
H191—C19—H192 | 109.5 | H391—C39—H392 | 109.5 |
O15—C19—H193 | 109.5 | O35—C39—H393 | 109.5 |
H191—C19—H193 | 109.5 | H391—C39—H393 | 109.5 |
H192—C19—H193 | 109.5 | H392—C39—H393 | 109.5 |
C8A—O1—C2—C3 | 1.9 (3) | C28A—O21—C22—C23 | −1.5 (3) |
C8A—O1—C2—C11 | −175.76 (16) | C28A—O21—C22—C31 | 177.03 (16) |
O1—C2—C3—C4 | 0.9 (3) | O21—C22—C23—C24 | −0.7 (3) |
C11—C2—C3—C4 | 178.19 (18) | C31—C22—C23—C24 | −179.03 (18) |
C2—C3—C4—O4 | 178.87 (18) | C22—C23—C24—O24 | −179.26 (19) |
C2—C3—C4—C4A | −2.3 (3) | C22—C23—C24—C24A | 1.8 (3) |
O4—C4—C4A—C8A | 179.86 (18) | O24—C24—C24A—C28A | −179.74 (19) |
C3—C4—C4A—C8A | 1.0 (3) | C23—C24—C24A—C28A | −0.8 (3) |
O4—C4—C4A—C5 | 1.4 (3) | O24—C24—C24A—C25 | −0.2 (3) |
C3—C4—C4A—C5 | −177.49 (18) | C23—C24—C24A—C25 | 178.72 (18) |
C8A—C4A—C5—O5 | −179.46 (17) | C28A—C24A—C25—O25 | −179.38 (18) |
C4—C4A—C5—O5 | −1.0 (3) | C24—C24A—C25—O25 | 1.1 (3) |
C8A—C4A—C5—C6 | −0.3 (3) | C28A—C24A—C25—C26 | 0.9 (3) |
C4—C4A—C5—C6 | 178.22 (18) | C24—C24A—C25—C26 | −178.69 (19) |
C9—O6—C6—C5 | 96.8 (2) | C29—O26—C26—C25 | −81.1 (2) |
C9—O6—C6—C7 | −84.3 (2) | C29—O26—C26—C27 | 100.8 (2) |
O5—C5—C6—O6 | −2.8 (3) | O25—C25—C26—O26 | 2.9 (3) |
C4A—C5—C6—O6 | 178.01 (17) | C24A—C25—C26—O26 | −177.32 (18) |
O5—C5—C6—C7 | 178.36 (17) | O25—C25—C26—C27 | −178.96 (18) |
C4A—C5—C6—C7 | −0.8 (3) | C24A—C25—C26—C27 | 0.8 (3) |
C10—O7—C7—C8 | −1.0 (3) | C30—O27—C27—C28 | −1.1 (3) |
C10—O7—C7—C6 | 177.71 (17) | C30—O27—C27—C26 | 179.43 (17) |
O6—C6—C7—O7 | 3.4 (3) | O26—C26—C27—O27 | −4.0 (3) |
C5—C6—C7—O7 | −177.72 (17) | C25—C26—C27—O27 | 177.90 (18) |
O6—C6—C7—C8 | −177.77 (17) | O26—C26—C27—C28 | 176.58 (18) |
C5—C6—C7—C8 | 1.1 (3) | C25—C26—C27—C28 | −1.6 (3) |
O7—C7—C8—C8A | 178.50 (18) | O27—C27—C28—C28A | −178.78 (18) |
C6—C7—C8—C8A | −0.2 (3) | C26—C27—C28—C28A | 0.6 (3) |
C2—O1—C8A—C8 | 175.87 (17) | C25—C24A—C28A—C28 | −1.9 (3) |
C2—O1—C8A—C4A | −3.2 (3) | C24—C24A—C28A—C28 | 177.69 (19) |
C7—C8—C8A—O1 | 179.96 (17) | C25—C24A—C28A—O21 | 179.13 (17) |
C7—C8—C8A—C4A | −1.0 (3) | C24—C24A—C28A—O21 | −1.3 (3) |
C5—C4A—C8A—O1 | −179.78 (16) | C27—C28—C28A—C24A | 1.1 (3) |
C4—C4A—C8A—O1 | 1.7 (3) | C27—C28—C28A—O21 | −179.81 (17) |
C5—C4A—C8A—C8 | 1.2 (3) | C22—O21—C28A—C24A | 2.5 (3) |
C4—C4A—C8A—C8 | −177.30 (18) | C22—O21—C28A—C28 | −176.54 (17) |
C3—C2—C11—C16 | 6.3 (3) | C23—C22—C31—C36 | −1.8 (3) |
O1—C2—C11—C16 | −176.16 (16) | O21—C22—C31—C36 | 179.73 (17) |
C3—C2—C11—C12 | −171.25 (19) | C23—C22—C31—C32 | 176.7 (2) |
O1—C2—C11—C12 | 6.3 (2) | O21—C22—C31—C32 | −1.8 (2) |
C16—C11—C12—C13 | −1.5 (3) | C36—C31—C32—C33 | 0.7 (3) |
C2—C11—C12—C13 | 176.03 (18) | C22—C31—C32—C33 | −177.84 (18) |
C17—O13—C13—C14 | 176.33 (19) | C37—O33—C33—C32 | −4.7 (3) |
C17—O13—C13—C12 | −5.1 (3) | C37—O33—C33—C34 | 175.24 (18) |
C11—C12—C13—O13 | −176.99 (19) | C31—C32—C33—O33 | 178.34 (18) |
C11—C12—C13—C14 | 1.6 (3) | C31—C32—C33—C34 | −1.6 (3) |
C18—O14—C14—C13 | −77.4 (2) | C38—O34—C34—C33 | −117.8 (2) |
C18—O14—C14—C15 | 106.7 (2) | C38—O34—C34—C35 | 66.5 (2) |
O13—C13—C14—O14 | 2.6 (3) | O33—C33—C34—O34 | 5.5 (3) |
C12—C13—C14—O14 | −176.11 (18) | C32—C33—C34—O34 | −174.62 (18) |
O13—C13—C14—C15 | 178.42 (18) | O33—C33—C34—C35 | −178.68 (17) |
C12—C13—C14—C15 | −0.3 (3) | C32—C33—C34—C35 | 1.2 (3) |
C19—O15—C15—C16 | −2.3 (3) | C39—O35—C35—C36 | −1.7 (3) |
C19—O15—C15—C14 | 177.64 (17) | C39—O35—C35—C34 | 178.13 (18) |
O14—C14—C15—O15 | −5.2 (3) | O34—C34—C35—O35 | −4.1 (3) |
C13—C14—C15—O15 | 178.89 (17) | C33—C34—C35—O35 | −179.81 (18) |
O14—C14—C15—C16 | 174.79 (17) | O34—C34—C35—C36 | 175.76 (18) |
C13—C14—C15—C16 | −1.2 (3) | C33—C34—C35—C36 | 0.0 (3) |
O15—C15—C16—C11 | −178.80 (18) | C32—C31—C36—C35 | 0.6 (3) |
C14—C15—C16—C11 | 1.3 (3) | C22—C31—C36—C35 | 179.06 (18) |
C12—C11—C16—C15 | 0.1 (3) | O35—C35—C36—C31 | 178.90 (19) |
C2—C11—C16—C15 | −177.44 (17) | C34—C35—C36—C31 | −0.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O4 | 0.89 (3) | 1.75 (3) | 2.595 (2) | 159 (3) |
O25—H25···O24 | 0.96 (3) | 1.68 (3) | 2.591 (2) | 155 (3) |
C30H50O3 | Dx = 1.165 Mg m−3 |
Mr = 458.70 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 21446 reflections |
a = 6.37386 (6) Å | θ = 2.6–76.2° |
b = 12.10746 (11) Å | µ = 0.56 mm−1 |
c = 33.8928 (3) Å | T = 160 K |
V = 2615.55 (4) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.19 × 0.05 mm |
F(000) = 1016 |
Oxford Diffraction SuperNova dual radiation diffractometer | 5424 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray source | 5324 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.018 |
Detector resolution: 10.3801 pixels mm-1 | θmax = 76.3°, θmin = 2.6° |
ω scans | h = −7→7 |
Absorption correction: gaussian Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Coppens et al., 1965) plus an empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis PRO; Rigaku Oxford Diffraction, 2021) | k = −12→15 |
Tmin = 0.614, Tmax = 1.000 | l = −42→39 |
26797 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0576P)2 + 0.4171P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5424 reflections | Δρmax = 0.23 e Å−3 |
310 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 2226 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.07 (4) |
Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch Solvent used: dichloromethane / MeOH Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a cryo-loop Frames collected: 2026 Seconds exposure per frame: 3.5-14.0 Degrees rotation per frame: 0.8 Crystal-detector distance (mm): 52.0 Client: Placide Toklo Sample code: CCG3 (L2101) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.0614 (2) | 0.56528 (11) | 0.76377 (4) | 0.0366 (3) | |
O20 | 0.68894 (19) | 0.47972 (9) | 0.43024 (3) | 0.0267 (2) | |
O25 | 0.5723 (2) | 0.56885 (11) | 0.33129 (4) | 0.0383 (3) | |
H25 | 0.523 (5) | 0.533 (2) | 0.3098 (9) | 0.064 (8)* | |
C1 | 0.3227 (3) | 0.65364 (12) | 0.67560 (4) | 0.0237 (3) | |
H11 | 0.372968 | 0.724695 | 0.664664 | 0.028* | |
H12 | 0.195700 | 0.631884 | 0.660685 | 0.028* | |
C2 | 0.2636 (3) | 0.67035 (13) | 0.71904 (5) | 0.0272 (3) | |
H21 | 0.383434 | 0.705011 | 0.732882 | 0.033* | |
H22 | 0.143704 | 0.722196 | 0.720494 | 0.033* | |
C3 | 0.2054 (2) | 0.56533 (13) | 0.74025 (4) | 0.0236 (3) | |
C4 | 0.3385 (2) | 0.46238 (13) | 0.73290 (4) | 0.0226 (3) | |
C5 | 0.4116 (2) | 0.45682 (12) | 0.68894 (4) | 0.0188 (3) | |
H5 | 0.281213 | 0.438591 | 0.673871 | 0.023* | |
C6 | 0.5604 (3) | 0.35971 (13) | 0.68050 (4) | 0.0260 (3) | |
H61 | 0.703880 | 0.378314 | 0.689480 | 0.031* | |
H62 | 0.512931 | 0.293418 | 0.695096 | 0.031* | |
C7 | 0.5619 (3) | 0.33575 (12) | 0.63620 (4) | 0.0252 (3) | |
H71 | 0.419165 | 0.313371 | 0.627931 | 0.030* | |
H72 | 0.657416 | 0.272910 | 0.631022 | 0.030* | |
C8 | 0.6320 (2) | 0.43510 (12) | 0.61106 (4) | 0.0185 (3) | |
C9 | 0.5085 (2) | 0.54127 (12) | 0.62390 (4) | 0.0185 (3) | |
H9 | 0.360501 | 0.527212 | 0.615499 | 0.022* | |
C10 | 0.4939 (2) | 0.56510 (12) | 0.66945 (4) | 0.0195 (3) | |
C11 | 0.5794 (3) | 0.64105 (12) | 0.59911 (5) | 0.0294 (4) | |
H111 | 0.500748 | 0.707373 | 0.607671 | 0.035* | |
H112 | 0.730310 | 0.654847 | 0.603899 | 0.035* | |
C12 | 0.5438 (3) | 0.62294 (13) | 0.55480 (5) | 0.0301 (4) | |
H121 | 0.391393 | 0.619297 | 0.549339 | 0.036* | |
H122 | 0.602645 | 0.686024 | 0.539868 | 0.036* | |
C13 | 0.6481 (2) | 0.51636 (12) | 0.54125 (4) | 0.0200 (3) | |
H13 | 0.802446 | 0.525914 | 0.545313 | 0.024* | |
C14 | 0.5806 (2) | 0.41520 (11) | 0.56615 (4) | 0.0180 (3) | |
C15 | 0.7030 (3) | 0.32294 (13) | 0.54484 (4) | 0.0260 (3) | |
H151 | 0.637064 | 0.250069 | 0.549519 | 0.031* | |
H152 | 0.850337 | 0.320332 | 0.554027 | 0.031* | |
C16 | 0.6918 (3) | 0.35461 (12) | 0.50053 (5) | 0.0259 (3) | |
H161 | 0.591387 | 0.306133 | 0.486510 | 0.031* | |
H162 | 0.831463 | 0.346643 | 0.488066 | 0.031* | |
C17 | 0.6177 (2) | 0.47688 (12) | 0.49860 (4) | 0.0210 (3) | |
H17 | 0.463304 | 0.475829 | 0.493403 | 0.025* | |
C18 | 0.8707 (2) | 0.44709 (17) | 0.61720 (5) | 0.0308 (4) | |
H181 | 0.942299 | 0.382284 | 0.606306 | 0.046* | |
H182 | 0.901022 | 0.452861 | 0.645468 | 0.046* | |
H183 | 0.920345 | 0.513756 | 0.603717 | 0.046* | |
C19 | 0.7012 (3) | 0.60844 (15) | 0.68675 (5) | 0.0301 (4) | |
H191 | 0.674285 | 0.643034 | 0.712398 | 0.045* | |
H192 | 0.762195 | 0.663044 | 0.668751 | 0.045* | |
H193 | 0.799351 | 0.546840 | 0.690139 | 0.045* | |
C20 | 0.7195 (3) | 0.54464 (13) | 0.46553 (4) | 0.0235 (3) | |
C21 | 0.9537 (3) | 0.56494 (16) | 0.47150 (5) | 0.0335 (4) | |
H211 | 1.025188 | 0.494256 | 0.475736 | 0.050* | |
H212 | 0.974672 | 0.612534 | 0.494551 | 0.050* | |
H213 | 1.011747 | 0.601056 | 0.448031 | 0.050* | |
C22 | 0.6000 (3) | 0.65290 (14) | 0.45674 (5) | 0.0332 (4) | |
H221 | 0.458482 | 0.651127 | 0.468784 | 0.040* | |
H222 | 0.677386 | 0.717209 | 0.467389 | 0.040* | |
C23 | 0.5841 (5) | 0.66006 (16) | 0.41220 (6) | 0.0493 (6) | |
H231 | 0.663996 | 0.724317 | 0.402167 | 0.059* | |
H232 | 0.435919 | 0.667410 | 0.403866 | 0.059* | |
C24 | 0.6782 (3) | 0.55194 (14) | 0.39679 (5) | 0.0290 (3) | |
H241 | 0.824204 | 0.566913 | 0.387394 | 0.035* | |
C25 | 0.5587 (3) | 0.49359 (14) | 0.36403 (5) | 0.0287 (3) | |
C26 | 0.6673 (5) | 0.38558 (18) | 0.35407 (6) | 0.0534 (6) | |
H261 | 0.599919 | 0.352188 | 0.330977 | 0.080* | |
H262 | 0.656627 | 0.335036 | 0.376565 | 0.080* | |
H263 | 0.815451 | 0.399764 | 0.348232 | 0.080* | |
C27 | 0.3300 (4) | 0.4732 (2) | 0.37400 (8) | 0.0544 (6) | |
H271 | 0.258291 | 0.544080 | 0.377597 | 0.082* | |
H272 | 0.320624 | 0.430056 | 0.398405 | 0.082* | |
H273 | 0.263273 | 0.432252 | 0.352442 | 0.082* | |
C28 | 0.5200 (3) | 0.46709 (16) | 0.76308 (5) | 0.0309 (4) | |
H281 | 0.593564 | 0.537809 | 0.760579 | 0.046* | |
H282 | 0.618130 | 0.406468 | 0.757973 | 0.046* | |
H283 | 0.463258 | 0.459995 | 0.789841 | 0.046* | |
C29 | 0.2025 (3) | 0.36060 (14) | 0.74188 (5) | 0.0319 (4) | |
H291 | 0.158615 | 0.362360 | 0.769587 | 0.048* | |
H292 | 0.284021 | 0.293369 | 0.736939 | 0.048* | |
H293 | 0.078292 | 0.361165 | 0.724853 | 0.048* | |
C30 | 0.3448 (3) | 0.39001 (14) | 0.55941 (5) | 0.0263 (3) | |
H301 | 0.261228 | 0.455077 | 0.566392 | 0.039* | |
H302 | 0.302654 | 0.327509 | 0.575989 | 0.039* | |
H303 | 0.321528 | 0.371522 | 0.531607 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0359 (7) | 0.0451 (7) | 0.0287 (6) | 0.0077 (6) | 0.0136 (5) | 0.0054 (5) |
O20 | 0.0382 (6) | 0.0251 (5) | 0.0169 (5) | 0.0019 (5) | 0.0004 (4) | −0.0011 (4) |
O25 | 0.0547 (8) | 0.0376 (7) | 0.0226 (6) | 0.0011 (6) | −0.0077 (6) | 0.0024 (5) |
C1 | 0.0317 (8) | 0.0195 (6) | 0.0199 (7) | 0.0031 (6) | 0.0060 (6) | −0.0006 (5) |
C2 | 0.0343 (8) | 0.0239 (7) | 0.0234 (7) | 0.0028 (6) | 0.0078 (6) | −0.0038 (6) |
C3 | 0.0241 (7) | 0.0305 (8) | 0.0163 (6) | 0.0013 (6) | −0.0005 (5) | −0.0011 (6) |
C4 | 0.0245 (7) | 0.0264 (7) | 0.0168 (6) | 0.0006 (6) | 0.0012 (5) | 0.0014 (5) |
C5 | 0.0186 (6) | 0.0201 (6) | 0.0178 (6) | 0.0000 (6) | −0.0001 (5) | −0.0002 (5) |
C6 | 0.0311 (8) | 0.0257 (7) | 0.0211 (7) | 0.0097 (7) | 0.0024 (6) | 0.0030 (6) |
C7 | 0.0347 (8) | 0.0185 (6) | 0.0225 (7) | 0.0059 (6) | 0.0046 (6) | 0.0011 (5) |
C8 | 0.0170 (6) | 0.0196 (6) | 0.0189 (6) | 0.0017 (5) | 0.0028 (5) | −0.0014 (5) |
C9 | 0.0203 (6) | 0.0175 (6) | 0.0176 (6) | −0.0008 (5) | 0.0027 (5) | −0.0021 (5) |
C10 | 0.0196 (7) | 0.0209 (7) | 0.0181 (6) | −0.0015 (5) | 0.0020 (5) | −0.0027 (5) |
C11 | 0.0472 (10) | 0.0175 (7) | 0.0235 (7) | −0.0024 (7) | 0.0129 (7) | −0.0023 (5) |
C12 | 0.0482 (10) | 0.0186 (7) | 0.0234 (7) | 0.0055 (7) | 0.0114 (7) | 0.0017 (6) |
C13 | 0.0224 (7) | 0.0182 (6) | 0.0194 (6) | −0.0010 (5) | 0.0046 (5) | −0.0018 (5) |
C14 | 0.0179 (6) | 0.0157 (6) | 0.0204 (7) | 0.0003 (5) | 0.0031 (5) | −0.0018 (5) |
C15 | 0.0341 (9) | 0.0201 (7) | 0.0237 (7) | 0.0054 (6) | 0.0046 (6) | −0.0030 (5) |
C16 | 0.0328 (8) | 0.0215 (7) | 0.0234 (7) | 0.0005 (6) | 0.0055 (6) | −0.0044 (6) |
C17 | 0.0219 (7) | 0.0219 (7) | 0.0193 (6) | −0.0005 (5) | 0.0030 (6) | −0.0022 (5) |
C18 | 0.0179 (7) | 0.0494 (10) | 0.0250 (7) | 0.0034 (7) | 0.0004 (6) | −0.0054 (7) |
C19 | 0.0262 (8) | 0.0373 (8) | 0.0269 (8) | −0.0104 (7) | 0.0022 (6) | −0.0084 (7) |
C20 | 0.0279 (8) | 0.0245 (7) | 0.0180 (7) | −0.0018 (6) | 0.0032 (6) | −0.0026 (6) |
C21 | 0.0301 (8) | 0.0444 (10) | 0.0260 (8) | −0.0102 (8) | 0.0050 (7) | 0.0010 (7) |
C22 | 0.0457 (10) | 0.0271 (8) | 0.0267 (8) | 0.0041 (7) | 0.0080 (7) | 0.0026 (6) |
C23 | 0.0884 (17) | 0.0286 (9) | 0.0307 (9) | 0.0071 (10) | −0.0128 (11) | −0.0005 (7) |
C24 | 0.0321 (8) | 0.0325 (8) | 0.0222 (7) | −0.0033 (7) | 0.0006 (6) | 0.0030 (6) |
C25 | 0.0342 (9) | 0.0297 (8) | 0.0222 (7) | 0.0034 (7) | −0.0024 (6) | 0.0005 (6) |
C26 | 0.0894 (18) | 0.0405 (10) | 0.0302 (9) | 0.0235 (12) | −0.0139 (11) | −0.0088 (8) |
C27 | 0.0383 (11) | 0.0647 (14) | 0.0602 (13) | −0.0147 (11) | −0.0085 (10) | 0.0096 (11) |
C28 | 0.0330 (8) | 0.0396 (9) | 0.0200 (7) | 0.0043 (7) | −0.0051 (6) | 0.0002 (6) |
C29 | 0.0398 (9) | 0.0293 (8) | 0.0266 (8) | −0.0041 (7) | 0.0085 (7) | 0.0037 (6) |
C30 | 0.0215 (7) | 0.0348 (8) | 0.0226 (7) | −0.0082 (6) | 0.0015 (6) | −0.0029 (6) |
O3—C3 | 1.216 (2) | C15—H151 | 0.9900 |
O20—C24 | 1.4334 (19) | C15—H152 | 0.9900 |
O20—C20 | 1.4446 (17) | C16—C17 | 1.555 (2) |
O25—C25 | 1.439 (2) | C16—H161 | 0.9900 |
O25—H25 | 0.90 (3) | C16—H162 | 0.9900 |
C1—C2 | 1.533 (2) | C17—C20 | 1.533 (2) |
C1—C10 | 1.544 (2) | C17—H17 | 1.0000 |
C1—H11 | 0.9900 | C18—H181 | 0.9800 |
C1—H12 | 0.9900 | C18—H182 | 0.9800 |
C2—C3 | 1.507 (2) | C18—H183 | 0.9800 |
C2—H21 | 0.9900 | C19—H191 | 0.9800 |
C2—H22 | 0.9900 | C19—H192 | 0.9800 |
C3—C4 | 1.528 (2) | C19—H193 | 0.9800 |
C4—C29 | 1.537 (2) | C20—C21 | 1.527 (2) |
C4—C28 | 1.545 (2) | C20—C22 | 1.545 (2) |
C4—C5 | 1.5627 (19) | C21—H211 | 0.9800 |
C5—C6 | 1.537 (2) | C21—H212 | 0.9800 |
C5—C10 | 1.5589 (19) | C21—H213 | 0.9800 |
C5—H5 | 1.0000 | C22—C23 | 1.515 (2) |
C6—C7 | 1.529 (2) | C22—H221 | 0.9900 |
C6—H61 | 0.9900 | C22—H222 | 0.9900 |
C6—H62 | 0.9900 | C23—C24 | 1.532 (3) |
C7—C8 | 1.540 (2) | C23—H231 | 0.9900 |
C7—H71 | 0.9900 | C23—H232 | 0.9900 |
C7—H72 | 0.9900 | C24—C25 | 1.520 (2) |
C8—C18 | 1.542 (2) | C24—H241 | 1.0000 |
C8—C9 | 1.5691 (19) | C25—C27 | 1.517 (3) |
C8—C14 | 1.5756 (19) | C25—C26 | 1.518 (3) |
C9—C11 | 1.539 (2) | C26—H261 | 0.9800 |
C9—C10 | 1.5731 (18) | C26—H262 | 0.9800 |
C9—H9 | 1.0000 | C26—H263 | 0.9800 |
C10—C19 | 1.538 (2) | C27—H271 | 0.9800 |
C11—C12 | 1.534 (2) | C27—H272 | 0.9800 |
C11—H111 | 0.9900 | C27—H273 | 0.9800 |
C11—H112 | 0.9900 | C28—H281 | 0.9800 |
C12—C13 | 1.523 (2) | C28—H282 | 0.9800 |
C12—H121 | 0.9900 | C28—H283 | 0.9800 |
C12—H122 | 0.9900 | C29—H291 | 0.9800 |
C13—C17 | 1.5346 (19) | C29—H292 | 0.9800 |
C13—C14 | 1.5484 (19) | C29—H293 | 0.9800 |
C13—H13 | 1.0000 | C30—H301 | 0.9800 |
C14—C15 | 1.5421 (19) | C30—H302 | 0.9800 |
C14—C30 | 1.550 (2) | C30—H303 | 0.9800 |
C15—C16 | 1.551 (2) | ||
C24—O20—C20 | 109.23 (12) | C15—C16—H161 | 110.4 |
C25—O25—H25 | 107.1 (19) | C17—C16—H161 | 110.4 |
C2—C1—C10 | 113.27 (13) | C15—C16—H162 | 110.4 |
C2—C1—H11 | 108.9 | C17—C16—H162 | 110.4 |
C10—C1—H11 | 108.9 | H161—C16—H162 | 108.6 |
C2—C1—H12 | 108.9 | C20—C17—C13 | 117.94 (12) |
C10—C1—H12 | 108.9 | C20—C17—C16 | 114.31 (12) |
H11—C1—H12 | 107.7 | C13—C17—C16 | 102.63 (12) |
C3—C2—C1 | 114.03 (13) | C20—C17—H17 | 107.1 |
C3—C2—H21 | 108.7 | C13—C17—H17 | 107.1 |
C1—C2—H21 | 108.7 | C16—C17—H17 | 107.1 |
C3—C2—H22 | 108.7 | C8—C18—H181 | 109.5 |
C1—C2—H22 | 108.7 | C8—C18—H182 | 109.5 |
H21—C2—H22 | 107.6 | H181—C18—H182 | 109.5 |
O3—C3—C2 | 119.93 (15) | C8—C18—H183 | 109.5 |
O3—C3—C4 | 121.69 (15) | H181—C18—H183 | 109.5 |
C2—C3—C4 | 118.30 (13) | H182—C18—H183 | 109.5 |
C3—C4—C29 | 107.99 (13) | C10—C19—H191 | 109.5 |
C3—C4—C28 | 106.12 (13) | C10—C19—H192 | 109.5 |
C29—C4—C28 | 108.70 (13) | H191—C19—H192 | 109.5 |
C3—C4—C5 | 110.85 (12) | C10—C19—H193 | 109.5 |
C29—C4—C5 | 108.81 (12) | H191—C19—H193 | 109.5 |
C28—C4—C5 | 114.18 (13) | H192—C19—H193 | 109.5 |
C6—C5—C10 | 110.90 (12) | O20—C20—C21 | 109.20 (13) |
C6—C5—C4 | 113.21 (12) | O20—C20—C17 | 104.91 (12) |
C10—C5—C4 | 117.92 (12) | C21—C20—C17 | 113.77 (13) |
C6—C5—H5 | 104.4 | O20—C20—C22 | 103.63 (12) |
C10—C5—H5 | 104.4 | C21—C20—C22 | 111.79 (15) |
C4—C5—H5 | 104.4 | C17—C20—C22 | 112.74 (13) |
C7—C6—C5 | 109.37 (12) | C20—C21—H211 | 109.5 |
C7—C6—H61 | 109.8 | C20—C21—H212 | 109.5 |
C5—C6—H61 | 109.8 | H211—C21—H212 | 109.5 |
C7—C6—H62 | 109.8 | C20—C21—H213 | 109.5 |
C5—C6—H62 | 109.8 | H211—C21—H213 | 109.5 |
H61—C6—H62 | 108.2 | H212—C21—H213 | 109.5 |
C6—C7—C8 | 113.39 (13) | C23—C22—C20 | 105.87 (14) |
C6—C7—H71 | 108.9 | C23—C22—H221 | 110.6 |
C8—C7—H71 | 108.9 | C20—C22—H221 | 110.6 |
C6—C7—H72 | 108.9 | C23—C22—H222 | 110.6 |
C8—C7—H72 | 108.9 | C20—C22—H222 | 110.6 |
H71—C7—H72 | 107.7 | H221—C22—H222 | 108.7 |
C7—C8—C18 | 106.56 (13) | C22—C23—C24 | 105.36 (15) |
C7—C8—C9 | 109.92 (11) | C22—C23—H231 | 110.7 |
C18—C8—C9 | 112.36 (12) | C24—C23—H231 | 110.7 |
C7—C8—C14 | 110.77 (12) | C22—C23—H232 | 110.7 |
C18—C8—C14 | 110.49 (12) | C24—C23—H232 | 110.7 |
C9—C8—C14 | 106.79 (11) | H231—C23—H232 | 108.8 |
C11—C9—C8 | 110.13 (11) | O20—C24—C25 | 108.54 (13) |
C11—C9—C10 | 114.16 (12) | O20—C24—C23 | 105.68 (13) |
C8—C9—C10 | 116.89 (11) | C25—C24—C23 | 116.75 (16) |
C11—C9—H9 | 104.8 | O20—C24—H241 | 108.5 |
C8—C9—H9 | 104.8 | C25—C24—H241 | 108.5 |
C10—C9—H9 | 104.8 | C23—C24—H241 | 108.5 |
C19—C10—C1 | 108.60 (13) | O25—C25—C27 | 109.45 (16) |
C19—C10—C5 | 114.48 (13) | O25—C25—C26 | 110.28 (15) |
C1—C10—C5 | 106.80 (12) | C27—C25—C26 | 110.3 (2) |
C19—C10—C9 | 112.69 (12) | O25—C25—C24 | 103.81 (14) |
C1—C10—C9 | 107.56 (11) | C27—C25—C24 | 113.24 (16) |
C5—C10—C9 | 106.35 (11) | C26—C25—C24 | 109.54 (15) |
C12—C11—C9 | 112.27 (13) | C25—C26—H261 | 109.5 |
C12—C11—H111 | 109.2 | C25—C26—H262 | 109.5 |
C9—C11—H111 | 109.2 | H261—C26—H262 | 109.5 |
C12—C11—H112 | 109.2 | C25—C26—H263 | 109.5 |
C9—C11—H112 | 109.2 | H261—C26—H263 | 109.5 |
H111—C11—H112 | 107.9 | H262—C26—H263 | 109.5 |
C13—C12—C11 | 110.60 (14) | C25—C27—H271 | 109.5 |
C13—C12—H121 | 109.5 | C25—C27—H272 | 109.5 |
C11—C12—H121 | 109.5 | H271—C27—H272 | 109.5 |
C13—C12—H122 | 109.5 | C25—C27—H273 | 109.5 |
C11—C12—H122 | 109.5 | H271—C27—H273 | 109.5 |
H121—C12—H122 | 108.1 | H272—C27—H273 | 109.5 |
C12—C13—C17 | 119.54 (13) | C4—C28—H281 | 109.5 |
C12—C13—C14 | 112.62 (12) | C4—C28—H282 | 109.5 |
C17—C13—C14 | 103.40 (11) | H281—C28—H282 | 109.5 |
C12—C13—H13 | 106.9 | C4—C28—H283 | 109.5 |
C17—C13—H13 | 106.9 | H281—C28—H283 | 109.5 |
C14—C13—H13 | 106.9 | H282—C28—H283 | 109.5 |
C15—C14—C13 | 100.20 (11) | C4—C29—H291 | 109.5 |
C15—C14—C30 | 106.20 (12) | C4—C29—H292 | 109.5 |
C13—C14—C30 | 110.17 (12) | H291—C29—H292 | 109.5 |
C15—C14—C8 | 117.25 (12) | C4—C29—H293 | 109.5 |
C13—C14—C8 | 110.34 (11) | H291—C29—H293 | 109.5 |
C30—C14—C8 | 111.97 (12) | H292—C29—H293 | 109.5 |
C14—C15—C16 | 104.54 (12) | C14—C30—H301 | 109.5 |
C14—C15—H151 | 110.8 | C14—C30—H302 | 109.5 |
C16—C15—H151 | 110.8 | H301—C30—H302 | 109.5 |
C14—C15—H152 | 110.8 | C14—C30—H303 | 109.5 |
C16—C15—H152 | 110.8 | H301—C30—H303 | 109.5 |
H151—C15—H152 | 108.9 | H302—C30—H303 | 109.5 |
C15—C16—C17 | 106.85 (12) | ||
C10—C1—C2—C3 | −52.7 (2) | C17—C13—C14—C15 | 47.73 (14) |
C1—C2—C3—O3 | −140.65 (16) | C12—C13—C14—C30 | 66.56 (17) |
C1—C2—C3—C4 | 42.4 (2) | C17—C13—C14—C30 | −63.86 (14) |
O3—C3—C4—C29 | 27.4 (2) | C12—C13—C14—C8 | −57.59 (17) |
C2—C3—C4—C29 | −155.70 (14) | C17—C13—C14—C8 | 171.99 (11) |
O3—C3—C4—C28 | −88.97 (19) | C7—C8—C14—C15 | −67.19 (16) |
C2—C3—C4—C28 | 87.89 (17) | C18—C8—C14—C15 | 50.65 (18) |
O3—C3—C4—C5 | 146.54 (15) | C9—C8—C14—C15 | 173.13 (12) |
C2—C3—C4—C5 | −36.60 (19) | C7—C8—C14—C13 | 179.01 (12) |
C3—C4—C5—C6 | 175.52 (13) | C18—C8—C14—C13 | −63.14 (16) |
C29—C4—C5—C6 | −65.86 (16) | C9—C8—C14—C13 | 59.34 (14) |
C28—C4—C5—C6 | 55.75 (18) | C7—C8—C14—C30 | 55.91 (16) |
C3—C4—C5—C10 | 43.72 (17) | C18—C8—C14—C30 | 173.76 (13) |
C29—C4—C5—C10 | 162.33 (13) | C9—C8—C14—C30 | −63.76 (15) |
C28—C4—C5—C10 | −76.06 (17) | C13—C14—C15—C16 | −37.61 (15) |
C10—C5—C6—C7 | −64.66 (17) | C30—C14—C15—C16 | 77.04 (15) |
C4—C5—C6—C7 | 160.17 (13) | C8—C14—C15—C16 | −156.95 (13) |
C5—C6—C7—C8 | 58.91 (18) | C14—C15—C16—C17 | 14.67 (16) |
C6—C7—C8—C18 | 73.02 (16) | C12—C13—C17—C20 | 68.69 (18) |
C6—C7—C8—C9 | −48.98 (17) | C14—C13—C17—C20 | −165.19 (12) |
C6—C7—C8—C14 | −166.76 (13) | C12—C13—C17—C16 | −164.70 (13) |
C7—C8—C9—C11 | 179.51 (13) | C14—C13—C17—C16 | −38.58 (14) |
C18—C8—C9—C11 | 61.03 (17) | C15—C16—C17—C20 | 143.52 (13) |
C14—C8—C9—C11 | −60.27 (15) | C15—C16—C17—C13 | 14.60 (16) |
C7—C8—C9—C10 | 47.09 (16) | C24—O20—C20—C21 | −86.45 (16) |
C18—C8—C9—C10 | −71.39 (16) | C24—O20—C20—C17 | 151.25 (13) |
C14—C8—C9—C10 | 167.31 (12) | C24—O20—C20—C22 | 32.81 (16) |
C2—C1—C10—C19 | −68.02 (17) | C13—C17—C20—O20 | 172.24 (12) |
C2—C1—C10—C5 | 55.92 (17) | C16—C17—C20—O20 | 51.50 (16) |
C2—C1—C10—C9 | 169.75 (12) | C13—C17—C20—C21 | 52.95 (18) |
C6—C5—C10—C19 | −65.98 (16) | C16—C17—C20—C21 | −67.79 (17) |
C4—C5—C10—C19 | 66.85 (17) | C13—C17—C20—C22 | −75.68 (17) |
C6—C5—C10—C1 | 173.79 (12) | C16—C17—C20—C22 | 163.58 (13) |
C4—C5—C10—C1 | −53.38 (16) | O20—C20—C22—C23 | −21.93 (19) |
C6—C5—C10—C9 | 59.14 (15) | C21—C20—C22—C23 | 95.54 (19) |
C4—C5—C10—C9 | −168.02 (12) | C17—C20—C22—C23 | −134.80 (17) |
C11—C9—C10—C19 | −56.11 (18) | C20—C22—C23—C24 | 4.5 (2) |
C8—C9—C10—C19 | 74.46 (16) | C20—O20—C24—C25 | −156.38 (13) |
C11—C9—C10—C1 | 63.56 (16) | C20—O20—C24—C23 | −30.43 (19) |
C8—C9—C10—C1 | −165.87 (12) | C22—C23—C24—O20 | 14.8 (2) |
C11—C9—C10—C5 | 177.68 (13) | C22—C23—C24—C25 | 135.56 (18) |
C8—C9—C10—C5 | −51.75 (15) | O20—C24—C25—O25 | −175.45 (13) |
C8—C9—C11—C12 | 59.20 (18) | C23—C24—C25—O25 | 65.33 (19) |
C10—C9—C11—C12 | −166.99 (14) | O20—C24—C25—C27 | 65.9 (2) |
C9—C11—C12—C13 | −54.3 (2) | C23—C24—C25—C27 | −53.3 (2) |
C11—C12—C13—C17 | 175.09 (14) | O20—C24—C25—C26 | −57.7 (2) |
C11—C12—C13—C14 | 53.44 (19) | C23—C24—C25—C26 | −176.89 (18) |
C12—C13—C14—C15 | 178.15 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O25—H25···O3i | 0.90 (3) | 2.03 (3) | 2.9325 (18) | 172 (3) |
Symmetry code: (i) −x+1/2, −y+1, z−1/2. |
Sample | Concentration (dose, µg ml-1) | Time | ||||
6 h | 12 h | 18 h | 24 h | 30 h | ||
PBS | d0 | 100 | 100 | 66.7 | 33.3 | 0 |
Levamisol | d500 | 50 | 50 | 0 | 0 | 0 |
d250 | 66.7 | 0 | 0 | 0 | 0 | |
d125 | 0 | 0 | 0 | 0 | 0 | |
Aqueous extract | d2400 | 100 | 25 | 0 | 0 | 0 |
d1200 | 100 | 75 | 25 | 0 | 0 | |
d600 | 100 | 100 | 0 | 0 | 0 | |
d300 | 100 | 66.7 | 0 | 0 | 0 | |
d150 | 100 | 33.3 | 25 | 0 | 0 | |
d75 | 100 | 75 | 50 | 0 | 0 | |
Ethanol/water extract | d2400 | 100 | 0 | 0 | 0 | 0 |
d1200 | 100 | 33.3 | 0 | 0 | 0 | |
d600 | 100 | 75 | 25 | 0 | 0 | |
d300 | 66.67 | 66.7 | 0 | 0 | 0 | |
d150 | 100 | 50 | 0 | 0 | 0 | |
d75 | 100 | 33.3 | 0 | 0 | 0 |
Compound | Time | |||||
3 h | 6 h | 9 h | 12 h | 15 h | 18 h | |
5-Demethylsinensetin, (1) | 100 | 50 | 0 | 0 | 0 | 0 |
Umuhengerin, (2) | 100 | 75 | 0 | 0 | 0 | 0 |
Ocotillone, (3) | 100 | 100 | 25 | 25 | 0 | 0 |
Lupeol, (4) | 100 | 100 | 0 | 0 | 0 | 0 |
β-Sitosterol, (5) | 100 | 100 | 0 | 0 | 0 | 0 |
Oleanolic acid, (6) | 100 | 100 | 25 | 0 | 0 | 0 |
Betulinic acid, (7) | 100 | 100 | 25 | 25 | 0 | 0 |
Corymbosin, (8) | 100 | 100 | 0 | 0 | 0 | 0 |
β-Sitosterol glucoside, (9) | 100 | 50 | 25 | 25 | 0 | 0 |
Levamisol | 25 | 0 | 0 | 0 | 0 | 0 |
PBS | 100 | 100 | 100 | 100 | 100 | 75 |
Acknowledgements
The authors gratefully acknowledge the support of XTechLab, the experimental platform dedicated to the use of X-ray techniques for scientific and technological research, hosted by the `Agence de Développement de Sèmè City' in Bénin. The authors thank the Ministry of Higher Education and Scientific Research of Bénin through its program `Appui aux Doctorants'. MPT thanks the YaBiNaPA project coordination team, in particular, Professor Bruno N. Lenta, Dr Billy T. Tchegnitegni and Dr Joseph Tchamgoue for their diverse contributions to the realization of this work. Dr Olivier Blacque of the Department of Chemistry, University of Zurich, is thanked for assistance with one diffraction data collection.
Funding information
Funding for this research was provided by: the Yaounde-Bielefeld Bilateral Graduate School Natural Products with Antiparasite and Anti-bacterial Activity (YaBiNaPA) project, financially supported by DAAD for the isolation and spectroscopic analyses (grant No. 57316173); the West African Research Association (WARA) for the funding that allowed the biological tests to be performed; a Swiss National Science Foundation R'Equip grant (grant No. 206021_164018) and the University of Zurich for the purchase of an X-ray diffractometer.
References
Aalbersberg, W. & Singh, Y. (1991). Phytochemistry, 30, 921–926. CrossRef CAS Web of Science Google Scholar
Adizov, S. M., Mukhamathanova, R. F., Turgunov, K. K., Sham'yanov, I. D. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o578. CSD CrossRef IUCr Journals Google Scholar
Adnyana, I. K., Tezuka, Y., Banskota, A. H., Xiong, Q., Tran, K. Q. & Kadota, S. (2000). J. Nat. Prod. 63, 496–500. Web of Science CrossRef PubMed CAS Google Scholar
Akoègninou, A., Van der Burg, W. J. & Van der Maesen, L. J. G. (2006). In Flore analytique du Bénin. Leiden: Backhuys Publishers. Google Scholar
Alowanou, G. G., Olounladé, A. P., Akouèdegni, G. C., Faihun, M., Koudandé, D. O. & Hounzangbé-Adoté, S. M. (2019). Parasitol. Res. 118, 1215–1223. Web of Science CrossRef CAS PubMed Google Scholar
Al-Yahya, M. A., Hifnawy, M. S., Mossa, J. S., El-Feraly, F. S., McPhail, D. R. & McPhail, A. T. (1987). Pytochemistry, 26, 2648–2649. CAS Google Scholar
Amadou, S. (2004). PhD thesis, University of Bamako, Bamako, Mali. Google Scholar
Amako, N. F. & Nnaji, J. C. (2016). J. Chem. Soc. Nigeria, 41, 164–168. Google Scholar
Ayers, S., Zink, D. L., Mohn, K., Powell, J. S., Brown, C. M., Murphy, T., Brand, R., Pretorius, S., Stevenson, D., Thompson, D. & Singh, S. B. (2008). Phytochemistry, 69, 541–545. Web of Science CrossRef PubMed CAS Google Scholar
Baba-Moussa, F., Akpagana, K. & Bouchet, P. (1999). J. Ethnopharmacol. 66, 335–338. Web of Science PubMed CAS Google Scholar
Balde, E. S., Camara, A. K., Traoré, M. S., Baldé, N. M., Megalizzi, V., Pieters, L. & Balde, A. M. (2019). J. Pharmacogn. Phytochem. 8, 2230–2237. Google Scholar
Banskota, A. H., Tezuka, Y., Tran, K. Q., Tanaka, K., Saiki, I. & Kadota, S. (2000). Chem. Pharm. Bull. 48, 496–504. CrossRef CAS Google Scholar
Barrau, E., Fabre, N., Fouraste, I. & Hoste, H. (2005). Parasitology, 131, 531–538. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betancor, C., Freire, R., Hernández, R., Suárez, E., Cortés, M., Prangé, T. & Pascard, C. (1983). J. Chem. Soc. Perkin Trans. I, pp. 1119–1126. CSD CrossRef Web of Science Google Scholar
Bisset, N. G., Diaz, M. A., Ehret, C., Ourisson, G., Palmade, M., Patil, F., Pesnelle, P. & Streith, J. (1966). Phytochemistry, 5, 865–880. CrossRef CAS Web of Science Google Scholar
Bisset, N. G., Diaz-Parra, M. A., Ehret, C. & Ourisson, G. (1967). Phytochemistry, 6, 1395–1405. CrossRef CAS Google Scholar
Brunet, S. & Hoste, H. (2006). J. Agric. Food Chem. 54, 7481–7487. Web of Science CrossRef PubMed CAS Google Scholar
Butler, M. S., Healy, P. C., Forster, P. I., Guymer, G. P. & Quinn, R. J. (2018). Fitoterapia, 126, 90–92. Web of Science CSD CrossRef CAS PubMed Google Scholar
Çitoğlu, G. S., Sever, B., Antus, S., Baitz-Gács, E. & Altanlar, N. (2003). Pharm. Biol. 41, 483–486. Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dawe, A. (2013). Pharm. Crop. 4, 38–59. CrossRef Google Scholar
Dedehou, V. F. G. N., Olounladé, P. A., Adenilé, A. D., Azando, E. V. B., Alowanou, G. G., Daga, F. D. & Hounzangbé-Adoté, M. S. (2014). J Anim. Plant Sci. 22, 3368–3378. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hoste, H., Torres-Acosta, F., Sotiraki, S., Houzangbe-Adote, S., Kabore, A., Costa, L. Jr, Louvandini, H., Gaudin, E. & Mueller-Harvey, I. (2018). Innov. Agron. 66, 19–29. Google Scholar
Hounzangbe-Adote, M. S., Paolini, V., Fouraste, I., Moutairou, K. & Hoste, H. (2005). Res. Vet. Sci. 78, 155–160. Web of Science PubMed CAS Google Scholar
Imbenzi, P. S., He, Y., Yan, Z., Osoro, E. K. & Cheplogoi, P. K. (2014). Chin. Herb. Med. 6, 242–246. CrossRef Google Scholar
Jossang, A., Pousset, J. L. & Bodo, B. (1994). J. Nat. Prod. 57, 732–737. CrossRef CAS Web of Science Google Scholar
Kerharo, J. & Adam, J. G. (1974). In La pharmacopée Sénégalaise Traditionnelle: Plantes Médicinales et Toxiques. Paris: Vigot Frères. Google Scholar
Khazneh, E., Hřibová, P., Hošek, J., Suchý, P., Kollár, P., Pražanová, G., Muselík, J., Hanaková, Z., Václavík, J., Miłek, M., Legáth, J. & Šmejkal, K. (2016). Molecules, 21, 404. Web of Science CrossRef PubMed Google Scholar
Komlan, B. (2002). Acta Bot. Gallica, 149, 515–516. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahato, S. B. & Kundu, A. P. (1994). Phytochemistry, 37, 1517–1575. CrossRef CAS Web of Science Google Scholar
Malgras, D. (1992). Arbres et arbustes guérisseurs des savanes maliennes, pp. 128–129, 478. Paris: Karthala et ACCT. Google Scholar
Martinez-Vazquez, M., Garcia, H. M. V., Toscano, R. A. & Perez, G. E. (1993). J. Nat. Prod. 56, 1410–1413. CAS Google Scholar
McGaw, L. J., Rabe, T., Sparg, S. G., Jäger, A. K., Eloff, J. N. & van Staden, J. (2001). J. Ethnopharmacol. 75, 45–50. Web of Science CrossRef PubMed CAS Google Scholar
N'diaye, D., Mbaye, M. D., Gassama, A., Lavaud, C. & Pilard, S. (2017). Int. J. Biol. Chem. Sci. 11, 488–498. CAS Google Scholar
Ouattara, Y., Sanon, S., Traoré, Y., Mahiou, V., Azas, N. & Sawadogo, L. (2006). Afr. J. Tradit. Complement. Altern. Med. 3, 75–81. Google Scholar
Paolini, V., Dorchies, P. & Hoste, H. (2003). Vet. Rec. 152, 600–601. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parvez, M., Riaz, M. & Malik, A. (2001). Acta Cryst. E57, o289–o291. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku Oxford Diffraction (2021). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland. Google Scholar
Roy, S., Gorai, D., Acharya, R. & Roy, R. (2014). Indo Am. J. Pharm. Res. 4, 5266–5299. Google Scholar
Rubinstein, L., Goad, L. J., Clague, A. D. H. & Mulheirn, L. J. (1976). Phytochemistry, 15, 195–200. CrossRef CAS Web of Science Google Scholar
Rwangabo, P. C., Claeys, M., Pieters, L., Corthout, J., Vanden Berghe, D. A. & Vlietinck, A. J. (1988). J. Nat. Prod. 51, 966–968. CrossRef CAS PubMed Web of Science Google Scholar
Sall, C., Ndoye, S. F., Dioum, M. D., Seck, I., Gueye, R. S., Faye, B., Thiam, C. O., Seck, M., Gueye, P. M., Fall, D., Fall, M. & Dieye, T. N. (2017). Br. J. Appl. Sci. Technol. 19, 1–11. CrossRef CAS Google Scholar
Sene, M., Ndiaye, D., Gassama, A., Barboza, F. S., Mbaye, M. D. & Yoro, S. Y. G. (2018). J. Adv. Med. Pharm. Sci. 19, 1–8. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sholichin, M., Yamasaki, K., Kasai, R. & Tanaka, O. (1980). Chem. Pharm. Bull. 28, 1006–1008. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Suleimenov, E. N., Smagulova, F. M., Morozova, O. V., Raldugin, V. A., Bagryanskaya, I. Yu., Gatilov, Yu. V., Yamovoi, V. I. & Adekenov, S. M. (2005). Chem. Nat. Compd. 41, 689–691. Web of Science CrossRef CAS Google Scholar
Toklo, P. M., Ladekan-Yayi, E. C., Assogba, M. F., Sakirigui, A., Alowanou, G. G., Moudachirou, M. & Gbenou, J. D. (2021). Chem. Res. J. 6, 21–36. Google Scholar
Turdybekov, K. M., Rakhimova, B. B., Makhmutova, A. S., Smailova, Zh. R., Nurkenov, O. A. & Adekenov, S. M. (2014). Chem. Nat. Compd. 50, 135–136. Web of Science CrossRef CAS Google Scholar
Usman, H., Sadiq, F. A., Mohammed, B., Umar, H. A., Tijjani, M. A., Pindiga, N. Y., Zadva, A. I., Thliza, B. A. & Ahmed, I. A. (2017). Chem. Res. J, 2, 31–36. CAS Google Scholar
Warnhoff, E. W. & Halls, C. M. M. (1965). Can. J. Chem. 43, 3311–3321. CrossRef CAS Web of Science Google Scholar
Yamauchi, H., Fujiwara, T. & Tomita, K. (1969). Tetrahedron Lett. 10, 4245–4248. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.