research papers
Coordination chemistry of nitrile-functionalized mixed thia-aza macrocycles [9]aneN2S and [9]aneNS2 towards silver(I)
aSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK, bDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, Monserrato (CA), 09042, Italy, and cDepartment of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
*Correspondence e-mail: alexanderjohnblake@outlook.com
The coordination chemistry towards silver(I) of the small-ring macrocycles [9]aneN2S (1-thia-4,7-diazacyclononane) and [9]aneNS2 (1,4-dithia-7-azacyclononane) incorporating nitrile-functionalized pendant arms is considered both in the presence and the absence of exogenous bridging ligands. The aim is to understand the influence of the number and length of the pendant arms on the nuclearity and dimensionality of the resulting complexes. The X-ray crystal structures of the complexes bis[4,7-bis(cyanomethyl)-1-thia-4,7-diazacyclononane-κ3N,N′,S]silver(I) tetrafluoridoborate, [Ag(C10H16N4S)2]BF4 or [Ag(L1)2]BF4, [4,7-bis(2-cyanoethyl)-1-thia-4,7-diazacyclononane-κ3N,N′,S](thiocyanato-κS)silver(I), [Ag(C12H20N4S)(NCS)] or [Ag(L2)(SCN)], and μ-thiocyanato-κ2S:S-bis{[7-(2-cyanoethyl)-1,4-dithia-7-azacyclononane-κ3N,S,S′]silver(I)} tetrafluoridoborate, [Ag2(C9H16N2S2)2(SCN)]BF4 or [Ag2(L3)2(μ-SCN)]BF4, are discussed in relation to analogous compounds in the literature.
1. Introduction
In previously published articles (Tei et al., 1998, 2002), we have considered the nitrile-functionalized pendant-arm derivatives of mixed-donor macrocycles as multidentate ligands for the synthesis of multidimensional polymeric complexes with silver(I). We argued that nitrile-containing pendant arms would promote exocyclic rather than endocyclic complexation, thereby preventing the formation of mononuclear complexes in favour of coordination polymers. The results confirmed this hypothesis, with the nitrile groups playing an active role in linking different silver(I) centres in the obtained polynuclear complexes whose dimensionality is strictly dependent upon the number of nitrile-functionalized pendant arms present in the ligand, upon their length, and upon the donor set and ring size of the macrocyclic framework. However, in the presence CN−, the coordination site left free on the metal centre by the macrocyclic moiety of the nitrile-functionalized ligands in Scheme 1 [L1 = 4,7-bis(cyanomethyl)-1-thia-4,7-diazacyclononane, L2 = 4,7-bis(2-cyanoethyl)-1-thia-4,7-diazacyclononane and L3 = 7-(2-cyanoethyl)-1,4-dithia-7-azacyclononane] was occupied by the exogenous anionic ligand instead of nitrile groups, thus preventing the formation of inorganic polymers involving the pendant and favouring the isolation of unusual compounds (Lippolis et al., 1999; Blake et al., 1998).
In particular, while the discrete binuclear complex [Ag2(L1)2(μ-CN)]BF4·MeCN, featuring a side-on two-electron (σ) μ2-κC:κC bridging cyanide, was isolated from the reaction of L1, AgBF4 and nBu4NCN in a 1:1:0.5 molar ratio, the complexes [Ag2(L2)2(μ-CN)]BF4 and [Ag2(L3)2(μ-CN)]BF4, exhibiting a CN− ligand bridging two metal centres in a linear four-electron (σ + π) μ2-κC:κN manner (Vahrenkamp et al., 1997), were isolated starting from L2 and L3, respectively, under the same experimental conditions (Lippolis et al., 1999). [Ag2(L1)2(μ-CN)]BF4·MeCN was the first discrete binuclear complex, and is still the only one reported in the literature, featuring a pure two-electron (σ) μ2-κC:κC bridging cyanide, to be structurally characterized. This result was initially attributed to the different length of the pendant arms in the macrocyclic ligands employed; the presence of shorter and less sterically demanding arms in L1 as compared to L2 would allow a closer approach of two [Ag(L1)]+ units in the binuclear complex featuring a side-on bridging cyanide. Herein we report a further development of this chemistry from a crystallographic point of view, with the aim of better understanding the role played by the length of the aliphatic chain in nitrile-functionalized derivatives of the small-ring macrocycles [9]aneN2S (1-thia-4,7-diazacyclononane) and [9]aneNS2 (1,4-dithia-7-azacyclononane) in determining the coordination chemistry towards silver(I) both in the absence or in the presence of exogenous bridging ligands.
The compounds studied are [Ag(L1)2]BF4, [Ag(L2)(SCN)] and [Ag2(L3)2(μ-SCN)]BF4 (Scheme 2).
2. Experimental
2.1. Material and methods
All starting materials were obtained from Aldrich and were used without further purification. Microanalyses were performed by the University of Nottingham School of Chemistry Microanalytical Service. IR spectra were recorded as KBr discs using a PerkinElmer 598 spectrometer over the range 200–4000 cm−1. Fast atom bombardment (FAB) mass spectra were recorded at the EPSRC Centre for at the University of Swansea, UK.
2.2. Synthesis and crystallization
4,7-Bis(cyanomethyl)-1-thia-4,7-diazacyclononane (L1), 4,7-bis(2-cyanoethyl)-1-thia-4,7-diazacyclononane (L2) and 7-(2-cyanoethyl)-1,4-dithia-7-azacyclononane (L3) were prepared according to adaptations of procedures reported in the literature (Fortier & McAuley, 1989; Chak et al., 1994). The experimental conditions considered for the reaction of L2 and L3 with silver(I) in the presence of thiocyanate, namely, an L/Ag+/SCN− molar ratio of 1:1:0.5, were the same as those used for the reactions in the presence of cyanate. In both cases, the aim was to favour the bridging coordination mode of the anionic ligand.
2.2.1. Synthesis of [Ag(L1)2]BF4
A mixture of 4,7-bis(cyanomethyl)-1-thia-4,7-diazacyclononane (L1) (20 mg, 0.089 mmol) and AgBF4 (17.33 mg, 0.089 mmol) in MeCN (5 ml) was stirred in the dark at room temperature for 12 h. The solvent was partially removed under reduced pressure and Et2O vapour was allowed to diffuse into the remaining solution. Colourless block-shaped crystals of the desired complex were obtained (yield 15.2 mg, 53%; m.p. 160 °C, with decomposition). Analysis calculated (%) for [Ag(L1)2]BF4, C20H32AgBF4N8S2: C 37.34, H 5.01, N 17.42; found: C 37.28, H 4.99, N 17.20. FAB (3-NOBA) m/z: 555 and 331 for [107Ag(L1)2]+ and [107Ag(L1)]+, respectively. IR spectrum (KBr disc) ν (cm−1): 2928 (m), 2833 (m), 2243 (s) (νCN stretch in L1), 1452 (s), 1335 (s), 1223 (w), 1109 (m), 998 (s), 920 (w), 878 (m).
2.2.2. Synthesis of [Ag(L2)(SCN)]
A mixture of 4,7-bis(2-cyanoethyl)-1-thia-4,7-diazacyclononane (L2) (21.7 mg, 0.086 mmol) and AgBF4 (16.74 mg, 0.086 mmol) in MeCN (3 ml) was stirred in the dark at room temperature for 30 min. A solution of nBu4NSCN (12.92 mg, 0.043 mmol) in MeCN (2.5 ml) was then added and the resulting mixture was stirred for a further 30 min in the dark at room temperature. After partial removal of the solvent under reduced pressure and filtration through a pad of celite, colourless crystals were formed upon diffusion of Et2O vapour into the remaining solution (yield 10.5 mg; 58%; m.p. 135 °C, with decomposition). Analysis calculated (%) for [Ag(L2)(SCN)], C13H20AgN5S2: C 37.32, H 4.82, N 16.74; found: C 37.30, H 4.87, N 16.65. FAB (3-NOBA) m/z: 359 for [107Ag(L2)]+. IR spectrum (KBr disc) ν (cm−1): 2923 (m), 2824 (m), 2239 (m) (νCN stretch in L2), 2085 (m) (νCN stretch in SCN), 1472 (m), 1445 (m), 1415 (m), 1363 (m), 1306 (w), 1047 (s), 968 (m), 848 (w), 750 (w).
2.2.3. Synthesis of [Ag2(L3)2(μ-SCN)]BF4
A mixture of 7-(2-cyanoethyl)-1,4-dithia-7-azacyclononane (L3) (21.7 mg, 0.100 mmol) and AgBF4 (19.47 mg, 0.100 mmol) in MeCN (2.5 ml) was stirred in the dark at room temperature for 30 min. A solution of nBu4NSCN (15.027 mg, 0.050 mmol) in MeCN (2.5 ml) was then added and the resulting mixture was stirred for a further 30 min in the dark at room temperature. After partial removal of the solvent under reduced pressure and filtration through a pad of celite, colourless crystals were formed upon diffusion of Et2O vapour into the remaining solution (yield 18.3 mg; 46%; m.p. 140–142 °C). Analysis calculated (%) for [Ag2(L3)2(μ-SCN)]BF4, C19H32Ag2BF4N5S5: C 28.76, H 4.07, N 8.83; found: C 28.65, H 3.98, N 8.78. FAB (3-NOBA) m/z: 323 for [107Ag(L3)]+. IR spectrum (KBr disc) ν (cm−1): 2911 (m), 2826 (m), 2246 (m) (νCN stretch in L3), 2105 (m) (νCN stretch in SCN), 1462 (m), 1410 (m), 1361 (m), 1303 (m), 1037 (s), 958 (w), 940 (w), 899 (w), 830 (w), 810 (w), 710 (w).
2.3. of X-ray data
Crystal data, data collection and structure . Methylene H atoms were refined as riding on their parent C atoms, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 13. Results and discussion
Following the synthetic strategy adopted in previous studies to favour the formation of inorganic polymers, we reacted L1 with AgBF4 in MeCN using a 1:1 metal-to-ligand molar ratio. Colourless tabular crystals formed after partial removal of the solvent and subsequent diffusion of Et2O vapour into the remaining solution. A single-crystal X-ray confirmed the product to be the discrete mononuclear AgI homoleptic complex [Ag(L1)2]BF4. Two ligands bind facially to the metal centre via the tridentate macrocyclic moiety, thus conferring a distorted octahedral coordination geometry of four N-donor and two S-donor atoms (Fig. 1), with no involvement of the nitrile groups from the pendant arms in metal coordination. The sandwich complex cations lie on crystallographic inversion centres, with the consisting of two half-cations and one BF4− anion (Z = 2). Each equatorial plane is defined by the N-donor atoms of two macrocyclic moieties [Ag1—N4 = 2.6173 (12), Ag1—N7 = 2.6822 (14), Ag1′—N4′ = 2.6363 (12) and Ag1′—N7′ = 2.6108 (13) Å], while the apical positions are occupied by the S-donor atoms [Ag1—S1 = 2.5273 (4) and Ag1′—S1′ = 2.5605 (4) Å] (Table 2). The Ag—N bond lengths are slightly longer than those reported for the sandwich complex [Ag(Me3[9]aneN3)2]PF6 [Ag—N = 2.543 (10) and 2.607 (7) Å; Me3[9]aneN3 = 1,4,7-trimethyl-1,4,7-triazacyclononane] (Stockheim et al., 1991), while the Ag—S bond length is significantly shorter than those observed in the sandwich complex [Ag([9]aneS3)2](CF3SO3) [2.696 (2)–2.753 (1) Å; [9]aneS3 = 1,4,7-ththiacyclononane] (Blower et al., 1989).
|
The extended structure of [Ag(L1)2]BF4 features C—H⋯N and C—H⋯F interactions characterized by H⋯A distances of 2.36–2.62 Å and D—H⋯A angles of 128–161° (see Table S1 in the supporting information). These interactions link cations and anions into chains (see Fig. 2; complementary views of the packing are available as Figs. S1 and S2 in the supporting information) and crosslink these chains to form layers.
The formation of the mononuclear sandwich complex [Ag(L1)2]BF4 upon reaction of L1 with silver(I) appears to support the hypothesis that longer nitrile pendant arms favour the formation of polynuclear complexes via bridging different metal centres that occupy different ring cavities. Thus, reaction of L2 with AgBF4 afforded the binuclear complex [Ag2(L2)2[(BF4)2, in which two inversion-related [Ag(L2)]+ units are held together by Ag—N bonds involving one nitrile-functionalized pendant arm from each ligand; the remaining two pendant arms are uncoordinated (Tei et al., 2002). Also, the formation of a sinusoidal one-dimensional polymer is observed in {[Ag(L3)]BF4}, in which each AgI ion of the [Ag(L3)]+ repeating unit is bound by the [9]aneN2S macrocyclic moiety of the ligand and by the nitrile group of a symmetry-related [Ag(L3)]+ unit (Tei et al., 2002).
The observed steric influence of nitrile-functionalized pendant arms on the formation of a polynuclear silver(I) complex cannot be the same in the presence of exogenous bridging ligands. The results obtained in the presence of CN− {side-on coordination in the case of the binuclear complex cation [Ag2(L1)2(μ-CN)]+ and end-on coordination in the case of [Ag2(L2)2(μ-CN)]+ and [Ag2(L3)2(μ-CN)]+} seem to indicate the same trend observed in the absence of the pseudo-halogen (Lippolis et al., 1999). In order to test this idea, we considered the reaction of L2 and L3 with NCS− that, like CN−, can coordinate to metals in both terminal and bridging modes; moreover, as bridging ligands, NCS− can also link metal centres in either an end-on or a side-on bonded fashion.
Reaction of L2 with 1 equiv. of AgBF4 in MeCN in the presence of 0.5 equiv. of nBu4NSCN was carried out under the same experimental conditions used for the reaction performed in the presence of CN−. After partial removal of the solvent and filtration through a pad of celite, colourless crystals were formed upon diffusion of Et2O vapour into the remaining solution. Microanalytical data suggested the formulation [Ag(L2)(SCN)] for the product obtained and an X-ray was undertaken to elucidate the coordination mode of the ligand NCS−. The compound consists of mononuclear units and shows the metal centre facially coordinated to the macrocyclic moiety of L2 [Ag1—N4 = 2.5490 (14), Ag1—N7 = 2.5561 (15) and Ag1—S1 = 2.5074 (5) Å] and to a terminal SCN− anion ligand via its S-donor atom [Ag1—S 2.4390 (5) Å] in a tetrahedral geometry (Fig. 3).
The structure is very similar to that observed for [Ag([9]aneN2S)Cl] (Heinzel & Mattes; 1992), in which the Ag—N and Ag—S distances [Ag—N = 2.414 (5) and Ag—S = 2.629 (2) Å] are significantly shorter and longer, respectively, than those observed in [Ag(L2)(SCN)] and in [Ag(Me3[9]aneN3)(SCN)] (Stockheim et al., 1991). The Ag—N distances in [Ag(Me3[9]aneN3)(SCN)] are comparable with those in [Ag([9]aneN2S)Cl]. As observed in [Ag(Me3[9]aneN3)(SCN)], the structure of [Ag(L2)(SCN)] shows molecular complex units packed pairwise, with the silver(I) ion and the S-donor from the thiocyanate ligand of two different complex units interacting in a head-to-tail manner to form a planar four-membered rhombohedral ring with intermolecular Ag⋯S interactions of 3.2421 (6) Å (Fig. 4).
Presumably these interactions, rather than steric factors, are responsible for the fact that the nitrile groups are not involved in metal coordination and the thiocyanate ligand prefers to coordinate the metal centre in terminal rather than in bridging mode. Furthermore, pairs of [Ag(L2)(SCN)] complex units are linked into chains of molecules by C42—H42A⋯N74i interactions [N74i⋯H42A = 2.34 Å and C42—H42A⋯N74i = 157°; symmetry code: (i) −x + 1, −y + 1, −z] (Fig. 5). These chains run parallel to the c axis. The C—H⋯N(nitrile) interactions are supported by C—H⋯N(thiocyanate) interactions (not shown for clarity in Fig. 5) [C72—H72A⋯Ni: Ni⋯H72A = 2.51 Å and C72—H72A⋯Ni = 142°; see Table S2 in the supporting information for short contacts in the structure].
Surprisingly, the reaction of L3 with AgBF4 and nBu4NSCN under the same experimental conditions used for [Ag(L2)(SCN)] afforded the binuclear complex [Ag2(L3)2(μ-SCN)]BF4, which shows a μ2-κS:κS bridging NCS− ligand acting as a σ two-electron donor between two metal centres of [Ag(L3)]+ complex cationic units [Ag1—S = 2.4943 (13) and Ag2—S = 2.4441 (13) Å] (Fig. 6).
The structure is very similar to that observed for the [Ag2(L1)2(μ-CN)]+ complex cation except that L1 (which has two –CH2CN pendant arms) and CN− are replaced by L3 (which has only one –CH2CH2CN pendant arm) and NCS−. The Ag1—S—Ag2 angle of 76.91 (4)° is slightly smaller than the angle at the side-on bridging cyanide [Ag1—C—Ag2 = 79.5 (3)°] in [Ag2(L1)2(μ-CN)]+ (Lippolis et al., 1999), with the Ag—Ag distance being significantly longer [3.0716 (6) Å] compared to the value of 2.7557 (10) Å in [Ag2(L1)2(μ-CN)]+; this could be a consequence of the longer Ag—S distances compared to Ag—C [2.153 (8) and 2.155 (8) Å, respectively]. The packing in [Ag2(L3)2(μ-SCN)]BF4 is a 3D network built up by an array of C—H⋯N, C—H⋯F and C—H⋯S interactions (see Fig. S3 and Table S3 in the supporting information).
The complex cation [Ag2(L3)2(μ-SCN)]+ represents the first discrete binuclear silver(I) complex featuring a two-electron (σ) μ2-κS:κS bridging thiocyanate. A similar coordination mode of SCN− in discrete binuclear complexes has only been observed in the complex anion [Hg2(SCN)7]3− in [Co(NH3)6][Hg2(SCN)7] (Bala et al., 2006).
4. Conclusions
In this article, we have described the crystal structures of three new silver(I) complexes of nitrile-functionalized pendant-arm derivatives of the tridentate macrocyclic ligands [9]aneN3, [9]aneN2S and [9]aneNS2, including the presence of thiocyanate (NCS−). The results obtained, as compared to those previously reported in the presence of cyanate (CN−), allow a better understanding of the role played by the number and length of the pendant arms in the coordination chemistry of this type of ligand towards silver(I). In general, longer more sterically-demanding nitrile-functionalized pendant arms in the macrocyclic derivatives (L) do not appear to prevent CN− or NCS− forming a side-on two-electron (σ) bridge rather than a linear four-electron (σ + π) one between two [Ag(L)]+ units, provided the appropriate pseudo-halide is used, i.e. steric factors appear not to be responsible for the fact that CN− shows a linear μ2-κC:κN bridging mode in [Ag2(L3)2(μ-CN)]BF4, whereas NCS− forms a side-on μ2-κS:κS bridge in the binuclear complex [Ag2(L3)2(μ-SCN)]BF4. In fact, steric factors cannot be considered solely responsible for this because an end-on μ2-κS:κN bridging mode for NCS− would have allowed the two [Ag(L3)]+ units to dispose themselves further apart than in the case of [Ag2(L3)2(μ-CN)]+ where the shorter CN− acts as a linear μ2-κC:κN bridging donor. On the other hand, with L2 presenting two longer pendant arms as in L3, a linear μ2-κC:κN bridging mode is observed in [Ag2(L2)2(μ-CN)]BF4 for the cyanide ligand, while a terminal coordination mode is observed for NCS− in the mononuclear tetrahedral complex [Ag(L2)(SCN)]. A side-on μ2-κC:κN bridging mode is observed in [Ag2(L1)2(μ-CN)]BF4, where the macrocyclic ligand L1 incorporates shorter pendant arms compared to L2 and L3. This result suggests that some steric effects might also come into play, in combination with electronic requirements, in the coordination chemistry of nitrile-functionalized pendant arm derivative of small tridentate macrocycles with silver(I) in the presence of anionic ligands CN− and NCS−.
Supporting information
https://doi.org/10.1107/S205322962200105X/ky3213sup1.cif
contains datablocks AgL12BF4, AgL2SCN, Ag2L32mu-SCNBF4, global. DOI:Structure factors: contains datablock AgL12BF4. DOI: https://doi.org/10.1107/S205322962200105X/ky3213AgL12BF4sup2.hkl
Structure factors: contains datablock AgL2SCN. DOI: https://doi.org/10.1107/S205322962200105X/ky3213AgL2SCNsup3.hkl
Structure factors: contains datablock Ag2L32mu-SCNBF4. DOI: https://doi.org/10.1107/S205322962200105X/ky3213Ag2L32mu-SCNBF4sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205322962200105X/ky3213sup5.pdf
Data collection: SMART (Bruker, 1998) for AgL12BF4, AgL2SCN; STADI-4 (Stoe & Cie, 1996) for Ag2L32mu-SCNBF4. Cell
SMART (Bruker, 1998) for AgL12BF4, AgL2SCN; STADI-4 (Stoe & Cie, 1996) for Ag2L32mu-SCNBF4. Data reduction: SAINT (Bruker, 1999) for AgL12BF4, AgL2SCN; X-RED (Stoe & Cie, 1996) for Ag2L32mu-SCNBF4. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ag(C10H16N4S)2]BF4 | Z = 2 |
Mr = 643.33 | F(000) = 656 |
Triclinic, P1 | Dx = 1.618 Mg m−3 |
a = 10.1813 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.2237 (6) Å | Cell parameters from 4462 reflections |
c = 15.0154 (9) Å | θ = 2.3–28.8° |
α = 73.446 (2)° | µ = 0.98 mm−1 |
β = 82.398 (2)° | T = 150 K |
γ = 61.781 (2)° | Tablet, colourless |
V = 1320.11 (14) Å3 | 0.3 × 0.2 × 0.14 mm |
Bruker SMART CCD area-detector diffractometer | 13703 independent reflections |
Radiation source: X-ray | 5420 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 28.8°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 1996} | h = −13→13 |
Tmin = 0.729, Tmax = 0.828 | k = −13→12 |
6151 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0381P)2] where P = (Fo2 + 2Fc2)/3 |
6151 reflections | (Δ/σ)max = 0.001 |
328 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A small number of predominantly low-angle reflections showed poor agreement and were suppressed individually. There were no other systematic trends and the reasons for the poor agreement were not pursued. Diffraction data were collected on Stoe STADI4 4-circle and Bruker SMART CCD area detector diffractometers. Structures were solved by direct methods and developed by iterative cycles of least-squares refinement on F2 and difference Fourier synthesis. |
x | y | z | Uiso*/Ueq | ||
Ag1' | 0.000000 | 1.000000 | 0.500000 | 0.02157 (5) | |
S1 | 0.80965 (5) | 0.73691 (4) | 0.89254 (3) | 0.02367 (9) | |
C2 | 0.7080 (2) | 0.66111 (19) | 0.84889 (11) | 0.0288 (4) | |
H2A | 0.607906 | 0.695424 | 0.877628 | 0.035* | |
H2B | 0.693997 | 0.706560 | 0.781044 | 0.035* | |
C3 | 0.78180 (19) | 0.48679 (18) | 0.86677 (10) | 0.0252 (3) | |
H3A | 0.713163 | 0.458039 | 0.845737 | 0.030* | |
H3B | 0.873060 | 0.454056 | 0.828479 | 0.030* | |
N4 | 0.82224 (14) | 0.40209 (14) | 0.96400 (8) | 0.0187 (3) | |
C5 | 0.69353 (17) | 0.43080 (18) | 1.02663 (11) | 0.0223 (3) | |
H5A | 0.670968 | 0.342854 | 1.040685 | 0.027* | |
H5B | 0.605698 | 0.523292 | 0.994610 | 0.027* | |
C6 | 0.71893 (18) | 0.45403 (18) | 1.11751 (11) | 0.0225 (3) | |
H6A | 0.628725 | 0.472071 | 1.156554 | 0.027* | |
H6B | 0.802780 | 0.359104 | 1.151443 | 0.027* | |
N7 | 0.75219 (14) | 0.58322 (14) | 1.10358 (8) | 0.0195 (3) | |
C8 | 0.68686 (18) | 0.82805 (18) | 0.97989 (11) | 0.0239 (3) | |
H8A | 0.739632 | 0.865178 | 1.009359 | 0.029* | |
H8B | 0.598490 | 0.919414 | 0.947553 | 0.029* | |
C9 | 0.63217 (17) | 0.73218 (17) | 1.05647 (11) | 0.0235 (3) | |
H9A | 0.578197 | 0.791050 | 1.103106 | 0.028* | |
H9B | 0.560508 | 0.713840 | 1.029639 | 0.028* | |
C41 | 0.91605 (18) | 0.23839 (18) | 0.97407 (12) | 0.0257 (3) | |
H41C | 0.946423 | 0.187697 | 1.039954 | 0.031* | |
H41D | 1.007482 | 0.222817 | 0.936645 | 0.031* | |
C42 | 0.8399 (2) | 0.16515 (19) | 0.94421 (12) | 0.0287 (4) | |
N43 | 0.7762 (2) | 0.11560 (19) | 0.91955 (11) | 0.0406 (4) | |
C71 | 0.79990 (18) | 0.58746 (19) | 1.18970 (10) | 0.0250 (3) | |
H71C | 0.828128 | 0.671450 | 1.176321 | 0.030* | |
H71D | 0.889447 | 0.489696 | 1.213719 | 0.030* | |
C72 | 0.6831 (2) | 0.6111 (2) | 1.26223 (11) | 0.0319 (4) | |
N73 | 0.5894 (2) | 0.6280 (2) | 1.31473 (11) | 0.0499 (5) | |
Ag1 | 1.000000 | 0.500000 | 1.000000 | 0.02228 (5) | |
S1' | 0.10514 (5) | 1.09797 (5) | 0.34563 (3) | 0.02568 (9) | |
C2' | 0.0767 (2) | 0.98966 (19) | 0.27946 (10) | 0.0264 (3) | |
H2'A | −0.031759 | 1.033563 | 0.269579 | 0.032* | |
H2'B | 0.122681 | 1.005841 | 0.217583 | 0.032* | |
C3' | 0.13787 (18) | 0.81697 (18) | 0.32141 (10) | 0.0230 (3) | |
H3'A | 0.106138 | 0.773825 | 0.282131 | 0.028* | |
H3'B | 0.248144 | 0.768802 | 0.320401 | 0.028* | |
N4' | 0.08854 (14) | 0.77649 (14) | 0.41728 (8) | 0.0203 (3) | |
C5' | 0.20750 (17) | 0.65164 (17) | 0.48137 (10) | 0.0230 (3) | |
H5'A | 0.247413 | 0.556719 | 0.459982 | 0.028* | |
H5'B | 0.164196 | 0.632522 | 0.543841 | 0.028* | |
C6' | 0.33462 (18) | 0.68556 (18) | 0.48879 (11) | 0.0238 (3) | |
H6'A | 0.409806 | 0.597136 | 0.532877 | 0.029* | |
H6'B | 0.382879 | 0.696731 | 0.427293 | 0.029* | |
N7' | 0.28727 (14) | 0.82627 (15) | 0.52028 (9) | 0.0220 (3) | |
C8' | 0.35356 (19) | 0.9247 (2) | 0.46700 (12) | 0.0293 (4) | |
H8'A | 0.463408 | 0.863294 | 0.469830 | 0.035* | |
H8'B | 0.326722 | 1.008418 | 0.497214 | 0.035* | |
C9' | 0.3061 (2) | 0.9960 (2) | 0.36514 (12) | 0.0316 (4) | |
H9'A | 0.350110 | 0.913493 | 0.332084 | 0.038* | |
H9'B | 0.348054 | 1.068318 | 0.337295 | 0.038* | |
C41' | −0.03903 (18) | 0.74723 (19) | 0.42178 (11) | 0.0250 (3) | |
H41A | −0.120886 | 0.839174 | 0.384023 | 0.030* | |
H41B | −0.073772 | 0.732035 | 0.486932 | 0.030* | |
C42' | −0.00916 (19) | 0.6118 (2) | 0.38874 (11) | 0.0282 (4) | |
N43' | 0.01303 (19) | 0.50939 (19) | 0.36215 (11) | 0.0378 (4) | |
C71' | 0.31270 (19) | 0.7887 (2) | 0.61963 (11) | 0.0291 (4) | |
H71A | 0.258848 | 0.730041 | 0.653272 | 0.035* | |
H71B | 0.270607 | 0.885113 | 0.639567 | 0.035* | |
C72' | 0.4724 (2) | 0.6977 (2) | 0.64596 (13) | 0.0433 (5) | |
N73' | 0.5960 (2) | 0.6277 (3) | 0.66227 (15) | 0.0718 (7) | |
B1 | 0.2911 (2) | 0.9973 (2) | 0.79979 (14) | 0.0293 (4) | |
F1 | 0.28390 (16) | 0.86125 (13) | 0.81549 (8) | 0.0536 (3) | |
F2 | 0.33708 (13) | 1.03340 (13) | 0.70886 (8) | 0.0448 (3) | |
F3 | 0.15010 (12) | 1.11335 (13) | 0.81049 (9) | 0.0483 (3) | |
F4 | 0.38827 (14) | 0.98516 (16) | 0.86048 (9) | 0.0616 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1' | 0.02112 (9) | 0.02284 (9) | 0.01874 (8) | −0.00723 (7) | 0.00187 (6) | −0.00835 (6) |
S1 | 0.0314 (2) | 0.02153 (19) | 0.02038 (18) | −0.01508 (17) | −0.00034 (15) | −0.00316 (14) |
C2 | 0.0373 (10) | 0.0247 (8) | 0.0259 (8) | −0.0160 (8) | −0.0122 (7) | 0.0000 (7) |
C3 | 0.0323 (9) | 0.0277 (8) | 0.0204 (7) | −0.0163 (7) | −0.0037 (6) | −0.0068 (6) |
N4 | 0.0208 (6) | 0.0158 (6) | 0.0201 (6) | −0.0081 (5) | −0.0002 (5) | −0.0058 (5) |
C5 | 0.0212 (8) | 0.0210 (8) | 0.0279 (8) | −0.0120 (6) | 0.0017 (6) | −0.0073 (6) |
C6 | 0.0250 (8) | 0.0218 (8) | 0.0222 (7) | −0.0128 (7) | 0.0055 (6) | −0.0064 (6) |
N7 | 0.0221 (7) | 0.0179 (6) | 0.0196 (6) | −0.0095 (5) | 0.0025 (5) | −0.0068 (5) |
C8 | 0.0253 (8) | 0.0159 (7) | 0.0286 (8) | −0.0073 (6) | −0.0031 (6) | −0.0052 (6) |
C9 | 0.0200 (8) | 0.0196 (8) | 0.0292 (8) | −0.0065 (6) | 0.0029 (6) | −0.0094 (6) |
C41 | 0.0246 (8) | 0.0197 (8) | 0.0310 (8) | −0.0068 (7) | −0.0016 (7) | −0.0091 (6) |
C42 | 0.0360 (10) | 0.0196 (8) | 0.0299 (8) | −0.0118 (7) | 0.0060 (7) | −0.0098 (6) |
N43 | 0.0561 (11) | 0.0391 (9) | 0.0428 (9) | −0.0320 (9) | 0.0111 (8) | −0.0203 (7) |
C71 | 0.0276 (8) | 0.0282 (8) | 0.0218 (7) | −0.0138 (7) | 0.0050 (6) | −0.0106 (6) |
C72 | 0.0408 (10) | 0.0314 (9) | 0.0240 (8) | −0.0160 (8) | 0.0058 (7) | −0.0114 (7) |
N73 | 0.0547 (11) | 0.0539 (11) | 0.0350 (9) | −0.0227 (10) | 0.0207 (8) | −0.0160 (8) |
Ag1 | 0.01716 (9) | 0.02577 (10) | 0.02614 (9) | −0.00879 (7) | 0.00062 (6) | −0.01193 (7) |
S1' | 0.0355 (2) | 0.0231 (2) | 0.02031 (18) | −0.01553 (18) | 0.00362 (16) | −0.00607 (15) |
C2' | 0.0380 (9) | 0.0268 (8) | 0.0166 (7) | −0.0171 (8) | 0.0006 (6) | −0.0046 (6) |
C3' | 0.0290 (8) | 0.0243 (8) | 0.0180 (7) | −0.0130 (7) | 0.0024 (6) | −0.0084 (6) |
N4' | 0.0241 (7) | 0.0201 (6) | 0.0169 (6) | −0.0102 (5) | −0.0014 (5) | −0.0043 (5) |
C5' | 0.0284 (8) | 0.0177 (7) | 0.0203 (7) | −0.0075 (7) | −0.0026 (6) | −0.0056 (6) |
C6' | 0.0221 (8) | 0.0234 (8) | 0.0230 (7) | −0.0054 (7) | 0.0003 (6) | −0.0108 (6) |
N7' | 0.0208 (7) | 0.0239 (7) | 0.0213 (6) | −0.0076 (6) | −0.0001 (5) | −0.0105 (5) |
C8' | 0.0259 (9) | 0.0349 (10) | 0.0341 (9) | −0.0169 (8) | 0.0040 (7) | −0.0150 (7) |
C9' | 0.0327 (9) | 0.0371 (10) | 0.0319 (9) | −0.0227 (8) | 0.0097 (7) | −0.0107 (7) |
C41' | 0.0280 (8) | 0.0242 (8) | 0.0231 (8) | −0.0123 (7) | −0.0009 (6) | −0.0055 (6) |
C42' | 0.0339 (9) | 0.0319 (9) | 0.0238 (8) | −0.0201 (8) | −0.0032 (7) | −0.0033 (7) |
N43' | 0.0520 (10) | 0.0380 (9) | 0.0341 (8) | −0.0281 (8) | −0.0014 (7) | −0.0103 (7) |
C71' | 0.0261 (9) | 0.0319 (9) | 0.0247 (8) | −0.0052 (7) | −0.0037 (6) | −0.0134 (7) |
C72' | 0.0351 (11) | 0.0521 (12) | 0.0371 (10) | −0.0053 (9) | −0.0099 (8) | −0.0253 (9) |
N73' | 0.0368 (11) | 0.0989 (17) | 0.0652 (13) | 0.0017 (11) | −0.0190 (9) | −0.0509 (13) |
B1 | 0.0315 (10) | 0.0238 (9) | 0.0314 (10) | −0.0075 (8) | −0.0075 (8) | −0.0113 (8) |
F1 | 0.0917 (10) | 0.0313 (6) | 0.0421 (6) | −0.0330 (7) | −0.0030 (6) | −0.0055 (5) |
F2 | 0.0504 (7) | 0.0477 (7) | 0.0391 (6) | −0.0267 (6) | 0.0020 (5) | −0.0085 (5) |
F3 | 0.0328 (6) | 0.0443 (7) | 0.0628 (8) | −0.0073 (5) | −0.0011 (5) | −0.0246 (6) |
F4 | 0.0453 (7) | 0.0756 (9) | 0.0647 (8) | −0.0106 (7) | −0.0226 (6) | −0.0396 (7) |
Ag1'—S1' | 2.5605 (4) | C71—C72 | 1.481 (2) |
Ag1'—S1'i | 2.5606 (4) | C72—N73 | 1.133 (2) |
Ag1'—N4' | 2.6363 (12) | S1'—C2' | 1.8174 (16) |
Ag1'—N4'i | 2.6363 (12) | S1'—C9' | 1.8237 (18) |
Ag1'—N7'i | 2.6108 (13) | C2'—H2'A | 0.9900 |
Ag1'—N7' | 2.6108 (13) | C2'—H2'B | 0.9900 |
S1—C2 | 1.8242 (17) | C2'—C3' | 1.527 (2) |
S1—C8 | 1.8200 (17) | C3'—H3'A | 0.9900 |
S1—Ag1 | 2.5273 (4) | C3'—H3'B | 0.9900 |
C2—H2A | 0.9900 | C3'—N4' | 1.4702 (18) |
C2—H2B | 0.9900 | N4'—C5' | 1.4727 (18) |
C2—C3 | 1.526 (2) | N4'—C41' | 1.454 (2) |
C3—H3A | 0.9900 | C5'—H5'A | 0.9900 |
C3—H3B | 0.9900 | C5'—H5'B | 0.9900 |
C3—N4 | 1.4670 (19) | C5'—C6' | 1.514 (2) |
N4—C5 | 1.4681 (19) | C6'—H6'A | 0.9900 |
N4—C41 | 1.4555 (19) | C6'—H6'B | 0.9900 |
N4—Ag1 | 2.6173 (12) | C6'—N7' | 1.482 (2) |
C5—H5A | 0.9900 | N7'—C8' | 1.466 (2) |
C5—H5B | 0.9900 | N7'—C71' | 1.4565 (19) |
C5—C6 | 1.524 (2) | C8'—H8'A | 0.9900 |
C6—H6A | 0.9900 | C8'—H8'B | 0.9900 |
C6—H6B | 0.9900 | C8'—C9' | 1.527 (2) |
C6—N7 | 1.4661 (19) | C9'—H9'A | 0.9900 |
N7—C9 | 1.4723 (19) | C9'—H9'B | 0.9900 |
N7—C71 | 1.4589 (19) | C41'—H41A | 0.9900 |
C8—H8A | 0.9900 | C41'—H41B | 0.9900 |
C8—H8B | 0.9900 | C41'—C42' | 1.486 (2) |
C8—C9 | 1.516 (2) | C42'—N43' | 1.139 (2) |
C9—H9A | 0.9900 | C71'—H71A | 0.9900 |
C9—H9B | 0.9900 | C71'—H71B | 0.9900 |
C41—H41C | 0.9900 | C71'—C72' | 1.482 (2) |
C41—H41D | 0.9900 | C72'—N73' | 1.134 (2) |
C41—C42 | 1.482 (2) | B1—F1 | 1.379 (2) |
C42—N43 | 1.138 (2) | B1—F2 | 1.388 (2) |
C71—H71C | 0.9900 | B1—F3 | 1.390 (2) |
C71—H71D | 0.9900 | B1—F4 | 1.372 (2) |
S1'—Ag1'—S1'i | 180.0 | S1—Ag1—S1ii | 180.0 |
S1'—Ag1'—N4' | 76.92 (3) | S1—Ag1—N4 | 77.67 (3) |
S1'i—Ag1'—N4' | 103.08 (3) | S1ii—Ag1—N4 | 102.33 (3) |
S1'—Ag1'—N4'i | 103.08 (3) | S1—Ag1—N4ii | 102.33 (3) |
S1'i—Ag1'—N4'i | 76.92 (3) | S1ii—Ag1—N4ii | 77.67 (3) |
S1'—Ag1'—N7'i | 103.30 (3) | N4ii—Ag1—N4 | 180.0 |
S1'—Ag1'—N7' | 76.70 (3) | C2'—S1'—Ag1' | 97.19 (5) |
S1'i—Ag1'—N7'i | 76.70 (3) | C2'—S1'—C9' | 102.79 (8) |
S1'i—Ag1'—N7' | 103.30 (3) | C9'—S1'—Ag1' | 103.55 (6) |
N4'i—Ag1'—N4' | 180.0 | S1'—C2'—H2'A | 108.0 |
N7'i—Ag1'—N4' | 110.28 (4) | S1'—C2'—H2'B | 108.0 |
N7'—Ag1'—N4' | 69.72 (4) | H2'A—C2'—H2'B | 107.3 |
N7'i—Ag1'—N4'i | 69.72 (4) | C3'—C2'—S1' | 117.00 (11) |
N7'—Ag1'—N4'i | 110.28 (4) | C3'—C2'—H2'A | 108.0 |
N7'i—Ag1'—N7' | 180.0 | C3'—C2'—H2'B | 108.0 |
C2—S1—Ag1 | 102.58 (5) | C2'—C3'—H3'A | 108.8 |
C8—S1—C2 | 104.31 (8) | C2'—C3'—H3'B | 108.8 |
C8—S1—Ag1 | 98.56 (5) | H3'A—C3'—H3'B | 107.7 |
S1—C2—H2A | 108.4 | N4'—C3'—C2' | 113.64 (13) |
S1—C2—H2B | 108.4 | N4'—C3'—H3'A | 108.8 |
H2A—C2—H2B | 107.5 | N4'—C3'—H3'B | 108.8 |
C3—C2—S1 | 115.46 (11) | C3'—N4'—Ag1' | 112.22 (9) |
C3—C2—H2A | 108.4 | C3'—N4'—C5' | 114.60 (12) |
C3—C2—H2B | 108.4 | C5'—N4'—Ag1' | 100.41 (8) |
C2—C3—H3A | 108.5 | C41'—N4'—Ag1' | 104.94 (9) |
C2—C3—H3B | 108.5 | C41'—N4'—C3' | 112.44 (12) |
H3A—C3—H3B | 107.5 | C41'—N4'—C5' | 111.21 (12) |
N4—C3—C2 | 114.90 (13) | N4'—C5'—H5'A | 108.9 |
N4—C3—H3A | 108.5 | N4'—C5'—H5'B | 108.9 |
N4—C3—H3B | 108.5 | N4'—C5'—C6' | 113.43 (13) |
C3—N4—C5 | 113.57 (12) | H5'A—C5'—H5'B | 107.7 |
C3—N4—Ag1 | 101.77 (9) | C6'—C5'—H5'A | 108.9 |
C5—N4—Ag1 | 112.87 (9) | C6'—C5'—H5'B | 108.9 |
C41—N4—C3 | 112.17 (12) | C5'—C6'—H6'A | 108.9 |
C41—N4—C5 | 111.24 (12) | C5'—C6'—H6'B | 108.9 |
C41—N4—Ag1 | 104.52 (9) | H6'A—C6'—H6'B | 107.7 |
N4—C5—H5A | 109.0 | N7'—C6'—C5' | 113.51 (13) |
N4—C5—H5B | 109.0 | N7'—C6'—H6'A | 108.9 |
N4—C5—C6 | 113.06 (12) | N7'—C6'—H6'B | 108.9 |
H5A—C5—H5B | 107.8 | C6'—N7'—Ag1' | 110.86 (9) |
C6—C5—H5A | 109.0 | C8'—N7'—Ag1' | 104.80 (9) |
C6—C5—H5B | 109.0 | C8'—N7'—C6' | 113.74 (13) |
C5—C6—H6A | 109.0 | C71'—N7'—Ag1' | 104.38 (9) |
C5—C6—H6B | 109.0 | C71'—N7'—C6' | 110.96 (13) |
H6A—C6—H6B | 107.8 | C71'—N7'—C8' | 111.53 (13) |
N7—C6—C5 | 112.88 (12) | N7'—C8'—H8'A | 108.5 |
N7—C6—H6A | 109.0 | N7'—C8'—H8'B | 108.5 |
N7—C6—H6B | 109.0 | N7'—C8'—C9' | 114.91 (13) |
C6—N7—C9 | 113.82 (12) | H8'A—C8'—H8'B | 107.5 |
C71—N7—C6 | 111.68 (12) | C9'—C8'—H8'A | 108.5 |
C71—N7—C9 | 112.43 (12) | C9'—C8'—H8'B | 108.5 |
S1—C8—H8A | 107.9 | S1'—C9'—H9'A | 108.6 |
S1—C8—H8B | 107.9 | S1'—C9'—H9'B | 108.6 |
H8A—C8—H8B | 107.2 | C8'—C9'—S1' | 114.86 (12) |
C9—C8—S1 | 117.58 (11) | C8'—C9'—H9'A | 108.6 |
C9—C8—H8A | 107.9 | C8'—C9'—H9'B | 108.6 |
C9—C8—H8B | 107.9 | H9'A—C9'—H9'B | 107.5 |
N7—C9—C8 | 113.72 (13) | N4'—C41'—H41A | 108.6 |
N7—C9—H9A | 108.8 | N4'—C41'—H41B | 108.6 |
N7—C9—H9B | 108.8 | N4'—C41'—C42' | 114.51 (14) |
C8—C9—H9A | 108.8 | H41A—C41'—H41B | 107.6 |
C8—C9—H9B | 108.8 | C42'—C41'—H41A | 108.6 |
H9A—C9—H9B | 107.7 | C42'—C41'—H41B | 108.6 |
N4—C41—H41C | 109.1 | N43'—C42'—C41' | 179.01 (18) |
N4—C41—H41D | 109.1 | N7'—C71'—H71A | 108.9 |
N4—C41—C42 | 112.62 (13) | N7'—C71'—H71B | 108.9 |
H41C—C41—H41D | 107.8 | N7'—C71'—C72' | 113.33 (15) |
C42—C41—H41C | 109.1 | H71A—C71'—H71B | 107.7 |
C42—C41—H41D | 109.1 | C72'—C71'—H71A | 108.9 |
N43—C42—C41 | 176.78 (19) | C72'—C71'—H71B | 108.9 |
N7—C71—H71C | 109.0 | N73'—C72'—C71' | 177.1 (2) |
N7—C71—H71D | 109.0 | F1—B1—F2 | 108.17 (14) |
N7—C71—C72 | 112.90 (14) | F1—B1—F3 | 109.32 (17) |
H71C—C71—H71D | 107.8 | F2—B1—F3 | 108.64 (15) |
C72—C71—H71C | 109.0 | F4—B1—F1 | 111.04 (16) |
C72—C71—H71D | 109.0 | F4—B1—F2 | 110.29 (17) |
N73—C72—C71 | 176.3 (2) | F4—B1—F3 | 109.33 (15) |
Ag1'—S1'—C2'—C3' | −51.77 (13) | Ag1—S1—C2—C3 | −13.93 (14) |
Ag1'—S1'—C9'—C8' | −17.07 (14) | Ag1—S1—C8—C9 | −51.59 (12) |
Ag1'—N4'—C5'—C6' | −61.91 (13) | Ag1—N4—C5—C6 | −21.40 (15) |
Ag1'—N4'—C41'—C42' | −173.20 (10) | Ag1—N4—C41—C42 | −172.44 (11) |
Ag1'—N7'—C8'—C9' | −55.84 (15) | S1'—C2'—C3'—N4' | 52.76 (17) |
Ag1'—N7'—C71'—C72' | −176.18 (13) | C2'—S1'—C9'—C8' | −117.84 (13) |
S1—C2—C3—N4 | 52.98 (19) | C2'—C3'—N4'—Ag1' | −21.06 (15) |
S1—C8—C9—N7 | 51.09 (17) | C2'—C3'—N4'—C5' | −134.74 (13) |
C2—S1—C8—C9 | 53.82 (13) | C2'—C3'—N4'—C41' | 96.97 (16) |
C2—C3—N4—C5 | 63.48 (17) | C3'—N4'—C5'—C6' | 58.55 (17) |
C2—C3—N4—C41 | −169.32 (14) | C3'—N4'—C41'—C42' | 64.55 (17) |
C2—C3—N4—Ag1 | −58.13 (14) | N4'—C5'—C6'—N7' | 58.50 (17) |
C3—N4—C5—C6 | −136.60 (13) | C5'—N4'—C41'—C42' | −65.49 (16) |
C3—N4—C41—C42 | −62.98 (18) | C5'—C6'—N7'—Ag1' | −17.74 (15) |
N4—C5—C6—N7 | 59.09 (17) | C5'—C6'—N7'—C8' | −135.52 (14) |
C5—N4—C41—C42 | 65.45 (17) | C5'—C6'—N7'—C71' | 97.76 (15) |
C5—C6—N7—C9 | 60.78 (17) | C6'—N7'—C8'—C9' | 65.39 (18) |
C5—C6—N7—C71 | −170.60 (13) | C6'—N7'—C71'—C72' | 64.36 (19) |
C6—N7—C9—C8 | −134.70 (14) | N7'—C8'—C9'—S1' | 52.39 (19) |
C6—N7—C71—C72 | −62.77 (17) | C8'—N7'—C71'—C72' | −63.56 (19) |
C8—S1—C2—C3 | −116.31 (13) | C9'—S1'—C2'—C3' | 53.94 (14) |
C9—N7—C71—C72 | 66.59 (17) | C41'—N4'—C5'—C6' | −172.54 (12) |
C41—N4—C5—C6 | 95.72 (15) | C71'—N7'—C8'—C9' | −168.20 (14) |
C71—N7—C9—C8 | 97.06 (15) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+2, −y+1, −z+2. |
[Ag(C12H20N4S)(NCS)] | Z = 2 |
Mr = 418.33 | F(000) = 424 |
Triclinic, P1 | Dx = 1.661 Mg m−3 |
a = 8.4426 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5739 (6) Å | Cell parameters from 4102 reflections |
c = 11.8497 (8) Å | θ = 2.4–28.7° |
α = 96.585 (1)° | µ = 1.46 mm−1 |
β = 99.023 (1)° | T = 150 K |
γ = 95.313 (1)° | Block, colourless |
V = 836.19 (1) Å3 | 0.36 × 0.30 × 0.07 mm |
Bruker SMART1000 CCD area-detector diffractometer | 5159 independent reflections |
Graphite monochromator | 3401 reflections with I > 2σ(I) |
Detector resolution: 8.336 pixels mm-1 | Rint = 0.022 |
ω scans | θmax = 28.7°, θmin = 1.8° |
Absorption correction: integration (SHELXTL; Sheldrick, 2008) | h = −11→10 |
Tmin = 0.606, Tmax = 0.819 | k = −11→11 |
3668 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0321P)2 + 0.1835P] where P = (Fo2 + 2Fc2)/3 |
3668 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Diffraction data were collected on Stoe STADI4 4-circle and Bruker SMART CCD area detector diffractometers. Structures were solved by direct methods and developed by iterative cycles of least-squares refinement on F2 and difference Fourier synthesis. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.45271 (2) | 0.67967 (2) | 0.39303 (2) | 0.02735 (6) | |
C | 0.5932 (2) | 0.4009 (2) | 0.26281 (19) | 0.0313 (4) | |
N | 0.5567 (2) | 0.3379 (2) | 0.16981 (19) | 0.0448 (5) | |
S1 | 0.30887 (6) | 0.91065 (6) | 0.45249 (4) | 0.02851 (11) | |
C2 | 0.1077 (2) | 0.8015 (2) | 0.41856 (16) | 0.0284 (4) | |
H2A | 0.099204 | 0.725699 | 0.474927 | 0.034* | |
H2B | 0.027710 | 0.877085 | 0.429162 | 0.034* | |
S | 0.65402 (7) | 0.49300 (7) | 0.39676 (4) | 0.03595 (12) | |
C3 | 0.0617 (2) | 0.7106 (2) | 0.29747 (16) | 0.0248 (4) | |
H3A | −0.046607 | 0.651542 | 0.290188 | 0.030* | |
H3B | 0.054769 | 0.787191 | 0.240856 | 0.030* | |
N4 | 0.17585 (17) | 0.59921 (17) | 0.26873 (13) | 0.0223 (3) | |
C5 | 0.2127 (2) | 0.5974 (2) | 0.15067 (15) | 0.0244 (4) | |
H5A | 0.111349 | 0.567238 | 0.094771 | 0.029* | |
H5B | 0.285671 | 0.515680 | 0.137477 | 0.029* | |
C6 | 0.2913 (2) | 0.7554 (2) | 0.12755 (15) | 0.0243 (4) | |
H6A | 0.320174 | 0.742555 | 0.049455 | 0.029* | |
H6B | 0.212044 | 0.833452 | 0.128798 | 0.029* | |
N7 | 0.43751 (17) | 0.81746 (17) | 0.21205 (13) | 0.0222 (3) | |
C8 | 0.4433 (2) | 0.9845 (2) | 0.25684 (16) | 0.0262 (4) | |
H8A | 0.429733 | 1.045962 | 0.190860 | 0.031* | |
H8B | 0.551691 | 1.020002 | 0.302759 | 0.031* | |
C71 | 0.5874 (2) | 0.7824 (2) | 0.17176 (16) | 0.0241 (4) | |
H71A | 0.577751 | 0.668412 | 0.142763 | 0.029* | |
H71B | 0.677022 | 0.803938 | 0.238190 | 0.029* | |
C72 | 0.6311 (2) | 0.8775 (2) | 0.07605 (16) | 0.0261 (4) | |
H72A | 0.543288 | 0.855754 | 0.008450 | 0.031* | |
H72B | 0.642522 | 0.991918 | 0.104194 | 0.031* | |
C73 | 0.7826 (2) | 0.8348 (2) | 0.04165 (16) | 0.0304 (4) | |
N74 | 0.8999 (2) | 0.7988 (3) | 0.01779 (17) | 0.0445 (5) | |
C41 | 0.1307 (2) | 0.4406 (2) | 0.29564 (16) | 0.0253 (4) | |
H41A | 0.111982 | 0.448886 | 0.376417 | 0.030* | |
H41B | 0.222344 | 0.377595 | 0.289955 | 0.030* | |
C42 | −0.0216 (2) | 0.3510 (2) | 0.21647 (16) | 0.0277 (4) | |
H42A | −0.111695 | 0.417330 | 0.215439 | 0.033* | |
H42B | 0.000236 | 0.330067 | 0.136780 | 0.033* | |
C43 | −0.0679 (2) | 0.2013 (2) | 0.25739 (17) | 0.0283 (4) | |
N44 | −0.1000 (2) | 0.0852 (2) | 0.29014 (16) | 0.0380 (4) | |
C9 | 0.3168 (2) | 1.0231 (2) | 0.33171 (17) | 0.0290 (4) | |
H9A | 0.209310 | 1.005667 | 0.281911 | 0.035* | |
H9B | 0.337299 | 1.136793 | 0.362339 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.02301 (8) | 0.02802 (9) | 0.03002 (9) | 0.00191 (6) | −0.00023 (6) | 0.00685 (6) |
C | 0.0219 (9) | 0.0251 (9) | 0.0493 (13) | 0.0034 (7) | 0.0053 (9) | 0.0149 (9) |
N | 0.0426 (11) | 0.0317 (9) | 0.0544 (12) | 0.0026 (8) | −0.0034 (9) | −0.0016 (8) |
S1 | 0.0299 (2) | 0.0280 (2) | 0.0258 (2) | −0.00200 (19) | 0.00382 (19) | 0.00125 (17) |
C2 | 0.0266 (9) | 0.0286 (9) | 0.0303 (10) | 0.0004 (8) | 0.0082 (8) | 0.0029 (7) |
S | 0.0347 (3) | 0.0463 (3) | 0.0320 (3) | 0.0160 (2) | 0.0066 (2) | 0.0164 (2) |
C3 | 0.0208 (8) | 0.0243 (9) | 0.0292 (9) | 0.0023 (7) | 0.0036 (7) | 0.0038 (7) |
N4 | 0.0185 (7) | 0.0223 (7) | 0.0258 (7) | 0.0002 (6) | 0.0026 (6) | 0.0044 (6) |
C5 | 0.0195 (8) | 0.0267 (9) | 0.0252 (9) | −0.0003 (7) | 0.0017 (7) | 0.0014 (7) |
C6 | 0.0184 (8) | 0.0283 (9) | 0.0254 (9) | 0.0002 (7) | 0.0004 (7) | 0.0060 (7) |
N7 | 0.0179 (7) | 0.0230 (7) | 0.0244 (7) | −0.0005 (6) | 0.0007 (6) | 0.0041 (6) |
C8 | 0.0262 (9) | 0.0231 (9) | 0.0282 (9) | −0.0008 (7) | 0.0021 (7) | 0.0051 (7) |
C71 | 0.0188 (8) | 0.0262 (9) | 0.0276 (9) | 0.0021 (7) | 0.0007 (7) | 0.0091 (7) |
C72 | 0.0211 (9) | 0.0295 (9) | 0.0284 (9) | 0.0020 (7) | 0.0023 (7) | 0.0097 (7) |
C73 | 0.0282 (10) | 0.0375 (10) | 0.0250 (9) | 0.0010 (8) | 0.0020 (8) | 0.0069 (8) |
N74 | 0.0317 (10) | 0.0655 (13) | 0.0382 (10) | 0.0107 (9) | 0.0095 (8) | 0.0052 (9) |
C41 | 0.0214 (9) | 0.0229 (8) | 0.0303 (9) | −0.0009 (7) | 0.0017 (7) | 0.0048 (7) |
C42 | 0.0243 (9) | 0.0284 (9) | 0.0283 (9) | −0.0045 (7) | 0.0039 (7) | 0.0020 (7) |
C43 | 0.0205 (9) | 0.0290 (10) | 0.0326 (10) | −0.0027 (7) | 0.0045 (7) | −0.0033 (8) |
N44 | 0.0312 (9) | 0.0305 (9) | 0.0494 (11) | −0.0045 (7) | 0.0039 (8) | 0.0034 (8) |
C9 | 0.0317 (10) | 0.0222 (9) | 0.0333 (10) | 0.0017 (7) | 0.0063 (8) | 0.0049 (7) |
Ag1—S1 | 2.5074 (5) | N7—C8 | 1.462 (2) |
Ag1—S | 2.4390 (5) | N7—C71 | 1.465 (2) |
Ag1—N4 | 2.5490 (14) | C8—H8A | 0.9900 |
Ag1—N7 | 2.5561 (15) | C8—H8B | 0.9900 |
C—N | 1.152 (3) | C8—C9 | 1.528 (3) |
C—S | 1.670 (2) | C71—H71A | 0.9900 |
S1—C2 | 1.8241 (19) | C71—H71B | 0.9900 |
S1—C9 | 1.8211 (19) | C71—C72 | 1.541 (2) |
C2—H2A | 0.9900 | C72—H72A | 0.9900 |
C2—H2B | 0.9900 | C72—H72B | 0.9900 |
C2—C3 | 1.526 (3) | C72—C73 | 1.467 (3) |
C3—H3A | 0.9900 | C73—N74 | 1.132 (3) |
C3—H3B | 0.9900 | C41—H41A | 0.9900 |
C3—N4 | 1.468 (2) | C41—H41B | 0.9900 |
N4—C5 | 1.479 (2) | C41—C42 | 1.548 (2) |
N4—C41 | 1.462 (2) | C42—H42A | 0.9900 |
C5—H5A | 0.9900 | C42—H42B | 0.9900 |
C5—H5B | 0.9900 | C42—C43 | 1.464 (3) |
C5—C6 | 1.525 (2) | C43—N44 | 1.135 (2) |
C6—H6A | 0.9900 | C9—H9A | 0.9900 |
C6—H6B | 0.9900 | C9—H9B | 0.9900 |
C6—N7 | 1.476 (2) | ||
S1—Ag1—N4 | 79.60 (4) | C8—N7—C6 | 114.09 (14) |
S1—Ag1—N7 | 79.77 (4) | C8—N7—C71 | 111.70 (14) |
S—Ag1—S1 | 160.21 (2) | C71—N7—Ag1 | 101.89 (10) |
S—Ag1—N4 | 119.16 (4) | C71—N7—C6 | 113.25 (14) |
S—Ag1—N7 | 111.02 (4) | N7—C8—H8A | 108.5 |
N4—Ag1—N7 | 71.15 (5) | N7—C8—H8B | 108.5 |
N—C—S | 177.7 (2) | N7—C8—C9 | 115.13 (15) |
C2—S1—Ag1 | 95.16 (7) | H8A—C8—H8B | 107.5 |
C9—S1—Ag1 | 101.15 (6) | C9—C8—H8A | 108.5 |
C9—S1—C2 | 103.37 (9) | C9—C8—H8B | 108.5 |
S1—C2—H2A | 108.3 | N7—C71—H71A | 108.6 |
S1—C2—H2B | 108.3 | N7—C71—H71B | 108.6 |
H2A—C2—H2B | 107.4 | N7—C71—C72 | 114.52 (14) |
C3—C2—S1 | 115.81 (13) | H71A—C71—H71B | 107.6 |
C3—C2—H2A | 108.3 | C72—C71—H71A | 108.6 |
C3—C2—H2B | 108.3 | C72—C71—H71B | 108.6 |
C—S—Ag1 | 97.17 (7) | C71—C72—H72A | 109.5 |
C2—C3—H3A | 108.8 | C71—C72—H72B | 109.5 |
C2—C3—H3B | 108.8 | H72A—C72—H72B | 108.1 |
H3A—C3—H3B | 107.7 | C73—C72—C71 | 110.56 (15) |
N4—C3—C2 | 113.77 (15) | C73—C72—H72A | 109.5 |
N4—C3—H3A | 108.8 | C73—C72—H72B | 109.5 |
N4—C3—H3B | 108.8 | N74—C73—C72 | 177.8 (2) |
C3—N4—Ag1 | 110.77 (10) | N4—C41—H41A | 108.7 |
C3—N4—C5 | 114.32 (14) | N4—C41—H41B | 108.7 |
C5—N4—Ag1 | 102.34 (10) | N4—C41—C42 | 114.42 (15) |
C41—N4—Ag1 | 103.42 (10) | H41A—C41—H41B | 107.6 |
C41—N4—C3 | 112.58 (14) | C42—C41—H41A | 108.7 |
C41—N4—C5 | 112.35 (14) | C42—C41—H41B | 108.7 |
N4—C5—H5A | 108.8 | C41—C42—H42A | 109.5 |
N4—C5—H5B | 108.8 | C41—C42—H42B | 109.5 |
N4—C5—C6 | 113.72 (14) | H42A—C42—H42B | 108.1 |
H5A—C5—H5B | 107.7 | C43—C42—C41 | 110.59 (16) |
C6—C5—H5A | 108.8 | C43—C42—H42A | 109.5 |
C6—C5—H5B | 108.8 | C43—C42—H42B | 109.5 |
C5—C6—H6A | 108.9 | N44—C43—C42 | 178.4 (2) |
C5—C6—H6B | 108.9 | S1—C9—H9A | 108.3 |
H6A—C6—H6B | 107.7 | S1—C9—H9B | 108.3 |
N7—C6—C5 | 113.24 (14) | C8—C9—S1 | 116.03 (14) |
N7—C6—H6A | 108.9 | C8—C9—H9A | 108.3 |
N7—C6—H6B | 108.9 | C8—C9—H9B | 108.3 |
C6—N7—Ag1 | 111.38 (10) | H9A—C9—H9B | 107.4 |
C8—N7—Ag1 | 103.40 (10) | ||
Ag1—S1—C2—C3 | −52.45 (14) | N4—C41—C42—C43 | −173.76 (16) |
Ag1—S1—C9—C8 | −18.86 (15) | C5—N4—C41—C42 | −60.7 (2) |
Ag1—N4—C5—C6 | −58.42 (15) | C5—C6—N7—Ag1 | −16.69 (18) |
Ag1—N4—C41—C42 | −170.34 (13) | C5—C6—N7—C8 | −133.28 (16) |
Ag1—N7—C8—C9 | −54.08 (16) | C5—C6—N7—C71 | 97.45 (17) |
Ag1—N7—C71—C72 | −168.44 (12) | C6—N7—C8—C9 | 67.1 (2) |
S1—C2—C3—N4 | 55.39 (19) | C6—N7—C71—C72 | 71.83 (19) |
C2—S1—C9—C8 | −116.97 (15) | N7—C8—C9—S1 | 53.5 (2) |
C2—C3—N4—Ag1 | −23.22 (17) | N7—C71—C72—C73 | 179.87 (15) |
C2—C3—N4—C5 | −138.19 (15) | C8—N7—C71—C72 | −58.6 (2) |
C2—C3—N4—C41 | 92.03 (18) | C71—N7—C8—C9 | −162.91 (15) |
C3—N4—C5—C6 | 61.40 (19) | C41—N4—C5—C6 | −168.71 (14) |
C3—N4—C41—C42 | 70.1 (2) | C9—S1—C2—C3 | 50.32 (16) |
N4—C5—C6—N7 | 54.1 (2) |
[Ag2(C9H16N2S2)2(SCN)]BF4 | F(000) = 3168 |
Mr = 793.34 | Dx = 1.856 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 28.537 (3) Å | Cell parameters from 35 reflections |
b = 8.4362 (11) Å | θ = 11.1–15.4° |
c = 27.216 (3) Å | µ = 1.79 mm−1 |
β = 119.940 (9)° | T = 150 K |
V = 5677.6 (12) Å3 | Tablet, colourless |
Z = 8 | 0.27 × 0.15 × 0.12 mm |
Stoe STADI4 4-circle diffractometer | 4138 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Planar graphite monochromator | θmax = 25.0°, θmin = 2.6° |
Scan width (ω) = 1.04 – 1.20, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987) | h = −33→33 |
Absorption correction: integration (SHELXTL; Sheldrick, 2008) | k = −10→0 |
Tmin = 0.713, Tmax = 0.822 | l = −32→32 |
5547 measured reflections | 3 standard reflections every 60 min |
4972 independent reflections | intensity decay: 7.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.015P)2 + 34.6966P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max = 0.001 |
4972 reflections | Δρmax = 0.56 e Å−3 |
326 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.000099 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.08025 (2) | 0.93692 (4) | 0.41389 (2) | 0.02154 (11) | |
Ag2 | 0.09609 (2) | 0.98647 (5) | 0.31130 (2) | 0.02240 (11) | |
S1A | 0.04351 (5) | 0.82782 (15) | 0.22085 (5) | 0.0216 (3) | |
S4A | 0.16145 (5) | 0.74507 (15) | 0.35120 (5) | 0.0200 (3) | |
S4 | 0.02877 (5) | 0.87553 (15) | 0.46833 (5) | 0.0215 (3) | |
S1 | 0.07752 (5) | 0.63126 (14) | 0.40150 (5) | 0.0189 (3) | |
S | 0.08733 (5) | 1.18937 (14) | 0.37032 (5) | 0.0210 (3) | |
F1 | 0.33209 (13) | 1.0994 (4) | 0.31883 (13) | 0.0432 (9) | |
C8A | 0.11625 (18) | 1.0142 (6) | 0.20333 (19) | 0.0210 (11) | |
H8AA | 0.137024 | 1.020249 | 0.183166 | 0.025* | |
H8AB | 0.092061 | 1.107647 | 0.192029 | 0.025* | |
F2 | 0.32206 (13) | 1.0454 (4) | 0.39447 (15) | 0.0442 (9) | |
C | 0.0214 (2) | 1.2361 (6) | 0.3298 (2) | 0.0244 (12) | |
F4 | 0.39578 (15) | 0.9572 (5) | 0.39134 (17) | 0.0588 (11) | |
N7A | 0.15398 (14) | 1.0213 (4) | 0.26449 (16) | 0.0164 (8) | |
F3 | 0.38643 (15) | 1.2183 (4) | 0.40266 (15) | 0.0518 (10) | |
C6 | 0.14043 (18) | 0.8308 (6) | 0.54970 (19) | 0.0178 (10) | |
H6A | 0.169613 | 0.866183 | 0.587338 | 0.021* | |
H6B | 0.135847 | 0.715265 | 0.552039 | 0.021* | |
C72A | 0.2050 (2) | 1.2596 (6) | 0.2569 (2) | 0.0234 (11) | |
H72A | 0.228958 | 1.180650 | 0.253513 | 0.028* | |
H72B | 0.178893 | 1.298119 | 0.218369 | 0.028* | |
C9 | 0.13812 (19) | 0.5770 (6) | 0.46780 (19) | 0.0201 (10) | |
H9A | 0.127040 | 0.538570 | 0.494868 | 0.024* | |
H9B | 0.156343 | 0.488275 | 0.460250 | 0.024* | |
N7 | 0.15811 (15) | 0.8593 (4) | 0.50755 (16) | 0.0154 (8) | |
C5 | 0.08767 (18) | 0.9137 (6) | 0.5373 (2) | 0.0225 (11) | |
H5A | 0.094240 | 1.029496 | 0.541132 | 0.027* | |
H5B | 0.078955 | 0.881427 | 0.566835 | 0.027* | |
C3A | 0.12826 (19) | 0.6089 (6) | 0.2919 (2) | 0.0231 (11) | |
H3AA | 0.145843 | 0.618064 | 0.268501 | 0.028* | |
H3AB | 0.134308 | 0.499488 | 0.306949 | 0.028* | |
N74A | 0.26226 (18) | 1.4920 (5) | 0.32126 (19) | 0.0292 (10) | |
N74 | 0.26658 (19) | 1.3362 (6) | 0.56519 (19) | 0.0342 (11) | |
C3 | 0.0239 (2) | 0.6604 (6) | 0.4664 (2) | 0.0226 (11) | |
H3A | 0.054530 | 0.618100 | 0.501832 | 0.027* | |
H3B | −0.009822 | 0.630655 | 0.466159 | 0.027* | |
C72 | 0.1858 (2) | 1.1416 (6) | 0.5362 (2) | 0.0234 (11) | |
H72C | 0.153835 | 1.177628 | 0.500623 | 0.028* | |
H72D | 0.175752 | 1.138219 | 0.566178 | 0.028* | |
C6A | 0.19758 (18) | 0.9034 (6) | 0.28424 (19) | 0.0178 (10) | |
H6AA | 0.229408 | 0.953201 | 0.285137 | 0.021* | |
H6AB | 0.185532 | 0.815320 | 0.256543 | 0.021* | |
C71 | 0.20226 (18) | 0.9769 (6) | 0.5278 (2) | 0.0207 (11) | |
H71A | 0.215047 | 0.983506 | 0.500082 | 0.025* | |
H71B | 0.232883 | 0.939793 | 0.564235 | 0.025* | |
C8 | 0.17881 (18) | 0.7127 (6) | 0.4957 (2) | 0.0201 (11) | |
H8A | 0.209173 | 0.673261 | 0.531875 | 0.024* | |
H8B | 0.193690 | 0.739896 | 0.470763 | 0.024* | |
N | −0.02324 (19) | 1.2731 (6) | 0.3034 (2) | 0.0405 (13) | |
C5A | 0.21473 (18) | 0.8355 (6) | 0.3426 (2) | 0.0208 (11) | |
H5AA | 0.231275 | 0.921751 | 0.370783 | 0.025* | |
H5AB | 0.243103 | 0.754923 | 0.351521 | 0.025* | |
C9A | 0.08164 (19) | 0.8633 (6) | 0.1847 (2) | 0.0229 (11) | |
H9AA | 0.105591 | 0.771253 | 0.191253 | 0.027* | |
H9AB | 0.055960 | 0.869820 | 0.143422 | 0.027* | |
C2A | 0.06761 (19) | 0.6337 (6) | 0.2535 (2) | 0.0244 (11) | |
H2AA | 0.049892 | 0.609113 | 0.275916 | 0.029* | |
H2AB | 0.054699 | 0.554352 | 0.222610 | 0.029* | |
C73A | 0.23715 (19) | 1.3917 (6) | 0.2920 (2) | 0.0194 (11) | |
C73 | 0.2306 (2) | 1.2535 (6) | 0.5525 (2) | 0.0239 (11) | |
B1 | 0.3592 (2) | 1.0805 (7) | 0.3769 (2) | 0.0235 (13) | |
C2 | 0.02391 (19) | 0.5797 (6) | 0.4164 (2) | 0.0221 (11) | |
H2A | −0.011122 | 0.602855 | 0.381983 | 0.027* | |
H2B | 0.025409 | 0.463750 | 0.422692 | 0.027* | |
C71A | 0.17420 (19) | 1.1811 (6) | 0.2842 (2) | 0.0189 (10) | |
H71C | 0.198667 | 1.177462 | 0.325824 | 0.023* | |
H71D | 0.143187 | 1.249674 | 0.276836 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0239 (2) | 0.0180 (2) | 0.0196 (2) | 0.00354 (16) | 0.00846 (16) | 0.00433 (16) |
Ag2 | 0.0245 (2) | 0.0204 (2) | 0.0276 (2) | −0.00087 (16) | 0.01692 (17) | −0.00617 (17) |
S1A | 0.0141 (6) | 0.0252 (7) | 0.0230 (6) | −0.0016 (5) | 0.0075 (5) | −0.0031 (5) |
S4A | 0.0210 (6) | 0.0194 (6) | 0.0204 (6) | 0.0003 (5) | 0.0108 (5) | 0.0021 (5) |
S4 | 0.0164 (6) | 0.0248 (7) | 0.0211 (6) | 0.0004 (5) | 0.0076 (5) | −0.0045 (5) |
S1 | 0.0201 (6) | 0.0171 (6) | 0.0170 (6) | 0.0003 (5) | 0.0074 (5) | −0.0011 (5) |
S | 0.0257 (6) | 0.0147 (6) | 0.0216 (6) | 0.0015 (5) | 0.0110 (5) | −0.0020 (5) |
F1 | 0.046 (2) | 0.049 (2) | 0.0232 (16) | −0.0090 (17) | 0.0084 (15) | 0.0060 (15) |
C8A | 0.019 (2) | 0.025 (3) | 0.017 (2) | 0.001 (2) | 0.008 (2) | 0.002 (2) |
F2 | 0.0427 (19) | 0.047 (2) | 0.058 (2) | −0.0115 (17) | 0.0365 (18) | −0.0007 (18) |
C | 0.037 (3) | 0.012 (3) | 0.032 (3) | 0.003 (2) | 0.023 (3) | 0.001 (2) |
F4 | 0.049 (2) | 0.058 (3) | 0.073 (3) | 0.021 (2) | 0.034 (2) | 0.025 (2) |
N7A | 0.0141 (19) | 0.011 (2) | 0.019 (2) | 0.0033 (16) | 0.0050 (16) | 0.0016 (16) |
F3 | 0.059 (2) | 0.056 (2) | 0.051 (2) | −0.033 (2) | 0.0348 (19) | −0.0278 (19) |
C6 | 0.017 (2) | 0.021 (3) | 0.013 (2) | −0.001 (2) | 0.0061 (19) | −0.001 (2) |
C72A | 0.031 (3) | 0.018 (3) | 0.025 (3) | −0.007 (2) | 0.017 (2) | −0.006 (2) |
C9 | 0.024 (3) | 0.011 (2) | 0.018 (2) | 0.007 (2) | 0.006 (2) | 0.003 (2) |
N7 | 0.0156 (19) | 0.012 (2) | 0.017 (2) | −0.0005 (16) | 0.0068 (16) | 0.0001 (16) |
C5 | 0.019 (2) | 0.030 (3) | 0.021 (3) | −0.003 (2) | 0.011 (2) | −0.011 (2) |
C3A | 0.022 (3) | 0.015 (3) | 0.034 (3) | −0.002 (2) | 0.016 (2) | −0.002 (2) |
N74A | 0.032 (2) | 0.026 (3) | 0.030 (2) | −0.007 (2) | 0.016 (2) | −0.006 (2) |
N74 | 0.041 (3) | 0.032 (3) | 0.033 (3) | −0.012 (2) | 0.021 (2) | −0.012 (2) |
C3 | 0.020 (3) | 0.023 (3) | 0.024 (3) | −0.003 (2) | 0.011 (2) | 0.000 (2) |
C72 | 0.028 (3) | 0.015 (3) | 0.024 (3) | −0.005 (2) | 0.011 (2) | −0.003 (2) |
C6A | 0.016 (2) | 0.019 (3) | 0.020 (2) | 0.000 (2) | 0.010 (2) | −0.002 (2) |
C71 | 0.018 (2) | 0.023 (3) | 0.019 (2) | −0.004 (2) | 0.008 (2) | 0.001 (2) |
C8 | 0.019 (2) | 0.018 (3) | 0.021 (3) | 0.006 (2) | 0.008 (2) | 0.004 (2) |
N | 0.034 (3) | 0.029 (3) | 0.061 (3) | 0.010 (2) | 0.025 (3) | 0.014 (3) |
C5A | 0.017 (2) | 0.018 (3) | 0.022 (3) | 0.000 (2) | 0.006 (2) | −0.002 (2) |
C9A | 0.023 (3) | 0.027 (3) | 0.016 (2) | −0.001 (2) | 0.007 (2) | −0.003 (2) |
C2A | 0.024 (3) | 0.020 (3) | 0.030 (3) | −0.007 (2) | 0.014 (2) | −0.003 (2) |
C73A | 0.019 (2) | 0.019 (3) | 0.026 (3) | 0.002 (2) | 0.015 (2) | 0.001 (2) |
C73 | 0.033 (3) | 0.021 (3) | 0.017 (3) | −0.002 (2) | 0.012 (2) | −0.003 (2) |
B1 | 0.018 (3) | 0.024 (3) | 0.024 (3) | −0.003 (2) | 0.007 (2) | −0.001 (3) |
C2 | 0.021 (2) | 0.015 (3) | 0.025 (3) | −0.002 (2) | 0.008 (2) | 0.000 (2) |
C71A | 0.021 (2) | 0.016 (3) | 0.020 (2) | −0.003 (2) | 0.010 (2) | −0.004 (2) |
Ag1—Ag2 | 3.0716 (6) | C9—H9A | 0.9900 |
Ag1—S4 | 2.6065 (13) | C9—H9B | 0.9900 |
Ag1—S1 | 2.5966 (13) | C9—C8 | 1.535 (7) |
Ag1—S | 2.4943 (13) | N7—C71 | 1.477 (6) |
Ag1—N7 | 2.492 (4) | N7—C8 | 1.474 (6) |
Ag2—S1A | 2.5329 (13) | C5—H5A | 0.9900 |
Ag2—S4A | 2.6046 (13) | C5—H5B | 0.9900 |
Ag2—S | 2.4441 (13) | C3A—H3AA | 0.9900 |
Ag2—N7A | 2.557 (4) | C3A—H3AB | 0.9900 |
S1A—C9A | 1.819 (5) | C3A—C2A | 1.525 (7) |
S1A—C2A | 1.826 (5) | N74A—C73A | 1.137 (6) |
S4A—C3A | 1.816 (5) | N74—C73 | 1.142 (6) |
S4A—C5A | 1.818 (5) | C3—H3A | 0.9900 |
S4—C5 | 1.818 (5) | C3—H3B | 0.9900 |
S4—C3 | 1.819 (5) | C3—C2 | 1.523 (7) |
S1—C9 | 1.828 (5) | C72—H72C | 0.9900 |
S1—C2 | 1.820 (5) | C72—H72D | 0.9900 |
S—C | 1.685 (5) | C72—C71 | 1.520 (7) |
F1—B1 | 1.379 (6) | C72—C73 | 1.470 (7) |
C8A—H8AA | 0.9900 | C6A—H6AA | 0.9900 |
C8A—H8AB | 0.9900 | C6A—H6AB | 0.9900 |
C8A—N7A | 1.464 (6) | C6A—C5A | 1.520 (6) |
C8A—C9A | 1.534 (7) | C71—H71A | 0.9900 |
F2—B1 | 1.395 (7) | C71—H71B | 0.9900 |
C—N | 1.151 (7) | C8—H8A | 0.9900 |
F4—B1 | 1.384 (7) | C8—H8B | 0.9900 |
N7A—C6A | 1.469 (6) | C5A—H5AA | 0.9900 |
N7A—C71A | 1.460 (6) | C5A—H5AB | 0.9900 |
F3—B1 | 1.380 (7) | C9A—H9AA | 0.9900 |
C6—H6A | 0.9900 | C9A—H9AB | 0.9900 |
C6—H6B | 0.9900 | C2A—H2AA | 0.9900 |
C6—N7 | 1.485 (6) | C2A—H2AB | 0.9900 |
C6—C5 | 1.537 (6) | C2—H2A | 0.9900 |
C72A—H72A | 0.9900 | C2—H2B | 0.9900 |
C72A—H72B | 0.9900 | C71A—H71C | 0.9900 |
C72A—C73A | 1.457 (7) | C71A—H71D | 0.9900 |
C72A—C71A | 1.556 (6) | ||
S4—Ag1—Ag2 | 157.53 (3) | C6—C5—H5B | 108.2 |
S1—Ag1—Ag2 | 91.47 (3) | H5A—C5—H5B | 107.3 |
S1—Ag1—S4 | 83.55 (4) | S4A—C3A—H3AA | 108.4 |
S—Ag1—Ag2 | 50.81 (3) | S4A—C3A—H3AB | 108.4 |
S—Ag1—S4 | 129.95 (4) | H3AA—C3A—H3AB | 107.4 |
S—Ag1—S1 | 142.23 (4) | C2A—C3A—S4A | 115.6 (3) |
N7—Ag1—Ag2 | 120.33 (9) | C2A—C3A—H3AA | 108.4 |
N7—Ag1—S4 | 80.45 (9) | C2A—C3A—H3AB | 108.4 |
N7—Ag1—S1 | 79.96 (9) | S4—C3—H3A | 108.3 |
N7—Ag1—S | 117.91 (9) | S4—C3—H3B | 108.3 |
S1A—Ag2—Ag1 | 121.80 (3) | H3A—C3—H3B | 107.4 |
S1A—Ag2—S4A | 86.88 (4) | C2—C3—S4 | 115.9 (4) |
S1A—Ag2—N7A | 78.06 (9) | C2—C3—H3A | 108.3 |
S4A—Ag2—Ag1 | 85.08 (3) | C2—C3—H3B | 108.3 |
S—Ag2—Ag1 | 52.28 (3) | H72C—C72—H72D | 108.2 |
S—Ag2—S1A | 143.47 (4) | C71—C72—H72C | 109.6 |
S—Ag2—S4A | 124.09 (4) | C71—C72—H72D | 109.6 |
S—Ag2—N7A | 123.39 (9) | C73—C72—H72C | 109.6 |
N7A—Ag2—Ag1 | 153.28 (8) | C73—C72—H72D | 109.6 |
N7A—Ag2—S4A | 77.95 (9) | C73—C72—C71 | 110.1 (4) |
C9A—S1A—Ag2 | 102.39 (16) | N7A—C6A—H6AA | 108.7 |
C9A—S1A—C2A | 103.2 (2) | N7A—C6A—H6AB | 108.7 |
C2A—S1A—Ag2 | 96.01 (17) | N7A—C6A—C5A | 114.2 (4) |
C3A—S4A—Ag2 | 100.17 (16) | H6AA—C6A—H6AB | 107.6 |
C3A—S4A—C5A | 104.4 (2) | C5A—C6A—H6AA | 108.7 |
C5A—S4A—Ag2 | 95.11 (16) | C5A—C6A—H6AB | 108.7 |
C5—S4—Ag1 | 93.39 (16) | N7—C71—C72 | 113.5 (4) |
C5—S4—C3 | 103.0 (2) | N7—C71—H71A | 108.9 |
C3—S4—Ag1 | 103.85 (17) | N7—C71—H71B | 108.9 |
C9—S1—Ag1 | 99.68 (16) | C72—C71—H71A | 108.9 |
C2—S1—Ag1 | 100.52 (16) | C72—C71—H71B | 108.9 |
C2—S1—C9 | 101.9 (2) | H71A—C71—H71B | 107.7 |
Ag2—S—Ag1 | 76.91 (4) | C9—C8—H8A | 108.2 |
C—S—Ag1 | 100.51 (18) | C9—C8—H8B | 108.2 |
C—S—Ag2 | 100.38 (18) | N7—C8—C9 | 116.6 (4) |
H8AA—C8A—H8AB | 107.7 | N7—C8—H8A | 108.2 |
N7A—C8A—H8AA | 108.9 | N7—C8—H8B | 108.2 |
N7A—C8A—H8AB | 108.9 | H8A—C8—H8B | 107.3 |
N7A—C8A—C9A | 113.3 (4) | S4A—C5A—H5AA | 108.3 |
C9A—C8A—H8AA | 108.9 | S4A—C5A—H5AB | 108.3 |
C9A—C8A—H8AB | 108.9 | C6A—C5A—S4A | 116.0 (3) |
N—C—S | 177.3 (5) | C6A—C5A—H5AA | 108.3 |
C8A—N7A—Ag2 | 105.7 (3) | C6A—C5A—H5AB | 108.3 |
C8A—N7A—C6A | 113.4 (4) | H5AA—C5A—H5AB | 107.4 |
C6A—N7A—Ag2 | 112.3 (3) | S1A—C9A—H9AA | 108.6 |
C71A—N7A—Ag2 | 99.1 (3) | S1A—C9A—H9AB | 108.6 |
C71A—N7A—C8A | 112.8 (4) | C8A—C9A—S1A | 114.7 (3) |
C71A—N7A—C6A | 112.6 (4) | C8A—C9A—H9AA | 108.6 |
H6A—C6—H6B | 107.5 | C8A—C9A—H9AB | 108.6 |
N7—C6—H6A | 108.4 | H9AA—C9A—H9AB | 107.6 |
N7—C6—H6B | 108.4 | S1A—C2A—H2AA | 107.7 |
N7—C6—C5 | 115.5 (4) | S1A—C2A—H2AB | 107.7 |
C5—C6—H6A | 108.4 | C3A—C2A—S1A | 118.6 (3) |
C5—C6—H6B | 108.4 | C3A—C2A—H2AA | 107.7 |
H72A—C72A—H72B | 108.2 | C3A—C2A—H2AB | 107.7 |
C73A—C72A—H72A | 109.8 | H2AA—C2A—H2AB | 107.1 |
C73A—C72A—H72B | 109.8 | N74A—C73A—C72A | 177.3 (5) |
C73A—C72A—C71A | 109.4 (4) | N74—C73—C72 | 177.7 (6) |
C71A—C72A—H72A | 109.8 | F1—B1—F2 | 109.2 (4) |
C71A—C72A—H72B | 109.8 | F1—B1—F4 | 108.9 (5) |
S1—C9—H9A | 108.7 | F1—B1—F3 | 109.6 (5) |
S1—C9—H9B | 108.7 | F4—B1—F2 | 109.8 (5) |
H9A—C9—H9B | 107.6 | F3—B1—F2 | 109.6 (5) |
C8—C9—S1 | 114.3 (3) | F3—B1—F4 | 109.6 (4) |
C8—C9—H9A | 108.7 | S1—C2—H2A | 107.8 |
C8—C9—H9B | 108.7 | S1—C2—H2B | 107.8 |
C6—N7—Ag1 | 111.1 (3) | C3—C2—S1 | 117.9 (3) |
C71—N7—Ag1 | 111.4 (3) | C3—C2—H2A | 107.8 |
C71—N7—C6 | 112.1 (4) | C3—C2—H2B | 107.8 |
C8—N7—Ag1 | 104.3 (3) | H2A—C2—H2B | 107.2 |
C8—N7—C6 | 111.2 (4) | N7A—C71A—C72A | 115.5 (4) |
C8—N7—C71 | 106.5 (3) | N7A—C71A—H71C | 108.4 |
S4—C5—H5A | 108.2 | N7A—C71A—H71D | 108.4 |
S4—C5—H5B | 108.2 | C72A—C71A—H71C | 108.4 |
C6—C5—S4 | 116.4 (3) | C72A—C71A—H71D | 108.4 |
C6—C5—H5A | 108.2 | H71C—C71A—H71D | 107.5 |
Ag1—S4—C5—C6 | −49.6 (4) | C9—S1—C2—C3 | 59.1 (4) |
Ag1—S4—C3—C2 | −27.3 (4) | N7—C6—C5—S4 | 54.9 (5) |
Ag1—S1—C9—C8 | −20.8 (4) | C5—S4—C3—C2 | −124.1 (4) |
Ag1—S1—C2—C3 | −43.3 (4) | C5—C6—N7—Ag1 | −23.3 (5) |
Ag1—N7—C71—C72 | 60.8 (4) | C5—C6—N7—C71 | 102.0 (4) |
Ag1—N7—C8—C9 | −55.7 (4) | C5—C6—N7—C8 | −138.9 (4) |
Ag2—S1A—C9A—C8A | −22.3 (4) | C3A—S4A—C5A—C6A | 50.6 (4) |
Ag2—S1A—C2A—C3A | −49.9 (4) | C3—S4—C5—C6 | 55.5 (4) |
Ag2—S4A—C3A—C2A | −25.5 (4) | C6A—N7A—C71A—C72A | 70.4 (5) |
Ag2—S4A—C5A—C6A | −51.3 (4) | C71—N7—C8—C9 | −173.6 (4) |
Ag2—N7A—C6A—C5A | −24.6 (5) | C8—N7—C71—C72 | 173.9 (4) |
Ag2—N7A—C71A—C72A | −170.8 (3) | C5A—S4A—C3A—C2A | −123.6 (4) |
S4A—C3A—C2A—S1A | 56.3 (5) | C9A—S1A—C2A—C3A | 54.4 (4) |
S4—C3—C2—S1 | 51.2 (5) | C9A—C8A—N7A—Ag2 | −55.0 (4) |
S1—C9—C8—N7 | 55.5 (5) | C9A—C8A—N7A—C6A | 68.4 (5) |
C8A—N7A—C6A—C5A | −144.3 (4) | C9A—C8A—N7A—C71A | −162.2 (4) |
C8A—N7A—C71A—C72A | −59.5 (5) | C2A—S1A—C9A—C8A | −121.6 (4) |
N7A—C8A—C9A—S1A | 55.3 (5) | C73A—C72A—C71A—N7A | −161.9 (4) |
N7A—C6A—C5A—S4A | 56.0 (5) | C73—C72—C71—N7 | −176.1 (4) |
C6—N7—C71—C72 | −64.3 (5) | C2—S1—C9—C8 | −123.8 (4) |
C6—N7—C8—C9 | 64.0 (5) | C71A—N7A—C6A—C5A | 86.2 (5) |
`[Ag(L1)2]BF4` | |||
Ag1—S1 | 2.5273 (4) | Ag1'—S1' | 2.5605 (4) |
Ag1—N4 | 2.6173 (12) | Ag1'—N4' | 2.6363 (12) |
Ag1—N7 | 2.6822 (14) | Ag1'—N7' | 2.6108 (13) |
S1—Ag1—N4 | 77.67 (3) | S1'—Ag1'—N4' | 76.92 (3) |
S1—Ag1—N7 | 76.40 (3) | S1'—Ag1'—N7' | 76.70 (3) |
N4—Ag1—N7 | 68.50 (4) | N7'—Ag1'—N4' | 69.72 (4) |
`[Ag(L2)(SCN)]` | |||
Ag1—S1 | 2.5074 (5) | Ag1—N7 | 2.5561 (15) |
Ag1—S | 2.4390 (5) | C—N | 1.152 (3) |
Ag1—N4 | 2.5490 (14) | C—S | 1.670 (2) |
S1—Ag1—N4 | 79.60 (4) | S—Ag1—N7 | 111.02 (4) |
S1—Ag1—N7 | 79.77 (4) | N4—Ag1—N7 | 71.15 (5) |
S—Ag1—S1 | 160.21 (2) | N—C—S | 177.7 (2) |
S—Ag1—N4 | 119.16 (4) | ||
`[Ag2(L3)2(µ-SCN)]BF4` | |||
Ag1—Ag2 | 3.0716 (6) | Ag2—S1A | 2.5329 (13) |
Ag1—S4 | 2.6065 (13) | Ag2—S4A | 2.6046 (13) |
Ag1—S1 | 2.5966 (13) | Ag2—S | 2.4441 (13) |
Ag1—S | 2.4943 (13) | Ag2—N7A | 2.557 (4) |
Ag1—N7 | 2.492 (4) | ||
S1—Ag1—S4 | 83.55 (4) | S1A—Ag2—S4A | 86.88 (4) |
S—Ag1—S4 | 129.95 (4) | S1A—Ag2—N7A | 78.06 (9) |
S—Ag1—S1 | 142.23 (4) | S4A—Ag2—Ag1 | 85.08 (3) |
N7—Ag1—Ag2 | 120.33 (9) | S—Ag2—S1A | 143.47 (4) |
N7—Ag1—S4 | 80.45 (9) | S—Ag2—S4A | 124.09 (4) |
N7—Ag1—S1 | 79.96 (9) | S—Ag2—N7A | 123.39 (9) |
N7—Ag1—S | 117.91 (9) | N7A—Ag2—S4A | 77.95 (9) |
Ag1—S—Ag2 | 76.91 (4) |
Acknowledgements
We thank the University of Cagliari (Italy), the University of Nottingham (UK) and the EPSRC for support.
References
Bala, L., Sharma, R. P., Sharma, R. & Kariuki, B. M. (2006). Inorg. Chem. Commun. 9, 852–855. Web of Science CSD CrossRef CAS Google Scholar
Blake, A. J., Danks, J. P., Lippolis, V., Parsons, S. & Schröder, M. (1998). New J. Chem. 22, 1301–1303. Web of Science CSD CrossRef CAS Google Scholar
Blower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E. Jr, Yagbasan, R., Bott, S. G. & Cooper, S. R. (1989). Inorg. Chem. 28, 4040–4046. CSD CrossRef CAS Web of Science Google Scholar
Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chak, B., McAuley, A. & Whitcombe, T. W. (1994). Can. J. Chem. 72, 1525–1532. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fortier, D. G. & McAuley, A. (1989). Inorg. Chem. 28, 655–662. CSD CrossRef CAS Web of Science Google Scholar
Heinzel, U. & Mattes, R. (1992). Polyhedron, 11, 597–600. CSD CrossRef CAS Web of Science Google Scholar
Lippolis, V., Blake, A. J., Cooke, P. A., Isaia, F., Li, W.-S. & Schröder, M. (1999). Chem. Eur. J. 5, 1987–1991. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stockheim, C., Wieghardt, K., Nuber, B., Weiss, J., Flöurke, U. & Haupt, H.-J. (1991). J. Chem. Soc. Dalton Trans. pp. 1487–1490. CSD CrossRef Web of Science Google Scholar
Stoe & Cie (1996). STADI-4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tei, L., Blake, A. J., Cooke, P. A., Caltagirone, C., Demartin, F., Lippolis, V., Morale, F., Wilson, C. & Schröder, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1662–1670. Web of Science CSD CrossRef Google Scholar
Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634. Web of Science CSD CrossRef Google Scholar
Vahrenkamp, H., Gei, A. & Richardson, G. N. (1997). J. Chem. Soc. Dalton Trans. pp. 3643–3652. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.