research papers
Coordination chemistry of polynitriles. Part 9. Decacyanoferrocene revisited: crystal and molecular structure of cis-[{C5(CN)5}2(MeCN)4Fe]
aLudwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 9, 81377 Munich, Germany
*Correspondence e-mail: suenk@cup.uni-muenchen.de
The reaction of Ag[C5(CN)5] with anhydrous FeCl2 in acetonitrile leads to colourless crystals of tetrakis(acetonitrile-κN)bis(pentacyanocyclopentadienido-κN)iron(II) acetonitrile 1.8-solvate, [Fe(C10N5)2(CH3CN)4]·1.8CH3CN or cis-[{C5(CN)5}2(MeCN)4Fe]·1.8MeCN. The compound crystallizes in the triclinic P as monomers, which exhibit weak C—H⋯N and π–π interactions. The crystals contain ca 20% solvent-accessible voids, which are nearly completely filled by two MeCN molecules.
Keywords: ferrocene; pentacyanocyclopentadienide; π–π interactions; weak interactions; decacyanoferrocene; crystal structure.
CCDC reference: 2141277
1. Introduction
The term `decacyanoferrocene' appeared first in a publication about `diazotetracyanocyclopentadiene' (Webster, 1966) and later in two US patents by the same author (Webster, 1970, 1974). It was used for the reaction product from silver pentacyanocyclopentadienide and FeCl2 in acetonitrile, which led to `light-green crystals of decacyanoferrocene', which were characterized, after drying at 112 °C under vacuum, by elemental analysis and IR and UV spectroscopy as `C20N10Fe·xH2O'. No indication or proof was given for the formulation as a `ferrocene'. A couple of years later, a different research group repeated the experiment and described the primary product as `white crystals' (Christopher & Venanzi, 1973). Drying of the crystals at room temperature in vacuo produced a white solid that still, according to its IR spectrum, contained acetonitrile. Further drying at 110 °C in vacuo produced a pale-yellow–green product, which analyzed as `C20N10Fe·xH2O' and was further characterized by IR spectroscopy and magnetic and conductivity measurements. In the absence of a determination, these authors postulated a `polymeric structure in which the iron is in an approximately octahedral environment', in which `each PP group bridges three iron atoms'. Within the last 15 years, the coordination chemistry of the pentacyanocyclopentadienide anion has been studied intensively by us and others (Sünkel & Reimann, 2013; Sünkel & Nimax, 2018; Nimax et al., 2018; Blockhaus & Sünkel, 2021; Bacsa et al., 2011; Less et al., 2013). These studies showed that [C5(CN)5]− could behave either as a noncoordinating anion or use one to its five cyano groups for coordination, sometimes even in a bridging μ2-κ1:κ1 fashion. We had also treated FeCl2 with Ag[C5(CN)5] in methanol. Recrystallization from MeOH gave crystals of trans-[{C5(CN)5}2Fe(H2O)4], in which both anions used only one cyano function each for coordination to iron in a mononuclear compound (Sünkel et al., 2019). Individual molecules were connected via hydrogen bridges into a three-dimensional network. Since all the above-mentioned reports described the formation of (either `light green' or `white') crystals as the primary product of the reaction in acetonitrile, we decided to repeat this reaction and to study the crystals.
2. Experimental
2.1. Synthesis and crystallization
The title compound, tetrakis(acetonitrile-κN)bis(pentacyanocyclopentadienido-κN)iron(II) acetonitrile disolvate, (I) (Scheme 1), was prepared as described in the literature (Webster, 1966; Christopher & Venanzi, 1973). Recrystallization of the crude product by slow evaporation of an acetonitrile solution under an argon atmosphere gave colourless crystals suitable for X-ray Heating the crystals at 110 °C in vacuo for several hours left an amorphous powder. All attempts to obtain crystals of this product by dissolution in a noncoordinating solvent met with failure.
2.2. Refinement
The structure PLATON (Spek, 2020) analysis showed no more solvent-accessible voids. The results of the using this model are shown in the second column of Table 1. As the PLATON analysis of the structure without the lattice acetonitrile molecules showed 20% solvent-accessible voids (for a `cavity plot', see Fig. S1 of the supporting information), a using the SQUEEZE routine (Spek, 2015) was tried. The results of this are shown in the third column of Table 1. As can be seen, the SQUEEZE led to slightly better R values. To obtain further insight into the importance of crystal voids in this structure, the `un-SQUEEZEd' file was examined using the program CrystalExplorer (Version 21.5), using the subroutine `void' (Turner et al., 2011), both without and with the acetonitrile molecules. Fig. 1(a) shows the void plot obtained without the MeCN molecules, while Fig. 1(b) shows the same plot when the MeCN molecules were included (0.002 a.u. isosurfaces; for the results of the corresponding calculations using 0.0003 a.u. isosurfaces, see Fig. S2 in the supporting information). Table 2 summarizes the results of the void-space calculations using PLATON and CrystalExplorer.
showed, besides the molecular unit, two lattice acetonitrile (MeCN) molecules, which were both disordered. The disorder of one MeCN molecule could be resolved with the help of restraints into two positions in relative 80:20 occupancies. The disorder of the second molecule, however, could not be resolved. Due to some unfavourable close contacts with the `minor' molecule, the site-occupancy factor (s.o.f.) of the second molecule was reduced to 0.8 anyway. After inclusion of these MeCN molecules,
|
As can be seen, the results obtained with PLATON (excluding the MeCN solvents) are intermediate between the CrystalExplorer results with the two different isosurfaces, which is rather unusual (Turner et al., 2011). After inclusion of the MeCN molecules, the PLATON results and the CrystalExplorer results for a 0.0003 a.u. surface are nearly identical, and show that there are no permanent voids left after inclusion of the MeCN molecules. In view of this, together with the probable involvement of the lattice MeCN molecules in C—H⋯N hydrogen bonds, the SQUEEZEd structure was not examined further.
3. Results and discussion
The title compound crystallizes in the triclinic P with one molecule in the The FeII ion coordinates to two cis-oriented pentacyanocyclopentadienyl anions via one nitrile function each, and additionally to four acetonitrile molecules (Fig. 2).
The two cyclopentadienyl rings are coplanar [interplanar angle = 0.8 (2)°; the average distance of atoms C201–C205 from the best plane through C101–C105 is 0.044 ± 0.02 Å]. The bond lengths from the Fe atom to the [C5(CN)5] N atoms are significantly (>10σ) longer [average 2.176 (3) Å] than to the acetonitrile N atoms [average 2.140 (4) Å], with the bond angles at the coordinating atoms N101 and N201 close to being linear (average 161.9°). Further important bond parameters can be found in Table 3.
|
Weak interactions with the contents of the voids contribute to the stability of the et al., 2019; Wang et al., 2020) and so a closer inspection of the packing plots seemed appropriate (Fig. 3).
(GhoshA packing plot viewed down the crystallographic a axis shows `layers' of cyclopentadienyl rings oriented parallel to the bc diagonal and orthogonal to the plane of projection. These layers contain also one of the lattice MeCN molecules (dark blue in Fig. 3). Individual molecules are connected via C—H⋯N hydrogen bonds in the b and c directions using methyl groups C12 and C22 of the coordinated acetonitrile molecules (both in cis positions relative to the coordinated anions) as donors and the pentacyanocyclopentadienide atoms N103 and N204 (in the 3-position relative to the coordinated cyano N atom), as well as the lattice MeCN atoms N5 and N6B, as acceptors. In addition, there is also a hydrogen bond between the lattice MeCN group C52 and pentacyanocyclopentadienide atom N102 (Table 4).
|
A possibly more important intermolecular interaction becomes visible in Fig. 4.
The pentacyanocyclopentadienyl rings stack via π–π interactions (Carter-Fenk & Herbert, 2020; Thakuria et al., 2019), with the ring planes at a typical distance of ca 3.36 Å. A closer look (Fig. 5) shows that the stack is formed by alternating pairs of inversion-related C101–C105 (symmetry codes i/ii and v/vi) and C201–C205 (iii/iv) rings. The dotted `bonds' in Fig. 5 join the ring centroids at distances of 3.575 (i/ii and v/vi), 3.580 (ii/iii, iv/v and vi/vii) and 3.597 Å (iii/iv), and angles of 141.3 and 142.8°. This corresponds to a `ring slippage' of ca 1.15 Å.
In order to gain further insight into the interactions at work, a Hirshfeld analysis was undertaken with the help of the program CrystalExplorer (Spackman et al., 2021).
Fig. 6(a) shows the Hirshfeld surface of the with the dnorm surface property (range −0.65 to 1.30). The strong involvement of the lattice MeCN molecules in donor C—H⋯N (top right) and acceptor N⋯H—C (bottom left) interactions can be seen. Fig. 6(b) shows the Hirshfeld surface of an isolated complex fragment and its interactions with four further complex fragments and a few lattice MeCN molecules. In Fig. 7, the same surface showing the properties `curvedness', `shape index' and `electrostatic potential' is displayed.
Both the `curvedness' and the `shape index' plots show the importance of planar π-stacking for both cyclopentadienyl rings (Spackman & Jayatilaka, 2009). Fig. 7(c) shows that the contains both electropositive (blue) and electronegative (red) parts, together with small neutral (white) areas. Fig. S3 (see supporting information) shows how in neighbouring molecules the positive and negative parts approach each other.
The so-called `fingerprints' are a graphical representation of all the interactions of atoms `inside' and `outside' the Hirshfeld surface (Spackman & McKinnon, 2002). Fig. 8(a) shows such a plot when the two lattice MeCN molecules are left outside the Hirshfeld surface, while Fig. 8(b) represents such a plot when the complete is inside the Hirshfeld surface. A plot showing the most important individual contributors is shown in Fig. S4 (see supporting information). The bright-green spots at ca (1.8/1.8) Å in Fig. 8 correspond to π–π stacking interactions; inspection of Fig. S4 shows that C⋯C interactions are responsible for ca 18% of all the intermolecular interactions, while C—H⋯π interactions make up less than 7%. C—H⋯N contacts make up nearly 50% of the weak interactions.
A last important point relates to the interaction energies in the crystal. Fig. S5 (see supporting information) shows that the interactions between the complex and the two unique MeCN solvent molecules are relatively weak, with the repulsive terms dominating. The interactions between the −1. The strongest interaction occurs for the closest approach of two inversion-related molecules (magenta), with a clear dominance of the dispersion term. Another method for graphically representing these interactions is through the use of `energy frameworks' (Turner et al., 2015), which are displayed in Fig. 9.
and four close neighbours are displayed in Fig. S6. The energies range from −54 to −174 kJ mol4. Conclusion
The primary reaction product from FeCl2 and Ag[C5(CN)5] in acetonitrile is neither a `ferrocene' nor a coordination polymer. The presented here shows a mononuclear octahedral coordination compound with two cis-oriented monodentate pentacyanocyclopentadienide anions and four acetonitrile ligands. The individual molecules interact in the lattice via weak C—H⋯N hydrogen bonds and displaced parallel cyclopentadienyl π-systems. In the absence of any crystals it is difficult to speculate about the structure of the compound `Fe[C5(CN)5]2·xH2O' described over 50 years ago. However, one could imagine that after removal of all the acetonitrile molecules, the remaining fragments approach each other parallel to the bc plane and form `ribbons' of Fe[C5(CN)5]4/2 with the anions using two of their cyano groups, similar to the structure of Ca[C5(CN)4H]2·4H2O (Sünkel & Nimax, 2018). In contrast to the Ca compound, the Fe compound would have to be octahedrally coordinated with two additional bridging H2O ligands (Fig. 10).
Supporting information
CCDC reference: 2141277
https://doi.org/10.1107/S2053229622000365/eq3004sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229622000365/eq3004Isup2.hkl
Additional figures. DOI: https://doi.org/10.1107/S2053229622000365/eq3004sup3.pdf
Data collection: APEX2 (Bruker, 2011); cell
APEX2 (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).[Fe(C10N5)2(C2H3N)4]·1.8C2H3N | Z = 2 |
Mr = 674.29 | F(000) = 696 |
Triclinic, P1 | Dx = 1.296 Mg m−3 |
a = 11.9972 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.8711 (7) Å | Cell parameters from 8142 reflections |
c = 13.0907 (8) Å | θ = 2.7–26.5° |
α = 62.528 (2)° | µ = 0.48 mm−1 |
β = 82.929 (2)° | T = 109 K |
γ = 77.210 (2)° | Block, colourless |
V = 1748.47 (18) Å3 | 0.05 × 0.04 × 0.03 mm |
Bruker D8 Venture diffractometer | 7081 independent reflections |
Radiation source: rotating anode generator | 5145 reflections with I > 2σ(I) |
Detector resolution: 7.391 pixels mm-1 | Rint = 0.042 |
mix of ω and phi scans | θmax = 26.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −14→13 |
Tmin = 0.616, Tmax = 0.745 | k = −16→14 |
17051 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.0525P)2 + 4.4167P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
7081 reflections | Δρmax = 0.81 e Å−3 |
464 parameters | Δρmin = −0.63 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.31525 (4) | 0.41288 (5) | 0.62909 (5) | 0.02179 (16) | |
C101 | 0.5159 (3) | 0.1898 (3) | 0.4444 (3) | 0.0220 (8) | |
C102 | 0.4447 (3) | 0.1551 (3) | 0.3921 (3) | 0.0227 (8) | |
C103 | 0.5156 (3) | 0.0879 (3) | 0.3416 (3) | 0.0241 (8) | |
C104 | 0.6307 (3) | 0.0814 (3) | 0.3624 (3) | 0.0240 (8) | |
C105 | 0.6311 (3) | 0.1436 (3) | 0.4257 (3) | 0.0230 (8) | |
C106 | 0.4747 (3) | 0.2595 (3) | 0.5041 (3) | 0.0208 (8) | |
C107 | 0.3223 (3) | 0.1848 (3) | 0.3910 (3) | 0.0230 (8) | |
C108 | 0.4783 (3) | 0.0347 (3) | 0.2808 (3) | 0.0277 (9) | |
C109 | 0.7278 (3) | 0.0216 (3) | 0.3229 (4) | 0.0322 (9) | |
C110 | 0.7303 (3) | 0.1586 (3) | 0.4649 (3) | 0.0273 (8) | |
N101 | 0.4360 (3) | 0.3168 (3) | 0.5504 (3) | 0.0266 (7) | |
N102 | 0.2255 (3) | 0.2088 (3) | 0.3873 (3) | 0.0368 (8) | |
N103 | 0.4496 (3) | −0.0092 (3) | 0.2322 (3) | 0.0411 (9) | |
N104 | 0.8048 (3) | −0.0262 (3) | 0.2907 (4) | 0.0484 (10) | |
N105 | 0.8099 (3) | 0.1701 (3) | 0.4953 (3) | 0.0400 (9) | |
C201 | 0.5149 (3) | 0.5561 (3) | 0.8071 (3) | 0.0221 (8) | |
C202 | 0.6298 (3) | 0.5503 (3) | 0.8270 (3) | 0.0214 (7) | |
C203 | 0.6296 (3) | 0.6124 (3) | 0.8915 (3) | 0.0241 (8) | |
C204 | 0.5152 (3) | 0.6567 (3) | 0.9116 (3) | 0.0224 (8) | |
C205 | 0.4442 (3) | 0.6224 (3) | 0.8594 (3) | 0.0229 (8) | |
C206 | 0.4744 (3) | 0.5066 (3) | 0.7450 (3) | 0.0197 (7) | |
C207 | 0.7275 (3) | 0.4903 (3) | 0.7878 (3) | 0.0284 (9) | |
C208 | 0.7274 (3) | 0.6301 (4) | 0.9295 (3) | 0.0297 (9) | |
C209 | 0.4768 (3) | 0.7244 (3) | 0.9745 (3) | 0.0256 (8) | |
C210 | 0.3214 (3) | 0.6506 (3) | 0.8589 (3) | 0.0271 (8) | |
N201 | 0.4370 (2) | 0.4697 (3) | 0.6948 (3) | 0.0249 (7) | |
N202 | 0.8045 (3) | 0.4424 (3) | 0.7558 (3) | 0.0424 (9) | |
N203 | 0.8046 (3) | 0.6454 (4) | 0.9608 (3) | 0.0432 (9) | |
N204 | 0.4457 (3) | 0.7775 (3) | 1.0254 (3) | 0.0374 (8) | |
N205 | 0.2240 (3) | 0.6733 (3) | 0.8597 (3) | 0.0396 (9) | |
C11 | 0.3267 (3) | 0.1710 (3) | 0.8712 (3) | 0.0278 (8) | |
C12 | 0.3231 (4) | 0.0659 (4) | 0.9790 (4) | 0.0449 (11) | |
H12A | 0.244664 | 0.067321 | 1.010643 | 0.067* | |
H12B | 0.373736 | 0.064058 | 1.033356 | 0.067* | |
H12C | 0.348369 | −0.005159 | 0.966392 | 0.067* | |
N1 | 0.3295 (3) | 0.2534 (3) | 0.7868 (3) | 0.0282 (7) | |
C21 | 0.3161 (3) | 0.6547 (3) | 0.3858 (3) | 0.0237 (8) | |
C22 | 0.3187 (3) | 0.7613 (3) | 0.2786 (3) | 0.0312 (9) | |
H22A | 0.242481 | 0.811730 | 0.264213 | 0.047* | |
H22B | 0.341848 | 0.739396 | 0.215613 | 0.047* | |
H22C | 0.373587 | 0.805056 | 0.283309 | 0.047* | |
N2 | 0.3143 (2) | 0.5717 (3) | 0.4700 (3) | 0.0221 (7) | |
C31 | 0.1095 (3) | 0.5236 (5) | 0.7567 (4) | 0.0414 (11) | |
C32 | 0.0114 (4) | 0.5511 (7) | 0.8237 (5) | 0.074 (2) | |
H32A | −0.051168 | 0.604249 | 0.771923 | 0.111* | |
H32B | 0.033202 | 0.590484 | 0.864863 | 0.111* | |
H32C | −0.013764 | 0.477224 | 0.879337 | 0.111* | |
N3 | 0.1842 (3) | 0.4997 (3) | 0.7056 (3) | 0.0312 (8) | |
C41 | 0.1027 (3) | 0.3251 (4) | 0.5766 (3) | 0.0318 (9) | |
C42 | 0.0031 (4) | 0.2794 (4) | 0.5752 (5) | 0.0534 (14) | |
H42A | −0.011193 | 0.217475 | 0.652389 | 0.080* | |
H42B | 0.016765 | 0.245291 | 0.520520 | 0.080* | |
H42C | −0.063456 | 0.344381 | 0.551764 | 0.080* | |
N4 | 0.1806 (3) | 0.3617 (3) | 0.5788 (3) | 0.0296 (7) | |
C51A | 0.0708 (5) | 0.0441 (6) | 0.2401 (6) | 0.0497 (16) | 0.8 |
C52A | 0.0220 (6) | 0.1035 (7) | 0.3094 (7) | 0.073 (2) | 0.8 |
H52A | −0.038353 | 0.170740 | 0.266821 | 0.109* | 0.8 |
H52B | 0.081554 | 0.132953 | 0.327960 | 0.109* | 0.8 |
H52C | −0.010596 | 0.047408 | 0.380848 | 0.109* | 0.8 |
N5A | 0.1071 (5) | −0.0057 (6) | 0.1860 (5) | 0.0666 (17) | 0.8 |
C61A | 0.9780 (6) | 0.1859 (7) | 0.9281 (6) | 0.0515 (18) | 0.8 |
C62A | 0.8810 (6) | 0.1424 (6) | 0.9942 (6) | 0.0573 (18) | 0.8 |
H62A | 0.868264 | 0.162584 | 1.058788 | 0.086* | 0.8 |
H62B | 0.894014 | 0.055574 | 1.023800 | 0.086* | 0.8 |
H62C | 0.813699 | 0.178828 | 0.945575 | 0.086* | 0.8 |
N6A | 1.0559 (6) | 0.2234 (7) | 0.8743 (7) | 0.095 (3) | 0.8 |
N6B | 0.921 (3) | 0.115 (3) | 0.881 (2) | 0.091 (9)* | 0.2 |
C61B | 0.944 (5) | 0.147 (5) | 0.944 (4) | 0.095 (18)* | 0.2 |
C62B | 0.984 (3) | 0.176 (3) | 1.025 (3) | 0.074 (9)* | 0.2 |
H62D | 0.930033 | 0.242670 | 1.030072 | 0.111* | 0.2 |
H62E | 0.989632 | 0.106186 | 1.100870 | 0.111* | 0.2 |
H62F | 1.059168 | 0.197529 | 0.999519 | 0.111* | 0.2 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0159 (3) | 0.0225 (3) | 0.0240 (3) | −0.00369 (19) | −0.00088 (19) | −0.0078 (2) |
C101 | 0.0223 (18) | 0.0172 (17) | 0.0206 (19) | −0.0047 (14) | 0.0005 (14) | −0.0034 (15) |
C102 | 0.0221 (18) | 0.0194 (17) | 0.0195 (18) | −0.0068 (14) | −0.0014 (14) | −0.0013 (15) |
C103 | 0.028 (2) | 0.0203 (18) | 0.0173 (18) | −0.0070 (15) | −0.0005 (14) | −0.0013 (15) |
C104 | 0.0233 (19) | 0.0186 (18) | 0.0220 (19) | −0.0036 (14) | 0.0009 (14) | −0.0030 (15) |
C105 | 0.0185 (18) | 0.0187 (18) | 0.0240 (19) | −0.0034 (14) | −0.0006 (14) | −0.0030 (15) |
C106 | 0.0160 (17) | 0.0179 (18) | 0.0221 (19) | −0.0070 (14) | −0.0029 (13) | −0.0013 (16) |
C107 | 0.022 (2) | 0.0211 (19) | 0.0210 (19) | −0.0062 (14) | −0.0026 (14) | −0.0038 (16) |
C108 | 0.031 (2) | 0.022 (2) | 0.022 (2) | −0.0058 (16) | −0.0009 (15) | −0.0028 (17) |
C109 | 0.034 (2) | 0.025 (2) | 0.032 (2) | −0.0040 (17) | −0.0023 (17) | −0.0085 (18) |
C110 | 0.023 (2) | 0.026 (2) | 0.029 (2) | −0.0016 (15) | 0.0010 (15) | −0.0108 (17) |
N101 | 0.0226 (16) | 0.0238 (17) | 0.0298 (18) | −0.0072 (13) | −0.0034 (13) | −0.0072 (15) |
N102 | 0.027 (2) | 0.046 (2) | 0.035 (2) | −0.0076 (16) | 0.0002 (14) | −0.0162 (18) |
N103 | 0.054 (2) | 0.037 (2) | 0.030 (2) | −0.0131 (18) | −0.0037 (17) | −0.0108 (17) |
N104 | 0.039 (2) | 0.044 (2) | 0.057 (3) | −0.0002 (18) | 0.0095 (19) | −0.024 (2) |
N105 | 0.0266 (19) | 0.047 (2) | 0.053 (2) | −0.0044 (16) | −0.0078 (16) | −0.027 (2) |
C201 | 0.0260 (19) | 0.0164 (17) | 0.0183 (18) | −0.0061 (14) | 0.0017 (14) | −0.0027 (15) |
C202 | 0.0245 (19) | 0.0172 (17) | 0.0198 (18) | −0.0050 (14) | −0.0002 (14) | −0.0058 (15) |
C203 | 0.027 (2) | 0.0200 (18) | 0.0209 (19) | −0.0052 (15) | 0.0002 (14) | −0.0055 (16) |
C204 | 0.031 (2) | 0.0150 (17) | 0.0164 (18) | −0.0040 (14) | 0.0026 (14) | −0.0035 (14) |
C205 | 0.0235 (19) | 0.0173 (17) | 0.0205 (18) | −0.0045 (14) | 0.0018 (14) | −0.0027 (15) |
C206 | 0.0193 (17) | 0.0183 (17) | 0.0174 (18) | −0.0031 (14) | 0.0026 (13) | −0.0056 (15) |
C207 | 0.030 (2) | 0.028 (2) | 0.028 (2) | −0.0071 (17) | −0.0042 (16) | −0.0113 (18) |
C208 | 0.030 (2) | 0.032 (2) | 0.030 (2) | −0.0060 (17) | 0.0047 (16) | −0.0188 (19) |
C209 | 0.030 (2) | 0.0193 (18) | 0.022 (2) | −0.0046 (15) | 0.0011 (15) | −0.0056 (16) |
C210 | 0.032 (2) | 0.0183 (19) | 0.025 (2) | −0.0053 (15) | 0.0031 (16) | −0.0054 (16) |
N201 | 0.0195 (16) | 0.0255 (16) | 0.0271 (17) | −0.0039 (12) | 0.0024 (12) | −0.0106 (15) |
N202 | 0.034 (2) | 0.048 (2) | 0.051 (2) | 0.0022 (17) | 0.0027 (17) | −0.032 (2) |
N203 | 0.034 (2) | 0.055 (2) | 0.052 (2) | −0.0130 (18) | 0.0019 (17) | −0.033 (2) |
N204 | 0.046 (2) | 0.0296 (19) | 0.035 (2) | −0.0044 (16) | 0.0051 (16) | −0.0158 (17) |
N205 | 0.029 (2) | 0.037 (2) | 0.051 (2) | −0.0053 (15) | 0.0016 (16) | −0.0199 (19) |
C11 | 0.027 (2) | 0.028 (2) | 0.030 (2) | −0.0012 (16) | −0.0035 (16) | −0.0146 (19) |
C12 | 0.047 (3) | 0.037 (3) | 0.033 (3) | −0.004 (2) | −0.001 (2) | −0.002 (2) |
N1 | 0.0305 (18) | 0.0253 (18) | 0.0272 (19) | −0.0033 (14) | −0.0078 (13) | −0.0096 (16) |
C21 | 0.0157 (18) | 0.030 (2) | 0.028 (2) | −0.0006 (14) | 0.0005 (14) | −0.0172 (19) |
C22 | 0.034 (2) | 0.026 (2) | 0.028 (2) | −0.0054 (16) | 0.0011 (16) | −0.0087 (18) |
N2 | 0.0164 (15) | 0.0231 (16) | 0.0242 (17) | −0.0020 (12) | −0.0008 (12) | −0.0089 (15) |
C31 | 0.021 (2) | 0.070 (3) | 0.041 (3) | −0.005 (2) | −0.0007 (18) | −0.033 (3) |
C32 | 0.029 (3) | 0.150 (6) | 0.072 (4) | −0.008 (3) | 0.005 (2) | −0.078 (4) |
N3 | 0.0236 (18) | 0.040 (2) | 0.0282 (18) | −0.0073 (14) | −0.0007 (14) | −0.0127 (16) |
C41 | 0.024 (2) | 0.036 (2) | 0.033 (2) | −0.0020 (17) | −0.0033 (16) | −0.0143 (19) |
C42 | 0.030 (2) | 0.050 (3) | 0.077 (4) | −0.019 (2) | −0.010 (2) | −0.019 (3) |
N4 | 0.0223 (17) | 0.0348 (19) | 0.0314 (19) | −0.0066 (14) | −0.0013 (13) | −0.0137 (16) |
C51A | 0.032 (3) | 0.043 (4) | 0.059 (4) | 0.001 (3) | −0.006 (3) | −0.012 (3) |
C52A | 0.056 (4) | 0.072 (5) | 0.111 (7) | 0.002 (4) | −0.030 (4) | −0.058 (5) |
N5A | 0.045 (3) | 0.066 (4) | 0.055 (4) | 0.005 (3) | 0.006 (3) | −0.007 (3) |
C61A | 0.033 (4) | 0.042 (4) | 0.053 (4) | 0.011 (3) | −0.014 (3) | −0.004 (3) |
C62A | 0.051 (4) | 0.058 (4) | 0.049 (4) | −0.005 (3) | 0.002 (3) | −0.015 (3) |
N6A | 0.049 (4) | 0.099 (6) | 0.095 (5) | −0.019 (4) | −0.001 (4) | −0.005 (4) |
Fe1—N1 | 2.127 (3) | C11—N1 | 1.128 (5) |
Fe1—N2 | 2.141 (3) | C11—C12 | 1.440 (6) |
Fe1—N3 | 2.142 (3) | C12—H12A | 0.9800 |
Fe1—N4 | 2.147 (3) | C12—H12B | 0.9800 |
Fe1—N101 | 2.169 (3) | C12—H12C | 0.9800 |
Fe1—N201 | 2.185 (3) | C21—N2 | 1.129 (5) |
C101—C102 | 1.412 (5) | C21—C22 | 1.444 (5) |
C101—C105 | 1.418 (5) | C22—H22A | 0.9800 |
C101—C106 | 1.420 (5) | C22—H22B | 0.9800 |
C102—C103 | 1.404 (5) | C22—H22C | 0.9800 |
C102—C107 | 1.433 (5) | C31—N3 | 1.125 (5) |
C103—C104 | 1.416 (5) | C31—C32 | 1.459 (6) |
C103—C108 | 1.423 (6) | C32—H32A | 0.9800 |
C104—C105 | 1.395 (5) | C32—H32B | 0.9800 |
C104—C109 | 1.427 (5) | C32—H32C | 0.9800 |
C105—C110 | 1.435 (5) | C41—N4 | 1.145 (5) |
C106—N101 | 1.148 (5) | C41—C42 | 1.450 (6) |
C107—N102 | 1.135 (5) | C42—H42A | 0.9800 |
C108—N103 | 1.148 (5) | C42—H42B | 0.9800 |
C109—N104 | 1.141 (5) | C42—H42C | 0.9800 |
C110—N105 | 1.142 (5) | C51A—N5A | 1.149 (9) |
C201—C205 | 1.411 (5) | C51A—C52A | 1.436 (10) |
C201—C202 | 1.413 (5) | C52A—H52A | 0.9800 |
C201—C206 | 1.420 (5) | C52A—H52B | 0.9800 |
C202—C203 | 1.406 (5) | C52A—H52C | 0.9800 |
C202—C207 | 1.431 (5) | C61A—N6A | 1.152 (9) |
C203—C204 | 1.407 (5) | C61A—C62A | 1.418 (10) |
C203—C208 | 1.429 (5) | C62A—H62A | 0.9800 |
C204—C205 | 1.406 (5) | C62A—H62B | 0.9800 |
C204—C209 | 1.430 (5) | C62A—H62C | 0.9800 |
C205—C210 | 1.437 (5) | N6B—C61B | 1.155 (18) |
C206—N201 | 1.146 (4) | C61B—C62B | 1.430 (18) |
C207—N202 | 1.141 (5) | C62B—H62D | 0.9800 |
C208—N203 | 1.146 (5) | C62B—H62E | 0.9800 |
C209—N204 | 1.138 (5) | C62B—H62F | 0.9800 |
C210—N205 | 1.140 (5) | ||
N1—Fe1—N2 | 175.79 (12) | N205—C210—C205 | 179.1 (4) |
N1—Fe1—N3 | 90.01 (12) | C206—N201—Fe1 | 161.2 (3) |
N2—Fe1—N3 | 92.83 (12) | N1—C11—C12 | 179.9 (6) |
N1—Fe1—N4 | 90.01 (12) | C11—C12—H12A | 109.5 |
N2—Fe1—N4 | 93.26 (12) | C11—C12—H12B | 109.5 |
N3—Fe1—N4 | 86.77 (12) | H12A—C12—H12B | 109.5 |
N1—Fe1—N101 | 88.79 (12) | C11—C12—H12C | 109.5 |
N2—Fe1—N101 | 88.66 (11) | H12A—C12—H12C | 109.5 |
N3—Fe1—N101 | 174.68 (12) | H12B—C12—H12C | 109.5 |
N4—Fe1—N101 | 88.04 (12) | C11—N1—Fe1 | 173.8 (3) |
N1—Fe1—N201 | 88.02 (12) | N2—C21—C22 | 179.6 (4) |
N2—Fe1—N201 | 89.04 (11) | C21—C22—H22A | 109.5 |
N3—Fe1—N201 | 86.53 (12) | C21—C22—H22B | 109.5 |
N4—Fe1—N201 | 173.02 (12) | H22A—C22—H22B | 109.5 |
N101—Fe1—N201 | 98.60 (11) | C21—C22—H22C | 109.5 |
C102—C101—C105 | 108.2 (3) | H22A—C22—H22C | 109.5 |
C102—C101—C106 | 124.0 (3) | H22B—C22—H22C | 109.5 |
C105—C101—C106 | 127.9 (3) | C21—N2—Fe1 | 178.6 (3) |
C103—C102—C101 | 107.6 (3) | N3—C31—C32 | 178.2 (6) |
C103—C102—C107 | 127.0 (3) | C31—C32—H32A | 109.5 |
C101—C102—C107 | 125.4 (3) | C31—C32—H32B | 109.5 |
C102—C103—C104 | 108.2 (3) | H32A—C32—H32B | 109.5 |
C102—C103—C108 | 125.9 (3) | C31—C32—H32C | 109.5 |
C104—C103—C108 | 125.9 (3) | H32A—C32—H32C | 109.5 |
C105—C104—C103 | 108.3 (3) | H32B—C32—H32C | 109.5 |
C105—C104—C109 | 127.0 (3) | C31—N3—Fe1 | 166.2 (4) |
C103—C104—C109 | 124.7 (4) | N4—C41—C42 | 179.0 (5) |
C104—C105—C101 | 107.8 (3) | C41—C42—H42A | 109.5 |
C104—C105—C110 | 126.2 (3) | C41—C42—H42B | 109.5 |
C101—C105—C110 | 126.0 (3) | H42A—C42—H42B | 109.5 |
N101—C106—C101 | 176.6 (4) | C41—C42—H42C | 109.5 |
N102—C107—C102 | 178.3 (4) | H42A—C42—H42C | 109.5 |
N103—C108—C103 | 179.1 (4) | H42B—C42—H42C | 109.5 |
N104—C109—C104 | 179.3 (5) | C41—N4—Fe1 | 165.3 (3) |
N105—C110—C105 | 179.2 (4) | N5A—C51A—C52A | 177.7 (8) |
C106—N101—Fe1 | 162.4 (3) | C51A—C52A—H52A | 109.5 |
C205—C201—C202 | 107.9 (3) | C51A—C52A—H52B | 109.5 |
C205—C201—C206 | 124.6 (3) | H52A—C52A—H52B | 109.5 |
C202—C201—C206 | 127.5 (3) | C51A—C52A—H52C | 109.5 |
C203—C202—C201 | 107.9 (3) | H52A—C52A—H52C | 109.5 |
C203—C202—C207 | 127.1 (3) | H52B—C52A—H52C | 109.5 |
C201—C202—C207 | 125.0 (3) | N6A—C61A—C62A | 178.7 (9) |
C202—C203—C204 | 108.0 (3) | C61A—C62A—H62A | 109.5 |
C202—C203—C208 | 126.7 (3) | C61A—C62A—H62B | 109.5 |
C204—C203—C208 | 125.2 (3) | H62A—C62A—H62B | 109.5 |
C205—C204—C203 | 108.3 (3) | C61A—C62A—H62C | 109.5 |
C205—C204—C209 | 125.4 (3) | H62A—C62A—H62C | 109.5 |
C203—C204—C209 | 126.3 (3) | H62B—C62A—H62C | 109.5 |
C204—C205—C201 | 107.8 (3) | N6B—C61B—C62B | 173 (6) |
C204—C205—C210 | 126.0 (3) | C61B—C62B—H62D | 109.5 |
C201—C205—C210 | 126.2 (3) | C61B—C62B—H62E | 109.5 |
N201—C206—C201 | 177.0 (4) | H62D—C62B—H62E | 109.5 |
N202—C207—C202 | 179.2 (4) | C61B—C62B—H62F | 109.5 |
N203—C208—C203 | 178.8 (4) | H62D—C62B—H62F | 109.5 |
N204—C209—C204 | 179.3 (4) | H62E—C62B—H62F | 109.5 |
C105—C101—C102—C103 | 0.0 (4) | C205—C201—C202—C203 | 0.2 (4) |
C106—C101—C102—C103 | 179.8 (3) | C206—C201—C202—C203 | 179.5 (3) |
C105—C101—C102—C107 | −179.5 (3) | C205—C201—C202—C207 | 179.8 (3) |
C106—C101—C102—C107 | 0.3 (6) | C206—C201—C202—C207 | −0.9 (6) |
C101—C102—C103—C104 | −0.2 (4) | C201—C202—C203—C204 | 0.0 (4) |
C107—C102—C103—C104 | 179.4 (3) | C207—C202—C203—C204 | −179.7 (3) |
C101—C102—C103—C108 | 179.3 (3) | C201—C202—C203—C208 | −179.2 (3) |
C107—C102—C103—C108 | −1.1 (6) | C207—C202—C203—C208 | 1.2 (6) |
C102—C103—C104—C105 | 0.2 (4) | C202—C203—C204—C205 | −0.2 (4) |
C108—C103—C104—C105 | −179.3 (3) | C208—C203—C204—C205 | 179.1 (3) |
C102—C103—C104—C109 | −179.1 (3) | C202—C203—C204—C209 | 179.6 (3) |
C108—C103—C104—C109 | 1.4 (6) | C208—C203—C204—C209 | −1.2 (6) |
C103—C104—C105—C101 | −0.2 (4) | C203—C204—C205—C201 | 0.3 (4) |
C109—C104—C105—C101 | 179.1 (3) | C209—C204—C205—C201 | −179.5 (3) |
C103—C104—C105—C110 | 179.9 (3) | C203—C204—C205—C210 | −179.4 (3) |
C109—C104—C105—C110 | −0.8 (6) | C209—C204—C205—C210 | 0.8 (6) |
C102—C101—C105—C104 | 0.1 (4) | C202—C201—C205—C204 | −0.3 (4) |
C106—C101—C105—C104 | −179.7 (3) | C206—C201—C205—C204 | −179.6 (3) |
C102—C101—C105—C110 | −180.0 (3) | C202—C201—C205—C210 | 179.4 (3) |
C106—C101—C105—C110 | 0.2 (6) | C206—C201—C205—C210 | 0.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···N5Ai | 0.98 | 2.58 | 3.454 (7) | 149 |
C12—H12B···N103i | 0.98 | 2.54 | 3.443 (6) | 154 |
C12—H12C···N204ii | 0.98 | 2.56 | 3.469 (6) | 154 |
C22—H22A···N5Aiii | 0.98 | 2.39 | 3.308 (7) | 156 |
C22—H22A···N6Biv | 0.98 | 2.61 | 3.41 (3) | 138 |
C22—H22B···N204v | 0.98 | 2.52 | 3.407 (5) | 150 |
C22—H22C···N103iii | 0.98 | 2.52 | 3.424 (6) | 154 |
C52—H52B···N102 | 0.98 | 2.51 | 3.492 (8) | 176 |
Symmetry codes: (i) x, y, z+1; (ii) x, y−1, z; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+1; (v) x, y, z−1. |
PLATON VOID | PLATON SASA | CE (0.002 a.u.) | CE (0.0003 a.u.) | |
Without MeCN | ||||
Void volume | 346 | 473.4 | 191.0 | |
Void surface | 281 | 721.2 | 237.9 | |
With 2MeCN | ||||
Void volume | 0 | 211.6 | 0.3 | |
Void surface | 0 | 716.4 | 3.2 |
Fe1—N101 | 2.170 (4) | N101—Fe1—N201 | 98.6 (1) |
Fe1—N201 | 2.186 (3) | N101—Fe1—N3 | 174.6 (1) |
Fe1—N1 | 2.127 (3) | N201—Fe1—N4 | 173.0 (1) |
Fe1—N2 | 2.141 (3) | N1—Fe1—N2 | 175.8 (1) |
Fe1—N3 | 2.143 (4) | C106—N101—Fe1 | 162.5 (3) |
Fe1—N4 | 2.146 (3) | C206—N201—Fe1 | 161.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···N5i | 0.98 | 2.57 | 3.448 | 149 |
C12—H12B···N103i | 0.98 | 2.54 | 3.440 (5) | 154 |
C12—H12C···N204ii | 0.98 | 2.57 | 3.469 (5) | 153 |
C22—H22A···N5iv | 0.98 | 2.38 | 3.302 | 156 |
C22—H22A···N6Bv | 0.98 | 2.64 | 3.426 | 137 |
C22—H22B···N204iii | 0.98 | 2.53 | 3.406 (5) | 149 |
C22—H22C···N103iv | 0.98 | 2.52 | 3.421 (5) | 153 |
C52—H52B···N102 | 0.98 | 2.51 | 3.489 | 177 |
Symmetry codes: (i) x, y, z+1; (ii) x, y-1, z; (iii) x, y, z-1; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1. |
Acknowledgements
Open access funding enabled and organized by Projekt DEAL.
References
Bacsa, J., Less, R. J., Skelton, H. E., Soracevic, Z., Steiner, A., Wilson, T. C., Wood, P. T. & Wright, D. S. (2011). Angew. Chem. Int. Ed. 50, 8279–8282. CSD CrossRef CAS Google Scholar
Blockhaus, T. & Sünkel, K. (2021). Z. Anorg. Allg. Chem. 647, 1849–1854. CSD CrossRef CAS Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carter-Fenk, K. & Herbert, J. M. (2020). Phys. Chem. Chem. Phys. 22, 24870–24886. CAS PubMed Google Scholar
Christopher, R. E. & Venanzi, L. M. (1973). Inorg. Chim. Acta, 7, 489–492. CrossRef CAS Google Scholar
Düren, T., Millange, F., Férey, G., Walton, K. S. & Snurr, R. Q. (2007). J. Phys. Chem. C, 111, 15350–15356. Google Scholar
Ghosh, A. K., Hazra, A., Mondal, A. & Banerjee, P. (2019). Inorg. Chim. Acta, 488, 86–119. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Less, R. J., Wilson, T. C., Guan, B., McPartlin, M., Steiner, A., Wood, P. T. & Wright, D. S. (2013). Eur. J. Inorg. Chem. 2013, 1161–1169. CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nimax, P. R., Reimann, D. & Sünkel, K. (2018). Dalton Trans. 47, 8476–8482. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sünkel, K. & Nimax, P. (2018). Dalton Trans. 47, 409–417. PubMed Google Scholar
Sünkel, K. & Reimann, D. (2013). Z. Naturforsch. B, 68, 546–550. Google Scholar
Sünkel, K., Reimann, D. & Nimax, P. R. (2019). Z. Naturforsch. B, 74, 109–118. Google Scholar
Thakuria, R., Nath, N. K. & Saha, B. K. (2019). Cryst. Growth Des. 19, 523–528. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Wang, B., Lin, R.-B., Zhang, Z., Xiang, S. & Chen, B. (2020). J. Am. Chem. Soc. 142, 14399–14416. CrossRef CAS PubMed Google Scholar
Webster, O. W. (1966). J. Am. Chem. Soc. 88, 4055–4060. CrossRef CAS Google Scholar
Webster, O. W. (1970). US 3536694 A 19701027. Google Scholar
Webster, O. W. (1974). US 3853943 A 19741210. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.