research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis, structure and magnetocaloric properties of a new two-dimensional gadolinium(III) coordination polymer based on azo­benzene-2,2′,3,3′-tetra­carb­­oxy­lic acid

crossmark logo

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China, and bInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg. 1, Aachen 52074, Germany
*Correspondence e-mail: luliping@sxu.edu.cn, ullrich.englert@ac.rwth-aachen.de

Edited by E. Y. Cheung, Moderna Inc., USA (Received 28 June 2021; accepted 24 August 2021; online 10 September 2021)

A new Gd3+ coordination polymer (CP), namely, poly[di­aqua­[μ4-1′-carb­oxy-3,3′-(diazene-1,2-di­yl)di­benzene-1,2,2′-tri­carboxyl­ato]gadolinium(III)], [Gd(C16H7N2O8)(H2O)2]n, (I), has been synthesized hydro­thermally from Gd(NO3)3·6H2O and azo­benzene-2,2′,3,3′-tetra­carb­oxy­lic acid (H4abtc). The target solid has been characterized by single-crystal and powder X-ray diffraction, elemental analysis, IR spectroscopy and susceptibility measurements. CP (I) crystallizes in the monoclinic space group C2/c. The structure features a 4-connected topology in which Gd3+ ions are connected by carboxyl­ate groups into a linear chain along the monoclinic symmetry direction. Adjacent one-dimensional aggregates are bridged by Habtc3− ligands to form a two-dimensional CP in the (10[\overline{1}]) plane. A very short hydrogen bond [O⋯O = 2.4393 (4) Å] links neighbouring layers into a three-dimensional network. A magnetic study revealed anti­ferromagnetic Gd⋯Gd coupling within the chain direction. CP (I) displays a significant magnetocaloric effect (MCE), with a maximum −ΔSm of 27.26 J kg−1 K−1 for ΔH = 7 T at 3.0 K. As the MCE in (I) exceeds that of the commercial magnetic refrigerant GGG (Gd3Ga5O12, −ΔSm = 24 J kg−1 K−1, ΔH = 30 kG), CP (I) can be regarded as a potential cryogenic material for low-temperature magnetic refrigeration.

1. Introduction

Coordination polymers (CPs), a class of com­pounds based on repetition of metal cations connected by coordinated linkers, have developed rapidly in the past 20 years (Chakraborty et al., 2021[Chakraborty, G., Park, I. H., Medishetty, R. & Vittal, J. J. (2021). Chem. Rev. 121, 3751-3891.]) due to their inter­esting structures and variable applications in gas storage and separation (Roztocki et al., 2020[Roztocki, K., Szufla, M., Bon, V., Senkovska, I., Kaskel, S. & Matoga, D. (2020). Inorg. Chem. 59, 10717-10726.]), catalysis (Kang et al., 2019[Kang, Y. S., Lu, Y., Chen, K., Zhao, Y., Wang, P. & Sun, W. Y. (2019). Coord. Chem. Rev. 378, 262-280.]), sensing (Lustig et al., 2017[Lustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J. & Ghosh, S. K. (2017). Chem. Soc. Rev. 46, 3242-3285.]) and magnetic materials (Yang et al., 2019a[Yang, C. Q., Dong, R. H., Wang, M., Petkov, P. S., Zhang, Z. T., Wang, M. C., Han, P., Ballabio, M., Bräuninger, S. A., Liao, Z. Q., Zhang, J. C., Schwotzer, F., Zschech, E., Klauss, H. H., Cánovas, E., Kaskel, S., Bonn, M., Zhou, S. Q., Heine, T. & Feng, X. L. (2019a). Nat. Chem. 10, 3260.]). In particular, due to the unique 4f electron configuration of Ln3+ ions, lanthanide coordination polymers (Ln-CPs) usually exhibit a high coordination number, flexible coordination geometry and strong spin-orbit coupling (Sorace et al., 2011[Sorace, L., Benelli, C. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3092-3104.]; Liu et al., 2016[Liu, K., Zhang, X. J., Meng, X. X., Shi, W., Cheng, P. & Powell, A. K. (2016). Chem. Soc. Rev. 45, 2423-2439.]). These properties suggest their application in luminescence sensing (Ye et al., 2017[Ye, J. W., Lin, J. M., Mo, Z. W., He, C. T., Zhou, H. L., Zhang, J. P. & Chen, X. M. (2017). Inorg. Chem. 56, 4238-4243.]), mol­ecular magnetism (Liu et al., 2019[Liu, C. M., Zhang, D. Q., Hao, X. & Zhu, D. B. (2019). Cryst. Growth Des. 19, 4731-4737.]), magnetic resonance imaging (Debroye & Parac-Vogt, 2014[Debroye, E. & Parac-Vogt, T. N. (2014). Chem. Soc. Rev. 43, 8178-8192.]) and related fields (Kumar et al., 2019[Kumar, M., Sheikh, H. N., Fraconetti, A., Zaręba, J. K., Sahoo, S. C. & Frontera, A. (2019). New J. Chem. 43, 2179-2195.]).

Magnetic refrigeration represents a focus area in the field of magnetism. This approach is based on the magnetocaloric effect (MCE) (Yang et al., 2015[Yang, Y., Zhang, Q. C., Pan, Y. Y., Long, L. & Zheng, L. S. (2015). Chem. Commun. 51, 7317-7320.]; Wu et al., 2021[Wu, S. M., Zhong, X. C., Dong, X. T., Liu, C. L., Huang, J. H., Huang, Y. L., Yu, H. Y., Liu, Z. W., Huang, Y. S. & Ramanujan, R. V. (2021). J. Alloys Compd. 873, 159796.]) and is considered a highly efficient and energy-saving, hence environmentally friendly, technology. Key factors for success com­prise a high-spin ground state S, negligible magnetic anisotropy and low-lying excited spin states (Evangelisti et al., 2006[Evangelisti, M., Luis, F., de Jongh, L. J. & Affronte, M. (2006). J. Mater. Chem. 16, 2534-2549.]; Liu et al., 2014a[Liu, J. L., Chen, Y. C., Guo, F. S. & Tong, M. L. (2014a). Coord. Chem. Rev. 281, 26-49.]). The basic principle of magnetic refrigeration is realized through repeated cycles of isothermal magnetization and adiabatic demagnetization through the MCE displayed by the magnetic materials (Han et al., 2018[Han, Y., Han, S. D., Pan, J., Ma, Y. J. & Wang, G. M. (2018). Mater. Chem. Front. 2, 2327-2332.]). Magnetic refrigeration has potential for the generation of ultra-low temperatures. The magnitude of the MCE is usually measured by magnetic entropy change (−ΔSm) and adiabatic temperature change (ΔTad) under certain conditions (Franco et al., 2018[Franco, V., Blázquez, J. S., Ipus, J. J., Law, J. Y., Moreno-Ramírez, L. M. & Conde, A. (2018). Prog. Mater. Sci. 93, 112-232.]). A large ΔSm under a relatively low magnetic field is mandatory for an attractive cryogenic magnetorefrigerant (Liu et al., 2017[Liu, S. J., Cao, C., Yao, S. L., Zheng, T. F., Wang, Z. X., Liu, C., Liao, J. S., Chen, J. L., Li, Y. W. & Wen, H. R. (2017). Dalton Trans. 46, 64-70.]). The −ΔSm value of the well-known commercial low-temperature magnetic refrigeration material GGG (Gd3Ga5O12) is 24 J kg−1 K−1 (ΔH = 30 kG) (Daudin et al., 1982[Daudin, B., Lagnier, R. & Salce, B. J. (1982). J. Magn. Magn. Mater. 27, 315-322.]).

[Scheme 1]

The Gd3+ ion meets the requirements of a high-spin ground state S (S = 7/2), of low-lying excited spin states and magnetic isotropy (Niu et al., 2019[Niu, H. J., Wang, L. H., Yang, G. E. & Wang, X. X. (2019). Inorg. Chim. Acta, 489, 155-159.]). The magnetic coupling between Gd3+ centres is relatively weak, which allows the system to achieve a large MCE (Zhang et al., 2021[Zhang, H. T., Ma, L., Han, M. R., Feng, S. S. & Zhu, M. L. (2021). Inorg. Nano-Met. Chem. 51, 761-765.]). Therefore, the Gd3+ ion represents an ideal choice for the construction of mol­ecular-based low-temperature magnetic refrigeration materials (Wang et al., 2019[Wang, Y. X., Xu, Q. T., Ren, P., Shi, W. & Cheng, P. (2019). Dalton Trans. 48, 2228-2233.]). At present, mol­ecular materials of cryogenic magnetic refrigeration mainly include Gd-based clusters and Gd-based CPs. However, the exploration of MCE for one-dimensional (1D) linear Gd3+ CPs has only rarely been documented (Liu et al., 2014b[Liu, S. J., Xie, C. C., Jia, J. M., Zhao, J. P., Han, S. D., Cui, Y., Li, Y. & Bu, X. H. (2014b). Chem. Asian J. 9, 1116-1122.]).

In view of the above-mentioned promising properties, we report the new two-dimensional (2D) Gd3+ com­plex, [Gd(Habtc)(H2O)2]n, (I)[link], for which we selected azo­benzene-2,2′,3,3′-tetra­carb­oxy­lic acid (H4abtc) as the ligand. The four carb­oxy­lic acid groups of this rigid H4abtc linker may be partially or com­pletely deprotonated and thus show flexible and diverse coordination patterns. In one of these coordination modes, the O atoms of a carboxyl­ate group can bridge Gd3+ ions and thus ensure magnetic exchange and transfer between adjacent Gd3+ ions, at the same time maintaining an overall rigid product (Zhang et al., 2015c[Zhang, S. W., Ma, J. G., Zhang, X. P., Duan, E. Y. & Cheng, P. (2015c). Inorg. Chem. 54, 586-595.]). In this article, we communicate the synthesis, structure and magnetic properties of (I)[link].

2. Experimental

All reagents and solvents used were commercially available and were used without further purification. H4abtc was purchased from Jinan Trading Company (China). FT–IR spectra were obtained with a Bruker TENSOR27 spec­trom­eter on KBr disks in the 4000–400 cm−1 region. Elemental analyses (EAs) were performed using a PerkinElmer 240 elemental analyzer. Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 Advance X-ray diffractometer (Cu Kα, λ = 1.5418 Å) at a rate of 10° min−1 in the 2θ range 5–50°. Based on the results of the single-crystal X-ray dif­frac­tion experiment, the simulated pattern was obtained with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) assuming Cu Kα1 radiation (λ = 1.54056 Å). The thermogravimetric analysis was performed on a Dupont thermal analyzer between room temperature and 1045 K under an N2 flow with a heating rate of 10 K min−1. Magnetic susceptibility was measured from a microcrystalline sample using a SQUID magnetometer (Quantum Design MPMS) in the range 2–300 K with a direct-current field of 1000 Oe. Isothermal field-dependent magnetization M(H) was measured in the range 0–7 T from 2 to 10 K.

2.1. Synthesis and crystallization

The reaction route to (I)[link] is shown in Scheme 1[link]. Gd(NO3)3·6H2O (67.7 mg, 0.15 mmol) and H4abtc (35.8 mg, 0.1 mmol) were dissolved in a mixture of N,N-di­methyl­formamide (DMF, 2 ml), aceto­nitrile (CH3CN, 2 ml) and dis­tilled water (H2O, 6 ml). The solution was sealed in a stainless steel container and heated under autogenous pressure at 393 K for 72 h. After this period, heating was sus­pended and the container was allowed to cool to room tem­per­ature. Yellow block-shaped crystals of the product were obtained by filtration, washed with water and dried in the air (yield 67%). Analysis calculated (%) for C16H11GdN2O10: C 35.01, H 2.01, N 5.10; found: C 35.05, H 2.02, N 5.13.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Carbon-bound H atoms were placed in calculated positions and refined using a riding model, with aromatic C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H-atom positions were fixed as found (O—H dis­tances are approximately 0.82 Å), with Uiso(H) = 1.5Ueq(O). A difference Fourier map (Fig. 1[link]) suggested Wyckoff position 4b for atom H4A in the short O⋯O contact, albeit as a very broad residual electron-density maximum. Our structure model with H4 in this special position therefore assumes a short symmetric hydrogen bond. In the absence of high-resolution or neutron data, we can neither disprove nor support a split-atom alternative and an asymmetric hydrogen bond. Şerb et al. (2011[Şerb, M.-D., Wang, R., Meven, M. & Englert, U. (2011). Acta Cryst. B67, 552-559.]) have com­piled structures featuring very short O⋯O bonds. The reflection conditions for the correct space group C2/c are also com­patible with the subgroup Cc; tentative refinements in this noncentrosymmetric subgroup resulted in numerous high correlations and anti­correlations for positional and displacement parameters: 26 elements of the final inverted refinement matrix showed correlation coefficients with a modulus >0.9 and more than 100 with a modulus >0.8. These high correlations resulted in an unrealistically broad range of C—C bonds, and no convergence for physically meaningful displacement parameters could be achieved.

Table 1
Experimental details

Crystal data
Chemical formula [Gd(C16H7N2O8)(H2O)2]
Mr 548.52
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 25.725 (4), 5.0236 (9), 17.274 (3)
β (°) 127.393 (4)
V3) 1773.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.80
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1907-1913.])
Tmin, Tmax 0.600, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 6278, 1568, 1508
Rint 0.024
(sin θ/λ)max−1) 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.034, 1.11
No. of reflections 1568
No. of parameters 133
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.33
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Bruker, 2009[Bruker (2009). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).
[Figure 1]
Figure 1
Difference Fourier map (PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) for (I)[link] before inclusion of H4A into the structure model. Contour lines are drawn at an electron density of 0.1 e Å−3. [Symmetry code: (i) −x, −y + 1, −z + 1.]

3. Results and discussion

3.1. IR spectroscopy

The IR spectra of the ligand and (I)[link] in the range 4000–400 cm−1 are presented in Fig. 2[link]. The broad band at 3405 cm−1 indicates O—H stretching of the hy­droxy groups and the coordinated water mol­ecules in (I)[link] (Yang et al., 2019b[Yang, D.-D., Lu, L.-P. & Zhu, M.-L. (2019b). Acta Cryst. C75, 1580-1592.]). The characteristic absorption peaks of the asymmetric and symmetric stretching vibrations of the carboxyl­ate groups appear at 1383 and 1563 cm−1 for (I)[link] (Du et al., 2016[Du, P. Y., Gu, W. & Liu, X. (2016). CrystEngComm, 18, 5140-5148.]; Li et al., 2012[Li, L. N., Wang, S. Y., Chen, T. L., Sun, Z. H., Luo, J. H. & Hong, M. C. (2012). Cryst. Growth Des. 12, 4109-4115.]; Zhang et al., 2015a[Zhang, J., Wang, C. C., Wang, P. & Gao, S. J. (2015a). Transition Met. Chem. 40, 821-829.]). They are clearly shifted to lower wavenumbers in com­parison with free H4abtc (1426 and 1572 cm−1), suggesting that the carboxyl­ate groups in the com­plex are coordinated to the Gd3+ ions (An et al., 2018[An, Y.-Y., Lu, L.-P. & Zhu, M.-L. (2018). Acta Cryst. C74, 418-423.]). The absorption observed at 1468 cm−1 is caused by the N=N stretching vibration of the ligand (Goel & Kumar, 2018[Goel, N. & Kumar, N. (2018). RSC Adv. 8, 10746-10755.]). The structural features of the com­plex deduced from IR spectra match the results of the single-crystal X-ray analysis. IR (KBr, ν, cm−1, s = strong, m = medium and w = weak): 3405 (m), 1709 (w), 1563 (s), 1468 (s), 1383 (s), 1298 (w), 1147 (w), 1072 (m), 934 (w), 840 (m), 769 (s), 684 (w), 571 (s), 500 (s).

[Figure 2]
Figure 2
IR spectra of the ligand and (I)[link].

3.2. Structure description

Coordination polymer (I)[link] crystallizes in the monoclinic space group C2/c, adopting a 2D framework based on coordination and covalent bonds; we originally expected a three-dimensional (3D) solid from the reaction between Gd(NO3)3·6H2O and H4abtc. The asymmetric unit of (I)[link] contains a Gd3+ ion situated on a twofold axis (Wyckoff position 4e), one half of the Habtc3− ligand and a coordinated H2O mol­ecule. As shown in Fig. 3[link], each Gd3+ ion is eight-coordinated by O atoms in a {GdO8} environment, in which six O atoms [O1, O2, O3, O1i, O2i and O3i; symmetry code: (i) −x, −y + 1, −z + 1] are derived from the carboxyl­ate groups of four Habtc3− moieties and two O atoms (O5 and O5i) represent aqua ligands. The Gd—O distances are in the range 2.3449 (15)–2.4503 (16) Å and the O—Gd—O angles vary from 68.66 (5) to 149.37 (5)° (Table 2[link]), consistent with values observed in related com­pounds (Nakamura et al., 2021[Nakamura, T., Kanetomo, T. & Ishida, T. (2021). Inorg. Chem. 60, 535-539.]). The coordination polyhedron about the Gd3+ ion displays a dicapped trigonal prismatic geometry, in which each Habtc3− links four Gd3+ ions in a μ4-η1:η1:η1:η0:η1:η1:η1:η0 coordination mode and all Gd3+ ions are connected via four bridging Habtc3− ligands. Adjacent Gd3+ atoms are linked by the carboxyl­ate groups of Habtc3−, forming a linear Gd chain along [010]; the Gd⋯Gd separation corresponds to the lattice parameter b of 5.0236 (9) Å [Fig. 4[link](a)]. The 1D Gd chains are bridged by the central azo group of the Habtc3− ligands to form a layer structure [Fig. 4[link](b)]. Two Habtc3− ligands share the proton H4 which is located on a centre of inversion [see Refinement (§2.2[link]) and Fig. 1[link]] and plays the decisive role in linking adjacent coordination layers to a 3D framework [Fig. 4[link](c)]. In addition to this very short and symmetric hydrogen bond, the aqua ligand O5 acts as a hydrogen-bond donor towards carboxyl­ate O atoms of a neighbouring layer. Detailed information of the inter­molecular hydrogen bonds is summarized in Table 3[link]. In order to obtain better insight into the nature of the intricate structure of CP (I)[link], the network was simplified and its topology was analyzed with the help of the program TOPOS (Blatov & Shevchenko, 2006[Blatov, V. A. & Shevchenko, A. P. (2006). TOPOS. Version 4.0. Samara State University, Samara, Russia.]). As shown in Fig. 4[link](d), each Habtc3− ligand can be perceived a four-connected node towards Gd3+ ions and, vice versa, each Gd3+ ion is coordinated by four Habtc3− ligands. The overall network can thus be described as a 4-connected net with the point symbol (44·62).

Table 2
Selected geometric parameters (Å, °)

Gd1—O1 2.3449 (15) Gd1—O3 2.4446 (15)
Gd1—O2 2.3722 (15) Gd1—O5 2.4502 (16)
       
O1—Gd1—O1i 88.98 (8) O3—Gd1—O3i 139.00 (8)
O1—Gd1—O2 92.22 (6) O1—Gd1—O5i 140.25 (5)
O1—Gd1—O2i 149.36 (5) O1—Gd1—O5 80.69 (6)
O2—Gd1—O2i 101.87 (8) O2—Gd1—O5i 78.93 (6)
O1—Gd1—O3 71.73 (5) O2—Gd1—O5 69.85 (6)
O1—Gd1—O3i 79.27 (5) O3—Gd1—O5i 68.66 (5)
O2—Gd1—O3 72.12 (5) O3—Gd1—O5 131.45 (5)
O2—Gd1—O3i 138.46 (5) O5—Gd1—O5i 129.63 (9)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3ii 1.22 2.42 3.130 (2) 114
O4—H4A⋯O4ii 1.22 1.22 2.439 (4) 180
O5—H5A⋯O1iii 0.82 2.03 2.756 (2) 147
O5—H5B⋯O4iv 0.82 2.01 2.821 (3) 173
Symmetry codes: (ii) [-x, -y+1, -z+1]; (iii) [x, y-1, z]; (iv) [x, -y+1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Expanded asymmetric unit and coordination environment of the Gd3+ ion in (I)[link]. Displacement ellipsoids are drawn at 30% probability and H atoms are represented as spheres of arbitrary radius. [Symmetry codes: (i) −x, y, −z + [{1\over 2}]; (ii) x, y + 1, z; (iii) −x + [{1\over 2}]. −y + [{5\over 2}], −z + 1.]
[Figure 4]
Figure 4
(a) Distances between adjacent Gd3+ ions in the 1D metal chain constructed by Gd3+ ions and the carboxyl­ate groups of the Habtc3− ligands (H atoms have been omitted for clarity). (b) The 2D layer of (I)[link]. The inset is the local coordination geometry of the Gd3+ ion of (I)[link]. [Symmetry code: (i) −x, y, −z + [{1\over 2}].] (c) The 3D framework formed by hydrogen bonds in (I)[link] (different colours represent different layers and H4A atoms are shown in red). (d) The 2D topology of (I)[link] with point symbol (44·62).

3.3. Powder X-ray diffraction (PXRD) and thermal stability

To verify the phase purity of the com­pound, the as-syn­the­sized samples were characterized by PXRD at room temperature. As shown in Fig. 5[link](a), the experimental PXRD pattern of (I)[link] is in excellent agreement with the simulated one, demonstrating the phase purity of the bulk sample. Minor differences in line intensities can probably be attributed to preferred orientation of the powder sample. Thermal stability was investigated by a thermogravimetric analysis (TGA) under an N2 atmosphere. Fig. 5[link](b) summarizes the weight loss for (I)[link] between room temperature and 1045 K. In the temperature range 325–471 K, the TGA curve shows a weight loss of 6.88% which may be attributed to the elimination of two coordinated water mol­ecules (calculated 6.56%). At higher temperatures, the framework of (I)[link] gradually collapses.

[Figure 5]
Figure 5
(a) Experimental and simulated PXRD patterns of (I)[link] in the range 5–50°. (b) Thermogravimetric analysis for (I)[link].

3.4. Magnetic properties

Magnetic properties of (I)[link] were studied in order to understand potential magnetic inter­actions. Variable-temperature magnetic susceptibility measurements of (I)[link] were conducted in the range 2–300 K with an applied magnetic field of 1000 Oe. As shown in Fig. 6[link], the experimental χmT value for (I)[link] amounts to 8.00 cm3 mol−1 K at 300 K, close to the expected value of 7.88 cm3 mol−1 K calculated for an isolated Gd3+ ion (S = 7/2, g = 2) (Xi et al., 2020[Xi, L., Sun, J., Li, H. D., Han, J., Huang, X. H. & Li, L. C. (2020). Cryst. Growth Des. 20, 3785-3794.]). As the temperature is decreased, the χmT value of (I)[link] decreases slowly to 7.93 cm3 mol−1 K around 10 K, and then increases gradually to 8.14 cm3 mol−1 K at 2 K. The data in the whole temperature range 2–300 K fit well the Curie–Weiss law with C = 8.06 cm3 K mol−1 and θ = −0.08 K. The negative θ value indicates the existence of weak anti­ferromagnetic inter­actions between the metal centres in the 1D chain of (I)[link]. To further qu­anti­tatively analyze the magnetic inter­actions, the molar susceptibility of (I)[link] can be described by a Fisher expression for a classical spin chain which allows an evaluation of the mag­netic coupling (J) between adjacent Gd3+ ions (Farger et al., 2018[Farger, P., Leuvrey, C., Gallart, M., Gilliot, P., Rogez, G., Rocha, J., Ananias, D., Rabu, P. & Delahaye, E. (2018). Beilstein J. Nanotechnol. 9, 2775-2787.]). The best least-squares fit parameters are g = 2.01 and J = −0.02 cm−1, with an agreement factor R = 6.27 × 10−5 in the range 35–300 K. The value for J further proves the existence of weak anti­ferromagnetic inter­actions between adjacent Gd3+ ions in (I)[link].

[Figure 6]
Figure 6
Plots of χm, χmT and χm−1 (inset) as functions of T for (I)[link]. Red solid lines represent best fits.

The magnetization of (I)[link] was measured in the inter­val between 0 and 7 T at temperatures between 2 and 10 K (Fig. 7[link]a). The M values for (I)[link] show a steady increase with increasing H and a saturation value of 7.14 Nβ at 7 T and 2 K, which is close to the expected value of S×g = 7/2×2 = 7 Nβ for an isolated Gd3+ ion (S = 7/2, g = 2). To evaluate the magnetocaloric effect (MCE), the magnetic entropy change (−ΔSm) of (I)[link] was calculated for a field between 0 and 7 T in the temperature range 2–10 K, and it can be obtained (Fig. 7[link]b) by the Maxwell relation in the equation ΔSm(T) = [M(T,H)/T]HdH. The resulting maximum value of −ΔSm amounts to 27.26 J kg−1 K−1 for ΔH = 7 T at 3.0 K, which is smaller than the theoretical value of 31.52 J kg−1 K−1, as calculated from the equation −ΔSm = NGd Rln(2s + 1)/MW, with S = 7/2. In this equation, MW is the formula mass of 548.52 g mol−1 and NGd is the number of Gd3+ ions present per mole of (I)[link]. The difference in −ΔSm between the theoretical and experimental values may be attributed to the existence of anti­ferromagnetic inter­actions between Gd3+ ions. The experimental −ΔSm value is also smaller than several previously prepared 1D linear-chain Gd3+ com­plexes (Table 4[link]), which can be ascribed to the large MW/NGd ratio arising from the large H4abtc ligand and the anti­ferromagnetic inter­actions between the neighbouring Gd3+ ions in (I)[link].

Table 4
Comparison of −ΔSm for (I)[link] and several previously reported 1D Gd3+ com­plexes

OAc is acetate, pda is propanedionate, ox is oxalate, cit is citrate, piv is pivalate, MMA is methylmalonate, INA is isonicotinate, glu is glutamate, HPA is homophtalate, azdc is 4,4′-azobenzoate, phen is 1,10-phenanthroline, 2,5-TDA is thiophene-2,5-dicarboxylate, DMA is dimethylacetamide, DMF is dimethylformamide, N-BDC is 2-aminobenzene-1,4-dicarboxylate, mnba is m-nitrobenzoate, PAA is phenylacetate, HIN is isonicotinic acid and IN is isonicotinate.

Complex Dimensionality ΔSmmax ( J kg−1 K−1) Gd⋯Gd (Å) MW/NGd Reference
[Gd(OAc)3(H2O)0.5]n One-dimensional 50.4 4.0 343 Guo et al. (2012[Guo, F. S., Leng, J. D., Liu, J. L., Meng, Z. S. & Tong, M. L. (2012). Inorg. Chem. 51, 405-413.])
[Gd(pda)(ox)0.5]n Three-dimensional 46.8 4.1–6.1 303 Liu et al. (2017[Liu, S. J., Cao, C., Yao, S. L., Zheng, T. F., Wang, Z. X., Liu, C., Liao, J. S., Chen, J. L., Li, Y. W. & Wen, H. R. (2017). Dalton Trans. 46, 64-70.])
[Gd(pda)(ox)0.5(H2O)]n Three-dimensional 46.1 4.3–6.3 321 Liu et al. (2017[Liu, S. J., Cao, C., Yao, S. L., Zheng, T. F., Wang, Z. X., Liu, C., Liao, J. S., Chen, J. L., Li, Y. W. & Wen, H. R. (2017). Dalton Trans. 46, 64-70.])
[Gd(HCOO)(OAc)2(H2O)2]n One-dimensional 45.9 5.9 572 Lorusso et al. (2012[Lorusso, G., Palacios, M., Nichol, G., Brechin, E., Roubeau, O. & Evangelisti, M. (2012). Chem. Commun. 48, 7592-7594.])
[Gd(OAc)3(MeOH)]n One-dimensional 45.0 4.1 366 Guo et al. (2012[Guo, F. S., Leng, J. D., Liu, J. L., Meng, Z. S. & Tong, M. L. (2012). Inorg. Chem. 51, 405-413.])
[Gd(pda)(ox)0.5(H2O)2]n Two-dimensional 45.0 4.2–6.2 339 Liu et al. (2017[Liu, S. J., Cao, C., Yao, S. L., Zheng, T. F., Wang, Z. X., Liu, C., Liao, J. S., Chen, J. L., Li, Y. W. & Wen, H. R. (2017). Dalton Trans. 46, 64-70.])
[Gd(cit)(H2O)]n Two-dimensional 43.6 4.5 363 Liu et al. (2014b[Liu, S. J., Xie, C. C., Jia, J. M., Zhao, J. P., Han, S. D., Cui, Y., Li, Y. & Bu, X. H. (2014b). Chem. Asian J. 9, 1116-1122.])
[Gd2(piv)5(μ3-OH)(H2O)]n One-dimensional 37.5 3.7 427 Liu et al. (2014b[Liu, S. J., Xie, C. C., Jia, J. M., Zhao, J. P., Han, S. D., Cui, Y., Li, Y. & Bu, X. H. (2014b). Chem. Asian J. 9, 1116-1122.])
[Gd(MMA)(INA)(H2O)2]n Two-dimensional 36.0 4.7 431 Li et al. (2017a[Li, Z. Y., Cao, Y. Q., Li, J. Y., Zhang, X. F., Zhai, B., Zhang, C., Zhang, F. L. & Cao, G. X. (2017a). Cryst. Growth Des. 17, 6752-6761.])
{[Gd2(glu)3(H2O)2]·4H2O}n Three-dimensional 36.0 4.2 406 Zheng et al. (2017[Zheng, T. F., Yao, S. L., Cao, C., Liu, S. J., Hu, H. K., Zhang, T., Huang, H. P., Liao, J. S., Chen, J. L. & Wen, H. R. (2017). New J. Chem. 41, 8598-8603.])
{[Gd(HPA)(NO3)(H2O)2]·H2O}n One-dimensional 35.6 3.9 415 Li et al. (2017b[Li, Z. Y., Chen, Y., Dong, X. Y., Zhai, B., Zhang, X. F., Zhang, C., Zhang, F. L., Li, S. Z. & Cao, G. X. (2017b). Cryst. Growth Des. 17, 3877-3884.])
{[Gd2(HPA)3(H2O)2]·H2O}n Two-dimensional 35.4 3.9 415 Li et al. (2017b[Li, Z. Y., Chen, Y., Dong, X. Y., Zhai, B., Zhang, X. F., Zhang, C., Zhang, F. L., Li, S. Z. & Cao, G. X. (2017b). Cryst. Growth Des. 17, 3877-3884.])
[Gd(azdc)(HCOO)]n Three-dimensional 34.9 3.9 470 Zhang et al. (2015b[Zhang, S. W., Duan, E., Han, Z. S., Li, L. L. & Cheng, P. (2015b). Inorg. Chem. 54, 6498-6503.])
[Gd2(MMA)2(INA)2(H2O)3]n Two-dimensional 34.3 4.8 844 Li et al. (2017a[Li, Z. Y., Cao, Y. Q., Li, J. Y., Zhang, X. F., Zhai, B., Zhang, C., Zhang, F. L. & Cao, G. X. (2017a). Cryst. Growth Des. 17, 6752-6761.])
[Gd2(SO4)3(phen)2(H2O)2]n One-dimensional 31.7 4.3 499 Zheng et al. (2017[Zheng, T. F., Yao, S. L., Cao, C., Liu, S. J., Hu, H. K., Zhang, T., Huang, H. P., Liao, J. S., Chen, J. L. & Wen, H. R. (2017). New J. Chem. 41, 8598-8603.])
[Gd2(2,5-TDA)3(DMA)2]n Three-dimensional 31.0 4.1 499 Kumar et al. (2020[Kumar, M., Li, L. Q., Zaręba, J. K., Tashi, L., Sahoo, S. C., Nyk, M., Liu, S. J. & Sheikh, H. N. (2020). Cryst. Growth Des. 20, 6430-6452.])
{[Gd2(OH)2L2]·DMF·4H2O}n Three-dimensional 30.3 3.8–3.9 417 Peng et al. (2018[Peng, D., Yin, L., Hu, P., Li, B., Ouyang, Z. W., Zhuang, G. L. & Wang, Z. X. (2018). Inorg. Chem. 57, 2577-2583.])
[Gd2(N-BDC)3(DMF)4]n Three-dimensional 29.0 10.5–12.1 366 Lorusso et al. (2012[Lorusso, G., Palacios, M., Nichol, G., Brechin, E., Roubeau, O. & Evangelisti, M. (2012). Chem. Commun. 48, 7592-7594.])
[GdL1/2(H2O)2]n Two-dimensional 27.3 5.0 548 This work
[Gd2(mnba)4(μ-OH)2(H2O)]n One-dimensional 27.1 3.8 515 Liu et al. (2014b[Liu, S. J., Xie, C. C., Jia, J. M., Zhao, J. P., Han, S. D., Cui, Y., Li, Y. & Bu, X. H. (2014b). Chem. Asian J. 9, 1116-1122.])
[Gd(PAA)3(H2O)]n One-dimensional 26.7 4.0 580 Li et al. (2017c[Li, Z. Y., Xu, Y. L., Zhang, X. F., Zhai, B., Zhang, F. L., Zhang, J. J., Zhang, C., Li, S. Z. & Cao, G. X. (2017c). Dalton Trans. 46, 16485-16492.])
{Gd[IN][HIN][CH2OCH2O]}n One-dimensional 26.2 3.7 462 Li et al. (2020[Li, N. F., Ji, J. Y., Jiang, W., Cao, J. P., Han, Y. M., Yuan, P. & Xu, Y. (2020). Z. Anorg. Allg. Chem. 646, 463-468.])
{[Gd2(azdc)3(DMA)2]·2DMA}n Three-dimensional 22.3 4.6 734 Zhang et al. (2014[Zhang, S. W., Shi, W., Li, L. L., Duan, E. & Cheng, P. (2014). Inorg. Chem. 53, 10340-10346.])
[Figure 7]
Figure 7
(a) M versus H plots from 2 to 10 K. (b) Calculated −ΔSm from the magnetization data of (I)[link] at various fields and temperatures.

3.5. Conclusion

In summary, the novel coordination polymer (I)[link] has been successfully constructed under hydro­thermal conditions via the combination of Gd3+ ions and the H4abtc linker. The underlying structural principles in (I)[link] com­prise a 1D [Gd2(COO)4]n chain and the linking of neighbouring chains via the organic ligand into a 2D structure with point symbol (44·62). Further crosslinking into a 3D framework occurs via very short hydrogen bonds. The new CP offers potential for application; magnetic studies reveal that (I)[link] displays intra­chain anti­ferromagnetic Gd⋯Gd coupling and a cryogenic MCE with the maximum −ΔSm of 27.26 J kg−1 K−1 for ΔH = 7 T at 3.0 K. This small −ΔSm value can be ascribed to the high MW/NGd ratio arising from the large H4abtc ligand and the anti­ferromagnetic inter­actions between neighbouring Gd3+ ions in (I)[link]. The selection of low mol­ecular-weight ligands that transfer weak coupling may be a promising approach for obtaining Gd3+ com­plexes as mol­ecule-based magnetic refrigerants. Further studies on Gd3+ com­plexes for magnetic refrigeration are underway in our laboratory.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker, 2009); software used to prepare material for publication: SHELXTL (Bruker, 2009).

Poly[diaqua[µ4-1'-carboxy-3,3'-(diazene-1,2-diyl)dibenzene-1,2,2'-tricarboxylato]gadolinium(III) top
Crystal data top
[Gd(C16H7N2O8)(H2O)2]F(000) = 1060
Mr = 548.52Dx = 2.054 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.725 (4) ÅCell parameters from 5374 reflections
b = 5.0236 (9) Åθ = 3.0–25.2°
c = 17.274 (3) ŵ = 3.80 mm1
β = 127.393 (4)°T = 298 K
V = 1773.6 (5) Å3Block, yellow
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1508 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.2°, θmin = 3.0°
Tmin = 0.600, Tmax = 0.747h = 3029
6278 measured reflectionsk = 55
1568 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013Hydrogen site location: mixed
wR(F2) = 0.034H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0155P)2 + 1.5784P]
where P = (Fo2 + 2Fc2)/3
1568 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction data for (I) were collected on a Bruker APEXII diffractometer equipped with 1 K CCD instrument, using a graphite monochromator with Mo Kα radiation (λ = 0.71073 Å) at room temperature. Absorption corrections were performed via the SADABS program (Bruker, 2001). All the structures were solved by means of direct methods with SHELXS-97 program (Sheldrick, 2008) and refined on F2 with full-matrix least-squares techniques using the program SHELXL-2014 program (Sheldrick, 2015). All non-H atoms were refined anisotropically.

H positions and isotropic displacement parameters constrained; H4a with refined Uiso on center of symmetry, hence coordinates fixed

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.0000000.56130 (3)0.2500000.01598 (6)
O10.07997 (8)0.8943 (3)0.31251 (11)0.0227 (3)
O20.07378 (8)0.2637 (3)0.37795 (11)0.0262 (4)
O30.02231 (7)0.7317 (3)0.40008 (10)0.0235 (3)
O40.05656 (10)0.5732 (4)0.54375 (14)0.0499 (6)
H4A0.000000 (1)0.500000 (1)0.500000 (1)0.13 (3)*
O50.07156 (8)0.3538 (4)0.21824 (12)0.0327 (4)
H5A0.0784370.1950050.2327670.049*
H5B0.0641360.3693100.1651480.049*
N10.22255 (9)1.1967 (4)0.47574 (13)0.0253 (4)
C10.21412 (11)1.0106 (5)0.53013 (17)0.0224 (5)
C20.14953 (11)0.9340 (4)0.48480 (16)0.0187 (4)
C30.13547 (11)0.7600 (5)0.53305 (15)0.0233 (5)
C40.18693 (13)0.6585 (5)0.62331 (17)0.0339 (6)
H40.1779830.5443310.6562550.041*
C50.25089 (12)0.7240 (5)0.66474 (18)0.0360 (6)
H50.2846630.6472260.7236240.043*
C60.26517 (12)0.9030 (5)0.61938 (18)0.0316 (6)
H60.3082580.9509380.6480620.038*
C70.09661 (10)1.0408 (4)0.38454 (16)0.0186 (5)
C80.06676 (11)0.6860 (5)0.48759 (16)0.0259 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01432 (9)0.01587 (9)0.01428 (8)0.0000.00689 (7)0.000
O10.0215 (8)0.0262 (9)0.0185 (8)0.0045 (6)0.0112 (7)0.0014 (6)
O20.0275 (9)0.0244 (9)0.0251 (8)0.0078 (7)0.0151 (7)0.0057 (7)
O30.0197 (8)0.0306 (9)0.0207 (8)0.0040 (6)0.0125 (7)0.0025 (7)
O40.0400 (12)0.0872 (17)0.0256 (10)0.0310 (11)0.0216 (9)0.0025 (10)
O50.0396 (10)0.0347 (9)0.0334 (9)0.0130 (8)0.0272 (9)0.0112 (8)
N10.0181 (9)0.0278 (11)0.0261 (10)0.0058 (8)0.0114 (8)0.0019 (9)
C10.0185 (11)0.0233 (11)0.0210 (11)0.0035 (9)0.0097 (10)0.0010 (9)
C20.0176 (11)0.0180 (11)0.0174 (10)0.0015 (8)0.0091 (9)0.0010 (9)
C30.0233 (12)0.0259 (12)0.0192 (11)0.0049 (9)0.0122 (10)0.0000 (9)
C40.0373 (14)0.0352 (14)0.0237 (12)0.0080 (12)0.0157 (11)0.0071 (11)
C50.0265 (13)0.0404 (16)0.0221 (12)0.0015 (11)0.0048 (11)0.0099 (11)
C60.0178 (12)0.0374 (15)0.0273 (13)0.0039 (10)0.0074 (11)0.0036 (11)
C70.0143 (10)0.0218 (12)0.0204 (11)0.0040 (9)0.0108 (10)0.0019 (9)
C80.0300 (13)0.0303 (13)0.0218 (12)0.0102 (11)0.0180 (11)0.0041 (10)
Geometric parameters (Å, º) top
Gd1—O1i2.3449 (15)O5—H5B0.8191
Gd1—O12.3449 (15)N1—N1iii1.243 (4)
Gd1—O22.3722 (15)N1—C11.432 (3)
Gd1—O2i2.3722 (15)C1—C61.391 (3)
Gd1—O32.4446 (15)C1—C21.393 (3)
Gd1—O3i2.4446 (15)C2—C31.398 (3)
Gd1—O5i2.4502 (16)C2—C71.509 (3)
Gd1—O52.4502 (16)C3—C41.392 (3)
O1—C71.275 (3)C3—C81.481 (3)
O2—C7ii1.237 (3)C4—C51.377 (4)
O3—C81.243 (3)C4—H40.9300
O4—C81.281 (3)C5—C61.381 (4)
O4—H4A1.2196C5—H50.9300
O5—H5A0.8224C6—H60.9300
O1—Gd1—O1i88.98 (8)C8—O3—Gd1132.45 (15)
O1i—Gd1—O2149.37 (5)C8—O4—H4A112.33
O1—Gd1—O292.22 (6)Gd1—O5—H5A113.3
O1i—Gd1—O2i92.22 (6)Gd1—O5—H5B120.9
O1—Gd1—O2i149.36 (5)H5A—O5—H5B107.1
O2—Gd1—O2i101.87 (8)N1iii—N1—C1113.7 (2)
O1i—Gd1—O379.27 (5)C6—C1—C2121.1 (2)
O1—Gd1—O371.73 (5)C6—C1—N1124.3 (2)
O1i—Gd1—O3i71.73 (5)C2—C1—N1114.6 (2)
O1—Gd1—O3i79.27 (5)C1—C2—C3119.3 (2)
O2—Gd1—O372.12 (5)C1—C2—C7118.92 (19)
O2i—Gd1—O3138.46 (5)C3—C2—C7121.8 (2)
O2—Gd1—O3i138.46 (5)C4—C3—C2118.8 (2)
O2i—Gd1—O3i72.11 (5)C4—C3—C8121.3 (2)
O3—Gd1—O3i139.00 (8)C2—C3—C8119.9 (2)
O1i—Gd1—O5i80.69 (6)C5—C4—C3121.2 (2)
O1—Gd1—O5i140.25 (5)C5—C4—H4119.4
O1i—Gd1—O5140.25 (5)C3—C4—H4119.4
O1—Gd1—O580.69 (6)C4—C5—C6120.4 (2)
O2—Gd1—O5i78.93 (6)C4—C5—H5119.8
O2i—Gd1—O5i69.86 (6)C6—C5—H5119.8
O2—Gd1—O569.85 (6)C5—C6—C1119.0 (2)
O2i—Gd1—O578.93 (6)C5—C6—H6120.5
O3—Gd1—O5i68.66 (5)C1—C6—H6120.5
O3i—Gd1—O5i131.45 (5)O2iv—C7—O1125.0 (2)
O3—Gd1—O5131.45 (5)O2iv—C7—C2118.32 (19)
O3i—Gd1—O568.66 (5)O1—C7—C2116.69 (18)
O5—Gd1—O5i129.63 (9)O3—C8—O4122.9 (2)
C7—O1—Gd1122.79 (13)O3—C8—C3121.22 (19)
C7ii—O2—Gd1136.28 (14)O4—C8—C3115.9 (2)
N1iii—N1—C1—C616.0 (4)C2—C1—C6—C52.1 (4)
N1iii—N1—C1—C2166.3 (3)N1—C1—C6—C5179.7 (2)
C6—C1—C2—C34.4 (3)Gd1—O1—C7—O2iv94.9 (2)
N1—C1—C2—C3177.8 (2)Gd1—O1—C7—C286.9 (2)
C6—C1—C2—C7175.3 (2)C1—C2—C7—O2iv83.3 (3)
N1—C1—C2—C72.4 (3)C3—C2—C7—O2iv97.0 (3)
C1—C2—C3—C42.9 (3)C1—C2—C7—O195.1 (2)
C7—C2—C3—C4176.8 (2)C3—C2—C7—O184.7 (3)
C1—C2—C3—C8177.4 (2)Gd1—O3—C8—O4114.6 (2)
C7—C2—C3—C82.9 (3)Gd1—O3—C8—C365.3 (3)
C2—C3—C4—C50.8 (4)C4—C3—C8—O3165.5 (2)
C8—C3—C4—C5178.9 (3)C2—C3—C8—O314.2 (4)
C3—C4—C5—C63.1 (4)C4—C3—C8—O414.4 (4)
C4—C5—C6—C11.6 (4)C2—C3—C8—O4165.9 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y1, z; (iii) x+1/2, y+5/2, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3v1.222.423.130 (2)114
O4—H4A···O4v1.221.222.439 (4)180
O5—H5A···O1ii0.822.032.756 (2)147
O5—H5B···O4vi0.822.012.821 (3)173
Symmetry codes: (ii) x, y1, z; (v) x, y+1, z+1; (vi) x, y+1, z1/2.
Comparison of -ΔSm for (I) and several previously reported 1D Gd3+ complexes top
ComplexDimensionalitySmmax [J Kg K-1]Gd···Gd (Å)MW/NGdReference
[Gd(OAc)3(H2O)0.5]n1D50.44.0343Guo et al. (2012)
[Gd(pda)(ox)0.5]n3D46.84.1-6.1303Liu et al. (2017)
[Gd(pda)(ox)0.5(H2O)]n3D46.14.3-6.3321Liu et al. (2017)
[Gd(HCOO)(OAc)2(H2O)2]n1D45.95.9572Lorusso et al. (2012)
[Gd(OAc)3(MeOH)]n1D45.04.1366Guo et al. (2012)
[Gd(pda)(ox)0.5(H2O)2]n2D45.04.2-6.2339Liu et al. (2017)
[Gd(cit)(H2O)]n2D43.64.5363Liu et al. (2014a,b)
[Gd2(piv)53-OH)(H2O)]n1D37.53.7427Liu et al. (2014a,b)
[Gd(MMA)(INA)(H2O)2]n2D36.04.7431Li et al. (2017a)
{[Gd2(glu)3(H2O)2].4H2O}n3D36.04.2406Zheng et al. (2017)
{[Gd(HPA)(NO3)(H2O)2].H2O}n1D35.63.9415Li et al. (2017b)
{[Gd2(HPA)3(H2O)2].H2O}n2D35.43.9415Li et al. (2017b)
[Gd(azdc)(HCOO)]n3D34.93.9470Zhang et al. (2015c)
[Gd2(MMA)2(INA)2(H2O)3]n2D34.34.8844Li et al. (2017a)
[Gd2(SO4)3(phen)2(H2O)2]n1D31.74.3499Zheng et al. (2017)
[Gd2(2,5-TDA)3(DMA)2]n3D31.04.1499Kumar et al. (2020)
{[Gd2(OH)2L2].DMF.4H2O}n3D30.33.8-3.9417Peng et al. (2018)
[Gd2(N-BDC)3(DMF)4]n3D29.010.5-12.1366Lorusso et al. (2012)
[GdL1/2(H2O)2]n2D27.35.0548This work
[Gd2(mnba)4(µ-OH)2(H2O)]n1D27.13.8515Liu et al. (2014a,b)
[Gd(PAA)3(H2O)]n1D26.74.0580Li et al. (2017c)
{Gd[IN][HIN][CH2OCH2O]}n1D26.23.7462Li et al. (2020)
{[Gd2(azdc)3(DMA)2].2DMA}n3D22.34.6734Zhang et al. (2014)
 

Acknowledgements

Open access funding enabled and organized by Projekt DEAL.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21671124 to MLZ; grant No. 21571118 to LPL); One Hundred-Talent Program of Shanxi Province (award to UE); Shanxi University for academic research in Germany (award to WWW).

References

First citationAn, Y.-Y., Lu, L.-P. & Zhu, M.-L. (2018). Acta Cryst. C74, 418–423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlatov, V. A. & Shevchenko, A. P. (2006). TOPOS. Version 4.0. Samara State University, Samara, Russia.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, G., Park, I. H., Medishetty, R. & Vittal, J. J. (2021). Chem. Rev. 121, 3751–3891.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDaudin, B., Lagnier, R. & Salce, B. J. (1982). J. Magn. Magn. Mater. 27, 315–322.  CrossRef CAS Web of Science Google Scholar
First citationDebroye, E. & Parac-Vogt, T. N. (2014). Chem. Soc. Rev. 43, 8178–8192.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDu, P. Y., Gu, W. & Liu, X. (2016). CrystEngComm, 18, 5140–5148.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvangelisti, M., Luis, F., de Jongh, L. J. & Affronte, M. (2006). J. Mater. Chem. 16, 2534–2549.  Web of Science CrossRef CAS Google Scholar
First citationFarger, P., Leuvrey, C., Gallart, M., Gilliot, P., Rogez, G., Rocha, J., Ananias, D., Rabu, P. & Delahaye, E. (2018). Beilstein J. Nanotechnol. 9, 2775–2787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFranco, V., Blázquez, J. S., Ipus, J. J., Law, J. Y., Moreno-Ramírez, L. M. & Conde, A. (2018). Prog. Mater. Sci. 93, 112–232.  Web of Science CrossRef Google Scholar
First citationGoel, N. & Kumar, N. (2018). RSC Adv. 8, 10746–10755.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, F. S., Leng, J. D., Liu, J. L., Meng, Z. S. & Tong, M. L. (2012). Inorg. Chem. 51, 405–413.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHan, Y., Han, S. D., Pan, J., Ma, Y. J. & Wang, G. M. (2018). Mater. Chem. Front. 2, 2327–2332.  Web of Science CrossRef CAS Google Scholar
First citationKang, Y. S., Lu, Y., Chen, K., Zhao, Y., Wang, P. & Sun, W. Y. (2019). Coord. Chem. Rev. 378, 262–280.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1907–1913.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumar, M., Li, L. Q., Zaręba, J. K., Tashi, L., Sahoo, S. C., Nyk, M., Liu, S. J. & Sheikh, H. N. (2020). Cryst. Growth Des. 20, 6430–6452.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, M., Sheikh, H. N., Fraconetti, A., Zaręba, J. K., Sahoo, S. C. & Frontera, A. (2019). New J. Chem. 43, 2179–2195.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L. N., Wang, S. Y., Chen, T. L., Sun, Z. H., Luo, J. H. & Hong, M. C. (2012). Cryst. Growth Des. 12, 4109–4115.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, N. F., Ji, J. Y., Jiang, W., Cao, J. P., Han, Y. M., Yuan, P. & Xu, Y. (2020). Z. Anorg. Allg. Chem. 646, 463–468.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. Y., Cao, Y. Q., Li, J. Y., Zhang, X. F., Zhai, B., Zhang, C., Zhang, F. L. & Cao, G. X. (2017a). Cryst. Growth Des. 17, 6752–6761.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. Y., Chen, Y., Dong, X. Y., Zhai, B., Zhang, X. F., Zhang, C., Zhang, F. L., Li, S. Z. & Cao, G. X. (2017b). Cryst. Growth Des. 17, 3877–3884.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. Y., Xu, Y. L., Zhang, X. F., Zhai, B., Zhang, F. L., Zhang, J. J., Zhang, C., Li, S. Z. & Cao, G. X. (2017c). Dalton Trans. 46, 16485–16492.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, C. M., Zhang, D. Q., Hao, X. & Zhu, D. B. (2019). Cryst. Growth Des. 19, 4731–4737.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. L., Chen, Y. C., Guo, F. S. & Tong, M. L. (2014a). Coord. Chem. Rev. 281, 26–49.  Web of Science CrossRef CAS Google Scholar
First citationLiu, K., Zhang, X. J., Meng, X. X., Shi, W., Cheng, P. & Powell, A. K. (2016). Chem. Soc. Rev. 45, 2423–2439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, S. J., Cao, C., Yao, S. L., Zheng, T. F., Wang, Z. X., Liu, C., Liao, J. S., Chen, J. L., Li, Y. W. & Wen, H. R. (2017). Dalton Trans. 46, 64–70.  Web of Science CSD CrossRef Google Scholar
First citationLiu, S. J., Xie, C. C., Jia, J. M., Zhao, J. P., Han, S. D., Cui, Y., Li, Y. & Bu, X. H. (2014b). Chem. Asian J. 9, 1116–1122.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLorusso, G., Palacios, M., Nichol, G., Brechin, E., Roubeau, O. & Evangelisti, M. (2012). Chem. Commun. 48, 7592–7594.  Web of Science CSD CrossRef CAS Google Scholar
First citationLustig, W. P., Mukherjee, S., Rudd, N. D., Desai, A. V., Li, J. & Ghosh, S. K. (2017). Chem. Soc. Rev. 46, 3242–3285.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakamura, T., Kanetomo, T. & Ishida, T. (2021). Inorg. Chem. 60, 535–539.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNiu, H. J., Wang, L. H., Yang, G. E. & Wang, X. X. (2019). Inorg. Chim. Acta, 489, 155–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, D., Yin, L., Hu, P., Li, B., Ouyang, Z. W., Zhuang, G. L. & Wang, Z. X. (2018). Inorg. Chem. 57, 2577–2583.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRoztocki, K., Szufla, M., Bon, V., Senkovska, I., Kaskel, S. & Matoga, D. (2020). Inorg. Chem. 59, 10717–10726.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationŞerb, M.-D., Wang, R., Meven, M. & Englert, U. (2011). Acta Cryst. B67, 552–559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSorace, L., Benelli, C. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3092–3104.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Y. X., Xu, Q. T., Ren, P., Shi, W. & Cheng, P. (2019). Dalton Trans. 48, 2228–2233.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWu, S. M., Zhong, X. C., Dong, X. T., Liu, C. L., Huang, J. H., Huang, Y. L., Yu, H. Y., Liu, Z. W., Huang, Y. S. & Ramanujan, R. V. (2021). J. Alloys Compd. 873, 159796.  Web of Science CrossRef Google Scholar
First citationXi, L., Sun, J., Li, H. D., Han, J., Huang, X. H. & Li, L. C. (2020). Cryst. Growth Des. 20, 3785–3794.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, C. Q., Dong, R. H., Wang, M., Petkov, P. S., Zhang, Z. T., Wang, M. C., Han, P., Ballabio, M., Bräuninger, S. A., Liao, Z. Q., Zhang, J. C., Schwotzer, F., Zschech, E., Klauss, H. H., Cánovas, E., Kaskel, S., Bonn, M., Zhou, S. Q., Heine, T. & Feng, X. L. (2019a). Nat. Chem. 10, 3260.  Google Scholar
First citationYang, D.-D., Lu, L.-P. & Zhu, M.-L. (2019b). Acta Cryst. C75, 1580–1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Y., Zhang, Q. C., Pan, Y. Y., Long, L. & Zheng, L. S. (2015). Chem. Commun. 51, 7317–7320.  Web of Science CrossRef CAS Google Scholar
First citationYe, J. W., Lin, J. M., Mo, Z. W., He, C. T., Zhou, H. L., Zhang, J. P. & Chen, X. M. (2017). Inorg. Chem. 56, 4238–4243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, H. T., Ma, L., Han, M. R., Feng, S. S. & Zhu, M. L. (2021). Inorg. Nano-Met. Chem. 51, 761–765.  CAS Google Scholar
First citationZhang, J., Wang, C. C., Wang, P. & Gao, S. J. (2015a). Transition Met. Chem. 40, 821–829.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S. W., Duan, E., Han, Z. S., Li, L. L. & Cheng, P. (2015b). Inorg. Chem. 54, 6498–6503.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, S. W., Ma, J. G., Zhang, X. P., Duan, E. Y. & Cheng, P. (2015c). Inorg. Chem. 54, 586–595.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, S. W., Shi, W., Li, L. L., Duan, E. & Cheng, P. (2014). Inorg. Chem. 53, 10340–10346.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZheng, T. F., Yao, S. L., Cao, C., Liu, S. J., Hu, H. K., Zhang, T., Huang, H. P., Liao, J. S., Chen, J. L. & Wen, H. R. (2017). New J. Chem. 41, 8598–8603.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds