research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Anthelmintic flavonoids and other com­pounds from Combretum glutinosum Perr. ex DC (Combretaceae) leaves

crossmark logo

aLaboratoire de Pharmacognosie et des Huiles Essentielles, Facultés des Sciences et Techniques, Université d'Abomey Calavi, 01 BP: 918 ISBA Cotonou, Benin, bDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, cLaboratoire d'Ethnopharmacologie et de Santé Animale, Faculté des Sciences Agronomiques, Université d'Abomey Calavi, 01 BP: 526 Cotonou, Benin, and dDepartment of Chemistry, Higher Teacher Training College, University of Yaounde I, PO Box 47, 4124 Yaounde, Cameroon
*Correspondence e-mail: eleoyayi@yahoo.fr, anthony.linden@chem.uzh.ch

Edited by A. G. Oliver, University of Notre Dame, USA (Received 28 June 2021; accepted 30 July 2021; online 6 August 2021)

A chemical study of the hydro-ethanol extract of the leaves of Combretum glutinosum resulted in the isolation of nine com­pounds, including 5-de­methyl­sin­en­se­tin (1), umuhengerin (2), (20S,24R)-ocotillone (3), lupeol (4), β-sitosterol (5), oleanolic acid (6), betulinic acid (7), corymbosin (8) and β-sito­sterol glucoside (9). Four com­pounds have been isolated for the first time from the genus Combretum [viz. (1), (2), (3) and (8)]. The crystal structures of flavonoid (2), C20H20O8, Z′ = 2, and triterpene (3), C30H50O3, Z′ = 1, have been determined for the first time; the latter confirmed the absolute configuration of native (20S,24R)-ocotillone previously derived from the crystal structures of related derivatives. The mol­ecules of (3) are linked into supra­molecular chains by inter­molecular O—H⋯O hydrogen bonds. The crude extracts obtained by aqueous decoction and hydro-ethano­lic maceration, as well as the nine isolated com­pounds, were tested for their anthelmintic activity on the larvae and adult worms of Haemonchus contortus, a hematophage that causes parasitic disorders in small ruminants. The evaluated anthelmintic activity showed that the extracts at different doses, as well as all the com­pounds tested at 150 µg ml−1, inhibited the migration of the larvae and the motility of the adult worms of the parasite com­pared with the phosphate buffer solution negative reference control. The best activity was obtained with flavonoids (1), (2) and (8) on both stages of the parasite. The flavones that showed good activity can be used for the further development of other derivatives, which could increase the anthelmintic efficacy.

1. Introduction

Combretaceae are trees, shrubs or often lianas widely distributed in subtropical to tropical regions. This family consists of 18 genera, including 370 species of Combretum (Malgras, 1992[Malgras, D. (1992). Arbres et arbustes guérisseurs des savanes maliennes, pp. 128-129, 478. Paris: Karthala et ACCT.]; McGaw et al., 2001[McGaw, L. J., Rabe, T., Sparg, S. G., Jäger, A. K., Eloff, J. N. & van Staden, J. (2001). J. Ethnopharmacol. 75, 45-50.], Amadou, 2004[Amadou, S. (2004). PhD thesis, University of Bamako, Bamako, Mali.]). These species are widely used in traditional medicine for their numerous pharmacological properties (Komlan, 2002[Komlan, B. (2002). Acta Bot. Gallica, 149, 515-516.]). C. glutinosum is a tree of the genus Combretum belonging to the family Combretaceae. This plant is most often present in tree savannas, normally on shallow soils (Akoègninou et al., 2006[Akoègninou, A., Van der Burg, W. J. & Van der Maesen, L. J. G. (2006). In Flore analytique du Bénin. Leiden: Backhuys Publishers.]). It is distributed in tropical Africa from Mauritania to Uganda, passing through, for example, Senegal, Cameroon and Chad. In Bénin, the plant is spread in the North in Kandi, Kétou, Toukountouna, south of Malanville, Bessassi and Porga, and in the Pendrari Park (Akoègninou et al., 2006[Akoègninou, A., Van der Burg, W. J. & Van der Maesen, L. J. G. (2006). In Flore analytique du Bénin. Leiden: Backhuys Publishers.]). This species is among the most widely used of the medicinal plants in West Africa (Kerharo & Adam, 1974[Kerharo, J. & Adam, J. G. (1974). In La pharmacopée Sénégalaise Traditionnelle: Plantes Médicinales et Toxiques. Paris: Vigot Frères.]). It has been reported by Toklo et al. (2021[Toklo, P. M., Ladekan-Yayi, E. C., Assogba, M. F., Sakirigui, A., Alowanou, G. G., Moudachirou, M. & Gbenou, J. D. (2021). Chem. Res. J. 6, 21-36.]) that it is used in the treatment of malaria, dysentery, diarrhea, bronchitis and hypertension. The traditional uses of this plant have led to numerous pharmacological studies, including anti­bacterial, anti­fungal, anthelmintic, anti­malarial and anti­drepanosite properties (Baba-Moussa et al., 1999[Baba-Moussa, F., Akpagana, K. & Bouchet, P. (1999). J. Ethnopharmacol. 66, 335-338.]; Ouattara et al., 2006[Ouattara, Y., Sanon, S., Traoré, Y., Mahiou, V., Azas, N. & Sawadogo, L. (2006). Afr. J. Tradit. Complement. Altern. Med. 3, 75-81.]; Usman et al., 2017[Usman, H., Sadiq, F. A., Mohammed, B., Umar, H. A., Tijjani, M. A., Pindiga, N. Y., Zadva, A. I., Thliza, B. A. & Ahmed, I. A. (2017). Chem. Res. J, 2, 31-36.]; Sall et al., 2017[Sall, C., Ndoye, S. F., Dioum, M. D., Seck, I., Gueye, R. S., Faye, B., Thiam, C. O., Seck, M., Gueye, P. M., Fall, D., Fall, M. & Dieye, T. N. (2017). Br. J. Appl. Sci. Technol. 19, 1-11.]; Alowanou et al., 2019[Alowanou, G. G., Olounladé, A. P., Akouèdegni, G. C., Faihun, M., Koudandé, D. O. & Hounzangbé-Adoté, S. M. (2019). Parasitol. Res. 118, 1215-1223.]). Previous phytochemical studies of the genus Combretum led to the isolation of tannins, flavonoids, triterpenoids and steroids (Jossang et al., 1994[Jossang, A., Pousset, J. L. & Bodo, B. (1994). J. Nat. Prod. 57, 732-737.]; Dawe et al., 2013[Dawe, A. (2013). Pharm. Crop. 4, 38-59.]; Roy et al., 2014[Roy, S., Gorai, D., Acharya, R. & Roy, R. (2014). Indo Am. J. Pharm. Res. 4, 5266-5299.], Amako et al., 2016[Amako, N. F. & Nnaji, J. C. (2016). J. Chem. Soc. Nigeria, 41, 164-168.]; Sene et al., 2018[Sene, M., Ndiaye, D., Gassama, A., Barboza, F. S., Mbaye, M. D. & Yoro, S. Y. G. (2018). J. Adv. Med. Pharm. Sci. 19, 1-8.]; N'Diaye et al., 2017[N'diaye, D., Mbaye, M. D., Gassama, A., Lavaud, C. & Pilard, S. (2017). Int. J. Biol. Chem. Sci. 11, 488-498.]; Balde et al., 2019[Balde, E. S., Camara, A. K., Traoré, M. S., Baldé, N. M., Megalizzi, V., Pieters, L. & Balde, A. M. (2019). J. Pharmacogn. Phytochem. 8, 2230-2237.]). In the search for a new active ingredient effective against increasing biological resistance to synthetic anthelmintics, the study reported here was undertaken on the leaves of C. glutinosum, which were obtained from plants in Bénin. The search for bioactive secondary metabolites from the leaves revealed nine known com­pounds (Scheme 1[link]), of which the crystal structures of two, one flavonoid and one triterpene, have been determined for the first time. The biological activity of these com­pounds on the larvae and adult worms of H. contortus, a hematophage that causes parasitic disorders in small ruminants, has also been investigated.

2. Experimental

2.1. Chromatographic and spectroscopic analysis

Column chromatography was performed using 230–400 mesh silica gel (Merck, Darmstadt, Germany), 70–230 mesh silica gel (Merck) and sephadex LH-20 (Sigma–Aldrich). Thin-layer chromatography (TLC) was performed on a pre-coated aluminium sheet of silica gel 60 F254 (Merck). The spots of com­pounds were detected using UV lamps at two wavelengths (254 and 365 nm) and then fixed using a 10% sulfuric acid spray reagent, followed by heating to 373 K. The high-resolution mass spectra were recorded in positive mode using a QTOF mass spectrometer (Bruker, Germany) equip­ped with an HESI source. The spectrometer operates in posi­tive mode (mass range 100–1500, with a scan rate of 1.00 Hz), with automatic gain control to provide high accuracy mass measurements within the mass range. NMR spectra were recorded in deuterated chloro­form (CDCl3) and/or deuterated methanol (MeOD) using a Bruker DRX 500 NMR spec­trom­eter (Bruker, Rheinstetten, Germany); the chemical shifts (δ) are given in ppm relative to tetra­methyl­silane (TMS) (Sigma–Aldrich, Germany) as the inter­nal standard.

2.2. Collection of plant material, extraction and isolation of compounds

The leaves of C. glutinosum were collected in April 2018 in Kandi (in northern Bénin) and identified at the national herbarium of the University of Abomey–Calavi. A reference specimen was stored under the accession number YH 241/HNB after authentication.

The leaves were dried in the shade for two weeks before pulverization. The leaf powder (500 g) was macerated three times in 10 l of an ethanol/water (7:3 v/v) mixture at room temperature for 72 h. After filtration, the crude extract (67 g) was obtained by evaporation of the solvent under reduced pressure using a rotary evaporator equipped with a vacuum pump. Different systems were used for TLC of the extract in order to find the best separation system. The extract was separated directly by silica-gel column chromatography. The column was eluted with mixtures of hexa­ne–ethyl acetate (hex/EtOAc) and methanol with increasing polarity to give 92 fractions of 200 ml each. They were grouped on the basis of their TLC profile into five main fractions, i.e. FCG1 (Hex/EtOAc 10%, 5.3 g), FCG2 (Hex/EtOAc 20%, 12.9 g), FCG3 (Hex/EtOAc 30%, 5.6 g), FCG4 (Hex/EtOAc 40–50%, 5 g) and FCG5 (MeOH, 21.6 g), with one pure com­pound, lupeol [(4); 13 mg], obtained in the hex/EtOAc 10% system.

[Scheme 1]

The FCG2 fraction was purified by silica-gel column chromatography using an isocratic system of hex/EtOAc (17:3 v/v) to give betulinic acid [(7); 35 mg], oleanolic acid [(6); 12 mg], β-sitosterol [(5); 26 mg], and (20S,24R)-ocotillone [(3); 55 mg], as well as two subfractions, FCG2-1 and FCG2-2. The FCG2-1 subfraction (2.1 g) was separated on a Sephadex LH-20 column by eluting with di­chloro­methane–methanol (4:6 v/v) to yield corymbosin [(8); 6 mg].

Based on the TLC profiles, the FCG2-2 subfraction was combined with the FCG3 fraction and subjected to silica-gel column chromatography using a gradient elution of hex/EtOAc with increasing polarity to obtain the com­pounds 5-de­­methyl­sinensetin [(1); 17 mg] and umuhengerin [(2) 22 mg]. The FCG4 fraction was also eluted with a mixture of ethyl acetate and 5% methanol to give eight subfractions (FCG4 1–8), which all contained an impure com­pound (CCG20). The FCG4-2 fraction was passed through a Sepha­dex LH-20 column and eluted with methanol to give solely pure CCG20, which was identified as β-sitosterol glucoside [(9); 48 mg].

Colourless needle-like crystals of (2) and colourless plate-like crystals of (3) were obtained by slow diffusion of di­chloro­methane into their solutions in methanol. Selected crystals were mounted on cryo loops.

2.3. Aqueous extract

An aqueous extract was obtained by boiling 100 g of C. glutinosum leaf powder in 1000 ml of distilled water brought to the boil for 30 min. After deca­ntation, the mixture was filtered on Whatman paper and the filtrate obtained was evaporated under vacuum to obtain the dry extract.

2.4. Anthelmintic tests

2.4.1. Test for inhibition of larval migration and motility of adult worms

The test of larval migration and motility of adult worms in the presence of the samples was evaluated following the procedure of Hounzangbe-Adote et al. (2005[Hounzangbe-Adote, M. S., Paolini, V., Fouraste, I., Moutairou, K. & Hoste, H. (2005). Res. Vet. Sci. 78, 155-160.]). The observation of the worms in the presence of the extracts was done every 6 h and every 3 h in the presence of the com­pounds. The concentration of the tested com­pounds was 150 µg ml−1 in phosphate buffer solution (PBS, pH 7 and 0.15 M), analogous to that used by Brunet & Hoste (2006[Brunet, S. & Hoste, H. (2006). J. Agric. Food Chem. 54, 7481-7487.]). Levamisole and PBS were used as positive and negative reference controls, respectively.

2.4.2. Statistical analysis

The different values were included in a two-criteria repeated measures analysis of variance model. The com­parison of means for the different tests was done using the SNK procedure, which runs the Student–Newman–Keuls test in the R software. Differences were considered significant at the 5% level.

2.5. Refinement

Crystal data, data collection and structure refinement details for (2) and (3) are summarized in Table 1[link]. For both structures, the hy­droxy H atoms were located in a difference Fourier map and their positions were refined freely along with individual isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.99 (methyl­ene) or 1.00 Å (methine) and with Uiso(H) = 1.2Ueq(C). The absolute configuration of (3) was determined confidently from the diffraction experiment by refinement of the absolute structure parameter using the intensity quotients method (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). For (2), one reflection was omitted from the final cycles of refinement because its observed intensity was much lower than the calculated value as a result of being partially obscured by the beam stop; a correction for secondary extinction was also applied.

Table 1
Experimental details

For both structures: Z = 4. Experiments were carried out at 160 K with Cu Kα radiation. H atoms were treated by a mixture of independent and constrained refinement. The absorption correction was numerical based on Gaussian integration over a multifaceted crystal model (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) plus empirical (using intensity measurements) using spherical harmonics (CrysAlis PRO; Rigaku Oxford Diffraction, 2021[Rigaku Oxford Diffraction (2021). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]).

  (2) (3)
Crystal data
Chemical formula C20H20O8 C30H50O3
Mr 388.36 458.70
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, P212121
a, b, c (Å) 4.97902 (15), 18.5654 (5), 19.1368 (3) 6.37386 (6), 12.10746 (11), 33.8928 (3)
α, β, γ (°) 89.5065 (18), 84.322 (2), 89.375 (2) 90, 90, 90
V3) 1760.12 (8) 2615.55 (4)
μ (mm−1) 0.96 0.56
Crystal size (mm) 0.17 × 0.03 × 0.01 0.24 × 0.19 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Synergy dual radiation Oxford Diffraction SuperNova dual radiation
Tmin, Tmax 0.694, 1.000 0.614, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34916, 6662, 5215 26797, 5424, 5324
Rint 0.060 0.018
(sin θ/λ)max−1) 0.610 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.05 0.032, 0.089, 1.03
No. of reflections 6661 5424
No. of parameters 524 310
Δρmax, Δρmin (e Å−3) 0.44, −0.23 0.23, −0.14
Absolute structure Flack x determined using 2226 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.07 (4)
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2021[Rigaku Oxford Diffraction (2021). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

3.1. Identification of com­pounds

Repeated column chromatography of C. glutinosum leaf hydro-ethanol extract followed by silica-gel and sephadex LH-20 column purification yielded nine known com­pounds: 5-de­methyl­sinensetin, (1) (Khazneh et al., 2016[Khazneh, E., Hřibová, P., Hošek, J., Suchý, P., Kollár, P., Pražanová, G., Muselík, J., Hanaková, Z., Václavík, J., Miłek, M., Legáth, J. & Šmejkal, K. (2016). Molecules, 21, 404.]), umuhengerin, (2) (Rwangabo et al., 1988[Rwangabo, P. C., Claeys, M., Pieters, L., Corthout, J., Vanden Berghe, D. A. & Vlietinck, A. J. (1988). J. Nat. Prod. 51, 966-968.]; Imbenzi et al., 2014[Imbenzi, P. S., He, Y., Yan, Z., Osoro, E. K. & Cheplogoi, P. K. (2014). Chin. Herb. Med. 6, 242-246.]), (20S,24R)-ocotillone, (3) (Aalbersberg et al., 1991[Aalbersberg, W. & Singh, Y. (1991). Phytochemistry, 30, 921-926.]), lupeol, (4) (Sholichin et al., 1980[Sholichin, M., Yamasaki, K., Kasai, R. & Tanaka, O. (1980). Chem. Pharm. Bull. 28, 1006-1008.]; Banskota et al., 2000[Banskota, A. H., Tezuka, Y., Tran, K. Q., Tanaka, K., Saiki, I. & Kadota, S. (2000). Chem. Pharm. Bull. 48, 496-504.]; Balde et al., 2019[Balde, E. S., Camara, A. K., Traoré, M. S., Baldé, N. M., Megalizzi, V., Pieters, L. & Balde, A. M. (2019). J. Pharmacogn. Phytochem. 8, 2230-2237.]), β-sitosterol, (5) (Rubinstein et al., 1976[Rubinstein, L., Goad, L. J., Clague, A. D. H. & Mulheirn, L. J. (1976). Phytochemistry, 15, 195-200.]; Banskota et al., 2000[Banskota, A. H., Tezuka, Y., Tran, K. Q., Tanaka, K., Saiki, I. & Kadota, S. (2000). Chem. Pharm. Bull. 48, 496-504.]), oleanolic acid, (6) (Mahato & Kundu, 1994[Mahato, S. B. & Kundu, A. P. (1994). Phytochemistry, 37, 1517-1575.]), betulinic acid, (7) (Sholichin et al., 1980[Sholichin, M., Yamasaki, K., Kasai, R. & Tanaka, O. (1980). Chem. Pharm. Bull. 28, 1006-1008.]; Banskota et al., 2000[Banskota, A. H., Tezuka, Y., Tran, K. Q., Tanaka, K., Saiki, I. & Kadota, S. (2000). Chem. Pharm. Bull. 48, 496-504.]), corymbosin, (8) (Çitoğlu et al., 2003[Çitoğlu, G. S., Sever, B., Antus, S., Baitz-Gács, E. & Altanlar, N. (2003). Pharm. Biol. 41, 483-486.]), and β-sitosterol glucoside, (9) (Adnyana et al., 2000[Adnyana, I. K., Tezuka, Y., Banskota, A. H., Xiong, Q., Tran, K. Q. & Kadota, S. (2000). J. Nat. Prod. 63, 496-500.]) (Scheme 1[link]). The structures of the com­pounds were established by inter­pretation of their spectroscopic data, mainly 1D NMR [1H, 13C and DEPT (distortionless enhancement by polarization transfer)], 2D NMR [COSY (correlated spectroscopy), HSQC (heteronuclear single quantum coherence) and HMBC (heteronuclear multiple bond correlation)] and mass spectrometry, and by com­parison with literature data. Although all of these com­pounds are known, com­pounds (1), (2), (3) and (8) have been isolated for the first time from the genus Combretum and the crystal structures of com­pounds (2) and (3), previously undetermined, have been established.

3.2. The crystal structures of (2) and (3)

The flavonoid umuhengerin, (2), was originally isolated from the leaves of Lantana trifolia L. (Verbenaceae) and found to display in vitro anti­bacterial and anti­fungal properties (Rwangabo et al., 1988[Rwangabo, P. C., Claeys, M., Pieters, L., Corthout, J., Vanden Berghe, D. A. & Vlietinck, A. J. (1988). J. Nat. Prod. 51, 966-968.]). In the crystal structure of (2), there are two symmetry-independent mol­ecules in the asymmetric unit (Fig. 1[link]). The conformations of these mol­ecules differ primarily in the orientations of the C6/C26 and C14/C34 meth­oxy groups, which are the substituents adjacent to the hy­droxy group and at the 4-position of the tri­meth­oxy­phenyl ring, respectively. In the former case, these meth­oxy C—O torsion angles differ by 15.7 (3)°, while the rotation is 164.81 (3)° in the latter case (calculated when one mol­ecule is overlaid with the inverted form of the other mol­ecule, as allowed by the space-group symmetry). Apart from the methyl groups of these meth­oxy substituents, both flavonoid mol­ecules are essentially planar, with r.m.s. deviations of all ring C and O atoms of 0.27 and 0.14 Å for the mol­ecules containing atoms O1 and O21, respectively, although there may be a little bowing along the axis of the three-ring system. The dihedral angles between the individual planes of the phenyl and fused rings are 7.18 (8) and 3.05 (8)°, respectively.

[Figure 1]
Figure 1
Separate views of the two symmetry-independent mol­ecules of (2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size.

The hy­droxy group in each independent flavonoid mol­ecule forms an intra­molecular hydrogen bond with the adjacent carbonyl O atom (Table 2[link]). In the crystal packing, the mol­ecules form stacks, each of which consists of repeats of just one of the independent mol­ecules. The mol­ecules containing atom O1 lie tilted within an otherwise uniform column that runs parallel to the [100] direction. The mol­ecular plane is tilted by approximately 45° with respect to the stacking direction. Nonetheless, there are no significant ππ inter­actions, because the ring offsets resulting from the tilting preclude significant overlap of the ring systems. The mol­ecules containing atom O21 also stack parallel to the [100] direction in a similar 45°-tilted fashion, but the orientation of the tilted planes differs from that in the O1-containing stacks (Fig. 2[link]); the normals to the mol­ecular planes in the two independent stacks point in different directions. Each type of stack runs parallel to another stack of the same kind related by a centre of inversion to give a centrosymmetric double-stack pair. As the planes of the mol­ecules in the two independent types of pairs of stacks are oriented differently, ππ inter­actions between the stacks are precluded and the stacks are not inter­twined with one another.

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4 0.89 (3) 1.75 (3) 2.595 (2) 159 (3)
O25—H25⋯O24 0.96 (3) 1.68 (3) 2.591 (2) 155 (3)
[Figure 2]
Figure 2
The crystal packing of (2), viewed down the a axis, showing the centrosymmetric double-stack columns of mol­ecules, with the columns at the top and bottom being com­posed solely of one of the symmetry-independent types of mol­ecules and the columns on the left and right being com­posed solely of the other independent type.

The Cambridge Structural Database (CSD, Version 2020.3.0 with May 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains data for six closely related flavones with hy­droxy or meth­oxy substituents at least at the 5-, 6-, 7-, 3′- and 4′-positions. The ring systems in four of these structures are planar, with perhaps a tendency towards a slight bowing along the axis of the three-ring system, similar to that observed in (2), as seen solely from visual inspection. These structures are 5,7,4′-trihy­droxy-6,3′,5′-tri­meth­oxy­flavone ethyl acetate solvate (Martinez-Vazquez et al., 1993[Martinez-Vazquez, M., Garcia, H. M. V., Toscano, R. A. & Perez, G. E. (1993). J. Nat. Prod. 56, 1410-1413.]), 5,3′-dihy­droxy-6,7,4′-tri­meth­oxy­flavone (Parvez et al., 2001[Parvez, M., Riaz, M. & Malik, A. (2001). Acta Cryst. E57, o289-o291.]), 5,7-dihy­droxy-6,3′,4′-tri­meth­oxy­flavone (Suleimenov et al., 2005[Suleimenov, E. N., Smagulova, F. M., Morozova, O. V., Raldugin, V. A., Bagryanskaya, I. Yu., Gatilov, Yu. V., Yamovoi, V. I. & Adekenov, S. M. (2005). Chem. Nat. Compd. 41, 689-691.]) and 5,7,3′-trihy­droxy-6,4′,5′-tri­meth­oxy­flavone (Adizov et al., 2013[Adizov, S. M., Mukhamathanova, R. F., Turgunov, K. K., Sham'yanov, I. D. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o578.]; Turdybekov et al., 2014[Turdybekov, K. M., Rakhimova, B. B., Makhmutova, A. S., Smailova, Zh. R., Nurkenov, O. A. & Adekenov, S. M. (2014). Chem. Nat. Compd. 50, 135-136.]). In the structure of 5,6,7,2′,3′,4′-hexa­meth­oxy­flavone (Butler et al., 2018[Butler, M. S., Healy, P. C., Forster, P. I., Guymer, G. P. & Quinn, R. J. (2018). Fitoterapia, 126, 90-92.]), the bowing within the fused rings appears to be more prominent. In the structure of 5,3′-dihy­droxy-6,7,2′,4′,5′-penta­meth­oxy­flavone (Al-Yahya et al., 1987[Al-Yahya, M. A., Hifnawy, M. S., Mossa, J. S., El-Feraly, F. S., McPhail, D. R. & McPhail, A. T. (1987). Pytochemistry, 26, 2648-2649.]), the individual planes of the phenyl and fused rings are significantly tilted from one another, with a dihedral angle of 12.23 (14)°; this is the only example with four substituents on the phenyl ring (three meth­oxy and one hy­droxy).

The crystal structure of the triterpene (20S,24R)-ocotillone, (3), has one mol­ecule in the asymmetric unit (Fig. 3[link]). In the chosen crystal, the com­pound is enanti­omerically pure and the absolute configuration of the mol­ecule was determined independently by the diffraction experiment; the value of the absolute structure parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) was −0.07 (4). According to the numbering of the atoms used in the refinement model, the absolute configuration of the stereogenic C atoms of the mol­ecule is established as follows: 5R,8R,9R,10R,13R,14R,17S,20S,24R. The isolation and identification of 20S- and 20R-ocotillones have been reported on several occasions (Bisset et al., 1966[Bisset, N. G., Diaz, M. A., Ehret, C., Ourisson, G., Palmade, M., Patil, F., Pesnelle, P. & Streith, J. (1966). Phytochemistry, 5, 865-880.], 1967[Bisset, N. G., Diaz-Parra, M. A., Ehret, C. & Ourisson, G. (1967). Phytochemistry, 6, 1395-1405.]; Betancor et al., 1983[Betancor, C., Freire, R., Hernández, R., Suárez, E., Cortés, M., Prangé, T. & Pascard, C. (1983). J. Chem. Soc. Perkin Trans. I, pp. 1119-1126.]; Aalbersberg et al., 1991[Aalbersberg, W. & Singh, Y. (1991). Phytochemistry, 30, 921-926.]). The isolation of the corresponding alcohol, ocotillol, appears to be mentioned for the first time by Warnhoff & Halls (1965[Warnhoff, E. W. & Halls, C. M. M. (1965). Can. J. Chem. 43, 3311-3321.]). The absolute configuration of (20S,24R)-ocotillone was deduced from an X-ray crystal structure of a bromo­benzoyl derivative of the corresponding ocotillol (Yamauchi et al., 1969[Yamauchi, H., Fujiwara, T. & Tomita, K. (1969). Tetrahedron Lett. 10, 4245-4248.]). The crystal structure determination of (3) is the first time the absolute configuration has been confirmed crystallographically for the native (20S,24R)-ocotillone.

[Figure 3]
Figure 3
View of the mol­ecule of (3), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size.

The core of the mol­ecule of (3) consists of five rings, including four fused rings, cyclo­hexane rings A (atoms C1–C5/C10), B (C5–C10) and C (C8/C9/C11–C14), and cyclo­pentane ring D (C13–C17), plus furan ring E (O18/C20–C24) attached to the fused rings at atom C17. An iso­propanol substituent is present at atom C24 of the furan ring. Thus, com­pound (3) is (5R,8R,9R,10R,13R,14R,17S)-17-[(2S,5R)-5-(2-hy­droxy­pro­pan-2-yl)-2-methyloxolan-2-yl]-4,4,8,10,14-penta­methyl-1,2,5,6,7,9,11,12,13,15,16,17-dodeca­hydrocyclo­penta­[a]phenanthren-3-one. Rings A, B and C adopt a chair conformation, with ring A being the most distorted because of the presence of the sp2-hybridized keto C atom. The puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for ring A are θ = 15.82 (18)° and φ = 322.1 (7)° for the atom sequence C1—C2—C3—C4—C5—C10. For ring B, θ = 11.01 (15)° and φ = 17.2 (8)° for the atom sequence C5—C6—C7—C8—C9—C10 and for ring C, θ = 6.30 (15)° and φ = 8.5 (13)° for the atom sequence C8—C9—C11—C12—C13—C14. Ring D has a near-ideal half-chair conformation twisted on C13—C14 [φ2 = 197.8 (4)° for the atom sequence C13—C14—C15—C16—C17], while ring E has a slightly distorted envelope conformation with atom O20 as the envelope flap [φ2 = 188.6 (4)° for the atom sequence O20—C21—C22—C23—C24]. The A/B, B/C and C/D ring junctions are all trans-fused to each other along the C5—C10, C8—C9 and C13—C14 bonds, respectively. This brings the methyl groups at C8 and C10 into cis positions, while the methyl groups at C8 and C14 are trans to one another. The furan substituent at the cyclo­propane ring lies trans to the C14 methyl group.

Inter­molecular O—H⋯O hydrogen bonds involving the hy­droxy group and the ketone O atom link the mol­ecules into extended wave-like chains (Table 3[link] and Fig. 4[link]), which run parallel to the [001] direction and can be described by a graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) of C(16).

Table 3
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O25—H25⋯O3i 0.90 (3) 2.03 (3) 2.9325 (18) 172 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal packing of (3), viewed down the b axis, showing the O—H⋯O hydrogen bonds (magenta dashed lines) linking the mol­ecules into wave-like chains. Most H atoms have been omitted for clarity.

3.3. Anthelmintic activity

3.3.1. About the extracts

The crude extracts obtained by aqueous decoction and hydro-ethano­lic maceration, as well as the nine isolated com­pounds, were tested for their anthelmintic activity on the larvae and adult worms of H. contortus. The larval migration inhibition technique applied is based on the measurement of the migration rate of parasite larvae through a membrane after contact with the tested extract. At different doses, aqueous and hydro-ethanol extracts of C. glutinosum significantly inhibited in vitro larval migration of H. contortus (p < 0.001) (Fig. 5[link]). This effect is independent of the dose and does not vary with the extraction solvent (p > 0.05). However, the aqueous extract appeared to be more effective than the hydro-ethano­lic extract (Fig. 5[link]). Similarly, both extracts significantly reduced the motility of adult H. contortus worms (p < 0.001). Although the inhibition effect did not vary with dose and extraction solvent (p > 0.05), it did vary with time (p < 0.001) and, paradoxically, the hydro-ethano­lic extract appeared to inhibit adult worm motility more (Table 4[link]). In order to know the chemical com­position of these two extracts for the identification of the active principle, the present work was continued with the hydro-ethano­lic extract and the com­pounds isolated therefrom were tested on H. contortus larvae and worms.

Table 4
The motility (%) of adult H. contortus worms in the presence of different concentrations of C. glutinosum extracts and reference control media

Sample Concentration Time
  (dose, µg ml−1) 6 h 12 h 18 h 24 h 30 h
PBS d0 100 100 66.7 33.3 0
Levamisol d500 50 50 0 0 0
  d250 66.7 0 0 0 0
  d125 0 0 0 0 0
Aqueous d2400 100 25 0 0 0
extract d1200 100 75 25 0 0
  d600 100 100 0 0 0
  d300 100 66.7 0 0 0
  d150 100 33.3 25 0 0
  d75 100 75 50 0 0
Ethanol/water d2400 100 0 0 0 0
extract d1200 100 33.3 0 0 0
  d600 100 75 25 0 0
  d300 66.67 66.7 0 0 0
  d150 100 50 0 0 0
  d75 100 33.3 0 0 0
[Figure 5]
Figure 5
The effect on H. contortus larval migration caused by C. glutinosum extracts.
3.3.2. On the com­pounds

In vitro, the effect of the com­pounds was evaluated on H. contortus larvae and adult worms. All the com­pounds inhibited the migration of H. contortus larvae (Fig. 6[link]) and the three isolated flavonoids seem to present the best results with inhibition percentages of 75.37, 53.26 and 47.73%, respectively, for com­pounds (1), (2) and (8), although they are all less active than the reference drug levamisol (95.97%). For the adult worms observed every 3 h with a magnifying glass after their contact with the tested com­pounds, the total inhibition of their motility was observed with the positive reference control (levamisol) after just 3 h of exposure. This inhibition was total at 12 h with com­pounds (1), (2), (4), (5) and (8). On the other hand, in phosphate buffer solution (PBS), 75% of adult worms were still mobile after 18 h (Table 5[link]). Statistical analysis showed that the com­pounds inhibited the larval migration and motility of H. contortus adult worms within the same time as levamisole, com­pared with the negative control (p < 0.001). On adult worms, the inhibitory effect varied with time (p < 0.001) and flavonoids; in particular, 5-de­methyl­sinensetin, (1), would be responsible for the known anthelmintic activity of the plant.

Table 5
The motility (%) of adult H. contortus worms in the presence of the isolated com­pounds (150 µg ml−1), as determined by an adult worm motility inhibition assay (AMIA)

Compound Time
  3 h 6 h 9 h 12 h 15 h 18 h
5-De­methyl­sinensetin, (1) 100 50 0 0 0 0
Umuhengerin, (2) 100 75 0 0 0 0
Ocotillone, (3) 100 100 25 25 0 0
Lupeol, (4) 100 100 0 0 0 0
β-Sitosterol, (5) 100 100 0 0 0 0
Oleanolic acid, (6) 100 100 25 0 0 0
Betulinic acid, (7) 100 100 25 25 0 0
Corymbosin, (8) 100 100 0 0 0 0
β-Sitosterol glucoside, (9) 100 50 25 25 0 0
Levamisol 25 0 0 0 0 0
PBS 100 100 100 100 100 75
[Figure 6]
Figure 6
Inhibition of H. contortus larval migration by the com­pounds isolated from C. glutinosum.

Indeed, the class of polyphenols is strongly suspected as being the active agent in the anthelmintic effect of plants (Ayers et al., 2008[Ayers, S., Zink, D. L., Mohn, K., Powell, J. S., Brown, C. M., Murphy, T., Brand, R., Pretorius, S., Stevenson, D., Thompson, D. & Singh, S. B. (2008). Phytochemistry, 69, 541-545.]). Condensed tannins are frequently re­ported as being responsible for such effects, for example, in the report by Hoste et al. (2018[Hoste, H., Torres-Acosta, F., Sotiraki, S., Houzangbe-Adote, S., Kabore, A., Costa, L. Jr, Louvandini, H., Gaudin, E. & Mueller-Harvey, I. (2018). Innov. Agron. 66, 19-29.]). Nonetheless, other reports do link anthelmintic properties to flavonoids (Paolini et al., 2003[Paolini, V., Dorchies, P. & Hoste, H. (2003). Vet. Rec. 152, 600-601.]; Barrau et al., 2005[Barrau, E., Fabre, N., Fouraste, I. & Hoste, H. (2005). Parasitology, 131, 531-538.]). Given the results of the in vivo tests, the known anthelmintic activity of C. glutinosum appears to be related to the presence of the flavonoids isolated from this plant. Thus, following the report that C. glutinosum is an anthelmintic plant (Alowanou et al., 2019[Alowanou, G. G., Olounladé, A. P., Akouèdegni, G. C., Faihun, M., Koudandé, D. O. & Hounzangbé-Adoté, S. M. (2019). Parasitol. Res. 118, 1215-1223.]), the present study has allowed the anthelmintic capacity of the different com­pounds isolated from this plant to be ranked and highlighted. It appears that these com­pounds, although less active than the positive reference control, have a larvicidal and vermicidal effect on H. contortus, with 5-de­methyl­sinensetin, (1), being the most active. The decrease in the migration of infesting larvae and the reduction of the motility of adult worms could disrupt their settlement in the mucosal wall of the digestive tract and thus ensure their progressive elimination from the infested animal (Dedehou et al., 2014[Dedehou, V. F. G. N., Olounladé, P. A., Adenilé, A. D., Azando, E. V. B., Alowanou, G. G., Daga, F. D. & Hounzangbé-Adoté, M. S. (2014). J Anim. Plant Sci. 22, 3368-3378.]). These results could serve as a basis for a conformational analysis leading to the proposal of a new com­pound with a broader spectrum of activity than current commercially available anthelmintics.

4. Conclusion

The phytochemical investigation of the leaves of C. glutinosum led to the isolation of nine known com­pounds, which were characterized using spectroscopic analyses and by com­parison with literature data. The crystal structures of two com­pounds were described for the first time in the present work and four com­pounds have been isolated for the first time from the genus Combretum. The flavonoids isolated from the plant presented the best in vitro activity on H. contortus. The results of this study could be verified in vivo on sheep in order to gain further insight into and enhance the status of this plant.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2021); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2021); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2021); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and PLATON (Spek, 2020).

5-Hydroxy-6,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chromen-4-one (2) top
Crystal data top
C20H20O8F(000) = 816
Mr = 388.36Dx = 1.466 Mg m3
Triclinic, P1Melting point: 466 K
a = 4.97902 (15) ÅCu Kα radiation, λ = 1.54184 Å
b = 18.5654 (5) ÅCell parameters from 10239 reflections
c = 19.1368 (3) Åθ = 3.3–78.2°
α = 89.5065 (18)°µ = 0.96 mm1
β = 84.322 (2)°T = 160 K
γ = 89.375 (2)°Needle, pale yellow
V = 1760.12 (8) Å30.17 × 0.03 × 0.01 mm
Z = 4
Data collection top
Rigaku Oxford Diffraction XtaLAB Synergy dual radiation
diffractometer
6662 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray source5215 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.060
Detector resolution: 5.81 pixels mm-1θmax = 70.1°, θmin = 3.3°
ω scansh = 66
Absorption correction: gaussian
Numerical absorption correction based on Gaussian integration over a multifaceted crystal model (Coppens et al., 1965) plus an empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis PRO; Rigaku Oxford Diffraction, 2021)
k = 2222
Tmin = 0.694, Tmax = 1.000l = 2322
34916 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.954P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6661 reflectionsΔρmax = 0.44 e Å3
524 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00064 (15)
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

The financial support from the Swiss National Science Foundation (R'Equip grant no. 206021_164018) and the University of Zurich for the purchase of the X-ray diffractometer used in this work is gratefully acknowledged.

Solvent used: dichloromethane / MeOH Cooling Device: Oxford Cryosystems Cryostream 800 Crystal mount: on a cryo-loop Frames collected: 5692 Seconds exposure per frame: 3.5-14.0 Degrees rotation per frame: 0.5 Crystal-detector distance (mm): 32.0 Client: Placide Toklo Sample code: G10 (L2102)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. There are two symmetry-independent molecules in the asymmetric unit. Their conformations differ mainly in the orientations of the C6/C26 and C14/C34 methoxy groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8422 (3)0.85801 (7)0.42135 (7)0.0221 (3)
O41.3522 (3)1.02957 (7)0.40490 (7)0.0257 (3)
O51.1747 (3)1.06246 (8)0.28553 (8)0.0273 (3)
H51.259 (6)1.0611 (16)0.3243 (16)0.052 (9)*
O60.8350 (3)1.03119 (7)0.18570 (7)0.0259 (3)
O70.5323 (3)0.91317 (8)0.19914 (7)0.0278 (3)
O130.6742 (3)0.63636 (8)0.56501 (8)0.0324 (4)
O140.9692 (3)0.64850 (8)0.67492 (7)0.0280 (3)
O151.2499 (3)0.76492 (8)0.69432 (7)0.0264 (3)
C21.0127 (4)0.87011 (10)0.47147 (9)0.0197 (4)
C31.1858 (4)0.92593 (11)0.46730 (10)0.0222 (4)
H31.3028370.9319410.5030740.027*
C41.1959 (4)0.97653 (10)0.40948 (10)0.0205 (4)
C4A1.0182 (4)0.96151 (10)0.35638 (10)0.0199 (4)
C51.0124 (4)1.00467 (10)0.29491 (10)0.0216 (4)
C60.8454 (4)0.98775 (10)0.24420 (10)0.0219 (4)
C70.6810 (4)0.92629 (11)0.25317 (10)0.0227 (4)
C80.6811 (4)0.88307 (11)0.31284 (10)0.0220 (4)
H80.5699650.8417660.3188770.026*
C8A0.8482 (4)0.90209 (10)0.36319 (10)0.0202 (4)
C91.0055 (5)1.00522 (12)0.12617 (11)0.0323 (5)
H910.9924081.0379960.0862100.048*
H920.9476400.9570360.1139620.048*
H931.1928451.0028970.1377050.048*
C100.3684 (4)0.84999 (11)0.20370 (11)0.0280 (5)
H1010.2833920.8446040.1600180.042*
H1020.2283750.8545850.2432010.042*
H1030.4814530.8075700.2109990.042*
C110.9878 (4)0.81357 (10)0.52674 (10)0.0205 (4)
C120.8257 (4)0.75395 (11)0.51883 (10)0.0229 (4)
H120.7228070.7510120.4797320.028*
C130.8161 (4)0.69871 (11)0.56883 (10)0.0246 (4)
C140.9623 (4)0.70409 (10)0.62693 (10)0.0218 (4)
C151.1193 (4)0.76461 (11)0.63504 (10)0.0211 (4)
C161.1352 (4)0.81938 (11)0.58467 (10)0.0216 (4)
H161.2449910.8601700.5897210.026*
C170.5090 (5)0.63036 (13)0.50876 (12)0.0356 (5)
H1710.6223610.6322230.4639130.053*
H1720.3779580.6702360.5108340.053*
H1730.4130180.5844770.5128230.053*
C180.7326 (5)0.64279 (12)0.72304 (11)0.0326 (5)
H1810.5774420.6321680.6972390.049*
H1820.7005030.6883580.7481150.049*
H1830.7574230.6039160.7568470.049*
C191.4212 (4)0.82473 (11)0.70315 (11)0.0269 (4)
H1911.5631470.8267010.6638950.040*
H1921.5035260.8191130.7473370.040*
H1931.3142560.8694170.7042620.040*
O210.6336 (3)0.41743 (7)0.14003 (7)0.0228 (3)
O240.1754 (3)0.40137 (8)0.02513 (7)0.0293 (3)
O250.3923 (3)0.27616 (8)0.05320 (7)0.0304 (3)
H250.277 (7)0.3183 (18)0.0513 (16)0.060 (9)*
O260.7475 (3)0.16941 (8)0.01936 (7)0.0274 (3)
O271.0071 (3)0.18272 (7)0.09442 (7)0.0255 (3)
O330.7591 (3)0.57926 (8)0.33934 (7)0.0285 (3)
O340.4623 (3)0.69559 (8)0.32162 (7)0.0277 (3)
O350.1347 (3)0.70599 (8)0.21774 (7)0.0291 (3)
C220.4571 (4)0.47098 (10)0.12585 (10)0.0222 (4)
C230.3019 (4)0.46705 (10)0.07207 (10)0.0227 (4)
H230.1801960.5054620.0645000.027*
C240.3164 (4)0.40596 (11)0.02590 (10)0.0237 (4)
C24A0.5018 (4)0.34887 (11)0.04278 (10)0.0227 (4)
C250.5328 (4)0.28491 (11)0.00271 (10)0.0235 (4)
C260.7070 (4)0.23045 (11)0.02062 (10)0.0234 (4)
C270.8500 (4)0.23940 (11)0.07986 (10)0.0226 (4)
C280.8242 (4)0.30238 (11)0.11937 (10)0.0235 (4)
H280.9224590.3083190.1589850.028*
C28A0.6515 (4)0.35595 (10)0.09928 (10)0.0223 (4)
C290.5399 (5)0.11670 (13)0.00512 (14)0.0411 (6)
H2910.5741390.0761880.0373900.062*
H2920.3640310.1385990.0116470.062*
H2930.5397260.0993340.0433890.062*
C301.1603 (4)0.18836 (12)0.15355 (10)0.0264 (4)
H3011.2862550.2285250.1460540.040*
H3021.2617850.1434800.1590520.040*
H3031.0378080.1969330.1960330.040*
C310.4562 (4)0.53040 (11)0.17705 (10)0.0221 (4)
C320.6212 (4)0.52478 (11)0.23269 (10)0.0246 (4)
H320.7364950.4841110.2364430.030*
C330.6130 (4)0.57957 (11)0.28203 (10)0.0232 (4)
C340.4487 (4)0.64015 (11)0.27564 (10)0.0238 (4)
C350.2863 (4)0.64500 (11)0.21945 (10)0.0243 (4)
C360.2899 (4)0.58987 (11)0.17089 (10)0.0246 (4)
H360.1783310.5929210.1334530.030*
C370.9133 (5)0.51605 (12)0.35099 (12)0.0344 (5)
H3711.0559130.5101700.3122940.052*
H3720.7952940.4740120.3533950.052*
H3730.9947270.5204610.3953050.052*
C380.2177 (5)0.71117 (14)0.36545 (12)0.0370 (5)
H3810.0808830.7299580.3364330.056*
H3820.2535630.7471950.4003990.056*
H3830.1518180.6669880.3894180.056*
C390.0272 (5)0.71420 (12)0.16030 (11)0.0283 (5)
H3910.0894330.7135980.1159450.042*
H3920.1261930.7601170.1645930.042*
H3930.1556240.6745060.1610660.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (7)0.0241 (7)0.0172 (6)0.0027 (6)0.0031 (5)0.0053 (5)
O40.0301 (8)0.0240 (7)0.0230 (7)0.0068 (6)0.0027 (6)0.0032 (6)
O50.0336 (8)0.0245 (7)0.0242 (7)0.0066 (6)0.0048 (6)0.0068 (6)
O60.0328 (8)0.0246 (7)0.0200 (7)0.0032 (6)0.0023 (6)0.0068 (6)
O70.0326 (8)0.0292 (8)0.0228 (7)0.0061 (6)0.0088 (6)0.0040 (6)
O130.0427 (9)0.0273 (8)0.0282 (8)0.0129 (7)0.0071 (7)0.0029 (6)
O140.0317 (8)0.0240 (7)0.0269 (7)0.0011 (6)0.0020 (6)0.0105 (6)
O150.0323 (8)0.0267 (7)0.0209 (7)0.0050 (6)0.0066 (6)0.0072 (6)
C20.0208 (10)0.0233 (10)0.0145 (9)0.0033 (8)0.0000 (7)0.0009 (7)
C30.0250 (10)0.0241 (10)0.0172 (9)0.0000 (8)0.0009 (8)0.0015 (8)
C40.0210 (10)0.0209 (10)0.0189 (9)0.0014 (8)0.0017 (8)0.0010 (7)
C4A0.0206 (10)0.0207 (9)0.0177 (9)0.0021 (7)0.0002 (7)0.0010 (7)
C50.0253 (10)0.0172 (9)0.0216 (9)0.0007 (8)0.0018 (8)0.0014 (7)
C60.0254 (10)0.0221 (10)0.0178 (9)0.0032 (8)0.0005 (8)0.0032 (7)
C70.0229 (10)0.0249 (10)0.0201 (9)0.0019 (8)0.0021 (8)0.0010 (8)
C80.0207 (10)0.0227 (10)0.0223 (10)0.0034 (8)0.0000 (8)0.0008 (8)
C8A0.0235 (10)0.0212 (9)0.0153 (9)0.0016 (8)0.0017 (7)0.0026 (7)
C90.0442 (14)0.0327 (12)0.0188 (10)0.0012 (10)0.0021 (9)0.0041 (8)
C100.0302 (11)0.0270 (11)0.0276 (11)0.0033 (9)0.0073 (9)0.0007 (8)
C110.0224 (10)0.0205 (9)0.0174 (9)0.0036 (8)0.0025 (7)0.0025 (7)
C120.0248 (10)0.0259 (10)0.0177 (9)0.0009 (8)0.0006 (8)0.0018 (8)
C130.0260 (11)0.0230 (10)0.0240 (10)0.0038 (8)0.0015 (8)0.0007 (8)
C140.0240 (10)0.0214 (10)0.0189 (9)0.0021 (8)0.0021 (8)0.0059 (7)
C150.0223 (10)0.0234 (10)0.0171 (9)0.0027 (8)0.0007 (7)0.0024 (7)
C160.0245 (10)0.0222 (10)0.0173 (9)0.0005 (8)0.0015 (8)0.0015 (7)
C170.0410 (14)0.0377 (13)0.0283 (11)0.0137 (10)0.0029 (10)0.0006 (10)
C180.0373 (13)0.0335 (12)0.0251 (11)0.0027 (10)0.0062 (9)0.0093 (9)
C190.0287 (11)0.0270 (11)0.0261 (10)0.0027 (9)0.0085 (9)0.0030 (8)
O210.0258 (7)0.0213 (7)0.0215 (7)0.0012 (6)0.0028 (6)0.0014 (5)
O240.0345 (9)0.0306 (8)0.0240 (7)0.0027 (6)0.0100 (6)0.0028 (6)
O250.0376 (9)0.0312 (8)0.0237 (7)0.0050 (7)0.0103 (6)0.0059 (6)
O260.0307 (8)0.0291 (8)0.0220 (7)0.0015 (6)0.0008 (6)0.0060 (6)
O270.0324 (8)0.0233 (7)0.0218 (7)0.0071 (6)0.0078 (6)0.0015 (6)
O330.0359 (9)0.0262 (7)0.0246 (7)0.0039 (6)0.0094 (6)0.0047 (6)
O340.0301 (8)0.0262 (7)0.0270 (7)0.0012 (6)0.0034 (6)0.0066 (6)
O350.0354 (9)0.0265 (8)0.0268 (7)0.0062 (6)0.0100 (6)0.0043 (6)
C220.0239 (10)0.0212 (10)0.0207 (9)0.0026 (8)0.0016 (8)0.0023 (8)
C230.0253 (10)0.0199 (9)0.0226 (10)0.0002 (8)0.0009 (8)0.0004 (8)
C240.0251 (10)0.0272 (10)0.0183 (9)0.0034 (8)0.0001 (8)0.0017 (8)
C24A0.0234 (10)0.0227 (10)0.0210 (9)0.0017 (8)0.0024 (8)0.0007 (8)
C250.0244 (10)0.0309 (11)0.0153 (9)0.0040 (8)0.0017 (8)0.0009 (8)
C260.0263 (11)0.0263 (10)0.0169 (9)0.0017 (8)0.0019 (8)0.0018 (8)
C270.0226 (10)0.0246 (10)0.0196 (9)0.0010 (8)0.0021 (8)0.0025 (8)
C280.0246 (10)0.0269 (10)0.0189 (9)0.0001 (8)0.0012 (8)0.0015 (8)
C28A0.0252 (10)0.0224 (10)0.0187 (9)0.0024 (8)0.0022 (8)0.0019 (8)
C290.0437 (14)0.0321 (12)0.0456 (14)0.0049 (11)0.0065 (11)0.0107 (11)
C300.0290 (11)0.0305 (11)0.0201 (10)0.0005 (9)0.0050 (8)0.0006 (8)
C310.0239 (10)0.0246 (10)0.0169 (9)0.0070 (8)0.0034 (8)0.0007 (8)
C320.0270 (11)0.0236 (10)0.0227 (10)0.0034 (8)0.0013 (8)0.0004 (8)
C330.0262 (11)0.0269 (10)0.0162 (9)0.0054 (8)0.0002 (8)0.0004 (8)
C340.0270 (11)0.0252 (10)0.0190 (9)0.0062 (8)0.0002 (8)0.0013 (8)
C350.0272 (11)0.0220 (10)0.0230 (10)0.0028 (8)0.0022 (8)0.0016 (8)
C360.0277 (11)0.0244 (10)0.0215 (10)0.0029 (8)0.0002 (8)0.0007 (8)
C370.0409 (13)0.0297 (11)0.0337 (12)0.0084 (10)0.0100 (10)0.0014 (9)
C380.0369 (13)0.0446 (14)0.0288 (12)0.0055 (11)0.0007 (10)0.0104 (10)
C390.0299 (11)0.0298 (11)0.0258 (10)0.0010 (9)0.0054 (9)0.0018 (9)
Geometric parameters (Å, º) top
O1—C21.364 (2)O21—C221.363 (2)
O1—C8A1.374 (2)O21—C28A1.385 (2)
O4—C41.259 (2)O24—C241.262 (2)
O5—C51.350 (2)O25—C251.347 (2)
O5—H50.89 (3)O25—H250.96 (3)
O6—C61.379 (2)O26—C261.375 (2)
O6—C91.435 (3)O26—C291.436 (3)
O7—C71.355 (2)O27—C271.348 (2)
O7—C101.433 (3)O27—C301.431 (2)
O13—C131.369 (2)O33—C331.375 (2)
O13—C171.424 (3)O33—C371.423 (3)
O14—C141.378 (2)O34—C341.366 (2)
O14—C181.426 (3)O34—C381.437 (3)
O15—C151.363 (2)O35—C351.356 (2)
O15—C191.428 (3)O35—C391.432 (3)
C2—C31.352 (3)C22—C231.350 (3)
C2—C111.481 (3)C22—C311.481 (3)
C3—C41.443 (3)C23—C241.441 (3)
C3—H30.9500C23—H230.9500
C4—C4A1.443 (3)C24—C24A1.453 (3)
C4A—C8A1.395 (3)C24A—C28A1.381 (3)
C4A—C51.420 (3)C24A—C251.418 (3)
C5—C61.379 (3)C25—C261.388 (3)
C6—C71.411 (3)C26—C271.409 (3)
C7—C81.390 (3)C27—C281.396 (3)
C8—C8A1.384 (3)C28—C28A1.384 (3)
C8—H80.9500C28—H280.9500
C9—H910.9800C29—H2910.9800
C9—H920.9800C29—H2920.9800
C9—H930.9800C29—H2930.9800
C10—H1010.9800C30—H3010.9800
C10—H1020.9800C30—H3020.9800
C10—H1030.9800C30—H3030.9800
C11—C161.394 (3)C31—C361.384 (3)
C11—C121.395 (3)C31—C321.410 (3)
C12—C131.395 (3)C32—C331.391 (3)
C12—H120.9500C32—H320.9500
C13—C141.392 (3)C33—C341.395 (3)
C14—C151.394 (3)C34—C351.410 (3)
C15—C161.393 (3)C35—C361.387 (3)
C16—H160.9500C36—H360.9500
C17—H1710.9800C37—H3710.9800
C17—H1720.9800C37—H3720.9800
C17—H1730.9800C37—H3730.9800
C18—H1810.9800C38—H3810.9800
C18—H1820.9800C38—H3820.9800
C18—H1830.9800C38—H3830.9800
C19—H1910.9800C39—H3910.9800
C19—H1920.9800C39—H3920.9800
C19—H1930.9800C39—H3930.9800
C2—O1—C8A119.99 (15)C22—O21—C28A119.46 (15)
C5—O5—H5102 (2)C25—O25—H25102.5 (19)
C6—O6—C9112.55 (15)C26—O26—C29113.59 (16)
C7—O7—C10117.56 (15)C27—O27—C30117.56 (15)
C13—O13—C17117.24 (16)C33—O33—C37117.01 (16)
C14—O14—C18114.50 (16)C34—O34—C38115.63 (17)
C15—O15—C19116.81 (15)C35—O35—C39116.94 (16)
C3—C2—O1122.21 (17)C23—C22—O21122.18 (17)
C3—C2—C11126.43 (18)C23—C22—C31126.15 (18)
O1—C2—C11111.31 (17)O21—C22—C31111.65 (17)
C2—C3—C4121.18 (18)C22—C23—C24121.52 (19)
C2—C3—H3119.4C22—C23—H23119.2
C4—C3—H3119.4C24—C23—H23119.2
O4—C4—C3122.45 (18)O24—C24—C23122.70 (19)
O4—C4—C4A122.08 (17)O24—C24—C24A121.89 (18)
C3—C4—C4A115.46 (17)C23—C24—C24A115.40 (17)
C8A—C4A—C5117.33 (18)C28A—C24A—C25118.42 (18)
C8A—C4A—C4120.46 (17)C28A—C24A—C24120.02 (18)
C5—C4A—C4122.19 (18)C25—C24A—C24121.56 (18)
O5—C5—C6119.56 (17)O25—C25—C26119.12 (18)
O5—C5—C4A119.64 (18)O25—C25—C24A120.29 (19)
C6—C5—C4A120.80 (18)C26—C25—C24A120.59 (18)
O6—C6—C5120.40 (18)O26—C26—C25121.26 (18)
O6—C6—C7120.07 (18)O26—C26—C27119.84 (18)
C5—C6—C7119.53 (17)C25—C26—C27118.87 (18)
O7—C7—C8124.16 (18)O27—C27—C28124.22 (18)
O7—C7—C6114.70 (17)O27—C27—C26114.54 (17)
C8—C7—C6121.12 (18)C28—C27—C26121.24 (18)
C8A—C8—C7117.91 (18)C28A—C28—C27118.23 (18)
C8A—C8—H8121.0C28A—C28—H28120.9
C7—C8—H8121.0C27—C28—H28120.9
O1—C8A—C8116.08 (17)C24A—C28A—C28122.62 (18)
O1—C8A—C4A120.61 (17)C24A—C28A—O21121.36 (18)
C8—C8A—C4A123.30 (17)C28—C28A—O21116.01 (17)
O6—C9—H91109.5O26—C29—H291109.5
O6—C9—H92109.5O26—C29—H292109.5
H91—C9—H92109.5H291—C29—H292109.5
O6—C9—H93109.5O26—C29—H293109.5
H91—C9—H93109.5H291—C29—H293109.5
H92—C9—H93109.5H292—C29—H293109.5
O7—C10—H101109.5O27—C30—H301109.5
O7—C10—H102109.5O27—C30—H302109.5
H101—C10—H102109.5H301—C30—H302109.5
O7—C10—H103109.5O27—C30—H303109.5
H101—C10—H103109.5H301—C30—H303109.5
H102—C10—H103109.5H302—C30—H303109.5
C16—C11—C12120.92 (18)C36—C31—C32120.70 (18)
C16—C11—C2119.42 (18)C36—C31—C22119.96 (18)
C12—C11—C2119.61 (17)C32—C31—C22119.32 (18)
C13—C12—C11119.40 (19)C33—C32—C31119.15 (19)
C13—C12—H12120.3C33—C32—H32120.4
C11—C12—H12120.3C31—C32—H32120.4
O13—C13—C14115.32 (17)O33—C33—C32124.41 (19)
O13—C13—C12124.60 (19)O33—C33—C34115.10 (17)
C14—C13—C12120.07 (19)C32—C33—C34120.49 (19)
O14—C14—C13121.26 (18)O34—C34—C33118.92 (18)
O14—C14—C15118.58 (18)O34—C34—C35121.41 (18)
C13—C14—C15120.03 (17)C33—C34—C35119.54 (18)
O15—C15—C16124.40 (18)O35—C35—C36124.79 (19)
O15—C15—C14115.18 (17)O35—C35—C34115.04 (17)
C16—C15—C14120.42 (18)C36—C35—C34120.17 (19)
C15—C16—C11119.13 (19)C31—C36—C35119.93 (19)
C15—C16—H16120.4C31—C36—H36120.0
C11—C16—H16120.4C35—C36—H36120.0
O13—C17—H171109.5O33—C37—H371109.5
O13—C17—H172109.5O33—C37—H372109.5
H171—C17—H172109.5H371—C37—H372109.5
O13—C17—H173109.5O33—C37—H373109.5
H171—C17—H173109.5H371—C37—H373109.5
H172—C17—H173109.5H372—C37—H373109.5
O14—C18—H181109.5O34—C38—H381109.5
O14—C18—H182109.5O34—C38—H382109.5
H181—C18—H182109.5H381—C38—H382109.5
O14—C18—H183109.5O34—C38—H383109.5
H181—C18—H183109.5H381—C38—H383109.5
H182—C18—H183109.5H382—C38—H383109.5
O15—C19—H191109.5O35—C39—H391109.5
O15—C19—H192109.5O35—C39—H392109.5
H191—C19—H192109.5H391—C39—H392109.5
O15—C19—H193109.5O35—C39—H393109.5
H191—C19—H193109.5H391—C39—H393109.5
H192—C19—H193109.5H392—C39—H393109.5
C8A—O1—C2—C31.9 (3)C28A—O21—C22—C231.5 (3)
C8A—O1—C2—C11175.76 (16)C28A—O21—C22—C31177.03 (16)
O1—C2—C3—C40.9 (3)O21—C22—C23—C240.7 (3)
C11—C2—C3—C4178.19 (18)C31—C22—C23—C24179.03 (18)
C2—C3—C4—O4178.87 (18)C22—C23—C24—O24179.26 (19)
C2—C3—C4—C4A2.3 (3)C22—C23—C24—C24A1.8 (3)
O4—C4—C4A—C8A179.86 (18)O24—C24—C24A—C28A179.74 (19)
C3—C4—C4A—C8A1.0 (3)C23—C24—C24A—C28A0.8 (3)
O4—C4—C4A—C51.4 (3)O24—C24—C24A—C250.2 (3)
C3—C4—C4A—C5177.49 (18)C23—C24—C24A—C25178.72 (18)
C8A—C4A—C5—O5179.46 (17)C28A—C24A—C25—O25179.38 (18)
C4—C4A—C5—O51.0 (3)C24—C24A—C25—O251.1 (3)
C8A—C4A—C5—C60.3 (3)C28A—C24A—C25—C260.9 (3)
C4—C4A—C5—C6178.22 (18)C24—C24A—C25—C26178.69 (19)
C9—O6—C6—C596.8 (2)C29—O26—C26—C2581.1 (2)
C9—O6—C6—C784.3 (2)C29—O26—C26—C27100.8 (2)
O5—C5—C6—O62.8 (3)O25—C25—C26—O262.9 (3)
C4A—C5—C6—O6178.01 (17)C24A—C25—C26—O26177.32 (18)
O5—C5—C6—C7178.36 (17)O25—C25—C26—C27178.96 (18)
C4A—C5—C6—C70.8 (3)C24A—C25—C26—C270.8 (3)
C10—O7—C7—C81.0 (3)C30—O27—C27—C281.1 (3)
C10—O7—C7—C6177.71 (17)C30—O27—C27—C26179.43 (17)
O6—C6—C7—O73.4 (3)O26—C26—C27—O274.0 (3)
C5—C6—C7—O7177.72 (17)C25—C26—C27—O27177.90 (18)
O6—C6—C7—C8177.77 (17)O26—C26—C27—C28176.58 (18)
C5—C6—C7—C81.1 (3)C25—C26—C27—C281.6 (3)
O7—C7—C8—C8A178.50 (18)O27—C27—C28—C28A178.78 (18)
C6—C7—C8—C8A0.2 (3)C26—C27—C28—C28A0.6 (3)
C2—O1—C8A—C8175.87 (17)C25—C24A—C28A—C281.9 (3)
C2—O1—C8A—C4A3.2 (3)C24—C24A—C28A—C28177.69 (19)
C7—C8—C8A—O1179.96 (17)C25—C24A—C28A—O21179.13 (17)
C7—C8—C8A—C4A1.0 (3)C24—C24A—C28A—O211.3 (3)
C5—C4A—C8A—O1179.78 (16)C27—C28—C28A—C24A1.1 (3)
C4—C4A—C8A—O11.7 (3)C27—C28—C28A—O21179.81 (17)
C5—C4A—C8A—C81.2 (3)C22—O21—C28A—C24A2.5 (3)
C4—C4A—C8A—C8177.30 (18)C22—O21—C28A—C28176.54 (17)
C3—C2—C11—C166.3 (3)C23—C22—C31—C361.8 (3)
O1—C2—C11—C16176.16 (16)O21—C22—C31—C36179.73 (17)
C3—C2—C11—C12171.25 (19)C23—C22—C31—C32176.7 (2)
O1—C2—C11—C126.3 (2)O21—C22—C31—C321.8 (2)
C16—C11—C12—C131.5 (3)C36—C31—C32—C330.7 (3)
C2—C11—C12—C13176.03 (18)C22—C31—C32—C33177.84 (18)
C17—O13—C13—C14176.33 (19)C37—O33—C33—C324.7 (3)
C17—O13—C13—C125.1 (3)C37—O33—C33—C34175.24 (18)
C11—C12—C13—O13176.99 (19)C31—C32—C33—O33178.34 (18)
C11—C12—C13—C141.6 (3)C31—C32—C33—C341.6 (3)
C18—O14—C14—C1377.4 (2)C38—O34—C34—C33117.8 (2)
C18—O14—C14—C15106.7 (2)C38—O34—C34—C3566.5 (2)
O13—C13—C14—O142.6 (3)O33—C33—C34—O345.5 (3)
C12—C13—C14—O14176.11 (18)C32—C33—C34—O34174.62 (18)
O13—C13—C14—C15178.42 (18)O33—C33—C34—C35178.68 (17)
C12—C13—C14—C150.3 (3)C32—C33—C34—C351.2 (3)
C19—O15—C15—C162.3 (3)C39—O35—C35—C361.7 (3)
C19—O15—C15—C14177.64 (17)C39—O35—C35—C34178.13 (18)
O14—C14—C15—O155.2 (3)O34—C34—C35—O354.1 (3)
C13—C14—C15—O15178.89 (17)C33—C34—C35—O35179.81 (18)
O14—C14—C15—C16174.79 (17)O34—C34—C35—C36175.76 (18)
C13—C14—C15—C161.2 (3)C33—C34—C35—C360.0 (3)
O15—C15—C16—C11178.80 (18)C32—C31—C36—C350.6 (3)
C14—C15—C16—C111.3 (3)C22—C31—C36—C35179.06 (18)
C12—C11—C16—C150.1 (3)O35—C35—C36—C31178.90 (19)
C2—C11—C16—C15177.44 (17)C34—C35—C36—C310.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.89 (3)1.75 (3)2.595 (2)159 (3)
O25—H25···O240.96 (3)1.68 (3)2.591 (2)155 (3)
(5R,8R,9R,10R,13R,14R,17S)-17-[(2S,5R)-5-(2-Hydroxypropan-2-yl)-2-methyloxolan-2-yl]-4,4,8,10,14-pentamethyl-1,2,5,6,7,9,11,12,13,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one (3) top
Crystal data top
C30H50O3Dx = 1.165 Mg m3
Mr = 458.70Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 21446 reflections
a = 6.37386 (6) Åθ = 2.6–76.2°
b = 12.10746 (11) ŵ = 0.56 mm1
c = 33.8928 (3) ÅT = 160 K
V = 2615.55 (4) Å3Plate, colourless
Z = 40.24 × 0.19 × 0.05 mm
F(000) = 1016
Data collection top
Oxford Diffraction SuperNova dual radiation
diffractometer
5424 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray source5324 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.3801 pixels mm-1θmax = 76.3°, θmin = 2.6°
ω scansh = 77
Absorption correction: gaussian
Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Coppens et al., 1965) plus an empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis PRO; Rigaku Oxford Diffraction, 2021)
k = 1215
Tmin = 0.614, Tmax = 1.000l = 4239
26797 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.4171P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5424 reflectionsΔρmax = 0.23 e Å3
310 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack x determined using 2226 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.07 (4)
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: dichloromethane / MeOH Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a cryo-loop Frames collected: 2026 Seconds exposure per frame: 3.5-14.0 Degrees rotation per frame: 0.8 Crystal-detector distance (mm): 52.0 Client: Placide Toklo Sample code: CCG3 (L2101)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0614 (2)0.56528 (11)0.76377 (4)0.0366 (3)
O200.68894 (19)0.47972 (9)0.43024 (3)0.0267 (2)
O250.5723 (2)0.56885 (11)0.33129 (4)0.0383 (3)
H250.523 (5)0.533 (2)0.3098 (9)0.064 (8)*
C10.3227 (3)0.65364 (12)0.67560 (4)0.0237 (3)
H110.3729680.7246950.6646640.028*
H120.1957000.6318840.6606850.028*
C20.2636 (3)0.67035 (13)0.71904 (5)0.0272 (3)
H210.3834340.7050110.7328820.033*
H220.1437040.7221960.7204940.033*
C30.2054 (2)0.56533 (13)0.74025 (4)0.0236 (3)
C40.3385 (2)0.46238 (13)0.73290 (4)0.0226 (3)
C50.4116 (2)0.45682 (12)0.68894 (4)0.0188 (3)
H50.2812130.4385910.6738710.023*
C60.5604 (3)0.35971 (13)0.68050 (4)0.0260 (3)
H610.7038800.3783140.6894800.031*
H620.5129310.2934180.6950960.031*
C70.5619 (3)0.33575 (12)0.63620 (4)0.0252 (3)
H710.4191650.3133710.6279310.030*
H720.6574160.2729100.6310220.030*
C80.6320 (2)0.43510 (12)0.61106 (4)0.0185 (3)
C90.5085 (2)0.54127 (12)0.62390 (4)0.0185 (3)
H90.3605010.5272120.6154990.022*
C100.4939 (2)0.56510 (12)0.66945 (4)0.0195 (3)
C110.5794 (3)0.64105 (12)0.59911 (5)0.0294 (4)
H1110.5007480.7073730.6076710.035*
H1120.7303100.6548470.6038990.035*
C120.5438 (3)0.62294 (13)0.55480 (5)0.0301 (4)
H1210.3913930.6192970.5493390.036*
H1220.6026450.6860240.5398680.036*
C130.6481 (2)0.51636 (12)0.54125 (4)0.0200 (3)
H130.8024460.5259140.5453130.024*
C140.5806 (2)0.41520 (11)0.56615 (4)0.0180 (3)
C150.7030 (3)0.32294 (13)0.54484 (4)0.0260 (3)
H1510.6370640.2500690.5495190.031*
H1520.8503370.3203320.5540270.031*
C160.6918 (3)0.35461 (12)0.50053 (5)0.0259 (3)
H1610.5913870.3061330.4865100.031*
H1620.8314630.3466430.4880660.031*
C170.6177 (2)0.47688 (12)0.49860 (4)0.0210 (3)
H170.4633040.4758290.4934030.025*
C180.8707 (2)0.44709 (17)0.61720 (5)0.0308 (4)
H1810.9422990.3822840.6063060.046*
H1820.9010220.4528610.6454680.046*
H1830.9203450.5137560.6037170.046*
C190.7012 (3)0.60844 (15)0.68675 (5)0.0301 (4)
H1910.6742850.6430340.7123980.045*
H1920.7621950.6630440.6687510.045*
H1930.7993510.5468400.6901390.045*
C200.7195 (3)0.54464 (13)0.46553 (4)0.0235 (3)
C210.9537 (3)0.56494 (16)0.47150 (5)0.0335 (4)
H2111.0251880.4942560.4757360.050*
H2120.9746720.6125340.4945510.050*
H2131.0117470.6010560.4480310.050*
C220.6000 (3)0.65290 (14)0.45674 (5)0.0332 (4)
H2210.4584820.6511270.4687840.040*
H2220.6773860.7172090.4673890.040*
C230.5841 (5)0.66006 (16)0.41220 (6)0.0493 (6)
H2310.6639960.7243170.4021670.059*
H2320.4359190.6674100.4038660.059*
C240.6782 (3)0.55194 (14)0.39679 (5)0.0290 (3)
H2410.8242040.5669130.3873940.035*
C250.5587 (3)0.49359 (14)0.36403 (5)0.0287 (3)
C260.6673 (5)0.38558 (18)0.35407 (6)0.0534 (6)
H2610.5999190.3521880.3309770.080*
H2620.6566270.3350360.3765650.080*
H2630.8154510.3997640.3482320.080*
C270.3300 (4)0.4732 (2)0.37400 (8)0.0544 (6)
H2710.2582910.5440800.3775970.082*
H2720.3206240.4300560.3984050.082*
H2730.2632730.4322520.3524420.082*
C280.5200 (3)0.46709 (16)0.76308 (5)0.0309 (4)
H2810.5935640.5378090.7605790.046*
H2820.6181300.4064680.7579730.046*
H2830.4632580.4599950.7898410.046*
C290.2025 (3)0.36060 (14)0.74188 (5)0.0319 (4)
H2910.1586150.3623600.7695870.048*
H2920.2840210.2933690.7369390.048*
H2930.0782920.3611650.7248530.048*
C300.3448 (3)0.39001 (14)0.55941 (5)0.0263 (3)
H3010.2612280.4550770.5663920.039*
H3020.3026540.3275090.5759890.039*
H3030.3215280.3715220.5316070.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0359 (7)0.0451 (7)0.0287 (6)0.0077 (6)0.0136 (5)0.0054 (5)
O200.0382 (6)0.0251 (5)0.0169 (5)0.0019 (5)0.0004 (4)0.0011 (4)
O250.0547 (8)0.0376 (7)0.0226 (6)0.0011 (6)0.0077 (6)0.0024 (5)
C10.0317 (8)0.0195 (6)0.0199 (7)0.0031 (6)0.0060 (6)0.0006 (5)
C20.0343 (8)0.0239 (7)0.0234 (7)0.0028 (6)0.0078 (6)0.0038 (6)
C30.0241 (7)0.0305 (8)0.0163 (6)0.0013 (6)0.0005 (5)0.0011 (6)
C40.0245 (7)0.0264 (7)0.0168 (6)0.0006 (6)0.0012 (5)0.0014 (5)
C50.0186 (6)0.0201 (6)0.0178 (6)0.0000 (6)0.0001 (5)0.0002 (5)
C60.0311 (8)0.0257 (7)0.0211 (7)0.0097 (7)0.0024 (6)0.0030 (6)
C70.0347 (8)0.0185 (6)0.0225 (7)0.0059 (6)0.0046 (6)0.0011 (5)
C80.0170 (6)0.0196 (6)0.0189 (6)0.0017 (5)0.0028 (5)0.0014 (5)
C90.0203 (6)0.0175 (6)0.0176 (6)0.0008 (5)0.0027 (5)0.0021 (5)
C100.0196 (7)0.0209 (7)0.0181 (6)0.0015 (5)0.0020 (5)0.0027 (5)
C110.0472 (10)0.0175 (7)0.0235 (7)0.0024 (7)0.0129 (7)0.0023 (5)
C120.0482 (10)0.0186 (7)0.0234 (7)0.0055 (7)0.0114 (7)0.0017 (6)
C130.0224 (7)0.0182 (6)0.0194 (6)0.0010 (5)0.0046 (5)0.0018 (5)
C140.0179 (6)0.0157 (6)0.0204 (7)0.0003 (5)0.0031 (5)0.0018 (5)
C150.0341 (9)0.0201 (7)0.0237 (7)0.0054 (6)0.0046 (6)0.0030 (5)
C160.0328 (8)0.0215 (7)0.0234 (7)0.0005 (6)0.0055 (6)0.0044 (6)
C170.0219 (7)0.0219 (7)0.0193 (6)0.0005 (5)0.0030 (6)0.0022 (5)
C180.0179 (7)0.0494 (10)0.0250 (7)0.0034 (7)0.0004 (6)0.0054 (7)
C190.0262 (8)0.0373 (8)0.0269 (8)0.0104 (7)0.0022 (6)0.0084 (7)
C200.0279 (8)0.0245 (7)0.0180 (7)0.0018 (6)0.0032 (6)0.0026 (6)
C210.0301 (8)0.0444 (10)0.0260 (8)0.0102 (8)0.0050 (7)0.0010 (7)
C220.0457 (10)0.0271 (8)0.0267 (8)0.0041 (7)0.0080 (7)0.0026 (6)
C230.0884 (17)0.0286 (9)0.0307 (9)0.0071 (10)0.0128 (11)0.0005 (7)
C240.0321 (8)0.0325 (8)0.0222 (7)0.0033 (7)0.0006 (6)0.0030 (6)
C250.0342 (9)0.0297 (8)0.0222 (7)0.0034 (7)0.0024 (6)0.0005 (6)
C260.0894 (18)0.0405 (10)0.0302 (9)0.0235 (12)0.0139 (11)0.0088 (8)
C270.0383 (11)0.0647 (14)0.0602 (13)0.0147 (11)0.0085 (10)0.0096 (11)
C280.0330 (8)0.0396 (9)0.0200 (7)0.0043 (7)0.0051 (6)0.0002 (6)
C290.0398 (9)0.0293 (8)0.0266 (8)0.0041 (7)0.0085 (7)0.0037 (6)
C300.0215 (7)0.0348 (8)0.0226 (7)0.0082 (6)0.0015 (6)0.0029 (6)
Geometric parameters (Å, º) top
O3—C31.216 (2)C15—H1510.9900
O20—C241.4334 (19)C15—H1520.9900
O20—C201.4446 (17)C16—C171.555 (2)
O25—C251.439 (2)C16—H1610.9900
O25—H250.90 (3)C16—H1620.9900
C1—C21.533 (2)C17—C201.533 (2)
C1—C101.544 (2)C17—H171.0000
C1—H110.9900C18—H1810.9800
C1—H120.9900C18—H1820.9800
C2—C31.507 (2)C18—H1830.9800
C2—H210.9900C19—H1910.9800
C2—H220.9900C19—H1920.9800
C3—C41.528 (2)C19—H1930.9800
C4—C291.537 (2)C20—C211.527 (2)
C4—C281.545 (2)C20—C221.545 (2)
C4—C51.5627 (19)C21—H2110.9800
C5—C61.537 (2)C21—H2120.9800
C5—C101.5589 (19)C21—H2130.9800
C5—H51.0000C22—C231.515 (2)
C6—C71.529 (2)C22—H2210.9900
C6—H610.9900C22—H2220.9900
C6—H620.9900C23—C241.532 (3)
C7—C81.540 (2)C23—H2310.9900
C7—H710.9900C23—H2320.9900
C7—H720.9900C24—C251.520 (2)
C8—C181.542 (2)C24—H2411.0000
C8—C91.5691 (19)C25—C271.517 (3)
C8—C141.5756 (19)C25—C261.518 (3)
C9—C111.539 (2)C26—H2610.9800
C9—C101.5731 (18)C26—H2620.9800
C9—H91.0000C26—H2630.9800
C10—C191.538 (2)C27—H2710.9800
C11—C121.534 (2)C27—H2720.9800
C11—H1110.9900C27—H2730.9800
C11—H1120.9900C28—H2810.9800
C12—C131.523 (2)C28—H2820.9800
C12—H1210.9900C28—H2830.9800
C12—H1220.9900C29—H2910.9800
C13—C171.5346 (19)C29—H2920.9800
C13—C141.5484 (19)C29—H2930.9800
C13—H131.0000C30—H3010.9800
C14—C151.5421 (19)C30—H3020.9800
C14—C301.550 (2)C30—H3030.9800
C15—C161.551 (2)
C24—O20—C20109.23 (12)C15—C16—H161110.4
C25—O25—H25107.1 (19)C17—C16—H161110.4
C2—C1—C10113.27 (13)C15—C16—H162110.4
C2—C1—H11108.9C17—C16—H162110.4
C10—C1—H11108.9H161—C16—H162108.6
C2—C1—H12108.9C20—C17—C13117.94 (12)
C10—C1—H12108.9C20—C17—C16114.31 (12)
H11—C1—H12107.7C13—C17—C16102.63 (12)
C3—C2—C1114.03 (13)C20—C17—H17107.1
C3—C2—H21108.7C13—C17—H17107.1
C1—C2—H21108.7C16—C17—H17107.1
C3—C2—H22108.7C8—C18—H181109.5
C1—C2—H22108.7C8—C18—H182109.5
H21—C2—H22107.6H181—C18—H182109.5
O3—C3—C2119.93 (15)C8—C18—H183109.5
O3—C3—C4121.69 (15)H181—C18—H183109.5
C2—C3—C4118.30 (13)H182—C18—H183109.5
C3—C4—C29107.99 (13)C10—C19—H191109.5
C3—C4—C28106.12 (13)C10—C19—H192109.5
C29—C4—C28108.70 (13)H191—C19—H192109.5
C3—C4—C5110.85 (12)C10—C19—H193109.5
C29—C4—C5108.81 (12)H191—C19—H193109.5
C28—C4—C5114.18 (13)H192—C19—H193109.5
C6—C5—C10110.90 (12)O20—C20—C21109.20 (13)
C6—C5—C4113.21 (12)O20—C20—C17104.91 (12)
C10—C5—C4117.92 (12)C21—C20—C17113.77 (13)
C6—C5—H5104.4O20—C20—C22103.63 (12)
C10—C5—H5104.4C21—C20—C22111.79 (15)
C4—C5—H5104.4C17—C20—C22112.74 (13)
C7—C6—C5109.37 (12)C20—C21—H211109.5
C7—C6—H61109.8C20—C21—H212109.5
C5—C6—H61109.8H211—C21—H212109.5
C7—C6—H62109.8C20—C21—H213109.5
C5—C6—H62109.8H211—C21—H213109.5
H61—C6—H62108.2H212—C21—H213109.5
C6—C7—C8113.39 (13)C23—C22—C20105.87 (14)
C6—C7—H71108.9C23—C22—H221110.6
C8—C7—H71108.9C20—C22—H221110.6
C6—C7—H72108.9C23—C22—H222110.6
C8—C7—H72108.9C20—C22—H222110.6
H71—C7—H72107.7H221—C22—H222108.7
C7—C8—C18106.56 (13)C22—C23—C24105.36 (15)
C7—C8—C9109.92 (11)C22—C23—H231110.7
C18—C8—C9112.36 (12)C24—C23—H231110.7
C7—C8—C14110.77 (12)C22—C23—H232110.7
C18—C8—C14110.49 (12)C24—C23—H232110.7
C9—C8—C14106.79 (11)H231—C23—H232108.8
C11—C9—C8110.13 (11)O20—C24—C25108.54 (13)
C11—C9—C10114.16 (12)O20—C24—C23105.68 (13)
C8—C9—C10116.89 (11)C25—C24—C23116.75 (16)
C11—C9—H9104.8O20—C24—H241108.5
C8—C9—H9104.8C25—C24—H241108.5
C10—C9—H9104.8C23—C24—H241108.5
C19—C10—C1108.60 (13)O25—C25—C27109.45 (16)
C19—C10—C5114.48 (13)O25—C25—C26110.28 (15)
C1—C10—C5106.80 (12)C27—C25—C26110.3 (2)
C19—C10—C9112.69 (12)O25—C25—C24103.81 (14)
C1—C10—C9107.56 (11)C27—C25—C24113.24 (16)
C5—C10—C9106.35 (11)C26—C25—C24109.54 (15)
C12—C11—C9112.27 (13)C25—C26—H261109.5
C12—C11—H111109.2C25—C26—H262109.5
C9—C11—H111109.2H261—C26—H262109.5
C12—C11—H112109.2C25—C26—H263109.5
C9—C11—H112109.2H261—C26—H263109.5
H111—C11—H112107.9H262—C26—H263109.5
C13—C12—C11110.60 (14)C25—C27—H271109.5
C13—C12—H121109.5C25—C27—H272109.5
C11—C12—H121109.5H271—C27—H272109.5
C13—C12—H122109.5C25—C27—H273109.5
C11—C12—H122109.5H271—C27—H273109.5
H121—C12—H122108.1H272—C27—H273109.5
C12—C13—C17119.54 (13)C4—C28—H281109.5
C12—C13—C14112.62 (12)C4—C28—H282109.5
C17—C13—C14103.40 (11)H281—C28—H282109.5
C12—C13—H13106.9C4—C28—H283109.5
C17—C13—H13106.9H281—C28—H283109.5
C14—C13—H13106.9H282—C28—H283109.5
C15—C14—C13100.20 (11)C4—C29—H291109.5
C15—C14—C30106.20 (12)C4—C29—H292109.5
C13—C14—C30110.17 (12)H291—C29—H292109.5
C15—C14—C8117.25 (12)C4—C29—H293109.5
C13—C14—C8110.34 (11)H291—C29—H293109.5
C30—C14—C8111.97 (12)H292—C29—H293109.5
C14—C15—C16104.54 (12)C14—C30—H301109.5
C14—C15—H151110.8C14—C30—H302109.5
C16—C15—H151110.8H301—C30—H302109.5
C14—C15—H152110.8C14—C30—H303109.5
C16—C15—H152110.8H301—C30—H303109.5
H151—C15—H152108.9H302—C30—H303109.5
C15—C16—C17106.85 (12)
C10—C1—C2—C352.7 (2)C17—C13—C14—C1547.73 (14)
C1—C2—C3—O3140.65 (16)C12—C13—C14—C3066.56 (17)
C1—C2—C3—C442.4 (2)C17—C13—C14—C3063.86 (14)
O3—C3—C4—C2927.4 (2)C12—C13—C14—C857.59 (17)
C2—C3—C4—C29155.70 (14)C17—C13—C14—C8171.99 (11)
O3—C3—C4—C2888.97 (19)C7—C8—C14—C1567.19 (16)
C2—C3—C4—C2887.89 (17)C18—C8—C14—C1550.65 (18)
O3—C3—C4—C5146.54 (15)C9—C8—C14—C15173.13 (12)
C2—C3—C4—C536.60 (19)C7—C8—C14—C13179.01 (12)
C3—C4—C5—C6175.52 (13)C18—C8—C14—C1363.14 (16)
C29—C4—C5—C665.86 (16)C9—C8—C14—C1359.34 (14)
C28—C4—C5—C655.75 (18)C7—C8—C14—C3055.91 (16)
C3—C4—C5—C1043.72 (17)C18—C8—C14—C30173.76 (13)
C29—C4—C5—C10162.33 (13)C9—C8—C14—C3063.76 (15)
C28—C4—C5—C1076.06 (17)C13—C14—C15—C1637.61 (15)
C10—C5—C6—C764.66 (17)C30—C14—C15—C1677.04 (15)
C4—C5—C6—C7160.17 (13)C8—C14—C15—C16156.95 (13)
C5—C6—C7—C858.91 (18)C14—C15—C16—C1714.67 (16)
C6—C7—C8—C1873.02 (16)C12—C13—C17—C2068.69 (18)
C6—C7—C8—C948.98 (17)C14—C13—C17—C20165.19 (12)
C6—C7—C8—C14166.76 (13)C12—C13—C17—C16164.70 (13)
C7—C8—C9—C11179.51 (13)C14—C13—C17—C1638.58 (14)
C18—C8—C9—C1161.03 (17)C15—C16—C17—C20143.52 (13)
C14—C8—C9—C1160.27 (15)C15—C16—C17—C1314.60 (16)
C7—C8—C9—C1047.09 (16)C24—O20—C20—C2186.45 (16)
C18—C8—C9—C1071.39 (16)C24—O20—C20—C17151.25 (13)
C14—C8—C9—C10167.31 (12)C24—O20—C20—C2232.81 (16)
C2—C1—C10—C1968.02 (17)C13—C17—C20—O20172.24 (12)
C2—C1—C10—C555.92 (17)C16—C17—C20—O2051.50 (16)
C2—C1—C10—C9169.75 (12)C13—C17—C20—C2152.95 (18)
C6—C5—C10—C1965.98 (16)C16—C17—C20—C2167.79 (17)
C4—C5—C10—C1966.85 (17)C13—C17—C20—C2275.68 (17)
C6—C5—C10—C1173.79 (12)C16—C17—C20—C22163.58 (13)
C4—C5—C10—C153.38 (16)O20—C20—C22—C2321.93 (19)
C6—C5—C10—C959.14 (15)C21—C20—C22—C2395.54 (19)
C4—C5—C10—C9168.02 (12)C17—C20—C22—C23134.80 (17)
C11—C9—C10—C1956.11 (18)C20—C22—C23—C244.5 (2)
C8—C9—C10—C1974.46 (16)C20—O20—C24—C25156.38 (13)
C11—C9—C10—C163.56 (16)C20—O20—C24—C2330.43 (19)
C8—C9—C10—C1165.87 (12)C22—C23—C24—O2014.8 (2)
C11—C9—C10—C5177.68 (13)C22—C23—C24—C25135.56 (18)
C8—C9—C10—C551.75 (15)O20—C24—C25—O25175.45 (13)
C8—C9—C11—C1259.20 (18)C23—C24—C25—O2565.33 (19)
C10—C9—C11—C12166.99 (14)O20—C24—C25—C2765.9 (2)
C9—C11—C12—C1354.3 (2)C23—C24—C25—C2753.3 (2)
C11—C12—C13—C17175.09 (14)O20—C24—C25—C2657.7 (2)
C11—C12—C13—C1453.44 (19)C23—C24—C25—C26176.89 (18)
C12—C13—C14—C15178.15 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O25—H25···O3i0.90 (3)2.03 (3)2.9325 (18)172 (3)
Symmetry code: (i) x+1/2, y+1, z1/2.
The motility (%) of adult H. contortus worms in the presence of different concentrations of C. glutinosum extracts and reference control media top
SampleConcentration (dose, µg ml-1)Time
6 h12 h18 h24 h30 h
PBSd010010066.733.30
Levamisold5005050000
d25066.70000
d12500000
Aqueous extractd240010025000
d1200100752500
d600100100000
d30010066.7000
d15010033.32500
d75100755000
Ethanol/water extractd24001000000
d120010033.3000
d600100752500
d30066.6766.7000
d15010050000
d7510033.3000
The motility (%) of adult H. contortus worms in the presence of the isolated compounds (150 µg ml-1), as determined by an adult worm motility inhibition assay (AMIA) top
CompoundTime
3 h6 h9 h12 h15 h18 h
5-Demethylsinensetin, (1)100500000
Umuhengerin, (2)100750000
Ocotillone, (3)100100252500
Lupeol, (4)1001000000
β-Sitosterol, (5)1001000000
Oleanolic acid, (6)10010025000
Betulinic acid, (7)100100252500
Corymbosin, (8)1001000000
β-Sitosterol glucoside, (9)10050252500
Levamisol2500000
PBS10010010010010075
 

Acknowledgements

The authors gratefully acknowledge the support of XTechLab, the experimental platform dedicated to the use of X-ray techniques for scientific and technological research, hosted by the `Agence de Développement de Sèmè City' in Bénin. The authors thank the Ministry of Higher Education and Scientific Research of Bénin through its program `Appui aux Doctorants'. MPT thanks the YaBiNaPA project coordination team, in particular, Professor Bruno N. Lenta, Dr Billy T. Tchegnitegni and Dr Joseph Tchamgoue for their diverse contributions to the realization of this work. Dr Olivier Blacque of the Department of Chemistry, University of Zurich, is thanked for assistance with one diffraction data collection.

Funding information

Funding for this research was provided by: the Yaounde-Bielefeld Bilateral Graduate School Natural Products with Anti­parasite and Anti-bacterial Activity (YaBiNaPA) project, financially supported by DAAD for the isolation and spectroscopic analyses (grant No. 57316173); the West African Research Association (WARA) for the funding that allowed the biological tests to be performed; a Swiss National Science Foundation R'Equip grant (grant No. 206021_164018) and the University of Zurich for the purchase of an X-ray diffrac­tometer.

References

First citationAalbersberg, W. & Singh, Y. (1991). Phytochemistry, 30, 921–926.  CrossRef CAS Web of Science Google Scholar
First citationAdizov, S. M., Mukhamathanova, R. F., Turgunov, K. K., Sham'yanov, I. D. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o578.  CSD CrossRef IUCr Journals Google Scholar
First citationAdnyana, I. K., Tezuka, Y., Banskota, A. H., Xiong, Q., Tran, K. Q. & Kadota, S. (2000). J. Nat. Prod. 63, 496–500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkoègninou, A., Van der Burg, W. J. & Van der Maesen, L. J. G. (2006). In Flore analytique du Bénin. Leiden: Backhuys Publishers.  Google Scholar
First citationAlowanou, G. G., Olounladé, A. P., Akouèdegni, G. C., Faihun, M., Koudandé, D. O. & Hounzangbé-Adoté, S. M. (2019). Parasitol. Res. 118, 1215–1223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAl-Yahya, M. A., Hifnawy, M. S., Mossa, J. S., El-Feraly, F. S., McPhail, D. R. & McPhail, A. T. (1987). Pytochemistry, 26, 2648–2649.  CAS Google Scholar
First citationAmadou, S. (2004). PhD thesis, University of Bamako, Bamako, Mali.  Google Scholar
First citationAmako, N. F. & Nnaji, J. C. (2016). J. Chem. Soc. Nigeria, 41, 164–168.  Google Scholar
First citationAyers, S., Zink, D. L., Mohn, K., Powell, J. S., Brown, C. M., Murphy, T., Brand, R., Pretorius, S., Stevenson, D., Thompson, D. & Singh, S. B. (2008). Phytochemistry, 69, 541–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaba-Moussa, F., Akpagana, K. & Bouchet, P. (1999). J. Ethnopharmacol. 66, 335–338.  Web of Science PubMed CAS Google Scholar
First citationBalde, E. S., Camara, A. K., Traoré, M. S., Baldé, N. M., Megalizzi, V., Pieters, L. & Balde, A. M. (2019). J. Pharmacogn. Phytochem. 8, 2230–2237.  Google Scholar
First citationBanskota, A. H., Tezuka, Y., Tran, K. Q., Tanaka, K., Saiki, I. & Kadota, S. (2000). Chem. Pharm. Bull. 48, 496–504.  CrossRef CAS Google Scholar
First citationBarrau, E., Fabre, N., Fouraste, I. & Hoste, H. (2005). Parasitology, 131, 531–538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetancor, C., Freire, R., Hernández, R., Suárez, E., Cortés, M., Prangé, T. & Pascard, C. (1983). J. Chem. Soc. Perkin Trans. I, pp. 1119–1126.  CSD CrossRef Web of Science Google Scholar
First citationBisset, N. G., Diaz, M. A., Ehret, C., Ourisson, G., Palmade, M., Patil, F., Pesnelle, P. & Streith, J. (1966). Phytochemistry, 5, 865–880.  CrossRef CAS Web of Science Google Scholar
First citationBisset, N. G., Diaz-Parra, M. A., Ehret, C. & Ourisson, G. (1967). Phytochemistry, 6, 1395–1405.  CrossRef CAS Google Scholar
First citationBrunet, S. & Hoste, H. (2006). J. Agric. Food Chem. 54, 7481–7487.  Web of Science CrossRef PubMed CAS Google Scholar
First citationButler, M. S., Healy, P. C., Forster, P. I., Guymer, G. P. & Quinn, R. J. (2018). Fitoterapia, 126, 90–92.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationÇitoğlu, G. S., Sever, B., Antus, S., Baitz-Gács, E. & Altanlar, N. (2003). Pharm. Biol. 41, 483–486.  Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDawe, A. (2013). Pharm. Crop. 4, 38–59.  CrossRef Google Scholar
First citationDedehou, V. F. G. N., Olounladé, P. A., Adenilé, A. D., Azando, E. V. B., Alowanou, G. G., Daga, F. D. & Hounzangbé-Adoté, M. S. (2014). J Anim. Plant Sci. 22, 3368–3378.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoste, H., Torres-Acosta, F., Sotiraki, S., Houzangbe-Adote, S., Kabore, A., Costa, L. Jr, Louvandini, H., Gaudin, E. & Mueller-Harvey, I. (2018). Innov. Agron. 66, 19–29.  Google Scholar
First citationHounzangbe-Adote, M. S., Paolini, V., Fouraste, I., Moutairou, K. & Hoste, H. (2005). Res. Vet. Sci. 78, 155–160.  Web of Science PubMed CAS Google Scholar
First citationImbenzi, P. S., He, Y., Yan, Z., Osoro, E. K. & Cheplogoi, P. K. (2014). Chin. Herb. Med. 6, 242–246.  CrossRef Google Scholar
First citationJossang, A., Pousset, J. L. & Bodo, B. (1994). J. Nat. Prod. 57, 732–737.  CrossRef CAS Web of Science Google Scholar
First citationKerharo, J. & Adam, J. G. (1974). In La pharmacopée Sénégalaise Traditionnelle: Plantes Médicinales et Toxiques. Paris: Vigot Frères.  Google Scholar
First citationKhazneh, E., Hřibová, P., Hošek, J., Suchý, P., Kollár, P., Pražanová, G., Muselík, J., Hanaková, Z., Václavík, J., Miłek, M., Legáth, J. & Šmejkal, K. (2016). Molecules, 21, 404.  Web of Science CrossRef PubMed Google Scholar
First citationKomlan, B. (2002). Acta Bot. Gallica, 149, 515–516.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahato, S. B. & Kundu, A. P. (1994). Phytochemistry, 37, 1517–1575.  CrossRef CAS Web of Science Google Scholar
First citationMalgras, D. (1992). Arbres et arbustes guérisseurs des savanes maliennes, pp. 128–129, 478. Paris: Karthala et ACCT.  Google Scholar
First citationMartinez-Vazquez, M., Garcia, H. M. V., Toscano, R. A. & Perez, G. E. (1993). J. Nat. Prod. 56, 1410–1413.  CAS Google Scholar
First citationMcGaw, L. J., Rabe, T., Sparg, S. G., Jäger, A. K., Eloff, J. N. & van Staden, J. (2001). J. Ethnopharmacol. 75, 45–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationN'diaye, D., Mbaye, M. D., Gassama, A., Lavaud, C. & Pilard, S. (2017). Int. J. Biol. Chem. Sci. 11, 488–498.  CAS Google Scholar
First citationOuattara, Y., Sanon, S., Traoré, Y., Mahiou, V., Azas, N. & Sawadogo, L. (2006). Afr. J. Tradit. Complement. Altern. Med. 3, 75–81.  Google Scholar
First citationPaolini, V., Dorchies, P. & Hoste, H. (2003). Vet. Rec. 152, 600–601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParvez, M., Riaz, M. & Malik, A. (2001). Acta Cryst. E57, o289–o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2021). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationRoy, S., Gorai, D., Acharya, R. & Roy, R. (2014). Indo Am. J. Pharm. Res. 4, 5266–5299.  Google Scholar
First citationRubinstein, L., Goad, L. J., Clague, A. D. H. & Mulheirn, L. J. (1976). Phytochemistry, 15, 195–200.  CrossRef CAS Web of Science Google Scholar
First citationRwangabo, P. C., Claeys, M., Pieters, L., Corthout, J., Vanden Berghe, D. A. & Vlietinck, A. J. (1988). J. Nat. Prod. 51, 966–968.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSall, C., Ndoye, S. F., Dioum, M. D., Seck, I., Gueye, R. S., Faye, B., Thiam, C. O., Seck, M., Gueye, P. M., Fall, D., Fall, M. & Dieye, T. N. (2017). Br. J. Appl. Sci. Technol. 19, 1–11.  CrossRef CAS Google Scholar
First citationSene, M., Ndiaye, D., Gassama, A., Barboza, F. S., Mbaye, M. D. & Yoro, S. Y. G. (2018). J. Adv. Med. Pharm. Sci. 19, 1–8.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSholichin, M., Yamasaki, K., Kasai, R. & Tanaka, O. (1980). Chem. Pharm. Bull. 28, 1006–1008.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuleimenov, E. N., Smagulova, F. M., Morozova, O. V., Raldugin, V. A., Bagryanskaya, I. Yu., Gatilov, Yu. V., Yamovoi, V. I. & Adekenov, S. M. (2005). Chem. Nat. Compd. 41, 689–691.  Web of Science CrossRef CAS Google Scholar
First citationToklo, P. M., Ladekan-Yayi, E. C., Assogba, M. F., Sakirigui, A., Alowanou, G. G., Moudachirou, M. & Gbenou, J. D. (2021). Chem. Res. J. 6, 21–36.  Google Scholar
First citationTurdybekov, K. M., Rakhimova, B. B., Makhmutova, A. S., Smailova, Zh. R., Nurkenov, O. A. & Adekenov, S. M. (2014). Chem. Nat. Compd. 50, 135–136.  Web of Science CrossRef CAS Google Scholar
First citationUsman, H., Sadiq, F. A., Mohammed, B., Umar, H. A., Tijjani, M. A., Pindiga, N. Y., Zadva, A. I., Thliza, B. A. & Ahmed, I. A. (2017). Chem. Res. J, 2, 31–36.  CAS Google Scholar
First citationWarnhoff, E. W. & Halls, C. M. M. (1965). Can. J. Chem. 43, 3311–3321.  CrossRef CAS Web of Science Google Scholar
First citationYamauchi, H., Fujiwara, T. & Tomita, K. (1969). Tetrahedron Lett. 10, 4245–4248.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds