research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Coordination chemistry of polynitriles. Part 9. Deca­cyano­ferrocene revisited: crystal and mol­ecular structure of cis-[{C5(CN)5}2(MeCN)4Fe]

crossmark logo

aLudwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 9, 81377 Munich, Germany
*Correspondence e-mail: suenk@cup.uni-muenchen.de

Edited by E. Reinheimer, Rigaku Americas Corporation, USA (Received 1 September 2021; accepted 11 January 2022; online 21 January 2022)

The reaction of Ag[C5(CN)5] with anhydrous FeCl2 in aceto­nitrile leads to colourless crystals of tetra­kis­(aceto­nitrile-κN)bis­(penta­cyano­cyclo­penta­dienido-κN)iron(II) aceto­nitrile 1.8-solvate, [Fe(C10N5)2(CH3CN)4]·1.8CH3CN or cis-[{C5(CN)5}2(MeCN)4Fe]·1.8MeCN. The com­pound crystallizes in the triclinic space group P[\overline{1}] as monomers, which exhibit weak C—H⋯N and ππ inter­actions. The crystals contain ca 20% solvent-accessible voids, which are nearly com­pletely filled by two MeCN mol­ecules.

1. Introduction

The term `deca­cyano­ferrocene' appeared first in a publication about `diazo­tetra­cyano­cyclo­penta­diene' (Webster, 1966[Webster, O. W. (1966). J. Am. Chem. Soc. 88, 4055-4060.]) and later in two US patents by the same author (Webster, 1970[Webster, O. W. (1970). US 3536694 A 19701027.], 1974[Webster, O. W. (1974). US 3853943 A 19741210.]). It was used for the reaction product from silver penta­cyano­cyclo­penta­dienide and FeCl2 in aceto­nitrile, which led to `light-green crystals of deca­cyano­ferrocene', which were char­acterized, after drying at 112 °C under vacuum, by ele­mental analysis and IR and UV spectroscopy as `C20N10Fe·xH2O'. No indication or proof was given for the formulation as a `ferrocene'. A couple of years later, a different research group repeated the experiment and described the primary product as `white crystals' (Christopher & Venanzi, 1973[Christopher, R. E. & Venanzi, L. M. (1973). Inorg. Chim. Acta, 7, 489-492.]). Drying of the crystals at room temperature in vacuo produced a white solid that still, according to its IR spectrum, contained aceto­nitrile. Further drying at 110 °C in vacuo produced a pale-yellow–green product, which analyzed as `C20N10Fe·xH2O' and was further characterized by IR spectroscopy and magnetic and conductivity measurements. In the absence of a crystal structure determination, these authors postulated a `polymeric structure in which the iron is in an approximately octa­hedral environment', in which `each PP group bridges three iron atoms'. Within the last 15 years, the coordination chemistry of the penta­cyano­cyclo­penta­dienide anion has been studied intensively by us and others (Sünkel & Reimann, 2013[Sünkel, K. & Reimann, D. (2013). Z. Naturforsch. B, 68, 546-550.]; Sünkel & Nimax, 2018[Sünkel, K. & Nimax, P. (2018). Dalton Trans. 47, 409-417.]; Nimax et al., 2018[Nimax, P. R., Reimann, D. & Sünkel, K. (2018). Dalton Trans. 47, 8476-8482.]; Blockhaus & Sünkel, 2021[Blockhaus, T. & Sünkel, K. (2021). Z. Anorg. Allg. Chem. 647, 1849-1854.]; Bacsa et al., 2011[Bacsa, J., Less, R. J., Skelton, H. E., Soracevic, Z., Steiner, A., Wilson, T. C., Wood, P. T. & Wright, D. S. (2011). Angew. Chem. Int. Ed. 50, 8279-8282.]; Less et al., 2013[Less, R. J., Wilson, T. C., Guan, B., McPartlin, M., Steiner, A., Wood, P. T. & Wright, D. S. (2013). Eur. J. Inorg. Chem. 2013, 1161-1169.]). These studies showed that [C5(CN)5] could behave either as a noncoordinating anion or use one to its five cyano groups for coordination, sometimes even in a bridging μ2-κ1:κ1 fashion. We had also treated FeCl2 with Ag[C5(CN)5] in methanol. Recrystallization from MeOH gave crystals of trans-[{C5(CN)5}2Fe(H2O)4], in which both anions used only one cyano function each for coordination to iron in a mononuclear com­pound (Sünkel et al., 2019[Sünkel, K., Reimann, D. & Nimax, P. R. (2019). Z. Naturforsch. B, 74, 109-118.]). Individual mol­ecules were connected via hydrogen bridges into a three-dimensional network. Since all the above-mentioned reports described the formation of (either `light green' or `white') crystals as the primary product of the reaction in aceto­nitrile, we decided to repeat this reaction and to study the crystals.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

The title com­pound, tetra­kis­(aceto­nitrile-κN)bis­(penta­cyano­cyclo­penta­dienido-κN)iron(II) aceto­nitrile disolvate, (I)[link] (Scheme 1), was prepared as described in the literature (Webster, 1966[Webster, O. W. (1966). J. Am. Chem. Soc. 88, 4055-4060.]; Christopher & Venanzi, 1973[Christopher, R. E. & Venanzi, L. M. (1973). Inorg. Chim. Acta, 7, 489-492.]). Recrystallization of the crude product by slow evaporation of an aceto­nitrile solution under an argon atmosphere gave colourless crystals suitable for X-ray diffraction analysis. Heating the crystals at 110 °C in vacuo for several hours left an amorphous powder. All attempts to obtain crystals of this product by dissolution in a noncoordinating solvent met with failure.

2.2. Refinement

The structure refinement showed, besides the mol­ecular unit, two lattice aceto­nitrile (MeCN) mol­ecules, which were both disordered. The disorder of one MeCN mol­ecule could be resolved with the help of restraints into two positions in relative 80:20 occupancies. The disorder of the second molecule, however, could not be resolved. Due to some unfavourable close contacts with the `minor' molecule, the site-occupancy factor (s.o.f.) of the second molecule was reduced to 0.8 anyway. After inclusion of these MeCN mol­ecules, PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) analysis showed no more solvent-accessible voids. The results of the refinement using this model are shown in the second column of Table 1[link]. As the PLATON analysis of the structure without the lattice aceto­nitrile mol­ecules showed 20% solvent-accessible voids (for a `cavity plot', see Fig.  S1 of the supporting information), a refinement using the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) was tried. The results of this refinement are shown in the third column of Table 1[link]. As can be seen, the SQUEEZE refinement led to slightly better R values. To obtain further insight into the importance of crystal voids in this structure, the `un-SQUEEZEd' CIF file was examined using the program CrystalExplorer (Version 21.5), using the subroutine `void' (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]), both without and with the aceto­nitrile mol­ecules. Fig.  1[link](a) shows the void plot obtained without the MeCN mol­ecules, while Fig.  1[link](b) shows the same plot when the MeCN mol­ecules were included (0.002 a.u. isosurfaces; for the results of the corresponding calculations using 0.0003 a.u. isosurfaces, see Fig.  S2 in the supporting information). Table 2[link] summarizes the results of the void-space calculations using PLATON and CrystalExplorer.

Table 1
Experimental details

  With localized solvent With SQUEEZE
Crystal data  
Molecular formula [Fe(C10N5)2(C2H3N)4]·1.8C2H3N  
Chemical formula C31.6H17.4FeN15.8 C28H12FeN14
Mr 674.29 600.37
Crystal system, space group Triclinic, P[\overline{1}]  
Temperature (K) 109  
a, b, c (Å) 11.9972 (7), 12.8711 (7), 13.0907 (8)  
α, β, γ (°) 62.528 (2), 82.929 (2), 77.210 (2)  
V3) 1748.47 (18)  
Z 2  
Radiation type Mo Kα  
μ (mm−1) 0.48 0.47
Crystal size (mm) 0.05 × 0.04 × 0.03  
 
Data collection
Diffractometer Bruker D8 Venture  
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])  
Tmin, Tmax 0.616, 0.745  
No. of measured, independent and observed [I > 2σ(I)] reflections 17051, 7081, 5145 17056, 7083, 5145
Rint 0.042  
(sin θ/λ)max−1) 0.626  
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.163, 1.03 0.061, 0.141, 1.04
No. of reflections 7081 7083
No. of parameters 464 392
No. of restraints 3 0
H-atom treatment H-atom parameters constrained  
Δρmax, Δρmin (e Å−3) 0.81, −0.63 0.77, −0.64
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Table 2
Comparison of the void calculations using PLATON and CrystalExplorer (CE)

SASA is solvent accessible surface area (Düren et al., 2007[Düren, T., Millange, F., Férey, G., Walton, K. S. & Snurr, R. Q. (2007). J. Phys. Chem. C, 111, 15350-15356.]).

  PLATON VOID PLATON SASA CE (0.002 a.u.) CE (0.0003 a.u.)
Without MeCN        
Void volume 346   473.4 191.0
Void surface   281 721.2 237.9
         
With 2MeCN        
Void volume 0   211.6 0.3
Void surface   0 716.4 3.2
[Figure 1]
Figure 1
Crystal void plots (0.002 a.u. isosurface) of the crystal structure (a) without and (b) including the MeCN lattice mol­ecules.

As can be seen, the results obtained with PLATON (excluding the MeCN solvents) are inter­mediate between the CrystalExplorer results with the two different isosurfaces, which is rather unusual (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). After inclusion of the MeCN mol­ecules, the PLATON results and the CrystalExplorer results for a 0.0003 a.u. surface are nearly identical, and show that there are no permanent voids left after inclusion of the MeCN mol­ecules. In view of this, together with the probable involvement of the lattice MeCN mol­ecules in C—H⋯N hydrogen bonds, the SQUEEZEd structure was not examined further.

3. Results and discussion

The title com­pound crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit. The FeII ion coordinates to two cis-oriented penta­cyano­cyclo­penta­dienyl anions via one nitrile function each, and additionally to four aceto­nitrile mol­ecules (Fig.  2[link]).

[Figure 2]
Figure 2
Displacement ellipsoid plot (30% probability level) of (I). The lattice MeCN mol­ecules are not shown.

The two cyclo­penta­dienyl rings are coplanar [inter­planar angle = 0.8 (2)°; the average distance of atoms C201–C205 from the best plane through C101–C105 is 0.044 ± 0.02 Å]. The bond lengths from the Fe atom to the [C5(CN)5] N atoms are significantly (>10σ) longer [average 2.176 (3) Å] than to the aceto­nitrile N atoms [average 2.140 (4) Å], with the bond angles at the coordinating atoms N101 and N201 close to being linear (average 161.9°). Further important bond parameters can be found in Table 3[link].

Table 3
Selected geometric parameters (Å, °)

Fe1—N1 2.127 (3) Fe1—N4 2.147 (3)
Fe1—N2 2.141 (3) Fe1—N101 2.169 (3)
Fe1—N3 2.142 (3) Fe1—N201 2.185 (3)
       
N1—Fe1—N2 175.79 (12) N101—Fe1—N201 98.60 (11)
N3—Fe1—N101 174.68 (12) C106—N101—Fe1 162.4 (3)
N4—Fe1—N101 88.04 (12) C206—N201—Fe1 161.2 (3)

Weak inter­actions with the contents of the voids contribute to the stability of the crystal lattice (Ghosh et al., 2019[Ghosh, A. K., Hazra, A., Mondal, A. & Banerjee, P. (2019). Inorg. Chim. Acta, 488, 86-119.]; Wang et al., 2020[Wang, B., Lin, R.-B., Zhang, Z., Xiang, S. & Chen, B. (2020). J. Am. Chem. Soc. 142, 14399-14416.]) and so a closer inspection of the packing plots seemed appropriate (Fig.  3[link]).

[Figure 3]
Figure 3
Packing plot (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), viewed along the crystallographic a axis. The colour coding green/blue/yellow/red corresponds to the symmetry equivalents, as defined by Mercury. Red and blue lines show the hydrogen bonds according to Table 4[link].

A packing plot viewed down the crystallographic a axis shows `layers' of cyclo­penta­dienyl rings oriented parallel to the bc diagonal and orthogonal to the plane of projection. These layers contain also one of the lattice MeCN mol­ecules (dark blue in Fig.  3[link]). Individual mol­ecules are connected via C—H⋯N hydrogen bonds in the b and c directions using methyl groups C12 and C22 of the coordinated aceto­nitrile mol­ecules (both in cis positions relative to the coordinated anions) as donors and the penta­cyano­cyclo­penta­dienide atoms N103 and N204 (in the 3-position relative to the coordinated cyano N atom), as well as the lattice MeCN atoms N5 and N6B, as acceptors. In addition, there is also a hydrogen bond between the lattice MeCN group C52 and penta­cyano­cyclo­penta­dienide atom N102 (Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯N5Aviii 0.98 2.58 3.454 (7) 149
C12—H12B⋯N103viii 0.98 2.54 3.443 (6) 154
C12—H12C⋯N204vii 0.98 2.56 3.469 (6) 154
C22—H22A⋯N5Aix 0.98 2.39 3.308 (7) 156
C22—H22A⋯N6Biv 0.98 2.61 3.41 (3) 138
C22—H22B⋯N204iii 0.98 2.52 3.407 (5) 150
C22—H22C⋯N103ix 0.98 2.52 3.424 (6) 154
C52—H52B⋯N102 0.98 2.51 3.492 (8) 176
Symmetry codes: (iii) [x, y, z-1]; (iv) [-x+1, -y+1, -z+1]; (vii) [x, y-1, z]; (viii) x, y, z+1; (ix) x, y+1, z.

A possibly more important inter­molecular inter­action becomes visible in Fig.  4[link].

[Figure 4]
Figure 4
Packing plot (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), viewed perpendicular to the bc plane. The colour coding is as in Fig.  3[link].

The penta­cyano­cyclo­penta­dienyl rings stack via ππ inter­actions (Carter-Fenk & Herbert, 2020[Carter-Fenk, K. & Herbert, J. M. (2020). Phys. Chem. Chem. Phys. 22, 24870-24886.]; Thakuria et al., 2019[Thakuria, R., Nath, N. K. & Saha, B. K. (2019). Cryst. Growth Des. 19, 523-528.]), with the ring planes at a typical distance of ca 3.36 Å. A closer look (Fig.  5[link]) shows that the stack is formed by alternating pairs of inversion-related C101–C105 (symmetry codes i/ii and v/vi) and C201–C205 (iii/iv) rings. The dotted `bonds' in Fig.  5[link] join the ring centroids at distances of 3.575 (i/ii and v/vi), 3.580 (ii/iii, iv/v and vi/vii) and 3.597 Å (iii/iv), and angles of 141.3 and 142.8°. This corresponds to a `ring slippage' of ca 1.15 Å.

[Figure 5]
Figure 5
π-Stacking of the cyclo­penta­dienyl rings. [Symmetry codes: (i) x, y + 1, z − 1; (ii) −x + 1, −y + 1, −z; (iii) x, y, z − 1; (iv) −x + 1, −y + 1, −z + 1; (v) x, y, z; (vi) −x + 1, −y, −z + 1; (vii) x, y − 1, z.]

In order to gain further insight into the inter­actions at work, a Hirshfeld analysis was undertaken with the help of the program CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

Fig.  6[link](a) shows the Hirshfeld surface of the asymmetric unit, with the dnorm surface property (range −0.65 to 1.30). The strong involvement of the lattice MeCN mol­ecules in donor C—H⋯N (top right) and acceptor N⋯H—C (bottom left) inter­actions can be seen. Fig.  6[link](b) shows the Hirshfeld surface of an isolated com­plex fragment and its inter­actions with four further com­plex fragments and a few lattice MeCN mol­ecules. In Fig.  7[link], the same surface showing the properties `curvedness', `shape index' and `electrostatic potential' is displayed.

[Figure 6]
Figure 6
(a) Hirshfeld surface of the asymmetric unit of (I) using normalized contact distances (dnorm) for colour coding. Red areas represent regions where the contact distances are significantly below the sum of the van der Waals radii. (b) Hirshfeld surface of one isolated metal com­plex, together with some close-by neighbours, indicating also the hydrogen bridges between them and the central fragment.
[Figure 7]
Figure 7
Hirshfeld surfaces displaying the properties (a) `curvedness', (b) `shape index' and (c) `electrostatic potential'.

Both the `curvedness' and the `shape index' plots show the importance of planar π-stacking for both cyclo­penta­dienyl rings (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Fig.  7[link](c) shows that the asymmetric unit contains both electropositive (blue) and electronegative (red) parts, together with small neutral (white) areas. Fig.  S3 (see supporting information) shows how in neighbouring mol­ecules the positive and negative parts approach each other.

The so-called `fingerprints' are a graphical representation of all the inter­actions of atoms `inside' and `outside' the Hirshfeld surface (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). Fig.  8[link](a) shows such a plot when the two lattice MeCN mol­ecules are left outside the Hirshfeld surface, while Fig.  8[link](b) represents such a plot when the com­plete asymmetric unit is inside the Hirshfeld surface. A plot showing the most important individual contributors is shown in Fig.  S4 (see supporting information). The bright-green spots at ca (1.8/1.8) Å in Fig.  8[link] correspond to ππ stacking inter­actions; inspection of Fig.  S4 shows that C⋯C inter­actions are responsible for ca 18% of all the inter­molecular inter­actions, while C—H⋯π inter­actions make up less than 7%. C—H⋯N contacts make up nearly 50% of the weak inter­actions.

[Figure 8]
Figure 8
Fingerprint plots (a) for a Hirshfeld surface enclosing only the iron com­plex and (b) for the whole asymmetric unit.

A last important point relates to the inter­action energies in the crystal. Fig.  S5 (see supporting information) shows that the inter­actions between the com­plex and the two unique MeCN solvent mol­ecules are relatively weak, with the repulsive terms dominating. The inter­actions between the asymmetric unit and four close neighbours are displayed in Fig.  S6. The energies range from −54 to −174 kJ mol−1. The strongest inter­action occurs for the closest approach of two inversion-related mol­ecules (magenta), with a clear dominance of the dispersion term. Another method for graphically representing these inter­actions is through the use of `energy frameworks' (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]), which are displayed in Fig.  9[link].

[Figure 9]
Figure 9
Energy frameworks, showing Coulombic (left) and dispersion (middle) terms, as well as total inter­action energies (right).

4. Conclusion

The primary reaction product from FeCl2 and Ag[C5(CN)5] in aceto­nitrile is neither a `ferrocene' nor a coordination polymer. The structure determination presented here shows a mononuclear octa­hedral coordination com­pound with two cis-oriented monodentate penta­cyano­cyclo­penta­dienide anions and four aceto­nitrile ligands. The individual mol­ecules inter­act in the lattice via weak C—H⋯N hydrogen bonds and displaced parallel cyclo­penta­dienyl π-systems. In the absence of any crystals it is difficult to speculate about the structure of the com­pound `Fe[C5(CN)5]2·xH2O' described over 50 years ago. However, one could imagine that after removal of all the aceto­nitrile mol­ecules, the remaining fragments approach each other parallel to the bc plane and form `ribbons' of Fe[C5(CN)5]4/2 with the anions using two of their cyano groups, similar to the structure of Ca[C5(CN)4H]2·4H2O (Sünkel & Nimax, 2018[Sünkel, K. & Nimax, P. (2018). Dalton Trans. 47, 409-417.]). In contrast to the Ca com­pound, the Fe com­pound would have to be octa­hedrally coordinated with two additional bridging H2O ligands (Fig.  10[link]).

[Figure 10]
Figure 10
Suggested transformation from the title com­pound to a polymeric structure: (left) three mol­ecules along the a direction; (middle) the same part of the structure with the MeCN mol­ecules omitted; (right) sketch of the suggested polymer (without the bridging water ligands).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Tetrakis(acetonitrile-κN)bis(pentacyanocyclopentadienido-κN)iron(II) acetonitrile disolvate top
Crystal data top
[Fe(C10N5)2(C2H3N)4]·1.8C2H3NZ = 2
Mr = 674.29F(000) = 696
Triclinic, P1Dx = 1.296 Mg m3
a = 11.9972 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8711 (7) ÅCell parameters from 8142 reflections
c = 13.0907 (8) Åθ = 2.7–26.5°
α = 62.528 (2)°µ = 0.48 mm1
β = 82.929 (2)°T = 109 K
γ = 77.210 (2)°Block, colourless
V = 1748.47 (18) Å30.05 × 0.04 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
7081 independent reflections
Radiation source: rotating anode generator5145 reflections with I > 2σ(I)
Detector resolution: 7.391 pixels mm-1Rint = 0.042
mix of ω and phi scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1413
Tmin = 0.616, Tmax = 0.745k = 1614
17051 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0525P)2 + 4.4167P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7081 reflectionsΔρmax = 0.81 e Å3
464 parametersΔρmin = 0.63 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.31525 (4)0.41288 (5)0.62909 (5)0.02179 (16)
C1010.5159 (3)0.1898 (3)0.4444 (3)0.0220 (8)
C1020.4447 (3)0.1551 (3)0.3921 (3)0.0227 (8)
C1030.5156 (3)0.0879 (3)0.3416 (3)0.0241 (8)
C1040.6307 (3)0.0814 (3)0.3624 (3)0.0240 (8)
C1050.6311 (3)0.1436 (3)0.4257 (3)0.0230 (8)
C1060.4747 (3)0.2595 (3)0.5041 (3)0.0208 (8)
C1070.3223 (3)0.1848 (3)0.3910 (3)0.0230 (8)
C1080.4783 (3)0.0347 (3)0.2808 (3)0.0277 (9)
C1090.7278 (3)0.0216 (3)0.3229 (4)0.0322 (9)
C1100.7303 (3)0.1586 (3)0.4649 (3)0.0273 (8)
N1010.4360 (3)0.3168 (3)0.5504 (3)0.0266 (7)
N1020.2255 (3)0.2088 (3)0.3873 (3)0.0368 (8)
N1030.4496 (3)0.0092 (3)0.2322 (3)0.0411 (9)
N1040.8048 (3)0.0262 (3)0.2907 (4)0.0484 (10)
N1050.8099 (3)0.1701 (3)0.4953 (3)0.0400 (9)
C2010.5149 (3)0.5561 (3)0.8071 (3)0.0221 (8)
C2020.6298 (3)0.5503 (3)0.8270 (3)0.0214 (7)
C2030.6296 (3)0.6124 (3)0.8915 (3)0.0241 (8)
C2040.5152 (3)0.6567 (3)0.9116 (3)0.0224 (8)
C2050.4442 (3)0.6224 (3)0.8594 (3)0.0229 (8)
C2060.4744 (3)0.5066 (3)0.7450 (3)0.0197 (7)
C2070.7275 (3)0.4903 (3)0.7878 (3)0.0284 (9)
C2080.7274 (3)0.6301 (4)0.9295 (3)0.0297 (9)
C2090.4768 (3)0.7244 (3)0.9745 (3)0.0256 (8)
C2100.3214 (3)0.6506 (3)0.8589 (3)0.0271 (8)
N2010.4370 (2)0.4697 (3)0.6948 (3)0.0249 (7)
N2020.8045 (3)0.4424 (3)0.7558 (3)0.0424 (9)
N2030.8046 (3)0.6454 (4)0.9608 (3)0.0432 (9)
N2040.4457 (3)0.7775 (3)1.0254 (3)0.0374 (8)
N2050.2240 (3)0.6733 (3)0.8597 (3)0.0396 (9)
C110.3267 (3)0.1710 (3)0.8712 (3)0.0278 (8)
C120.3231 (4)0.0659 (4)0.9790 (4)0.0449 (11)
H12A0.2446640.0673211.0106430.067*
H12B0.3737360.0640581.0333560.067*
H12C0.3483690.0051590.9663920.067*
N10.3295 (3)0.2534 (3)0.7868 (3)0.0282 (7)
C210.3161 (3)0.6547 (3)0.3858 (3)0.0237 (8)
C220.3187 (3)0.7613 (3)0.2786 (3)0.0312 (9)
H22A0.2424810.8117300.2642130.047*
H22B0.3418480.7393960.2156130.047*
H22C0.3735870.8050560.2833090.047*
N20.3143 (2)0.5717 (3)0.4700 (3)0.0221 (7)
C310.1095 (3)0.5236 (5)0.7567 (4)0.0414 (11)
C320.0114 (4)0.5511 (7)0.8237 (5)0.074 (2)
H32A0.0511680.6042490.7719230.111*
H32B0.0332020.5904840.8648630.111*
H32C0.0137640.4772240.8793370.111*
N30.1842 (3)0.4997 (3)0.7056 (3)0.0312 (8)
C410.1027 (3)0.3251 (4)0.5766 (3)0.0318 (9)
C420.0031 (4)0.2794 (4)0.5752 (5)0.0534 (14)
H42A0.0111930.2174750.6523890.080*
H42B0.0167650.2452910.5205200.080*
H42C0.0634560.3443810.5517640.080*
N40.1806 (3)0.3617 (3)0.5788 (3)0.0296 (7)
C51A0.0708 (5)0.0441 (6)0.2401 (6)0.0497 (16)0.8
C52A0.0220 (6)0.1035 (7)0.3094 (7)0.073 (2)0.8
H52A0.0383530.1707400.2668210.109*0.8
H52B0.0815540.1329530.3279600.109*0.8
H52C0.0105960.0474080.3808480.109*0.8
N5A0.1071 (5)0.0057 (6)0.1860 (5)0.0666 (17)0.8
C61A0.9780 (6)0.1859 (7)0.9281 (6)0.0515 (18)0.8
C62A0.8810 (6)0.1424 (6)0.9942 (6)0.0573 (18)0.8
H62A0.8682640.1625841.0587880.086*0.8
H62B0.8940140.0555741.0238000.086*0.8
H62C0.8136990.1788280.9455750.086*0.8
N6A1.0559 (6)0.2234 (7)0.8743 (7)0.095 (3)0.8
N6B0.921 (3)0.115 (3)0.881 (2)0.091 (9)*0.2
C61B0.944 (5)0.147 (5)0.944 (4)0.095 (18)*0.2
C62B0.984 (3)0.176 (3)1.025 (3)0.074 (9)*0.2
H62D0.9300330.2426701.0300720.111*0.2
H62E0.9896320.1061861.1008700.111*0.2
H62F1.0591680.1975290.9995190.111*0.2
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0159 (3)0.0225 (3)0.0240 (3)0.00369 (19)0.00088 (19)0.0078 (2)
C1010.0223 (18)0.0172 (17)0.0206 (19)0.0047 (14)0.0005 (14)0.0034 (15)
C1020.0221 (18)0.0194 (17)0.0195 (18)0.0068 (14)0.0014 (14)0.0013 (15)
C1030.028 (2)0.0203 (18)0.0173 (18)0.0070 (15)0.0005 (14)0.0013 (15)
C1040.0233 (19)0.0186 (18)0.0220 (19)0.0036 (14)0.0009 (14)0.0030 (15)
C1050.0185 (18)0.0187 (18)0.0240 (19)0.0034 (14)0.0006 (14)0.0030 (15)
C1060.0160 (17)0.0179 (18)0.0221 (19)0.0070 (14)0.0029 (13)0.0013 (16)
C1070.022 (2)0.0211 (19)0.0210 (19)0.0062 (14)0.0026 (14)0.0038 (16)
C1080.031 (2)0.022 (2)0.022 (2)0.0058 (16)0.0009 (15)0.0028 (17)
C1090.034 (2)0.025 (2)0.032 (2)0.0040 (17)0.0023 (17)0.0085 (18)
C1100.023 (2)0.026 (2)0.029 (2)0.0016 (15)0.0010 (15)0.0108 (17)
N1010.0226 (16)0.0238 (17)0.0298 (18)0.0072 (13)0.0034 (13)0.0072 (15)
N1020.027 (2)0.046 (2)0.035 (2)0.0076 (16)0.0002 (14)0.0162 (18)
N1030.054 (2)0.037 (2)0.030 (2)0.0131 (18)0.0037 (17)0.0108 (17)
N1040.039 (2)0.044 (2)0.057 (3)0.0002 (18)0.0095 (19)0.024 (2)
N1050.0266 (19)0.047 (2)0.053 (2)0.0044 (16)0.0078 (16)0.027 (2)
C2010.0260 (19)0.0164 (17)0.0183 (18)0.0061 (14)0.0017 (14)0.0027 (15)
C2020.0245 (19)0.0172 (17)0.0198 (18)0.0050 (14)0.0002 (14)0.0058 (15)
C2030.027 (2)0.0200 (18)0.0209 (19)0.0052 (15)0.0002 (14)0.0055 (16)
C2040.031 (2)0.0150 (17)0.0164 (18)0.0040 (14)0.0026 (14)0.0035 (14)
C2050.0235 (19)0.0173 (17)0.0205 (18)0.0045 (14)0.0018 (14)0.0027 (15)
C2060.0193 (17)0.0183 (17)0.0174 (18)0.0031 (14)0.0026 (13)0.0056 (15)
C2070.030 (2)0.028 (2)0.028 (2)0.0071 (17)0.0042 (16)0.0113 (18)
C2080.030 (2)0.032 (2)0.030 (2)0.0060 (17)0.0047 (16)0.0188 (19)
C2090.030 (2)0.0193 (18)0.022 (2)0.0046 (15)0.0011 (15)0.0056 (16)
C2100.032 (2)0.0183 (19)0.025 (2)0.0053 (15)0.0031 (16)0.0054 (16)
N2010.0195 (16)0.0255 (16)0.0271 (17)0.0039 (12)0.0024 (12)0.0106 (15)
N2020.034 (2)0.048 (2)0.051 (2)0.0022 (17)0.0027 (17)0.032 (2)
N2030.034 (2)0.055 (2)0.052 (2)0.0130 (18)0.0019 (17)0.033 (2)
N2040.046 (2)0.0296 (19)0.035 (2)0.0044 (16)0.0051 (16)0.0158 (17)
N2050.029 (2)0.037 (2)0.051 (2)0.0053 (15)0.0016 (16)0.0199 (19)
C110.027 (2)0.028 (2)0.030 (2)0.0012 (16)0.0035 (16)0.0146 (19)
C120.047 (3)0.037 (3)0.033 (3)0.004 (2)0.001 (2)0.002 (2)
N10.0305 (18)0.0253 (18)0.0272 (19)0.0033 (14)0.0078 (13)0.0096 (16)
C210.0157 (18)0.030 (2)0.028 (2)0.0006 (14)0.0005 (14)0.0172 (19)
C220.034 (2)0.026 (2)0.028 (2)0.0054 (16)0.0011 (16)0.0087 (18)
N20.0164 (15)0.0231 (16)0.0242 (17)0.0020 (12)0.0008 (12)0.0089 (15)
C310.021 (2)0.070 (3)0.041 (3)0.005 (2)0.0007 (18)0.033 (3)
C320.029 (3)0.150 (6)0.072 (4)0.008 (3)0.005 (2)0.078 (4)
N30.0236 (18)0.040 (2)0.0282 (18)0.0073 (14)0.0007 (14)0.0127 (16)
C410.024 (2)0.036 (2)0.033 (2)0.0020 (17)0.0033 (16)0.0143 (19)
C420.030 (2)0.050 (3)0.077 (4)0.019 (2)0.010 (2)0.019 (3)
N40.0223 (17)0.0348 (19)0.0314 (19)0.0066 (14)0.0013 (13)0.0137 (16)
C51A0.032 (3)0.043 (4)0.059 (4)0.001 (3)0.006 (3)0.012 (3)
C52A0.056 (4)0.072 (5)0.111 (7)0.002 (4)0.030 (4)0.058 (5)
N5A0.045 (3)0.066 (4)0.055 (4)0.005 (3)0.006 (3)0.007 (3)
C61A0.033 (4)0.042 (4)0.053 (4)0.011 (3)0.014 (3)0.004 (3)
C62A0.051 (4)0.058 (4)0.049 (4)0.005 (3)0.002 (3)0.015 (3)
N6A0.049 (4)0.099 (6)0.095 (5)0.019 (4)0.001 (4)0.005 (4)
Geometric parameters (Å, º) top
Fe1—N12.127 (3)C11—N11.128 (5)
Fe1—N22.141 (3)C11—C121.440 (6)
Fe1—N32.142 (3)C12—H12A0.9800
Fe1—N42.147 (3)C12—H12B0.9800
Fe1—N1012.169 (3)C12—H12C0.9800
Fe1—N2012.185 (3)C21—N21.129 (5)
C101—C1021.412 (5)C21—C221.444 (5)
C101—C1051.418 (5)C22—H22A0.9800
C101—C1061.420 (5)C22—H22B0.9800
C102—C1031.404 (5)C22—H22C0.9800
C102—C1071.433 (5)C31—N31.125 (5)
C103—C1041.416 (5)C31—C321.459 (6)
C103—C1081.423 (6)C32—H32A0.9800
C104—C1051.395 (5)C32—H32B0.9800
C104—C1091.427 (5)C32—H32C0.9800
C105—C1101.435 (5)C41—N41.145 (5)
C106—N1011.148 (5)C41—C421.450 (6)
C107—N1021.135 (5)C42—H42A0.9800
C108—N1031.148 (5)C42—H42B0.9800
C109—N1041.141 (5)C42—H42C0.9800
C110—N1051.142 (5)C51A—N5A1.149 (9)
C201—C2051.411 (5)C51A—C52A1.436 (10)
C201—C2021.413 (5)C52A—H52A0.9800
C201—C2061.420 (5)C52A—H52B0.9800
C202—C2031.406 (5)C52A—H52C0.9800
C202—C2071.431 (5)C61A—N6A1.152 (9)
C203—C2041.407 (5)C61A—C62A1.418 (10)
C203—C2081.429 (5)C62A—H62A0.9800
C204—C2051.406 (5)C62A—H62B0.9800
C204—C2091.430 (5)C62A—H62C0.9800
C205—C2101.437 (5)N6B—C61B1.155 (18)
C206—N2011.146 (4)C61B—C62B1.430 (18)
C207—N2021.141 (5)C62B—H62D0.9800
C208—N2031.146 (5)C62B—H62E0.9800
C209—N2041.138 (5)C62B—H62F0.9800
C210—N2051.140 (5)
N1—Fe1—N2175.79 (12)N205—C210—C205179.1 (4)
N1—Fe1—N390.01 (12)C206—N201—Fe1161.2 (3)
N2—Fe1—N392.83 (12)N1—C11—C12179.9 (6)
N1—Fe1—N490.01 (12)C11—C12—H12A109.5
N2—Fe1—N493.26 (12)C11—C12—H12B109.5
N3—Fe1—N486.77 (12)H12A—C12—H12B109.5
N1—Fe1—N10188.79 (12)C11—C12—H12C109.5
N2—Fe1—N10188.66 (11)H12A—C12—H12C109.5
N3—Fe1—N101174.68 (12)H12B—C12—H12C109.5
N4—Fe1—N10188.04 (12)C11—N1—Fe1173.8 (3)
N1—Fe1—N20188.02 (12)N2—C21—C22179.6 (4)
N2—Fe1—N20189.04 (11)C21—C22—H22A109.5
N3—Fe1—N20186.53 (12)C21—C22—H22B109.5
N4—Fe1—N201173.02 (12)H22A—C22—H22B109.5
N101—Fe1—N20198.60 (11)C21—C22—H22C109.5
C102—C101—C105108.2 (3)H22A—C22—H22C109.5
C102—C101—C106124.0 (3)H22B—C22—H22C109.5
C105—C101—C106127.9 (3)C21—N2—Fe1178.6 (3)
C103—C102—C101107.6 (3)N3—C31—C32178.2 (6)
C103—C102—C107127.0 (3)C31—C32—H32A109.5
C101—C102—C107125.4 (3)C31—C32—H32B109.5
C102—C103—C104108.2 (3)H32A—C32—H32B109.5
C102—C103—C108125.9 (3)C31—C32—H32C109.5
C104—C103—C108125.9 (3)H32A—C32—H32C109.5
C105—C104—C103108.3 (3)H32B—C32—H32C109.5
C105—C104—C109127.0 (3)C31—N3—Fe1166.2 (4)
C103—C104—C109124.7 (4)N4—C41—C42179.0 (5)
C104—C105—C101107.8 (3)C41—C42—H42A109.5
C104—C105—C110126.2 (3)C41—C42—H42B109.5
C101—C105—C110126.0 (3)H42A—C42—H42B109.5
N101—C106—C101176.6 (4)C41—C42—H42C109.5
N102—C107—C102178.3 (4)H42A—C42—H42C109.5
N103—C108—C103179.1 (4)H42B—C42—H42C109.5
N104—C109—C104179.3 (5)C41—N4—Fe1165.3 (3)
N105—C110—C105179.2 (4)N5A—C51A—C52A177.7 (8)
C106—N101—Fe1162.4 (3)C51A—C52A—H52A109.5
C205—C201—C202107.9 (3)C51A—C52A—H52B109.5
C205—C201—C206124.6 (3)H52A—C52A—H52B109.5
C202—C201—C206127.5 (3)C51A—C52A—H52C109.5
C203—C202—C201107.9 (3)H52A—C52A—H52C109.5
C203—C202—C207127.1 (3)H52B—C52A—H52C109.5
C201—C202—C207125.0 (3)N6A—C61A—C62A178.7 (9)
C202—C203—C204108.0 (3)C61A—C62A—H62A109.5
C202—C203—C208126.7 (3)C61A—C62A—H62B109.5
C204—C203—C208125.2 (3)H62A—C62A—H62B109.5
C205—C204—C203108.3 (3)C61A—C62A—H62C109.5
C205—C204—C209125.4 (3)H62A—C62A—H62C109.5
C203—C204—C209126.3 (3)H62B—C62A—H62C109.5
C204—C205—C201107.8 (3)N6B—C61B—C62B173 (6)
C204—C205—C210126.0 (3)C61B—C62B—H62D109.5
C201—C205—C210126.2 (3)C61B—C62B—H62E109.5
N201—C206—C201177.0 (4)H62D—C62B—H62E109.5
N202—C207—C202179.2 (4)C61B—C62B—H62F109.5
N203—C208—C203178.8 (4)H62D—C62B—H62F109.5
N204—C209—C204179.3 (4)H62E—C62B—H62F109.5
C105—C101—C102—C1030.0 (4)C205—C201—C202—C2030.2 (4)
C106—C101—C102—C103179.8 (3)C206—C201—C202—C203179.5 (3)
C105—C101—C102—C107179.5 (3)C205—C201—C202—C207179.8 (3)
C106—C101—C102—C1070.3 (6)C206—C201—C202—C2070.9 (6)
C101—C102—C103—C1040.2 (4)C201—C202—C203—C2040.0 (4)
C107—C102—C103—C104179.4 (3)C207—C202—C203—C204179.7 (3)
C101—C102—C103—C108179.3 (3)C201—C202—C203—C208179.2 (3)
C107—C102—C103—C1081.1 (6)C207—C202—C203—C2081.2 (6)
C102—C103—C104—C1050.2 (4)C202—C203—C204—C2050.2 (4)
C108—C103—C104—C105179.3 (3)C208—C203—C204—C205179.1 (3)
C102—C103—C104—C109179.1 (3)C202—C203—C204—C209179.6 (3)
C108—C103—C104—C1091.4 (6)C208—C203—C204—C2091.2 (6)
C103—C104—C105—C1010.2 (4)C203—C204—C205—C2010.3 (4)
C109—C104—C105—C101179.1 (3)C209—C204—C205—C201179.5 (3)
C103—C104—C105—C110179.9 (3)C203—C204—C205—C210179.4 (3)
C109—C104—C105—C1100.8 (6)C209—C204—C205—C2100.8 (6)
C102—C101—C105—C1040.1 (4)C202—C201—C205—C2040.3 (4)
C106—C101—C105—C104179.7 (3)C206—C201—C205—C204179.6 (3)
C102—C101—C105—C110180.0 (3)C202—C201—C205—C210179.4 (3)
C106—C101—C105—C1100.2 (6)C206—C201—C205—C2100.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N5Ai0.982.583.454 (7)149
C12—H12B···N103i0.982.543.443 (6)154
C12—H12C···N204ii0.982.563.469 (6)154
C22—H22A···N5Aiii0.982.393.308 (7)156
C22—H22A···N6Biv0.982.613.41 (3)138
C22—H22B···N204v0.982.523.407 (5)150
C22—H22C···N103iii0.982.523.424 (6)154
C52—H52B···N1020.982.513.492 (8)176
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y, z1.
Comparison of the void calculations using PLATON and CrystalExplorer (CE) top
PLATON VOIDPLATON SASACE (0.002 a.u.)CE (0.0003 a.u.)
Without MeCN
Void volume346473.4191.0
Void surface281721.2237.9
With 2MeCN
Void volume0211.60.3
Void surface0716.43.2
The geometry (Å, °) around the FeII ion top
Fe1—N1012.170 (4)N101—Fe1—N20198.6 (1)
Fe1—N2012.186 (3)N101—Fe1—N3174.6 (1)
Fe1—N12.127 (3)N201—Fe1—N4173.0 (1)
Fe1—N22.141 (3)N1—Fe1—N2175.8 (1)
Fe1—N32.143 (4)C106—N101—Fe1162.5 (3)
Fe1—N42.146 (3)C206—N201—Fe1161.2 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N5i0.982.573.448149
C12—H12B···N103i0.982.543.440 (5)154
C12—H12C···N204ii0.982.573.469 (5)153
C22—H22A···N5iv0.982.383.302156
C22—H22A···N6Bv0.982.643.426137
C22—H22B···N204iii0.982.533.406 (5)149
C22—H22C···N103iv0.982.523.421 (5)153
C52—H52B···N1020.982.513.489177
Symmetry codes: (i) x, y, z+1; (ii) x, y-1, z; (iii) x, y, z-1; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1.

Acknowledgements

Open access funding enabled and organized by Projekt DEAL.

References

First citationBacsa, J., Less, R. J., Skelton, H. E., Soracevic, Z., Steiner, A., Wilson, T. C., Wood, P. T. & Wright, D. S. (2011). Angew. Chem. Int. Ed. 50, 8279–8282.  CSD CrossRef CAS Google Scholar
First citationBlockhaus, T. & Sünkel, K. (2021). Z. Anorg. Allg. Chem. 647, 1849–1854.  CSD CrossRef CAS Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarter-Fenk, K. & Herbert, J. M. (2020). Phys. Chem. Chem. Phys. 22, 24870–24886.  CAS PubMed Google Scholar
First citationChristopher, R. E. & Venanzi, L. M. (1973). Inorg. Chim. Acta, 7, 489–492.  CrossRef CAS Google Scholar
First citationDüren, T., Millange, F., Férey, G., Walton, K. S. & Snurr, R. Q. (2007). J. Phys. Chem. C, 111, 15350–15356.  Google Scholar
First citationGhosh, A. K., Hazra, A., Mondal, A. & Banerjee, P. (2019). Inorg. Chim. Acta, 488, 86–119.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLess, R. J., Wilson, T. C., Guan, B., McPartlin, M., Steiner, A., Wood, P. T. & Wright, D. S. (2013). Eur. J. Inorg. Chem. 2013, 1161–1169.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNimax, P. R., Reimann, D. & Sünkel, K. (2018). Dalton Trans. 47, 8476–8482.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSünkel, K. & Nimax, P. (2018). Dalton Trans. 47, 409–417.  PubMed Google Scholar
First citationSünkel, K. & Reimann, D. (2013). Z. Naturforsch. B, 68, 546–550.  Google Scholar
First citationSünkel, K., Reimann, D. & Nimax, P. R. (2019). Z. Naturforsch. B, 74, 109–118.  Google Scholar
First citationThakuria, R., Nath, N. K. & Saha, B. K. (2019). Cryst. Growth Des. 19, 523–528.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWang, B., Lin, R.-B., Zhang, Z., Xiang, S. & Chen, B. (2020). J. Am. Chem. Soc. 142, 14399–14416.  CrossRef CAS PubMed Google Scholar
First citationWebster, O. W. (1966). J. Am. Chem. Soc. 88, 4055–4060.  CrossRef CAS Google Scholar
First citationWebster, O. W. (1970). US 3536694 A 19701027.  Google Scholar
First citationWebster, O. W. (1974). US 3853943 A 19741210.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds