research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis and structure of two isomers of a molybdenum(II) 2-butyne com­plex stabilized by bioinspired S,N-bidentate ligands

crossmark logo

aInstitute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
*Correspondence e-mail: ferdinand.belaj@uni-graz.at

Edited by W. Lewis, University of Sydney, Australia (Received 29 November 2021; accepted 21 February 2022; online 5 March 2022)

The synthesis and structural determination of two isomers of the molybdenum(II) com­plex (η2-but-2-yne)carbonyl­bis­[2-(4,4-dimethyl-4,5-di­hydro-1,3-oxa­zol-2-yl)benzene­thiol­ato-κ2N,S]molybdenum(II), [Mo(C11H12NOS)2(C4H6)(CO)] or Mo(CO)(C2Me2)(S-Phoz)2, are presented. The N,N-cisS,S-trans isomer 1 shows quite different bond lengths to the metal atom [Mo—N = 2.4715 (10) versus 2.3404 (11) Å; Mo—S = 2.4673 (3) versus 2.3665 (3) Å]. In the N,N-transS,S-cis isomer 2, which is isotypic with the corresponding W com­plex, the Mo—N bond lengths [2.236 (2) and 2.203 (2) Å], as well as the Mo—S bond lengths [2.5254 (8) and 2.5297 (8) Å], are almost the same.

1. Introduction

In order to explore the inter­action of Mo and W centres with acetyl­ene (C2H2), which is accepted as a substrate by the tungstoenzyme acetyl­ene hydratase (Schink, 1985[Schink, B. (1985). Arch. Microbiol. 142, 295-301.]; Rosner & Schink, 1995[Rosner, B. M. & Schink, B. (1995). J. Bacteriol. 177, 5767-5772.]), our group has focused on the synthesis of WII and MoII com­plexes containing bioinspired S,N-bidentate ligands and their subsequent oxidation to the respective WIV and MoIV com­plexes. Although N-donor ligands are not the closest structural mimics of the di­thiol­ene ligands in the active site of acetyl­ene hydratase (Seiffert et al., 2007[Seiffert, G. B., Ullmann, G. M., Messerschmidt, A., Schink, B., Kroneck, P. M. H. & Einsle, O. (2007). Proc. Natl Acad. Sci. USA, 104, 3073-3077.]) and other members of the dimethyl sulfoxide (DMSO) reductase enzyme family (Seelmann et al., 2020[Seelmann, C. S., Willistein, M., Heider, J. & Boll, M. (2020). Inorganics, 8, 44.]), the use of these ligands has resulted in the discovery of new reactivities at W centres (Vidovič et al., 2019[Vidovič, C., Peschel, L. M., Buchsteiner, M., Belaj, F. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 14267-14272.]; Ehweiner et al., 2021c[Ehweiner, M. A., Peschel, L. M., Stix, N., Ćorović, M. Z., Belaj, F. & Mösch-Zanetti, N. C. (2021c). Inorg. Chem. 60, 8414-8418.]), the isolation of a so-far-elusive MoIV C2H2 com­plex (Ehweiner et al., 2021a[Ehweiner, M. A., Belaj, F., Kirchner, K. & Mösch-Zanetti, N. C. (2021a). Organometallics, 40, 2576-2583.]) and a detailed com­parison of W and Mo com­plexes with a variety of coordinated alkynes (Ehweiner et al., 2021b[Ehweiner, M. A., Ćorović, M. Z., Belaj, F. & Mösch-Zanetti, N. C. (2021b). Helv. Chim. Acta, 104, e2100137.]). One of the early publications of our group in this research field focused on the reversible activation of C2H2 at a WIV centre coordin­ated by two 2-(4,4-di­methyl­oxazolin-2-yl)thio­pheno­late (S-Phoz) ligands (Peschel et al., 2015a[Peschel, L. M., Belaj, F. & Mösch-Zanetti, N. C. (2015a). Angew. Chem. Int. Ed. 54, 13018-13021.]). Thereafter, the re­ver­sible binding of C2Me2 and C2Ph2 (Peschel et al., 2019[Peschel, L. M., Vidovič, C., Belaj, F., Neshchadin, D. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 3893-3902.]) was investigated, with a particular focus on the flexibility of the S-Phoz ligand. The latter has also found application in Ni, Pd and Pt com­pounds (Peschel et al., 2015b[Peschel, L. M., Holzer, C., Mihajlović-Lalić, L., Belaj, F. & Mösch-Zanetti, N. C. (2015b). Eur. J. Inorg. Chem. 2015, 1569-1578.]; Holzer et al., 2018[Holzer, C., Dupé, A., Peschel, L. M., Belaj, F. & Mösch-Zanetti, N. C. (2018). Eur. J. Inorg. Chem. 2018, 568-575.]), as well as in Zn (Mugesh et al., 1999[Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Eur. J. Inorg. Chem. 1999, 1229-1236.]) and Fe (Bottini et al., 2010[Bottini, R. C. R., Gariani, R. A., Cavalcanti, C., de Oliveira, F., da Rocha, N. L. G., Back, D., Lang, E. S., Hitchcock, P. B., Evans, D. J., Nunes, G. G., Simonelli, F., de Sá, E. L. & Soares, J. F. (2010). Eur. J. Inorg. Chem. 2010, 2476-2487.]) com­plexes.

Herein we report an improved synthetic procedure for Mo(CO)2(S-Phoz)2 and the preparation and structural characterization of carbon­yl(η2-1,2-di­methyl­ethyne)[2-(4,4-di­methyl­oxazolin-2-yl)benzene­thiol­ato-κ2N,S]molydbenum(II), Mo(CO)(C2Me2)(S-Phoz)2, which forms two isomers (1 and 2) in solution, as well as in the solid state (see Scheme 1). This behaviour is different from that observed for the W variant which crystallized solely as the N,N-trans isomer and showed the presence of a second isomer in solution only to a minor extent.

[Scheme 1]

2. Experimental

Synthetic manipulations were performed under a nitro­gen atmosphere using standard Schlenk and glove-box techniques. Solvents were purified via a Pure Solv Solvent Purification System. Chemicals were purchased from commercial sources and used without further purification. The precursor MoI2(CO)3(NCMe)2 was synthesized according to a literature procedure (Baker et al., 1986[Baker, P. K., Fraser, S. G. & Keys, E. M. (1986). J. Organomet. Chem. 309, 319-321.]). For the synthesis of Mo(CO)2(S-Phoz)2, a slight modification of a published procedure was used (Peschel et al., 2013[Peschel, L. M., Schachner, J. A., Sala, C. H., Belaj, F. & Mösch-Zanetti, N. C. (2013). Z. Anorg. Allg. Chem. 639, 1559-1567.]). 1H NMR spectra were recorded on a Bruker Avance III 300 MHz spectrometer at ambient tem­per­ature and are referenced to residual protons in the solvent. The multiplicity of peaks is denoted as singlet (s), doublet (d), doublet of doublets (dd) or multiplet (m). NMR solvents were stored over mol­ecular sieves. Solid-state IR spectra were measured on a Bruker ALPHA ATR–FT–IR spectrometer at a resolution of 2 cm−1. The relative intensity of signals is declared as strong (s), medium (m) and weak (w). Electron impact mass spectroscopy (EI–MS) measurements were performed with an Agilent 5973 MSD mass spectrometer with a push rod.

2.1. Synthesis and crystallization

2.1.1. Preparation of Mo(CO)2(S-Phoz)2

A solution of Li(S-Phoz) (853 mg, 4.00 mmol) in MeCN (8 ml) was added dropwise to a solution of MoI2(CO)3(NCMe)2 (1.03 g, 2.00 mmol) in MeCN (8 ml). The resulting blood-red solution was stirred for 2 h at 35 °C, whereupon the solvent was removed by evaporation. The residue was suspended in toluene (20 ml) and the resulting suspension was filtered through Celite. The blood-red filtrate was then evaporated to dryness. After repeated recrystallization from CH2Cl2/heptane at −25 °C, Mo(CO)2(S-Phoz)2 (yield 790 mg, 70%) was ob­tained as dark red crystals. NMR and IR data are in agreement with previously published results (Peschel et al., 2013[Peschel, L. M., Schachner, J. A., Sala, C. H., Belaj, F. & Mösch-Zanetti, N. C. (2013). Z. Anorg. Allg. Chem. 639, 1559-1567.]).

2.1.2. Preparation of Mo(CO)(C2Me2)(S-Phoz)2

Mo(CO)2(S-Phoz)2 (339 mg, 0.60 mmol) was dissolved in CH2Cl2 (20 ml), whereupon 2-butyne (0.38 ml, 4.80 mmol) was added to the solution at 0 °C under stirring. The cooling bath was removed and the solution was heated under reflux for 24 h. Evaporation of the solvent gave a dark brown powder. Single crystals suitable for X-ray diffraction were obtained from CH2Cl2/heptane solutions at −35 °C. Crystals of both isomers (green plates of 1 and yellow needles of 2) were obtained from the same batch. The product is very sensitive to air and should be stored in a glove-box.

2.1.3. Analytical data

1H NMR for 1 (CD2Cl2, 300 MHz, S,S-trans isomer, 34%): δ 8.07 (dd, J = 8.1, 1.1 Hz, 1H, PhH), 7.78–7.72 (m, 3H, PhH), 7.35 (dd, J = 7.8, 1.1 Hz, 1H, PhH), 7.32–7.27 (m, 2H, PhH), 7.21–7.01 (m, 1H, PhH), 4.46 (d, J = 8.2 Hz, 1H, CH2), 4.18 (d, J = 8.1 Hz, 1H, CH2), 4.11 (d, J = 8.3 Hz, 1H, CH2), 3.78 (d, J = 8.2 Hz, 1H, CH2), 2.70 (s, 3H, C≡CCH3), 2.55 (s, 3H, C≡CCH3), 1.89 (s, 3H, CH3), 1.81 (s, 3H, CH3), 1.57 (s, 3H, CH3), 1.44 (s, 3H, CH3); 1H NMR for 2 (CD2Cl2, 300 MHz, N,N-trans isomer, 66%): δ 7.67–7.62 (m, 2H, PhH), 7.43 (dd, J = 8.1, 1.4 Hz, 1H, PhH), 7.21–7.01 (m, 4H, PhH), 6.90–6.84 (m, 1H, PhH), 4.11 (d, J = 8.3 Hz, 1H, CH2), 3.93–3.90 (m, 3H, CH2), 2.90 (s, 3H, C≡CCH3), 2.46 (s, 3H, C≡CCH3), 1.63 (s, 3H, CH3), 1.34 (s, 3H, CH3), 0.77 (s, 3H, CH3), 0.58 (s, 3H, CH3). IR (cm−1): 2995 (w), 2962 (w), 2928 (w), 2916 (w), 2894 (w), 1898 (s, C≡O), 1856 (m, C≡O), 1590 (s), 1572 (s), 1539 (m, C=N), 1455 (m), 1357 (m), 1326 (m), 1280 (m), 1246 (m), 1208 (m), 1160 (m), 1139 (m), 1053 (s), 966 (m), 818 (m), 776 (m), 741 (s), 695 (m), 653 (m). EI–MS (70 eV) m/z: [M – 2CO + O]+ 526.1.

2.2. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The H atoms of the CH2 groups were placed at positions with approximately tetra­hedral angles and C—H distances of 0.99 Å, and common isotropic displacement parameters were refined for the H atoms of the same group. The H atoms of the arene rings were placed at the external bisectors of the C—C—C angles at C—H distances of 0.95 Å, and common isotropic displacement parameters were refined for the H atoms of the same ring. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetra­hedral angles, enabling rotations around the C—C bonds, and with C—H distances of 0.98 Å.

Table 1
Experimental details

For both structures: [Mo(C11H12NOS)2(C4H6)(CO)], Mr = 590.59, Z = 4. Experiments were carried out at 100 K with Mo Kα radiation using a Bruker APEXII CCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). Refinement was on 332 parameters. Only H-atom displacement parameters were refined.

  (1) (2)
Crystal data
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
a, b, c (Å) 10.6159 (5), 8.9300 (4), 27.3801 (12) 9.1512 (4), 21.3515 (12), 13.1781 (7)
β (°) 96.189 (2) 98.483 (3)
V3) 2580.5 (2) 2546.7 (2)
μ (mm−1) 0.70 0.71
Crystal size (mm) 0.18 × 0.18 × 0.10 0.23 × 0.07 × 0.07
 
Data collection
Tmin, Tmax 0.884, 1.000 0.776, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 30042, 11363, 9549 22009, 7415, 5339
Rint 0.029 0.068
(sin θ/λ)max−1) 0.807 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.04 0.043, 0.087, 1.01
No. of reflections 11363 7415
Δρmax, Δρmin (e Å−3) 0.72, −0.64 0.52, −0.83
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELX97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and modified ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]).

3. Results and discussion

3.1. Crystal structure analysis

Isomers 1 and 2 crystallize without any solvent mol­ecules in the monoclinic space groups P21/n and P21/c, respectively, and both have one metal com­plex in the asymmetric unit. In N,N-cis isomer 1 (Fig. 1[link]), the Mo—N distance of the oxazole ring trans to the butyne ligand [Mo1—N13 = 2.4715 (10) Å] is much longer than that trans to the carbonyl ligand [Mo1—N33 = 2.3404 (11) Å]. In N,N-trans isomer 2 (Fig. 2[link]), these distances [Mo1—N13 = 2.236 (2) Å and Mo1—N33 = 2.203 (2) Å] are com­parable to those observed in the dicarbonyl derivative [2.2333 (9) Å; Peschel et al., 2013[Peschel, L. M., Schachner, J. A., Sala, C. H., Belaj, F. & Mösch-Zanetti, N. C. (2013). Z. Anorg. Allg. Chem. 639, 1559-1567.]] or in the isotypic W com­pound [W1—N13 = 2.2153 (16) Å and W1—N33 = 2.1862 (16) Å; Peschel et al., 2019[Peschel, L. M., Vidovič, C., Belaj, F., Neshchadin, D. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 3893-3902.]]. In contrast to this, the Mo—S distances of the benzene­thiol­ate residues in isomer 1 are significantly different, although they are trans to one another, and both are clearly shorter [Mo1—S1 = 2.4673 (3) Å and Mo1—S2 = 2.3665 (3) Å] than in isomer 2 [Mo1—S1 = 2.5254 (8) Å and Mo1—S2 = 2.5297 (8) Å] or in the W com­pound [W—S = 2.5232 (4)–2.5243 (4) Å]. On the other hand, in both isomers, the distances are almost the same between the central atom and the butyne ligands [2.0310 (12)–2.0664 (12) versus 2.024 (3)–2.059 (3) Å] and to the carbonyl ligands [1.9417 (13) versus 1.953 (3) Å], although both are arranged in trans positions with respect to the N atoms of the oxazole rings in 1, and trans to the S atoms of the benzene­thiol­ate groups in 2. In both isomers, the CO ligands [C3—O3 = 1.1555 (16) and 1.157 (3) Å] lie roughly in the best planes through the butyne ligands [C1—C2 = 1.2965 (18) and 1.314 (4) Å] and the Mo atoms.

[Figure 1]
Figure 1
The mol­ecular structure of isomer 1. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. The rather long Mo—N distance [Mo1—N13 = 2.4715 (10) Å] is indicated by a dashed line.
[Figure 2]
Figure 2
The mol­ecular structure of isomer 2. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Comparing all known structures of M(CO)(C2R2)(S-Phoz)2 com­plexes (Table 2[link]), the following conclusions can be made: whereas N,N-trans conformations for R = H and CH3, and S,S-trans conformations for R = Ph were observed (Peschel et al., 2015a[Peschel, L. M., Belaj, F. & Mösch-Zanetti, N. C. (2015a). Angew. Chem. Int. Ed. 54, 13018-13021.], 2019[Peschel, L. M., Vidovič, C., Belaj, F., Neshchadin, D. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 3893-3902.]) for the W com­plexes, both conformations were found in the first two crystal structures of the analogous Mo com­plexes with R = CH3. In general, the Mo—N distances are clearly longer in the S,S-trans conformers, and slightly longer for the S-Phoz ligands trans to the alkyne ligands than those trans to the carbonyl ligand (e.g. M—N13 is larger than M—N33). In isomer 1, the Mo—N distance of the S-Phoz ligand trans to the butyne ligand is exceptionally large due to the wide C1—Mo1—N13 angle of 173.53 (4)° and large C—M—S1 angles. The Mo—S distances are the same in the N,N-trans conformers, but in the S,S-trans conformers, M—S1 is distinctly longer than M—S2. Therefore, the S-Phoz ligands whose oxazole rings are trans to the alkyne ligands are more weakly bound to the metal centre than the others. In all six com­plexes (Table 2[link]), the M—C1 distance is significantly shorter than M—C2, presumably due to the carbonyl ligand near atom C2.

Table 2
Selected geometric parameters (Å, °) for M(CO)(C2R2)(S-Phoz)2 com­plexes

The labels C1 and C2 of the alkyne ligand were choosen such that the torsion angle C2—C1—M—C3 is approximately 0°. The selected ligand containing atoms S1 and N13 was that in which one of these atoms is trans to the alkyne ligand.

M, R W, Ha W, CH3b Mo, CH3c Mo, CH3c W, Phb W, Phb
  N,N-trans N,N-trans N,N-trans S,S-trans S,S-trans S,S-trans
M—C1 2.0268 (17) 2.0210 (17) 2.024 (3) 2.0310 (12) 2.0510 (19) 2.036 (4)
M—C2 2.0548 (18) 2.0565 (17) 2.059 (3) 2.0664 (12) 2.078 (2) 2.057 (4)
M—C3 1.9623 (18) 1.9535 (19) 1.953 (3) 1.9417 (13) 1.949 (2) 1.966 (4)
C3—O3 1.160 (2) 1.164 (2) 1.157 (3) 1.1555 (16) 1.155 (3) 1.154 (5)
M—N13 2.2120 (14) 2.2153 (16) 2.236 (2) 2.4715 (10) 2.3087 (18) 2.350 (3)
M—N33 2.1987 (14) 2.1862 (16) 2.203 (2) 2.3404 (11) 2.2975 (17) 2.304 (4)
M—S1 2.5050 (4) 2.5232 (4) 2.5254 (8) 2.4673 (3) 2.4620 (5) 2.4741 (12)
M—S2 2.5067 (4) 2.5243 (4) 2.5297 (8) 2.3665 (3) 2.3698 (5) 2.3773 (11)
C1—C2 1.327 (3) 1.314 (3) 1.314 (4) 1.2965 (18) 1.309 (3) 1.305 (6)
             
N13—M—N33 169.58 (5) 167.56 (6) 168.04 (8) 92.41 (3) 83.29 (6) 86.47 (13)
S1—M—S2 78.869 (14) 78.972 (15) 79.54 (3) 162.979 (11) 175.564 (18) 169.56 (4)
C1—M—N13 92.88 (6) 97.14 (7) 96.97 (9) 173.53 (4) 165.94 (7) 169.64 (15)
C2—M—N13 93.66 (7) 94.92 (6) 94.67 (9) 146.80 (4) 150.09 (7) 148.68 (15)
C3—M—N33 94.24 (6) 94.52 (7) 94.51 (9) 168.19 (4) 159.92 (8) 164.04 (15)
C1—M—S1 164.79 (6) 164.06 (5) 163.76 (8) 97.54 (3) 85.61 (5) 91.62 (13)
C2—M—S1 153.79 (6) 156.79 (5) 156.87 (8) 96.29 (3) 87.98 (5) 89.33 (12)
C3—M—S2 163.06 (5) 166.23 (5) 167.27 (9) 85.88 (4) 87.58 (6) 87.74 (14)
References: (a) Peschel et al. (2015a[Peschel, L. M., Belaj, F. & Mösch-Zanetti, N. C. (2015a). Angew. Chem. Int. Ed. 54, 13018-13021.]); (b) Peschel et al. (2019[Peschel, L. M., Vidovič, C., Belaj, F., Neshchadin, D. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 3893-3902.]); (c) this work.

3.2. NMR spectroscopy

1H NMR spectra recorded in CD2Cl2 and CD3CN show a 1:2 ratio of the two isomers of Mo(CO)(C2Me2)(S-Phoz)2, while a 1:1 ratio is observed in CDCl3. The NMR data of isomer 2, which presumably adopts the N,N-trans configuration, are almost identical with those of the W analogue (Peschel et al., 2019[Peschel, L. M., Vidovič, C., Belaj, F., Neshchadin, D. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 3893-3902.]), of which only the N,N-trans isomer was crystallized. In CD2Cl2 solutions, the two isomers of W(CO)(C2Me2)(S-Phoz)2 exhibit a 95:5 ratio, with a clear preference for the N,N-trans configuration of isomer 2.

3.3. IR spectroscopy

The IR spectrum of an average sample of Mo(CO)(C2Me2)(S-Phoz)2 shows a very strong band at 1898 cm−1 which is attributed to the C≡O bond. Due to weaker π-backbonding of the Mo centre, this bond is stronger by 18 cm−1 com­pared to that in the respective W com­pound (Peschel et al., 2019[Peschel, L. M., Vidovič, C., Belaj, F., Neshchadin, D. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 3893-3902.]), which is in accordance with previous observations on Mo and W carbonyl com­plexes (Ehweiner et al., 2021a[Ehweiner, M. A., Belaj, F., Kirchner, K. & Mösch-Zanetti, N. C. (2021a). Organometallics, 40, 2576-2583.],b[Ehweiner, M. A., Ćorović, M. Z., Belaj, F. & Mösch-Zanetti, N. C. (2021b). Helv. Chim. Acta, 104, e2100137.],c[Ehweiner, M. A., Peschel, L. M., Stix, N., Ćorović, M. Z., Belaj, F. & Mösch-Zanetti, N. C. (2021c). Inorg. Chem. 60, 8414-8418.]). Despite the existence of two isomers, only one C≡O bond is visible.

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELX97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: modified ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

N,N-cis-(η2-But-2-yne)carbonylbis[2-(4,4-dimethyl-\ 4,5-dihydro-1,3-oxazol-2-yl)benzenethiolato]molybdenum(II) (1) top
Crystal data top
[Mo(C11H12NOS)2(C4H6)(CO)]F(000) = 1216
Mr = 590.59Dx = 1.520 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6159 (5) ÅCell parameters from 9935 reflections
b = 8.9300 (4) Åθ = 2.4–35.8°
c = 27.3801 (12) ŵ = 0.70 mm1
β = 96.189 (2)°T = 100 K
V = 2580.5 (2) Å3Plate, green
Z = 40.18 × 0.18 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
11363 independent reflections
Radiation source: Incoatec microfocus sealed tube9549 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.029
φ and ω scansθmax = 35.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1717
Tmin = 0.884, Tmax = 1.000k = 1411
30042 measured reflectionsl = 4442
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071Only H-atom displacement parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.5019P]
where P = (Fo2 + 2Fc2)/3
11363 reflections(Δ/σ)max = 0.008
332 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints.

The H atoms of the CH2 groups were put at positions with approx. tetrahedral angles and C-H distances of 0.99 Å, and common isotropic displacement parameters were refined for the H atoms of the same group (AFIX 23 of SHELXL).

The H atoms of the phenyl rings were put at the external bisectors of the C-C-C angles at C-H distances of 0.95 Å and common isotropic displacement parameters were refined for the H atoms of the same ring (AFIX 43 of SHELXL).

The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotations around the C-C bonds, and C-H distances of 0.98 Å (AFIX 137 of SHELXL).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.89263 (2)0.62618 (2)0.60957 (2)0.00748 (3)
C100.79768 (14)0.34484 (15)0.53122 (5)0.0169 (2)
H1010.84050.32310.50200.032 (3)*
H1020.71710.39540.52130.032 (3)*
H1030.78160.25100.54800.032 (3)*
C10.87961 (12)0.44360 (14)0.56508 (4)0.0118 (2)
C20.99846 (12)0.46043 (14)0.58069 (4)0.0116 (2)
C201.12488 (14)0.39396 (16)0.57708 (6)0.0196 (3)
H2011.11500.28960.56630.065 (5)*
H2021.17480.39750.60930.065 (5)*
H2031.16850.45070.55330.065 (5)*
C31.07172 (12)0.65704 (14)0.62980 (4)0.0117 (2)
O31.17882 (9)0.67813 (12)0.63972 (4)0.01788 (19)
O110.93259 (10)0.95082 (11)0.74208 (3)0.01669 (18)
C120.94202 (12)0.82783 (14)0.71368 (4)0.0116 (2)
N130.88974 (10)0.83507 (11)0.66865 (3)0.00967 (17)
C140.84945 (12)0.99714 (13)0.66127 (4)0.01058 (19)
C150.84074 (13)1.04622 (14)0.71414 (4)0.0151 (2)
H1510.86321.15330.71880.015 (3)*
H1520.75451.02960.72370.015 (3)*
C160.72358 (12)1.01441 (14)0.63024 (5)0.0140 (2)
H1610.73210.98240.59650.024 (3)*
H1620.69731.11960.63020.024 (3)*
H1630.65970.95250.64390.024 (3)*
C170.95572 (13)1.08459 (15)0.64041 (5)0.0162 (2)
H1710.96621.04760.60740.023 (3)*
H1721.03501.07090.66180.023 (3)*
H1730.93391.19120.63870.023 (3)*
S10.86588 (3)0.49578 (3)0.68722 (2)0.01150 (6)
C210.99285 (12)0.55484 (14)0.72917 (4)0.0120 (2)
C221.01709 (12)0.70709 (14)0.73914 (4)0.0122 (2)
C231.11465 (13)0.74917 (17)0.77533 (4)0.0175 (2)
H231.13030.85230.78210.028 (3)*
C241.18814 (15)0.64158 (18)0.80126 (5)0.0225 (3)
H241.25440.67070.82550.028 (3)*
C251.16465 (15)0.49087 (18)0.79168 (5)0.0225 (3)
H251.21490.41690.80950.028 (3)*
C261.06824 (14)0.44795 (16)0.75624 (5)0.0178 (2)
H261.05290.34450.75020.028 (3)*
O310.48698 (9)0.68836 (11)0.54235 (3)0.01576 (18)
C320.61444 (11)0.70736 (13)0.54906 (4)0.01009 (19)
N330.67394 (10)0.64237 (11)0.58729 (4)0.00932 (17)
C340.57211 (11)0.57021 (14)0.61487 (4)0.0110 (2)
C350.45570 (12)0.57671 (16)0.57686 (5)0.0154 (2)
H3510.44020.47850.56050.022 (3)*
H3520.37940.60600.59240.022 (3)*
C360.55298 (13)0.66662 (15)0.65962 (5)0.0155 (2)
H3610.49190.61790.67880.019 (3)*
H3620.52070.76520.64870.019 (3)*
H3630.63410.67850.68000.019 (3)*
C370.59886 (13)0.40709 (14)0.62857 (5)0.0148 (2)
H3710.63220.35550.60110.029 (3)*
H3720.52020.35850.63580.029 (3)*
H3730.66140.40230.65760.029 (3)*
S20.91487 (3)0.81414 (3)0.55017 (2)0.01031 (5)
C410.78108 (11)0.85979 (13)0.51004 (4)0.00942 (19)
C420.65755 (12)0.80444 (13)0.51052 (4)0.01027 (19)
C430.56414 (13)0.84871 (15)0.47232 (5)0.0155 (2)
H430.48020.81170.47220.020 (2)*
C440.59196 (14)0.94420 (16)0.43528 (5)0.0184 (2)
H440.52840.96940.40950.020 (2)*
C450.71325 (13)1.00322 (15)0.43593 (5)0.0159 (2)
H450.73241.07150.41120.020 (2)*
C460.80578 (13)0.96192 (14)0.47282 (4)0.0128 (2)
H460.88831.00330.47320.020 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00739 (4)0.00758 (4)0.00757 (4)0.00003 (3)0.00130 (3)0.00047 (3)
C100.0187 (6)0.0167 (6)0.0149 (5)0.0037 (5)0.0000 (4)0.0055 (4)
C10.0156 (6)0.0095 (5)0.0105 (4)0.0010 (4)0.0020 (4)0.0013 (4)
C20.0134 (5)0.0106 (5)0.0113 (4)0.0013 (4)0.0036 (4)0.0019 (4)
C200.0141 (6)0.0183 (6)0.0274 (7)0.0035 (5)0.0063 (5)0.0073 (5)
C30.0134 (5)0.0110 (5)0.0108 (4)0.0002 (4)0.0021 (4)0.0020 (4)
O30.0106 (4)0.0223 (5)0.0205 (4)0.0016 (4)0.0008 (3)0.0043 (4)
O110.0243 (5)0.0138 (4)0.0110 (4)0.0063 (4)0.0023 (3)0.0052 (3)
C120.0127 (5)0.0112 (5)0.0109 (4)0.0016 (4)0.0015 (4)0.0021 (4)
N130.0106 (4)0.0086 (4)0.0098 (4)0.0009 (3)0.0011 (3)0.0003 (3)
C140.0123 (5)0.0082 (4)0.0112 (4)0.0011 (4)0.0011 (4)0.0010 (4)
C150.0205 (6)0.0119 (5)0.0128 (5)0.0063 (5)0.0011 (4)0.0017 (4)
C160.0137 (6)0.0118 (5)0.0163 (5)0.0027 (4)0.0003 (4)0.0010 (4)
C170.0171 (6)0.0118 (5)0.0201 (6)0.0038 (5)0.0042 (5)0.0016 (4)
S10.01297 (13)0.01097 (12)0.01060 (11)0.00069 (10)0.00153 (9)0.00193 (9)
C210.0122 (5)0.0142 (5)0.0096 (4)0.0022 (4)0.0019 (4)0.0015 (4)
C220.0125 (5)0.0143 (5)0.0096 (4)0.0031 (4)0.0007 (4)0.0000 (4)
C230.0178 (6)0.0204 (6)0.0134 (5)0.0033 (5)0.0031 (4)0.0033 (4)
C240.0200 (7)0.0277 (7)0.0179 (6)0.0063 (6)0.0065 (5)0.0030 (5)
C250.0229 (7)0.0256 (7)0.0177 (6)0.0096 (6)0.0042 (5)0.0049 (5)
C260.0204 (6)0.0161 (6)0.0165 (5)0.0041 (5)0.0003 (5)0.0038 (4)
O310.0087 (4)0.0192 (5)0.0189 (4)0.0033 (3)0.0008 (3)0.0071 (3)
C320.0088 (5)0.0101 (5)0.0114 (4)0.0017 (4)0.0012 (4)0.0012 (4)
N330.0087 (4)0.0090 (4)0.0104 (4)0.0010 (3)0.0020 (3)0.0002 (3)
C340.0090 (5)0.0118 (5)0.0127 (5)0.0022 (4)0.0028 (4)0.0011 (4)
C350.0103 (5)0.0175 (6)0.0182 (5)0.0040 (5)0.0006 (4)0.0063 (4)
C360.0167 (6)0.0152 (5)0.0156 (5)0.0013 (5)0.0070 (4)0.0005 (4)
C370.0146 (6)0.0099 (5)0.0201 (5)0.0026 (4)0.0022 (4)0.0028 (4)
S20.00911 (12)0.01204 (12)0.00983 (11)0.00215 (10)0.00123 (9)0.00168 (9)
C410.0105 (5)0.0092 (5)0.0089 (4)0.0001 (4)0.0023 (4)0.0009 (3)
C420.0112 (5)0.0099 (5)0.0096 (4)0.0012 (4)0.0006 (4)0.0003 (4)
C430.0142 (6)0.0170 (6)0.0145 (5)0.0014 (4)0.0017 (4)0.0030 (4)
C440.0177 (6)0.0207 (6)0.0157 (5)0.0007 (5)0.0030 (4)0.0066 (5)
C450.0191 (6)0.0155 (6)0.0131 (5)0.0001 (5)0.0020 (4)0.0047 (4)
C460.0147 (6)0.0126 (5)0.0116 (5)0.0009 (4)0.0030 (4)0.0019 (4)
Geometric parameters (Å, º) top
Mo1—C12.0310 (12)C22—C231.4052 (18)
Mo1—C22.0664 (12)C23—C241.384 (2)
Mo1—C31.9417 (13)C23—H230.95
Mo1—N132.4715 (10)C24—C251.389 (2)
Mo1—N332.3404 (11)C24—H240.95
Mo1—S12.4673 (3)C25—C261.386 (2)
Mo1—S22.3665 (3)C25—H250.95
C1—C21.2965 (18)C26—H260.95
C1—C101.4899 (17)O31—C321.3564 (15)
C10—H1010.98O31—C351.4370 (15)
C10—H1020.98C32—N331.2996 (15)
C10—H1030.98C32—C421.4759 (16)
C2—C201.4804 (19)N33—C341.5264 (15)
C20—H2010.98C34—C371.5233 (18)
C20—H2020.98C34—C351.5285 (18)
C20—H2030.98C34—C361.5288 (17)
C3—O31.1555 (16)C35—H3510.99
O11—C121.3558 (15)C35—H3520.99
O11—C151.4494 (16)C36—H3610.98
C12—N131.2978 (15)C36—H3620.98
C12—C221.4710 (17)C36—H3630.98
N13—C141.5166 (15)C37—H3710.98
C14—C161.5120 (18)C37—H3720.98
C14—C151.5247 (16)C37—H3730.98
C14—C171.5322 (18)S2—C411.7477 (12)
C15—H1510.99C41—C421.4029 (17)
C15—H1520.99C41—C461.4131 (16)
C16—H1610.98C42—C431.4177 (17)
C16—H1620.98C43—C441.3811 (18)
C16—H1630.98C43—H430.95
C17—H1710.98C44—C451.390 (2)
C17—H1720.98C44—H440.95
C17—H1730.98C45—C461.3810 (18)
S1—C211.7551 (13)C45—H450.95
C21—C261.4046 (18)C46—H460.95
C21—C221.4051 (18)
N13—Mo1—N3392.41 (3)H172—C17—H173109.5
S1—Mo1—S2162.979 (11)C21—S1—Mo1105.69 (4)
C1—Mo1—N13173.53 (4)C26—C21—C22118.23 (12)
C2—Mo1—N13146.80 (4)C26—C21—S1119.66 (10)
C3—Mo1—N33168.19 (4)C22—C21—S1121.97 (9)
C3—Mo1—C1106.63 (5)C21—C22—C23120.09 (11)
C3—Mo1—C269.81 (5)C21—C22—C12122.60 (11)
C1—Mo1—C236.88 (5)C23—C22—C12117.30 (12)
C1—Mo1—N3383.79 (4)C24—C23—C22120.52 (13)
C2—Mo1—N33120.63 (4)C24—C23—H23119.7
C3—Mo1—S285.88 (4)C22—C23—H23119.7
C1—Mo1—S299.36 (3)C23—C24—C25119.73 (13)
C2—Mo1—S298.42 (3)C23—C24—H24120.1
N33—Mo1—S286.95 (3)C25—C24—H24120.1
C3—Mo1—S191.22 (4)C26—C25—C24120.28 (13)
C1—Mo1—S197.54 (3)C26—C25—H25119.9
C2—Mo1—S196.29 (3)C24—C25—H25119.9
N33—Mo1—S192.90 (2)C25—C26—C21121.14 (13)
C3—Mo1—N1377.70 (4)C25—C26—H26119.4
S2—Mo1—N1385.62 (2)C21—C26—H26119.4
S1—Mo1—N1377.38 (2)C32—O31—C35107.19 (9)
C1—C10—H101109.5N33—C32—O31116.38 (10)
C1—C10—H102109.5N33—C32—C42132.61 (11)
H101—C10—H102109.5O31—C32—C42110.99 (10)
C1—C10—H103109.5C32—N33—C34106.17 (10)
H101—C10—H103109.5C32—N33—Mo1128.30 (8)
H102—C10—H103109.5C34—N33—Mo1125.49 (7)
C2—C1—C10139.10 (12)C37—C34—N33113.73 (10)
C2—C1—Mo173.04 (7)C37—C34—C35108.63 (10)
C10—C1—Mo1147.76 (10)N33—C34—C35102.17 (9)
C1—C2—C20142.05 (12)C37—C34—C36112.24 (10)
C1—C2—Mo170.08 (7)N33—C34—C36108.73 (10)
C20—C2—Mo1147.87 (10)C35—C34—C36110.91 (11)
C2—C20—H201109.5O31—C35—C34104.29 (10)
C2—C20—H202109.5O31—C35—H351110.9
H201—C20—H202109.5C34—C35—H351110.9
C2—C20—H203109.5O31—C35—H352110.9
H201—C20—H203109.5C34—C35—H352110.9
H202—C20—H203109.5H351—C35—H352108.9
Mo1—C3—O3176.84 (11)C34—C36—H361109.5
C12—O11—C15105.09 (9)C34—C36—H362109.5
N13—C12—O11117.01 (11)H361—C36—H362109.5
N13—C12—C22129.87 (11)C34—C36—H363109.5
O11—C12—C22113.06 (10)H361—C36—H363109.5
C12—N13—C14105.05 (9)H362—C36—H363109.5
C12—N13—Mo1123.36 (8)C34—C37—H371109.5
C14—N13—Mo1131.02 (7)C34—C37—H372109.5
C16—C14—N13113.06 (10)H371—C37—H372109.5
C16—C14—C15111.33 (10)C34—C37—H373109.5
N13—C14—C15101.12 (9)H371—C37—H373109.5
C16—C14—C17112.34 (10)H372—C37—H373109.5
N13—C14—C17109.12 (10)C41—S2—Mo1117.58 (4)
C15—C14—C17109.25 (10)C42—C41—C46118.72 (11)
O11—C15—C14103.06 (9)C42—C41—S2127.52 (9)
O11—C15—H151111.2C46—C41—S2113.74 (9)
C14—C15—H151111.2C41—C42—C43118.36 (11)
O11—C15—H152111.2C41—C42—C32125.16 (11)
C14—C15—H152111.2C43—C42—C32116.43 (11)
H151—C15—H152109.1C44—C43—C42121.73 (12)
C14—C16—H161109.5C44—C43—H43119.1
C14—C16—H162109.5C42—C43—H43119.1
H161—C16—H162109.5C43—C44—C45119.73 (12)
C14—C16—H163109.5C43—C44—H44120.1
H161—C16—H163109.5C45—C44—H44120.1
H162—C16—H163109.5C46—C45—C44119.55 (12)
C14—C17—H171109.5C46—C45—H45120.2
C14—C17—H172109.5C44—C45—H45120.2
H171—C17—H172109.5C45—C46—C41121.81 (12)
C14—C17—H173109.5C45—C46—H46119.1
H171—C17—H173109.5C41—C46—H46119.1
C1—C2—Mo1—C3176.82 (9)C22—C21—C26—C250.4 (2)
C10—C1—C2—C202.9 (3)S1—C21—C26—C25176.27 (11)
Mo1—C1—C2—C20179.67 (19)C35—O31—C32—N339.48 (15)
Mo1—C2—C1—C10176.81 (17)C35—O31—C32—C42171.98 (10)
C15—O11—C12—N1311.37 (15)O31—C32—N33—C343.53 (14)
C15—O11—C12—C22171.33 (11)C42—C32—N33—C34174.63 (12)
O11—C12—N13—C148.08 (15)O31—C32—N33—Mo1174.03 (8)
C22—C12—N13—C14168.70 (13)C42—C32—N33—Mo17.82 (19)
O11—C12—N13—Mo1179.70 (8)C32—N33—C34—C37130.83 (11)
C22—C12—N13—Mo13.52 (19)Mo1—N33—C34—C3746.81 (13)
C12—N13—C14—C16141.83 (11)C32—N33—C34—C3513.97 (12)
Mo1—N13—C14—C1646.79 (14)Mo1—N33—C34—C35163.67 (8)
C12—N13—C14—C1522.71 (13)C32—N33—C34—C36103.33 (11)
Mo1—N13—C14—C15165.91 (8)Mo1—N33—C34—C3679.03 (11)
C12—N13—C14—C1792.37 (12)C32—O31—C35—C3417.70 (13)
Mo1—N13—C14—C1779.01 (12)C37—C34—C35—O31139.33 (11)
C12—O11—C15—C1425.04 (13)N33—C34—C35—O3118.86 (12)
C16—C14—C15—O11148.99 (11)C36—C34—C35—O3196.87 (12)
N13—C14—C15—O1128.64 (12)Mo1—S2—C41—C424.37 (12)
C17—C14—C15—O1186.35 (12)Mo1—S2—C41—C46174.05 (7)
Mo1—S1—C21—C26129.28 (10)C46—C41—C42—C432.65 (17)
Mo1—S1—C21—C2255.02 (10)S2—C41—C42—C43175.70 (9)
C26—C21—C22—C230.06 (18)C46—C41—C42—C32174.71 (11)
S1—C21—C22—C23175.83 (10)S2—C41—C42—C326.94 (18)
C26—C21—C22—C12178.65 (12)N33—C32—C42—C415.9 (2)
S1—C21—C22—C122.89 (16)O31—C32—C42—C41172.29 (11)
N13—C12—C22—C2134.6 (2)N33—C32—C42—C43176.66 (13)
O11—C12—C22—C21148.52 (12)O31—C32—C42—C435.11 (15)
N13—C12—C22—C23146.65 (14)C41—C42—C43—C440.19 (19)
O11—C12—C22—C2330.23 (16)C32—C42—C43—C44177.40 (12)
C21—C22—C23—C240.4 (2)C42—C43—C44—C452.2 (2)
C12—C22—C23—C24179.16 (13)C43—C44—C45—C462.0 (2)
C22—C23—C24—C250.5 (2)C44—C45—C46—C410.5 (2)
C23—C24—C25—C260.1 (2)C42—C41—C46—C452.86 (18)
C24—C25—C26—C210.3 (2)S2—C41—C46—C45175.71 (10)
N,N-trans-(η2-But-2-yne)carbonylbis[2-(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)benzenethiolato]molybdenum(II) (2) top
Crystal data top
[Mo(C11H12NOS)2(C4H6)(CO)]F(000) = 1216
Mr = 590.59Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1512 (4) ÅCell parameters from 3132 reflections
b = 21.3515 (12) Åθ = 2.4–26.8°
c = 13.1781 (7) ŵ = 0.71 mm1
β = 98.483 (3)°T = 100 K
V = 2546.7 (2) Å3Needle, yellow
Z = 40.23 × 0.07 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
7415 independent reflections
Radiation source: Incoatec microfocus sealed tube5339 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.068
φ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 912
Tmin = 0.776, Tmax = 1.000k = 2330
22009 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087Only H-atom displacement parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0231P)2 + 1.0578P]
where P = (Fo2 + 2Fc2)/3
7415 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints.

The H atoms of the CH2 groups were put at positions with approx. tetrahedral angles and C-H distances of 0.99 Å, and common isotropic displacement parameters were refined for the H atoms of the same group (AFIX 23 of SHELXL).

The H atoms of the phenyl rings were put at the external bisectors of the C-C-C angles at C-H distances of 0.95 Å and common isotropic displacement parameters were refined for the H atoms of the same ring (AFIX 43 of SHELXL).

The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotations around the C-C bonds, and C-H distances of 0.98 Å (AFIX 137 of SHELXL).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.72006 (2)0.85241 (2)0.32592 (2)0.00779 (6)
C100.6039 (3)0.75606 (14)0.5024 (2)0.0153 (6)
H1010.63620.76190.57600.029 (6)*
H1020.65440.71970.47840.029 (6)*
H1030.49690.74910.48990.029 (6)*
C10.6403 (3)0.81274 (14)0.4461 (2)0.0101 (6)
C20.6263 (3)0.87368 (14)0.4544 (2)0.0111 (6)
C200.5702 (3)0.92014 (14)0.5225 (2)0.0153 (6)
H2010.46850.93150.49450.026 (5)*
H2020.63260.95760.52700.026 (5)*
H2030.57240.90210.59100.026 (5)*
C30.6944 (3)0.94287 (14)0.3361 (2)0.0111 (6)
O30.6808 (2)0.99615 (10)0.34780 (16)0.0158 (4)
O111.16158 (19)0.91979 (10)0.45152 (16)0.0163 (5)
C121.0293 (3)0.91404 (14)0.3892 (2)0.0129 (6)
N130.9525 (2)0.86506 (11)0.40345 (18)0.0111 (5)
C141.0531 (3)0.82224 (14)0.4740 (2)0.0134 (6)
C151.1612 (3)0.87050 (15)0.5275 (2)0.0159 (6)
H1511.12700.88660.59040.018 (6)*
H1521.26100.85220.54590.018 (6)*
C161.1309 (3)0.77888 (15)0.4072 (2)0.0174 (7)
H1611.20060.75200.45100.019 (5)*
H1621.18470.80400.36250.019 (5)*
H1631.05750.75280.36500.019 (5)*
C170.9738 (3)0.78611 (16)0.5474 (2)0.0181 (7)
H1710.91630.81510.58360.023 (5)*
H1721.04610.76420.59730.023 (5)*
H1730.90730.75550.50920.023 (5)*
S10.85728 (7)0.87267 (4)0.17639 (6)0.01253 (15)
C210.9358 (3)0.94634 (14)0.2090 (2)0.0119 (6)
C221.0035 (3)0.96176 (14)0.3094 (2)0.0123 (6)
C231.0611 (3)1.02195 (15)0.3305 (3)0.0174 (7)
H231.10631.03190.39810.022 (4)*
C241.0534 (3)1.06682 (15)0.2551 (3)0.0212 (7)
H241.08891.10800.27090.022 (4)*
C250.9933 (3)1.05120 (15)0.1556 (2)0.0187 (7)
H250.99141.08140.10250.022 (4)*
C260.9359 (3)0.99211 (15)0.1327 (2)0.0162 (6)
H260.89570.98230.06390.022 (4)*
O310.30893 (19)0.78898 (10)0.14341 (16)0.0149 (4)
C320.4389 (3)0.78648 (14)0.2073 (2)0.0115 (6)
N330.5126 (2)0.83815 (11)0.22034 (17)0.0091 (5)
C340.4180 (3)0.88879 (14)0.1625 (2)0.0115 (6)
C350.3001 (3)0.84988 (15)0.0959 (2)0.0187 (6)
H3510.20080.86840.09540.020 (6)*
H3520.32120.84720.02450.020 (6)*
C360.5039 (3)0.92864 (14)0.0960 (2)0.0145 (6)
H3610.57880.95310.14000.017 (5)*
H3620.43600.95710.05410.017 (5)*
H3630.55230.90140.05120.017 (5)*
C370.3473 (3)0.92796 (14)0.2388 (2)0.0152 (6)
H3710.29120.90060.27860.025 (5)*
H3720.28060.95890.20150.025 (5)*
H3730.42460.94960.28520.025 (5)*
S20.77527 (7)0.74136 (3)0.27649 (6)0.01212 (15)
C410.6123 (3)0.69967 (14)0.2814 (2)0.0113 (6)
C420.4687 (3)0.72389 (13)0.2520 (2)0.0105 (6)
C430.3449 (3)0.68583 (14)0.2601 (2)0.0122 (6)
H430.24860.70260.24090.020 (4)*
C440.3595 (3)0.62558 (15)0.2947 (2)0.0171 (6)
H440.27490.60100.30100.020 (4)*
C450.5018 (3)0.60073 (14)0.3209 (2)0.0175 (6)
H450.51400.55840.34300.020 (4)*
C460.6238 (3)0.63729 (14)0.3149 (2)0.0157 (6)
H460.71930.61970.33410.020 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00742 (9)0.00788 (11)0.00833 (12)0.00024 (9)0.00205 (7)0.00025 (10)
C100.0191 (13)0.0148 (15)0.0124 (16)0.0046 (11)0.0039 (11)0.0026 (12)
C10.0082 (11)0.0157 (15)0.0061 (14)0.0007 (10)0.0003 (9)0.0018 (11)
C20.0069 (11)0.0175 (15)0.0085 (14)0.0012 (10)0.0001 (10)0.0001 (11)
C200.0174 (13)0.0158 (16)0.0143 (16)0.0014 (11)0.0076 (11)0.0044 (12)
C30.0086 (11)0.0140 (14)0.0106 (15)0.0005 (10)0.0008 (10)0.0014 (12)
O30.0153 (9)0.0126 (11)0.0199 (12)0.0009 (8)0.0038 (8)0.0017 (9)
O110.0099 (8)0.0235 (12)0.0144 (12)0.0047 (8)0.0015 (7)0.0004 (9)
C120.0098 (11)0.0157 (15)0.0137 (16)0.0025 (10)0.0033 (10)0.0024 (12)
N130.0087 (9)0.0133 (13)0.0111 (13)0.0033 (8)0.0010 (8)0.0011 (10)
C140.0090 (11)0.0184 (16)0.0119 (15)0.0034 (10)0.0010 (10)0.0043 (12)
C150.0123 (12)0.0229 (17)0.0119 (16)0.0001 (11)0.0002 (10)0.0026 (13)
C160.0117 (12)0.0212 (17)0.0192 (17)0.0048 (11)0.0016 (11)0.0052 (14)
C170.0132 (12)0.0270 (18)0.0142 (17)0.0022 (12)0.0023 (11)0.0053 (14)
S10.0135 (3)0.0140 (4)0.0107 (4)0.0017 (3)0.0041 (3)0.0009 (3)
C210.0086 (11)0.0130 (14)0.0154 (16)0.0009 (10)0.0063 (10)0.0001 (12)
C220.0083 (11)0.0137 (15)0.0159 (16)0.0006 (10)0.0054 (10)0.0011 (12)
C230.0112 (12)0.0189 (17)0.0234 (18)0.0029 (11)0.0063 (11)0.0030 (13)
C240.0203 (14)0.0123 (16)0.034 (2)0.0031 (12)0.0143 (13)0.0012 (14)
C250.0180 (13)0.0178 (17)0.0227 (18)0.0003 (12)0.0107 (12)0.0065 (14)
C260.0153 (13)0.0214 (17)0.0138 (16)0.0002 (11)0.0081 (11)0.0026 (13)
O310.0130 (9)0.0117 (11)0.0176 (12)0.0015 (7)0.0059 (8)0.0037 (9)
C320.0099 (11)0.0162 (15)0.0084 (15)0.0028 (10)0.0019 (10)0.0011 (12)
N330.0090 (9)0.0074 (12)0.0105 (13)0.0005 (8)0.0002 (8)0.0011 (9)
C340.0123 (11)0.0102 (14)0.0107 (15)0.0035 (10)0.0023 (10)0.0020 (11)
C350.0189 (13)0.0135 (15)0.0211 (18)0.0005 (12)0.0055 (12)0.0023 (14)
C360.0173 (13)0.0140 (15)0.0113 (16)0.0021 (11)0.0008 (11)0.0007 (12)
C370.0119 (12)0.0166 (16)0.0169 (17)0.0021 (11)0.0013 (11)0.0001 (13)
S20.0110 (3)0.0106 (3)0.0153 (4)0.0014 (2)0.0037 (2)0.0013 (3)
C410.0152 (12)0.0127 (15)0.0067 (14)0.0007 (10)0.0036 (10)0.0012 (11)
C420.0128 (12)0.0085 (14)0.0105 (15)0.0012 (10)0.0022 (10)0.0037 (11)
C430.0141 (12)0.0129 (15)0.0096 (15)0.0021 (10)0.0015 (10)0.0022 (11)
C440.0220 (14)0.0150 (15)0.0151 (17)0.0083 (12)0.0055 (12)0.0017 (13)
C450.0319 (16)0.0080 (14)0.0131 (16)0.0002 (12)0.0049 (12)0.0004 (12)
C460.0189 (13)0.0148 (16)0.0137 (16)0.0033 (11)0.0033 (11)0.0003 (12)
Geometric parameters (Å, º) top
Mo1—C12.024 (3)C22—C231.401 (4)
Mo1—C22.059 (3)C23—C241.375 (4)
Mo1—C31.953 (3)C23—H230.95
Mo1—N132.236 (2)C24—C251.386 (4)
Mo1—N332.203 (2)C24—H240.95
Mo1—S12.5254 (8)C25—C261.383 (4)
Mo1—S22.5297 (8)C25—H250.95
C1—C21.314 (4)C26—H260.95
C1—C101.483 (4)O31—C321.353 (3)
C10—H1010.98O31—C351.440 (4)
C10—H1020.98C32—N331.291 (3)
C10—H1030.98C32—C421.469 (4)
C2—C201.479 (4)N33—C341.518 (3)
C20—H2010.98C34—C361.521 (4)
C20—H2020.98C34—C371.523 (4)
C20—H2030.98C34—C351.531 (4)
C3—O31.157 (3)C35—H3510.99
O11—C121.364 (3)C35—H3520.99
O11—C151.453 (3)C36—H3610.98
C12—N131.289 (4)C36—H3620.98
C12—C221.459 (4)C36—H3630.98
N13—C141.515 (3)C37—H3710.98
C14—C171.505 (4)C37—H3720.98
C14—C161.525 (4)C37—H3730.98
C14—C151.527 (4)S2—C411.746 (3)
C15—H1510.99C41—C461.402 (4)
C15—H1520.99C41—C421.412 (4)
C16—H1610.98C42—C431.411 (4)
C16—H1620.98C43—C441.365 (4)
C16—H1630.98C43—H430.95
C17—H1710.98C44—C451.401 (4)
C17—H1720.98C44—H440.95
C17—H1730.98C45—C461.374 (4)
S1—C211.756 (3)C45—H450.95
C21—C261.403 (4)C46—H460.95
C21—C221.414 (4)
N13—Mo1—N33168.04 (8)H172—C17—H173109.5
S1—Mo1—S279.54 (3)C21—S1—Mo1101.22 (10)
C1—Mo1—S1163.76 (8)C26—C21—C22117.5 (3)
C2—Mo1—S1156.87 (8)C26—C21—S1119.5 (2)
C3—Mo1—S2167.27 (9)C22—C21—S1123.0 (2)
C3—Mo1—C1107.43 (12)C23—C22—C21120.0 (3)
C3—Mo1—C269.91 (12)C23—C22—C12118.8 (3)
C1—Mo1—C237.52 (11)C21—C22—C12120.9 (3)
C3—Mo1—N3394.51 (9)C24—C23—C22121.2 (3)
C1—Mo1—N3393.43 (9)C24—C23—H23119.4
C2—Mo1—N3397.17 (9)C22—C23—H23119.4
C3—Mo1—N1388.01 (9)C23—C24—C25119.2 (3)
C1—Mo1—N1396.97 (9)C23—C24—H24120.4
C2—Mo1—N1394.67 (9)C25—C24—H24120.4
C3—Mo1—S187.86 (8)C26—C25—C24120.7 (3)
N33—Mo1—S190.70 (6)C26—C25—H25119.6
N13—Mo1—S177.69 (6)C24—C25—H25119.6
C1—Mo1—S285.29 (9)C25—C26—C21121.3 (3)
C2—Mo1—S2122.81 (9)C25—C26—H26119.3
N33—Mo1—S283.92 (6)C21—C26—H26119.3
N13—Mo1—S291.04 (6)C32—O31—C35107.1 (2)
C1—C10—H101109.5N33—C32—O31116.3 (2)
C1—C10—H102109.5N33—C32—C42131.4 (2)
H101—C10—H102109.5O31—C32—C42112.3 (2)
C1—C10—H103109.5C32—N33—C34107.1 (2)
H101—C10—H103109.5C32—N33—Mo1125.91 (18)
H102—C10—H103109.5C34—N33—Mo1126.39 (17)
C2—C1—C10137.3 (3)N33—C34—C36112.5 (2)
C2—C1—Mo172.66 (18)N33—C34—C37109.0 (2)
C10—C1—Mo1150.0 (2)C36—C34—C37112.3 (2)
C1—C2—C20139.6 (3)N33—C34—C35101.7 (2)
C1—C2—Mo169.82 (18)C36—C34—C35110.7 (2)
C20—C2—Mo1150.5 (2)C37—C34—C35110.1 (2)
C2—C20—H201109.5O31—C35—C34104.5 (2)
C2—C20—H202109.5O31—C35—H351110.8
H201—C20—H202109.5C34—C35—H351110.8
C2—C20—H203109.5O31—C35—H352110.8
H201—C20—H203109.5C34—C35—H352110.8
H202—C20—H203109.5H351—C35—H352108.9
Mo1—C3—O3176.3 (2)C34—C36—H361109.5
C12—O11—C15104.9 (2)C34—C36—H362109.5
N13—C12—O11116.1 (3)H361—C36—H362109.5
N13—C12—C22129.6 (2)C34—C36—H363109.5
O11—C12—C22114.0 (2)H361—C36—H363109.5
C12—N13—C14106.5 (2)H362—C36—H363109.5
C12—N13—Mo1122.26 (18)C34—C37—H371109.5
C14—N13—Mo1131.18 (17)C34—C37—H372109.5
C17—C14—N13113.4 (2)H371—C37—H372109.5
C17—C14—C16111.8 (3)C34—C37—H373109.5
N13—C14—C16107.7 (2)H371—C37—H373109.5
C17—C14—C15113.0 (3)H372—C37—H373109.5
N13—C14—C1599.8 (2)C41—S2—Mo1105.32 (10)
C16—C14—C15110.5 (2)C46—C41—C42117.3 (2)
O11—C15—C14103.8 (2)C46—C41—S2118.1 (2)
O11—C15—H151111.0C42—C41—S2124.6 (2)
C14—C15—H151111.0C43—C42—C41119.6 (3)
O11—C15—H152111.0C43—C42—C32116.8 (2)
C14—C15—H152111.0C41—C42—C32123.6 (2)
H151—C15—H152109.0C44—C43—C42121.9 (3)
C14—C16—H161109.5C44—C43—H43119.1
C14—C16—H162109.5C42—C43—H43119.1
H161—C16—H162109.5C43—C44—C45118.8 (3)
C14—C16—H163109.5C43—C44—H44120.6
H161—C16—H163109.5C45—C44—H44120.6
H162—C16—H163109.5C46—C45—C44120.3 (3)
C14—C17—H171109.5C46—C45—H45119.9
C14—C17—H172109.5C44—C45—H45119.9
H171—C17—H172109.5C45—C46—C41122.3 (3)
C14—C17—H173109.5C45—C46—H46118.9
H171—C17—H173109.5C41—C46—H46118.9
C1—C2—Mo1—C3178.5 (2)C22—C21—C26—C253.2 (4)
C10—C1—C2—C201.1 (6)S1—C21—C26—C25178.4 (2)
Mo1—C1—C2—C20179.2 (4)C35—O31—C32—N337.8 (3)
Mo1—C2—C1—C10178.1 (3)C35—O31—C32—C42173.6 (2)
C15—O11—C12—N138.7 (3)O31—C32—N33—C344.4 (3)
C15—O11—C12—C22177.1 (2)C42—C32—N33—C34173.8 (3)
O11—C12—N13—C1411.2 (3)O31—C32—N33—Mo1175.82 (17)
C22—C12—N13—C14162.0 (3)C42—C32—N33—Mo12.4 (5)
O11—C12—N13—Mo1171.36 (17)C32—N33—C34—C36132.2 (3)
C22—C12—N13—Mo115.5 (4)Mo1—N33—C34—C3656.4 (3)
C12—N13—C14—C17145.1 (3)C32—N33—C34—C37102.6 (3)
Mo1—N13—C14—C1737.8 (4)Mo1—N33—C34—C3768.8 (3)
C12—N13—C14—C1690.7 (3)C32—N33—C34—C3513.7 (3)
Mo1—N13—C14—C1686.5 (3)Mo1—N33—C34—C35174.92 (18)
C12—N13—C14—C1524.7 (3)C32—O31—C35—C3416.0 (3)
Mo1—N13—C14—C15158.15 (19)N33—C34—C35—O3117.6 (3)
C12—O11—C15—C1424.1 (3)C36—C34—C35—O31137.4 (2)
C17—C14—C15—O11149.7 (2)C37—C34—C35—O3197.9 (3)
N13—C14—C15—O1129.0 (3)Mo1—S2—C41—C46144.6 (2)
C16—C14—C15—O1184.3 (3)Mo1—S2—C41—C4236.7 (3)
Mo1—S1—C21—C26138.2 (2)C46—C41—C42—C431.8 (4)
Mo1—S1—C21—C2243.6 (2)S2—C41—C42—C43179.5 (2)
C26—C21—C22—C233.1 (4)C46—C41—C42—C32174.7 (3)
S1—C21—C22—C23178.6 (2)S2—C41—C42—C324.0 (4)
C26—C21—C22—C12170.1 (2)N33—C32—C42—C43152.4 (3)
S1—C21—C22—C128.2 (4)O31—C32—C42—C4325.9 (4)
N13—C12—C22—C23153.7 (3)N33—C32—C42—C4131.0 (5)
O11—C12—C22—C2333.0 (4)O31—C32—C42—C41150.7 (3)
N13—C12—C22—C2133.0 (4)C41—C42—C43—C440.7 (4)
O11—C12—C22—C21140.3 (3)C32—C42—C43—C44176.1 (3)
C21—C22—C23—C240.1 (4)C42—C43—C44—C451.3 (5)
C12—C22—C23—C24173.2 (2)C43—C44—C45—C462.1 (5)
C22—C23—C24—C252.8 (4)C44—C45—C46—C411.0 (5)
C23—C24—C25—C262.7 (4)C42—C41—C46—C451.0 (4)
C24—C25—C26—C210.4 (4)S2—C41—C46—C45179.8 (2)
Selected geometric parameters (Å, °) for the title M(CO)(C2R2)(S-Phoz)2 complexes top
M, RW, HaW, CH3bMo, CH3cMo, CH3cW, PhbW, Phb
N,N-transN,N-transN,N-transS,S-transS,S-transS,S-trans
M—C12.0268 (17)2.0210 (17)2.024 (3)2.0310 (12)2.0510 (19)2.036 (4)
M—C22.0548 (18)2.0565 (17)2.059 (3)2.0664 (12)2.078 (2)2.057 (4)
M—C31.9623 (18)1.9535 (19)1.953 (3)1.9417 (13)1.949 (2)1.966 (4)
C3—O31.160 (2)1.164 (2)1.157 (3)1.1555 (16)1.155 (3)1.154 (5)
M—N132.2120 (14)2.2153 (16)2.236 (2)2.4715 (10)2.3087 (18)2.350 (3)
M—N332.1987 (14)2.1862 (16)2.203 (2)2.3404 (11)2.2975 (17)2.304 (4)
M—S12.5050 (4)2.5232 (4)2.5254 (8)2.4673 (3)2.4620 (5)2.4741 (12)
M—S22.5067 (4)2.5243 (4)2.5297 (8)2.3665 (3)2.3698 (5)2.3773 (11)
C1—C21.327 (3)1.314 (3)1.314 (4)1.2965 (18)1.309 (3)1.305 (6)
N13—M—N33169.58 (5)167.56 (6)168.04 (8)92.41 (3)83.29 (6)86.47 (13)
S1—M—S278.869 (14)78.972 (15)79.54 (3)162.979 (11)175.564 (18)169.56 (4)
C1—M—N1392.88 (6)97.14 (7)96.97 (9)173.53 (4)165.94 (7)169.64 (15)
C2—M—N1393.66 (7)94.92 (6)94.67 (9)146.80 (4)150.09 (7)148.68 (15)
C3—M—N3394.24 (6)94.52 (7)94.51 (9)168.19 (4)159.92 (8)164.04 (15)
C1—M—S1164.79 (6)164.06 (5)163.76 (8)97.54 (3)85.61 (5)91.62 (13)
C2—M—S1153.79 (6)156.79 (5)156.87 (8)96.29 (3)87.98 (5)89.33 (12)
C3—M—S2163.06 (5)166.23 (5)167.27 (9)85.88 (4)87.58 (6)87.74 (14)
The labels C1 and C2 of the alkyne ligand were choosen such that the torsion angle C2—C1—M—C3 is approximately 0°. The selected ligand containing atoms S1 and N13 was that in which one of these atoms is trans to the alkyne ligand. References: (a) Peschel et al. (2015a); (b) Peschel et al. (2019); (c) this work.
 

Acknowledgements

Financial support by NAWI Graz is gratefully acknowledged.

References

First citationBaker, P. K., Fraser, S. G. & Keys, E. M. (1986). J. Organomet. Chem. 309, 319–321.  CrossRef CAS Web of Science Google Scholar
First citationBottini, R. C. R., Gariani, R. A., Cavalcanti, C., de Oliveira, F., da Rocha, N. L. G., Back, D., Lang, E. S., Hitchcock, P. B., Evans, D. J., Nunes, G. G., Simonelli, F., de Sá, E. L. & Soares, J. F. (2010). Eur. J. Inorg. Chem. 2010, 2476–2487.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEhweiner, M. A., Belaj, F., Kirchner, K. & Mösch-Zanetti, N. C. (2021a). Organometallics, 40, 2576–2583.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEhweiner, M. A., Ćorović, M. Z., Belaj, F. & Mösch–Zanetti, N. C. (2021b). Helv. Chim. Acta, 104, e2100137.  Web of Science CSD CrossRef Google Scholar
First citationEhweiner, M. A., Peschel, L. M., Stix, N., Ćorović, M. Z., Belaj, F. & Mösch-Zanetti, N. C. (2021c). Inorg. Chem. 60, 8414–8418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHolzer, C., Dupé, A., Peschel, L. M., Belaj, F. & Mösch–Zanetti, N. C. (2018). Eur. J. Inorg. Chem. 2018, 568–575.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMugesh, G., Singh, H. B. & Butcher, R. J. (1999). Eur. J. Inorg. Chem. 1999, 1229–1236.  CrossRef Google Scholar
First citationPeschel, L. M., Belaj, F. & Mösch–Zanetti, N. C. (2015a). Angew. Chem. Int. Ed. 54, 13018–13021.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeschel, L. M., Holzer, C., Mihajlović–Lalić, L., Belaj, F. & Mösch–Zanetti, N. C. (2015b). Eur. J. Inorg. Chem. 2015, 1569–1578.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeschel, L. M., Schachner, J. A., Sala, C. H., Belaj, F. & Mösch-Zanetti, N. C. (2013). Z. Anorg. Allg. Chem. 639, 1559–1567.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeschel, L. M., Vidovič, C., Belaj, F., Neshchadin, D. & Mösch–Zanetti, N. C. (2019). Chem. Eur. J. 25, 3893–3902.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRosner, B. M. & Schink, B. (1995). J. Bacteriol. 177, 5767–5772.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSchink, B. (1985). Arch. Microbiol. 142, 295–301.  CrossRef CAS Web of Science Google Scholar
First citationSeelmann, C. S., Willistein, M., Heider, J. & Boll, M. (2020). Inorganics, 8, 44.  Web of Science CrossRef Google Scholar
First citationSeiffert, G. B., Ullmann, G. M., Messerschmidt, A., Schink, B., Kroneck, P. M. H. & Einsle, O. (2007). Proc. Natl Acad. Sci. USA, 104, 3073–3077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVidovič, C., Peschel, L. M., Buchsteiner, M., Belaj, F. & Mösch-Zanetti, N. C. (2019). Chem. Eur. J. 25, 14267–14272.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds