research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Co(NCS)2(abpt)2 and Ni(NCS)2(abpt)2 [abpt is 4-amino-3,5-bis­­(pyridin-2-yl)-1,2,4-triazole]: structural characterization of polymorphs A and B

crossmark logo

aDepartment of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom, and bSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
*Correspondence e-mail: hazel.sparkes@bristol.ac.uk

Edited by S. Moggach, The University of Western Australia, Australia (Received 9 August 2021; accepted 4 October 2021; online 16 November 2021)

The synthesis and structures of bis­[4-amino-3,5-bis­(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis­(thio­cyanato-κN)cobalt(II), [Co(NCS)2(C12H10N6)2] or Co(NCS)2(abpt)2, and bis­[4-amino-3,5-bis­(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis­(thio­cyan­ato-κN)nickel(II), [Ni(NCS)2(C12H10N6)2] or Ni(NCS)2(abpt)2, are reported. In both cases, two polymorphs, A and B, were identified and structurally characterized. For both polymorphs, the structures obtained with the different metals, i.e. CoII or NiII, were found to be isostructural. All of the structures contained an intra­molecular N—H⋯N hydrogen bond, C—H⋯N inter­actions and ππ stacking inter­actions. No structural evidence was observed for a thermal spin crossover for either of the Co(NCS)2(abpt)2 polymorphs between 300 (2) and 120 (2) K.

1. Introduction

The bidentate ligand 4-amino-3,5-bis­(pyridine-2-yl)-1,2,4-tri­azole (abpt) has been found to form mononuclear com­plexes, as well as single- or double-bridged dinuclear com­plexes, with a variety of metals (for examples, see Dupouy et al., 2008[Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J. Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921-8931.]; White et al., 2009[White, N. G., Kitchen, J. A. & Brooker, S. (2009). Eur. J. Inorg. Chem. 2009, 1172-1180.]; Li et al., 2011[Li, C. P., Wu, J. M. & Du, M. (2011). Inorg. Chem. 50, 9284-9289.]). Amongst these, a number of FeII com­plexes have been synthesized and studied because of their inter­esting polymorphism and spin-crossover behaviour. Perhaps the most studied is the Fe(NCS)2(abpt)2 com­plex, of which there are four known polymorphs, denoted AD, all of which display different magnetic behaviour. Three of the polymorphs, i.e. A (Moliner et al., 1999[Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., Castro, M., Kahn, O. & Real, J. A. (1999). Inorg. Chim. Acta, 291, 279-288.]; Sheu et al., 2009[Sheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512-7514.]; Mason et al., 2016[Mason, H. E., Li, W., Carpenter, M. A., Hamilton, M. L., Howard, J. A. K. & Sparkes, H. A. (2016). New J. Chem. 40, 2466-2478.]), C (Sheu et al., 2009[Sheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512-7514.]; Shih et al., 2010[Shih, C.-H., Sheu, C.-F., Kato, K., Sugimoto, K., Kim, J., Wang, Y. & Takata, M. (2010). Dalton Trans. 39, 9794-9800.]) and D (Sheu et al., 2009[Sheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512-7514.], 2012[Sheu, C.-F., Shih, C.-H., Sugimoto, K., Cheng, B.-M., Takata, M. & Wang, Y. (2012). Chem. Commun. 48, 5715-5717.]; Mason et al., 2021[Mason, H. E., Musselle-Sexton, J. R. C., Howard, J. A. K., Probert, M. R. & Sparkes, H. A. (2021). New J. Chem. 45, 14014-14023.]), undergo at least a partial thermal spin crossover under ambient pressure, while polymorph B (Gaspar et al., 2003[Gaspar, A. B., Mũnoz, M. C., Moliner, N., Ksenofontov, V., Levchenko, G., Gütlich, P. & Real, J. A. (2003). Monatsh. Chem. 134, 285-294.]) only undergoes a thermal spin crossover at pressures above 4.4 kbar (1 bar = 105 Pa). All of the three polymorphs which display at least a partial thermal spin crossover also show light-induced excited-spin-state trapping (LIESST) at low temperature. While three of the polymorphs (A, B and D) are known to undergo a pressure-induced spin crossover at room temperature (Mason et al., 2016[Mason, H. E., Li, W., Carpenter, M. A., Hamilton, M. L., Howard, J. A. K. & Sparkes, H. A. (2016). New J. Chem. 40, 2466-2478.], 2021[Mason, H. E., Musselle-Sexton, J. R. C., Howard, J. A. K., Probert, M. R. & Sparkes, H. A. (2021). New J. Chem. 45, 14014-14023.]), polymorph C has not been studied under pressure at room temperature. To date, Co(NCS)2(abpt)2 is the only other M(NCS)2(abpt)2 com­plex containing a transition metal for which any structures have been reported. Like the Fe analogue, this has also been found to display polymorphism, with two different polymorphs of Co(NCS)2(abpt)2 reported at room temperature. These will be referred to as Co(NCS)2(abpt)2 polymorphs B (Peng et al., 2006[Peng, M. X., Hong, C. G., Tan, C. K., Chen, J. C. & Tong, M. L. (2006). J. Chem. Crystallogr. 36, 703-707.]) and D (Chen & Peng, 2007[Chen, Z. Y. & Peng, M. X. (2007). Chin. J. Inorg. Chem. 23, 2091-2096.]) throughout, as they are isostructural with Fe(NCS)2(abpt)2 polymorphs B and D. The structures of two polymorphs, A and B, of both Co(NCS)2(abpt)2 and Ni(NCS)2(abpt)2 are reported herein (see Scheme 1[link]).

[Scheme 1]

2. Experimental

2.1. Synthesis

The synthesis of M(NCS)2(abpt)2, where M is Co or Ni, was carried out using a slow-diffusion method with methanol–water solutions as reported previously (Sheu et al., 2009[Sheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512-7514.]).

All chemicals were obtained from Sigma–Aldrich and used as supplied. CoSO4·7H2O (1 mmol, 0.281 g) or NiSO4·6H2O (1 mmol, 0.263 g) and KNCS (2 mmol, 0.194 g) were stirred in methanol (10 ml) for 15 min. A pale-yellow insoluble K2SO4 precipitate was removed by filtration and deionized water (10 ml) was added to the remaining clear solution. Abpt (2 mmol, 0.477 g) was dissolved in methanol (20 ml) and placed in a narrow (<5 cm) Schlenk tube. The M2+/NCX solution was very carefully pipetted at the bottom of the Schlenk tube to form a lower more dense layer below the abpt solution. Immediately, a coloured band formed at the inter­face between the two layers containing the target com­plex. The Schlenk tube was left undisturbed and single crystals suitable for X-ray diffraction studies had formed within one week to one month later.

2.2. Refinement

Details of the crystallographic data collections are given in Table 1[link]. All H atoms, apart from the N—H hydrogens, were positioned geometrically and refined using a riding model. The N—H hydrogens were located in a difference Fourier map (FDM) wherever feasible.

Table 1
Experimental details

For all structures: monoclinic, P21/n, Z = 2. Experiments were carried out at 120 K with Mo Kα radiation. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 1999–2013[Bruker (1999-2013). SMART, SAINT, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]). Refinement was on 202 parameters. H atoms were treated by a mixture of independent and constrained refinement.

  Co(NCS)2(abpt)2, Polymorph A Co(NCS)2(abpt)2, Polymorph B Ni(NCS)2(abpt)2, Polymorph A Ni(NCS)2(abpt)2, Polymorph B
Crystal data
Chemical formula [Co(NCS)2(C12H10N6)2] [Co(NCS)2(C12H10N6)2] [Ni(NCS)2(C12H10N6)2] [Ni(NCS)2(C12H10N6)2]
Mr 651.61 651.61 651.39 651.39
a, b, c (Å) 8.4792 (6), 10.1307 (7), 16.3774 (11) 11.4978 (5), 9.5235 (4), 12.7179 (5) 8.4041 (7), 10.0681 (9), 16.2360 (14) 11.5860 (14), 9.5489 (12), 12.8132 (16)
β (°) 93.485 (1) 100.771 (1) 93.060 (2) 100.806 (2)
V3) 1404.22 (17) 1368.07 (10) 1371.8 (2) 1392.4 (3)
μ (mm−1) 0.81 0.83 0.91 0.89
Crystal size (mm) 0.24 × 0.16 × 0.11 0.48 × 0.22 × 0.1 0.2 × 0.12 × 0.08 0.2 × 0.13 × 0.04
 
Data collection
Diffractometer Bruker SMART CCD 1K area detector Bruker SMART CCD 1K area detector Bruker D8 VENTURE Bruker SMART CCD 1K area detector
Tmin, Tmax 0.793, 0.919 0.755, 0.884 0.781, 0.936 0.746, 0.948
No. of measured, independent and observed [I > 2σ(I)] reflections 13341, 2884, 2383 13084, 2799, 2363 15450, 2819, 2161 12077, 2552, 1666
Rint 0.044 0.037 0.046 0.116
(sin θ/λ)max−1) 0.625 0.625 0.625 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.06 0.028, 0.065, 1.03 0.037, 0.085, 1.02 0.058, 0.136, 1.06
No. of reflections 2884 2799 2819 2552
No. of restraints 1 0 0 0
Δρmax, Δρmin (e Å−3) 0.58, −0.27 0.26, −0.39 0.48, −0.27 0.61, −0.66
Computer programs: SMART, APEX2, SAINT and SAINT-Plus (Bruker, 1999–2013[Bruker (1999-2013). SMART, SAINT, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

The structure of Co(NCS)2(abpt)2 polymorph B has already been reported at room temperature and is consistent with that reported here (Peng et al., 2006[Peng, M. X., Hong, C. G., Tan, C. K., Chen, J. C. & Tong, M. L. (2006). J. Chem. Crystallogr. 36, 703-707.]). The main structural features of all four structures are very similar: they all crystallized in the monoclinic space group P21/n with half a mol­ecule in the asymmetric unit (Z′ = 0.5) (Fig. 1[link]). Each of the four com­plexes consists of an approximately octa­hedrally coordinated metal centre (CoII or NiII) coordinated to six N atoms, one from each of the NCS ligands and two from each abpt ligand (one pyridyl and one triazole N atom). Each of the structures contains an intra­molecular N—H⋯N hydrogen bond between the NH2 group on the triazole ring and the N atom of the uncoordinated pyridyl ring, as well as two intra­molecular C—H⋯N inter­actions, one between a pyridyl C—H group and the N atom of the NH2 group attached to the triazole ring, and a second between a pyridyl C—H group and the uncoordinated N atom on the triazole group (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for Co(NCS)2(abpt)2 and Ni(NCS)2(abpt)2 at 120 (2) K

Structure Polymorph D—H⋯A D—H H⋯A DA D—H⋯A
Co(NCS)2(abpt)2 A N6—H6B⋯N7 0.90 (3) 2.14 (3) 2.861 (3) 136 (3)
    C5—H5⋯N6 0.95 2.53 3.135 (4) 122
    C2—H2⋯N4i 0.95 2.67 3.467 (3) 142
  B N6—H6B⋯N7 0.90 (2) 2.41 (2) 2.914 (2) 115.6 (16)
    C5—H5⋯N6 0.95 2.46 3.084 (2) 123
    C2—H2⋯N2i 0.95 2.66 3.482 (2) 145
Ni(NCS)2(abpt)2 A N6—H6B⋯N7 0.88 (3) 2.14 (3) 2.848 (3) 137 (3)
    C5—H5⋯N6 0.95 2.52 3.124 (4) 122
    C2—H2⋯N4ii 0.95 2.55 3.347 (3) 141
  B N6—H6B⋯N7 0.84 (6) 2.52 (5) 2.950 (6) 112 (4)
    C5—H5⋯N6 0.95 2.48 3.104 (7) 123
    C2—H2⋯N4ii 0.95 2.59 3.403 (7) 144
Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.
[Figure 1]
Figure 1
Illustration of the structures of Co(NCS)2(abpt)2 polymorphs (a) A and (b) B, and Ni(NCS)2(abpt)2 polymorphs (c) A and (d) B, with the atomic numbering schemes depicted. H atoms have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The pair of A polymorphs of the CoII or NiII structures are isostructural with each other, and are also isostructural with the previously reported Fe(NCS)2(abpt)2 polymorph A structure (Moliner et al., 1999[Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., Castro, M., Kahn, O. & Real, J. A. (1999). Inorg. Chim. Acta, 291, 279-288.]; Sheu et al., 2009[Sheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512-7514.]; Mason et al., 2016[Mason, H. E., Li, W., Carpenter, M. A., Hamilton, M. L., Howard, J. A. K. & Sparkes, H. A. (2016). New J. Chem. 40, 2466-2478.]). In addition to the previously mentioned N—H⋯N hydrogen bonding and C—H⋯N inter­actions, the structures contain inter­molecular ππ stacking between pairs of mol­ecules and involving the two pyridyl rings at each end of the abpt ligand inter­acting with the two pyridyl rings on an adjacent abpt ligand, creating a one-dimensional chain through the structure (Table 3[link] and Fig. 2[link]).

Table 3
π–π stacking inter­actions (Å) for Co(NCS)2(abpt)2 and Ni(NCS)2(abpt)2 at 120 (2) K

Structure Polymorph Plane 1 Plane 2 Centroid-to-centroid distance Shift distance
Co(NCS)2(abpt)2 A N2,C2,C3,C4,C5,C6 N7,C9,C10,C11,C12,C13i 3.63 1.31
    N7,C9,C10,C11,C12,C13 N2,C2,C3,C4,C5,C6i 3.63 1.31
  B N2,C2,C3,C4,C5,C6 N7,C9,C10,C11,C12,C13ii 3.68 1.34
    N7,C9,C10,C11,C12,C13 N2,C2,C3,C4,C5,C6iii 3.68 1.34
Ni(NCS)2(abpt)2 A N2,C2,C3,C4,C5,C6 N7,C9,C10,C11,C12,C13i 3.64 1.34
    N7,C9,C10,C11,C12,C13 N2,C2,C3,C4,C5,C6i 3.64 1.34
  B N2,C2,C3,C4,C5,C6 N7,C9,C10,C11,C12,C13ii 3.72 1.41
    N7,C9,C10,C11,C12,C13 N2,C2,C3,C4,C5,C6iii 3.72 1.41
Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (iii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}].
[Figure 2]
Figure 2
Illustration of the ππ stacking inter­actions as red dashed lines for one abpt ligand in (a) polymorph A (b) polymorph B.

As seen for the pair of polymorph A structures, the two polymorph B structures were also isostructural with each other and with the previously reported Fe(NCS)2(abpt)2 polymorph B structure (Gaspar et al., 2003[Gaspar, A. B., Mũnoz, M. C., Moliner, N., Ksenofontov, V., Levchenko, G., Gütlich, P. & Real, J. A. (2003). Monatsh. Chem. 134, 285-294.]; Mason et al., 2021[Mason, H. E., Musselle-Sexton, J. R. C., Howard, J. A. K., Probert, M. R. & Sparkes, H. A. (2021). New J. Chem. 45, 14014-14023.]). The structures of polymorph B also display ππ inter­actions, but in this case each of the pyridyl rings on the abpt ligand is involved in a ππ inter­action to a pyridyl ring on a different abpt ligand, creating a three-dimensional network of inter­actions in the structure (Table 3[link] and Fig. 2[link]). Along with the difference in the form of the ππ inter­actions between the polymorph A and polymorph B structures, the other main difference is the twist between the two rings on the abpt ligands. In the case of A, the twist between the rings is ∼9°, while for B, the twist between the rings is ∼35° (Table 4[link]). This is likely to be the reason for the significantly different ππ stacking, as the larger twist in B would prevent both rings on one abpt ligand being correctly orientated to inter­act with both rings on a single abpt ligand on an adjacent mol­ecule.

Table 4
Twist and fold angles between planes calculated through the six atoms of the two rings on the abpt ligand at 120 (2) K

Compound Polymorph Twist angle (°) Fold angle (°)
Co(NCS)2(abpt)2 A 8.99 (8) 99.0 (8)
  B 35.25 (6) 142.50 (19)
Ni(NCS)2(abpt)2 A 9.39 (8) 96.7 (8)
  B 34.64 (17) 142.8 (6)

The Hirshfeld fingerprint plots (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) for the two polymorphs highlight the differences between the two structures (Fig. 3[link]). The plots are only shown for the Co polymorphs A and B, as the plots for the Ni polymorphs A and B were essentially identical to those of the respective Co polymorphs. The shapes of the two plots are clearly slightly different, although given that the structures are polymorphs, it is unsurprising that they show the same main short con­tacts. For both polymorphs, the S⋯H con­tacts are quite pro­noun­ced, with a similar shape and position. However, in the case of A, the C⋯H con­tacts are more pronounced than is seen for B, while the H⋯H con­tacts for A are less pro­nounced than observed for B. Examining the Hirshfeld surfaces for both com­pounds, the greater number of red spots on the surface of A than for B indicates that A has more short con­tacts.

[Figure 3]
Figure 3
The Hirshfeld surface plot and fingerprint plot for (a) polymorph A and (b) polymorph B for Co(NCS)2(abpt)2. The Ni plots for the same respective polymorphs are essentially identical.

Given that Fe(NCS)2(abpt)2 polymorph A was shown to have a spin transition upon cooling (Moliner et al., 1999[Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., Castro, M., Kahn, O. & Real, J. A. (1999). Inorg. Chim. Acta, 291, 279-288.]; Sheu et al., 2009[Sheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512-7514.]; Mason et al., 2016[Mason, H. E., Li, W., Carpenter, M. A., Hamilton, M. L., Howard, J. A. K. & Sparkes, H. A. (2016). New J. Chem. 40, 2466-2478.]), the data for CoII d7 polymorphs A and B were also measured at 300 (2) K (Table S1 in the supporting information). Examining the Co—N bond lengths showed them to be essentially identical to the 120 (2) K structure and indicate that no spin transition had occurred over this temperature range (Table 5[link]). In the case of NiII, the com­plex is d8 so no spin transition would be possible.

Table 5
Co—N distances for Co(NCS)2(abpt)2 at 120 (2) and 300 (2) K

Polymorph T (K) Co1—N1 Co1—N2 Co1—N3
A 120 2.116 (2) 2.166 (2) 2.088 (2)
  300 2.113 (5) 2.164 (4) 2.093 (5)
B 120 2.0987 (15) 2.1616 (15) 2.1138 (14)
  300 2.102 (2) 2.166 (2) 2.1161 (18)

4. Conclusions

The synthesis and structures of Co(NCS)2(abpt)2 and Ni(NCS)2(abpt)2 are reported. Two polymorphs were identified for each of the com­plexes, A and B, and the pairs of polymorphs with the different metal centres were found to be isostructural. All of the structures contained intra­molecular N—H⋯N hydrogen bonding, intra­molecular C—H⋯N inter­actions and ππ stacking. There are identifiable differences between the two polymorph structures. Firstly, the twist angle between the two six-membered rings on one abpt ligand was ∼9° for polymorph A and ∼35° for polymorph B. Secondly, the nature of the ππ stacking inter­actions was significantly different, presumably due to the differing twist angles of the rings. In the case of A, both rings on one abpt ligand form ππ stacking inter­actions with both rings on an abpt ligand on an adjacent mol­ecule, while for B, each of the rings on the abpt ligand forms ππ stacking inter­actions with a ring on different abpt ligands in adjacent mol­ecules. Variable-temperature studies on d7 Co(NCS)2(abpt)2 did not show any evidence of a thermally-induced spin crossover for either of the polymorphs between 300 (2) and 120 (2) K.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999) for Co_A_120K, Co_B_120K, Ni_B_120K, Co_A_300K, Co_B_300K; APEX2 (Bruker, 2005) for Ni_A_120K. Cell refinement: SAINT (Bruker, 2003) for Co_A_120K, Co_B_120K, Ni_B_120K, Co_A_300K, Co_B_300K; APEX2 (Bruker, 2005) for Ni_A_120K. Data reduction: SAINT (Bruker, 2003) for Co_A_120K, Co_B_120K, Ni_B_120K, Co_A_300K, Co_B_300K; SAINT-Plus (Bruker, 2013) for Ni_A_120K. For all structures, program(s) used to solve structure: SHELXS (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) for Co_A_120K, Co_B_120K, Ni_A_120K, Ni_B_120K, Co_A_300K; SHELXL2014 (Sheldrick, 2015) for Co_B_300K. For all structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis(thiocyanato-κN)cobalt(II) (Co_A_120K) top
Crystal data top
[Co(NCS)2(C12H10N6)2]F(000) = 666
Mr = 651.61Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4792 (6) ÅCell parameters from 6392 reflections
b = 10.1307 (7) Åθ = 2.4–28.4°
c = 16.3774 (11) ŵ = 0.81 mm1
β = 93.485 (1)°T = 120 K
V = 1404.22 (17) Å3Block, orange
Z = 20.24 × 0.16 × 0.11 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2884 independent reflections
Radiation source: sealed X-ray tube2383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1212
Tmin = 0.793, Tmax = 0.919l = 2020
13341 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0335P)2 + 1.6189P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2884 reflectionsΔρmax = 0.58 e Å3
202 parametersΔρmin = 0.27 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01882 (13)
S10.26353 (8)0.71891 (7)0.25547 (4)0.03309 (19)
N10.3933 (2)0.5708 (2)0.38833 (13)0.0251 (5)
N20.7191 (2)0.5974 (2)0.47456 (12)0.0229 (5)
N30.4751 (2)0.6892 (2)0.54812 (13)0.0252 (5)
N40.3563 (2)0.7585 (2)0.58160 (12)0.0212 (4)
N50.5684 (2)0.8849 (2)0.57976 (13)0.0245 (5)
N60.6795 (3)0.9902 (2)0.59404 (15)0.0300 (5)
H6A0.729 (3)0.965 (3)0.6428 (13)0.036*
H6B0.623 (4)1.062 (3)0.6070 (18)0.036*
N70.3920 (3)1.0989 (2)0.64769 (13)0.0265 (5)
C10.3384 (3)0.6316 (2)0.33321 (15)0.0220 (5)
C20.8335 (3)0.5446 (3)0.43168 (16)0.0260 (6)
H20.8165150.4601890.4073950.031*
C30.9764 (3)0.6089 (3)0.42150 (17)0.0294 (6)
H31.0543780.5697240.3899950.035*
C41.0025 (3)0.7307 (3)0.45807 (17)0.0320 (6)
H41.0998880.7754510.4529500.038*
C50.8846 (3)0.7871 (3)0.50249 (16)0.0279 (6)
H50.9003540.8703600.5283770.033*
C60.7438 (3)0.7189 (3)0.50807 (15)0.0238 (5)
C70.6017 (3)0.7659 (3)0.54623 (15)0.0238 (5)
C80.4140 (3)0.8759 (3)0.60107 (15)0.0234 (5)
C90.3236 (3)0.9796 (2)0.64092 (15)0.0242 (5)
C100.3130 (3)1.1925 (3)0.68644 (16)0.0303 (6)
H100.3596471.2774590.6927370.036*
C110.1660 (3)1.1714 (3)0.71792 (16)0.0286 (6)
H110.1153891.2402230.7458010.034*
C120.0949 (3)1.0493 (3)0.70808 (16)0.0288 (6)
H120.0065421.0332700.7276960.035*
C130.1757 (3)0.9496 (3)0.66852 (15)0.0263 (6)
H130.1309060.8641690.6607660.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0144 (2)0.0185 (2)0.0237 (2)0.00017 (19)0.00195 (17)0.00061 (19)
S10.0313 (4)0.0345 (4)0.0324 (4)0.0062 (3)0.0072 (3)0.0043 (3)
N10.0206 (11)0.0265 (12)0.0283 (11)0.0003 (9)0.0016 (9)0.0013 (9)
N20.0171 (10)0.0242 (11)0.0271 (11)0.0009 (9)0.0003 (8)0.0040 (9)
N30.0205 (11)0.0264 (12)0.0289 (11)0.0008 (9)0.0030 (9)0.0014 (9)
N40.0170 (10)0.0202 (11)0.0264 (11)0.0007 (8)0.0014 (8)0.0001 (8)
N50.0219 (11)0.0228 (11)0.0286 (11)0.0052 (9)0.0002 (9)0.0010 (9)
N60.0246 (12)0.0260 (12)0.0391 (13)0.0069 (10)0.0004 (10)0.0006 (11)
N70.0254 (12)0.0240 (12)0.0301 (11)0.0018 (10)0.0004 (9)0.0014 (9)
C10.0154 (12)0.0234 (13)0.0277 (13)0.0019 (10)0.0045 (10)0.0036 (11)
C20.0205 (13)0.0245 (13)0.0332 (14)0.0040 (11)0.0017 (10)0.0046 (11)
C30.0195 (13)0.0306 (15)0.0386 (15)0.0045 (11)0.0062 (11)0.0060 (12)
C40.0185 (13)0.0367 (16)0.0409 (16)0.0031 (12)0.0021 (11)0.0082 (13)
C50.0229 (13)0.0303 (14)0.0301 (13)0.0040 (12)0.0009 (10)0.0019 (11)
C60.0178 (12)0.0268 (13)0.0264 (13)0.0001 (11)0.0008 (10)0.0053 (11)
C70.0214 (13)0.0235 (13)0.0263 (13)0.0037 (11)0.0010 (10)0.0019 (10)
C80.0205 (13)0.0264 (14)0.0232 (12)0.0010 (11)0.0003 (10)0.0022 (10)
C90.0244 (13)0.0209 (13)0.0268 (13)0.0021 (10)0.0013 (10)0.0035 (10)
C100.0313 (15)0.0273 (15)0.0322 (14)0.0013 (12)0.0003 (12)0.0064 (11)
C110.0301 (15)0.0287 (14)0.0270 (14)0.0029 (12)0.0029 (11)0.0054 (11)
C120.0307 (15)0.0293 (14)0.0268 (13)0.0011 (12)0.0040 (11)0.0032 (11)
C130.0277 (14)0.0223 (13)0.0284 (13)0.0030 (11)0.0021 (11)0.0030 (11)
Geometric parameters (Å, º) top
Co1—N12.116 (2)N7—C101.342 (3)
Co1—N1i2.116 (2)C2—H20.9500
Co1—N2i2.166 (2)C2—C31.394 (4)
Co1—N22.166 (2)C3—H30.9500
Co1—N32.088 (2)C3—C41.384 (4)
Co1—N3i2.088 (2)C4—H40.9500
S1—C11.646 (3)C4—C51.394 (4)
N1—C11.166 (3)C5—H50.9500
N2—C21.343 (3)C5—C61.388 (4)
N2—C61.358 (3)C6—C71.470 (4)
N3—N41.370 (3)C8—C91.475 (4)
N3—C71.327 (3)C9—C131.393 (4)
N4—C81.318 (3)C10—H100.9500
N5—N61.433 (3)C10—C111.394 (4)
N5—C71.361 (3)C11—H110.9500
N5—C81.378 (3)C11—C121.382 (4)
N6—H6A0.915 (18)C12—H120.9500
N6—H6B0.90 (3)C12—C131.401 (4)
N7—C91.343 (3)C13—H130.9500
N1—Co1—N1i180.00 (11)C2—C3—H3120.6
N1—Co1—N2i89.66 (8)C4—C3—C2118.9 (3)
N1i—Co1—N2i90.34 (8)C4—C3—H3120.6
N1i—Co1—N289.66 (8)C3—C4—H4120.3
N1—Co1—N290.34 (8)C3—C4—C5119.3 (3)
N2—Co1—N2i180.0C5—C4—H4120.3
N3i—Co1—N191.88 (8)C4—C5—H5120.7
N3i—Co1—N1i88.12 (8)C6—C5—C4118.5 (3)
N3—Co1—N1i91.88 (8)C6—C5—H5120.7
N3—Co1—N188.12 (8)N2—C6—C5122.4 (2)
N3—Co1—N276.22 (8)N2—C6—C7110.8 (2)
N3i—Co1—N2i76.22 (8)C5—C6—C7126.7 (2)
N3i—Co1—N2103.78 (8)N3—C7—N5108.8 (2)
N3—Co1—N2i103.78 (8)N3—C7—C6120.3 (2)
N3—Co1—N3i180.0N5—C7—C6130.9 (2)
C1—N1—Co1167.9 (2)N4—C8—N5110.0 (2)
C2—N2—Co1125.03 (18)N4—C8—C9123.6 (2)
C2—N2—C6118.3 (2)N5—C8—C9126.3 (2)
C6—N2—Co1116.60 (16)N7—C9—C8116.4 (2)
N4—N3—Co1135.68 (16)N7—C9—C13124.2 (2)
C7—N3—Co1115.38 (17)C13—C9—C8119.4 (2)
C7—N3—N4108.9 (2)N7—C10—H10118.3
C8—N4—N3106.8 (2)N7—C10—C11123.4 (3)
C7—N5—N6125.1 (2)C11—C10—H10118.3
C7—N5—C8105.5 (2)C10—C11—H11120.4
C8—N5—N6129.2 (2)C12—C11—C10119.2 (3)
N5—N6—H6A101 (2)C12—C11—H11120.4
N5—N6—H6B107 (2)C11—C12—H12120.7
H6A—N6—H6B104 (3)C11—C12—C13118.5 (3)
C10—N7—C9116.7 (2)C13—C12—H12120.7
N1—C1—S1179.1 (2)C9—C13—C12117.9 (2)
N2—C2—H2118.8C9—C13—H13121.0
N2—C2—C3122.4 (3)C12—C13—H13121.0
C3—C2—H2118.8
Co1—N2—C2—C3175.97 (19)N7—C10—C11—C121.2 (4)
Co1—N2—C6—C5174.34 (19)C2—N2—C6—C52.8 (4)
Co1—N2—C6—C77.9 (3)C2—N2—C6—C7175.0 (2)
Co1—N3—N4—C8179.89 (18)C2—C3—C4—C51.4 (4)
Co1—N3—C7—N5179.68 (15)C3—C4—C5—C60.4 (4)
Co1—N3—C7—C63.2 (3)C4—C5—C6—N22.6 (4)
N2—C2—C3—C41.2 (4)C4—C5—C6—C7174.8 (2)
N2—C6—C7—N33.2 (3)C5—C6—C7—N3179.1 (2)
N2—C6—C7—N5173.2 (2)C5—C6—C7—N54.5 (4)
N3—N4—C8—N50.8 (3)C6—N2—C2—C30.9 (4)
N3—N4—C8—C9178.4 (2)C7—N3—N4—C81.2 (3)
N4—N3—C7—N51.2 (3)C7—N5—C8—N40.1 (3)
N4—N3—C7—C6175.9 (2)C7—N5—C8—C9179.1 (2)
N4—C8—C9—N7172.1 (2)C8—N5—C7—N30.7 (3)
N4—C8—C9—C137.6 (4)C8—N5—C7—C6176.0 (3)
N5—C8—C9—N78.8 (4)C8—C9—C13—C12178.3 (2)
N5—C8—C9—C13171.4 (2)C9—N7—C10—C110.9 (4)
N6—N5—C7—N3175.1 (2)C10—N7—C9—C8177.7 (2)
N6—N5—C7—C68.2 (4)C10—N7—C9—C132.5 (4)
N6—N5—C8—N4175.6 (2)C10—C11—C12—C131.7 (4)
N6—N5—C8—C93.5 (4)C11—C12—C13—C90.3 (4)
N7—C9—C13—C122.0 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···N70.90 (3)2.14 (3)2.861 (3)136 (3)
C5—H5···N60.952.533.135 (4)122
Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis(thiocyanato-κN)cobalt(II) (Co_B_120K) top
Crystal data top
[Co(NCS)2(C12H10N6)2]F(000) = 666
Mr = 651.61Dx = 1.582 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.4978 (5) ÅCell parameters from 7088 reflections
b = 9.5235 (4) Åθ = 2.7–28.3°
c = 12.7179 (5) ŵ = 0.83 mm1
β = 100.771 (1)°T = 120 K
V = 1368.07 (10) Å3Block, yellow
Z = 20.48 × 0.22 × 0.1 mm
Data collection top
CCD area detector
diffractometer
2799 independent reflections
Graphite monochromator2363 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.037
phi and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.755, Tmax = 0.884k = 1111
13084 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0223P)2 + 0.9469P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2799 reflectionsΔρmax = 0.26 e Å3
202 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01662 (10)
S10.47702 (4)0.70612 (5)0.14549 (4)0.02147 (12)
N10.51090 (14)0.58552 (17)0.35006 (12)0.0226 (3)
N20.54062 (13)0.70429 (16)0.57154 (11)0.0184 (3)
N30.33257 (12)0.59797 (16)0.48313 (11)0.0185 (3)
N40.21930 (13)0.56657 (16)0.43186 (12)0.0190 (3)
N50.22659 (12)0.78694 (15)0.48602 (11)0.0164 (3)
N60.19418 (14)0.92348 (16)0.51462 (14)0.0212 (3)
H6A0.1431 (18)0.911 (2)0.5580 (16)0.025*
H6B0.1556 (18)0.963 (2)0.4536 (18)0.025*
N70.00410 (13)0.82632 (16)0.35394 (12)0.0207 (3)
C10.49638 (15)0.63560 (19)0.26536 (14)0.0180 (4)
C20.64830 (16)0.7492 (2)0.61788 (14)0.0215 (4)
H20.7139970.6883520.6190970.026*
C30.66794 (16)0.8809 (2)0.66415 (14)0.0232 (4)
H30.7455710.9095060.6964110.028*
C40.57273 (16)0.9697 (2)0.66257 (15)0.0234 (4)
H40.5839731.0598170.6949830.028*
C50.46048 (16)0.9265 (2)0.61328 (14)0.0204 (4)
H50.3940570.9867690.6098380.024*
C60.44783 (15)0.79323 (19)0.56929 (13)0.0175 (4)
C70.33619 (15)0.72999 (19)0.51515 (13)0.0167 (4)
C80.15649 (15)0.68144 (19)0.43460 (14)0.0175 (4)
C90.02990 (15)0.69740 (18)0.38880 (14)0.0171 (4)
C100.11930 (16)0.8441 (2)0.31474 (15)0.0242 (4)
H100.1449400.9341090.2875960.029*
C110.20318 (16)0.7402 (2)0.31123 (15)0.0255 (4)
H110.2845900.7592520.2852910.031*
C120.16601 (17)0.6076 (2)0.34634 (15)0.0259 (4)
H120.2215050.5332820.3445120.031*
C130.04681 (16)0.5844 (2)0.38420 (14)0.0221 (4)
H130.0182850.4935040.4064560.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01448 (17)0.01855 (18)0.01672 (17)0.00225 (14)0.00261 (13)0.00024 (14)
S10.0220 (2)0.0208 (2)0.0215 (2)0.00129 (19)0.00387 (18)0.00472 (18)
N10.0232 (8)0.0235 (9)0.0219 (8)0.0013 (7)0.0058 (7)0.0004 (7)
N20.0165 (7)0.0221 (8)0.0163 (7)0.0003 (6)0.0029 (6)0.0009 (6)
N30.0153 (7)0.0204 (8)0.0191 (7)0.0000 (6)0.0016 (6)0.0007 (6)
N40.0146 (7)0.0208 (8)0.0208 (8)0.0017 (6)0.0011 (6)0.0003 (6)
N50.0140 (7)0.0164 (7)0.0187 (7)0.0010 (6)0.0034 (6)0.0006 (6)
N60.0194 (8)0.0170 (8)0.0270 (9)0.0034 (6)0.0040 (7)0.0032 (7)
N70.0184 (8)0.0197 (8)0.0224 (8)0.0009 (6)0.0002 (6)0.0012 (6)
C10.0135 (8)0.0174 (9)0.0235 (10)0.0003 (7)0.0046 (7)0.0028 (8)
C20.0163 (9)0.0267 (10)0.0213 (9)0.0015 (8)0.0036 (7)0.0004 (8)
C30.0196 (9)0.0286 (11)0.0210 (9)0.0035 (8)0.0026 (8)0.0013 (8)
C40.0242 (10)0.0248 (10)0.0210 (9)0.0035 (8)0.0038 (8)0.0045 (8)
C50.0190 (9)0.0210 (10)0.0214 (9)0.0018 (7)0.0044 (7)0.0010 (7)
C60.0163 (9)0.0221 (9)0.0149 (8)0.0002 (7)0.0051 (7)0.0024 (7)
C70.0153 (8)0.0196 (9)0.0158 (8)0.0020 (7)0.0047 (7)0.0018 (7)
C80.0155 (9)0.0202 (9)0.0171 (8)0.0003 (7)0.0035 (7)0.0007 (7)
C90.0167 (9)0.0183 (9)0.0164 (8)0.0012 (7)0.0031 (7)0.0010 (7)
C100.0202 (9)0.0232 (10)0.0276 (10)0.0046 (8)0.0004 (8)0.0015 (8)
C110.0159 (9)0.0338 (11)0.0258 (10)0.0000 (8)0.0016 (8)0.0008 (8)
C120.0227 (10)0.0294 (11)0.0241 (10)0.0103 (8)0.0003 (8)0.0009 (8)
C130.0247 (10)0.0192 (9)0.0210 (9)0.0015 (8)0.0003 (8)0.0003 (7)
Geometric parameters (Å, º) top
Co1—N12.0987 (15)N7—C101.336 (2)
Co1—N1i2.0987 (15)C2—H20.9500
Co1—N2i2.1616 (15)C2—C31.385 (3)
Co1—N22.1616 (15)C3—H30.9500
Co1—N3i2.1137 (14)C3—C41.381 (3)
Co1—N32.1138 (14)C4—H40.9500
S1—C11.6425 (18)C4—C51.388 (3)
N1—C11.161 (2)C5—H50.9500
N2—C21.338 (2)C5—C61.383 (3)
N2—C61.358 (2)C6—C71.468 (2)
N3—N41.376 (2)C8—C91.471 (2)
N3—C71.320 (2)C9—C131.386 (3)
N4—C81.315 (2)C10—H100.9500
N5—N61.419 (2)C10—C111.377 (3)
N5—C71.358 (2)C11—H110.9500
N5—C81.375 (2)C11—C121.381 (3)
N6—H6A0.89 (2)C12—H120.9500
N6—H6B0.90 (2)C12—C131.383 (3)
N7—C91.339 (2)C13—H130.9500
N1—Co1—N1i180.0C2—C3—H3120.6
N1—Co1—N289.33 (6)C4—C3—C2118.86 (17)
N1—Co1—N2i90.67 (6)C4—C3—H3120.6
N1i—Co1—N290.67 (6)C3—C4—H4120.3
N1i—Co1—N2i89.33 (6)C3—C4—C5119.49 (18)
N1—Co1—N3i93.19 (6)C5—C4—H4120.3
N1—Co1—N386.81 (6)C4—C5—H5120.9
N1i—Co1—N393.19 (6)C6—C5—C4118.27 (17)
N1i—Co1—N3i86.81 (6)C6—C5—H5120.9
N2—Co1—N2i180.0N2—C6—C5122.73 (16)
N3i—Co1—N2i76.49 (6)N2—C6—C7111.63 (15)
N3—Co1—N2i103.50 (6)C5—C6—C7125.64 (16)
N3i—Co1—N2103.50 (6)N3—C7—N5108.79 (15)
N3—Co1—N276.50 (6)N3—C7—C6120.67 (15)
N3i—Co1—N3180.0N5—C7—C6130.51 (16)
C1—N1—Co1168.40 (14)N4—C8—N5110.16 (15)
C2—N2—Co1125.63 (12)N4—C8—C9125.67 (16)
C2—N2—C6117.92 (16)N5—C8—C9124.16 (16)
C6—N2—Co1116.44 (11)N7—C9—C8115.60 (15)
N4—N3—Co1135.69 (11)N7—C9—C13123.64 (16)
C7—N3—Co1114.43 (11)C13—C9—C8120.76 (16)
C7—N3—N4109.01 (14)N7—C10—H10118.0
C8—N4—N3106.41 (14)N7—C10—C11124.09 (18)
C7—N5—N6124.80 (15)C11—C10—H10118.0
C7—N5—C8105.63 (14)C10—C11—H11120.8
C8—N5—N6129.29 (14)C10—C11—C12118.33 (17)
N5—N6—H6A105.7 (14)C12—C11—H11120.8
N5—N6—H6B105.8 (13)C11—C12—H12120.5
H6A—N6—H6B108.4 (19)C11—C12—C13119.03 (18)
C10—N7—C9116.60 (16)C13—C12—H12120.5
N1—C1—S1179.51 (17)C9—C13—H13120.9
N2—C2—H2118.6C12—C13—C9118.20 (18)
N2—C2—C3122.71 (17)C12—C13—H13120.9
C3—C2—H2118.6
Co1—N2—C2—C3178.73 (13)N7—C10—C11—C122.7 (3)
Co1—N2—C6—C5179.12 (13)C2—N2—C6—C50.5 (2)
Co1—N2—C6—C71.01 (18)C2—N2—C6—C7179.41 (15)
Co1—N3—N4—C8168.52 (13)C2—C3—C4—C51.1 (3)
Co1—N3—C7—N5171.13 (10)C3—C4—C5—C61.5 (3)
Co1—N3—C7—C66.9 (2)C4—C5—C6—N20.7 (3)
N2—C2—C3—C40.0 (3)C4—C5—C6—C7179.48 (16)
N2—C6—C7—N35.3 (2)C5—C6—C7—N3174.83 (16)
N2—C6—C7—N5172.26 (16)C5—C6—C7—N57.6 (3)
N3—N4—C8—N50.31 (19)C6—N2—C2—C30.8 (3)
N3—N4—C8—C9179.70 (15)C7—N3—N4—C80.27 (19)
N4—N3—C7—N50.12 (19)C7—N5—C8—N40.24 (19)
N4—N3—C7—C6177.92 (14)C7—N5—C8—C9179.64 (16)
N4—C8—C9—N7149.33 (17)C8—N5—C7—N30.06 (18)
N4—C8—C9—C1331.2 (3)C8—N5—C7—C6177.85 (17)
N5—C8—C9—N730.0 (2)C8—C9—C13—C12176.13 (16)
N5—C8—C9—C13149.47 (17)C9—N7—C10—C111.8 (3)
N6—N5—C7—N3174.49 (15)C10—N7—C9—C8178.21 (15)
N6—N5—C7—C67.7 (3)C10—N7—C9—C131.2 (3)
N6—N5—C8—N4174.33 (16)C10—C11—C12—C130.5 (3)
N6—N5—C8—C96.3 (3)C11—C12—C13—C92.3 (3)
N7—C9—C13—C123.3 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···S1ii0.89 (2)2.63 (2)3.4758 (17)159.9 (18)
N6—H6B···N70.90 (2)2.41 (2)2.914 (2)115.6 (16)
C5—H5···N60.952.463.084 (2)123
Symmetry code: (ii) x1/2, y+3/2, z+1/2.
Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis(thiocyanato-κN)nickel(II) (Ni_A_120K) top
Crystal data top
[Ni(NCS)2(C12H10N6)2]F(000) = 668
Mr = 651.39Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4041 (7) ÅCell parameters from 5417 reflections
b = 10.0681 (9) Åθ = 2.4–28.3°
c = 16.2360 (14) ŵ = 0.91 mm1
β = 93.060 (2)°T = 120 K
V = 1371.8 (2) Å3Block, violet
Z = 20.2 × 0.12 × 0.08 mm
Data collection top
Bruker D8 VENTURE
diffractometer
2819 independent reflections
Radiation source: fine-focus sealed tube2161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.781, Tmax = 0.936k = 1212
15450 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.037P)2 + 0.9816P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2819 reflectionsΔρmax = 0.48 e Å3
202 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.01868 (13)
S10.26497 (8)0.71955 (7)0.25670 (4)0.03080 (18)
N10.3946 (2)0.5705 (2)0.38980 (13)0.0232 (5)
N20.7167 (2)0.5919 (2)0.47342 (12)0.0215 (5)
N30.4739 (2)0.6856 (2)0.54834 (12)0.0227 (5)
N40.3551 (2)0.7556 (2)0.58167 (12)0.0206 (5)
N50.5684 (2)0.8809 (2)0.57977 (12)0.0221 (5)
N60.6807 (3)0.9858 (2)0.59360 (15)0.0283 (5)
H6A0.736 (3)0.958 (3)0.6456 (18)0.034*
H6B0.626 (3)1.057 (3)0.6073 (17)0.034*
N70.3922 (2)1.0973 (2)0.64693 (13)0.0245 (5)
C10.3403 (3)0.6317 (2)0.33474 (16)0.0213 (5)
C20.8299 (3)0.5388 (3)0.42949 (16)0.0238 (6)
H20.8113950.4544600.4044880.029*
C30.9737 (3)0.6021 (3)0.41898 (16)0.0266 (6)
H31.0515160.5626340.3863810.032*
C41.0023 (3)0.7228 (3)0.45632 (16)0.0281 (6)
H41.1013670.7666570.4509930.034*
C50.8857 (3)0.7800 (3)0.50177 (16)0.0252 (6)
H50.9030750.8632830.5282220.030*
C60.7435 (3)0.7131 (3)0.50774 (15)0.0221 (5)
C70.6016 (3)0.7616 (2)0.54657 (15)0.0216 (5)
C80.4127 (3)0.8732 (3)0.60082 (15)0.0223 (5)
C90.3233 (3)0.9779 (2)0.64037 (15)0.0223 (6)
C130.3135 (3)1.1913 (3)0.68588 (16)0.0264 (6)
H130.3616181.2762910.6923250.032*
C120.1651 (3)1.1718 (3)0.71752 (15)0.0256 (6)
H120.1139521.2414270.7454480.031*
C110.0934 (3)1.0491 (3)0.70755 (16)0.0266 (6)
H110.0093821.0335030.7272100.032*
C100.1735 (3)0.9489 (3)0.66848 (16)0.0247 (6)
H100.1277020.8632260.6610920.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0143 (2)0.0209 (2)0.0211 (2)0.00047 (19)0.00328 (17)0.0002 (2)
S10.0281 (4)0.0350 (4)0.0286 (4)0.0053 (3)0.0039 (3)0.0032 (3)
N10.0168 (10)0.0280 (12)0.0248 (11)0.0015 (9)0.0026 (9)0.0006 (10)
N20.0163 (10)0.0246 (12)0.0237 (11)0.0007 (9)0.0015 (9)0.0044 (9)
N30.0175 (10)0.0265 (12)0.0240 (11)0.0009 (9)0.0016 (9)0.0011 (9)
N40.0172 (10)0.0211 (12)0.0235 (11)0.0011 (8)0.0022 (9)0.0014 (9)
N50.0192 (10)0.0237 (12)0.0234 (11)0.0026 (9)0.0012 (9)0.0004 (9)
N60.0215 (11)0.0277 (13)0.0355 (13)0.0071 (10)0.0006 (10)0.0037 (11)
N70.0232 (11)0.0240 (12)0.0264 (11)0.0014 (9)0.0023 (9)0.0020 (10)
C10.0147 (12)0.0232 (13)0.0266 (14)0.0013 (10)0.0055 (11)0.0055 (11)
C20.0201 (12)0.0258 (14)0.0256 (13)0.0042 (10)0.0011 (11)0.0037 (11)
C30.0177 (12)0.0316 (15)0.0306 (15)0.0038 (11)0.0038 (11)0.0067 (12)
C40.0170 (12)0.0339 (15)0.0333 (15)0.0021 (11)0.0018 (11)0.0070 (13)
C50.0194 (12)0.0288 (14)0.0274 (14)0.0038 (11)0.0001 (11)0.0011 (12)
C60.0179 (12)0.0257 (14)0.0225 (13)0.0003 (11)0.0010 (10)0.0041 (11)
C70.0203 (12)0.0244 (14)0.0200 (12)0.0012 (11)0.0003 (10)0.0017 (10)
C80.0200 (12)0.0282 (14)0.0188 (12)0.0004 (11)0.0009 (10)0.0034 (11)
C90.0233 (12)0.0216 (14)0.0217 (13)0.0007 (10)0.0003 (10)0.0021 (10)
C130.0252 (13)0.0273 (15)0.0266 (14)0.0020 (11)0.0008 (11)0.0047 (12)
C120.0279 (13)0.0268 (14)0.0223 (14)0.0026 (11)0.0022 (11)0.0030 (11)
C110.0252 (13)0.0298 (14)0.0252 (14)0.0015 (12)0.0046 (11)0.0043 (12)
C100.0262 (13)0.0221 (13)0.0255 (13)0.0025 (11)0.0007 (11)0.0023 (11)
Geometric parameters (Å, º) top
Ni1—N1i2.079 (2)N7—C131.333 (3)
Ni1—N12.079 (2)C2—H20.9500
Ni1—N22.1076 (19)C2—C31.386 (3)
Ni1—N2i2.1076 (19)C3—H30.9500
Ni1—N32.043 (2)C3—C41.373 (4)
Ni1—N3i2.043 (2)C4—H40.9500
S1—C11.644 (3)C4—C51.384 (4)
N1—C11.159 (3)C5—H50.9500
N2—C21.331 (3)C5—C61.380 (3)
N2—C61.356 (3)C6—C71.462 (3)
N3—N41.358 (3)C8—C91.463 (3)
N3—C71.320 (3)C9—C101.392 (3)
N4—C81.310 (3)C13—H130.9500
N5—N61.426 (3)C13—C121.388 (4)
N5—C71.352 (3)C12—H120.9500
N5—C81.373 (3)C12—C111.381 (4)
N6—H6A0.98 (3)C11—H110.9500
N6—H6B0.88 (3)C11—C101.384 (4)
N7—C91.337 (3)C10—H100.9500
N1i—Ni1—N1180.0C2—C3—H3120.4
N1—Ni1—N2i89.60 (8)C4—C3—C2119.1 (2)
N1i—Ni1—N289.60 (8)C4—C3—H3120.4
N1—Ni1—N290.40 (8)C3—C4—H4120.3
N1i—Ni1—N2i90.40 (8)C3—C4—C5119.4 (2)
N2i—Ni1—N2180.0C5—C4—H4120.3
N3—Ni1—N188.21 (8)C4—C5—H5120.8
N3—Ni1—N1i91.79 (8)C6—C5—C4118.4 (2)
N3i—Ni1—N1i88.21 (8)C6—C5—H5120.8
N3i—Ni1—N191.79 (8)N2—C6—C5122.4 (2)
N3—Ni1—N2i102.19 (8)N2—C6—C7110.9 (2)
N3i—Ni1—N2i77.81 (8)C5—C6—C7126.6 (2)
N3—Ni1—N277.81 (8)N3—C7—N5108.7 (2)
N3i—Ni1—N2102.19 (8)N3—C7—C6119.9 (2)
N3—Ni1—N3i180.0N5—C7—C6131.2 (2)
C1—N1—Ni1167.9 (2)N4—C8—N5109.7 (2)
C2—N2—Ni1125.68 (18)N4—C8—C9124.3 (2)
C2—N2—C6118.3 (2)N5—C8—C9126.0 (2)
C6—N2—Ni1115.94 (16)N7—C9—C8116.9 (2)
N4—N3—Ni1136.40 (16)N7—C9—C10123.9 (2)
C7—N3—Ni1114.70 (16)C10—C9—C8119.2 (2)
C7—N3—N4108.9 (2)N7—C13—H13118.2
C8—N4—N3107.07 (19)N7—C13—C12123.6 (2)
C7—N5—N6124.9 (2)C12—C13—H13118.2
C7—N5—C8105.6 (2)C13—C12—H12120.7
C8—N5—N6129.4 (2)C11—C12—C13118.6 (2)
N5—N6—H6A101.7 (17)C11—C12—H12120.7
N5—N6—H6B106.7 (19)C12—C11—H11120.5
H6A—N6—H6B104 (2)C12—C11—C10119.1 (2)
C13—N7—C9116.9 (2)C10—C11—H11120.5
N1—C1—S1179.4 (2)C9—C10—H10121.0
N2—C2—H2118.9C11—C10—C9117.9 (2)
N2—C2—C3122.3 (2)C11—C10—H10121.0
C3—C2—H2118.9
Ni1—N2—C2—C3175.85 (18)N7—C13—C12—C110.8 (4)
Ni1—N2—C6—C5174.22 (19)C2—N2—C6—C52.9 (4)
Ni1—N2—C6—C78.4 (3)C2—N2—C6—C7174.4 (2)
Ni1—N3—N4—C8179.20 (18)C2—C3—C4—C51.6 (4)
Ni1—N3—C7—N5179.72 (15)C3—C4—C5—C60.2 (4)
Ni1—N3—C7—C63.4 (3)C4—C5—C6—N22.5 (4)
N2—C2—C3—C41.3 (4)C4—C5—C6—C7174.4 (2)
N2—C6—C7—N33.5 (3)C5—C6—C7—N3179.3 (2)
N2—C6—C7—N5172.0 (2)C5—C6—C7—N55.2 (4)
N3—N4—C8—N50.4 (3)C6—N2—C2—C31.0 (4)
N3—N4—C8—C9178.4 (2)C7—N3—N4—C80.8 (3)
N4—N3—C7—N50.9 (3)C7—N5—C8—N40.2 (3)
N4—N3—C7—C6175.4 (2)C7—N5—C8—C9178.9 (2)
N4—C8—C9—N7172.2 (2)C8—N5—C7—N30.7 (3)
N4—C8—C9—C107.6 (4)C8—N5—C7—C6175.1 (3)
N5—C8—C9—N79.2 (4)C8—C9—C10—C11178.4 (2)
N5—C8—C9—C10171.0 (2)C9—N7—C13—C121.5 (4)
N6—N5—C7—N3175.5 (2)C13—N7—C9—C8177.4 (2)
N6—N5—C7—C68.7 (4)C13—N7—C9—C102.8 (4)
N6—N5—C8—N4175.7 (2)C13—C12—C11—C101.7 (4)
N6—N5—C8—C93.0 (4)C12—C11—C10—C90.5 (4)
N7—C9—C10—C111.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···S1ii0.98 (3)2.54 (3)3.404 (3)146 (2)
N6—H6B···N70.88 (3)2.14 (3)2.848 (3)137 (3)
C2—H2···N4i0.952.553.347 (3)141
C5—H5···N60.952.523.124 (4)122
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis(thiocyanato-κN)nickel(II) (Ni_B_120K) top
Crystal data top
[Ni(NCS)2(C12H10N6)2]F(000) = 668
Mr = 651.39Dx = 1.554 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5860 (14) ÅCell parameters from 2373 reflections
b = 9.5489 (12) Åθ = 2.2–25.7°
c = 12.8132 (16) ŵ = 0.89 mm1
β = 100.806 (2)°T = 120 K
V = 1392.4 (3) Å3Prism, clear light violet
Z = 20.2 × 0.13 × 0.04 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2552 independent reflections
Radiation source: sealed X-ray tube1666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
Detector resolution: 7.9 pixels mm-1θmax = 25.3°, θmin = 2.2°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1111
Tmin = 0.746, Tmax = 0.948l = 1415
12077 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0465P)2 + 2.8959P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2552 reflectionsΔρmax = 0.61 e Å3
202 parametersΔρmin = 0.66 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.0168 (3)
S10.47860 (11)0.70416 (15)0.14676 (11)0.0220 (3)
N10.5113 (3)0.5822 (5)0.3520 (4)0.0227 (10)
N20.5425 (3)0.6994 (4)0.5705 (3)0.0208 (10)
N30.3342 (3)0.5953 (5)0.4815 (3)0.0190 (10)
N40.2208 (3)0.5626 (4)0.4299 (3)0.0195 (10)
N50.2283 (3)0.7837 (4)0.4860 (3)0.0171 (9)
N60.1968 (4)0.9206 (5)0.5157 (4)0.0209 (10)
H6A0.149 (5)0.912 (6)0.557 (4)0.025*
H6B0.170 (5)0.957 (6)0.456 (5)0.025*
N70.0044 (4)0.8256 (4)0.3548 (4)0.0245 (11)
C10.4981 (4)0.6330 (5)0.2662 (4)0.0176 (11)
C20.6509 (4)0.7460 (6)0.6167 (4)0.0235 (12)
H20.7163630.6859780.6167050.028*
C30.6708 (5)0.8768 (6)0.6638 (4)0.0241 (13)
H30.7477430.9049410.6966170.029*
C40.5754 (4)0.9656 (5)0.6617 (4)0.0223 (12)
H40.5865191.0555400.6937380.027*
C50.4632 (4)0.9227 (6)0.6125 (4)0.0227 (12)
H50.3974400.9829740.6094090.027*
C60.4505 (4)0.7909 (5)0.5685 (4)0.0187 (11)
C70.3383 (4)0.7267 (5)0.5142 (4)0.0191 (11)
C80.1580 (4)0.6780 (5)0.4334 (4)0.0174 (11)
C90.0311 (4)0.6930 (5)0.3886 (4)0.0190 (12)
C130.1184 (4)0.8423 (6)0.3164 (4)0.0245 (13)
H130.1444540.9323170.2904140.029*
C120.2017 (4)0.7375 (6)0.3116 (4)0.0259 (13)
H120.2823770.7563100.2851210.031*
C110.1646 (5)0.6039 (6)0.3465 (4)0.0277 (13)
H110.2198340.5300720.3453270.033*
C100.0454 (4)0.5804 (5)0.3831 (4)0.0225 (12)
H100.0170190.4893290.4039350.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0117 (4)0.0160 (5)0.0217 (5)0.0020 (4)0.0005 (4)0.0001 (5)
S10.0186 (7)0.0204 (7)0.0262 (8)0.0022 (6)0.0021 (6)0.0045 (6)
N10.011 (2)0.025 (3)0.031 (3)0.0021 (19)0.0010 (19)0.006 (2)
N20.014 (2)0.023 (3)0.024 (3)0.0006 (19)0.0003 (18)0.002 (2)
N30.013 (2)0.020 (2)0.022 (2)0.0003 (18)0.0021 (18)0.001 (2)
N40.014 (2)0.016 (2)0.026 (3)0.0044 (18)0.0023 (18)0.001 (2)
N50.013 (2)0.014 (2)0.023 (2)0.0011 (18)0.0010 (17)0.001 (2)
N60.019 (2)0.016 (3)0.028 (3)0.004 (2)0.005 (2)0.002 (2)
N70.014 (2)0.017 (3)0.040 (3)0.0047 (18)0.001 (2)0.002 (2)
C10.011 (2)0.017 (3)0.025 (3)0.001 (2)0.004 (2)0.001 (2)
C20.019 (3)0.025 (3)0.025 (3)0.003 (2)0.002 (2)0.002 (2)
C30.020 (3)0.024 (3)0.025 (3)0.005 (2)0.003 (2)0.001 (3)
C40.018 (3)0.018 (3)0.030 (3)0.002 (2)0.004 (2)0.005 (2)
C50.016 (3)0.023 (3)0.028 (3)0.000 (2)0.001 (2)0.004 (3)
C60.017 (3)0.019 (3)0.019 (3)0.001 (2)0.000 (2)0.003 (2)
C70.016 (3)0.017 (3)0.023 (3)0.004 (2)0.002 (2)0.002 (2)
C80.012 (2)0.017 (3)0.022 (3)0.001 (2)0.001 (2)0.003 (2)
C90.017 (3)0.018 (3)0.020 (3)0.004 (2)0.000 (2)0.001 (2)
C130.018 (3)0.021 (3)0.033 (3)0.004 (2)0.001 (2)0.003 (3)
C120.011 (3)0.032 (3)0.032 (3)0.002 (2)0.002 (2)0.002 (3)
C110.025 (3)0.028 (3)0.029 (3)0.010 (3)0.003 (2)0.005 (3)
C100.027 (3)0.013 (3)0.025 (3)0.001 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
Ni1—N12.080 (5)N7—C131.331 (6)
Ni1—N1i2.080 (5)C2—H20.9500
Ni1—N2i2.126 (4)C2—C31.388 (7)
Ni1—N22.126 (4)C3—H30.9500
Ni1—N32.098 (4)C3—C41.390 (7)
Ni1—N3i2.098 (4)C4—H40.9500
S1—C11.651 (5)C4—C51.395 (7)
N1—C11.184 (6)C5—H50.9500
N2—C21.359 (6)C5—C61.376 (7)
N2—C61.375 (6)C6—C71.487 (7)
N3—N41.391 (5)C8—C91.482 (7)
N3—C71.321 (6)C9—C101.386 (7)
N4—C81.325 (6)C13—H130.9500
N5—N61.429 (6)C13—C121.383 (7)
N5—C71.371 (6)C12—H120.9500
N5—C81.389 (6)C12—C111.393 (8)
N6—H6A0.84 (5)C11—H110.9500
N6—H6B0.84 (6)C11—C101.392 (7)
N7—C91.376 (6)C10—H100.9500
N1—Ni1—N1i180.0C2—C3—H3120.8
N1i—Ni1—N289.98 (17)C2—C3—C4118.3 (5)
N1—Ni1—N290.02 (17)C4—C3—H3120.8
N1i—Ni1—N2i90.02 (17)C3—C4—H4120.0
N1—Ni1—N2i89.98 (17)C3—C4—C5120.0 (5)
N1—Ni1—N386.93 (16)C5—C4—H4120.0
N1—Ni1—N3i93.07 (16)C4—C5—H5120.9
N1i—Ni1—N3i86.93 (16)C6—C5—C4118.2 (5)
N1i—Ni1—N393.07 (16)C6—C5—H5120.9
N2—Ni1—N2i180.0N2—C6—C5123.4 (5)
N3—Ni1—N278.10 (16)N2—C6—C7110.7 (4)
N3—Ni1—N2i101.90 (16)C5—C6—C7125.9 (5)
N3i—Ni1—N2101.90 (16)N3—C7—N5108.5 (4)
N3i—Ni1—N2i78.10 (16)N3—C7—C6121.1 (4)
N3—Ni1—N3i180.0N5—C7—C6130.4 (5)
C1—N1—Ni1168.9 (4)N4—C8—N5110.2 (4)
C2—N2—Ni1126.8 (3)N4—C8—C9125.3 (5)
C2—N2—C6116.8 (4)N5—C8—C9124.5 (4)
C6—N2—Ni1116.4 (3)N7—C9—C8115.3 (4)
N4—N3—Ni1136.0 (3)N7—C9—C10123.1 (5)
C7—N3—Ni1113.5 (3)C10—C9—C8121.5 (5)
C7—N3—N4109.7 (4)N7—C13—H13117.8
C8—N4—N3105.9 (4)N7—C13—C12124.4 (5)
C7—N5—N6124.3 (4)C12—C13—H13117.8
C7—N5—C8105.7 (4)C13—C12—H12120.7
C8—N5—N6129.7 (4)C13—C12—C11118.6 (5)
N5—N6—H6A108 (4)C11—C12—H12120.7
N5—N6—H6B102 (4)C12—C11—H11120.6
H6A—N6—H6B116 (5)C10—C11—C12118.8 (5)
C13—N7—C9116.4 (5)C10—C11—H11120.6
N1—C1—S1179.5 (5)C9—C10—C11118.5 (5)
N2—C2—H2118.4C9—C10—H10120.8
N2—C2—C3123.2 (5)C11—C10—H10120.8
C3—C2—H2118.4
Ni1—N2—C2—C3178.1 (4)N7—C13—C12—C111.8 (9)
Ni1—N2—C6—C5178.8 (4)C2—N2—C6—C51.6 (7)
Ni1—N2—C6—C70.7 (5)C2—N2—C6—C7179.0 (4)
Ni1—N3—N4—C8169.4 (4)C2—C3—C4—C50.4 (8)
Ni1—N3—C7—N5172.2 (3)C3—C4—C5—C61.1 (8)
Ni1—N3—C7—C66.0 (6)C4—C5—C6—N20.1 (8)
N2—C2—C3—C41.4 (8)C4—C5—C6—C7179.3 (5)
N2—C6—C7—N34.5 (7)C5—C6—C7—N3175.0 (5)
N2—C6—C7—N5173.3 (5)C5—C6—C7—N57.3 (9)
N3—N4—C8—N50.0 (6)C6—N2—C2—C32.3 (8)
N3—N4—C8—C9179.7 (5)C7—N3—N4—C80.3 (6)
N4—N3—C7—N50.5 (6)C7—N5—C8—N40.3 (6)
N4—N3—C7—C6177.7 (4)C7—N5—C8—C9180.0 (5)
N4—C8—C9—N7150.3 (5)C8—N5—C7—N30.5 (6)
N4—C8—C9—C1030.6 (8)C8—N5—C7—C6177.5 (5)
N5—C8—C9—N730.0 (7)C8—C9—C10—C11175.9 (5)
N5—C8—C9—C10149.1 (5)C9—N7—C13—C122.1 (8)
N6—N5—C7—N3174.7 (4)C13—N7—C9—C8178.6 (5)
N6—N5—C7—C67.4 (8)C13—N7—C9—C100.5 (8)
N6—N5—C8—N4174.5 (5)C13—C12—C11—C101.0 (8)
N6—N5—C8—C95.2 (8)C12—C11—C10—C93.3 (8)
N7—C9—C10—C113.1 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···S1ii0.84 (5)2.70 (5)3.496 (5)159 (5)
N6—H6B···N70.84 (6)2.52 (5)2.950 (6)112 (4)
C2—H2···N4i0.952.593.403 (7)144
C5—H5···N60.952.483.104 (7)123
C10—H10···S1iii0.952.853.710 (5)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis(thiocyanato-κN)cobalt(II) (Co_A_300K) top
Crystal data top
[Co(NCS)2(C12H10N6)2]F(000) = 666
Mr = 651.61Dx = 1.507 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.487 (5) ÅCell parameters from 1789 reflections
b = 10.249 (6) Åθ = 2.3–23.5°
c = 16.539 (10) ŵ = 0.79 mm1
β = 93.419 (13)°T = 300 K
V = 1435.9 (14) Å3Block, orange
Z = 20.24 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2605 independent reflections
Radiation source: sealed X-ray tube1378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 7.9 pixels mm-1θmax = 25.3°, θmin = 2.3°
ω scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1112
Tmin = 0.683, Tmax = 0.921l = 1914
7130 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.6349P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2605 reflectionsΔρmax = 0.36 e Å3
202 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 3 sets of ω scans each set at different φ and/or 2θ angles and each scan (12 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 4.424 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.0445 (4)
S10.26053 (19)0.71708 (19)0.25941 (11)0.0746 (6)
N10.3930 (5)0.5697 (5)0.3897 (3)0.0568 (13)
N20.7168 (5)0.5995 (5)0.4751 (3)0.0508 (12)
N30.4749 (5)0.6868 (4)0.5487 (3)0.0500 (12)
N40.3570 (5)0.7562 (4)0.5823 (3)0.0493 (12)
N50.5682 (5)0.8814 (5)0.5806 (3)0.0501 (12)
N60.6770 (6)0.9865 (5)0.5939 (4)0.0659 (15)
H6A0.729 (8)0.971 (6)0.644 (4)0.079*
H6B0.641 (7)1.063 (6)0.605 (4)0.079*
N70.3926 (5)1.0926 (5)0.6491 (3)0.0598 (13)
C10.3378 (6)0.6297 (6)0.3362 (4)0.0508 (15)
C20.8306 (6)0.5461 (6)0.4329 (4)0.0569 (16)
H20.8150220.4640320.4098260.068*
C30.9707 (6)0.6115 (7)0.4232 (4)0.0635 (18)
H31.0476830.5747820.3925470.076*
C40.9953 (6)0.7307 (7)0.4591 (4)0.0668 (18)
H41.0904600.7739230.4535600.080*
C50.8797 (6)0.7881 (6)0.5037 (4)0.0616 (17)
H50.8950200.8690130.5283190.074*
C60.7417 (6)0.7193 (6)0.5096 (3)0.0492 (14)
C70.6005 (6)0.7637 (6)0.5467 (3)0.0502 (14)
C80.4133 (6)0.8721 (6)0.6019 (3)0.0488 (14)
C90.3251 (6)0.9744 (5)0.6414 (4)0.0511 (15)
C100.3131 (7)1.1837 (6)0.6880 (4)0.0669 (18)
H100.3594301.2654720.6948350.080*
C110.1694 (7)1.1648 (6)0.7181 (4)0.0646 (18)
H110.1192291.2310760.7451300.077*
C120.1002 (7)1.0424 (6)0.7069 (4)0.0638 (17)
H120.0012791.0262390.7261260.077*
C130.1781 (7)0.9442 (6)0.6671 (4)0.0571 (15)
H130.1331170.8622980.6582340.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0312 (5)0.0473 (6)0.0557 (7)0.0001 (5)0.0077 (4)0.0023 (6)
S10.0655 (10)0.0833 (13)0.0734 (12)0.0146 (10)0.0092 (9)0.0104 (10)
N10.047 (3)0.060 (3)0.064 (4)0.004 (3)0.010 (3)0.006 (3)
N20.031 (2)0.060 (3)0.061 (3)0.002 (2)0.008 (2)0.010 (3)
N30.035 (2)0.057 (3)0.058 (3)0.001 (2)0.008 (2)0.004 (2)
N40.037 (2)0.047 (3)0.064 (3)0.003 (2)0.011 (2)0.000 (2)
N50.037 (2)0.056 (3)0.057 (3)0.007 (2)0.001 (2)0.001 (3)
N60.054 (3)0.056 (3)0.087 (4)0.020 (3)0.005 (3)0.004 (3)
N70.051 (3)0.058 (3)0.070 (4)0.006 (3)0.004 (3)0.007 (3)
C10.035 (3)0.065 (4)0.054 (4)0.000 (3)0.010 (3)0.003 (3)
C20.041 (3)0.065 (4)0.066 (4)0.010 (3)0.014 (3)0.014 (3)
C30.041 (3)0.075 (5)0.076 (5)0.010 (3)0.017 (3)0.014 (4)
C40.032 (3)0.081 (5)0.088 (5)0.006 (3)0.009 (3)0.014 (4)
C50.042 (3)0.070 (4)0.073 (4)0.009 (3)0.008 (3)0.008 (4)
C60.035 (3)0.054 (4)0.059 (4)0.002 (3)0.001 (3)0.005 (3)
C70.041 (3)0.055 (4)0.055 (4)0.001 (3)0.003 (3)0.007 (3)
C80.041 (3)0.055 (4)0.050 (4)0.002 (3)0.002 (3)0.008 (3)
C90.048 (3)0.043 (4)0.061 (4)0.004 (3)0.002 (3)0.003 (3)
C100.067 (4)0.058 (4)0.077 (5)0.009 (3)0.012 (4)0.017 (4)
C110.063 (4)0.063 (4)0.068 (5)0.006 (3)0.012 (3)0.010 (4)
C120.060 (4)0.071 (5)0.061 (4)0.002 (3)0.011 (3)0.012 (4)
C130.056 (4)0.051 (4)0.065 (4)0.005 (3)0.005 (3)0.002 (3)
Geometric parameters (Å, º) top
Co1—N12.113 (5)N7—C101.338 (7)
Co1—N1i2.113 (5)C2—H20.9300
Co1—N2i2.164 (4)C2—C31.383 (8)
Co1—N22.164 (4)C3—H30.9300
Co1—N3i2.093 (5)C3—C41.368 (9)
Co1—N32.093 (5)C4—H40.9300
S1—C11.657 (7)C4—C51.393 (8)
N1—C11.154 (7)C5—H50.9300
N2—C21.342 (7)C5—C61.375 (7)
N2—C61.365 (7)C6—C71.451 (7)
N3—N41.372 (6)C8—C91.464 (8)
N3—C71.327 (6)C9—C131.377 (7)
N4—C81.314 (6)C10—H100.9300
N5—N61.427 (6)C10—C111.358 (8)
N5—C71.366 (7)C11—H110.9300
N5—C81.384 (6)C11—C121.393 (8)
N6—H6A0.92 (6)C12—H120.9300
N6—H6B0.86 (6)C12—C131.391 (8)
N7—C91.343 (7)C13—H130.9300
N1—Co1—N1i180.00 (15)C2—C3—H3120.2
N1—Co1—N2i89.83 (17)C4—C3—C2119.5 (6)
N1i—Co1—N2i90.17 (17)C4—C3—H3120.2
N1i—Co1—N289.82 (17)C3—C4—H4119.6
N1—Co1—N290.18 (17)C3—C4—C5120.8 (6)
N2—Co1—N2i180.0C5—C4—H4119.6
N3—Co1—N188.54 (19)C4—C5—H5121.6
N3—Co1—N1i91.46 (19)C6—C5—C4116.8 (6)
N3i—Co1—N1i88.54 (19)C6—C5—H5121.6
N3i—Co1—N191.46 (19)N2—C6—C5122.9 (5)
N3i—Co1—N2104.51 (17)N2—C6—C7110.3 (5)
N3—Co1—N2i104.51 (17)C5—C6—C7126.7 (6)
N3—Co1—N275.49 (17)N3—C7—N5109.4 (5)
N3i—Co1—N2i75.49 (17)N3—C7—C6120.6 (5)
N3i—Co1—N3180.0N5—C7—C6129.9 (5)
C1—N1—Co1167.5 (5)N4—C8—N5109.7 (5)
C2—N2—Co1123.6 (4)N4—C8—C9124.7 (5)
C2—N2—C6119.1 (5)N5—C8—C9125.6 (5)
C6—N2—Co1117.2 (3)N7—C9—C8117.5 (5)
N4—N3—Co1136.3 (3)N7—C9—C13124.2 (5)
C7—N3—Co1115.6 (4)C13—C9—C8118.3 (5)
C7—N3—N4108.0 (5)N7—C10—H10117.7
C8—N4—N3107.7 (4)N7—C10—C11124.5 (6)
C7—N5—N6125.9 (4)C11—C10—H10117.7
C7—N5—C8105.1 (4)C10—C11—H11121.3
C8—N5—N6128.9 (5)C10—C11—C12117.4 (6)
N5—N6—H6A106 (4)C12—C11—H11121.3
N5—N6—H6B119 (4)C11—C12—H12119.8
H6A—N6—H6B97 (6)C13—C12—C11120.4 (6)
C10—N7—C9116.8 (5)C13—C12—H12119.8
N1—C1—S1179.3 (6)C9—C13—C12116.6 (6)
N2—C2—H2119.5C9—C13—H13121.7
N2—C2—C3120.9 (6)C12—C13—H13121.7
C3—C2—H2119.5
Co1—N2—C2—C3176.0 (4)N7—C10—C11—C120.6 (10)
Co1—N2—C6—C5174.9 (4)C2—N2—C6—C50.6 (8)
Co1—N2—C6—C79.1 (6)C2—N2—C6—C7175.5 (4)
Co1—N3—N4—C8179.8 (4)C2—C3—C4—C51.4 (9)
Co1—N3—C7—N5179.6 (3)C3—C4—C5—C60.0 (9)
Co1—N3—C7—C62.4 (7)C4—C5—C6—N21.0 (8)
N2—C2—C3—C41.8 (9)C4—C5—C6—C7174.4 (5)
N2—C6—C7—N34.5 (7)C5—C6—C7—N3179.6 (5)
N2—C6—C7—N5173.1 (5)C5—C6—C7—N52.8 (10)
N3—N4—C8—N50.8 (6)C6—N2—C2—C30.8 (8)
N3—N4—C8—C9178.4 (5)C7—N3—N4—C81.6 (6)
N4—N3—C7—N51.7 (6)C7—N5—C8—N40.3 (6)
N4—N3—C7—C6176.3 (4)C7—N5—C8—C9179.5 (5)
N4—C8—C9—N7172.5 (5)C8—N5—C7—N31.2 (6)
N4—C8—C9—C136.6 (9)C8—N5—C7—C6176.5 (5)
N5—C8—C9—N78.4 (8)C8—C9—C13—C12177.7 (5)
N5—C8—C9—C13172.5 (5)C9—N7—C10—C111.4 (9)
N6—N5—C7—N3176.0 (5)C10—N7—C9—C8177.6 (5)
N6—N5—C7—C66.3 (9)C10—N7—C9—C133.4 (9)
N6—N5—C8—N4176.8 (5)C10—C11—C12—C130.7 (9)
N6—N5—C8—C92.4 (9)C11—C12—C13—C91.0 (9)
N7—C9—C13—C123.2 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···S1ii0.92 (6)2.72 (6)3.481 (7)140 (5)
N6—H6B···N70.86 (6)2.29 (6)2.847 (7)122 (5)
C5—H5···N60.932.513.103 (8)122
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.
Bis[4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole-κ2N2,N3]bis(thiocyanato-κN)cobalt(II) (Co_B_300K) top
Crystal data top
[Co(NCS)2(C12H10N6)2]F(000) = 666
Mr = 651.61Dx = 1.545 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5855 (6) ÅCell parameters from 3211 reflections
b = 9.5998 (5) Åθ = 2.7–28.2°
c = 12.8411 (6) ŵ = 0.81 mm1
β = 101.300 (1)°T = 300 K
V = 1400.48 (12) Å3Prism, orange
Z = 20.48 × 0.22 × 0.1 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2565 independent reflections
Graphite monochromator2034 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.031
ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.805, Tmax = 0.887k = 1110
7562 measured reflectionsl = 915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.514P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2565 reflectionsΔρmax = 0.22 e Å3
202 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 3 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 4.424 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.03629 (14)
S10.47957 (6)0.70374 (7)0.14959 (5)0.04980 (19)
N10.51074 (18)0.5839 (2)0.35102 (17)0.0491 (5)
N20.54071 (15)0.7033 (2)0.57087 (14)0.0383 (5)
N30.33383 (15)0.5982 (2)0.48281 (15)0.0386 (5)
N40.22058 (16)0.5665 (2)0.43212 (15)0.0401 (5)
N50.22794 (15)0.7846 (2)0.48682 (14)0.0345 (4)
N60.19643 (19)0.9198 (2)0.5153 (2)0.0463 (5)
H6A0.145 (2)0.906 (3)0.558 (2)0.056*
H6B0.157 (2)0.957 (3)0.459 (2)0.056*
N70.00343 (16)0.8221 (2)0.35788 (16)0.0454 (5)
C10.49760 (19)0.6333 (2)0.2676 (2)0.0372 (5)
C20.6480 (2)0.7483 (3)0.61693 (19)0.0460 (6)
H20.71190.68940.61810.055*
C30.6675 (2)0.8784 (3)0.6628 (2)0.0508 (7)
H30.74310.90610.69460.061*
C40.5742 (2)0.9659 (3)0.6607 (2)0.0497 (7)
H40.58561.05360.69190.060*
C50.4619 (2)0.9230 (3)0.61174 (19)0.0446 (6)
H50.39740.98160.60840.053*
C60.44896 (18)0.7913 (3)0.56825 (17)0.0355 (5)
C70.33730 (18)0.7286 (2)0.51491 (16)0.0336 (5)
C80.15832 (18)0.6798 (2)0.43610 (17)0.0350 (5)
C90.03193 (18)0.6947 (2)0.39031 (17)0.0349 (5)
C100.1180 (2)0.8388 (3)0.3180 (2)0.0543 (7)
H100.14400.92660.29300.065*
C110.1991 (2)0.7346 (3)0.3116 (2)0.0571 (8)
H110.27840.75190.28540.069*
C120.1611 (2)0.6038 (3)0.3448 (2)0.0585 (8)
H120.21450.53080.34140.070*
C130.0428 (2)0.5817 (3)0.3833 (2)0.0466 (6)
H130.01430.49330.40390.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0296 (2)0.0432 (3)0.0355 (3)0.0059 (2)0.00493 (17)0.0005 (2)
S10.0488 (4)0.0511 (4)0.0492 (4)0.0041 (3)0.0088 (3)0.0143 (3)
N10.0484 (13)0.0567 (15)0.0438 (13)0.0057 (11)0.0126 (10)0.0028 (11)
N20.0295 (10)0.0482 (13)0.0367 (11)0.0017 (9)0.0058 (8)0.0008 (9)
N30.0315 (10)0.0432 (12)0.0396 (11)0.0019 (9)0.0034 (8)0.0016 (9)
N40.0317 (10)0.0415 (12)0.0450 (12)0.0037 (9)0.0021 (9)0.0024 (9)
N50.0293 (10)0.0362 (11)0.0376 (11)0.0027 (8)0.0057 (8)0.0012 (9)
N60.0384 (12)0.0407 (13)0.0583 (15)0.0055 (10)0.0061 (10)0.0069 (11)
N70.0343 (11)0.0401 (13)0.0569 (14)0.0000 (9)0.0031 (9)0.0035 (10)
C10.0295 (11)0.0369 (14)0.0461 (15)0.0033 (10)0.0091 (10)0.0024 (11)
C20.0300 (12)0.0605 (18)0.0462 (15)0.0019 (12)0.0042 (10)0.0041 (12)
C30.0347 (13)0.069 (2)0.0469 (16)0.0092 (13)0.0034 (11)0.0084 (14)
C40.0490 (15)0.0526 (17)0.0455 (15)0.0072 (13)0.0045 (12)0.0114 (12)
C50.0397 (13)0.0474 (16)0.0458 (15)0.0015 (12)0.0065 (11)0.0047 (12)
C60.0311 (11)0.0457 (14)0.0297 (12)0.0005 (11)0.0061 (9)0.0015 (10)
C70.0298 (11)0.0418 (14)0.0298 (12)0.0030 (10)0.0071 (9)0.0023 (10)
C80.0319 (12)0.0382 (14)0.0344 (13)0.0021 (10)0.0055 (9)0.0014 (10)
C90.0302 (11)0.0384 (14)0.0357 (13)0.0011 (10)0.0056 (9)0.0021 (10)
C100.0415 (15)0.0490 (17)0.0654 (19)0.0071 (13)0.0062 (13)0.0009 (13)
C110.0297 (13)0.075 (2)0.0625 (18)0.0003 (14)0.0007 (12)0.0015 (15)
C120.0447 (15)0.069 (2)0.0579 (18)0.0223 (15)0.0010 (13)0.0040 (15)
C130.0470 (15)0.0396 (15)0.0489 (16)0.0048 (12)0.0008 (12)0.0019 (12)
Geometric parameters (Å, º) top
Co1—N1i2.102 (2)N7—C101.336 (3)
Co1—N12.102 (2)C2—H20.9300
Co1—N22.166 (2)C2—C31.381 (4)
Co1—N2i2.166 (2)C3—H30.9300
Co1—N3i2.1161 (18)C3—C41.365 (4)
Co1—N32.1161 (18)C4—H40.9300
S1—C11.635 (3)C4—C51.392 (3)
N1—C11.154 (3)C5—H50.9300
N2—C21.339 (3)C5—C61.379 (3)
N2—C61.353 (3)C6—C71.469 (3)
N3—N41.380 (2)C8—C91.474 (3)
N3—C71.316 (3)C9—C131.380 (3)
N4—C81.312 (3)C10—H100.9300
N5—N61.416 (3)C10—C111.363 (4)
N5—C71.359 (3)C11—H110.9300
N5—C81.371 (3)C11—C121.371 (4)
N6—H6A0.89 (3)C12—H120.9300
N6—H6B0.85 (3)C12—C131.379 (3)
N7—C91.330 (3)C13—H130.9300
N1i—Co1—N1180.0C2—C3—H3120.5
N1i—Co1—N2i89.45 (8)C4—C3—C2119.0 (2)
N1i—Co1—N290.56 (8)C4—C3—H3120.5
N1—Co1—N2i90.55 (8)C3—C4—H4120.2
N1—Co1—N289.44 (8)C3—C4—C5119.6 (2)
N1i—Co1—N3i87.09 (8)C5—C4—H4120.2
N1i—Co1—N392.91 (8)C4—C5—H5120.9
N1—Co1—N387.09 (8)C6—C5—C4118.2 (2)
N1—Co1—N3i92.91 (8)C6—C5—H5120.9
N2i—Co1—N2180.0N2—C6—C5122.7 (2)
N3i—Co1—N2103.83 (7)N2—C6—C7111.8 (2)
N3—Co1—N276.17 (7)C5—C6—C7125.5 (2)
N3i—Co1—N2i76.17 (7)N3—C7—N5108.88 (19)
N3—Co1—N2i103.83 (7)N3—C7—C6120.4 (2)
N3i—Co1—N3180.0N5—C7—C6130.7 (2)
C1—N1—Co1169.07 (19)N4—C8—N5110.48 (18)
C2—N2—Co1125.66 (16)N4—C8—C9125.1 (2)
C2—N2—C6117.8 (2)N5—C8—C9124.4 (2)
C6—N2—Co1116.54 (14)N7—C9—C8115.8 (2)
N4—N3—Co1135.45 (15)N7—C9—C13123.5 (2)
C7—N3—Co1114.82 (14)C13—C9—C8120.8 (2)
C7—N3—N4109.00 (18)N7—C10—H10118.1
C8—N4—N3106.15 (19)N7—C10—C11123.8 (3)
C7—N5—N6124.66 (19)C11—C10—H10118.1
C7—N5—C8105.48 (18)C10—C11—H11120.7
C8—N5—N6129.62 (18)C10—C11—C12118.6 (2)
N5—N6—H6A105.2 (18)C12—C11—H11120.7
N5—N6—H6B106.7 (19)C11—C12—H12120.4
H6A—N6—H6B106 (3)C11—C12—C13119.2 (2)
C9—N7—C10116.9 (2)C13—C12—H12120.4
N1—C1—S1179.7 (3)C9—C13—H13121.0
N2—C2—H2118.6C12—C13—C9118.0 (2)
N2—C2—C3122.7 (2)C12—C13—H13121.0
C3—C2—H2118.6
Co1—N2—C2—C3178.53 (19)N7—C10—C11—C122.2 (4)
Co1—N2—C6—C5179.02 (18)C2—N2—C6—C50.7 (3)
Co1—N2—C6—C70.7 (2)C2—N2—C6—C7179.64 (19)
Co1—N3—N4—C8169.85 (17)C2—C3—C4—C50.7 (4)
Co1—N3—C7—N5171.98 (13)C3—C4—C5—C61.1 (4)
Co1—N3—C7—C66.0 (3)C4—C5—C6—N20.4 (4)
N2—C2—C3—C40.5 (4)C4—C5—C6—C7179.2 (2)
N2—C6—C7—N34.5 (3)C5—C6—C7—N3175.2 (2)
N2—C6—C7—N5173.0 (2)C5—C6—C7—N57.3 (4)
N3—N4—C8—N50.7 (2)C6—N2—C2—C31.1 (3)
N3—N4—C8—C9179.2 (2)C7—N3—N4—C80.5 (2)
N4—N3—C7—N50.2 (2)C7—N5—C8—N40.5 (2)
N4—N3—C7—C6177.79 (18)C7—N5—C8—C9179.1 (2)
N4—C8—C9—N7150.0 (2)C8—N5—C7—N30.2 (2)
N4—C8—C9—C1330.4 (3)C8—N5—C7—C6177.9 (2)
N5—C8—C9—N728.3 (3)C8—C9—C13—C12176.7 (2)
N5—C8—C9—C13151.3 (2)C9—N7—C10—C111.8 (4)
N6—N5—C7—N3175.0 (2)C10—N7—C9—C8178.7 (2)
N6—N5—C7—C67.2 (4)C10—N7—C9—C130.8 (4)
N6—N5—C8—N4175.0 (2)C10—C11—C12—C130.0 (4)
N6—N5—C8—C96.5 (4)C11—C12—C13—C92.3 (4)
N7—C9—C13—C122.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···S1ii0.89 (3)2.66 (3)3.520 (3)162 (2)
N6—H6B···N70.85 (3)2.43 (3)2.914 (3)117 (2)
C5—H5···N60.932.473.083 (3)123
Symmetry code: (ii) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, °) for Co(NCS)2(abpt)2 and Ni(NCS)2(abpt)2 at 120 (2) K top
StructurePolymorphD—H···AD—HH···AD···AD—H···A
Co(NCS)2(abpt)2AN6—H6B···N70.90 (3)2.14 (3)2.861 (3)136 (3)
C5—H5···N60.952.533.135 (4)122
C2—H2···N4i0.952.673.467 (3)142
BN6—H6B···N70.90 (2)2.41 (2)2.914 (2)115.6 (16)
C5—H5···N60.952.463.084 (2)123
C2—H2···N2i0.952.663.482 (2)145
Ni(NCS)2(abpt)2AN6—H6B···N70.88 (3)2.14 (3)2.848 (3)137 (3)
C5—H5···N60.952.523.124 (4)122
C2—H2···N4ii0.952.553.347 (3)141
BN6—H6B···N70.84 (6)2.52 (5)2.950 (6)112 (4)
C5—H5···N60.952.483.104 (7)123
C2—H2···N4ii0.952.593.403 (7)144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.
ππ stacking interactions (Å) for Co(NCS)2(abpt)2 and Ni(NCS)2(abpt)2 at 120 (2) K top
StructurePolymorphPlane 1Plane 2Centroid-to-centroid distanceShift distance
Co(NCS)2(abpt)2AN2,C2,C3,C4,C5,C6N7,C9,C10,C11,C12,C13i3.631.31
N7,C9,C10,C11,C12,C13N2,C2,C3,C4,C5,C6i3.631.31
BN2,C2,C3,C4,C5,C6N7,C9,C10,C11,C12,C13ii3.681.34
N7,C9,C10,C11,C12,C13N2,C2,C3,C4,C5,C6iii3.681.34
Ni(NCS)2(abpt)2AN2,C2,C3,C4,C5,C6N7,C9,C10,C11,C12,C13i3.641.34
N7,C9,C10,C11,C12,C13N2,C2,C3,C4,C5,C6i3.641.34
BN2,C2,C3,C4,C5,C6N7,C9,C10,C11,C12,C13ii3.721.41
N7,C9,C10,C11,C12,C13N2,C2,C3,C4,C5,C6iii3.721.41
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1/2, -y+3/2, z+1/2; (iii) x-1/2, -y+3/2, z-1/2.
Twist and fold angles between planes calculated through the six atoms of the two rings on the abpt ligand at 120 (2) K top
CompoundPolymorphTwist angle (°)Fold angle (°)
Co(NCS)2(abpt)2A8.99 (8)99.0 (8)
B35.25 (6)142.50 (19)
Ni(NCS)2(abpt)2A9.39 (8)96.7 (8)
B34.64 (17)142.8 (6)
Co—N distances for Co(NCS)2(abpt)2 at 120 (2) and 300 (2) K top
StructurePolymorphTemperature (K)Co1—N1Co1—N2Co1—N3
Co(NCS)2(abpt)2A1202.116 (2)2.166 (2)2.088 (2)
3002.113 (5)2.164 (4)2.093 (5)
B1202.0987 (15)2.1616 (15)2.1138 (14)
3002.102 (2)2.166 (2)2.1161 (18)
 

Footnotes

Died 6th December 2019

Acknowledgements

HEM was grateful to the EPSRC and Durham University for funding and Professor Jonathan Steed, Durham University, for useful discussions.

Funding information

The following funding is acknowledged: Engineering and Physical Sciences Research Council (grant No. EP/P505186/1).

References

First citationBruker (1999–2013). SMART, SAINT, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. Y. & Peng, M. X. (2007). Chin. J. Inorg. Chem. 23, 2091–2096.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J. Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921–8931.  CSD CrossRef PubMed CAS Google Scholar
First citationGaspar, A. B., Mũnoz, M. C., Moliner, N., Ksenofontov, V., Levchenko, G., Gütlich, P. & Real, J. A. (2003). Monatsh. Chem. 134, 285–294.  CSD CrossRef CAS Google Scholar
First citationLi, C. P., Wu, J. M. & Du, M. (2011). Inorg. Chem. 50, 9284–9289.  CSD CrossRef CAS PubMed Google Scholar
First citationMason, H. E., Li, W., Carpenter, M. A., Hamilton, M. L., Howard, J. A. K. & Sparkes, H. A. (2016). New J. Chem. 40, 2466–2478.  CSD CrossRef CAS Google Scholar
First citationMason, H. E., Musselle-Sexton, J. R. C., Howard, J. A. K., Probert, M. R. & Sparkes, H. A. (2021). New J. Chem. 45, 14014–14023.  CrossRef CAS Google Scholar
First citationMoliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., Castro, M., Kahn, O. & Real, J. A. (1999). Inorg. Chim. Acta, 291, 279–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, M. X., Hong, C. G., Tan, C. K., Chen, J. C. & Tong, M. L. (2006). J. Chem. Crystallogr. 36, 703–707.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheu, C.-F., Chen, S.-M., Wang, S.-C., Lee, G.-H., Liu, Y.-H. & Wang, Y. (2009). Chem. Commun. pp. 7512–7514.  CSD CrossRef Google Scholar
First citationSheu, C.-F., Shih, C.-H., Sugimoto, K., Cheng, B.-M., Takata, M. & Wang, Y. (2012). Chem. Commun. 48, 5715–5717.  CSD CrossRef CAS Google Scholar
First citationShih, C.-H., Sheu, C.-F., Kato, K., Sugimoto, K., Kim, J., Wang, Y. & Takata, M. (2010). Dalton Trans. 39, 9794–9800.  CSD CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.netGoogle Scholar
First citationWhite, N. G., Kitchen, J. A. & Brooker, S. (2009). Eur. J. Inorg. Chem. 2009, 1172–1180.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds