research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A mixed-valence [CoII4CoIII2] cluster with defect disk-shaped topology

crossmark logo

aSchool of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, Yan'an University, Yan'an 716000, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: yanghua_08@163.com

Edited by W. Lewis, University of Sydney, Australia (Received 14 April 2022; accepted 2 June 2022; online 26 August 2022)

The employment of the new Schiff base ligand 2-[(4-chloro-2-hy­droxy­benzyl­idene­amino)­meth­yl]phenol (H2L) bearing O2N donors for the preparation of a novel Co6 cluster is reported. The hexa­nuclear cobalt com­plex, namely, di-μ2-acetato­tetra­kis­{μ2-2-[(4-chloro-2-oxido­benzyl­idene­amino)­meth­yl]phenolato}tetra-μ3-methano­lato-tetra­cobalt(II)dicobalt(III), [CoII4CoIII2(C14H10ClNO2)4(CH3COO)2(CH3O)4], was obtained using Co(CH3COO)2·4H2O and H2L as starting materials in MeOH under solvothermal conditions. The six metal ions are linked together by the μ3-O atoms of four deprotonated MeOH mol­ecules, two CH3COO units and six phenolate O atoms of four L2− ligands to form a defect disk-shaped topology. DC magnetic susceptibility investigations revealed the existence of anti­ferromagnetic inter­actions in the Co6 cluster.

1. Introduction

Polynuclear coordination com­pounds of 3d transition metals have attracted continued attention for several decades due to their structural novelty, inter­esting catalytic (Dastidar & Chattopadhyay, 2022[Dastidar, T. G. & Chattopadhyay, S. (2022). Polyhedron, 211, 115511-115536.]; Shul'pin & Shul'pina, 2021[Shul'pin, G. B. & Shul'pina, L. S. (2021). Catalysts, 11, 186-223.]; Nesterov & Nesterova, 2018[Nesterov, D. S. & Nesterova, O. V. (2018). Catalysts, 8, 602-623.]; Jing et al., 2020[Jing, Y., Zhang, X. M., Cui, Y. F., Li, D. W., Sun, H., Ge, Y. & Li, Y. H. (2020). Chin. J. Struct. Chem. 39, 1057-1062.]) and biological properties (Hazari et al., 2017[Hazari, A., Das, A., Mahapatra, P. & Ghosh, A. (2017). Polyhedron, 134, 99-106.]; Amtul et al., 2002[Amtul, Z., Atta-ur-Rahman, B. S. P., Siddiqui, R. A. & Choudhary, M. I. (2002). Curr. Med. Chem. 9, 1323-1348.]; Azizian et al., 2012[Azizian, H., Nabati, F., Sharifi, A., Siavoshi, F., Mahdavi, M. & Amanlou, M. (2012). J. Mol. Model. 18, 2917-2927.]; Tanaka et al., 2003[Tanaka, T., Kawase, M. & Tani, S. (2003). Life Sci. 73, 2985-2990.]), and their potential as single-mol­ecule magnets (SMMs) (Radu et al., 2017[Radu, I., Kravtsov, V. Ch., Ostrovsky, S. M., Reu, O. S., Krämer, K., Decurtins, S., Liu, S. X., Klokishner, S. I. & Baca, S. G. (2017). Inorg. Chem. 56, 2662-2676.]; Pattacini et al., 2011[Pattacini, R., Teo, P., Zhang, J., Lan, Y. H., Powell, A. K., Nehrkorn, J., Waldmann, O., Hor, T. S. A. & Braunstein, P. (2011). Dalton Trans. 40, 10526-10534.]). Among numerous polynuclear 3d com­plexes, cobalt clusters have received particular inter­est because of their pleasing topological aesthetics (Brechin et al., 1997[Brechin, E. K., Harris, S. G., Harrison, A., Parsons, S., Gavin Whittaker, A. & Winpenny, R. E. P. (1997). Chem. Commun. pp. 653-654.]; Cao et al., 2013[Cao, Y. Y., Chen, Y. M., Li, L., Gao, D. D., Liu, W., Hu, H. L., Li, W. & Li, Y. H. (2013). Dalton Trans. 42, 10912-10918.]), their relevance to di­oxy­gen reduction (Monte-Pérez et al., 2017[Monte-Pérez, I., Kundu, S., Chandra, A., Craigo, K. E., Chernev, P., Kuhlmann, U., Dau, H., Hildebrandt, P., Greco, C., Van Stappen, C., Lehnert, N. & Ray, K. (2017). J. Am. Chem. Soc. 139, 15033-15042.]) and their fascinating magnetic properties (Liu et al., 2020[Liu, Y. N., Hou, J. L., Wang, Z., Gupta, R. K., Jagličić, Z., Jagodič, M., Wang, W. G., Tung, C. H. & Sun, D. (2020). Inorg. Chem. 59, 5683-5693.]; Sarto et al., 2018[Sarto, C., Rouzières, M., Liu, J. L., Bamberger, H., van Slageren, J., Clérac, R. & Alborés, P. (2018). Dalton Trans. 47, 17055-17066.]; Li et al., 2020[Li, X., Guo, Y., Xu, T., Fang, M., Xu, Q., Zhang, F., Wu, Z., Li, C. & Zhu, W. (2020). J. Chin. Chem. Soc. 67, 1070-1077.]; Ma et al., 2012[Ma, Y. S., Xue, F. F., Tang, X. Y., Chen, B. & Yuan, R. X. (2012). Inorg. Chem. Commun. 15, 285-287.]).

Several synthetic methodologies towards polynuclear cobalt clusters were established and one of the most efficient approaches involves the employment of hy­droxy-containing Schiff base ligands. Schiff base ligands are easy to synthesize and their steric properties can be tuned by varying the size of the amine or carbonyl substituents (Qin et al., 2017[Qin, Y., Zhang, H. F., Sun, H., Pan, Y. D., Ge, Y., Li, Y. H. & Zhang, Y. Q. (2017). Chem. Asian J. 12, 2834-2844.], 2018[Qin, Y. R., Jing, Y., Ge, Y., Liu, W., Li, Y. H. & Zhang, Y. Q. (2018). Dalton Trans. 47, 15197-15205.]; Ge et al., 2018[Ge, Y., Qin, Y. R., Cui, Y. F., Pan, Y. D., Huang, Y., Li, Y. H., Liu, W. & Zhang, Y. Q. (2018). Chem. Asian J. 13, 3753-3761.]; Li et al., 2021[Li, D. W., Ding, M. M., Huang, Y., Tello Yepes, D. F., Li, H. Y., Li, Y. H., Zhang, Y. Q. & Yao, J. L. (2021). Dalton Trans. 50, 217-228.]). More importantly, the hy­droxy moieties of the Schiff base ligands can combine many metal ions with μ-O bridges, resulting in the formation of large polynuclear clusters.

In the present work, we utilized the hy­droxy-containing Schiff base 2-[(4-chloro-2-hy­droxy­benzyl­idene­amino)­meth­yl]phenol (H2L) (Huang et al., 2019[Huang, Y., Qin, Y. R., Ge, Y., Cui, Y. F., Zhang, X. M., Li, Y. H. & Yao, J. L. (2019). New J. Chem. 43, 19344-19354.]) as a ligand to assemble a polynuclear cobalt cluster. The hexa­nuclear cobalt com­pound [Co4IICo2III(L)4(CH3COO)2(MeO)4] (1) was obtained suc­cessfully and we report its structural diversity and discuss its magnetic properties.

2. Experimental

2.1. Materials and physical measurements

All chemicals were of reagent grade, purchased from commercial suppliers and used without further purification. All manipulations were conducted under aerobic and solvothermal conditions. H2L was synthesized following the liter­a­ture procedure of Huang et al. (2019[Huang, Y., Qin, Y. R., Ge, Y., Cui, Y. F., Zhang, X. M., Li, Y. H. & Yao, J. L. (2019). New J. Chem. 43, 19344-19354.]). Elemental analyses for C, H and N were performed with a Carlo-Erba EA1110 CHNO-S analyser. The FT–IR spectrum was determined on a Nicolet MagNa-IR 500 spectrometer using KBr pellets in the range 400–4000 cm−1. DC magnetic susceptibilities were measured in the temperature range 2–300 K in a field of 1000 Oe using a Quantum Design MPMS-7 SQUID magnetometer.

2.2. Synthesis and crystallization

To a Pyrex tube (10 ml) was added a mixture of H2L (0.0291 g, 0.1 mmol), Co(CH3COO)2·4H2O (0.0249 g, 0.1 mmol), Et3N (0.0202 g, 0.2 mmol) and MeOH (1.5 ml). The tube was sealed and heated at 80 °C for 48 h under autogenous pressure. It was then cooled to room temperature and dark-red needle-like crystals were obtained. The crystals were collected, washed with MeOH (2 ml) and dried in air (yield: 0.020 g; 48% based on cobalt). Analysis calculated (%) for C64H58Cl4Co6N4O16: C 47.03, H 3.58, N 3.43; found (%): C 46.18, H 4.048, N 3.280. Selected IR data for 1 (cm−1): 1637 (s), 1590 (s), 1523 (s), 1450 (m), 1419 (m), 1286 (w), 1248 (s), 1185 (s), 1089 (m), 1021 (m), 933 (s), 874 (m), 852 (w), 755 (s).

2.3. Structure determination

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal structure contained disordered solvent that could not be satisfactorily refined. The SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine of PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used in the treatment of the crystallographic data. All H atoms were placed in geometrically idealized positions, with C—H = 0.95–0.99 Å. The H atoms of the CH2, aromatic and amide groups were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The H atoms of CH3 groups were refined as rotating groups, with Uiso(H) = 1.5Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Co6(C14H10ClNO2)4(C2H3O2)2(CH3O)4]
Mr 1634.52
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 15.4873 (10), 16.2116 (11), 28.1099 (19)
V3) 7057.7 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.60
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.612, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 78040, 16170, 11376
Rint 0.094
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.174, 1.04
No. of reflections 16170
No. of parameters 853
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.78
Absolute structure Flack x determined using 4303 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.011 (8)
Computer programs: SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

3.1. Synthesis of com­plex 1 and IR spectral analysis

The reaction of H2L and Co(CH3COO)2·4H2O in MeOH in the presence of NEt3 under solvothermal conditions led to the isolation of 1 in moderate yield. Co(CH3COO)2·4H2O is a good starting material because it not only serves as a convenient metal source, but also provides CH3COO bridging ligands. In the solid state, com­plex 1 is stable in air and its elemental analysis is consistent with the given mol­ecular formula.

The vibrational bands in the IR spectrum agree well with the formulation of com­plex 1 (see Fig. S1 in the supporting information). The signals of the carb­oxy­l νas(CO2) and νs(CO2) vibrations were found in the 1637–1419 cm−1 range. The vibrations of the C=N bond appear at 1450 cm−1. Several bands in the 1286–1185 cm−1 range were assigned to the vibrations of the aromatic rings. The sharp signals in the 979–766 cm−1 range were ascribed to the vibrations of C—H bonds.

3.2. Structure description of 1

Single crystals of 1 were obtained from MeOH under solvothermal conditions. Complex 1 crystallized in the ortho­rhom­bic space group P212121. The structure is shown in Fig. 1[link]. The structure analysis shows that com­plex 1 is com­posed of six cobalt ions, four 2-[(4-chloro-2-oxido­benzyl­idene­amino)­meth­yl]phenolate (L2−) ligands, two acetate ligands and four methanol-solvent-derived MeO ligands. There exists an approximate C2 symmetry in the mol­ecule. The imine N atom and both phenolate O-atom donors of each L2− ligand coordinate each cobalt centre. Bond valence calculations (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) gave valence parameters of 1.90, 2.32, 3.60, 2.12, 3.64 and 2.31 for the Co1–Co6 ions, respectively, indicating that the Co3 and Co5 ions are in 3+ valence states, and that the Co1, Co2, Co4 and Co6 ions are in 2+ oxidation states. The formation of four fused defect cubes confirms the involvement of four methanol-solvent-derived μ3-O groups, giving the Co6O10 structure. Thus, the mol­ecular structure of 1 displays a defect disk-shaped topology [Fig. 1[link](b)]. Of the six cobalt centres, the Co1, Co3, Co4 and Co5 ions are six-coordinated, and the Co2 and Co6 ions are five-coordinated. The coordination environments of the Co2 and Co6 ions, and the Co3 and Co5 ions are individually identical. The Co1 centre is present in a distorted octa­hedral O6 coordination environment, among which two O atoms are from two μ2-κ4O:O,O′,N L2− ligands and four O atoms are from four μ3-O MeO ligands. The Co2 centre is enclosed by the N and O atoms of one μ2-κ4O:O,O′,N L2− ligand, one O atom of a μ3-κ5O:O,N,O′:OL2− ligand and one O atom of one μ3-O MeO ligand. The six-coordinate NO5 environment around the Co3 ion is accom­plished by two μ3-O MeO groups, one O atom from one acetate bridge and the N and O atoms of one μ3-κ5O:O,N,O′:OL2− ligand. The six O-donor atoms around the Co6 centre originate from bridging acetate ligands, two μ3-O MeO groups and two μ3-κ5O:O,N,O′:OL2− ligands. The H2L ligand exhibits two types of coordination mode.

[Figure 1]
Figure 1
(a) The mol­ecular structure of 1, (b) the defect disk-shaped topology, (c) the coordination polyhedra of the Co atoms, (d) the metal framework, with the H atoms omitted for clarity, and (e) the coordination modes of the H2L ligand.

The geometries of the five-coordinated Co2 and Co6 atoms were analyzed with the program SHAPE (Version 2.0; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]). The calculated values revealed trigonal bipyramid (D3h) geometry for both atoms, with a minimum CShM (contunuous shape measure) value of 1.065 for Co2 and 1.172 for Co6.

Complex 1 joins a small family of Co6 clusters. Hexa­nuclear cobalt com­plexes mainly exhibit wheel, cage and ring topologies (Shi et al., 2021[Shi, Z. H., Huang, Y., Wu, Y. Z., Chen, X. L. & Yang, H. (2021). Chin. J. Struct. Chem. 40, 495-500.]; Zou et al., 2014[Zou, J. Y., Shi, W., Gao, H. L., Cui, J. Z. & Cheng, P. (2014). Wuji Huaxue Xuebao, 30, 149-154.]; Wang et al., 2013[Wang, J., Jian, F. F., Huang, B. X. & Bai, Z. S. (2013). J. Solid State Chem. 204, 272-277.]; Guo et al., 2013[Guo, J. Y., Zhang, D., Chen, L., Song, Y., Zhu, D. R. & Xu, Y. (2013). Dalton Trans. 42, 8454-8459.]; Lazzarini et al., 2012[Lazzarini, I. C., Carrella, L., Rentschler, E. & Alborés, P. (2012). Polyhedron, 31, 779-788.]; Chen et al., 2010[Chen, Q., Zeng, M. H., Wei, L. Q. & Kurmoo, M. (2010). Chem. Mater. 22, 4328-4334.]; Malassa et al., 2010[Malassa, A., Agthe, C., Görls, H., Podewitz, M., Yu, L., Herrmann, C., Reiher, M. & Westerhausen, M. (2010). Eur. J. Inorg. Chem. 2010, 1777-1790.]; Tudor et al., 2010[Tudor, V., Madalan, A., Lupu, V., Lloret, F., Julve, M. & Andruh, M. (2010). Inorg. Chim. Acta, 363, 823-826.]; Colacio et al., 2009[Colacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054-2064.]; Jones et al., 2009[Jones, L. F., Kilner, C. A. & Halcrow, M. A. (2009). Chem. Eur. J. 15, 4667-4675.]; Shiga & Oshio, 2007[Shiga, T. & Oshio, H. (2007). Polyhedron, 26, 1881-1884.]; Alley et al., 2006[Alley, K. G., Bircher, R., Waldmann, O., Ochsenbein, S. T., Güdel, H. U., Moubaraki, B., Murray, K. S., Fernandez-Alonso, F., Abrahams, B. F. & Boskovic, C. (2006). Inorg. Chem. 45, 8950-8957.]; Murrie et al., 2003[Murrie, M., Teat, S. J., Stoeckli-Evans, H. & Güdel, H. U. (2003). Angew. Chem. Int. Ed. 42, 4653-4656.]; Kumagai et al., 2003[Kumagai, H., Oka, Y., Kawata, S., Ohba, M., Inoue, K., Kurmoo, M. & Ōkawa, H. (2003). Polyhedron, 22, 1917-1920.]; Gutschke et al., 1999[Gutschke, S. O. H., Price, D. I., Powell, A. K. & Wood, P. T. (1999). Angew. Chem. Int. Ed. 38, 1088-1090.]). Complex 1 is a rare example that displays a defect disk-shaped structure.

3.3. Magnetic properties of 1

Magnetic susceptibility data as a function of temperature for com­plex 1 are shown in Fig. 2[link]. The room temperature χMT value is 10.96 cm3 mol−1 K, which is greater than the value of 7.50 cm3 mol−1 K for four uncoupled S = 3/2 CoII centres, possibly owing to the orbital contributions of the metal ions (Cao et al., 2013[Cao, Y. Y., Chen, Y. M., Li, L., Gao, D. D., Liu, W., Hu, H. L., Li, W. & Li, Y. H. (2013). Dalton Trans. 42, 10912-10918.]). Upon lowering the temperature, the χMT value drops slightly to a minimum value of 3.49 cm3 mol−1 K at 2 K, which suggests possible anti­ferromagnetic couplings between the unpaired spins. The data of 1/χM in the temperature range 2–300 K were fitted by the Curie–Weiss Law of 1/χM = (Tθ)/C. The Curie constant C = 12.09 cm3 mol−1 K and the Weiss constant θ = −37.24 K were obtained. The negative θ value proves the anti­ferromagnetic inter­actions.

[Figure 2]
Figure 2
Temperature dependence of magnetic susceptibilities in the forms of (a) χMT versus T and (b) 1/χM versus T for 1 at 1 kOe. The red solid line corresponds to the best fit of the magnetic data.

The magnetic dynamic behaviour of 1 was also explored. The ac magnetic susceptibilities for 1 at 1000 Hz under a zero-dc field in the temperature range 2–25 K were shown in Fig. S2 (see supporting information). The χ′′ susceptibilities at 1000 Hz did not increase upon lowering the temperature and no peaks were determined. These phenomena revealed that com­plex 1 is not a single-mol­ecule magnet.

4. Conclusion

A hexa­nuclear cobalt com­plex of com­position [Co2IIICo4II(L)4(CH3COO)2(MeO)4] (1), based on the hydroxy-con­taining Schiff base ligand 2-[(4-chloro-2-hy­droxy­benzyl­idene­amino)­meth­yl]phenol (H2L) was prepared and char­acterized. Complex 1 exhibits a defect disk-shaped top­ol­ogy. Four cobalt ions are six-coordinated and two cobalt ions are five-coordinated. An investigation of the magnetic properties revealed that there exist anti­ferromagnetic inter­actions between the CoII ions.

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX2 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).

Di-µ2-acetato-tetrakis{µ2-2-[(4-chloro-2-oxidobenzylideneamino)methyl]phenolato}tetra-µ3-methanolato-tetracobalt(II)dicobalt(III) top
Crystal data top
[Co6(C14H10ClNO2)4(C2H3O2)2(CH3O)4]Dx = 1.538 Mg m3
Mr = 1634.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9807 reflections
a = 15.4873 (10) Åθ = 2.3–25.0°
b = 16.2116 (11) ŵ = 1.60 mm1
c = 28.1099 (19) ÅT = 120 K
V = 7057.7 (8) Å3Block, red
Z = 40.4 × 0.2 × 0.2 mm
F(000) = 3312
Data collection top
Bruker SMART APEXII
diffractometer
11376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
phi and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1620
Tmin = 0.612, Tmax = 0.746k = 2120
78040 measured reflectionsl = 3636
16170 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0906P)2 + 7.497P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.65 e Å3
16170 reflectionsΔρmin = 0.78 e Å3
853 parametersAbsolute structure: Flack x determined using 4303 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
12 restraintsAbsolute structure parameter: 0.011 (8)
Primary atom site location: iterative
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. SQUEEZE, constraints & restraints, applied to the data, 17 reflections OMITted

Data for 1 was collected on a Bruker SMART APEXII diffractometer equipped with a graphite monochromator utilizing Mo Kα radiation (λ = 0.71073). The crystal structure of 1 was solved with the OLEX2 program (Dolomanov et al., 2009) and refined by SHELXL package (Sheldrick, 2015). The crystal structure of 1 contained disordered solvent that could not be satisfactorily refined. The SQUEEZE routine of PLATON was used in the treatment of the crystallographic data. CCDC-1991979 (1) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Centre, 12 Union Road, Cambridge CB21EZ, UK; Fax: (+44) 1223–336-033; or deposit@ccdc.cam.ac.uk). The crystallographic data was shown in Table 1. Selected bond lengths and bond angles of 1 are listed in Table 2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.76532 (7)0.48030 (7)0.63042 (4)0.0272 (3)
Co20.75457 (8)0.37642 (7)0.53446 (4)0.0310 (3)
Co30.64711 (8)0.53340 (8)0.54249 (4)0.0308 (3)
Co40.60975 (9)0.60947 (8)0.63671 (4)0.0339 (3)
Co50.71075 (8)0.57569 (8)0.72480 (4)0.0309 (3)
Co60.88399 (8)0.48935 (8)0.72294 (4)0.0311 (3)
Cl10.27968 (19)0.4953 (3)0.70412 (13)0.0880 (13)
Cl20.6728 (4)0.94857 (19)0.58576 (13)0.0949 (15)
Cl31.0115 (2)0.2814 (2)0.34231 (10)0.0618 (8)
Cl41.0081 (2)0.2435 (2)0.91102 (11)0.0657 (9)
O10.8938 (4)0.4073 (4)0.7727 (2)0.0380 (15)
O20.8905 (4)0.4868 (4)0.6523 (2)0.0312 (13)
O30.8270 (4)0.5965 (4)0.7389 (2)0.0360 (15)
O40.5975 (4)0.5510 (4)0.7035 (2)0.0328 (14)
O50.8388 (5)0.3739 (4)0.4831 (2)0.0409 (16)
O60.7686 (4)0.3639 (4)0.6037 (2)0.0326 (14)
O70.6375 (4)0.4225 (4)0.5223 (2)0.0352 (15)
O80.6589 (4)0.6401 (4)0.5695 (2)0.0344 (14)
O90.5259 (4)0.5511 (4)0.5349 (2)0.0422 (16)
O100.4897 (5)0.6094 (5)0.6053 (2)0.0453 (17)
O110.5940 (6)0.7169 (4)0.6734 (2)0.052 (2)
O120.6775 (5)0.6864 (4)0.7377 (2)0.0432 (17)
O130.6353 (4)0.4952 (4)0.6070 (2)0.0298 (13)
O140.7492 (4)0.4674 (4)0.70863 (19)0.0289 (13)
O150.7654 (4)0.5070 (4)0.5537 (2)0.0288 (13)
O160.7373 (4)0.5983 (4)0.6593 (2)0.0301 (13)
N11.0097 (5)0.5200 (5)0.7269 (3)0.0342 (17)
N20.6850 (5)0.5540 (5)0.7906 (3)0.0364 (19)
N30.7286 (5)0.2548 (5)0.5280 (3)0.0352 (18)
N40.6619 (5)0.5716 (5)0.4782 (3)0.0364 (18)
C10.4468 (6)0.5296 (7)0.7069 (4)0.045 (3)
H10.44230.53430.67330.054*
C20.3754 (7)0.5145 (9)0.7339 (4)0.060 (3)
C30.3781 (7)0.5108 (8)0.7839 (4)0.053 (3)
H30.32700.50270.80200.064*
C40.4559 (7)0.5190 (7)0.8052 (4)0.049 (3)
H40.45880.51500.83890.058*
C50.5320 (6)0.5333 (6)0.7801 (4)0.039 (2)
C60.5283 (6)0.5380 (6)0.7300 (4)0.037 (2)
C70.6097 (7)0.5405 (6)0.8072 (3)0.038 (2)
H70.60480.53480.84080.045*
C80.7583 (7)0.5597 (6)0.8253 (3)0.036 (2)
H8A0.73510.55770.85810.043*
H8B0.79700.51170.82090.043*
C90.8089 (7)0.6371 (6)0.8189 (3)0.038 (2)
C100.8217 (8)0.6933 (7)0.8549 (4)0.048 (3)
H100.79530.68420.88500.058*
C110.8722 (8)0.7628 (7)0.8482 (4)0.052 (3)
H110.88100.80080.87340.062*
C120.9110 (8)0.7766 (7)0.8028 (4)0.052 (3)
H120.94680.82340.79800.062*
C130.8968 (8)0.7219 (6)0.7656 (4)0.045 (2)
H130.92090.73120.73500.054*
C140.8449 (7)0.6517 (6)0.7750 (3)0.039 (2)
C150.9556 (7)0.3343 (7)0.8366 (4)0.044 (2)
H150.90280.30520.84030.052*
C160.9615 (6)0.3927 (6)0.8002 (3)0.035 (2)
C171.0425 (6)0.4339 (6)0.7952 (3)0.035 (2)
C181.0999 (7)0.3583 (8)0.8636 (4)0.051 (3)
H181.14520.34750.88550.062*
C191.1099 (7)0.4154 (7)0.8276 (4)0.047 (3)
H191.16360.44320.82440.057*
C201.0212 (7)0.3171 (7)0.8668 (4)0.044 (2)
C211.0635 (6)0.4918 (6)0.7579 (3)0.035 (2)
H211.12150.51060.75610.043*
C221.0409 (7)0.5708 (7)0.6875 (3)0.040 (2)
H22A1.10000.59070.69440.048*
H22B1.00290.61940.68340.048*
C231.0413 (6)0.5210 (7)0.6432 (3)0.039 (2)
C241.1158 (7)0.5121 (6)0.6156 (4)0.042 (2)
H241.16650.54120.62480.050*
C251.1186 (7)0.4631 (7)0.5759 (3)0.044 (2)
H251.17040.45930.55790.052*
C261.0474 (7)0.4197 (7)0.5621 (4)0.043 (2)
H261.04990.38500.53490.051*
C270.9702 (6)0.4266 (6)0.5882 (3)0.036 (2)
H270.92070.39600.57880.043*
C280.9662 (6)0.4782 (6)0.6278 (3)0.034 (2)
C290.8365 (6)0.2853 (6)0.6654 (3)0.037 (2)
H290.87090.33180.67340.044*
C300.8427 (7)0.2144 (6)0.6922 (4)0.043 (2)
H300.87970.21210.71920.052*
C310.7947 (7)0.1476 (7)0.6794 (4)0.048 (3)
H310.79710.09890.69810.057*
C320.7422 (7)0.1498 (6)0.6391 (4)0.045 (2)
H320.71050.10190.63040.054*
C330.7353 (6)0.2198 (6)0.6117 (3)0.033 (2)
C340.7802 (6)0.2900 (5)0.6267 (3)0.032 (2)
C350.6792 (6)0.2187 (6)0.5677 (3)0.037 (2)
H35A0.66240.16140.55990.044*
H35B0.62600.25120.57330.044*
C360.7550 (6)0.2086 (6)0.4935 (3)0.036 (2)
H360.73510.15320.49290.044*
C370.8119 (6)0.2338 (6)0.4560 (3)0.036 (2)
C380.8302 (7)0.1754 (7)0.4205 (3)0.043 (2)
H380.80140.12360.42170.052*
C390.8873 (7)0.1895 (7)0.3846 (3)0.047 (3)
H390.89660.14970.36030.056*
C400.9318 (7)0.2643 (8)0.3847 (3)0.047 (3)
C410.9149 (7)0.3239 (7)0.4177 (4)0.042 (2)
H410.94550.37450.41620.050*
C420.8532 (6)0.3123 (6)0.4540 (3)0.035 (2)
C430.5196 (6)0.3442 (7)0.4902 (4)0.042 (2)
H430.51350.31500.51940.051*
C440.5833 (6)0.4050 (6)0.4854 (3)0.035 (2)
C450.4645 (7)0.3265 (8)0.4515 (4)0.055 (3)
H450.42300.28350.45350.066*
C460.4723 (7)0.3731 (9)0.4106 (4)0.056 (3)
H460.43420.36320.38470.068*
C470.5346 (8)0.4342 (8)0.4064 (4)0.053 (3)
H470.53840.46600.37810.064*
C480.5921 (7)0.4488 (6)0.4441 (3)0.040 (2)
C490.6648 (7)0.5090 (6)0.4405 (3)0.041 (2)
H49A0.72030.47880.44250.049*
H49B0.66240.53670.40920.049*
C500.6674 (6)0.6489 (6)0.4657 (3)0.036 (2)
H500.67160.66030.43270.043*
C510.6675 (6)0.7168 (6)0.4969 (3)0.036 (2)
C520.6742 (7)0.7961 (6)0.4756 (4)0.045 (3)
H520.67810.79980.44200.054*
C530.6754 (8)0.8669 (7)0.5016 (4)0.054 (3)
H530.68020.91920.48660.064*
C540.6692 (8)0.8603 (7)0.5515 (4)0.051 (3)
C550.6638 (8)0.7861 (6)0.5741 (4)0.045 (3)
H550.66120.78360.60780.055*
C560.6622 (6)0.7123 (6)0.5466 (3)0.036 (2)
C570.4733 (7)0.5833 (8)0.5639 (4)0.053 (3)
C580.3814 (8)0.5903 (13)0.5464 (6)0.096 (5)
H58A0.36550.64870.54400.144*
H58B0.34270.56260.56890.144*
H58C0.37650.56430.51510.144*
C590.6256 (11)0.7309 (7)0.7142 (4)0.062 (4)
C600.6036 (12)0.8124 (10)0.7369 (6)0.094 (5)
H60A0.65310.84970.73440.140*
H60B0.58930.80380.77050.140*
H60C0.55380.83680.72060.140*
C610.5769 (6)0.4302 (6)0.6171 (3)0.036 (2)
H61A0.60320.37740.60820.055*
H61B0.52360.43820.59890.055*
H61C0.56360.42990.65120.055*
C620.7050 (6)0.3996 (6)0.7304 (3)0.036 (2)
H62A0.64290.40430.72420.054*
H62B0.71530.40030.76480.054*
H62C0.72650.34760.71700.054*
C630.7956 (7)0.6638 (6)0.6484 (3)0.037 (2)
H63A0.85500.64570.65430.055*
H63B0.78250.71160.66840.055*
H63C0.78940.67910.61480.055*
C640.8312 (6)0.5582 (6)0.5321 (4)0.040 (2)
H64A0.82130.61590.54080.060*
H64B0.82880.55240.49750.060*
H64C0.88820.54090.54360.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0306 (6)0.0269 (6)0.0242 (6)0.0002 (5)0.0015 (5)0.0026 (5)
Co20.0346 (6)0.0300 (6)0.0283 (6)0.0024 (5)0.0027 (5)0.0032 (5)
Co30.0349 (6)0.0329 (7)0.0247 (6)0.0038 (5)0.0031 (5)0.0006 (5)
Co40.0406 (7)0.0336 (6)0.0275 (6)0.0086 (6)0.0001 (5)0.0009 (5)
Co50.0384 (7)0.0304 (6)0.0240 (6)0.0010 (5)0.0017 (5)0.0028 (5)
Co60.0315 (6)0.0358 (6)0.0261 (6)0.0023 (5)0.0015 (5)0.0027 (5)
Cl10.0342 (14)0.163 (4)0.067 (2)0.013 (2)0.0036 (13)0.009 (2)
Cl20.189 (5)0.0361 (16)0.060 (2)0.007 (2)0.005 (2)0.0041 (14)
Cl30.0632 (18)0.078 (2)0.0436 (15)0.0168 (16)0.0178 (14)0.0156 (15)
Cl40.0634 (19)0.077 (2)0.0562 (18)0.0193 (16)0.0140 (15)0.0292 (16)
O10.032 (3)0.045 (4)0.038 (4)0.004 (3)0.005 (3)0.001 (3)
O20.029 (3)0.041 (3)0.024 (3)0.001 (3)0.000 (2)0.001 (3)
O30.048 (4)0.037 (4)0.023 (3)0.008 (3)0.004 (3)0.007 (3)
O40.033 (3)0.036 (3)0.029 (3)0.006 (3)0.004 (3)0.002 (3)
O50.050 (4)0.037 (4)0.036 (3)0.003 (3)0.001 (3)0.004 (3)
O60.040 (4)0.029 (3)0.028 (3)0.002 (3)0.004 (3)0.001 (3)
O70.037 (3)0.042 (4)0.028 (3)0.001 (3)0.008 (3)0.003 (3)
O80.052 (4)0.028 (3)0.024 (3)0.003 (3)0.001 (3)0.003 (3)
O90.040 (4)0.052 (4)0.034 (4)0.005 (3)0.002 (3)0.003 (3)
O100.045 (4)0.052 (4)0.040 (4)0.012 (3)0.001 (3)0.004 (3)
O110.085 (6)0.037 (4)0.034 (4)0.021 (4)0.003 (4)0.001 (3)
O120.067 (5)0.033 (4)0.029 (3)0.001 (3)0.005 (3)0.001 (3)
O130.035 (3)0.028 (3)0.026 (3)0.000 (3)0.001 (2)0.001 (2)
O140.034 (3)0.031 (3)0.022 (3)0.003 (3)0.002 (2)0.001 (2)
O150.032 (3)0.029 (3)0.026 (3)0.001 (3)0.002 (2)0.004 (2)
O160.036 (3)0.029 (3)0.026 (3)0.003 (3)0.001 (3)0.003 (2)
N10.039 (4)0.034 (4)0.030 (4)0.007 (4)0.006 (3)0.000 (3)
N20.051 (5)0.032 (4)0.026 (4)0.002 (4)0.000 (3)0.004 (3)
N30.044 (4)0.031 (4)0.031 (4)0.002 (3)0.002 (3)0.003 (3)
N40.034 (4)0.046 (5)0.029 (4)0.004 (4)0.005 (3)0.005 (4)
C10.037 (5)0.066 (7)0.032 (5)0.014 (5)0.007 (4)0.002 (5)
C20.035 (6)0.083 (9)0.061 (7)0.009 (6)0.010 (5)0.004 (7)
C30.038 (6)0.070 (8)0.051 (6)0.001 (5)0.016 (5)0.012 (6)
C40.052 (6)0.053 (7)0.040 (6)0.008 (6)0.014 (5)0.009 (5)
C50.040 (5)0.039 (5)0.039 (5)0.005 (4)0.007 (4)0.002 (5)
C60.031 (5)0.040 (5)0.040 (5)0.003 (4)0.015 (4)0.006 (4)
C70.046 (6)0.037 (5)0.031 (5)0.002 (5)0.009 (4)0.000 (4)
C80.043 (5)0.041 (5)0.024 (4)0.004 (4)0.000 (4)0.002 (4)
C90.052 (6)0.044 (6)0.018 (4)0.001 (5)0.005 (4)0.002 (4)
C100.062 (7)0.053 (6)0.030 (5)0.006 (6)0.006 (5)0.014 (5)
C110.058 (7)0.046 (6)0.051 (6)0.004 (5)0.011 (6)0.021 (5)
C120.063 (7)0.038 (6)0.055 (7)0.006 (5)0.009 (6)0.008 (5)
C130.060 (7)0.035 (5)0.040 (6)0.011 (5)0.000 (5)0.007 (4)
C140.051 (6)0.035 (5)0.031 (5)0.001 (4)0.004 (5)0.010 (4)
C150.043 (6)0.049 (6)0.039 (6)0.007 (5)0.008 (5)0.007 (5)
C160.036 (5)0.042 (5)0.027 (4)0.007 (4)0.003 (4)0.005 (4)
C170.039 (5)0.037 (5)0.028 (4)0.002 (4)0.001 (4)0.001 (4)
C180.045 (6)0.071 (8)0.038 (6)0.012 (6)0.005 (5)0.007 (6)
C190.040 (6)0.055 (7)0.047 (6)0.004 (5)0.010 (5)0.001 (5)
C200.047 (6)0.056 (6)0.029 (5)0.018 (5)0.001 (4)0.005 (5)
C210.030 (5)0.039 (5)0.038 (5)0.003 (4)0.000 (4)0.001 (4)
C220.044 (6)0.042 (6)0.034 (5)0.005 (5)0.003 (4)0.007 (4)
C230.034 (5)0.045 (6)0.038 (5)0.007 (4)0.004 (4)0.010 (5)
C240.041 (5)0.039 (5)0.046 (6)0.000 (5)0.008 (4)0.014 (5)
C250.038 (5)0.058 (7)0.035 (5)0.003 (5)0.012 (4)0.015 (5)
C260.044 (6)0.047 (6)0.037 (5)0.019 (5)0.010 (4)0.007 (5)
C270.037 (5)0.039 (5)0.032 (5)0.011 (4)0.004 (4)0.002 (4)
C280.037 (5)0.037 (5)0.026 (4)0.008 (4)0.005 (4)0.001 (4)
C290.041 (5)0.036 (5)0.033 (5)0.002 (4)0.001 (4)0.002 (4)
C300.050 (6)0.042 (6)0.037 (5)0.010 (5)0.001 (5)0.009 (5)
C310.055 (7)0.038 (6)0.050 (6)0.001 (5)0.006 (5)0.003 (5)
C320.061 (7)0.026 (4)0.048 (6)0.007 (5)0.000 (5)0.003 (4)
C330.044 (5)0.029 (4)0.027 (4)0.005 (4)0.001 (4)0.004 (4)
C340.037 (5)0.023 (4)0.035 (5)0.006 (4)0.003 (4)0.004 (4)
C350.042 (5)0.035 (5)0.034 (5)0.007 (4)0.005 (4)0.006 (4)
C360.040 (5)0.032 (5)0.038 (5)0.004 (4)0.001 (4)0.011 (4)
C370.040 (5)0.042 (5)0.024 (4)0.009 (4)0.007 (4)0.003 (4)
C380.045 (6)0.051 (6)0.033 (5)0.001 (5)0.004 (4)0.006 (5)
C390.055 (7)0.056 (7)0.029 (5)0.013 (6)0.004 (5)0.006 (5)
C400.049 (6)0.067 (8)0.024 (5)0.019 (6)0.002 (4)0.011 (5)
C410.044 (6)0.040 (6)0.041 (6)0.002 (5)0.007 (5)0.009 (5)
C420.036 (5)0.040 (5)0.031 (5)0.011 (4)0.002 (4)0.000 (4)
C430.037 (5)0.049 (6)0.041 (6)0.009 (5)0.010 (4)0.004 (5)
C440.031 (5)0.041 (5)0.031 (5)0.003 (4)0.005 (4)0.010 (4)
C450.038 (6)0.074 (8)0.055 (7)0.007 (6)0.007 (5)0.021 (6)
C460.046 (6)0.094 (10)0.029 (5)0.016 (7)0.014 (5)0.016 (6)
C470.059 (7)0.072 (8)0.028 (5)0.015 (6)0.010 (5)0.010 (5)
C480.048 (6)0.047 (6)0.024 (4)0.004 (5)0.001 (4)0.007 (4)
C490.063 (6)0.038 (5)0.021 (4)0.006 (5)0.002 (4)0.000 (4)
C500.033 (5)0.041 (5)0.034 (5)0.003 (4)0.001 (4)0.004 (4)
C510.037 (5)0.044 (6)0.027 (5)0.004 (4)0.002 (4)0.006 (4)
C520.056 (6)0.042 (6)0.037 (5)0.010 (5)0.011 (5)0.012 (5)
C530.075 (8)0.036 (6)0.049 (7)0.010 (6)0.003 (6)0.011 (5)
C540.072 (8)0.041 (6)0.041 (6)0.003 (6)0.005 (5)0.004 (5)
C550.071 (7)0.030 (5)0.035 (5)0.000 (5)0.009 (5)0.004 (4)
C560.040 (5)0.033 (5)0.034 (5)0.013 (4)0.002 (4)0.010 (4)
C570.047 (6)0.071 (8)0.040 (6)0.028 (6)0.000 (5)0.003 (6)
C580.039 (7)0.162 (15)0.087 (10)0.037 (9)0.015 (7)0.024 (11)
C590.121 (12)0.038 (6)0.027 (5)0.021 (7)0.005 (6)0.002 (4)
C600.098 (5)0.091 (5)0.092 (5)0.004 (3)0.001 (3)0.001 (3)
C610.032 (5)0.040 (5)0.038 (5)0.007 (4)0.002 (4)0.001 (4)
C620.033 (5)0.034 (5)0.041 (5)0.004 (4)0.005 (4)0.003 (4)
C630.050 (6)0.026 (5)0.035 (5)0.005 (4)0.003 (4)0.001 (4)
C640.043 (5)0.040 (5)0.038 (5)0.011 (4)0.010 (4)0.011 (4)
Geometric parameters (Å, º) top
Co1—O22.036 (6)C16—C171.428 (14)
Co1—O62.031 (6)C17—C191.416 (14)
Co1—O132.132 (6)C17—C211.444 (13)
Co1—O142.222 (5)C18—H180.9500
Co1—O152.201 (6)C18—C191.381 (15)
Co1—O162.123 (6)C18—C201.393 (16)
Co2—O51.945 (7)C19—H190.9500
Co2—O61.969 (6)C21—H210.9500
Co2—O71.991 (6)C22—H22A0.9900
Co2—O152.191 (6)C22—H22B0.9900
Co2—N32.021 (8)C22—C231.482 (14)
Co3—O71.890 (7)C23—C241.399 (14)
Co3—O81.898 (6)C23—C281.422 (13)
Co3—O91.910 (7)C24—H240.9500
Co3—O131.925 (6)C24—C251.372 (14)
Co3—O151.907 (6)C25—H250.9500
Co3—N41.923 (8)C25—C261.365 (15)
Co4—O42.111 (6)C26—H260.9500
Co4—O82.097 (6)C26—C271.408 (13)
Co4—O102.057 (7)C27—H270.9500
Co4—O112.039 (7)C27—C281.396 (13)
Co4—O132.070 (6)C29—H290.9500
Co4—O162.083 (6)C29—C301.378 (14)
Co5—O31.874 (7)C29—C341.397 (13)
Co5—O41.897 (6)C30—H300.9500
Co5—O121.902 (7)C30—C311.362 (15)
Co5—O141.909 (6)C31—H310.9500
Co5—O161.921 (6)C31—C321.394 (15)
Co5—N21.924 (8)C32—H320.9500
Co6—O11.937 (6)C32—C331.376 (13)
Co6—O21.989 (6)C33—C341.399 (13)
Co6—O32.000 (7)C33—C351.511 (13)
Co6—O142.156 (6)C35—H35A0.9900
Co6—N12.012 (8)C35—H35B0.9900
Cl1—C21.731 (12)C36—H360.9500
Cl2—C541.727 (11)C36—C371.433 (14)
Cl3—C401.738 (11)C37—C381.404 (13)
Cl4—C201.734 (11)C37—C421.425 (14)
O1—C161.324 (11)C38—H380.9500
O2—C281.367 (10)C38—C391.362 (15)
O3—C141.380 (11)C39—H390.9500
O4—C61.322 (11)C39—C401.394 (16)
O5—C421.311 (11)C40—C411.366 (15)
O6—C341.373 (10)C41—H410.9500
O7—C441.364 (10)C41—C421.410 (13)
O8—C561.336 (11)C43—H430.9500
O9—C571.265 (12)C43—C441.400 (14)
O10—C571.264 (13)C43—C451.414 (14)
O11—C591.268 (13)C44—C481.369 (13)
O12—C591.265 (14)C45—H450.9500
O13—C611.417 (11)C45—C461.381 (17)
O14—C621.432 (10)C46—H460.9500
O15—C641.447 (11)C46—C471.387 (17)
O16—C631.428 (11)C47—H470.9500
N1—C211.290 (12)C47—C481.405 (14)
N1—C221.462 (12)C48—C491.493 (15)
N2—C71.274 (12)C49—H49A0.9900
N2—C81.500 (12)C49—H49B0.9900
N3—C351.473 (12)C50—H500.9500
N3—C361.294 (11)C50—C511.407 (14)
N4—C491.469 (12)C51—C521.420 (14)
N4—C501.304 (13)C51—C561.403 (13)
C1—H10.9500C52—H520.9500
C1—C21.363 (15)C52—C531.361 (15)
C1—C61.426 (14)C53—H530.9500
C2—C31.407 (16)C53—C541.408 (15)
C3—H30.9500C54—C551.364 (14)
C3—C41.352 (16)C55—H550.9500
C4—H40.9500C55—C561.424 (14)
C4—C51.393 (14)C57—C581.509 (16)
C5—C61.411 (14)C58—H58A0.9800
C5—C71.431 (14)C58—H58B0.9800
C7—H70.9500C58—H58C0.9800
C8—H8A0.9900C59—C601.507 (19)
C8—H8B0.9900C60—H60A0.9800
C8—C91.490 (14)C60—H60B0.9800
C9—C101.375 (14)C60—H60C0.9800
C9—C141.377 (13)C61—H61A0.9800
C10—H100.9500C61—H61B0.9800
C10—C111.385 (16)C61—H61C0.9800
C11—H110.9500C62—H62A0.9800
C11—C121.428 (16)C62—H62B0.9800
C12—H120.9500C62—H62C0.9800
C12—C131.388 (14)C63—H63A0.9800
C13—H130.9500C63—H63B0.9800
C13—C141.417 (14)C63—H63C0.9800
C15—H150.9500C64—H64A0.9800
C15—C161.396 (14)C64—H64B0.9800
C15—C201.354 (14)C64—H64C0.9800
O2—Co1—O13170.5 (2)C14—C13—H13121.2
O2—Co1—O1479.2 (2)O3—C14—C13119.9 (9)
O2—Co1—O15106.6 (2)C9—C14—O3117.8 (9)
O2—Co1—O1691.9 (2)C9—C14—C13122.3 (9)
O6—Co1—O297.8 (3)C16—C15—H15118.3
O6—Co1—O1390.8 (2)C20—C15—H15118.3
O6—Co1—O14106.3 (2)C20—C15—C16123.4 (10)
O6—Co1—O1579.6 (2)O1—C16—C15119.8 (9)
O6—Co1—O16169.5 (3)O1—C16—C17123.6 (8)
O13—Co1—O14102.1 (2)C15—C16—C17116.6 (9)
O13—Co1—O1571.1 (2)C16—C17—C21125.0 (8)
O15—Co1—O14171.3 (2)C19—C17—C16119.0 (9)
O16—Co1—O1379.8 (2)C19—C17—C21116.0 (9)
O16—Co1—O1471.5 (2)C19—C18—H18121.1
O16—Co1—O15101.4 (2)C19—C18—C20117.8 (10)
O5—Co2—O6131.1 (3)C20—C18—H18121.1
O5—Co2—O7119.4 (3)C17—C19—H19119.0
O5—Co2—O1598.7 (3)C18—C19—C17122.1 (11)
O5—Co2—N392.7 (3)C18—C19—H19119.0
O6—Co2—O7108.0 (3)C15—C20—Cl4120.3 (9)
O6—Co2—O1581.2 (2)C15—C20—C18121.1 (10)
O6—Co2—N390.6 (3)C18—C20—Cl4118.6 (8)
O7—Co2—O1575.5 (2)N1—C21—C17125.1 (9)
O7—Co2—N399.8 (3)N1—C21—H21117.4
N3—Co2—O15168.6 (3)C17—C21—H21117.4
O7—Co3—O8173.8 (3)N1—C22—H22A109.8
O7—Co3—O991.8 (3)N1—C22—H22B109.8
O7—Co3—O1388.2 (3)N1—C22—C23109.3 (8)
O7—Co3—O1584.9 (3)H22A—C22—H22B108.3
O7—Co3—N491.9 (3)C23—C22—H22A109.8
O8—Co3—O990.1 (3)C23—C22—H22B109.8
O8—Co3—O1385.7 (3)C24—C23—C22121.7 (9)
O8—Co3—O1592.7 (3)C24—C23—C28117.1 (9)
O8—Co3—N494.0 (3)C28—C23—C22121.2 (9)
O9—Co3—O1393.4 (3)C23—C24—H24118.7
O9—Co3—N488.0 (3)C25—C24—C23122.5 (10)
O15—Co3—O9174.6 (3)C25—C24—H24118.7
O15—Co3—O1382.2 (2)C24—C25—H25119.8
O15—Co3—N496.4 (3)C26—C25—C24120.3 (9)
N4—Co3—O13178.6 (3)C26—C25—H25119.8
O8—Co4—O4160.1 (2)C25—C26—H26120.1
O10—Co4—O4107.4 (3)C25—C26—C27119.8 (10)
O10—Co4—O886.6 (3)C27—C26—H26120.1
O10—Co4—O1389.9 (3)C26—C27—H27120.0
O10—Co4—O16170.9 (3)C28—C27—C26120.1 (10)
O11—Co4—O485.6 (3)C28—C27—H27120.0
O11—Co4—O8107.3 (3)O2—C28—C23119.9 (8)
O11—Co4—O1096.3 (3)O2—C28—C27120.1 (8)
O11—Co4—O13172.5 (3)C27—C28—C23120.0 (9)
O11—Co4—O1691.9 (3)C30—C29—H29119.5
O13—Co4—O488.5 (2)C30—C29—C34121.0 (10)
O13—Co4—O877.2 (2)C34—C29—H29119.5
O13—Co4—O1682.2 (2)C29—C30—H30120.7
O16—Co4—O477.0 (2)C31—C30—C29118.7 (10)
O16—Co4—O887.2 (3)C31—C30—H30120.7
O3—Co5—O4173.4 (3)C30—C31—H31119.5
O3—Co5—O1292.8 (3)C30—C31—C32120.9 (10)
O3—Co5—O1485.2 (3)C32—C31—H31119.5
O3—Co5—O1687.9 (3)C31—C32—H32119.3
O3—Co5—N291.6 (3)C33—C32—C31121.4 (9)
O4—Co5—O1290.5 (3)C33—C32—H32119.3
O4—Co5—O1491.1 (3)C32—C33—C34117.6 (8)
O4—Co5—O1686.3 (3)C32—C33—C35119.6 (9)
O4—Co5—N294.2 (3)C34—C33—C35122.8 (8)
O12—Co5—O14176.1 (3)O6—C34—C29119.7 (8)
O12—Co5—O1693.4 (3)O6—C34—C33120.2 (8)
O12—Co5—N286.2 (3)C29—C34—C33120.1 (8)
O14—Co5—O1683.1 (2)N3—C35—C33108.4 (8)
O14—Co5—N297.2 (3)N3—C35—H35A110.0
O16—Co5—N2179.4 (3)N3—C35—H35B110.0
O1—Co6—O2134.7 (3)C33—C35—H35A110.0
O1—Co6—O3118.0 (3)C33—C35—H35B110.0
O1—Co6—O1495.6 (2)H35A—C35—H35B108.4
O1—Co6—N193.1 (3)N3—C36—H36117.2
O2—Co6—O3105.3 (3)N3—C36—C37125.5 (9)
O2—Co6—O1481.9 (2)C37—C36—H36117.2
O2—Co6—N190.6 (3)C38—C37—C36116.9 (9)
O3—Co6—O1476.0 (2)C38—C37—C42119.0 (9)
O3—Co6—N1101.5 (3)C42—C37—C36124.0 (8)
N1—Co6—O14171.1 (3)C37—C38—H38118.5
C16—O1—Co6127.4 (6)C39—C38—C37122.9 (11)
Co6—O2—Co1104.8 (3)C39—C38—H38118.5
C28—O2—Co1131.3 (5)C38—C39—H39121.1
C28—O2—Co6123.2 (5)C38—C39—C40117.8 (10)
Co5—O3—Co6102.7 (3)C40—C39—H39121.1
C14—O3—Co5117.8 (6)C39—C40—Cl3119.3 (9)
C14—O3—Co6129.8 (6)C41—C40—Cl3119.3 (10)
Co5—O4—Co495.9 (3)C41—C40—C39121.4 (10)
C6—O4—Co4130.2 (6)C40—C41—H41119.1
C6—O4—Co5127.2 (6)C40—C41—C42121.9 (10)
C42—O5—Co2126.4 (6)C42—C41—H41119.1
Co2—O6—Co1105.5 (3)O5—C42—C37125.5 (9)
C34—O6—Co1129.8 (5)O5—C42—C41117.8 (9)
C34—O6—Co2124.7 (5)C41—C42—C37116.8 (9)
Co3—O7—Co2103.5 (3)C44—C43—H43120.2
C44—O7—Co2127.8 (6)C44—C43—C45119.5 (10)
C44—O7—Co3118.3 (6)C45—C43—H43120.2
Co3—O8—Co496.3 (3)O7—C44—C43120.5 (9)
C56—O8—Co3127.6 (6)O7—C44—C48118.4 (9)
C56—O8—Co4130.9 (6)C48—C44—C43121.2 (9)
C57—O9—Co3128.6 (7)C43—C45—H45120.7
C57—O10—Co4125.2 (7)C46—C45—C43118.6 (11)
C59—O11—Co4124.4 (7)C46—C45—H45120.7
C59—O12—Co5127.7 (7)C45—C46—H46119.3
Co3—O13—Co1103.7 (3)C45—C46—C47121.5 (10)
Co3—O13—Co496.3 (3)C47—C46—H46119.3
Co4—O13—Co199.1 (2)C46—C47—H47120.1
C61—O13—Co1117.1 (5)C46—C47—C48119.8 (11)
C61—O13—Co3119.2 (5)C48—C47—H47120.1
C61—O13—Co4117.6 (5)C44—C48—C47119.3 (10)
Co5—O14—Co1100.6 (2)C44—C48—C49118.1 (8)
Co5—O14—Co696.1 (2)C47—C48—C49122.5 (10)
Co6—O14—Co193.5 (2)N4—C49—C48112.3 (8)
C62—O14—Co1123.3 (5)N4—C49—H49A109.1
C62—O14—Co5117.1 (5)N4—C49—H49B109.1
C62—O14—Co6120.7 (5)C48—C49—H49A109.1
Co2—O15—Co193.0 (2)C48—C49—H49B109.1
Co3—O15—Co1101.8 (3)H49A—C49—H49B107.9
Co3—O15—Co295.9 (2)N4—C50—H50117.1
C64—O15—Co1121.5 (5)N4—C50—C51125.8 (9)
C64—O15—Co2120.3 (6)C51—C50—H50117.1
C64—O15—Co3118.6 (5)C50—C51—C52116.6 (8)
Co4—O16—Co199.0 (2)C56—C51—C50125.4 (9)
Co5—O16—Co1103.8 (3)C56—C51—C52118.1 (9)
Co5—O16—Co496.1 (3)C51—C52—H52118.7
C63—O16—Co1117.3 (5)C53—C52—C51122.6 (10)
C63—O16—Co4118.0 (5)C53—C52—H52118.7
C63—O16—Co5118.9 (5)C52—C53—H53121.0
C21—N1—Co6125.1 (7)C52—C53—C54117.9 (10)
C21—N1—C22119.9 (8)C54—C53—H53121.0
C22—N1—Co6114.6 (6)C53—C54—Cl2119.3 (9)
C7—N2—Co5125.1 (7)C55—C54—Cl2118.2 (8)
C7—N2—C8117.6 (8)C55—C54—C53122.4 (10)
C8—N2—Co5117.1 (6)C54—C55—H55120.3
C35—N3—Co2115.0 (6)C54—C55—C56119.3 (9)
C36—N3—Co2124.7 (7)C56—C55—H55120.3
C36—N3—C35120.2 (8)O8—C56—C51121.9 (9)
C49—N4—Co3117.3 (6)O8—C56—C55118.4 (8)
C50—N4—Co3124.8 (7)C51—C56—C55119.7 (9)
C50—N4—C49117.9 (8)O9—C57—C58115.4 (11)
C2—C1—H1120.6O10—C57—O9126.9 (10)
C2—C1—C6118.7 (9)O10—C57—C58117.7 (10)
C6—C1—H1120.6C57—C58—H58A109.5
C1—C2—Cl1117.2 (9)C57—C58—H58B109.5
C1—C2—C3122.8 (11)C57—C58—H58C109.5
C3—C2—Cl1120.0 (8)H58A—C58—H58B109.5
C2—C3—H3121.2H58A—C58—H58C109.5
C4—C3—C2117.6 (10)H58B—C58—H58C109.5
C4—C3—H3121.2O11—C59—C60116.9 (12)
C3—C4—H4118.5O12—C59—O11127.9 (10)
C3—C4—C5123.0 (10)O12—C59—C60115.1 (11)
C5—C4—H4118.5C59—C60—H60A109.5
C4—C5—C6118.7 (9)C59—C60—H60B109.5
C4—C5—C7117.1 (9)C59—C60—H60C109.5
C6—C5—C7124.2 (9)H60A—C60—H60B109.5
O4—C6—C1118.4 (9)H60A—C60—H60C109.5
O4—C6—C5122.6 (9)H60B—C60—H60C109.5
C5—C6—C1119.0 (8)O13—C61—H61A109.5
N2—C7—C5126.0 (9)O13—C61—H61B109.5
N2—C7—H7117.0O13—C61—H61C109.5
C5—C7—H7117.0H61A—C61—H61B109.5
N2—C8—H8A109.2H61A—C61—H61C109.5
N2—C8—H8B109.2H61B—C61—H61C109.5
H8A—C8—H8B107.9O14—C62—H62A109.5
C9—C8—N2111.9 (8)O14—C62—H62B109.5
C9—C8—H8A109.2O14—C62—H62C109.5
C9—C8—H8B109.2H62A—C62—H62B109.5
C10—C9—C8123.0 (9)H62A—C62—H62C109.5
C10—C9—C14119.2 (10)H62B—C62—H62C109.5
C14—C9—C8117.7 (8)O16—C63—H63A109.5
C9—C10—H10119.4O16—C63—H63B109.5
C9—C10—C11121.3 (10)O16—C63—H63C109.5
C11—C10—H10119.4H63A—C63—H63B109.5
C10—C11—H11120.4H63A—C63—H63C109.5
C10—C11—C12119.2 (10)H63B—C63—H63C109.5
C12—C11—H11120.4O15—C64—H64A109.5
C11—C12—H12119.8O15—C64—H64B109.5
C13—C12—C11120.4 (11)O15—C64—H64C109.5
C13—C12—H12119.8H64A—C64—H64B109.5
C12—C13—H13121.2H64A—C64—H64C109.5
C12—C13—C14117.6 (10)H64B—C64—H64C109.5
Co1—O2—C28—C23150.5 (7)C4—C5—C6—C11.2 (15)
Co1—O2—C28—C2730.5 (12)C4—C5—C7—N2179.6 (10)
Co1—O6—C34—C2936.0 (12)C6—C1—C2—Cl1174.2 (9)
Co1—O6—C34—C33143.4 (7)C6—C1—C2—C33.1 (19)
Co2—O5—C42—C372.7 (13)C6—C5—C7—N21.8 (17)
Co2—O5—C42—C41177.4 (7)C7—N2—C8—C9127.1 (9)
Co2—O6—C34—C29142.0 (7)C7—C5—C6—O41.1 (16)
Co2—O6—C34—C3338.6 (11)C7—C5—C6—C1179.8 (10)
Co2—O7—C44—C4394.2 (10)C8—N2—C7—C5179.8 (9)
Co2—O7—C44—C4886.5 (10)C8—C9—C10—C11177.2 (10)
Co2—N3—C35—C3367.2 (9)C8—C9—C14—O34.3 (14)
Co2—N3—C36—C374.8 (14)C8—C9—C14—C13177.7 (10)
Co3—O7—C44—C43126.8 (8)C9—C10—C11—C120.6 (17)
Co3—O7—C44—C4852.4 (10)C10—C9—C14—O3176.6 (9)
Co3—O8—C56—C517.8 (13)C10—C9—C14—C131.5 (16)
Co3—O8—C56—C55174.7 (7)C10—C11—C12—C131.3 (17)
Co3—O9—C57—O101.9 (19)C11—C12—C13—C141.8 (17)
Co3—O9—C57—C58178.5 (11)C12—C13—C14—O3178.4 (10)
Co3—N4—C49—C4849.1 (10)C12—C13—C14—C90.4 (16)
Co3—N4—C50—C513.2 (14)C14—C9—C10—C112.0 (16)
Co4—O4—C6—C128.7 (13)C15—C16—C17—C191.9 (14)
Co4—O4—C6—C5150.4 (8)C15—C16—C17—C21175.5 (9)
Co4—O8—C56—C51156.0 (7)C16—C15—C20—Cl4180.0 (8)
Co4—O8—C56—C5526.5 (13)C16—C15—C20—C180.8 (17)
Co4—O10—C57—O92.0 (19)C16—C17—C19—C180.6 (16)
Co4—O10—C57—C58178.4 (11)C16—C17—C21—N16.9 (16)
Co4—O11—C59—O127 (2)C19—C17—C21—N1175.6 (10)
Co4—O11—C59—C60177.1 (10)C19—C18—C20—Cl4178.7 (9)
Co5—O3—C14—C955.1 (11)C19—C18—C20—C152.1 (17)
Co5—O3—C14—C13123.0 (9)C20—C15—C16—O1178.6 (9)
Co5—O4—C6—C1172.9 (7)C20—C15—C16—C171.3 (15)
Co5—O4—C6—C56.2 (13)C20—C18—C19—C171.4 (17)
Co5—O12—C59—O1112 (2)C21—N1—C22—C23104.6 (10)
Co5—O12—C59—C60172.4 (10)C21—C17—C19—C18177.0 (10)
Co5—N2—C7—C54.8 (15)C22—N1—C21—C17172.7 (9)
Co5—N2—C8—C948.4 (10)C22—C23—C24—C25176.7 (9)
Co6—O1—C16—C15175.9 (7)C22—C23—C28—O24.2 (14)
Co6—O1—C16—C174.0 (13)C22—C23—C28—C27174.8 (9)
Co6—O2—C28—C2341.1 (11)C23—C24—C25—C260.8 (15)
Co6—O2—C28—C27137.9 (7)C24—C23—C28—O2177.7 (8)
Co6—O3—C14—C984.4 (11)C24—C23—C28—C273.3 (14)
Co6—O3—C14—C1397.5 (10)C24—C25—C26—C271.2 (15)
Co6—N1—C21—C170.4 (14)C25—C26—C27—C280.7 (15)
Co6—N1—C22—C2368.5 (9)C26—C27—C28—O2178.0 (8)
Cl1—C2—C3—C4174.3 (10)C26—C27—C28—C233.0 (14)
Cl2—C54—C55—C56179.0 (9)C28—C23—C24—C251.5 (15)
Cl3—C40—C41—C42177.6 (8)C29—C30—C31—C321.9 (17)
O1—C16—C17—C19178.0 (9)C30—C29—C34—O6173.2 (9)
O1—C16—C17—C214.6 (15)C30—C29—C34—C336.2 (14)
O7—C44—C48—C47177.3 (9)C30—C31—C32—C331.6 (17)
O7—C44—C48—C494.4 (13)C31—C32—C33—C342.6 (15)
O9—Co3—O7—Co2172.2 (3)C31—C32—C33—C35178.6 (10)
O9—Co3—O7—C4440.1 (7)C32—C33—C34—O6173.0 (9)
O9—Co3—O8—Co477.2 (3)C32—C33—C34—C296.4 (14)
O9—Co3—O8—C5679.2 (8)C32—C33—C35—N3132.3 (9)
O12—Co5—O3—Co6175.3 (3)C34—C29—C30—C312.0 (15)
O12—Co5—O3—C1435.4 (7)C34—C33—C35—N349.0 (12)
O12—Co5—O4—Co476.5 (3)C35—N3—C36—C37172.1 (9)
O12—Co5—O4—C676.8 (7)C35—C33—C34—O65.7 (14)
O13—Co3—O7—Co278.8 (3)C35—C33—C34—C29174.9 (9)
O13—Co3—O7—C44133.4 (6)C36—N3—C35—C33109.9 (10)
O13—Co3—O8—Co416.3 (3)C36—C37—C38—C39175.8 (10)
O13—Co3—O8—C56172.6 (8)C36—C37—C42—O57.0 (15)
O14—Co5—O3—Co61.3 (3)C36—C37—C42—C41172.9 (9)
O14—Co5—O3—C14148.0 (7)C37—C38—C39—C402.8 (16)
O14—Co5—O4—Co499.9 (2)C38—C37—C42—O5176.1 (9)
O14—Co5—O4—C6106.8 (7)C38—C37—C42—C414.0 (13)
O15—Co3—O7—Co23.5 (3)C38—C39—C40—Cl3174.8 (8)
O15—Co3—O7—C44144.3 (7)C38—C39—C40—C414.2 (15)
O15—Co3—O8—Co498.2 (3)C39—C40—C41—C421.4 (16)
O15—Co3—O8—C56105.4 (8)C40—C41—C42—O5177.4 (9)
O16—Co5—O3—Co682.0 (3)C40—C41—C42—C372.7 (14)
O16—Co5—O3—C14128.8 (6)C42—C37—C38—C391.4 (15)
O16—Co5—O4—Co416.9 (2)C43—C44—C48—C471.9 (15)
O16—Co5—O4—C6170.2 (7)C43—C44—C48—C49176.3 (9)
N1—C22—C23—C24125.0 (10)C43—C45—C46—C472.4 (18)
N1—C22—C23—C2853.1 (12)C44—C43—C45—C463.4 (17)
N2—Co5—O3—Co698.4 (3)C44—C48—C49—N457.7 (12)
N2—Co5—O3—C1450.9 (7)C45—C43—C44—O7179.5 (10)
N2—Co5—O4—Co4162.8 (3)C45—C43—C44—C481.2 (15)
N2—Co5—O4—C69.5 (8)C45—C46—C47—C480.8 (18)
N2—C8—C9—C10123.2 (10)C46—C47—C48—C443.0 (16)
N2—C8—C9—C1457.7 (12)C46—C47—C48—C49175.2 (10)
N3—C36—C37—C38177.4 (10)C47—C48—C49—N4124.2 (10)
N3—C36—C37—C425.6 (16)C49—N4—C50—C51178.7 (9)
N4—Co3—O7—Co299.8 (3)C50—N4—C49—C48129.2 (9)
N4—Co3—O7—C4448.0 (7)C50—C51—C52—C53179.8 (11)
N4—Co3—O8—Co4165.1 (3)C50—C51—C56—O81.9 (15)
N4—Co3—O8—C568.8 (8)C50—C51—C56—C55179.4 (10)
N4—C50—C51—C52179.8 (10)C51—C52—C53—C540.3 (18)
N4—C50—C51—C560.4 (16)C52—C51—C56—O8177.5 (9)
C1—C2—C3—C43 (2)C52—C51—C56—C550.1 (15)
C2—C1—C6—O4178.7 (11)C52—C53—C54—Cl2178.6 (10)
C2—C1—C6—C52.1 (16)C52—C53—C54—C551.2 (19)
C2—C3—C4—C51.9 (19)C53—C54—C55—C561.6 (19)
C3—C4—C5—C61.1 (17)C54—C55—C56—O8178.5 (10)
C3—C4—C5—C7179.8 (11)C54—C55—C56—C511.0 (16)
C4—C5—C6—O4179.7 (9)C56—C51—C52—C530.3 (16)
 

Funding information

Funding for this research was provided by: Natural Science Foundation of Shaanxi Province (grant Nos. 2022JZ-49 and 2022NY-071); Innovation and Entrepreneurship Training Program of College Students of Shaanxi Province (grant No. S202210719111); Natural Science Foundation of Yulin (grant No. CXY-2020-065).

References

First citationAlley, K. G., Bircher, R., Waldmann, O., Ochsenbein, S. T., Güdel, H. U., Moubaraki, B., Murray, K. S., Fernandez-Alonso, F., Abrahams, B. F. & Boskovic, C. (2006). Inorg. Chem. 45, 8950–8957.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAmtul, Z., Atta-ur-Rahman, B. S. P., Siddiqui, R. A. & Choudhary, M. I. (2002). Curr. Med. Chem. 9, 1323–1348.  CrossRef PubMed CAS Google Scholar
First citationAzizian, H., Nabati, F., Sharifi, A., Siavoshi, F., Mahdavi, M. & Amanlou, M. (2012). J. Mol. Model. 18, 2917–2927.  CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrechin, E. K., Harris, S. G., Harrison, A., Parsons, S., Gavin Whittaker, A. & Winpenny, R. E. P. (1997). Chem. Commun. pp. 653–654.  CSD CrossRef Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y. Y., Chen, Y. M., Li, L., Gao, D. D., Liu, W., Hu, H. L., Li, W. & Li, Y. H. (2013). Dalton Trans. 42, 10912–10918.  CSD CrossRef CAS PubMed Google Scholar
First citationChen, Q., Zeng, M. H., Wei, L. Q. & Kurmoo, M. (2010). Chem. Mater. 22, 4328–4334.  CSD CrossRef CAS Google Scholar
First citationColacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054–2064.  Web of Science CSD CrossRef CAS Google Scholar
First citationDastidar, T. G. & Chattopadhyay, S. (2022). Polyhedron, 211, 115511–115536.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGe, Y., Qin, Y. R., Cui, Y. F., Pan, Y. D., Huang, Y., Li, Y. H., Liu, W. & Zhang, Y. Q. (2018). Chem. Asian J. 13, 3753–3761.  CSD CrossRef CAS PubMed Google Scholar
First citationGuo, J. Y., Zhang, D., Chen, L., Song, Y., Zhu, D. R. & Xu, Y. (2013). Dalton Trans. 42, 8454–8459.  CSD CrossRef CAS PubMed Google Scholar
First citationGutschke, S. O. H., Price, D. I., Powell, A. K. & Wood, P. T. (1999). Angew. Chem. Int. Ed. 38, 1088–1090.  CrossRef CAS Google Scholar
First citationHazari, A., Das, A., Mahapatra, P. & Ghosh, A. (2017). Polyhedron, 134, 99–106.  CSD CrossRef CAS Google Scholar
First citationHuang, Y., Qin, Y. R., Ge, Y., Cui, Y. F., Zhang, X. M., Li, Y. H. & Yao, J. L. (2019). New J. Chem. 43, 19344–19354.  CSD CrossRef CAS Google Scholar
First citationJing, Y., Zhang, X. M., Cui, Y. F., Li, D. W., Sun, H., Ge, Y. & Li, Y. H. (2020). Chin. J. Struct. Chem. 39, 1057–1062.  Google Scholar
First citationJones, L. F., Kilner, C. A. & Halcrow, M. A. (2009). Chem. Eur. J. 15, 4667–4675.  CSD CrossRef PubMed CAS Google Scholar
First citationKumagai, H., Oka, Y., Kawata, S., Ohba, M., Inoue, K., Kurmoo, M. & Ōkawa, H. (2003). Polyhedron, 22, 1917–1920.  Web of Science CSD CrossRef CAS Google Scholar
First citationLazzarini, I. C., Carrella, L., Rentschler, E. & Alborés, P. (2012). Polyhedron, 31, 779–788.  CSD CrossRef CAS Google Scholar
First citationLi, D. W., Ding, M. M., Huang, Y., Tello Yepes, D. F., Li, H. Y., Li, Y. H., Zhang, Y. Q. & Yao, J. L. (2021). Dalton Trans. 50, 217–228.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, X., Guo, Y., Xu, T., Fang, M., Xu, Q., Zhang, F., Wu, Z., Li, C. & Zhu, W. (2020). J. Chin. Chem. Soc. 67, 1070–1077.  CrossRef CAS Google Scholar
First citationLiu, Y. N., Hou, J. L., Wang, Z., Gupta, R. K., Jagličić, Z., Jagodič, M., Wang, W. G., Tung, C. H. & Sun, D. (2020). Inorg. Chem. 59, 5683–5693.  CSD CrossRef CAS PubMed Google Scholar
First citationMa, Y. S., Xue, F. F., Tang, X. Y., Chen, B. & Yuan, R. X. (2012). Inorg. Chem. Commun. 15, 285–287.  CSD CrossRef CAS Google Scholar
First citationMalassa, A., Agthe, C., Görls, H., Podewitz, M., Yu, L., Herrmann, C., Reiher, M. & Westerhausen, M. (2010). Eur. J. Inorg. Chem. 2010, 1777–1790.  CSD CrossRef Google Scholar
First citationMonte-Pérez, I., Kundu, S., Chandra, A., Craigo, K. E., Chernev, P., Kuhlmann, U., Dau, H., Hildebrandt, P., Greco, C., Van Stappen, C., Lehnert, N. & Ray, K. (2017). J. Am. Chem. Soc. 139, 15033–15042.  PubMed Google Scholar
First citationMurrie, M., Teat, S. J., Stoeckli-Evans, H. & Güdel, H. U. (2003). Angew. Chem. Int. Ed. 42, 4653–4656.  CSD CrossRef CAS Google Scholar
First citationNesterov, D. S. & Nesterova, O. V. (2018). Catalysts, 8, 602–623.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPattacini, R., Teo, P., Zhang, J., Lan, Y. H., Powell, A. K., Nehrkorn, J., Waldmann, O., Hor, T. S. A. & Braunstein, P. (2011). Dalton Trans. 40, 10526–10534.  CSD CrossRef CAS PubMed Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQin, Y., Zhang, H. F., Sun, H., Pan, Y. D., Ge, Y., Li, Y. H. & Zhang, Y. Q. (2017). Chem. Asian J. 12, 2834–2844.  CSD CrossRef CAS PubMed Google Scholar
First citationQin, Y. R., Jing, Y., Ge, Y., Liu, W., Li, Y. H. & Zhang, Y. Q. (2018). Dalton Trans. 47, 15197–15205.  CSD CrossRef CAS PubMed Google Scholar
First citationRadu, I., Kravtsov, V. Ch., Ostrovsky, S. M., Reu, O. S., Krämer, K., Decurtins, S., Liu, S. X., Klokishner, S. I. & Baca, S. G. (2017). Inorg. Chem. 56, 2662–2676.  CSD CrossRef CAS PubMed Google Scholar
First citationSarto, C., Rouzières, M., Liu, J. L., Bamberger, H., van Slageren, J., Clérac, R. & Alborés, P. (2018). Dalton Trans. 47, 17055–17066.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z. H., Huang, Y., Wu, Y. Z., Chen, X. L. & Yang, H. (2021). Chin. J. Struct. Chem. 40, 495–500.  CAS Google Scholar
First citationShiga, T. & Oshio, H. (2007). Polyhedron, 26, 1881–1884.  CSD CrossRef CAS Google Scholar
First citationShul'pin, G. B. & Shul'pina, L. S. (2021). Catalysts, 11, 186–223.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanaka, T., Kawase, M. & Tani, S. (2003). Life Sci. 73, 2985–2990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTudor, V., Madalan, A., Lupu, V., Lloret, F., Julve, M. & Andruh, M. (2010). Inorg. Chim. Acta, 363, 823–826.  CSD CrossRef CAS Google Scholar
First citationWang, J., Jian, F. F., Huang, B. X. & Bai, Z. S. (2013). J. Solid State Chem. 204, 272–277.  CSD CrossRef CAS Google Scholar
First citationZou, J. Y., Shi, W., Gao, H. L., Cui, J. Z. & Cheng, P. (2014). Wuji Huaxue Xuebao, 30, 149–154.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds