research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal and mol­ecular structures of some phosphane-substituted cymantrenes [(C5H4X)Mn(CO)LL′] (X = H or Cl, L = CO, L′ = PPh3 or PCy3, and LL' = Ph2PCH2CH2PPh2)

crossmark logo

aChemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 9, Munich, D-81377, Germany
*Correspondence e-mail: suenk@cup.uni-muenchen.de

Edited by L. Dawe, Wilfrid Laurier University, Waterloo, Ontario, Canada (Received 2 August 2021; accepted 3 September 2021; online 27 September 2021)

UV irradiation of tetra­hydro­furan solutions of [CpMn(CO)3] (Cp = π-C5H5 or π-C5H4Cl) in the presence of the phosphanes PPh3 or PCy3 (Cy = cyclo­hex­yl) and Ph2PCH2CH2PPh2 yields the substitution products [CpMn(CO)2PR3] (R = Ph or Cy) and [CpMn(CO)(Ph2PCH2CH2PPh2)], namely, dicarbon­yl(η5-cyclo­penta­dien­yl)(tri­phenyl­phosphane-κP)manganese(I), [Mn(C5H5)(C18H15P)(CO)2], 1a, dicarbon­yl(η5-1-chloro­cyclo­penta­dien­yl)(tri­phenyl­phosphane-κP)man­ganese(I), [Mn(C5H4Cl)(C18H15P)(CO)2], 1b, dicarbon­yl(η5-cyclo­penta­dien­yl)(tri­cyclo­hexyl­phosphane-κP)manganese(I), [Mn(C5H5)(C18H33P)(CO)2], 2a, di­carbon­yl(η5-1-chloro­cyclo­penta­dien­yl)(tri­cyclo­hexyl­phosphane-κP)manganese(I), [Mn(C5H4Cl)(C18H33P)(CO)2], 2b, carbon­yl(η5-cyclo­penta­dien­yl)[1,2-bis­(di­phenyl­phosphan­yl)ethane-κ2P,P′]manganese(I), [Mn(C5H5)(C26H24P2)(CO)], 3a, and carbon­yl(η5-1-chloro­cyclo­penta­dien­yl)[1,2-bis­(di­phenyl­phosphan­yl)ethane-κ2P,P′]manganese(I), [Mn(C5H4Cl)(C26H24P2)(CO)], 3b, The crystal structure determinations show a very small influence of the chlorine substitution and a moderate influence of the phosphane substitution on the bond lengths. The PR3 groups avoid being eclipsed with the C—Cl bonds. All the com­pounds employ weak C—H⋯O inter­actions for inter­molecular association, which are enhanced by C—H⋯Cl contacts in the chlorinated products.

1. Introduction

The substitution of carbon monoxide (CO) by other donor ligands, particularly phosphanes, is one of the most important textbook examples for the reactivity of metal carbonyl com­plexes (Elschenbroich, 2016[Elschenbroich, C. (2016). Organometallics, 3rd ed, ch. 14.4. Chi­ches­ter: John Wiley & Sons.]; Crabtree, 2005[Crabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals, 4th ed., edited by R. H. Crabtree, pp. 87-124. Chichester: Wiley.]; Jordan, 2007[Jordan, R. B. (2007). Reaction Mechanisms of Inorganic and Organometallic Systems, ch. 5.1. Oxford University Press.]). This is also true for the so-called `piano-stool' com­plexes, which contain, besides CO ligands, aromatic π-ligands like benzene or the cyclo­penta­dienyl anion. Many studies have shown that the nature of the π-ligand strongly influences the ease of CO substitution (Veiros, 2000[Veiros, L. F. (2000). Organometallics, 19, 3127-3136.]; Le Moigne et al., 1976[Le Moigne, F., Dabard, R. & Le Plouzennec, M. (1976). J. Organomet. Chem. 122, 365-376.]). But vice versa, the aromatic reactivity depends also on the electronic situation within the metal carbonyl moiety (Fan & Hall, 2001[Fan, H.-J. & Hall, M. B. (2001). Organometallics, 20, 5724-5730.]). One of the most studied systems is the `cymantrene' series CpMn(CO)3 and its substituted derivatives (Caulton, 1981[Caulton, C. G. (1981). Coord. Chem. Rev. 38, 1-43.]). The substitution of one or two CO ligands by mono- or bidentate phosphanes was studied in the 1960s and it was found that the best way to do this was by UV irradiation (Strohmeier & Barbeau, 1962[Strohmeier, W. & Barbeau, C. (1962). Z. Naturforsch. B, 17, 818-819.]; Nyholm et al., 1963[Nyholm, R. S., Sandhu, S. S. & Stiddard, M. H. B. (1963). J. Chem. Soc. pp. 5916-5919.]; Khatami et al., 1972a[Khatami, A. I., Ginzburg, A. G., Nefedova, M. N., Setkina, V. N. & Kursanov, D. N. (1972a). Zh. Obsch. Khim. 42, 2665-2667.]; Kursanov et al., 1970[Kursanov, D. N., Setkina, V. N., Ginzburg, A. G., Nefedova, M. N. & Khatami, A. I. (1970). Izv. Akad. Nauk. SSSR, p. 2412.]; Young & Wrighton, 1989[Young, K. M. & Wrighton, M. S. (1989). Organometallics, 8, 1063-1066.]). The choice of solvent and the irradiation time were the main determinants for the formation of either mono- or disubstitution products. Later on, studies on the spectroscopic [IR, ESR (electron spin resonance) and NMR] (Rehder & Keçeci, 1985[Rehder, D. & Keçeci, A. (1985). Inorg. Chim. Acta, 103, 173-177.]; Ginzburg et al., 1974[Ginzburg, A. G., Fedorov, L. A., Petrovskii, P. V., Fedin, E. I., Setkina, V. N. & Kursanov, D. N. (1974). J. Organomet. Chem. 73, 77-84.]; Pike et al., 1989[Pike, R. D., Rieger, A. L. & Rieger, P. H. (1989). J. Chem. Soc. Faraday Trans. 1, 85, 3913.]) and electrochemical properties (Treichel et al., 1975[Treichel, P. M., Wagner, K. P. & Mueh, H. J. (1975). J. Organomet. Chem. 86, C13-C16.]; Connelly & Kitchen, 1977[Connelly, N. G. & Kitchen, M. D. (1977). J. Chem. Soc. Dalton Trans. pp. 931-937.]) followed, which showed, as might have been expected, that the introduction of aryl- or alkylphosphanes led to increased electron density at the metal. Further studies were devoted to the reactivity in protonation reactions (Ginzburg et al., 1974[Ginzburg, A. G., Fedorov, L. A., Petrovskii, P. V., Fedin, E. I., Setkina, V. N. & Kursanov, D. N. (1974). J. Organomet. Chem. 73, 77-84.]), electrophilic hydrogen exchange reactions (Setkina et al., 1973[Setkina, V. N., Baranetskaya, N. K., Ginzburg, A. G., Zdanovich, V. I., Nefedova, M. N. & Kursanov, D. N. (1973). J. Organomet. Chem. 61, 287-300.]; Khatami et al., 1972b[Khatami, A. I., Nefedova, M. N., Setkina, V. N. & Kursanov, D. N. (1972b). Dokl. Akad. Nauk SSSR, 203, 1094-1096.]; Antonova & Shapiro, 1991[Antonova, M. V. & Shapiro, I. O. (1991). Metalloorg. Khim. 4, 674-675.]) and deprotonation by butyl lithium (Loim et al., 1988[Loim, N. M., Barsegova, M. N. & Ginzburg, A. G. (1988). Metalloorg. Khim. 1, 889-892.]). A survey of the Cambridge Structural Database (CSD, Version 5.42, accessed on 26th August, 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed no crystal structures for the fragments [(C5H4Cl)Mn(CO)P] and about 80 entries for the corresponding C5H5-containing fragments. Limitation of the search to the fragment [(C5H5)Mn(CO)2PPh2] gave 10 hits, of which most contained unsymmetrical mono- or dinuclear diphos­phanes. Relevant in the context of this study were an early determination of the structure of [(C5H5)Mn(CO)2(PPh3)] (Barbeau et al., 1972[Barbeau, C., Sorrento Dichmann, K. & Ricard, L. (1972). Can. J. Chem. 31, 3027-3031.]) and the crystal structure of [(C5H5)Mn(CO)2PPh2CH2Ph] (CSD refcode GIXRIO; Geicke et al., 1998[Geicke, J., Lorenz, I. P. & Polborn, K. (1998). Inorg. Chim. Acta, 272, 101-108.]). No hits were obtained for chelating diphosphanes, except for a derivative of 1,1′-bis­diphenyl­phos­phanyl­ferro­cene (EFUHAO; André-Ben­tabet et al., 2002[André-Bentabet, E., Broussier, R., Amardeil, R., Hierso, J.-C., Richard, P., Fasseur, D., Gautheron, B. & Meunier, P. (2002). J. Chem. Soc. Dalton Trans. pp. 2322-2327.]). We felt it might contribute to a better understanding of this substance class to add some more crystal structure determinations.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

The syntheses of com­pounds 1a, 1b, 2a and 3a have been described previously (Strohmeier & Barbeau, 1962[Strohmeier, W. & Barbeau, C. (1962). Z. Naturforsch. B, 17, 818-819.]; Khatami et al., 1972a[Khatami, A. I., Ginzburg, A. G., Nefedova, M. N., Setkina, V. N. & Kursanov, D. N. (1972a). Zh. Obsch. Khim. 42, 2665-2667.]; Strohmeier & Müller, 1967[Strohmeier, W. & Müller, F.-J. (1967). Chem. Ber. 100, 2812-2821.]; Nyholm et al., 1963[Nyholm, R. S., Sandhu, S. S. & Stiddard, M. H. B. (1963). J. Chem. Soc. pp. 5916-5919.]).

2.1.1. General procedure for the synthesis of 1a, 2a and 3a

A solution of [(C5H5)Mn(CO)3] (I) and a slight molar excess of the phosphane in tetra­hydro­furan (THF, 120 ml) was irradiated for 7 h under argon. The colours of the solutions changed from yellow to red with concomitant gas evolution. After further stirring for 16 h, the solvent was evacuated and the residue dissolved in diethyl ether (Et2O) and filtered through a plug of silica gel. The solvent was evaporated again and the residue dissolved in the minimum amount of petroleum ether. This solution was placed on top of a silica gel chromatography column (alumina in the case of 3a) and the products were eluted with a petroleum ether/Et2O (9:1 v/v) mixture. Evaporation of the eluate yielded the products as yellow powders. Recrystallization from petroleum ether (with some added Et2O) by slow evaporation in a refrigerator at 5 °C yielded crystals of all three com­pounds.

Compound 1a was prepared from I (3.00 g, 14.7 mmol) and PPh3 (4.20 g, 16.0 mmol) in a yield of 3.90 g (8.9 ± 0.01 mmol, 61%). 0.57 g of com­pound I (2.8 ± 0.01 mmol, 19%) were recovered. 1H NMR (CDCl3, 400 MHz): δ 7.57–7.20 (m, 15H), 4.31 (s, 5H). 13C{1H} NMR (CDCl3, 101 MHz): δ 232.8 (d, J = 26.8 Hz), 138.2 (d, J = 40.3 Hz), 133.0 (d, J = 10.6 Hz), 129.6 (d, J = 2.4 Hz), 128.2 (d, J = 9.4 Hz), 82.7. 31P{1H} NMR (CDCl3, 162 MHz): δ 93.1.

Compound 2a was prepared from I (0.78 g, 3.8 mmol) and PCy3 (1.12 g, 4.0 mmol) in a yield of 0.11 g (0.24 ± 0.01 mmol, 6%). 0.35 g of com­pound I (1.7 mmol, 45%) were recovered. 1H NMR (CDCl3, 400 MHz): δ 4.48 (s, 5H), 2.01–1.11 (m, 33H). 31P{1H} NMR (CDCl3, 162 MHz): δ 92.8.

Compound 3a was prepared from I (0.20 g, 1.0 mmol) and 1,2-bis(diphenylphosphanyl)ethane (dppe; 0.44 g, 1.0 mmol) in a yield of 0.15 g (0.27 ± 0.01 mmol, 27%). 0.09 g of com­pound I (0.4 ± 0.01 mmol, 45%) were recovered. 1H NMR (CDCl3, 400 MHz): δ 7.79–7.70 (m), 7.44–7.34 (m), 7.20–7.11 (m), 4.13 (s), 2.54–2.41 (m), 2.36–2.21 (m). 31P{1H} NMR (CDCl3, 162 MHz): δ 118.6.

2.1.2. Synthesis of 1b

Compound 1b was prepared according to the method reported by Klein-Hessling et al. (2021[Klein-Hessling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833.]). Recrystallization from petroleum ether (with some added Et2O) by slow evaporation in a refrigerator at 5 °C yielded crystals. 1H NMR (CDCl3, 400 MHz): δ 7.49–7.35 (m, 15H), 4.48 (q, J = 2.0 Hz, 2H), 4.00 (q, J = 2.3 Hz, 2H). 13C{1H} NMR (CDCl3, 101 MHz): δ 231.8 (d, J = 23.5 Hz), 137.7 (d, J = 41.2 Hz), 133.0 (d, J = 10.5 Hz), 129.8, 128.4 (d, J = 9.6 Hz), 101.3, 81.5, 81.0. 31P{1H} NMR (CDCl3, 162 MHz): δ 91.8.

2.1.3. Synthesis of 2b

A solution of impure [(C5H4Cl)Mn(CO)3] (0.50 g, purity ca 92%) and PCy3 (0.90 g, 3.2 ± 0.01 mmol) in THF (120 ml) was irradiated for 7 h. After the usual work up (see above), a yellow solid was obtained, consisting of a 7:3 mixture of 2b and 2a. Recrystallization from petroleum ether (with some added Et2O) by slow evaporation in a refrigerator at 5 °C yielded crystals. 1H NMR (CDCl3, 270 MHz): δ 4.63 (2H), 4.33 (2H), 2.02–1.07 (33H). 31P{1H} NMR (CDCl3, 162 MHz): δ 91.8. MS (EI, 70 eV): m/z = 490.4 (M+), 434.4 (M+ − 2CO).

2.1.4. Synthesis of 3b

A solution of [(C5H4Cl)Mn(CO)3] (0.35 g, 1.5 ± 0.01 mmol) and dppe (0.62 g, 1.55 ± 0.01 mmol) in THF (120 ml) was irradiated for 7 h. After usual work up, 3b (0.34 g, 0.6 ± 0.01 mmol, 40%) was isolated as an orange powder. 0.05 g of the starting material (0.25 ± 0.01 mmol, 17%) was recovered. Recrystallization from petroleum ether (with some added Et2O) by slow evaporation in a refrigerator at 5 °C yielded crystals. 1H NMR (CDCl3, 400 MHz): δ 7.82–7.75 (4H), 7.47–7.35 (6H), 7.33–7.22 (6H), 7.19–7.09 (4H), 4.44 (2H), 3.56 (2H), 2.53–2.41 (2H), 2.36–2.22 (2H). 13C{1H} NMR (CD2Cl2, 101 MHz): δ 232.8 (t, J = 25.2 Hz), 142.9 (dt, J = 22.4, 11.4 Hz), 139.83–138.89 (m), 133.1 (t, J = 5.4 Hz), 131.4 (t, J = 4.7 Hz), 129.4, 128.6, 128.1 (dt, J = 8.7, 4.4 Hz), 97.5, 78.0, 77.9, 77.6, 30.6 (t, J = 21.2 Hz). 31P{1H} NMR (CDCl3, 162 MHz): δ 117.6. IR (KBr, cm−1): ν (CO) = 1847. MS (EI, 70 eV): m/z = 580.3 (M+), 552.3 (M+ − CO), 398.2 (C26H24P2), 183.0 (PPh2), 108.0 (PPh). HRMS (EI): m/z calculated 580.0684, found: 580.0681 (M+).

2.2. Refinement

In the refinements of 2a and 2b, a rigid-body restraint was used for the C3—C4 and C2—C3 bonds, respectively, because they had failed the `Hirshfeld-Test' of PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) significantly. All H atoms were constrained. For com­pound 3a, PLATON analysis showed 16% solvent-accessible voids. Therefore, the SQUEEZE program (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was used, which recovered 221 e per unit cell. Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Bruker D8 Venture (for 1a, 2b, 3a and 3b) or an Oxford Diffraction KM4 Xcalibur2 (for 1b and 2a) diffractometer.

  1a 1b 2a
Crystal data
Chemical formula [Mn(C5H5)(C18H15P)(CO)2] [Mn(C5H4Cl)(C18H15P)(CO)2] [Mn(C5H5)(C18H33P)(CO)2]
Mr 438.32 472.76 456.46
Crystal system, space group Monoclinic, P21/n Orthorhombic, P212121 Monoclinic, P21/n
Temperature (K) 110 173 173
a, b, c (Å) 7.6736 (4), 15.7356 (8), 33.912 (2) 7.6519 (3), 16.4786 (7), 17.0971 (7) 9.8938 (5), 13.6564 (5), 17.9372 (9)
α, β, γ (°) 90, 95.942 (2), 90 90, 90, 90 90, 105.676 (5), 90
V3) 4072.9 (4) 2155.82 (15) 2333.42 (19)
Z 8 4 4
μ (mm−1) 0.75 0.83 0.65
Crystal size (mm) 0.05 × 0.05 × 0.03 0.34 × 0.14 × 0.10 0.33 × 0.23 × 0.14
 
Data collection
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.709, 0.746 0.892, 1 0.990, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 64715, 8968, 7809 14524, 4900, 4297 15861, 5333, 3805
Rint 0.048 0.045 0.054
(sin θ/λ)max−1) 0.641 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.07 0.038, 0.082, 1.04 0.045, 0.119, 1.03
No. of reflections 8968 4900 5333
No. of parameters 523 271 262
No. of restraints 0 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.65 0.39, −0.29 0.67, −0.47
Absolute structure Flack x determined using 1609 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.038 (12)
  2b 3a 3b
Crystal data
Chemical formula [Mn(C5H4Cl)(C18H33P)(CO)2] [Mn(C5H5)(C26H24P2)(CO)] [Mn(C5H4Cl)(C26H24P2)(CO)]
Mr 490.90 546.43 580.87
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 9.6649 (3), 13.9301 (4), 17.9790 (6) 29.0323 (7), 8.9592 (2), 26.4794 (7) 8.5739 (5), 11.5697 (8), 14.3909 (9)
α, β, γ (°) 90, 103.835 (1), 90 90, 122.159 (1), 90 90.584 (2), 91.958 (2), 110.490 (2)
V3) 2350.34 (13) 5830.7 (3) 1336.07 (15)
Z 4 8 2
μ (mm−1) 0.76 0.58 0.74
Crystal size (mm) 0.10 × 0.08 × 0.06 0.10 × 0.08 × 0.07 0.08 × 0.06 × 0.03
 
Data collection
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.704, 0.745 0.719, 0.746 0.702, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 31339, 4809, 4098 70409, 6696, 6042 24803, 5453, 4783
Rint 0.039 0.032 0.035
(sin θ/λ)max−1) 0.625 0.650 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.06 0.030, 0.081, 1.09 0.027, 0.063, 1.04
No. of reflections 4809 6696 5453
No. of parameters 271 325 334
No. of restraints 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −1.64 0.39, −0.36 0.39, −0.31
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

For the discussion of hydrogen bonds, the standard settings of Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) (H atoms present, D—H⋯A angle > 120.0°, `all donors', contact distance range `sum of vdW radii minus 5.00 to sum of vdW radii plus 0.00') were used for all com­pounds except 1b, where the `sum of vdW radii plus 0.10' was used as the upper limit.

3. Results and discussion

3.1. [(C5H4X)Mn(CO)2(PPh3)], X = H (1a) and Cl (1b)

Both 1a and 1b have been known for some time (Strohmeier & Barbeau, 1962[Strohmeier, W. & Barbeau, C. (1962). Z. Naturforsch. B, 17, 818-819.]; Khatami et al., 1972a[Khatami, A. I., Ginzburg, A. G., Nefedova, M. N., Setkina, V. N. & Kursanov, D. N. (1972a). Zh. Obsch. Khim. 42, 2665-2667.],b[Khatami, A. I., Nefedova, M. N., Setkina, V. N. & Kursanov, D. N. (1972b). Dokl. Akad. Nauk SSSR, 203, 1094-1096.]; Kursanov et al., 1970[Kursanov, D. N., Setkina, V. N., Ginzburg, A. G., Nefedova, M. N. & Khatami, A. I. (1970). Izv. Akad. Nauk. SSSR, p. 2412.]; Barbeau et al., 1972[Barbeau, C., Sorrento Dichmann, K. & Ricard, L. (1972). Can. J. Chem. 31, 3027-3031.]) and were prepared by irradiation of the corresponding tri­carbonyls in the presence of PPh3. Deprotonation of 1a with butyl lithium, followed by electronic quenching with C2Cl6, yielded 1b (Klein-Hessling et al., 2021[Klein-Hessling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833.]). A crystal structure determination of 1a had been reported nearly 50 years ago (Barbeau et al. 1972[Barbeau, C., Sorrento Dichmann, K. & Ricard, L. (1972). Can. J. Chem. 31, 3027-3031.]). That com­pound was crystallized from benzene/ethanol in the triclinic space group P[\overline{1}].

Irradiation of THF solutions of [(C5H4X)Mn(CO)3] in the presence of PPh3 leads to 1a and 1b in moderate yields of 40–60% (Scheme 1[link]). Substantial amounts of the starting materials could be recovered. Products were isolated by chromatography and recrystallized from petroleum ether/Et2O.

3.1.1. Mol­ecular and crystal structure of 1a

The crystals of 1a obtained from petroleum ether/Et2O are apparently a different modification than those described in the literature. Our com­pound crystallized in the monoclinic space group P21/n with two independent mol­ecules in the asymmetric unit (Fig. 1[link]).

[Figure 1]
Figure 1
The molecular structures of (a) mol­ecule A and (b) mol­ecule B of com­pound 1a, with displacement ellipsoids drawn at the 30% probability level.

The major difference between the two mol­ecules is in the relative orientation of the Mn(CO)2P tripod and the projection of the cyclo­penta­dienyl ring. While in mol­ecule A both Mn→P and one Mn→CO vector nearly eclipse C—H bonds of the cyclo­penta­dienyl ring, in mol­ecule B this is the case for the Mn→P vector only. In addition, the Mn2—P2 bond [2.2421 (7) Å] is significantly longer (>20σ) than the Mn1—P1 bond [2.2259 (6) Å]. All other bond lengths are identical in the two mol­ecules (Table 2[link]).

Table 2
Important bond parameters of 13 in com­parison with two related literature com­pounds

Ct is the centroid of the cyclo­penta­dienyl ring, (C—C)av is the average C—C bond length within the cyclo­penta­dienyl ring and Cx—Ct—Mn—P is the smallest torsion angle involving a cyclo­penta­dienyl C—H (1a, 2a and 3a) or C—Cl bond.

Distance/angle 1a mol. A/ mol. B 1b 2a 2b 3a 3b GIXRIO EFUHAO
Mn—Ct 1.777 (1)/1.778 (1) 1.786 (2) 1.781 (1) 1.786 (1) 1.761 (2) 1.768 (1) 1.773 (2) 1.769 (9)
Mn—P 2.2256 (8)/2.2423 (8) 2.2403 (10) 2.2661 (7) 2.2743 (9) 2.1968 (4), 2.1849 (4) 2.1961 (5), 2.2024 (5) 2.2198 (2) 2.244 (3), 2.241 (3)
Mn—CO 1.769 (2), 1.776 (2)/1.777 (2), 1.767 (2) 1.772 (4), 1.770 (3) 1.763 (2), 1.761 (2) 1.774 (3), 1.773 (3) 1.756 (5) 1.755 (2) 1.755 (5) 1.769 (9)
C—O 1.165 (3), 1.162 (3)/1.162 (3), 1.160 (3) 1.155 (5), 1.164 (4) 1.162 (3), 1.174 (4) 1.161 (4), 1.162 (4) 1.174 (6) 1.172 (2) 1.161 (7), 1.165 (6) 1.15 (1)
C—Cl 1.730 (4) 1.674 (4) 1.737 (2)
(C—C)av 1.416 (3)/1.415 (4) 1.408 (5) 1.408 (4) 1.411 (6) 1.422 (5) 1.416 (2) 1.395 (7) 1.41 (2)
CCl—Ct—Mn—P 77.6 78.0 36.3, 156.0
CH—Ct—Mn—P 13.0/8.1 20.5 12.3 7.2 14.1, 13.4 36.0, 12.1 10.2 4.4, 13.6

There are five inter­molecular C—H⋯O hydrogen bonds (Table S1 in the supporting information). Three of them involve arene C—H bonds, and carbonyl atom O22 accepts two of them (Fig. S1).

3.1.2. Mol­ecular structure of 1b

Compound 1b crystallizes in the acentric ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit (Fig. 2[link]). Examination by the program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) showed no extra crystallographic symmetry and no sign of racemic twinning. The only `mol­ecular' origin of chirality resides in the PPh3 `propeller'.

[Figure 2]
Figure 2
The molecular structure (side view) of com­pound 1b, with displacement ellipsoids drawn at the 30% probability level.

The Mn→P vector is nearly perpendicular to the C—Cl bond (torsion angle C1—Ct—Mn—P1 is 77.6°). The individual bond lengths are nearly identical to those in 1a; the largest deviation is found for the C—C bonds of the cyclo­penta­dienyl ring, which are slightly (1.5σ) shorter in 1b. The most important bond parameters can be found in Table 2[link].

There is only one intra­molecular C—H⋯Cl hydrogen bond with a length shorter than the sum of the van der Waals radii (H16⋯Cl1). Additionally, there is one weak intra­molecular and three inter­molecular C—H⋯O hydrogen bonds, and one inter­molecular C—H⋯Cl hydrogen bond (Fig. S2 and Table S1 in the supporting information). The Cl atoms always bridge two different H atoms of the same symmetry-related arene ring along the a screw axis. Apparently, this inter­action enforces the orientation of this particular arene ring and generates the chirality.

3.2. [(C5H4X)Mn(CO)2(PCy3)], X = H (2a) and Cl (2b)

The tri­cyclo­hexyl­phosphane com­pound 2a was first des­cribed in 1967 (Strohmeier & Müller, 1967[Strohmeier, W. & Müller, F.-J. (1967). Chem. Ber. 100, 2812-2821.]) as part of a study on the π-acceptor strength of phosphane ligands. It was then characterized by IR spectroscopy and elemental analysis. Later on it was shown that its reactivity in hydrogen isotope exchange reactions was more than 15 times greater in com­parison to the PPh3 com­pound 1a (Setkina et al., 1973[Setkina, V. N., Baranetskaya, N. K., Ginzburg, A. G., Zdanovich, V. I., Nefedova, M. N. & Kursanov, D. N. (1973). J. Organomet. Chem. 61, 287-300.]). Further spectroscopic characterizations (13C and 31P NMR) and protonation studies followed soon afterwards (Ginzburg et al., 1974[Ginzburg, A. G., Fedorov, L. A., Petrovskii, P. V., Fedin, E. I., Setkina, V. N. & Kursanov, D. N. (1974). J. Organomet. Chem. 73, 77-84.]). The chloro­cyclo­penta­dienyl com­plex 2b has not been reported before.

We prepared both com­pounds according to Scheme 1[link] via irradiation of the corresponding tricarbonyl com­plexes in the presence of PCy3 (tri­cyclo­hexyl­phosphane) in very low yield. Despite long irradiation times, large amounts of the starting material could be recovered. In contrast to 1a, it was not possible to li­thiate 2a with n-BuLi or t-BuLi and chlorinate the presumed inter­mediate lithium com­pound with C2Cl6 to give 2b. It was possible, however, to obtain crystals of both com­pounds suitable for X-ray diffraction.

3.2.1. Mol­ecular structure of 2a

Compound 2a crystallizes in the monoclinic space group P21/n, with one mol­ecule in the asymmetric unit (Fig. 3[link]). The Mn→P vector nearly eclipses a C—H bond of the cyclo­penta­dienyl ring. While the Mn—P bond [2.2661 (7) Å] is significantly longer (50σ) than the average Mn—P bond in 1a, the Mn—CO bonds are slightly shorter (3–5σ) (Table 2[link]). The distance from manganese to the cyclo­penta­dienyl centroid is slightly longer (3σ) in 2a com­pared to 1a.

[Figure 3]
Figure 3
The molecular structures (side view) of com­pounds 2a (left) and 2b (right), with displacement ellipsoids drawn at the 30% probability level.

There is one intra­molecular and two inter­molecular C—H⋯O hydrogen bonds involving exclusively methyl­ene H atoms of the PCy3 ligand and carbonyl atom O1. A packing diagram shows that these inter­actions mainly (although not exclusively) join the individual mol­ecules in the c direction (Fig. S3 and Table S1 in the supporting information).

3.2.2. Mol­ecular structure of 2b

Compound 2b crystallizes in the monoclinic space group P21/c, with one mol­ecule in the asymmetric unit (Fig. 3[link]). The Mn→P vector is nearly per­pen­dicular to the C—Cl bond (torsion angle C1—Ct—Mn1—P1 is 78°), with the Mn—P bond [2.2743 (9) Å] being significantly longer (8σ) than in 2a. The Mn—CO bonds are slightly longer (3σ) than in 2a and have the same lengths as in 1b. This is also true for the distance of the Mn atom from the centroid of the cyclo­penta­dienyl ring. More bond parameters can be found in Table 2[link].

There are intra­molecular C—H⋯X inter­actions involving two methyl­ene H atoms of the PCy3 ligand and either the Cl atom or one carbonyl O atom. Additionally, an inter­molecular C—H⋯Cl hydrogen bond joins glide-plane-related mol­ecules along the b axis (Fig. S4 and Table S1 in the supporting information).

3.3. [(C5H4X)Mn(CO)(dppe)], with X = H (3a) and Cl (3b)

The monocarbonyl chelate com­plex 3a was first prepared by the photochemical reaction of cymantrene with bis­(di­phenyl­phosphan­yl)ethane (dppe) in benzene (ca 85% yield after 50 h irradiation), while the same reaction in cyclo­hexane produced the dppe-bridged dinuclear com­plex {[(C5H5)Mn(CO)2]2[μ-dppe]} (Nyholm et al., 1963[Nyholm, R. S., Sandhu, S. S. & Stiddard, M. H. B. (1963). J. Chem. Soc. pp. 5916-5919.]). Among several studies devoted to spectroscopic characterization and general reactivity, it was found that 3a had a ninefold decreased kinetic acidity when com­pared to cymantrene (Antonova & Shapiro, 1991[Antonova, M. V. & Shapiro, I. O. (1991). Metalloorg. Khim. 4, 674-675.]). Compound 3b has not been reported previously.

Irradiation of THF solutions of the corresponding tricarbonyl com­plexes in the presence of dppe for 7 h yields 3a and 3b in modest yields (30–40%), again with substantial recovery of the starting material. Some weak signals in the NMR spectra showed small amounts of other products, most likely dinuclear ones. However, the influence of prolonged reaction times on product yields and distribution was not examined. In contrast to the reactivity of 1b, it was not possible to deprotonate 3b [either by lithium diiso­propyl­amide (LDA), lithium tetra­methyl­piperidide (LiTMP) or t-BuLi] and introduce more chlorine substituents via addition of C2Cl6. However, again it was possible to obtain crystals suitable for X-ray diffraction for both com­pounds.

3.3.1. Mol­ecular structure of 3a

Compound 3a crystallizes in the monoclinic space group C2/c, with one mol­ecule in the asymmetric unit. Fig. 4[link] shows a top view of the mol­ecular structure. Both Mn→P vectors nearly eclipse two C—H bonds in mutual 1- and 3-positions of the cyclo­penta­dienyl ring, while the Mn→CO vector bis­ects a C—C bond. The Mn—P [2.1968 (4) and 2.1849 (4) Å] and Mn—CO [1.7549 (15) Å] bonds, as well as the distance from manganese to the cyclo­penta­dienyl centroid [1.761 (2) Å], are shorter than for all the above-mentioned com­pounds. At the same time, the C—C bonds of the cyclo­penta­dienyl rings are longer than in the other com­pounds (Table 2[link]).

[Figure 4]
Figure 4
The molecular structures (top views) of com­pounds 3a (left) and 3b (right), with displacement ellipsoids drawn at the 30% probability level.

There are two inter­molecular hydrogen bonds involving the carbonyl O atom and one methyl­ene H atom of the PCy3 ligand or one C—H group of the cyclo­penta­dienyl ring. The packing diagram shows that these inter­actions connect the individual mol­ecules in the a direction (Fig. S5 and Table S1 in the supporting information).

3.3.2. Mol­ecular structure of 3b

Compound 3b crystallizes in the triclinic space group P[\overline{1}], with one mol­ecule in the asymmetric unit (Fig. 4[link]). The Mn→P2 vector bis­ects the C—C bond next to the chlorine substituent, while the Mn→P1 and Mn→CO vectors nearly eclipse two C—H bonds in the 2- and 4-positions. The Mn—P bond lengths [2.1961 (5) and 2.2024 (5) Å] are significantly different from each other (by 12σ) and slightly longer than in 3a. The same holds for the relative distances between manganese and the cyclo­penta­dienyl centroids, while the Mn—CO bonds are virtually identical (Table 2[link]). It is worth noting the near perpendicular orientation of one arene ring (C201–C206) relative to the cyclo­penta­dienyl ring (inter­planar angle 86.0°). This leads to a rather close approach of arene H atom H206 to cyclo­penta­dienyl atom H4 (2.375 Å).

There is one inter­molecular C—H⋯Cl hydrogen bond involving an arene H atom, which joins the individual mol­ecules in the b direction. The carbonyl O atom joins two mol­ecules in the a direction, employing one arene H atom and one cyclo­penta­dienyl H atom each (Fig. S6 and Table S1 in the supporting information).

4. Comparison of the structures and conclusion

The introduction of a chlorine substituent in the cyclopentadienyl ring leads to a slight increase in the Mn—Ct and Mn—P distances for all the title phosphanes, while both the Mn—CO and the C—O bonds are only affected in the PCy3 system, where a substantial elongation occurs. When com­paring the two triads with different phosphanes, the Mn—Ct (Ct des­cribes the centroid of the cyclo­penta­dienyl ring) and Mn—P distances show a slight increase in the order 312. The C—O bonds follow the trend 12 < 3 and the C—Cl bonds follow the trend 2b < 1b3b. The average C—C bond lengths are the same within 2σ for all six com­pounds. Comparison with the PPh2CH2Ph com­pound GIXRIO and the ferrocenylbis­phosphane chelate com­pound EFUHAO shows more similarities with the PPh3 com­plexes 1 than with the dppe chelates 3. The tendency of the Mn—P bonds to eclipse one cyclo­penta­dienyl C—H bond is obvious in all the com­pounds. In all the chloro com­pounds, the Mn—P bonds avoid being eclipsed with the C—Cl bond of the cyclopentadienyl ring.

Apparently, the introduction of one chlorine substituent has only a small influence on the bond lengths, despite the relatively large effect on the spectroscopic data. Steric hindrance within the phosphanes seems to be of greater importance for the bond parameters than the differences in electronic effects. However, the presence of chlorine in the cyclo­penta­dienyl ring leads to additional lattice stabilization via the formation of C—H⋯Cl hydrogen bonds.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011) for compd1a, compd2b, compd3a, compd3b; CrysAlis PRO (Agilent, 2014) for compd1b, compd2a. Cell refinement: APEX2 (Bruker, 2011) for compd1a, compd2b, compd3a, compd3b; CrysAlis PRO (Agilent, 2014) for compd1b, compd2a. Data reduction: SAINT (Bruker, 2011) for compd1a, compd2b, compd3a, compd3b; CrysAlis PRO (Agilent, 2014) for compd1b, compd2a. Program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a) for compd1a, compd1b, compd2a, compd2b, compd3b; SHELXT2018 (Sheldrick, 2015a) for compd3a. For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

Dicarbonyl(η5-cyclopentadienyl)(triphenylphosphane-κP)manganese(I) (compd1a) top
Crystal data top
[Mn(C5H5)(C18H15P)(CO)2]F(000) = 1808
Mr = 438.32Dx = 1.430 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6736 (4) ÅCell parameters from 9770 reflections
b = 15.7356 (8) Åθ = 2.7–27.1°
c = 33.912 (2) ŵ = 0.75 mm1
β = 95.942 (2)°T = 110 K
V = 4072.9 (4) Å3Block, yellow
Z = 80.05 × 0.05 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
8968 independent reflections
Radiation source: rotating anode generator7809 reflections with I > 2σ(I)
Detector resolution: 7.391 pixels mm-1Rint = 0.048
mix of ω and phi scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.709, Tmax = 0.746k = 2020
64715 measured reflectionsl = 4343
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0276P)2 + 5.0438P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
8968 reflectionsΔρmax = 0.55 e Å3
523 parametersΔρmin = 0.65 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.85454 (4)0.19579 (2)0.67910 (2)0.01828 (8)
P10.73804 (6)0.28831 (3)0.71853 (2)0.01491 (11)
C111.1174 (3)0.17804 (14)0.70677 (7)0.0235 (5)
H111.1932920.2229440.7162050.028*
C121.0005 (3)0.13330 (14)0.72884 (7)0.0254 (5)
H120.9840550.1431190.7558420.030*
C130.9123 (3)0.07157 (14)0.70398 (8)0.0303 (5)
H130.8269350.0325420.7113280.036*
C140.9740 (3)0.07820 (15)0.66602 (8)0.0330 (6)
H140.9368470.0446470.6434120.040*
C151.1002 (3)0.14347 (15)0.66793 (7)0.0280 (5)
H151.1633590.1613560.6467390.034*
C160.8850 (3)0.27855 (14)0.64521 (6)0.0220 (4)
C170.6483 (3)0.16736 (15)0.65394 (7)0.0288 (5)
O110.9126 (2)0.33197 (11)0.62291 (5)0.0318 (4)
O120.5185 (2)0.14436 (12)0.63652 (6)0.0438 (5)
C1010.6000 (3)0.37102 (13)0.69258 (6)0.0164 (4)
C1020.4413 (3)0.34694 (13)0.67145 (6)0.0198 (4)
H1020.4054930.2891620.6716100.024*
C1030.3355 (3)0.40626 (15)0.65028 (6)0.0227 (4)
H1030.2282230.3888410.6361030.027*
C1040.3858 (3)0.49091 (14)0.64972 (6)0.0240 (5)
H1040.3136750.5314410.6350780.029*
C1050.5416 (3)0.51582 (14)0.67062 (7)0.0273 (5)
H1050.5764600.5737350.6703960.033*
C1060.6480 (3)0.45647 (13)0.69203 (6)0.0224 (4)
H1060.7544440.4744300.7064130.027*
C1110.8995 (3)0.35271 (12)0.74917 (6)0.0172 (4)
C1120.8897 (3)0.36919 (14)0.78919 (6)0.0231 (4)
H1120.8020800.3422760.8026310.028*
C1131.0077 (3)0.42495 (15)0.80964 (7)0.0295 (5)
H1130.9996840.4359500.8369380.035*
C1141.1363 (3)0.46444 (14)0.79053 (7)0.0300 (5)
H1141.2137550.5039740.8043610.036*
C1151.1515 (3)0.44600 (14)0.75114 (7)0.0255 (5)
H1151.2418590.4715260.7380760.031*
C1161.0348 (3)0.39030 (13)0.73074 (6)0.0208 (4)
H1161.0469900.3774560.7037930.025*
C1210.5917 (3)0.24949 (13)0.75399 (6)0.0169 (4)
C1220.5862 (3)0.16338 (14)0.76309 (7)0.0222 (4)
H1220.6562690.1243270.7503130.027*
C1230.4789 (3)0.13418 (14)0.79078 (7)0.0263 (5)
H1230.4778950.0754230.7971850.032*
C1240.3739 (3)0.18983 (15)0.80905 (7)0.0242 (5)
H1240.2999470.1693750.8277530.029*
C1250.3767 (3)0.27557 (15)0.80001 (7)0.0251 (5)
H1250.3043730.3140990.8124700.030*
C1260.4854 (3)0.30524 (14)0.77272 (6)0.0219 (4)
H1260.4872970.3641930.7667420.026*
Mn20.58566 (4)0.16120 (2)0.42672 (2)0.02007 (8)
P20.75532 (7)0.24724 (3)0.46702 (2)0.01895 (12)
C210.4526 (4)0.12059 (16)0.47594 (8)0.0360 (6)
H210.4875070.1361690.5026520.043*
C220.5107 (4)0.04810 (15)0.45630 (8)0.0372 (6)
H220.5909210.0065260.4675020.045*
C230.4279 (4)0.04866 (16)0.41692 (8)0.0356 (6)
H230.4427090.0074950.3970520.043*
C240.3195 (3)0.12124 (17)0.41250 (8)0.0347 (6)
H240.2489340.1376330.3890710.042*
C250.3345 (3)0.16552 (16)0.44923 (8)0.0330 (6)
H250.2751760.2164720.4547260.040*
C260.7653 (3)0.11595 (13)0.40507 (6)0.0238 (5)
C270.5568 (3)0.24139 (13)0.39010 (6)0.0204 (4)
O210.8763 (2)0.08380 (11)0.38960 (5)0.0326 (4)
O220.5301 (2)0.29233 (10)0.36554 (5)0.0297 (4)
C2010.9218 (3)0.19896 (15)0.50301 (6)0.0246 (5)
C2021.0608 (3)0.24533 (17)0.52160 (7)0.0294 (5)
H2021.0757120.3030890.5145180.035*
C2031.1787 (3)0.20805 (18)0.55054 (7)0.0342 (6)
H2031.2739400.2401370.5629320.041*
C2041.1566 (4)0.12431 (18)0.56117 (7)0.0406 (7)
H2041.2369390.0988860.5808910.049*
C2051.0182 (5)0.07731 (18)0.54327 (9)0.0538 (9)
H2051.0021500.0200210.5509590.065*
C2060.9022 (4)0.11449 (17)0.51386 (8)0.0462 (8)
H2060.8088210.0817630.5010930.055*
C2110.6293 (3)0.31214 (13)0.49899 (6)0.0188 (4)
C2120.6646 (3)0.31426 (14)0.54006 (6)0.0228 (4)
H2120.7584960.2815950.5526880.027*
C2130.5629 (3)0.36407 (15)0.56272 (7)0.0268 (5)
H2130.5881030.3655410.5907400.032*
C2140.4252 (3)0.41147 (15)0.54459 (7)0.0258 (5)
H2140.3557290.4452170.5601260.031*
C2150.3890 (3)0.40957 (14)0.50369 (7)0.0247 (5)
H2150.2951160.4423760.4911760.030*
C2160.4893 (3)0.36003 (14)0.48109 (6)0.0229 (4)
H2160.4629110.3584910.4531050.027*
C2210.8851 (3)0.32809 (14)0.44380 (6)0.0202 (4)
C2220.8888 (3)0.41354 (14)0.45507 (7)0.0253 (5)
H2220.8205470.4318250.4753150.030*
C2230.9907 (3)0.47224 (15)0.43713 (7)0.0293 (5)
H2230.9890930.5303410.4447000.035*
C2241.0944 (3)0.44648 (16)0.40834 (7)0.0303 (5)
H2241.1656490.4864030.3964370.036*
C2251.0933 (3)0.36201 (17)0.39705 (7)0.0312 (5)
H2251.1645190.3438550.3773430.037*
C2260.9889 (3)0.30359 (16)0.41429 (7)0.0275 (5)
H2260.9880910.2459920.4058880.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01353 (15)0.01902 (16)0.02168 (17)0.00274 (12)0.00109 (12)0.00469 (12)
P10.0134 (2)0.0143 (2)0.0166 (2)0.00031 (18)0.00035 (19)0.00050 (19)
C110.0153 (10)0.0248 (11)0.0292 (12)0.0054 (8)0.0031 (8)0.0008 (9)
C120.0218 (11)0.0263 (11)0.0279 (12)0.0085 (9)0.0017 (9)0.0048 (9)
C130.0209 (11)0.0180 (11)0.0516 (16)0.0038 (9)0.0024 (10)0.0012 (10)
C140.0282 (12)0.0281 (12)0.0412 (14)0.0123 (10)0.0027 (10)0.0136 (11)
C150.0192 (11)0.0328 (12)0.0320 (12)0.0110 (9)0.0031 (9)0.0015 (10)
C160.0157 (10)0.0310 (12)0.0184 (10)0.0042 (9)0.0021 (8)0.0056 (9)
C170.0218 (11)0.0257 (11)0.0382 (13)0.0049 (9)0.0008 (10)0.0123 (10)
O110.0287 (9)0.0444 (10)0.0215 (8)0.0022 (8)0.0014 (7)0.0065 (7)
O120.0235 (9)0.0434 (11)0.0614 (13)0.0012 (8)0.0107 (9)0.0247 (10)
C1010.0163 (9)0.0184 (9)0.0148 (9)0.0039 (8)0.0032 (7)0.0002 (7)
C1020.0191 (10)0.0207 (10)0.0198 (10)0.0003 (8)0.0032 (8)0.0006 (8)
C1030.0165 (10)0.0340 (12)0.0173 (10)0.0045 (9)0.0004 (8)0.0008 (9)
C1040.0270 (11)0.0275 (11)0.0173 (10)0.0118 (9)0.0008 (9)0.0034 (8)
C1050.0333 (12)0.0183 (10)0.0298 (12)0.0042 (9)0.0014 (10)0.0037 (9)
C1060.0218 (11)0.0201 (10)0.0242 (11)0.0018 (8)0.0031 (9)0.0001 (8)
C1110.0166 (9)0.0145 (9)0.0194 (10)0.0011 (8)0.0029 (8)0.0002 (7)
C1120.0219 (11)0.0248 (11)0.0217 (11)0.0018 (9)0.0021 (8)0.0001 (9)
C1130.0328 (13)0.0312 (12)0.0226 (11)0.0040 (10)0.0069 (10)0.0078 (9)
C1140.0286 (12)0.0210 (11)0.0374 (13)0.0028 (9)0.0116 (10)0.0052 (10)
C1150.0214 (11)0.0197 (10)0.0337 (13)0.0020 (9)0.0050 (9)0.0051 (9)
C1160.0190 (10)0.0221 (10)0.0204 (10)0.0001 (8)0.0018 (8)0.0011 (8)
C1210.0139 (9)0.0185 (10)0.0178 (10)0.0001 (8)0.0007 (7)0.0005 (8)
C1220.0217 (10)0.0191 (10)0.0260 (11)0.0006 (8)0.0041 (9)0.0031 (8)
C1230.0301 (12)0.0195 (10)0.0295 (12)0.0037 (9)0.0044 (10)0.0033 (9)
C1240.0212 (11)0.0302 (12)0.0216 (11)0.0030 (9)0.0042 (8)0.0031 (9)
C1250.0234 (11)0.0299 (12)0.0230 (11)0.0045 (9)0.0065 (9)0.0011 (9)
C1260.0219 (10)0.0196 (10)0.0242 (11)0.0034 (8)0.0028 (8)0.0029 (8)
Mn20.03021 (18)0.01543 (15)0.01517 (16)0.00275 (13)0.00515 (13)0.00225 (12)
P20.0255 (3)0.0184 (3)0.0130 (2)0.0089 (2)0.0018 (2)0.00046 (19)
C210.0540 (16)0.0306 (13)0.0264 (12)0.0077 (12)0.0185 (12)0.0038 (10)
C220.0623 (18)0.0208 (11)0.0304 (13)0.0008 (12)0.0145 (12)0.0073 (10)
C230.0548 (17)0.0238 (12)0.0305 (13)0.0116 (11)0.0153 (12)0.0003 (10)
C240.0348 (13)0.0363 (14)0.0342 (14)0.0127 (11)0.0089 (11)0.0008 (11)
C250.0356 (13)0.0291 (12)0.0374 (14)0.0039 (11)0.0193 (11)0.0023 (10)
C260.0350 (12)0.0180 (10)0.0174 (10)0.0053 (9)0.0023 (9)0.0016 (8)
C270.0183 (10)0.0216 (10)0.0216 (10)0.0014 (8)0.0042 (8)0.0022 (8)
O210.0371 (10)0.0298 (9)0.0310 (9)0.0148 (8)0.0035 (7)0.0055 (7)
O220.0328 (9)0.0274 (8)0.0288 (9)0.0058 (7)0.0022 (7)0.0140 (7)
C2010.0311 (12)0.0291 (11)0.0132 (10)0.0157 (10)0.0009 (8)0.0020 (8)
C2020.0236 (11)0.0393 (13)0.0260 (12)0.0097 (10)0.0059 (9)0.0083 (10)
C2030.0242 (12)0.0547 (16)0.0233 (12)0.0142 (11)0.0008 (9)0.0049 (11)
C2040.0522 (17)0.0472 (16)0.0201 (12)0.0306 (14)0.0077 (11)0.0023 (11)
C2050.087 (2)0.0292 (14)0.0390 (16)0.0194 (15)0.0252 (16)0.0006 (12)
C2060.068 (2)0.0262 (13)0.0385 (15)0.0109 (13)0.0240 (14)0.0005 (11)
C2110.0218 (10)0.0179 (10)0.0167 (10)0.0046 (8)0.0030 (8)0.0007 (8)
C2120.0213 (10)0.0286 (11)0.0182 (10)0.0086 (9)0.0010 (8)0.0008 (9)
C2130.0251 (11)0.0379 (13)0.0172 (10)0.0086 (10)0.0015 (9)0.0049 (9)
C2140.0243 (11)0.0294 (12)0.0244 (11)0.0094 (9)0.0063 (9)0.0059 (9)
C2150.0223 (11)0.0251 (11)0.0261 (11)0.0084 (9)0.0007 (9)0.0001 (9)
C2160.0282 (11)0.0234 (11)0.0163 (10)0.0062 (9)0.0008 (8)0.0004 (8)
C2210.0188 (10)0.0240 (11)0.0168 (10)0.0060 (8)0.0026 (8)0.0024 (8)
C2220.0239 (11)0.0253 (11)0.0267 (12)0.0076 (9)0.0018 (9)0.0003 (9)
C2230.0251 (12)0.0246 (11)0.0371 (13)0.0041 (9)0.0017 (10)0.0033 (10)
C2240.0226 (11)0.0387 (13)0.0282 (12)0.0037 (10)0.0036 (9)0.0070 (10)
C2250.0272 (12)0.0447 (15)0.0219 (11)0.0023 (11)0.0038 (9)0.0039 (10)
C2260.0289 (12)0.0317 (12)0.0219 (11)0.0003 (10)0.0029 (9)0.0056 (9)
Geometric parameters (Å, º) top
Mn1—C161.768 (2)Mn2—C271.768 (2)
Mn1—C171.776 (2)Mn2—C261.776 (2)
Mn1—C152.127 (2)Mn2—C212.142 (2)
Mn1—C142.132 (2)Mn2—C242.143 (3)
Mn1—C112.153 (2)Mn2—C252.146 (2)
Mn1—C132.157 (2)Mn2—C222.150 (2)
Mn1—C122.162 (2)Mn2—C232.151 (2)
Mn1—P12.2259 (6)Mn2—P22.2421 (7)
P1—C1211.833 (2)P2—C2111.836 (2)
P1—C1111.837 (2)P2—C2011.837 (2)
P1—C1011.843 (2)P2—C2211.842 (2)
C11—C121.414 (3)C21—C251.404 (4)
C11—C151.419 (3)C21—C221.416 (4)
C11—H110.9500C21—H210.9500
C12—C131.412 (3)C22—C231.418 (4)
C12—H120.9500C22—H220.9500
C13—C141.421 (4)C23—C241.412 (4)
C13—H130.9500C23—H230.9500
C14—C151.409 (4)C24—C251.421 (4)
C14—H140.9500C24—H240.9500
C15—H150.9500C25—H250.9500
C16—O111.165 (3)C26—O211.162 (3)
C17—O121.162 (3)C27—O221.159 (3)
C101—C1061.395 (3)C201—C2021.389 (3)
C101—C1021.400 (3)C201—C2061.391 (4)
C102—C1031.387 (3)C202—C2031.393 (3)
C102—H1020.9500C202—H2020.9500
C103—C1041.387 (3)C203—C2041.381 (4)
C103—H1030.9500C203—H2030.9500
C104—C1051.382 (3)C204—C2051.382 (4)
C104—H1040.9500C204—H2040.9500
C105—C1061.394 (3)C205—C2061.395 (4)
C105—H1050.9500C205—H2050.9500
C106—H1060.9500C206—H2060.9500
C111—C1121.391 (3)C211—C2121.392 (3)
C111—C1161.397 (3)C211—C2161.398 (3)
C112—C1131.393 (3)C212—C2131.392 (3)
C112—H1120.9500C212—H2120.9500
C113—C1141.383 (4)C213—C2141.384 (3)
C113—H1130.9500C213—H2130.9500
C114—C1151.384 (3)C214—C2151.386 (3)
C114—H1140.9500C214—H2140.9500
C115—C1161.386 (3)C215—C2161.382 (3)
C115—H1150.9500C215—H2150.9500
C116—H1160.9500C216—H2160.9500
C121—C1221.391 (3)C221—C2261.396 (3)
C121—C1261.395 (3)C221—C2221.397 (3)
C122—C1231.389 (3)C222—C2231.390 (3)
C122—H1220.9500C222—H2220.9500
C123—C1241.380 (3)C223—C2241.382 (3)
C123—H1230.9500C223—H2230.9500
C124—C1251.384 (3)C224—C2251.383 (4)
C124—H1240.9500C224—H2240.9500
C125—C1261.389 (3)C225—C2261.388 (3)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
C16—Mn1—C1792.56 (11)C27—Mn2—C2692.40 (10)
C16—Mn1—C1589.43 (10)C27—Mn2—C21136.46 (10)
C17—Mn1—C15125.40 (10)C26—Mn2—C21130.93 (10)
C16—Mn1—C14114.54 (10)C27—Mn2—C2490.25 (10)
C17—Mn1—C1493.58 (10)C26—Mn2—C24123.47 (10)
C15—Mn1—C1438.63 (9)C21—Mn2—C2464.39 (11)
C16—Mn1—C11101.41 (9)C27—Mn2—C25100.11 (10)
C17—Mn1—C11157.66 (10)C26—Mn2—C25157.44 (10)
C15—Mn1—C1138.71 (9)C21—Mn2—C2538.22 (10)
C14—Mn1—C1164.82 (9)C24—Mn2—C2538.70 (10)
C16—Mn1—C13152.38 (10)C27—Mn2—C22153.93 (11)
C17—Mn1—C1395.54 (10)C26—Mn2—C2296.74 (10)
C15—Mn1—C1364.45 (9)C21—Mn2—C2238.52 (10)
C14—Mn1—C1338.68 (10)C24—Mn2—C2264.38 (11)
C11—Mn1—C1364.31 (9)C25—Mn2—C2264.34 (10)
C16—Mn1—C12138.51 (9)C27—Mn2—C23116.83 (10)
C17—Mn1—C12128.62 (11)C26—Mn2—C2393.13 (10)
C15—Mn1—C1264.26 (9)C21—Mn2—C2364.45 (10)
C14—Mn1—C1264.43 (9)C24—Mn2—C2338.37 (10)
C11—Mn1—C1238.25 (8)C25—Mn2—C2364.49 (10)
C13—Mn1—C1238.17 (9)C22—Mn2—C2338.50 (10)
C16—Mn1—P189.83 (7)C27—Mn2—P291.14 (7)
C17—Mn1—P193.44 (7)C26—Mn2—P293.87 (8)
C15—Mn1—P1141.14 (7)C21—Mn2—P289.93 (8)
C14—Mn1—P1154.26 (8)C24—Mn2—P2142.54 (7)
C11—Mn1—P1103.85 (6)C25—Mn2—P2104.49 (7)
C13—Mn1—P1115.90 (7)C22—Mn2—P2112.44 (8)
C12—Mn1—P192.10 (6)C23—Mn2—P2150.81 (7)
C121—P1—C111103.65 (9)C211—P2—C201102.14 (9)
C121—P1—C101100.81 (9)C211—P2—C221102.08 (10)
C111—P1—C101101.61 (9)C201—P2—C221101.53 (10)
C121—P1—Mn1119.18 (7)C211—P2—Mn2112.82 (7)
C111—P1—Mn1114.28 (7)C201—P2—Mn2118.37 (8)
C101—P1—Mn1114.95 (7)C221—P2—Mn2117.52 (7)
C12—C11—C15107.3 (2)C25—C21—C22108.4 (2)
C12—C11—Mn171.24 (12)C25—C21—Mn271.03 (14)
C15—C11—Mn169.66 (12)C22—C21—Mn271.04 (14)
C12—C11—H11126.3C25—C21—H21125.8
C15—C11—H11126.3C22—C21—H21125.8
Mn1—C11—H11124.4Mn2—C21—H21123.8
C13—C12—C11108.5 (2)C21—C22—C23107.8 (2)
C13—C12—Mn170.71 (13)C21—C22—Mn270.44 (13)
C11—C12—Mn170.51 (12)C23—C22—Mn270.79 (14)
C13—C12—H12125.7C21—C22—H22126.1
C11—C12—H12125.7C23—C22—H22126.1
Mn1—C12—H12124.6Mn2—C22—H22124.3
C12—C13—C14107.8 (2)C24—C23—C22107.9 (2)
C12—C13—Mn171.13 (13)C24—C23—Mn270.50 (14)
C14—C13—Mn169.71 (14)C22—C23—Mn270.70 (14)
C12—C13—H13126.1C24—C23—H23126.1
C14—C13—H13126.1C22—C23—H23126.1
Mn1—C13—H13124.7Mn2—C23—H23124.3
C15—C14—C13107.7 (2)C23—C24—C25108.1 (2)
C15—C14—Mn170.49 (13)C23—C24—Mn271.12 (15)
C13—C14—Mn171.60 (13)C25—C24—Mn270.76 (14)
C15—C14—H14126.2C23—C24—H24126.0
C13—C14—H14126.2C25—C24—H24126.0
Mn1—C14—H14123.4Mn2—C24—H24123.8
C14—C15—C11108.6 (2)C21—C25—C24107.9 (2)
C14—C15—Mn170.89 (13)C21—C25—Mn270.75 (14)
C11—C15—Mn171.63 (12)C24—C25—Mn270.54 (14)
C14—C15—H15125.7C21—C25—H25126.1
C11—C15—H15125.7C24—C25—H25126.1
Mn1—C15—H15123.4Mn2—C25—H25124.3
O11—C16—Mn1177.06 (19)O21—C26—Mn2176.3 (2)
O12—C17—Mn1175.7 (2)O22—C27—Mn2176.7 (2)
C106—C101—C102118.11 (19)C202—C201—C206118.7 (2)
C106—C101—P1123.19 (16)C202—C201—P2122.21 (18)
C102—C101—P1118.67 (15)C206—C201—P2118.95 (19)
C103—C102—C101120.9 (2)C201—C202—C203120.7 (2)
C103—C102—H102119.5C201—C202—H202119.6
C101—C102—H102119.5C203—C202—H202119.6
C102—C103—C104120.3 (2)C204—C203—C202119.8 (3)
C102—C103—H103119.8C204—C203—H203120.1
C104—C103—H103119.8C202—C203—H203120.1
C105—C104—C103119.5 (2)C203—C204—C205120.4 (2)
C105—C104—H104120.3C203—C204—H204119.8
C103—C104—H104120.3C205—C204—H204119.8
C104—C105—C106120.4 (2)C204—C205—C206119.6 (3)
C104—C105—H105119.8C204—C205—H205120.2
C106—C105—H105119.8C206—C205—H205120.2
C105—C106—C101120.8 (2)C201—C206—C205120.8 (3)
C105—C106—H106119.6C201—C206—H206119.6
C101—C106—H106119.6C205—C206—H206119.6
C112—C111—C116118.38 (19)C212—C211—C216118.87 (19)
C112—C111—P1123.56 (16)C212—C211—P2122.99 (16)
C116—C111—P1117.99 (15)C216—C211—P2118.12 (16)
C111—C112—C113120.3 (2)C211—C212—C213120.3 (2)
C111—C112—H112119.8C211—C212—H212119.9
C113—C112—H112119.8C213—C212—H212119.9
C114—C113—C112120.6 (2)C214—C213—C212120.2 (2)
C114—C113—H113119.7C214—C213—H213119.9
C112—C113—H113119.7C212—C213—H213119.9
C113—C114—C115119.6 (2)C213—C214—C215119.8 (2)
C113—C114—H114120.2C213—C214—H214120.1
C115—C114—H114120.2C215—C214—H214120.1
C114—C115—C116120.0 (2)C216—C215—C214120.1 (2)
C114—C115—H115120.0C216—C215—H215120.0
C116—C115—H115120.0C214—C215—H215120.0
C115—C116—C111121.1 (2)C215—C216—C211120.7 (2)
C115—C116—H116119.5C215—C216—H216119.7
C111—C116—H116119.5C211—C216—H216119.7
C122—C121—C126118.62 (19)C226—C221—C222117.7 (2)
C122—C121—P1120.31 (16)C226—C221—P2119.31 (17)
C126—C121—P1121.07 (16)C222—C221—P2122.97 (17)
C123—C122—C121120.4 (2)C223—C222—C221121.0 (2)
C123—C122—H122119.8C223—C222—H222119.5
C121—C122—H122119.8C221—C222—H222119.5
C124—C123—C122120.5 (2)C224—C223—C222120.3 (2)
C124—C123—H123119.7C224—C223—H223119.8
C122—C123—H123119.7C222—C223—H223119.8
C123—C124—C125119.7 (2)C223—C224—C225119.3 (2)
C123—C124—H124120.1C223—C224—H224120.3
C125—C124—H124120.1C225—C224—H224120.3
C124—C125—C126119.9 (2)C224—C225—C226120.5 (2)
C124—C125—H125120.0C224—C225—H225119.8
C126—C125—H125120.0C226—C225—H225119.8
C125—C126—C121120.8 (2)C225—C226—C221121.1 (2)
C125—C126—H126119.6C225—C226—H226119.5
C121—C126—H126119.6C221—C226—H226119.5
C15—C11—C12—C130.2 (2)C25—C21—C22—C230.3 (3)
Mn1—C11—C12—C1360.78 (15)Mn2—C21—C22—C2361.28 (18)
C15—C11—C12—Mn160.63 (14)C25—C21—C22—Mn261.53 (17)
C11—C12—C13—C140.3 (3)C21—C22—C23—C240.0 (3)
Mn1—C12—C13—C1460.33 (16)Mn2—C22—C23—C2461.03 (17)
C11—C12—C13—Mn160.66 (15)C21—C22—C23—Mn261.05 (18)
C12—C13—C14—C150.4 (3)C22—C23—C24—C250.3 (3)
Mn1—C13—C14—C1561.61 (16)Mn2—C23—C24—C2561.44 (17)
C12—C13—C14—Mn161.23 (15)C22—C23—C24—Mn261.16 (18)
C13—C14—C15—C110.3 (3)C22—C21—C25—C240.4 (3)
Mn1—C14—C15—C1162.04 (15)Mn2—C21—C25—C2461.11 (16)
C13—C14—C15—Mn162.33 (16)C22—C21—C25—Mn261.53 (18)
C12—C11—C15—C140.1 (2)C23—C24—C25—C210.4 (3)
Mn1—C11—C15—C1461.57 (15)Mn2—C24—C25—C2161.24 (17)
C12—C11—C15—Mn161.65 (15)C23—C24—C25—Mn261.68 (17)
C121—P1—C101—C106119.77 (18)C211—P2—C201—C20272.7 (2)
C111—P1—C101—C10613.2 (2)C221—P2—C201—C20232.5 (2)
Mn1—P1—C101—C106110.72 (17)Mn2—P2—C201—C202162.74 (16)
C121—P1—C101—C10262.04 (17)C211—P2—C201—C206103.2 (2)
C111—P1—C101—C102168.57 (16)C221—P2—C201—C206151.6 (2)
Mn1—P1—C101—C10267.47 (17)Mn2—P2—C201—C20621.3 (2)
C106—C101—C102—C1030.6 (3)C206—C201—C202—C2030.1 (4)
P1—C101—C102—C103177.73 (16)P2—C201—C202—C203176.02 (18)
C101—C102—C103—C1040.0 (3)C201—C202—C203—C2040.6 (4)
C102—C103—C104—C1050.4 (3)C202—C203—C204—C2050.0 (4)
C103—C104—C105—C1060.2 (3)C203—C204—C205—C2061.1 (5)
C104—C105—C106—C1010.4 (3)C202—C201—C206—C2051.0 (4)
C102—C101—C106—C1050.8 (3)P2—C201—C206—C205175.1 (3)
P1—C101—C106—C105177.44 (17)C204—C205—C206—C2011.6 (5)
C121—P1—C111—C1124.7 (2)C201—P2—C211—C2122.2 (2)
C101—P1—C111—C11299.60 (18)C221—P2—C211—C212107.0 (2)
Mn1—P1—C111—C112135.99 (16)Mn2—P2—C211—C212125.97 (18)
C121—P1—C111—C116178.39 (16)C201—P2—C211—C216179.22 (18)
C101—P1—C111—C11677.32 (17)C221—P2—C211—C21674.44 (19)
Mn1—P1—C111—C11647.10 (17)Mn2—P2—C211—C21652.62 (19)
C116—C111—C112—C1132.9 (3)C216—C211—C212—C2130.7 (3)
P1—C111—C112—C113174.03 (17)P2—C211—C212—C213179.25 (18)
C111—C112—C113—C1140.2 (3)C211—C212—C213—C2140.4 (4)
C112—C113—C114—C1152.3 (3)C212—C213—C214—C2150.3 (4)
C113—C114—C115—C1162.0 (3)C213—C214—C215—C2160.5 (4)
C114—C115—C116—C1110.7 (3)C214—C215—C216—C2110.8 (4)
C112—C111—C116—C1153.2 (3)C212—C211—C216—C2150.9 (3)
P1—C111—C116—C115173.92 (16)P2—C211—C216—C215179.51 (18)
C111—P1—C121—C122112.90 (18)C211—P2—C221—C226174.52 (17)
C101—P1—C121—C122142.20 (17)C201—P2—C221—C22680.23 (19)
Mn1—P1—C121—C12215.4 (2)Mn2—P2—C221—C22650.55 (19)
C111—P1—C121—C12666.33 (19)C211—P2—C221—C2227.3 (2)
C101—P1—C121—C12638.58 (19)C201—P2—C221—C22298.00 (19)
Mn1—P1—C121—C126165.34 (14)Mn2—P2—C221—C222131.22 (17)
C126—C121—C122—C1231.0 (3)C226—C221—C222—C2230.8 (3)
P1—C121—C122—C123178.22 (17)P2—C221—C222—C223179.04 (17)
C121—C122—C123—C1241.2 (3)C221—C222—C223—C2241.7 (3)
C122—C123—C124—C1250.6 (3)C222—C223—C224—C2251.2 (4)
C123—C124—C125—C1260.2 (3)C223—C224—C225—C2260.2 (4)
C124—C125—C126—C1210.4 (3)C224—C225—C226—C2211.1 (4)
C122—C121—C126—C1250.2 (3)C222—C221—C226—C2250.6 (3)
P1—C121—C126—C125179.01 (17)P2—C221—C226—C225177.74 (18)
Dicarbonyl(η5-1-chlorocyclopentadienyl)(triphenylphosphane-κP)manganese(I) (compd1b) top
Crystal data top
[Mn(C5H4Cl)(C18H15P)(CO)2]Dx = 1.457 Mg m3
Mr = 472.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3646 reflections
a = 7.6519 (3) Åθ = 4.6–27.6°
b = 16.4786 (7) ŵ = 0.83 mm1
c = 17.0971 (7) ÅT = 173 K
V = 2155.82 (15) Å3Block, yellow
Z = 40.34 × 0.14 × 0.10 mm
F(000) = 968
Data collection top
Oxford Diffraction KM4 Xcalibur2
diffractometer
4900 independent reflections
Radiation source: Enhance (Mo) X-ray Source4297 reflections with I > 2σ(I)
Detector resolution: 15.9809 pixels mm-1Rint = 0.045
ω scansθmax = 27.5°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 99
Tmin = 0.892, Tmax = 1k = 2021
14524 measured reflectionsl = 2221
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.3065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.39 e Å3
4900 reflectionsΔρmin = 0.29 e Å3
271 parametersAbsolute structure: Flack x determined using 1609 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.038 (12)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7487 (5)0.3166 (2)0.3742 (2)0.0300 (9)
C20.8076 (6)0.3768 (3)0.3225 (2)0.0335 (9)
H20.7721050.3838580.2697340.040*
C30.9300 (5)0.4253 (3)0.3637 (2)0.0349 (9)
H30.9917870.4707310.3436590.042*
C40.9429 (5)0.3934 (3)0.4402 (2)0.0350 (10)
H41.0159640.4139820.4804770.042*
C50.8308 (5)0.3265 (2)0.4471 (2)0.0322 (9)
H50.8134990.2941590.4924360.039*
C60.4855 (5)0.3976 (2)0.4648 (2)0.0250 (8)
C70.7072 (5)0.5105 (2)0.4929 (2)0.0284 (8)
C110.3820 (5)0.4804 (2)0.2738 (2)0.0222 (7)
C120.2759 (5)0.5304 (2)0.2289 (2)0.0279 (8)
H120.2811370.5876020.2358040.033*
C130.1618 (5)0.4976 (3)0.1737 (2)0.0351 (10)
H130.0906750.5324390.1430040.042*
C140.1518 (5)0.4151 (3)0.1636 (2)0.0389 (10)
H140.0750650.3927690.1255770.047*
C150.2539 (6)0.3648 (3)0.2090 (3)0.0402 (11)
H150.2459680.3076620.2028260.048*
C160.3683 (5)0.3972 (2)0.2638 (2)0.0328 (9)
H160.4379710.3618610.2947150.039*
C210.4127 (5)0.6032 (2)0.3891 (2)0.0231 (8)
C220.4289 (5)0.6840 (2)0.3676 (2)0.0276 (8)
H220.5116040.6988290.3286660.033*
C230.3256 (6)0.7435 (2)0.4021 (2)0.0359 (9)
H230.3393650.7986960.3873200.043*
C240.2036 (6)0.7226 (3)0.4578 (2)0.0390 (11)
H240.1337230.7632520.4816780.047*
C250.1833 (6)0.6419 (3)0.4787 (2)0.0416 (11)
H250.0976270.6270070.5163040.050*
C260.2875 (5)0.5831 (3)0.4451 (2)0.0360 (10)
H260.2735990.5279960.4603340.043*
C310.6917 (5)0.5794 (2)0.28135 (19)0.0220 (7)
C320.8238 (5)0.6237 (2)0.3178 (2)0.0279 (8)
H320.8363570.6213500.3729940.033*
C330.9372 (5)0.6711 (2)0.2740 (3)0.0349 (9)
H331.0266640.7010440.2994010.042*
C340.9208 (5)0.6749 (3)0.1936 (2)0.0375 (10)
H340.9964600.7086500.1638270.045*
C350.7941 (5)0.6297 (2)0.1570 (2)0.0349 (9)
H350.7848540.6312430.1016530.042*
C360.6785 (5)0.5813 (2)0.1999 (2)0.0262 (8)
H360.5918870.5500770.1738380.031*
Cl10.61091 (16)0.23638 (6)0.35295 (7)0.0463 (3)
Mn10.68106 (7)0.43367 (3)0.42154 (3)0.02044 (13)
O10.3631 (4)0.37057 (18)0.49453 (17)0.0403 (7)
O20.7294 (4)0.55948 (19)0.54096 (16)0.0440 (8)
P10.54153 (12)0.52133 (5)0.34323 (5)0.0200 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (2)0.024 (2)0.035 (2)0.0097 (16)0.0046 (18)0.0063 (16)
C20.029 (2)0.042 (2)0.029 (2)0.0136 (19)0.0086 (19)0.0036 (17)
C30.0229 (19)0.037 (2)0.045 (2)0.0072 (17)0.0106 (18)0.0058 (19)
C40.023 (2)0.039 (2)0.042 (3)0.0101 (17)0.0052 (18)0.0030 (18)
C50.035 (2)0.028 (2)0.033 (2)0.0105 (18)0.0023 (19)0.0030 (16)
C60.030 (2)0.0206 (19)0.0247 (19)0.0038 (16)0.0008 (16)0.0055 (15)
C70.030 (2)0.026 (2)0.0287 (19)0.0003 (16)0.0008 (17)0.0056 (16)
C110.0207 (17)0.0239 (18)0.0221 (17)0.0007 (14)0.0031 (15)0.0019 (15)
C120.027 (2)0.0225 (19)0.034 (2)0.0024 (15)0.0025 (17)0.0009 (16)
C130.031 (2)0.042 (3)0.032 (2)0.0039 (19)0.0107 (19)0.0035 (17)
C140.035 (2)0.049 (3)0.033 (2)0.0022 (19)0.0087 (19)0.0097 (18)
C150.045 (3)0.025 (2)0.051 (3)0.0021 (18)0.009 (2)0.0058 (19)
C160.034 (2)0.026 (2)0.039 (2)0.0018 (17)0.0087 (19)0.0023 (17)
C210.0225 (19)0.0245 (19)0.0224 (18)0.0020 (14)0.0009 (15)0.0005 (14)
C220.027 (2)0.027 (2)0.028 (2)0.0010 (15)0.0003 (16)0.0019 (15)
C230.038 (2)0.027 (2)0.043 (2)0.0061 (18)0.007 (2)0.0065 (17)
C240.040 (2)0.044 (3)0.032 (2)0.018 (2)0.001 (2)0.0110 (18)
C250.039 (2)0.051 (3)0.035 (2)0.015 (2)0.013 (2)0.0042 (19)
C260.034 (2)0.035 (2)0.038 (2)0.0059 (18)0.0100 (18)0.0083 (17)
C310.0212 (17)0.0212 (19)0.0236 (17)0.0026 (15)0.0055 (15)0.0023 (14)
C320.0247 (19)0.028 (2)0.0313 (19)0.0007 (16)0.0032 (18)0.0003 (15)
C330.030 (2)0.026 (2)0.049 (3)0.0054 (17)0.003 (2)0.0012 (18)
C340.034 (2)0.035 (2)0.043 (2)0.0071 (18)0.015 (2)0.0122 (19)
C350.037 (2)0.041 (2)0.027 (2)0.0031 (19)0.0104 (19)0.0064 (17)
C360.0244 (18)0.030 (2)0.0245 (17)0.0037 (16)0.0011 (16)0.0002 (14)
Cl10.0535 (7)0.0266 (5)0.0587 (7)0.0037 (5)0.0085 (6)0.0096 (5)
Mn10.0205 (3)0.0196 (3)0.0212 (2)0.0019 (2)0.0011 (2)0.0011 (2)
O10.0332 (17)0.0362 (17)0.0515 (18)0.0017 (13)0.0118 (14)0.0140 (14)
O20.058 (2)0.0349 (17)0.0394 (16)0.0031 (15)0.0052 (15)0.0121 (14)
P10.0199 (5)0.0193 (4)0.0209 (4)0.0005 (4)0.0013 (4)0.0012 (4)
Geometric parameters (Å, º) top
C1—C21.402 (6)C15—C161.388 (6)
C1—C51.406 (5)C15—H150.9500
C1—Cl11.730 (4)C16—H160.9500
C1—Mn12.155 (4)C21—C221.387 (5)
C2—C31.418 (6)C21—C261.394 (5)
C2—Mn12.163 (4)C21—P11.846 (4)
C2—H20.9500C22—C231.392 (5)
C3—C41.412 (6)C22—H220.9500
C3—Mn12.150 (4)C23—C241.377 (6)
C3—H30.9500C23—H230.9500
C4—C51.401 (6)C24—C251.386 (6)
C4—Mn12.135 (4)C24—H240.9500
C4—H40.9500C25—C261.380 (6)
C5—Mn12.149 (4)C25—H250.9500
C5—H50.9500C26—H260.9500
C6—O11.154 (4)C31—C321.394 (5)
C6—Mn11.772 (4)C31—C361.397 (5)
C7—O21.163 (5)C31—P11.832 (3)
C7—Mn11.770 (4)C32—C331.387 (5)
C11—C161.386 (5)C32—H320.9500
C11—C121.389 (5)C33—C341.382 (6)
C11—P11.831 (4)C33—H330.9500
C12—C131.395 (5)C34—C351.374 (6)
C12—H120.9500C34—H340.9500
C13—C141.373 (6)C35—C361.397 (5)
C13—H130.9500C35—H350.9500
C14—C151.378 (6)C36—H360.9500
C14—H140.9500Mn1—P12.2403 (10)
C2—C1—C5109.4 (4)C23—C24—H24120.2
C2—C1—Cl1127.2 (3)C25—C24—H24120.2
C5—C1—Cl1123.2 (3)C26—C25—C24120.1 (4)
C2—C1—Mn171.4 (2)C26—C25—H25120.0
C5—C1—Mn170.7 (2)C24—C25—H25120.0
Cl1—C1—Mn1128.1 (2)C25—C26—C21121.1 (4)
C1—C2—C3107.3 (4)C25—C26—H26119.5
C1—C2—Mn170.7 (2)C21—C26—H26119.5
C3—C2—Mn170.3 (2)C32—C31—C36119.1 (3)
C1—C2—H2126.3C32—C31—P1118.1 (3)
C3—C2—H2126.3C36—C31—P1122.9 (3)
Mn1—C2—H2124.2C33—C32—C31120.5 (3)
C4—C3—C2107.2 (4)C33—C32—H32119.8
C4—C3—Mn170.2 (2)C31—C32—H32119.8
C2—C3—Mn171.3 (2)C34—C33—C32120.4 (4)
C4—C3—H3126.4C34—C33—H33119.8
C2—C3—H3126.4C32—C33—H33119.8
Mn1—C3—H3123.8C35—C34—C33119.4 (4)
C5—C4—C3109.2 (4)C35—C34—H34120.3
C5—C4—Mn171.5 (2)C33—C34—H34120.3
C3—C4—Mn171.4 (2)C34—C35—C36121.2 (4)
C5—C4—H4125.4C34—C35—H35119.4
C3—C4—H4125.4C36—C35—H35119.4
Mn1—C4—H4123.3C31—C36—C35119.3 (4)
C4—C5—C1106.8 (4)C31—C36—H36120.3
C4—C5—Mn170.3 (2)C35—C36—H36120.3
C1—C5—Mn171.2 (2)C7—Mn1—C692.72 (17)
C4—C5—H5126.6C7—Mn1—C490.78 (17)
C1—C5—H5126.6C6—Mn1—C4128.76 (16)
Mn1—C5—H5123.6C7—Mn1—C5112.78 (16)
O1—C6—Mn1176.3 (3)C6—Mn1—C595.14 (17)
O2—C7—Mn1177.5 (4)C4—Mn1—C538.18 (16)
C16—C11—C12118.3 (4)C7—Mn1—C3105.24 (17)
C16—C11—P1119.7 (3)C6—Mn1—C3156.69 (16)
C12—C11—P1122.0 (3)C4—Mn1—C338.48 (16)
C11—C12—C13120.6 (4)C5—Mn1—C364.44 (16)
C11—C12—H12119.7C7—Mn1—C1150.74 (16)
C13—C12—H12119.7C6—Mn1—C193.42 (16)
C14—C13—C12120.3 (4)C4—Mn1—C163.40 (16)
C14—C13—H13119.8C5—Mn1—C138.13 (15)
C12—C13—H13119.8C3—Mn1—C163.70 (16)
C13—C14—C15119.5 (4)C7—Mn1—C2143.00 (18)
C13—C14—H14120.3C6—Mn1—C2124.02 (17)
C15—C14—H14120.3C4—Mn1—C264.02 (16)
C14—C15—C16120.5 (4)C5—Mn1—C264.21 (15)
C14—C15—H15119.8C3—Mn1—C238.38 (16)
C16—C15—H15119.8C1—Mn1—C237.89 (15)
C11—C16—C15120.7 (4)C7—Mn1—P190.26 (12)
C11—C16—H16119.6C6—Mn1—P193.63 (12)
C15—C16—H16119.6C4—Mn1—P1137.48 (12)
C22—C21—C26118.2 (4)C5—Mn1—P1154.84 (11)
C22—C21—P1122.7 (3)C3—Mn1—P1100.89 (11)
C26—C21—P1119.0 (3)C1—Mn1—P1117.83 (11)
C21—C22—C23120.9 (4)C2—Mn1—P191.43 (11)
C21—C22—H22119.6C11—P1—C31103.68 (16)
C23—C22—H22119.6C11—P1—C21100.86 (16)
C24—C23—C22120.1 (4)C31—P1—C21101.48 (16)
C24—C23—H23119.9C11—P1—Mn1117.87 (12)
C22—C23—H23119.9C31—P1—Mn1112.51 (12)
C23—C24—C25119.7 (4)C21—P1—Mn1118.14 (12)
C5—C1—C2—C30.4 (4)C23—C24—C25—C261.3 (7)
Cl1—C1—C2—C3174.8 (3)C24—C25—C26—C210.8 (7)
Mn1—C1—C2—C361.1 (3)C22—C21—C26—C250.5 (6)
C5—C1—C2—Mn160.7 (3)P1—C21—C26—C25177.4 (3)
Cl1—C1—C2—Mn1124.1 (3)C36—C31—C32—C332.0 (5)
C1—C2—C3—C40.1 (4)P1—C31—C32—C33177.6 (3)
Mn1—C2—C3—C461.3 (3)C31—C32—C33—C340.1 (6)
C1—C2—C3—Mn161.4 (3)C32—C33—C34—C351.8 (6)
C2—C3—C4—C50.2 (4)C33—C34—C35—C361.7 (6)
Mn1—C3—C4—C561.8 (3)C32—C31—C36—C352.2 (5)
C2—C3—C4—Mn162.1 (3)P1—C31—C36—C35177.5 (3)
C3—C4—C5—C10.4 (4)C34—C35—C36—C310.3 (6)
Mn1—C4—C5—C162.2 (3)C16—C11—P1—C31116.4 (3)
C3—C4—C5—Mn161.8 (3)C12—C11—P1—C3161.9 (3)
C2—C1—C5—C40.5 (4)C16—C11—P1—C21138.8 (3)
Cl1—C1—C5—C4174.9 (3)C12—C11—P1—C2142.9 (3)
Mn1—C1—C5—C461.7 (3)C16—C11—P1—Mn18.7 (4)
C2—C1—C5—Mn161.2 (3)C12—C11—P1—Mn1173.0 (3)
Cl1—C1—C5—Mn1123.5 (3)C32—C31—P1—C11175.5 (3)
C16—C11—C12—C131.6 (6)C36—C31—P1—C114.1 (3)
P1—C11—C12—C13176.8 (3)C32—C31—P1—C2171.2 (3)
C11—C12—C13—C140.6 (6)C36—C31—P1—C21108.4 (3)
C12—C13—C14—C150.8 (6)C32—C31—P1—Mn156.1 (3)
C13—C14—C15—C161.0 (7)C36—C31—P1—Mn1124.3 (3)
C12—C11—C16—C151.3 (6)C22—C21—P1—C1199.7 (3)
P1—C11—C16—C15177.1 (3)C26—C21—P1—C1177.1 (3)
C14—C15—C16—C110.0 (7)C22—C21—P1—C316.8 (3)
C26—C21—C22—C231.4 (6)C26—C21—P1—C31176.4 (3)
P1—C21—C22—C23178.2 (3)C22—C21—P1—Mn1130.3 (3)
C21—C22—C23—C240.9 (6)C26—C21—P1—Mn152.9 (3)
C22—C23—C24—C250.5 (6)
Dicarbonyl(η5-cyclopentadienyl)(tricyclohexylphosphane-κP)manganese(I) (compd2a) top
Crystal data top
[Mn(C5H5)(C18H33P)(CO)2]F(000) = 976
Mr = 456.46Dx = 1.299 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8938 (5) ÅCell parameters from 3157 reflections
b = 13.6564 (5) Åθ = 4.5–28.4°
c = 17.9372 (9) ŵ = 0.65 mm1
β = 105.676 (5)°T = 173 K
V = 2333.42 (19) Å3Block, yellow
Z = 40.33 × 0.23 × 0.14 mm
Data collection top
Oxford Diffraction KM4 Xcalibur2
diffractometer
5333 independent reflections
Radiation source: Enhance (Mo) X-ray Source3805 reflections with I > 2σ(I)
Detector resolution: 15.9809 pixels mm-1Rint = 0.054
ω scansθmax = 27.5°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1212
Tmin = 0.990, Tmax = 1k = 1617
15861 measured reflectionsl = 2318
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.4858P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5333 reflectionsΔρmax = 0.67 e Å3
262 parametersΔρmin = 0.46 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7611 (3)0.38726 (17)0.34525 (16)0.0367 (6)
H10.7647790.3511260.3005830.044*
C20.6679 (3)0.3703 (2)0.39079 (18)0.0469 (8)
H20.5976980.3209420.3826030.056*
C30.6987 (4)0.4412 (2)0.45176 (17)0.0594 (10)
H30.6526220.4473280.4916150.071*
C40.8086 (4)0.4998 (2)0.44234 (18)0.0562 (9)
H40.8495420.5529890.4747360.067*
C50.8485 (3)0.4672 (2)0.37718 (18)0.0434 (7)
H50.9210730.4940870.3579780.052*
C60.6494 (3)0.64418 (18)0.35067 (14)0.0305 (6)
C70.4569 (3)0.51955 (16)0.34757 (15)0.0317 (6)
C110.7375 (2)0.52175 (15)0.17777 (13)0.0215 (5)
H110.7940580.4663880.2069060.026*
C120.7254 (3)0.50009 (19)0.09250 (15)0.0303 (6)
H12A0.6795220.5558460.0601630.036*
H12B0.6667790.4411170.0760370.036*
C130.8715 (3)0.48330 (19)0.08095 (16)0.0344 (6)
H13A0.9147140.4250930.1109700.041*
H13B0.8625720.4701660.0255510.041*
C140.9659 (3)0.57159 (19)0.10685 (16)0.0341 (6)
H14A1.0609910.5569630.1016660.041*
H14B0.9282770.6280840.0730250.041*
C150.9755 (3)0.5979 (2)0.19010 (16)0.0377 (6)
H15A1.0310460.6586950.2041320.045*
H15B1.0246340.5448890.2245890.045*
C160.8300 (3)0.61277 (18)0.20199 (16)0.0327 (6)
H16A0.7843720.6697190.1711020.039*
H16B0.8392020.6271960.2572280.039*
C210.4646 (2)0.42878 (15)0.15426 (13)0.0205 (5)
H210.4509250.4459700.0985130.025*
C220.5318 (2)0.32681 (16)0.16678 (15)0.0286 (5)
H22A0.6262160.3295030.1579290.034*
H22B0.5427850.3059900.2209690.034*
C230.4416 (3)0.25222 (17)0.11176 (16)0.0343 (6)
H23A0.4355950.2708860.0576300.041*
H23B0.4863720.1869260.1214290.041*
C240.2948 (3)0.24676 (17)0.12253 (16)0.0337 (6)
H24A0.2997530.2192880.1742720.040*
H24B0.2365690.2023440.0831070.040*
C250.2266 (3)0.34721 (18)0.11517 (17)0.0373 (6)
H25A0.1358370.3422550.1282880.045*
H25B0.2070240.3695680.0607910.045*
C260.3192 (2)0.42289 (16)0.16810 (16)0.0302 (6)
H26A0.2735180.4879230.1586130.036*
H26B0.3288610.4050770.2228010.036*
C310.4871 (2)0.64279 (15)0.17097 (13)0.0207 (5)
H310.5627280.6935370.1819970.025*
C320.4260 (3)0.64327 (16)0.08268 (14)0.0268 (5)
H32A0.4983170.6201440.0579620.032*
H32B0.3456830.5973520.0683370.032*
C330.3769 (3)0.74529 (17)0.05231 (15)0.0321 (6)
H33A0.4585020.7901520.0628310.038*
H33B0.3356900.7423250.0044450.038*
C340.2687 (3)0.7848 (2)0.09036 (17)0.0398 (7)
H34A0.1826340.7443130.0749220.048*
H34B0.2436000.8526640.0725620.048*
C350.3257 (3)0.78358 (19)0.17777 (16)0.0394 (7)
H35A0.2515390.8059620.2014550.047*
H35B0.4053040.8299020.1932980.047*
C360.3750 (2)0.68134 (16)0.20837 (14)0.0263 (5)
H36A0.2939750.6359740.1968460.032*
H36B0.4144420.6840820.2652750.032*
O10.6626 (2)0.72846 (13)0.35804 (11)0.0437 (5)
O20.3426 (2)0.51997 (13)0.35504 (13)0.0448 (5)
P10.57562 (6)0.52605 (4)0.21266 (3)0.01882 (14)
Mn10.63267 (4)0.51576 (2)0.34357 (2)0.02641 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0460 (16)0.0260 (12)0.0338 (15)0.0114 (12)0.0036 (12)0.0026 (11)
C20.066 (2)0.0351 (15)0.0414 (18)0.0156 (14)0.0185 (15)0.0168 (13)
C30.103 (3)0.0538 (19)0.0231 (16)0.0384 (19)0.0208 (17)0.0161 (14)
C40.076 (2)0.0472 (17)0.0297 (17)0.0177 (17)0.0130 (16)0.0045 (14)
C50.0402 (17)0.0390 (15)0.0408 (18)0.0118 (13)0.0065 (13)0.0013 (13)
C60.0361 (15)0.0320 (13)0.0227 (13)0.0012 (11)0.0067 (11)0.0012 (10)
C70.0516 (17)0.0206 (11)0.0263 (14)0.0013 (11)0.0163 (12)0.0008 (10)
C110.0200 (11)0.0207 (10)0.0239 (13)0.0013 (9)0.0062 (9)0.0006 (9)
C120.0232 (12)0.0434 (14)0.0260 (14)0.0061 (11)0.0099 (10)0.0094 (11)
C130.0319 (14)0.0415 (14)0.0344 (15)0.0018 (11)0.0168 (12)0.0112 (12)
C140.0242 (13)0.0422 (15)0.0382 (16)0.0023 (11)0.0124 (11)0.0053 (12)
C150.0242 (13)0.0477 (16)0.0405 (17)0.0096 (12)0.0078 (11)0.0134 (13)
C160.0306 (14)0.0341 (13)0.0351 (15)0.0063 (11)0.0122 (11)0.0130 (11)
C210.0243 (12)0.0185 (10)0.0193 (12)0.0010 (9)0.0072 (9)0.0009 (9)
C220.0295 (13)0.0192 (11)0.0367 (15)0.0018 (10)0.0082 (11)0.0040 (10)
C230.0439 (16)0.0223 (11)0.0377 (16)0.0026 (11)0.0126 (13)0.0088 (11)
C240.0384 (15)0.0245 (12)0.0369 (15)0.0092 (11)0.0081 (12)0.0043 (11)
C250.0271 (14)0.0349 (14)0.0473 (18)0.0060 (11)0.0056 (12)0.0003 (12)
C260.0267 (13)0.0228 (11)0.0436 (16)0.0028 (10)0.0137 (11)0.0035 (11)
C310.0237 (12)0.0162 (10)0.0230 (12)0.0004 (9)0.0079 (9)0.0017 (8)
C320.0311 (13)0.0254 (11)0.0232 (13)0.0085 (10)0.0065 (10)0.0008 (9)
C330.0415 (16)0.0291 (12)0.0251 (14)0.0077 (11)0.0081 (11)0.0073 (10)
C340.0463 (17)0.0341 (13)0.0416 (17)0.0188 (12)0.0165 (13)0.0144 (12)
C350.0518 (17)0.0325 (13)0.0398 (17)0.0216 (13)0.0224 (14)0.0064 (12)
C360.0300 (13)0.0242 (11)0.0286 (13)0.0064 (10)0.0144 (11)0.0024 (10)
O10.0549 (13)0.0270 (10)0.0456 (13)0.0067 (9)0.0075 (10)0.0080 (8)
O20.0512 (13)0.0401 (11)0.0554 (14)0.0004 (9)0.0353 (11)0.0000 (9)
P10.0208 (3)0.0172 (3)0.0187 (3)0.0012 (2)0.0059 (2)0.0011 (2)
Mn10.0369 (2)0.02214 (19)0.0193 (2)0.00448 (15)0.00604 (16)0.00038 (14)
Geometric parameters (Å, º) top
C1—C21.407 (4)C21—C261.527 (3)
C1—C51.414 (4)C21—C221.533 (3)
C1—Mn12.162 (2)C21—P11.856 (2)
C1—H10.9500C21—H211.0000
C2—C31.431 (4)C22—C231.527 (3)
C2—Mn12.151 (3)C22—H22A0.9900
C2—H20.9500C22—H22B0.9900
C3—C41.396 (5)C23—C241.517 (4)
C3—Mn12.132 (3)C23—H23A0.9900
C3—H30.9500C23—H23B0.9900
C4—C51.403 (5)C24—C251.519 (3)
C4—Mn12.133 (3)C24—H24A0.9900
C4—H40.9500C24—H24B0.9900
C5—Mn12.160 (3)C25—C261.529 (3)
C5—H50.9500C25—H25A0.9900
C6—O11.162 (3)C25—H25B0.9900
C6—Mn11.763 (3)C26—H26A0.9900
C7—O21.174 (3)C26—H26B0.9900
C7—Mn11.761 (3)C31—C321.535 (3)
C11—C121.531 (3)C31—C361.535 (3)
C11—C161.535 (3)C31—P11.875 (2)
C11—P11.871 (2)C31—H311.0000
C11—H111.0000C32—C331.527 (3)
C12—C131.532 (3)C32—H32A0.9900
C12—H12A0.9900C32—H32B0.9900
C12—H12B0.9900C33—C341.516 (4)
C13—C141.519 (3)C33—H33A0.9900
C13—H13A0.9900C33—H33B0.9900
C13—H13B0.9900C34—C351.516 (4)
C14—C151.514 (4)C34—H34A0.9900
C14—H14A0.9900C34—H34B0.9900
C14—H14B0.9900C35—C361.531 (3)
C15—C161.525 (3)C35—H35A0.9900
C15—H15A0.9900C35—H35B0.9900
C15—H15B0.9900C36—H36A0.9900
C16—H16A0.9900C36—H36B0.9900
C16—H16B0.9900P1—Mn12.2661 (7)
C2—C1—C5108.5 (3)C23—C24—H24A109.4
C2—C1—Mn170.55 (15)C25—C24—H24A109.4
C5—C1—Mn170.82 (15)C23—C24—H24B109.4
C2—C1—H1125.8C25—C24—H24B109.4
C5—C1—H1125.8H24A—C24—H24B108.0
Mn1—C1—H1124.5C24—C25—C26112.3 (2)
C1—C2—C3107.1 (3)C24—C25—H25A109.2
C1—C2—Mn171.38 (15)C26—C25—H25A109.2
C3—C2—Mn169.76 (15)C24—C25—H25B109.2
C1—C2—H2126.4C26—C25—H25B109.2
C3—C2—H2126.4H25A—C25—H25B107.9
Mn1—C2—H2124.1C21—C26—C25111.5 (2)
C4—C3—C2107.9 (3)C21—C26—H26A109.3
C4—C3—Mn170.93 (17)C25—C26—H26A109.3
C2—C3—Mn171.22 (16)C21—C26—H26B109.3
C4—C3—H3126.0C25—C26—H26B109.3
C2—C3—H3126.0H26A—C26—H26B108.0
Mn1—C3—H3123.5C32—C31—C36108.66 (18)
C3—C4—C5108.8 (3)C32—C31—P1115.25 (15)
C3—C4—Mn170.86 (18)C36—C31—P1115.59 (15)
C5—C4—Mn171.98 (16)C32—C31—H31105.4
C3—C4—H4125.6C36—C31—H31105.4
C5—C4—H4125.6P1—C31—H31105.4
Mn1—C4—H4123.2C33—C32—C31111.76 (19)
C4—C5—C1107.6 (3)C33—C32—H32A109.3
C4—C5—Mn169.87 (18)C31—C32—H32A109.3
C1—C5—Mn170.98 (15)C33—C32—H32B109.3
C4—C5—H5126.2C31—C32—H32B109.3
C1—C5—H5126.2H32A—C32—H32B107.9
Mn1—C5—H5124.6C34—C33—C32111.1 (2)
O1—C6—Mn1177.7 (2)C34—C33—H33A109.4
O2—C7—Mn1175.7 (2)C32—C33—H33A109.4
C12—C11—C16108.59 (19)C34—C33—H33B109.4
C12—C11—P1119.85 (16)C32—C33—H33B109.4
C16—C11—P1112.24 (15)H33A—C33—H33B108.0
C12—C11—H11104.9C33—C34—C35110.6 (2)
C16—C11—H11104.9C33—C34—H34A109.5
P1—C11—H11104.9C35—C34—H34A109.5
C11—C12—C13110.0 (2)C33—C34—H34B109.5
C11—C12—H12A109.7C35—C34—H34B109.5
C13—C12—H12A109.7H34A—C34—H34B108.1
C11—C12—H12B109.7C34—C35—C36112.0 (2)
C13—C12—H12B109.7C34—C35—H35A109.2
H12A—C12—H12B108.2C36—C35—H35A109.2
C14—C13—C12111.4 (2)C34—C35—H35B109.2
C14—C13—H13A109.4C36—C35—H35B109.2
C12—C13—H13A109.4H35A—C35—H35B107.9
C14—C13—H13B109.4C35—C36—C31110.73 (19)
C12—C13—H13B109.4C35—C36—H36A109.5
H13A—C13—H13B108.0C31—C36—H36A109.5
C15—C14—C13111.1 (2)C35—C36—H36B109.5
C15—C14—H14A109.4C31—C36—H36B109.5
C13—C14—H14A109.4H36A—C36—H36B108.1
C15—C14—H14B109.4C21—P1—C11102.59 (10)
C13—C14—H14B109.4C21—P1—C31104.00 (10)
H14A—C14—H14B108.0C11—P1—C31104.08 (10)
C14—C15—C16111.1 (2)C21—P1—Mn1118.96 (7)
C14—C15—H15A109.4C11—P1—Mn1110.40 (8)
C16—C15—H15A109.4C31—P1—Mn1115.14 (7)
C14—C15—H15B109.4C7—Mn1—C692.44 (11)
C16—C15—H15B109.4C7—Mn1—C392.30 (14)
H15A—C15—H15B108.0C6—Mn1—C3114.18 (12)
C15—C16—C11111.44 (19)C7—Mn1—C4124.22 (14)
C15—C16—H16A109.3C6—Mn1—C490.11 (12)
C11—C16—H16A109.3C3—Mn1—C438.21 (14)
C15—C16—H16B109.3C7—Mn1—C293.89 (12)
C11—C16—H16B109.3C6—Mn1—C2152.66 (12)
H16A—C16—H16B108.0C3—Mn1—C239.03 (12)
C26—C21—C22108.56 (18)C4—Mn1—C264.49 (13)
C26—C21—P1112.69 (15)C7—Mn1—C5155.56 (12)
C22—C21—P1113.60 (15)C6—Mn1—C5102.61 (11)
C26—C21—H21107.2C3—Mn1—C564.06 (13)
C22—C21—H21107.2C4—Mn1—C538.15 (12)
P1—C21—H21107.2C2—Mn1—C564.15 (12)
C23—C22—C21110.90 (19)C7—Mn1—C1127.35 (11)
C23—C22—H22A109.5C6—Mn1—C1139.72 (11)
C21—C22—H22A109.5C3—Mn1—C164.22 (11)
C23—C22—H22B109.5C4—Mn1—C163.95 (11)
C21—C22—H22B109.5C2—Mn1—C138.06 (11)
H22A—C22—H22B108.0C5—Mn1—C138.20 (10)
C24—C23—C22111.3 (2)C7—Mn1—P193.91 (9)
C24—C23—H23A109.4C6—Mn1—P190.31 (8)
C22—C23—H23A109.4C3—Mn1—P1154.43 (9)
C24—C23—H23B109.4C4—Mn1—P1141.81 (11)
C22—C23—H23B109.4C2—Mn1—P1115.70 (9)
H23A—C23—H23B108.0C5—Mn1—P1105.01 (9)
C23—C24—C25111.3 (2)C1—Mn1—P192.62 (8)
C5—C1—C2—C30.0 (3)P1—C21—C26—C25175.99 (17)
Mn1—C1—C2—C360.94 (18)C24—C25—C26—C2155.0 (3)
C5—C1—C2—Mn160.96 (18)C36—C31—C32—C3357.5 (3)
C1—C2—C3—C40.2 (3)P1—C31—C32—C33170.96 (16)
Mn1—C2—C3—C461.8 (2)C31—C32—C33—C3457.4 (3)
C1—C2—C3—Mn161.99 (19)C32—C33—C34—C3555.2 (3)
C2—C3—C4—C50.4 (3)C33—C34—C35—C3655.6 (3)
Mn1—C3—C4—C562.3 (2)C34—C35—C36—C3157.2 (3)
C2—C3—C4—Mn162.0 (2)C32—C31—C36—C3556.8 (3)
C3—C4—C5—C10.4 (3)P1—C31—C36—C35171.86 (18)
Mn1—C4—C5—C161.26 (18)C26—C21—P1—C11175.69 (16)
C3—C4—C5—Mn161.6 (2)C22—C21—P1—C1160.32 (18)
C2—C1—C5—C40.2 (3)C26—C21—P1—C3167.48 (18)
Mn1—C1—C5—C460.55 (19)C22—C21—P1—C31168.53 (16)
C2—C1—C5—Mn160.79 (19)C26—C21—P1—Mn162.19 (18)
C16—C11—C12—C1358.8 (3)C22—C21—P1—Mn161.81 (18)
P1—C11—C12—C13170.43 (16)C12—C11—P1—C2136.0 (2)
C11—C12—C13—C1458.3 (3)C16—C11—P1—C21165.13 (17)
C12—C13—C14—C1555.7 (3)C12—C11—P1—C3172.20 (19)
C13—C14—C15—C1654.4 (3)C16—C11—P1—C3156.99 (19)
C14—C15—C16—C1156.7 (3)C12—C11—P1—Mn1163.71 (16)
C12—C11—C16—C1558.5 (3)C16—C11—P1—Mn167.11 (18)
P1—C11—C16—C15166.64 (18)C32—C31—P1—C2138.13 (19)
C26—C21—C22—C2359.1 (3)C36—C31—P1—C2190.05 (18)
P1—C21—C22—C23174.73 (17)C32—C31—P1—C1168.97 (18)
C21—C22—C23—C2458.3 (3)C36—C31—P1—C11162.85 (17)
C22—C23—C24—C2554.1 (3)C32—C31—P1—Mn1170.06 (14)
C23—C24—C25—C2652.5 (3)C36—C31—P1—Mn141.88 (19)
C22—C21—C26—C2557.3 (3)
Dicarbonyl(η5-1-chlorocyclopentadienyl)(tricyclohexylphosphane-κP)manganese(I) (compd2b) top
Crystal data top
[Mn(C5H4Cl)(C18H33P)(CO)2]F(000) = 1040
Mr = 490.90Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6649 (3) ÅCell parameters from 9847 reflections
b = 13.9301 (4) Åθ = 2.7–26.4°
c = 17.9790 (6) ŵ = 0.76 mm1
β = 103.835 (1)°T = 100 K
V = 2350.34 (13) Å3Block, brown
Z = 40.10 × 0.08 × 0.06 mm
Data collection top
Bruker D8 Venture
diffractometer
4809 independent reflections
Radiation source: rotating anode generator, Bruker TXS4098 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.039
mix of ω and phi scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.704, Tmax = 0.745k = 1717
31339 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0612P)2 + 8.9831P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4809 reflectionsΔρmax = 0.73 e Å3
271 parametersΔρmin = 1.63 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4427 (4)0.4285 (3)0.1227 (2)0.0347 (10)
C20.5217 (5)0.4090 (3)0.0659 (2)0.0397 (9)
H20.4963150.3638580.0253620.048*
C30.6412 (5)0.4675 (3)0.0807 (2)0.0382 (8)
H30.7117600.4697120.0518460.046*
C40.6397 (4)0.5235 (3)0.1462 (2)0.0281 (8)
H40.7089040.5699820.1688190.034*
C50.5169 (4)0.4983 (2)0.17256 (19)0.0203 (7)
H50.4901980.5241160.2160140.024*
C60.6116 (3)0.2484 (3)0.16310 (19)0.0204 (7)
C70.8340 (4)0.3572 (2)0.17413 (17)0.0180 (7)
C110.5323 (3)0.3609 (2)0.34076 (18)0.0146 (6)
H110.4840020.4225680.3211980.017*
C120.4269 (3)0.2816 (2)0.3053 (2)0.0221 (7)
H12A0.4155540.2806870.2491120.026*
H12B0.4650640.2184810.3258550.026*
C130.2816 (3)0.2981 (3)0.3232 (2)0.0242 (7)
H13A0.2392810.3580410.2981580.029*
H13B0.2170970.2443800.3020910.029*
C140.2946 (4)0.3053 (3)0.4090 (2)0.0266 (8)
H14A0.3246820.2423940.4330900.032*
H14B0.2003690.3211330.4182920.032*
C150.4022 (4)0.3818 (3)0.4457 (2)0.0264 (8)
H15A0.4130570.3814360.5018830.032*
H15B0.3667480.4458490.4261380.032*
C160.5475 (3)0.3631 (3)0.42776 (19)0.0208 (7)
H16A0.6152420.4142250.4509460.025*
H16B0.5859770.3009180.4503050.025*
C210.8095 (3)0.4529 (2)0.36170 (17)0.0133 (6)
H210.8310920.4325930.4166200.016*
C220.7340 (4)0.5510 (2)0.3559 (2)0.0188 (7)
H22A0.7085570.5721880.3017800.023*
H22B0.6449210.5446780.3735000.023*
C230.8299 (4)0.6264 (2)0.4046 (2)0.0220 (7)
H23A0.8495130.6076590.4592570.026*
H23B0.7802000.6890860.3988420.026*
C240.9707 (4)0.6363 (2)0.3805 (2)0.0224 (7)
H24A0.9517480.6605520.3272610.027*
H24B1.0323960.6834680.4141550.027*
C251.0473 (4)0.5402 (2)0.38564 (19)0.0201 (7)
H25A1.0763870.5198240.4398970.024*
H25B1.1344760.5474450.3663670.024*
C260.9518 (3)0.4633 (2)0.33897 (18)0.0159 (6)
H26A1.0024580.4009160.3464220.019*
H26B0.9331070.4798510.2839200.019*
C310.7847 (3)0.2428 (2)0.34542 (17)0.0126 (6)
H310.7055520.1952820.3408110.015*
C320.8604 (3)0.2453 (2)0.43095 (18)0.0164 (6)
H32A0.9466980.2859180.4385020.020*
H32B0.7962600.2739970.4603220.020*
C330.9028 (4)0.1436 (2)0.46096 (19)0.0200 (7)
H33A0.9512080.1468330.5160530.024*
H33B0.8160290.1039150.4556180.024*
C341.0016 (4)0.0967 (2)0.41725 (19)0.0217 (7)
H34A1.0209500.0295480.4348040.026*
H34B1.0934840.1315670.4277790.026*
C350.9343 (4)0.0978 (2)0.33147 (19)0.0209 (7)
H35A0.8502440.0548640.3204880.025*
H35B1.0037140.0723870.3038790.025*
C360.8882 (3)0.1984 (2)0.30160 (18)0.0159 (6)
H36A0.8410220.1949220.2463540.019*
H36B0.9732630.2399760.3076120.019*
Cl10.27801 (13)0.38736 (9)0.11798 (9)0.0547 (4)
O10.5821 (3)0.16805 (19)0.15191 (16)0.0316 (6)
O20.9512 (3)0.35257 (17)0.16860 (14)0.0212 (5)
P10.69764 (8)0.35770 (5)0.30450 (4)0.01128 (18)
Mn10.65220 (5)0.37253 (3)0.17494 (3)0.01568 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0245 (19)0.0275 (19)0.040 (2)0.0105 (15)0.0170 (16)0.0051 (17)
C20.057 (2)0.034 (2)0.0168 (17)0.0264 (14)0.0120 (17)0.0049 (16)
C30.058 (2)0.038 (2)0.0208 (18)0.0255 (14)0.0121 (17)0.0155 (16)
C40.037 (2)0.0183 (17)0.0291 (19)0.0112 (15)0.0082 (16)0.0112 (15)
C50.0205 (16)0.0167 (15)0.0205 (16)0.0073 (13)0.0012 (13)0.0000 (13)
C60.0134 (14)0.0270 (18)0.0186 (16)0.0023 (13)0.0002 (12)0.0020 (13)
C70.0343 (19)0.0100 (14)0.0086 (14)0.0008 (13)0.0032 (13)0.0005 (11)
C110.0105 (13)0.0137 (14)0.0198 (15)0.0001 (11)0.0040 (12)0.0004 (12)
C120.0129 (15)0.0221 (16)0.0317 (18)0.0018 (13)0.0064 (13)0.0060 (14)
C130.0111 (15)0.0299 (18)0.0317 (19)0.0010 (13)0.0054 (13)0.0031 (15)
C140.0137 (15)0.035 (2)0.0327 (19)0.0010 (14)0.0083 (14)0.0069 (16)
C150.0183 (16)0.041 (2)0.0218 (17)0.0023 (15)0.0091 (14)0.0005 (15)
C160.0130 (15)0.0315 (18)0.0192 (16)0.0019 (13)0.0061 (12)0.0003 (14)
C210.0143 (14)0.0131 (14)0.0128 (14)0.0004 (11)0.0038 (11)0.0002 (11)
C220.0199 (16)0.0125 (14)0.0241 (16)0.0027 (12)0.0053 (13)0.0019 (12)
C230.0285 (18)0.0133 (15)0.0240 (17)0.0004 (13)0.0060 (14)0.0023 (13)
C240.0304 (18)0.0175 (16)0.0178 (16)0.0084 (14)0.0031 (14)0.0008 (13)
C250.0201 (16)0.0209 (16)0.0178 (15)0.0051 (13)0.0014 (13)0.0003 (13)
C260.0160 (15)0.0149 (14)0.0169 (15)0.0027 (12)0.0045 (12)0.0019 (12)
C310.0135 (14)0.0116 (13)0.0131 (14)0.0001 (11)0.0038 (11)0.0007 (11)
C320.0183 (15)0.0167 (15)0.0140 (14)0.0029 (12)0.0037 (12)0.0008 (12)
C330.0258 (17)0.0193 (16)0.0159 (15)0.0048 (13)0.0073 (13)0.0046 (12)
C340.0266 (17)0.0173 (15)0.0216 (16)0.0085 (13)0.0069 (14)0.0074 (13)
C350.0292 (18)0.0164 (15)0.0187 (16)0.0073 (13)0.0090 (14)0.0015 (13)
C360.0188 (15)0.0155 (14)0.0148 (14)0.0034 (12)0.0071 (12)0.0017 (12)
Cl10.0345 (6)0.0374 (6)0.0816 (9)0.0003 (5)0.0068 (6)0.0004 (6)
O10.0318 (14)0.0226 (13)0.0388 (16)0.0093 (11)0.0054 (12)0.0096 (12)
O20.0237 (13)0.0207 (12)0.0224 (12)0.0003 (9)0.0122 (10)0.0002 (9)
P10.0105 (4)0.0113 (4)0.0119 (4)0.0012 (3)0.0025 (3)0.0002 (3)
Mn10.0188 (3)0.0151 (3)0.0113 (2)0.00472 (18)0.00016 (18)0.00018 (17)
Geometric parameters (Å, º) top
C1—C51.399 (5)C21—C261.533 (4)
C1—C21.439 (6)C21—C221.541 (4)
C1—Cl11.674 (4)C21—P11.858 (3)
C1—Mn12.164 (4)C21—H211.0000
C2—C31.387 (7)C22—C231.530 (5)
C2—Mn12.123 (4)C22—H22A0.9900
C2—H20.9500C22—H22B0.9900
C3—C41.416 (6)C23—C241.530 (5)
C3—Mn12.133 (4)C23—H23A0.9900
C3—H30.9500C23—H23B0.9900
C4—C51.423 (5)C24—C251.522 (5)
C4—Mn12.162 (4)C24—H24A0.9900
C4—H40.9500C24—H24B0.9900
C5—Mn12.180 (3)C25—C261.528 (4)
C5—H50.9500C25—H25A0.9900
C6—O11.160 (4)C25—H25B0.9900
C6—Mn11.775 (4)C26—H26A0.9900
C7—O21.162 (4)C26—H26B0.9900
C7—Mn11.774 (4)C31—C321.537 (4)
C11—C121.535 (4)C31—C361.542 (4)
C11—C161.536 (4)C31—P11.875 (3)
C11—P11.865 (3)C31—H311.0000
C11—H111.0000C32—C331.536 (4)
C12—C131.531 (4)C32—H32A0.9900
C12—H12A0.9900C32—H32B0.9900
C12—H12B0.9900C33—C341.522 (5)
C13—C141.519 (5)C33—H33A0.9900
C13—H13A0.9900C33—H33B0.9900
C13—H13B0.9900C34—C351.524 (5)
C14—C151.524 (5)C34—H34A0.9900
C14—H14A0.9900C34—H34B0.9900
C14—H14B0.9900C35—C361.529 (4)
C15—C161.537 (4)C35—H35A0.9900
C15—H15A0.9900C35—H35B0.9900
C15—H15B0.9900C36—H36A0.9900
C16—H16A0.9900C36—H36B0.9900
C16—H16B0.9900P1—Mn12.2743 (9)
C5—C1—C2107.9 (4)C25—C24—H24A109.5
C5—C1—Cl1127.3 (3)C23—C24—H24A109.5
C2—C1—Cl1124.0 (3)C25—C24—H24B109.5
C5—C1—Mn171.9 (2)C23—C24—H24B109.5
C2—C1—Mn168.9 (2)H24A—C24—H24B108.1
Cl1—C1—Mn1132.7 (2)C24—C25—C26111.3 (3)
C3—C2—C1108.3 (3)C24—C25—H25A109.4
C3—C2—Mn171.4 (2)C26—C25—H25A109.4
C1—C2—Mn171.9 (2)C24—C25—H25B109.4
C3—C2—H2125.9C26—C25—H25B109.4
C1—C2—H2125.9H25A—C25—H25B108.0
Mn1—C2—H2122.5C25—C26—C21112.5 (3)
C2—C3—C4107.9 (4)C25—C26—H26A109.1
C2—C3—Mn170.6 (2)C21—C26—H26A109.1
C4—C3—Mn171.8 (2)C25—C26—H26B109.1
C2—C3—H3126.0C21—C26—H26B109.1
C4—C3—H3126.0H26A—C26—H26B107.8
Mn1—C3—H3123.2C32—C31—C36108.0 (2)
C3—C4—C5108.5 (4)C32—C31—P1115.8 (2)
C3—C4—Mn169.7 (2)C36—C31—P1115.3 (2)
C5—C4—Mn171.6 (2)C32—C31—H31105.6
C3—C4—H4125.8C36—C31—H31105.6
C5—C4—H4125.8P1—C31—H31105.6
Mn1—C4—H4124.6C33—C32—C31110.7 (3)
C1—C5—C4107.4 (3)C33—C32—H32A109.5
C1—C5—Mn170.6 (2)C31—C32—H32A109.5
C4—C5—Mn170.15 (19)C33—C32—H32B109.5
C1—C5—H5126.3C31—C32—H32B109.5
C4—C5—H5126.3H32A—C32—H32B108.1
Mn1—C5—H5124.6C34—C33—C32111.3 (3)
O1—C6—Mn1176.9 (3)C34—C33—H33A109.4
O2—C7—Mn1174.3 (3)C32—C33—H33A109.4
C12—C11—C16109.2 (3)C34—C33—H33B109.4
C12—C11—P1112.1 (2)C32—C33—H33B109.4
C16—C11—P1118.4 (2)H33A—C33—H33B108.0
C12—C11—H11105.3C33—C34—C35110.5 (3)
C16—C11—H11105.3C33—C34—H34A109.6
P1—C11—H11105.3C35—C34—H34A109.6
C13—C12—C11110.8 (3)C33—C34—H34B109.6
C13—C12—H12A109.5C35—C34—H34B109.6
C11—C12—H12A109.5H34A—C34—H34B108.1
C13—C12—H12B109.5C34—C35—C36112.5 (3)
C11—C12—H12B109.5C34—C35—H35A109.1
H12A—C12—H12B108.1C36—C35—H35A109.1
C14—C13—C12111.5 (3)C34—C35—H35B109.1
C14—C13—H13A109.3C36—C35—H35B109.1
C12—C13—H13A109.3H35A—C35—H35B107.8
C14—C13—H13B109.3C35—C36—C31111.0 (2)
C12—C13—H13B109.3C35—C36—H36A109.4
H13A—C13—H13B108.0C31—C36—H36A109.4
C13—C14—C15111.6 (3)C35—C36—H36B109.4
C13—C14—H14A109.3C31—C36—H36B109.4
C15—C14—H14A109.3H36A—C36—H36B108.0
C13—C14—H14B109.3C21—P1—C11102.88 (14)
C15—C14—H14B109.3C21—P1—C31104.18 (13)
H14A—C14—H14B108.0C11—P1—C31103.02 (14)
C14—C15—C16110.7 (3)C21—P1—Mn1116.51 (10)
C14—C15—H15A109.5C11—P1—Mn1112.59 (10)
C16—C15—H15A109.5C31—P1—Mn1115.98 (10)
C14—C15—H15B109.5C7—Mn1—C694.18 (14)
C16—C15—H15B109.5C7—Mn1—C2113.10 (17)
H15A—C15—H15B108.1C6—Mn1—C293.27 (16)
C11—C16—C15110.3 (3)C7—Mn1—C385.94 (16)
C11—C16—H16A109.6C6—Mn1—C3122.80 (17)
C15—C16—H16A109.6C2—Mn1—C338.04 (19)
C11—C16—H16B109.6C7—Mn1—C496.56 (15)
C15—C16—H16B109.6C6—Mn1—C4157.08 (15)
H16A—C16—H16B108.1C2—Mn1—C463.88 (16)
C26—C21—C22109.8 (2)C3—Mn1—C438.50 (15)
C26—C21—P1111.1 (2)C7—Mn1—C1150.01 (16)
C22—C21—P1113.1 (2)C6—Mn1—C198.13 (15)
C26—C21—H21107.5C2—Mn1—C139.20 (17)
C22—C21—H21107.5C3—Mn1—C164.41 (18)
P1—C21—H21107.5C4—Mn1—C163.44 (16)
C23—C22—C21111.0 (3)C7—Mn1—C5133.42 (14)
C23—C22—H22A109.4C6—Mn1—C5131.76 (14)
C21—C22—H22A109.4C2—Mn1—C564.43 (14)
C23—C22—H22B109.4C3—Mn1—C564.56 (14)
C21—C22—H22B109.4C4—Mn1—C538.25 (14)
H22A—C22—H22B108.0C1—Mn1—C537.58 (14)
C22—C23—C24111.0 (3)C7—Mn1—P192.77 (10)
C22—C23—H23A109.4C6—Mn1—P190.99 (11)
C24—C23—H23A109.4C2—Mn1—P1153.34 (13)
C22—C23—H23B109.4C3—Mn1—P1146.20 (13)
C24—C23—H23B109.4C4—Mn1—P1108.60 (11)
H23A—C23—H23B108.0C1—Mn1—P1114.14 (13)
C25—C24—C23110.9 (3)C5—Mn1—P193.50 (9)
C5—C1—C2—C30.9 (4)C23—C24—C25—C2655.1 (4)
Cl1—C1—C2—C3169.4 (3)C24—C25—C26—C2155.0 (4)
Mn1—C1—C2—C362.5 (3)C22—C21—C26—C2554.8 (3)
C5—C1—C2—Mn161.6 (3)P1—C21—C26—C25179.3 (2)
Cl1—C1—C2—Mn1128.1 (3)C36—C31—C32—C3359.6 (3)
C1—C2—C3—C40.3 (4)P1—C31—C32—C33169.5 (2)
Mn1—C2—C3—C462.5 (3)C31—C32—C33—C3459.1 (4)
C1—C2—C3—Mn162.9 (3)C32—C33—C34—C3554.6 (4)
C2—C3—C4—C50.4 (4)C33—C34—C35—C3653.7 (4)
Mn1—C3—C4—C561.4 (2)C34—C35—C36—C3156.3 (4)
C2—C3—C4—Mn161.7 (3)C32—C31—C36—C3558.0 (3)
C2—C1—C5—C41.1 (4)P1—C31—C36—C35170.8 (2)
Cl1—C1—C5—C4168.8 (3)C26—C21—P1—C11178.9 (2)
Mn1—C1—C5—C460.8 (2)C22—C21—P1—C1154.8 (2)
C2—C1—C5—Mn159.7 (2)C26—C21—P1—C3173.9 (2)
Cl1—C1—C5—Mn1130.4 (4)C22—C21—P1—C31162.1 (2)
C3—C4—C5—C10.9 (4)C26—C21—P1—Mn155.2 (2)
Mn1—C4—C5—C161.1 (2)C22—C21—P1—Mn168.8 (2)
C3—C4—C5—Mn160.2 (2)C12—C11—P1—C21175.6 (2)
C16—C11—C12—C1358.2 (4)C16—C11—P1—C2147.0 (3)
P1—C11—C12—C13168.6 (2)C12—C11—P1—C3167.5 (3)
C11—C12—C13—C1456.1 (4)C16—C11—P1—C3161.1 (3)
C12—C13—C14—C1554.5 (4)C12—C11—P1—Mn158.2 (2)
C13—C14—C15—C1655.2 (4)C16—C11—P1—Mn1173.3 (2)
C12—C11—C16—C1559.1 (4)C32—C31—P1—C2130.7 (2)
P1—C11—C16—C15171.0 (2)C36—C31—P1—C2196.7 (2)
C14—C15—C16—C1157.8 (4)C32—C31—P1—C1176.4 (2)
C26—C21—C22—C2355.9 (3)C36—C31—P1—C11156.2 (2)
P1—C21—C22—C23179.4 (2)C32—C31—P1—Mn1160.11 (19)
C21—C22—C23—C2457.6 (4)C36—C31—P1—Mn132.8 (2)
C22—C23—C24—C2556.8 (4)
Carbonylη5-cyclopentadienyl)[1,2-bis(diphenylphosphanyl)ethane-κ2P,P']manganese(I) (compd3a) top
Crystal data top
[Mn(C5H5)(C26H24P2)(CO)]F(000) = 2272
Mr = 546.43Dx = 1.245 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.0323 (7) ÅCell parameters from 9574 reflections
b = 8.9592 (2) Åθ = 2.4–27.5°
c = 26.4794 (7) ŵ = 0.58 mm1
β = 122.159 (1)°T = 100 K
V = 5830.7 (3) Å3Block, yellow
Z = 80.10 × 0.08 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
6696 independent reflections
Radiation source: rotating anode generator6042 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.032
mix of ω and phi scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3737
Tmin = 0.719, Tmax = 0.746k = 1111
70409 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0346P)2 + 9.225P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6696 reflectionsΔρmax = 0.39 e Å3
325 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.33814 (2)0.43019 (2)0.47115 (2)0.01230 (7)
P10.31992 (2)0.63118 (4)0.41610 (2)0.01282 (8)
P20.36355 (2)0.58721 (4)0.54455 (2)0.01255 (8)
O10.22802 (4)0.43657 (13)0.44923 (5)0.0237 (3)
C1310.34379 (6)0.55223 (17)0.59883 (6)0.0157 (3)
C1160.39068 (6)0.87185 (18)0.43335 (7)0.0205 (3)
H1160.3724060.9254590.4485820.025*
C1150.43362 (7)0.93913 (19)0.43299 (8)0.0264 (4)
H1150.4448671.0369680.4486310.032*
C1010.26537 (6)0.62584 (17)0.33645 (6)0.0150 (3)
C60.27215 (6)0.43543 (16)0.45789 (7)0.0164 (3)
C1110.37384 (6)0.72736 (17)0.41184 (7)0.0165 (3)
C1320.34854 (6)0.66310 (18)0.63857 (7)0.0179 (3)
H1320.3603250.7602850.6361630.021*
C1330.33622 (6)0.63251 (19)0.68146 (7)0.0207 (3)
H1330.3388950.7091740.7076780.025*
C110.29693 (6)0.77466 (17)0.44812 (6)0.0161 (3)
H11A0.2957440.8734600.4307210.019*
H11B0.2598590.7504390.4386060.019*
C1060.26321 (6)0.72580 (19)0.29503 (7)0.0205 (3)
H1060.2902990.8008750.3077220.025*
C1360.32685 (7)0.41047 (18)0.60331 (7)0.0217 (3)
H1360.3230650.3341710.5764330.026*
C40.33120 (6)0.21596 (17)0.43179 (7)0.0192 (3)
H40.2983310.1754880.3996130.023*
C50.36891 (6)0.30449 (17)0.42689 (7)0.0180 (3)
H50.3656970.3338690.3906740.022*
C10.41258 (6)0.34233 (18)0.48540 (7)0.0196 (3)
H10.4434830.4011520.4951810.023*
C120.33665 (6)0.77923 (16)0.51613 (6)0.0160 (3)
H12A0.3176890.8173820.5354230.019*
H12B0.3671840.8475210.5261760.019*
C1040.18145 (7)0.60869 (19)0.21602 (7)0.0220 (3)
H1040.1531220.6027750.1751610.026*
C1340.32004 (7)0.4905 (2)0.68612 (7)0.0251 (3)
H1340.3121670.4690060.7158860.030*
C30.35132 (7)0.19821 (17)0.49375 (7)0.0213 (3)
H30.3341850.1439480.5101560.026*
C1050.22156 (7)0.7168 (2)0.23495 (7)0.0245 (3)
H1050.2207070.7848870.2069700.029*
C1030.18285 (7)0.50961 (19)0.25684 (7)0.0244 (3)
H1030.1552570.4360500.2441310.029*
C20.40130 (7)0.27578 (18)0.52636 (7)0.0218 (3)
H20.4236000.2822690.5685940.026*
C1220.46660 (6)0.68578 (19)0.57420 (7)0.0217 (3)
H1220.4479810.7202930.5341470.026*
C1210.43722 (6)0.61715 (17)0.59556 (6)0.0153 (3)
C1230.52249 (6)0.70481 (19)0.61022 (8)0.0248 (3)
H1230.5416670.7537230.5950210.030*
C1120.40068 (7)0.6535 (2)0.38845 (9)0.0276 (4)
H1120.3897310.5554390.3729730.033*
C1020.22478 (6)0.51768 (18)0.31665 (7)0.0216 (3)
H1020.2257130.4484310.3443500.026*
C1140.45993 (7)0.8644 (2)0.41002 (10)0.0334 (4)
H1140.4892310.9103670.4096510.040*
C1350.31541 (7)0.3800 (2)0.64716 (8)0.0281 (4)
H1350.3043350.2824560.6503190.034*
C1130.44331 (8)0.7215 (2)0.38745 (11)0.0378 (5)
H1130.4610970.6697190.3712250.045*
C1260.46593 (7)0.5615 (2)0.65369 (8)0.0295 (4)
H1260.4469320.5113950.6688470.035*
C1240.55032 (7)0.6525 (2)0.66833 (8)0.0305 (4)
H1240.5884860.6671020.6933670.037*
C1250.52219 (7)0.5787 (3)0.68975 (8)0.0391 (5)
H1250.5413100.5396300.7291500.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01180 (11)0.01177 (11)0.01257 (11)0.00131 (8)0.00597 (9)0.00014 (8)
P10.01144 (16)0.01286 (18)0.01235 (17)0.00118 (13)0.00512 (14)0.00047 (13)
P20.01121 (17)0.01335 (17)0.01236 (17)0.00026 (13)0.00579 (14)0.00057 (13)
O10.0165 (5)0.0270 (6)0.0297 (6)0.0022 (4)0.0136 (5)0.0039 (5)
C1310.0121 (6)0.0202 (7)0.0141 (7)0.0007 (5)0.0064 (5)0.0001 (6)
C1160.0222 (7)0.0176 (7)0.0194 (7)0.0011 (6)0.0094 (6)0.0041 (6)
C1150.0222 (8)0.0192 (8)0.0285 (9)0.0038 (6)0.0071 (7)0.0058 (7)
C1010.0136 (6)0.0162 (7)0.0136 (6)0.0031 (5)0.0062 (5)0.0001 (5)
C60.0197 (7)0.0126 (7)0.0158 (7)0.0003 (5)0.0087 (6)0.0014 (5)
C1110.0126 (6)0.0174 (7)0.0162 (7)0.0016 (5)0.0054 (6)0.0045 (6)
C1320.0149 (7)0.0206 (7)0.0159 (7)0.0020 (6)0.0067 (6)0.0007 (6)
C1330.0159 (7)0.0296 (9)0.0140 (7)0.0055 (6)0.0063 (6)0.0016 (6)
C110.0138 (6)0.0154 (7)0.0166 (7)0.0037 (5)0.0064 (6)0.0003 (5)
C1060.0176 (7)0.0268 (8)0.0166 (7)0.0019 (6)0.0087 (6)0.0005 (6)
C1360.0253 (8)0.0214 (8)0.0199 (8)0.0044 (6)0.0130 (7)0.0029 (6)
C40.0212 (7)0.0138 (7)0.0211 (7)0.0014 (6)0.0103 (6)0.0035 (6)
C50.0207 (7)0.0166 (7)0.0182 (7)0.0045 (6)0.0114 (6)0.0006 (6)
C10.0147 (7)0.0194 (7)0.0231 (8)0.0048 (6)0.0091 (6)0.0014 (6)
C120.0169 (7)0.0136 (7)0.0154 (7)0.0019 (5)0.0073 (6)0.0007 (5)
C1040.0205 (7)0.0261 (8)0.0133 (7)0.0040 (6)0.0049 (6)0.0025 (6)
C1340.0220 (8)0.0381 (10)0.0184 (8)0.0005 (7)0.0129 (7)0.0012 (7)
C30.0306 (8)0.0122 (7)0.0262 (8)0.0055 (6)0.0186 (7)0.0031 (6)
C1050.0234 (8)0.0341 (9)0.0152 (7)0.0003 (7)0.0098 (6)0.0045 (7)
C1030.0225 (8)0.0188 (8)0.0210 (8)0.0023 (6)0.0044 (6)0.0035 (6)
C20.0236 (8)0.0191 (8)0.0179 (7)0.0109 (6)0.0079 (6)0.0029 (6)
C1220.0174 (7)0.0245 (8)0.0204 (7)0.0009 (6)0.0082 (6)0.0072 (6)
C1210.0128 (6)0.0161 (7)0.0151 (7)0.0002 (5)0.0062 (6)0.0021 (5)
C1230.0169 (7)0.0254 (8)0.0306 (9)0.0032 (6)0.0115 (7)0.0030 (7)
C1120.0256 (8)0.0194 (8)0.0443 (10)0.0009 (7)0.0229 (8)0.0022 (7)
C1020.0227 (8)0.0162 (7)0.0186 (7)0.0016 (6)0.0061 (6)0.0014 (6)
C1140.0208 (8)0.0269 (9)0.0529 (12)0.0013 (7)0.0199 (8)0.0089 (8)
C1350.0343 (9)0.0283 (9)0.0253 (8)0.0090 (7)0.0183 (8)0.0001 (7)
C1130.0334 (10)0.0276 (9)0.0685 (14)0.0006 (8)0.0380 (10)0.0011 (9)
C1260.0180 (8)0.0522 (12)0.0187 (8)0.0005 (7)0.0100 (7)0.0069 (8)
C1240.0134 (7)0.0488 (12)0.0223 (8)0.0039 (7)0.0049 (6)0.0058 (8)
C1250.0184 (8)0.0780 (16)0.0159 (8)0.0017 (9)0.0057 (7)0.0067 (9)
Geometric parameters (Å, º) top
Mn1—C61.7549 (15)C4—C31.428 (2)
Mn1—C52.1340 (15)C4—H40.9500
Mn1—C22.1353 (15)C5—C11.425 (2)
Mn1—C12.1363 (15)C5—H50.9500
Mn1—C32.1402 (15)C1—C21.420 (2)
Mn1—C42.1417 (15)C1—H10.9500
Mn1—P22.1849 (4)C12—H12A0.9900
Mn1—P12.1968 (4)C12—H12B0.9900
P1—C1111.8422 (15)C104—C1031.382 (2)
P1—C1011.8449 (15)C104—C1051.387 (2)
P1—C111.8491 (15)C104—H1040.9500
P2—C1311.8362 (15)C134—C1351.384 (3)
P2—C1211.8426 (15)C134—H1340.9500
P2—C121.8735 (15)C3—C21.414 (2)
O1—C61.1753 (19)C3—H30.9500
C131—C1361.390 (2)C105—H1050.9500
C131—C1321.399 (2)C103—C1021.394 (2)
C116—C1151.390 (2)C103—H1030.9500
C116—C1111.394 (2)C2—H20.9500
C116—H1160.9500C122—C1231.387 (2)
C115—C1141.377 (3)C122—C1211.392 (2)
C115—H1150.9500C122—H1220.9500
C101—C1061.391 (2)C121—C1261.395 (2)
C101—C1021.395 (2)C123—C1241.384 (2)
C111—C1121.394 (2)C123—H1230.9500
C132—C1331.387 (2)C112—C1131.392 (2)
C132—H1320.9500C112—H1120.9500
C133—C1341.384 (3)C102—H1020.9500
C133—H1330.9500C114—C1131.386 (3)
C11—C121.538 (2)C114—H1140.9500
C11—H11A0.9900C135—H1350.9500
C11—H11B0.9900C113—H1130.9500
C106—C1051.397 (2)C126—C1251.394 (2)
C106—H1060.9500C126—H1260.9500
C136—C1351.394 (2)C124—C1251.385 (3)
C136—H1360.9500C124—H1240.9500
C4—C51.413 (2)C125—H1250.9500
C6—Mn1—C5129.47 (6)C3—C4—H4126.1
C6—Mn1—C2127.05 (7)Mn1—C4—H4124.6
C5—Mn1—C264.92 (6)C4—C5—C1108.55 (14)
C6—Mn1—C1159.90 (7)C4—C5—Mn171.00 (8)
C5—Mn1—C139.00 (6)C1—C5—Mn170.59 (8)
C2—Mn1—C138.84 (6)C4—C5—H5125.7
C6—Mn1—C395.48 (7)C1—C5—H5125.7
C5—Mn1—C364.93 (6)Mn1—C5—H5124.3
C2—Mn1—C338.63 (6)C2—C1—C5107.28 (14)
C1—Mn1—C365.12 (6)C2—C1—Mn170.54 (9)
C6—Mn1—C496.69 (6)C5—C1—Mn170.41 (8)
C5—Mn1—C438.58 (6)C2—C1—H1126.4
C2—Mn1—C464.95 (6)C5—C1—H1126.4
C1—Mn1—C465.17 (6)Mn1—C1—H1124.3
C3—Mn1—C438.95 (6)C11—C12—P2109.78 (10)
C6—Mn1—P288.66 (5)C11—C12—H12A109.7
C5—Mn1—P2141.86 (4)P2—C12—H12A109.7
C2—Mn1—P292.74 (5)C11—C12—H12B109.7
C1—Mn1—P2104.44 (4)P2—C12—H12B109.7
C3—Mn1—P2116.81 (5)H12A—C12—H12B108.2
C4—Mn1—P2155.45 (4)C103—C104—C105119.74 (15)
C6—Mn1—P189.63 (5)C103—C104—H104120.1
C5—Mn1—P195.25 (4)C105—C104—H104120.1
C2—Mn1—P1143.23 (5)C135—C134—C133119.61 (15)
C1—Mn1—P1106.43 (5)C135—C134—H134120.2
C3—Mn1—P1157.76 (5)C133—C134—H134120.2
C4—Mn1—P1118.99 (4)C2—C3—C4107.82 (14)
P2—Mn1—P184.865 (16)C2—C3—Mn170.50 (9)
C111—P1—C101100.52 (7)C4—C3—Mn170.58 (9)
C111—P1—C11103.23 (7)C2—C3—H3126.1
C101—P1—C11104.03 (6)C4—C3—H3126.1
C111—P1—Mn1120.78 (5)Mn1—C3—H3124.4
C101—P1—Mn1119.63 (5)C104—C105—C106120.22 (15)
C11—P1—Mn1106.49 (5)C104—C105—H105119.9
C131—P2—C121100.10 (7)C106—C105—H105119.9
C131—P2—C12103.53 (7)C104—C103—C102119.97 (15)
C121—P2—C12103.53 (7)C104—C103—H103120.0
C131—P2—Mn1119.22 (5)C102—C103—H103120.0
C121—P2—Mn1117.15 (5)C3—C2—C1108.59 (14)
C12—P2—Mn1111.27 (5)C3—C2—Mn170.87 (9)
C136—C131—C132118.84 (14)C1—C2—Mn170.62 (9)
C136—C131—P2119.67 (12)C3—C2—H2125.7
C132—C131—P2121.38 (12)C1—C2—H2125.7
C115—C116—C111121.39 (16)Mn1—C2—H2124.4
C115—C116—H116119.3C123—C122—C121121.35 (15)
C111—C116—H116119.3C123—C122—H122119.3
C114—C115—C116120.18 (16)C121—C122—H122119.3
C114—C115—H115119.9C122—C121—C126118.06 (14)
C116—C115—H115119.9C122—C121—P2119.30 (11)
C106—C101—C102118.46 (14)C126—C121—P2122.38 (12)
C106—C101—P1122.38 (12)C124—C123—C122119.97 (16)
C102—C101—P1119.16 (11)C124—C123—H123120.0
O1—C6—Mn1178.94 (14)C122—C123—H123120.0
C112—C111—C116117.71 (14)C113—C112—C111120.92 (16)
C112—C111—P1119.97 (12)C113—C112—H112119.5
C116—C111—P1122.28 (12)C111—C112—H112119.5
C133—C132—C131120.67 (15)C103—C102—C101121.02 (15)
C133—C132—H132119.7C103—C102—H102119.5
C131—C132—H132119.7C101—C102—H102119.5
C134—C133—C132120.13 (15)C115—C114—C113119.48 (16)
C134—C133—H133119.9C115—C114—H114120.3
C132—C133—H133119.9C113—C114—H114120.3
C12—C11—P1109.07 (10)C134—C135—C136120.60 (16)
C12—C11—H11A109.9C134—C135—H135119.7
P1—C11—H11A109.9C136—C135—H135119.7
C12—C11—H11B109.9C114—C113—C112120.30 (18)
P1—C11—H11B109.9C114—C113—H113119.9
H11A—C11—H11B108.3C112—C113—H113119.9
C101—C106—C105120.59 (15)C125—C126—C121120.69 (16)
C101—C106—H106119.7C125—C126—H126119.7
C105—C106—H106119.7C121—C126—H126119.7
C131—C136—C135120.14 (15)C123—C124—C125119.62 (16)
C131—C136—H136119.9C123—C124—H124120.2
C135—C136—H136119.9C125—C124—H124120.2
C5—C4—C3107.76 (14)C124—C125—C126120.22 (17)
C5—C4—Mn170.41 (9)C124—C125—H125119.9
C3—C4—Mn170.47 (9)C126—C125—H125119.9
C5—C4—H4126.1
C121—P2—C131—C136111.18 (13)C121—P2—C12—C11134.18 (10)
C12—P2—C131—C136142.13 (13)Mn1—P2—C12—C117.50 (11)
Mn1—P2—C131—C13617.93 (14)C132—C133—C134—C1351.0 (2)
C121—P2—C131—C13264.85 (13)C5—C4—C3—C20.13 (17)
C12—P2—C131—C13241.84 (13)Mn1—C4—C3—C260.97 (11)
Mn1—P2—C131—C132166.05 (10)C5—C4—C3—Mn160.84 (10)
C111—C116—C115—C1141.3 (3)C103—C104—C105—C1060.1 (3)
C111—P1—C101—C10623.06 (14)C101—C106—C105—C1040.7 (3)
C11—P1—C101—C10683.57 (14)C105—C104—C103—C1020.6 (3)
Mn1—P1—C101—C106157.83 (11)C4—C3—C2—C10.19 (17)
C111—P1—C101—C102156.71 (13)Mn1—C3—C2—C160.84 (11)
C11—P1—C101—C10296.66 (13)C4—C3—C2—Mn161.03 (10)
Mn1—P1—C101—C10221.94 (14)C5—C1—C2—C30.17 (17)
C115—C116—C111—C1121.6 (2)Mn1—C1—C2—C361.00 (11)
C115—C116—C111—P1176.08 (12)C5—C1—C2—Mn161.17 (10)
C101—P1—C111—C11271.61 (14)C123—C122—C121—C1262.9 (3)
C11—P1—C111—C112178.88 (13)C123—C122—C121—P2177.15 (13)
Mn1—P1—C111—C11262.48 (14)C131—P2—C121—C122163.15 (13)
C101—P1—C111—C116110.77 (13)C12—P2—C121—C12256.46 (14)
C11—P1—C111—C1163.50 (14)Mn1—P2—C121—C12266.41 (14)
Mn1—P1—C111—C116115.15 (12)C131—P2—C121—C12622.82 (16)
C136—C131—C132—C1330.4 (2)C12—P2—C121—C126129.51 (15)
P2—C131—C132—C133176.49 (11)Mn1—P2—C121—C126107.62 (14)
C131—C132—C133—C1341.3 (2)C121—C122—C123—C1241.3 (3)
C111—P1—C11—C1280.78 (11)C116—C111—C112—C1130.9 (3)
C101—P1—C11—C12174.63 (10)P1—C111—C112—C113176.88 (16)
Mn1—P1—C11—C1247.38 (11)C104—C103—C102—C1010.8 (3)
C102—C101—C106—C1050.6 (2)C106—C101—C102—C1030.1 (2)
P1—C101—C106—C105179.19 (13)P1—C101—C102—C103179.93 (13)
C132—C131—C136—C1350.6 (2)C116—C115—C114—C1130.2 (3)
P2—C131—C136—C135175.51 (13)C133—C134—C135—C1360.0 (3)
C3—C4—C5—C10.02 (17)C131—C136—C135—C1340.9 (3)
Mn1—C4—C5—C160.90 (10)C115—C114—C113—C1120.6 (3)
C3—C4—C5—Mn160.88 (10)C111—C112—C113—C1140.2 (3)
C4—C5—C1—C20.09 (17)C122—C121—C126—C1252.0 (3)
Mn1—C5—C1—C261.26 (10)P2—C121—C126—C125176.09 (16)
C4—C5—C1—Mn161.16 (10)C122—C123—C124—C1251.3 (3)
P1—C11—C12—P233.70 (12)C123—C124—C125—C1262.1 (3)
C131—P2—C12—C11121.73 (10)C121—C126—C125—C1240.5 (3)
Carbonylη5-1-chlorocyclopentadienyl)[1,2-bis(diphenylphosphanyl)ethane-κ2P,P']manganese(I) (compd3b) top
Crystal data top
[Mn(C5H4Cl)(C26H24P2)(CO)]Z = 2
Mr = 580.87F(000) = 600
Triclinic, P1Dx = 1.444 Mg m3
a = 8.5739 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5697 (8) ÅCell parameters from 9882 reflections
c = 14.3909 (9) Åθ = 2.8–26.4°
α = 90.584 (2)°µ = 0.74 mm1
β = 91.958 (2)°T = 100 K
γ = 110.490 (2)°Block, yellow
V = 1336.07 (15) Å30.08 × 0.06 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
5453 independent reflections
Radiation source: rotating anode generator, Bruker TXS4783 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.035
mix of ω and phi scansθmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.702, Tmax = 0.745k = 1414
24803 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0162P)2 + 1.2139P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5453 reflectionsΔρmax = 0.39 e Å3
334 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0229 (2)0.34942 (15)0.73902 (12)0.0150 (3)
C21.0240 (2)0.44703 (16)0.67950 (12)0.0167 (4)
H20.9916550.4399370.6152930.020*
C31.0829 (2)0.55674 (16)0.73466 (13)0.0182 (4)
H31.0968010.6371360.7135280.022*
C41.1177 (2)0.52731 (16)0.82655 (13)0.0181 (4)
H41.1586670.5841570.8774020.022*
C51.0807 (2)0.39815 (16)0.82915 (12)0.0163 (3)
H51.0925130.3526890.8818540.020*
C60.7758 (2)0.38431 (15)0.89975 (12)0.0142 (3)
C100.4591 (2)0.38358 (15)0.72779 (12)0.0162 (3)
H10A0.4404510.4143190.6659790.019*
H10B0.3534000.3199890.7454320.019*
C200.5103 (2)0.49038 (15)0.79947 (12)0.0145 (3)
H20A0.4785600.4581050.8621670.017*
H20B0.4518570.5483640.7842540.017*
C1010.6210 (2)0.27789 (15)0.59620 (11)0.0136 (3)
C1020.6145 (2)0.36332 (17)0.52925 (13)0.0199 (4)
H1020.6031320.4386870.5484000.024*
C1030.6245 (2)0.33951 (18)0.43558 (13)0.0238 (4)
H1030.6191020.3982210.3910790.029*
C1040.6423 (2)0.23037 (18)0.40645 (13)0.0226 (4)
H1040.6490410.2141270.3421610.027*
C1050.6501 (2)0.14551 (17)0.47140 (13)0.0209 (4)
H1050.6635460.0710380.4517390.025*
C1060.6385 (2)0.16832 (16)0.56538 (12)0.0169 (4)
H1060.6424410.1085800.6093190.020*
C1110.5230 (2)0.15693 (15)0.76603 (11)0.0134 (3)
C1120.3588 (2)0.08479 (16)0.73993 (12)0.0177 (4)
H1120.2977220.1154850.6965240.021*
C1130.2839 (2)0.03117 (17)0.77674 (13)0.0217 (4)
H1130.1717580.0789740.7591060.026*
C1140.3732 (2)0.07722 (17)0.83941 (13)0.0227 (4)
H1140.3218210.1562950.8650120.027*
C1150.5367 (2)0.00797 (16)0.86450 (13)0.0205 (4)
H1150.5980260.0400050.9067270.025*
C1160.6117 (2)0.10862 (15)0.82803 (12)0.0155 (3)
H1160.7241690.1556680.8454910.019*
C2010.7803 (2)0.67543 (15)0.90096 (12)0.0142 (3)
C2020.6573 (2)0.69191 (16)0.95514 (12)0.0176 (4)
H2020.5435990.6431180.9424380.021*
C2030.7001 (2)0.77943 (16)1.02769 (12)0.0195 (4)
H2030.6155530.7896741.0643450.023*
C2040.8656 (2)0.85167 (16)1.04663 (12)0.0200 (4)
H2040.8942670.9121161.0955310.024*
C2050.9890 (2)0.83528 (16)0.99385 (12)0.0189 (4)
H2051.1025510.8841761.0068300.023*
C2060.9466 (2)0.74759 (15)0.92222 (12)0.0166 (3)
H2061.0320140.7362800.8869280.020*
C2110.7670 (2)0.68767 (16)0.70704 (12)0.0162 (3)
C2120.8239 (2)0.66836 (18)0.62082 (13)0.0234 (4)
H2120.8454840.5945650.6088440.028*
C2130.8496 (3)0.7560 (2)0.55205 (15)0.0348 (5)
H2130.8879620.7415900.4934240.042*
C2140.8195 (3)0.8640 (2)0.56870 (17)0.0367 (5)
H2140.8381360.9241800.5219220.044*
C2150.7624 (3)0.88393 (18)0.65359 (16)0.0319 (5)
H2150.7409090.9579020.6649570.038*
C2160.7359 (2)0.79705 (17)0.72258 (14)0.0235 (4)
H2160.6964250.8119220.7807600.028*
Cl10.98967 (5)0.19846 (4)0.70342 (3)0.02179 (10)
O10.72276 (15)0.35039 (12)0.97254 (8)0.0214 (3)
P10.73786 (5)0.57185 (4)0.79858 (3)0.01181 (9)
P20.62449 (5)0.31347 (4)0.72127 (3)0.01134 (9)
Mn10.85869 (3)0.43326 (2)0.79119 (2)0.01074 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0114 (8)0.0127 (8)0.0220 (9)0.0053 (6)0.0039 (7)0.0012 (7)
C20.0127 (8)0.0224 (9)0.0164 (8)0.0076 (7)0.0054 (7)0.0016 (7)
C30.0105 (8)0.0156 (9)0.0281 (10)0.0034 (7)0.0079 (7)0.0042 (7)
C40.0093 (8)0.0180 (9)0.0257 (10)0.0034 (7)0.0001 (7)0.0051 (7)
C50.0100 (8)0.0201 (9)0.0207 (9)0.0074 (7)0.0013 (7)0.0018 (7)
C60.0110 (8)0.0124 (8)0.0189 (9)0.0039 (6)0.0023 (7)0.0031 (7)
C100.0125 (8)0.0145 (8)0.0233 (9)0.0072 (7)0.0013 (7)0.0024 (7)
C200.0112 (8)0.0131 (8)0.0200 (9)0.0051 (6)0.0024 (7)0.0001 (7)
C1010.0100 (8)0.0151 (8)0.0141 (8)0.0023 (6)0.0001 (6)0.0000 (6)
C1020.0223 (9)0.0162 (9)0.0222 (9)0.0078 (7)0.0017 (7)0.0029 (7)
C1030.0254 (10)0.0253 (10)0.0180 (9)0.0052 (8)0.0011 (8)0.0076 (8)
C1040.0199 (9)0.0268 (10)0.0152 (9)0.0006 (8)0.0033 (7)0.0011 (7)
C1050.0214 (9)0.0185 (9)0.0208 (9)0.0045 (7)0.0030 (7)0.0041 (7)
C1060.0179 (9)0.0153 (8)0.0174 (9)0.0055 (7)0.0008 (7)0.0015 (7)
C1110.0145 (8)0.0117 (8)0.0142 (8)0.0045 (6)0.0041 (6)0.0018 (6)
C1120.0164 (8)0.0178 (9)0.0190 (9)0.0060 (7)0.0021 (7)0.0020 (7)
C1130.0177 (9)0.0166 (9)0.0273 (10)0.0013 (7)0.0062 (7)0.0039 (7)
C1140.0254 (10)0.0136 (9)0.0267 (10)0.0029 (7)0.0109 (8)0.0031 (7)
C1150.0258 (10)0.0180 (9)0.0201 (9)0.0103 (8)0.0049 (7)0.0032 (7)
C1160.0153 (8)0.0140 (8)0.0168 (9)0.0046 (7)0.0030 (7)0.0012 (7)
C2010.0169 (8)0.0097 (8)0.0171 (8)0.0057 (6)0.0032 (7)0.0014 (6)
C2020.0175 (9)0.0159 (9)0.0202 (9)0.0066 (7)0.0039 (7)0.0011 (7)
C2030.0262 (10)0.0189 (9)0.0177 (9)0.0125 (8)0.0059 (7)0.0005 (7)
C2040.0320 (10)0.0128 (8)0.0160 (9)0.0090 (7)0.0006 (7)0.0005 (7)
C2050.0193 (9)0.0129 (8)0.0222 (9)0.0031 (7)0.0014 (7)0.0005 (7)
C2060.0160 (8)0.0133 (8)0.0208 (9)0.0052 (7)0.0036 (7)0.0001 (7)
C2110.0126 (8)0.0142 (8)0.0212 (9)0.0039 (7)0.0019 (7)0.0028 (7)
C2120.0235 (10)0.0257 (10)0.0240 (10)0.0117 (8)0.0049 (8)0.0073 (8)
C2130.0311 (11)0.0466 (14)0.0299 (11)0.0164 (10)0.0094 (9)0.0188 (10)
C2140.0287 (11)0.0300 (12)0.0480 (14)0.0056 (9)0.0010 (10)0.0257 (10)
C2150.0311 (11)0.0140 (9)0.0481 (13)0.0058 (8)0.0107 (10)0.0065 (9)
C2160.0235 (10)0.0174 (9)0.0303 (10)0.0086 (8)0.0053 (8)0.0008 (8)
Cl10.0177 (2)0.0171 (2)0.0321 (2)0.00805 (17)0.00126 (18)0.00666 (18)
O10.0198 (6)0.0276 (7)0.0145 (6)0.0051 (5)0.0040 (5)0.0025 (5)
P10.0104 (2)0.0100 (2)0.0153 (2)0.00386 (16)0.00204 (16)0.00008 (16)
P20.0107 (2)0.0103 (2)0.0134 (2)0.00411 (16)0.00053 (16)0.00034 (15)
Mn10.00906 (12)0.01056 (13)0.01304 (13)0.00385 (9)0.00177 (9)0.00023 (9)
Geometric parameters (Å, º) top
C1—C51.411 (2)C111—C1121.398 (2)
C1—C21.422 (2)C111—P21.8470 (17)
C1—Cl11.7372 (17)C112—C1131.388 (3)
C1—Mn12.1210 (16)C112—H1120.9500
C2—C31.414 (2)C113—C1141.390 (3)
C2—Mn12.1497 (17)C113—H1130.9500
C2—H20.9500C114—C1151.382 (3)
C3—C41.417 (3)C114—H1140.9500
C3—Mn12.1460 (17)C115—C1161.392 (2)
C3—H30.9500C115—H1150.9500
C4—C51.416 (2)C116—H1160.9500
C4—Mn12.1435 (17)C201—C2021.397 (2)
C4—H40.9500C201—C2061.398 (2)
C5—Mn12.1354 (16)C201—P11.8334 (17)
C5—H50.9500C202—C2031.394 (2)
C6—O11.172 (2)C202—H2020.9500
C6—Mn11.7547 (17)C203—C2041.387 (3)
C10—C201.532 (2)C203—H2030.9500
C10—P21.8679 (16)C204—C2051.388 (3)
C10—H10A0.9900C204—H2040.9500
C10—H10B0.9900C205—C2061.385 (2)
C20—P11.8464 (16)C205—H2050.9500
C20—H20A0.9900C206—H2060.9500
C20—H20B0.9900C211—C2121.393 (3)
C101—C1061.397 (2)C211—C2161.399 (2)
C101—C1021.401 (2)C211—P11.8486 (17)
C101—P21.8391 (17)C212—C2131.391 (3)
C102—C1031.385 (3)C212—H2120.9500
C102—H1020.9500C213—C2141.381 (3)
C103—C1041.386 (3)C213—H2130.9500
C103—H1030.9500C214—C2151.378 (3)
C104—C1051.379 (3)C214—H2140.9500
C104—H1040.9500C215—C2161.387 (3)
C105—C1061.389 (2)C215—H2150.9500
C105—H1050.9500C216—H2160.9500
C106—H1060.9500P1—Mn12.1961 (5)
C111—C1161.396 (2)P2—Mn12.2024 (5)
C5—C1—C2109.30 (15)C111—C116—H116119.7
C5—C1—Cl1124.37 (13)C202—C201—C206118.35 (16)
C2—C1—Cl1125.53 (13)C202—C201—P1124.29 (13)
C5—C1—Mn171.19 (9)C206—C201—P1117.25 (12)
C2—C1—Mn171.65 (9)C203—C202—C201120.47 (16)
Cl1—C1—Mn1131.49 (9)C203—C202—H202119.8
C3—C2—C1106.50 (15)C201—C202—H202119.8
C3—C2—Mn170.64 (10)C204—C203—C202120.30 (16)
C1—C2—Mn169.47 (9)C204—C203—H203119.8
C3—C2—H2126.8C202—C203—H203119.8
C1—C2—H2126.8C203—C204—C205119.73 (16)
Mn1—C2—H2124.8C203—C204—H204120.1
C2—C3—C4108.95 (15)C205—C204—H204120.1
C2—C3—Mn170.92 (10)C206—C205—C204119.97 (17)
C4—C3—Mn170.62 (10)C206—C205—H205120.0
C2—C3—H3125.5C204—C205—H205120.0
C4—C3—H3125.5C205—C206—C201121.16 (16)
Mn1—C3—H3124.5C205—C206—H206119.4
C5—C4—C3107.89 (15)C201—C206—H206119.4
C5—C4—Mn170.37 (9)C212—C211—C216118.37 (17)
C3—C4—Mn170.81 (10)C212—C211—P1120.17 (13)
C5—C4—H4126.1C216—C211—P1121.45 (14)
C3—C4—H4126.1C213—C212—C211120.69 (19)
Mn1—C4—H4124.4C213—C212—H212119.7
C1—C5—C4107.37 (15)C211—C212—H212119.7
C1—C5—Mn170.09 (9)C214—C213—C212120.2 (2)
C4—C5—Mn170.99 (9)C214—C213—H213119.9
C1—C5—H5126.3C212—C213—H213119.9
C4—C5—H5126.3C215—C214—C213119.61 (19)
Mn1—C5—H5124.2C215—C214—H214120.2
O1—C6—Mn1178.60 (15)C213—C214—H214120.2
C20—C10—P2110.55 (11)C214—C215—C216120.64 (19)
C20—C10—H10A109.5C214—C215—H215119.7
P2—C10—H10A109.5C216—C215—H215119.7
C20—C10—H10B109.5C215—C216—C211120.43 (19)
P2—C10—H10B109.5C215—C216—H216119.8
H10A—C10—H10B108.1C211—C216—H216119.8
C10—C20—P1109.42 (11)C201—P1—C20103.15 (8)
C10—C20—H20A109.8C201—P1—C21198.82 (8)
P1—C20—H20A109.8C20—P1—C211104.77 (8)
C10—C20—H20B109.8C201—P1—Mn1119.08 (6)
P1—C20—H20B109.8C20—P1—Mn1108.29 (5)
H20A—C20—H20B108.2C211—P1—Mn1120.63 (6)
C106—C101—C102117.85 (16)C101—P2—C111100.44 (7)
C106—C101—P2120.59 (13)C101—P2—C10102.25 (8)
C102—C101—P2121.36 (13)C111—P2—C10103.34 (8)
C103—C102—C101120.97 (17)C101—P2—Mn1119.31 (5)
C103—C102—H102119.5C111—P2—Mn1118.15 (6)
C101—C102—H102119.5C10—P2—Mn1111.06 (6)
C102—C103—C104120.29 (17)C6—Mn1—C1116.64 (7)
C102—C103—H103119.9C6—Mn1—C591.10 (7)
C104—C103—H103119.9C1—Mn1—C538.72 (7)
C105—C104—C103119.59 (17)C6—Mn1—C4102.43 (7)
C105—C104—H104120.2C1—Mn1—C464.57 (7)
C103—C104—H104120.2C5—Mn1—C438.65 (7)
C104—C105—C106120.38 (17)C6—Mn1—C3139.41 (7)
C104—C105—H105119.8C1—Mn1—C364.35 (7)
C106—C105—H105119.8C5—Mn1—C364.67 (7)
C105—C106—C101120.92 (16)C4—Mn1—C338.57 (7)
C105—C106—H106119.5C6—Mn1—C2154.87 (7)
C101—C106—H106119.5C1—Mn1—C238.89 (7)
C116—C111—C112118.62 (16)C5—Mn1—C265.26 (7)
C116—C111—P2119.43 (13)C4—Mn1—C264.91 (7)
C112—C111—P2121.95 (13)C3—Mn1—C238.44 (7)
C113—C112—C111120.76 (17)C6—Mn1—P186.71 (5)
C113—C112—H112119.6C1—Mn1—P1155.95 (5)
C111—C112—H112119.6C5—Mn1—P1143.64 (5)
C112—C113—C114119.90 (17)C4—Mn1—P1106.71 (5)
C112—C113—H113120.1C3—Mn1—P194.53 (5)
C114—C113—H113120.1C2—Mn1—P1117.20 (5)
C115—C114—C113120.01 (17)C6—Mn1—P290.06 (5)
C115—C114—H114120.0C1—Mn1—P299.23 (5)
C113—C114—H114120.0C5—Mn1—P2130.66 (5)
C114—C115—C116120.16 (17)C4—Mn1—P2162.72 (5)
C114—C115—H115119.9C3—Mn1—P2130.52 (5)
C116—C115—H115119.9C2—Mn1—P298.91 (5)
C115—C116—C111120.54 (16)P1—Mn1—P285.670 (18)
C115—C116—H116119.7
C5—C1—C2—C30.26 (18)C204—C205—C206—C2010.8 (3)
Cl1—C1—C2—C3170.32 (12)C202—C201—C206—C2051.4 (3)
Mn1—C1—C2—C361.31 (11)P1—C201—C206—C205174.90 (14)
C5—C1—C2—Mn161.57 (11)C216—C211—C212—C2130.2 (3)
Cl1—C1—C2—Mn1128.37 (13)P1—C211—C212—C213178.66 (15)
C1—C2—C3—C40.12 (18)C211—C212—C213—C2140.3 (3)
Mn1—C2—C3—C460.66 (12)C212—C213—C214—C2150.6 (3)
C1—C2—C3—Mn160.54 (11)C213—C214—C215—C2160.4 (3)
C2—C3—C4—C50.06 (18)C214—C215—C216—C2110.0 (3)
Mn1—C3—C4—C560.91 (11)C212—C211—C216—C2150.3 (3)
C2—C3—C4—Mn160.85 (12)P1—C211—C216—C215178.47 (14)
C2—C1—C5—C40.30 (18)C202—C201—P1—C206.71 (17)
Cl1—C1—C5—C4170.50 (12)C206—C201—P1—C20177.27 (13)
Mn1—C1—C5—C461.55 (11)C202—C201—P1—C211100.82 (15)
C2—C1—C5—Mn161.85 (11)C206—C201—P1—C21175.20 (14)
Cl1—C1—C5—Mn1127.95 (13)C202—C201—P1—Mn1126.63 (13)
C3—C4—C5—C10.22 (18)C206—C201—P1—Mn157.35 (14)
Mn1—C4—C5—C160.98 (11)C10—C20—P1—C201170.00 (12)
C3—C4—C5—Mn161.20 (11)C10—C20—P1—C21187.03 (13)
P2—C10—C20—P134.87 (15)C10—C20—P1—Mn142.92 (12)
C106—C101—C102—C1030.2 (3)C212—C211—P1—C201149.94 (15)
P2—C101—C102—C103175.14 (14)C216—C211—P1—C20128.85 (16)
C101—C102—C103—C1040.4 (3)C212—C211—P1—C20103.86 (15)
C102—C103—C104—C1050.0 (3)C216—C211—P1—C2077.36 (16)
C103—C104—C105—C1060.7 (3)C212—C211—P1—Mn118.37 (17)
C104—C105—C106—C1010.9 (3)C216—C211—P1—Mn1160.42 (12)
C102—C101—C106—C1050.4 (3)C106—C101—P2—C11134.03 (15)
P2—C101—C106—C105174.52 (13)C102—C101—P2—C111151.20 (14)
C116—C111—C112—C1131.7 (2)C106—C101—P2—C10140.29 (14)
P2—C111—C112—C113178.10 (13)C102—C101—P2—C1044.94 (15)
C111—C112—C113—C1140.8 (3)C106—C101—P2—Mn196.79 (14)
C112—C113—C114—C1150.5 (3)C102—C101—P2—Mn177.98 (14)
C113—C114—C115—C1160.8 (3)C116—C111—P2—C101117.78 (14)
C114—C115—C116—C1110.1 (3)C112—C111—P2—C10162.45 (15)
C112—C111—C116—C1151.3 (2)C116—C111—P2—C10136.83 (13)
P2—C111—C116—C115178.45 (13)C112—C111—P2—C1042.93 (15)
C206—C201—C202—C2030.8 (3)C116—C111—P2—Mn113.77 (15)
P1—C201—C202—C203175.16 (13)C112—C111—P2—Mn1166.00 (12)
C201—C202—C203—C2040.3 (3)C20—C10—P2—C101142.21 (12)
C202—C203—C204—C2050.9 (3)C20—C10—P2—C111113.79 (12)
C203—C204—C205—C2060.4 (3)C20—C10—P2—Mn113.86 (13)
Important bond parameters of 13 in comparison with two related literature compounds top
Ct is the centroid of the cyclopentadienyl ring, (C—C)av is the average C—C bond length within the cyclopentadienyl ring, Cx—Ct—Mn—P is the smallest torsion angle involving a cyclopentadienyl C—H (1a, 2a and 3a) or C—Cl bond.
Distance/angle1a mol. A/ mol. B1b2a2b3a3bGIXRIOEFUHAO
Mn—Ct1.777 (1)/1.778 (1)1.786 (2)1.781 (1)1.786 (1)1.761 (2)1.768 (1)1.773 (2)1.769 (9)
Mn—P2.2256 (8)/2.2423 (8)2.2403 (10)2.2661 (7)2.2743 (9)2.1968 (4) 2.1849 (4)2.1961 (5) 2.2024 (5)2.2198 (2)2.244 (3) 2.241 (3)
Mn—CO1.769 (2) 1.776 (2)/1.777 (2) 1.767 (2)1.772 (4) 1.770 (3)1.763 (2) 1.761 (2)1.774 (3) 1.773 (3)1.756 (5)1.755 (2)1.755 (5)1.769 (9)
C—O1.165 (3) 1.162 (3)/1.162 (3) 1.160 (3)1.155 (5) 1.164 (4)1.162 (3) 1.174 (4)1.161 (4) 1.162 (4)1.174 (6)1.172 (2)1.161 (7) 1.165 (6)1.15 (1)
C—Cl1.730 (4)1.674 (4)1.737 (2)
(C—C)av1.416 (3)/1.415 (4)1.408 (5)1.408 (4)1.411 (6)1.422 (5)1.416 (2)1.395 (7)1.41 (2)
CCl—Ct—Mn—P77.678.036.3 156.0
CH—Ct—Mn—P13.0/8.120.512.37.214.1 13.436.0 12.110.24.4 13.6
 

Acknowledgements

Open access funding enabled and organized by Projekt DEAL.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAndré-Bentabet, E., Broussier, R., Amardeil, R., Hierso, J.-C., Richard, P., Fasseur, D., Gautheron, B. & Meunier, P. (2002). J. Chem. Soc. Dalton Trans. pp. 2322–2327.  Google Scholar
First citationAntonova, M. V. & Shapiro, I. O. (1991). Metalloorg. Khim. 4, 674–675.  CAS Google Scholar
First citationBarbeau, C., Sorrento Dichmann, K. & Ricard, L. (1972). Can. J. Chem. 31, 3027–3031.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaulton, C. G. (1981). Coord. Chem. Rev. 38, 1–43.  CrossRef CAS Google Scholar
First citationConnelly, N. G. & Kitchen, M. D. (1977). J. Chem. Soc. Dalton Trans. pp. 931–937.  CrossRef Google Scholar
First citationCrabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals, 4th ed., edited by R. H. Crabtree, pp. 87–124. Chichester: Wiley.  Google Scholar
First citationElschenbroich, C. (2016). Organometallics, 3rd ed, ch. 14.4. Chi­ches­ter: John Wiley & Sons.  Google Scholar
First citationFan, H.-J. & Hall, M. B. (2001). Organometallics, 20, 5724–5730.  CrossRef CAS Google Scholar
First citationGeicke, J., Lorenz, I. P. & Polborn, K. (1998). Inorg. Chim. Acta, 272, 101–108.  CSD CrossRef CAS Google Scholar
First citationGinzburg, A. G., Fedorov, L. A., Petrovskii, P. V., Fedin, E. I., Setkina, V. N. & Kursanov, D. N. (1974). J. Organomet. Chem. 73, 77–84.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJordan, R. B. (2007). Reaction Mechanisms of Inorganic and Organometallic Systems, ch. 5.1. Oxford University Press.  Google Scholar
First citationKhatami, A. I., Ginzburg, A. G., Nefedova, M. N., Setkina, V. N. & Kursanov, D. N. (1972a). Zh. Obsch. Khim. 42, 2665–2667.  CAS Google Scholar
First citationKhatami, A. I., Nefedova, M. N., Setkina, V. N. & Kursanov, D. N. (1972b). Dokl. Akad. Nauk SSSR, 203, 1094–1096.  CAS Google Scholar
First citationKlein-Hessling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKursanov, D. N., Setkina, V. N., Ginzburg, A. G., Nefedova, M. N. & Khatami, A. I. (1970). Izv. Akad. Nauk. SSSR, p. 2412.  Google Scholar
First citationLe Moigne, F., Dabard, R. & Le Plouzennec, M. (1976). J. Organomet. Chem. 122, 365–376.  CrossRef CAS Google Scholar
First citationLoim, N. M., Barsegova, M. N. & Ginzburg, A. G. (1988). Metalloorg. Khim. 1, 889–892.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNyholm, R. S., Sandhu, S. S. & Stiddard, M. H. B. (1963). J. Chem. Soc. pp. 5916–5919.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPike, R. D., Rieger, A. L. & Rieger, P. H. (1989). J. Chem. Soc. Faraday Trans. 1, 85, 3913.  Google Scholar
First citationRehder, D. & Keçeci, A. (1985). Inorg. Chim. Acta, 103, 173–177.  CrossRef CAS Google Scholar
First citationSetkina, V. N., Baranetskaya, N. K., Ginzburg, A. G., Zdanovich, V. I., Nefedova, M. N. & Kursanov, D. N. (1973). J. Organomet. Chem. 61, 287–300.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrohmeier, W. & Barbeau, C. (1962). Z. Naturforsch. B, 17, 818–819.  Google Scholar
First citationStrohmeier, W. & Müller, F.-J. (1967). Chem. Ber. 100, 2812–2821.  CrossRef CAS Google Scholar
First citationTreichel, P. M., Wagner, K. P. & Mueh, H. J. (1975). J. Organomet. Chem. 86, C13–C16.  CrossRef CAS Google Scholar
First citationVeiros, L. F. (2000). Organometallics, 19, 3127–3136.  CrossRef CAS Google Scholar
First citationYoung, K. M. & Wrighton, M. S. (1989). Organometallics, 8, 1063–1066.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds