research papers
Synthesis and spectroscopic and structural characterization of three new 2-methyl-4-styrylquinolines formed using Friedländer reactions between (2-aminophenyl)chalcones and acetone
aLaboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: cg@st-andrews.ac.uk
Three new 2-methyl-4-styrylquinoline derivatives have been synthesized in high yields using Friedländer reactions between 1H and 13C NMR spectroscopy, and and by analysis. In (E)-4-(4-fluorostyryl)-2-methylquinoline, C18H14FN, (I), the molecules are joined into cyclic centrosymmetric dimers by C—H⋯N hydrogen bonds and these dimers are linked into sheets by π–π stacking interactions. The molecules of (E)-2-methyl-4-[4-(trifluoromethyl)styryl]quinoline, C19H14F3N, (II), are linked into cyclic centrosymmetric dimers by C—H⋯π hydrogen bonds and these dimers are linked into chains by a single π–π stacking interaction. There are no significant hydrogen bonds in the structure of (E)-4-(2,6-dichlorostyryl)-2-methylquinoline, C18H13Cl2N, (III), but molecules related by translation along [010] form stacks with an intermolecular spacing of only 3.8628 (2) Å. Comparisons are made with the structures of some related compounds.
[1-(2-aminophenyl)-3-arylprop-2-en-1-ones] and acetone, and characterized using IR,1. Introduction
The quinoline nucleus constitutes a privileged scaffold because of the wide spectrum of promising biological activity exhibited by its derivatives (Kumar et al., 2009). Among quinoline derivatives, 2-styrylquinolines have been studied extensively, mainly because of their potential as inhibitors of HIV-1 integrase (Leonard & Roy, 2008; Mahajan et al., 2018; Mousnier et al., 2004) and as antimicrobial (Kamal et al., 2015), antifungal (Cieslik et al., 2012) and anticancer agents (Mrozek-Wilczkiewicz et al., 2015, 2019).
Accordingly, considerable efforts have been made in the development of effective methods for accessing new compounds containing the styrylquinoline scaffold (Musiol, 2020). Unlike 2-styrylquinolines, the 4-styrylquinoline regioisomers have been studied much less, with few published reports related to their synthesis and biological evaluation, which is probably due, at least in part, to a lack of generally applicable methodologies for their synthesis. In general, the published syntheses of 4-styrylquinolines have involved Heck coupling between 4-haloquinolines and different aryl–vinyl compounds (Omar & Hormi, 2009), and Knoevenagel-type condensation reactions between 4-methylquinolines and aromatic using expensive and toxic heavy-metal catalysts (Jamal et al., 2016) or microwave irradiation (Lee et al., 2009). The use of palladium catalysts in the cross-coupling reaction between 4-chloroquinolines and alkenyltrifluoroborates under harsh reaction conditions has also been reported (Alacid & Nájera, 2009). Nonetheless, there still remains a need for alternative approaches for the construction of 4-styrylquinolines starting from readily accessible materials and characterized by high atom efficiency and low cost.
In this context, and as part of an ongoing program exploring the rational use of synthetically available 1-(2-aminophenyl)-3-arylprop-2-en-1-ones (Meléndez et al., 2020) as appropriate precursors for the synthesis of novel quinoline derivatives, we have recently described a simple and efficient one-pot synthetic approach based on the Friedländer reaction to obtain polysubstituted 2-methyl-4-styrylquinolines starting from these simple precursors and different 1,3-dicarbonyl compounds (Meléndez et al., 2020).
To expand further both the synthetic utility of 1-(2-aminophenyl)-3-arylprop-2-en-1-ones and the flexibility of our approach, we report here the synthesis, characterization and molecular and supramolecular structures of a matched set of three closely-related quinoline derivatives, namely, (E)-4-(4-fluorostyryl)-2-methylquinoline, (I), (E)-2-methyl-4-[4-(trifluoromethyl)styryl]quinoline, (II), and (E)-4-(2,6-dichlorostyryl)-2-methylquinoline, (III) (Scheme 1 and Figs. 1–3), which differ only in the nature of the substituents at the C4 and C2/C6 positions on the benzene ring of the styryl fragment. Using our synthetic approach (Meléndez et al., 2020), (E)-1-(2-aminophenyl)-3-arylprop-2-en-1-ones of type (A) (Scheme 1) were subjected to Friedlander with an excess of acetone in glacial acetic acid at 373 K, to provide the products (I)–(III) with yields in the range 77–94% (Scheme 1). These new 2-methylquinoline derivatives are intended for use as key precursors in the further development of more complex molecules of possible biological value, such as the bis-styrylquinolines (IV) (Scheme 2), (4-styrylquinolin-2-yl)chalcones of the type (V) and the molecular hybrids of types (VI) and (VII).
2. Experimental
2.1. Synthesis and crystallization
For the synthesis of compounds (I)–(III), a mixture of the appropriate 1-(2-aminophenyl)-3-arylprop-2-en-1-ones (A) (Meléndez et al., 2020; see Scheme 1) (1.0 mmol) and acetone (12.0 mmol) in glacial acetic acid (3 ml) was stirred magnetically and heated at 353 K until the reactions were complete, as judged by the complete consumption of (A) (as monitored by TLC); the reaction times for completion were 15 h for (I), 19 h for (II) and 14 h for (III). Each reaction mixture was then neutralized with a saturated aqueous sodium carbonate solution and extracted with ethyl acetate (3 × 50 ml). The combined organic layers were washed with water and dried over anhydrous sodium sulfate, and the solvent was then removed under reduced pressure. In each case, the resulting crude product was purified by flash on silica-gel using hexane–ethyl acetate mixtures as (compositions ranged from 7:1 to 2:1 v/v) to give the required solid compounds (I)–(III). Crystallization from hexane–ethyl acetate (10:1 v/v) at ambient temperature and in the presence of air gave crystals suitable for single-crystal X-ray diffraction; these were yellow for (I) and (III), and colourless for (II).
Compound (I): yield 0.21g (84%), m.p. 395–397 K, Rf = 0.28 (16.6% ethyl acetate–hexane). FT–IR (ATR, cm−1): 1632 (C=N), 1598 (C=Cvinyl), 1587 (C=Carom), 1506 (C=Carom), 965 (=C—Htrans). NMR (CDCl3): δ(1H) 8.13 (dd, J = 8.4, 1.4 Hz, 1H, H5), 8.05 (dd, J = 8.4, 1.6 Hz, 1H, H8), 7.69 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H7), 7.68 (d, J = 16.1 Hz, 1H, HA—C=), 7.56–7.61 (m, 2H, H2′, H6′), 7.52 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H, H6), 7.47 (s, 1H, H3), 7.27 (d, J = 16.1 Hz, 1H, =CHB), 7.09–7.14 (m, 2H, H3′, H5′), 2.77 (s, 3H, 2-CH3); δ(13C) 163.0 (d, J = 248.9 Hz, C4′), 158.7 (C2), 148.4 (C8a), 142.8 (C4), 133.6 (=CHB), 132.9 (d, J = 3.6 Hz, C1′), 129.4 (C8), 129.3 (C7), 128.7 (d, J = 8.1 Hz, C2′, C6′), 125.7 (C6), 124.7 (C4a), 123.2 (C5), 122.9 (d, J = 2.3 Hz, HAC=), 117.9 (C3), 115.9 (d, J = 21.9 Hz, C3′, C5′), 25.4 (2-CH3). HRMS (ESI+) m/z found for [M + H]+ 264.1181, C18H14FN requires 263.11
Compound (II): yield (77%); m.p. 391–392 K, Rf = 0.34 (50% ethyl acetate–hexane). FT–IR (ATR, cm−1): 1620 (C=N), 1587 (C=Cvinyl), 1505 (C=Carom), 1408 (C=Carom), 964 (=C—Htrans). NMR (CDCl3): δ(1H) 8.13 (dd, J = 8.3, 1.4 Hz, 1H, H5), 8.06 (dd, J = 8.4, 1.5, Hz, 1H, H8), 7.86 (d, J = 16.1 Hz, 1H, HA—C=), 7.72 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H, H7), 7.72 (d, J = 8.5 Hz, 2H, H2′, H6′), 7.68 (d, J = 8.5 Hz, 2H, H3′, H5′), 7.54 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H, H6), 7.50 (d, J = 0.7 Hz, 1H, H3), 7.32 (d, J = 16.1 Hz, 1H, =CHB), 2.79 (s, 3H, 2-CH3); δ (13C) 158.8 (C2), 148.5 (C8a), 142.3 (C4), 140.0 (C1′), 133.2 (=CHB), 130.3 (d, J = 32.4 Hz, C4′), 129.5 (C7), 129.4 (C8), 127.2 (C2′, C6′, C3′, C5′), 125.9 (q, J = 3.7 Hz, 4-CF3), 125.4 (C6), 124.7 (C4a), 123.1 (C5), 122.7 (HA—C=), 118.2 (C3), 25.4 (2-CH3). HRMS (ESI+) m/z found for [M + H]+ 314.115, C19H14F3N requires 313.1078.
Compound (III): yield 0.25 g (94%), m.p. 410-412 K, Rf = 0.31 (12.5% ethyl acetate–hexane). FT–IR (ATR, cm−1): 1629 (C=N), 1593 (C=Cvinyl), 1554 (C=Carom), 1505 (C=Carom), 959 (=C—Htrans). NMR (CDCl3): δ(1H) 8.10 (dd, J = 8.5, 1.4 Hz, 1H, H5), 8.06 (dd, J = 8.5, 1.4 Hz, 1H, H8), 7.85 (dd, J = 16.5, 0.87 Hz, 1H, HA—C=), 7.70 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H7), 7.53 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H, H6), 7.53 (s, 1H, H3), 7.41 (d, J = 8.0 Hz, 2H, H3′, H5′), 7.18 (dd, J = 8.4, 7.7 Hz, 1H, H4′), 7.28 (d, J = 16.5 Hz, 1H, =CHB), 2.80 (s, 3H, 2-CH3). δ (13C) 158.8 (C2), 148.4 (C8a), 142.2 (C4), 137.2 (C1′), 134.7 (C2′, C6′), 133.8 (C3′), 132.4 (HAC=), 130.9 (=CHB), 130.1 (C4′), 129.3 (C7), 129.4 (C8), 127.4 (C5′), 125.9 (C6), 124.8 (C4a), 123.6 (C5), 118.5 (C3), 25.5 (2-CH3). HRMS (ESI+) m/z found for [M + H]+ 314.0500, C18H13Cl2N requires 313.0425.
2.2. Refinement
Crystal data, data collection and . A small number of bad outlier reflections [36 for (I), 204 and 36 for (II), and 16,0,0 and 339 for (III)] were omitted from the data sets. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 (alkenic and aromatic) and 0.98 Å (CH3), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms.
details are summarized in Table 13. Results and discussion
All compounds were fully characterized by standard spectroscopic and analytical methods. In the IR spectra of (I)–(III), the absence of any N—H stretching bands around 3275–3285 cm−1, which are characteristic in the spectra of (2-aminophenyl)chalcone precurors, was used for monitoring the formation of the quinoline ring. The formation of the 4-styrylquinoline scaffold was confirmed by a detailed analysis of the 1H, 13C and 2D NMR spectra, which showed no signals arising from the H atoms of the amino group; neither were there any signals from the carbonyl groups which had been present in the precursor Instead, the 13C spectra of the products contained signals from a new Caryl—H unit (C-3) in the range δ 117.9–118.5, and two new quaternary aromatic C atoms at δ 158.7–158.8 (C-2) and 142.2–142.8 (C-4). As in the spectra of the precursor the 1H spectra of products (I)–(III) contained signals from the trans vinylic protons –CHA=CHB–, appearing as two doublets (see Section 2.1). Finally, definitive confirmation of the molecular constitutions and the regio- and stereochemistry for compounds (I)–(III) was established by means of single-crystal X-ray diffraction, and thus we report here also the molecular and supramolecular structures for all three examples (Figs. 1–3).
These new 2-methylquinoline derivatives (I)–(III) are intended for use as key precursors in the further development of more complex molecules of possible biological value, such as the bis-styrylquinolines (IV) (Scheme 2), (4-styrylquinolin-2-yl)chalcones of the type (V), and the molecular hybrids of types (VI) and (VII), and the work reported here can be regarded as a continuation of an earlier crystallographic study which reported the structures of 2-methyl-4-styrylquinolines having either acetyl or carboethoxy functionalities at position C3 (Rodríguez et al., 2020).
The molecules of compounds (I)–(III) exhibit no internal symmetry, as indicated by the key torsion angles (Table 2). They are thus not superimposable upon their mirror images and hence they are all conformationally chiral (Moss, 1996; Flack & Bernardinelli, 1999). The space groups (Table 1) confirm that the crystals of each compound contain equal numbers of the two conformational enantiomers; for each compound, the reference molecule was selected as one having a positive sign for the torsion angle C3—C4—C41—C42 (Table 2). Only in compound (II) is the styryl fragment involved in direction-specific intermolecular interactions, as discussed below, and hence there appears to be no simple interpretation of the conformational differences in compounds (I)–(III), other than to note that the barriers to rotation about the C—C single bonds are generally quite low, typically a few kJ mol−1 (Alkorta & Elguero, 1998).
|
The supramolecular assembly in compounds (I)–(III) is very simple (Table 3). There is a single hydrogen bond in the structure of (I). In the structure of (II), there is a C—H⋯π(arene) hydrogen bond, but for the intermolecular C—H⋯N contact, the H⋯N distance exceeds the sum, 2.70 Å, of the van der Waals radii for these atoms (Rowland & Taylor, 1996); hence, this is just a normal intermolecular contact with no associated attractive interaction which could be regarded as structurally significant. The C—H⋯N contact in compound (III) involves a methyl group (Table 3), where the C—H bonds are of low acidity. More significantly, methyl groups are, in general, likely to be undergoing very fast rotation about the adjacent C—C bond in the solid state (Riddell & Rogerson, 1996, 1997). For methyl groups bonded to planar fragments such as aryl rings, the sixfold barrier to rotation is usually very small, only a few J mol−1 rather than the typical order of magnitude in kJ mol−1 (Naylor & Wilson, 1957; Tannenbaum et al., 1956). Hence, this contact cannot be regarded as structurally significant. There are π–π stacking interactions in each structure.
|
In the structure of (I), inversion-related pairs of molecules are linked by almost linear C—H⋯N hydrogen bonds (Table 3) to form centrosymmetric dimers characterized by an R22(8) motif (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) (Fig. 4). Dimers of this type are linked into sheets by π–π stacking interactions; the quinoline units of the molecule at (x, y, z), makes dihedral angles of 9.21 (7)° with the corresponding rings of the molecules at (x, −y + , z + ) and (x, −y + , z − ), with ring-centroid separations of 3.7682 (9) Å in each case, with the shortest distance between the centroid of one ring and the plane of the other of 3.5610 (6) Å. The combination of inversion and glide-plane operations leads to the formation of a sheet of π-stacked dimers lying parallel to (100) (Fig. 4).
In the structure of compound (II), inversion-related pairs of molecules are linked by a C—H⋯π(arene) hydrogen bond to form centrosymmetric dimers (Fig. 5), and these dimers are linked into chains by a single π–π stacking interaction; the heterocyclic rings in the molecules at (x, y, z) and (−x + 1, y, −z + ) are strictly parallel, with an interplanar spacing of 3.5058 (6) Å and a ring-centroid separation of 3.6845 (9) Å, corresponding to a ring-centroid offset of 1.1335 (12) Å. By this means, the hydrogen-bonded dimers are linked into a chain running parallel to [001] (Fig. 5).
Although there are no hydrogen bonds in the structure of compound (III), the molecules which are related by translation along the [010] direction are stacked precisely in register with a spacing equal to the unit-cell vector b = 3.8629 (2) Å (Fig. 6). Eight stacks of this kind pass through each (Fig. 7), but there are no direction-specific interactions between adjacent stacks.
We have previously reported (Rodríguez et al., 2020) the synthesis and structures of a number of 4-styrylquinoline derivatives carrying either acetyl or carboethoxy substituents at position C-3. Of these, three closely related acetyl derivatives were found to be isomorphous, with their molecules linked into simple C(6) chains by a single C—H⋯O hydrogen bond. By contrast, the matching set of carboethoxy derivatives all exhibited different crystallization characteristics and different modes of supramolecular assembly, with one forming C(13) chains and the other two forming cyclic centrosymmetric dimers involving C—H⋯O hydrogen bonds in one case and C—H⋯π hydrogen bonds in the other. In addition, two other examples carrying acyl substituents have been reported (Meléndez et al., 2020) on a proof-of-structure basis without detailed structure analysis or description, but subsequent re-examination (Rodríguez et al., 2020) found a complex sheet structure in one of them, but no significant intermolecular interactions in the other.
The structures of a number of other styrylquinolines are recorded in the Cambridge Structural Database (CSD; Groom et al., 2016), but it is striking that the majority of these structures are of 2-styrylquinoline derivatives, along with those of a small number of 8-styrylquinolines. This may reflect, at least in part, a lack of efficient, straightforward and versatile routes to other isomeric styrylquinolines. The structure of 2-styrylquinoline itself has been reported three times (Valle et al., 1986; Gulakova et al., 2011; Kuz'mina et al., 2011), as have those of 2-[2-(4-methylphenyl)vinyl]quinoline (Gulakova et al., 2011; Kuz'mina et al., 2011; Das et al., 2019) and 2-[2-(3,4-methoxyphenyl)vinyl]quinolone (Gulakova et al., 2011; Kuz'mina et al., 2011; Sharma et al., 2021). There are two reports on the structure of 2-[2-(3-nitrophenyl)vinyl]quinoline (Gulakova et al., 2011; Kuz'mina et al., 2011) and one on the structure of 4-phenyl-2-styrylquinoline (Makela et al., 2021). In all of these 2-styrylquinolines, the molecular skeleton is planar, in marked contrast to the nonplanar conformations of the 4-styrylquinoline derivatives (I)–(III) reported here, and of those reported previously (Rodríguez et al., 2020). In both 8-styrylquinoline and 8-[2-(biphenyl-4-yl)vinyl]-2-methylquinoline, the styrylquinoline fragment is planar (Sharma et al., 2015), as found in 2-styrylquinolines but again in marked contrast to 4-styrylquinolines. It is not easy to see why 4-styrylquinolines should adopt nonplanar conformations, while molecules of the 2-styryl and 8-styryl isomers appear consistently to adopt planar forms.
Supporting information
https://doi.org/10.1107/S2053229622008634/ky3221sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229622008634/ky3221Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2053229622008634/ky3221IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2053229622008634/ky3221IIIsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229622008634/ky3221Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229622008634/ky3221IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229622008634/ky3221IIIsup7.cml
For all structures, data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).C18H14FN | F(000) = 552 |
Mr = 263.30 | Dx = 1.364 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.5921 (7) Å | Cell parameters from 2950 reflections |
b = 12.7103 (6) Å | θ = 2.2–27.5° |
c = 7.6215 (3) Å | µ = 0.09 mm−1 |
β = 103.133 (2)° | T = 100 K |
V = 1282.25 (10) Å3 | Needle, yellow |
Z = 4 | 0.20 × 0.08 × 0.07 mm |
Bruker D8 Venture diffractometer | 2949 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 2342 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.079 |
φ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −17→17 |
Tmin = 0.934, Tmax = 0.994 | k = −16→16 |
38068 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0315P)2 + 0.8512P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2949 reflections | Δρmax = 0.26 e Å−3 |
182 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.38298 (9) | 0.09596 (10) | 0.33198 (16) | 0.0184 (3) | |
C2 | 0.29100 (11) | 0.11467 (12) | 0.23444 (19) | 0.0176 (3) | |
C3 | 0.25558 (11) | 0.21776 (12) | 0.18306 (19) | 0.0176 (3) | |
H3 | 0.1892 | 0.2272 | 0.1115 | 0.021* | |
C4 | 0.31611 (11) | 0.30404 (11) | 0.23560 (19) | 0.0167 (3) | |
C4A | 0.41653 (10) | 0.28596 (11) | 0.33921 (19) | 0.0163 (3) | |
C5 | 0.48647 (11) | 0.36772 (12) | 0.4033 (2) | 0.0191 (3) | |
H5 | 0.4685 | 0.4386 | 0.3719 | 0.023* | |
C6 | 0.57984 (11) | 0.34538 (12) | 0.5101 (2) | 0.0204 (3) | |
H6 | 0.6260 | 0.4008 | 0.5523 | 0.024* | |
C7 | 0.60735 (11) | 0.24060 (12) | 0.5574 (2) | 0.0204 (3) | |
H7 | 0.6716 | 0.2261 | 0.6336 | 0.024* | |
C8 | 0.54267 (11) | 0.15932 (12) | 0.4950 (2) | 0.0196 (3) | |
H8 | 0.5628 | 0.0889 | 0.5257 | 0.024* | |
C8A | 0.44577 (11) | 0.18016 (11) | 0.38490 (19) | 0.0170 (3) | |
C21 | 0.22304 (12) | 0.02127 (12) | 0.1834 (2) | 0.0225 (3) | |
H21A | 0.1914 | 0.0036 | 0.2830 | 0.034* | |
H21B | 0.2628 | −0.0388 | 0.1578 | 0.034* | |
H21C | 0.1705 | 0.0381 | 0.0759 | 0.034* | |
C41 | 0.27793 (11) | 0.41183 (11) | 0.19305 (19) | 0.0174 (3) | |
H41 | 0.3216 | 0.4626 | 0.1597 | 0.021* | |
C42 | 0.18432 (11) | 0.44098 (11) | 0.19947 (19) | 0.0173 (3) | |
H42 | 0.1420 | 0.3877 | 0.2295 | 0.021* | |
C421 | 0.13959 (10) | 0.54644 (11) | 0.16520 (18) | 0.0163 (3) | |
C422 | 0.04269 (11) | 0.56378 (12) | 0.1940 (2) | 0.0191 (3) | |
H422 | 0.0077 | 0.5074 | 0.2345 | 0.023* | |
C423 | −0.00317 (11) | 0.66179 (12) | 0.1644 (2) | 0.0199 (3) | |
H423 | −0.0691 | 0.6729 | 0.1835 | 0.024* | |
C424 | 0.04914 (11) | 0.74221 (11) | 0.10693 (19) | 0.0187 (3) | |
F424 | 0.00528 (7) | 0.83934 (7) | 0.08198 (12) | 0.0255 (2) | |
C425 | 0.14458 (11) | 0.72940 (12) | 0.0748 (2) | 0.0192 (3) | |
H425 | 0.1785 | 0.7863 | 0.0333 | 0.023* | |
C426 | 0.18939 (11) | 0.63090 (12) | 0.10502 (19) | 0.0181 (3) | |
H426 | 0.2551 | 0.6206 | 0.0845 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0183 (6) | 0.0176 (6) | 0.0200 (6) | 0.0012 (5) | 0.0059 (5) | 0.0007 (5) |
C2 | 0.0186 (7) | 0.0177 (7) | 0.0181 (7) | −0.0004 (6) | 0.0075 (6) | −0.0006 (5) |
C3 | 0.0159 (7) | 0.0197 (7) | 0.0177 (7) | 0.0016 (6) | 0.0050 (5) | 0.0006 (5) |
C4 | 0.0171 (7) | 0.0175 (7) | 0.0167 (7) | 0.0023 (6) | 0.0066 (5) | 0.0014 (5) |
C4A | 0.0164 (7) | 0.0177 (7) | 0.0157 (7) | 0.0010 (5) | 0.0058 (5) | −0.0003 (5) |
C5 | 0.0200 (7) | 0.0164 (7) | 0.0215 (7) | 0.0020 (6) | 0.0058 (6) | −0.0019 (6) |
C6 | 0.0171 (7) | 0.0220 (8) | 0.0221 (7) | −0.0019 (6) | 0.0046 (6) | −0.0052 (6) |
C7 | 0.0158 (7) | 0.0255 (8) | 0.0198 (7) | 0.0038 (6) | 0.0038 (6) | −0.0014 (6) |
C8 | 0.0184 (7) | 0.0207 (8) | 0.0205 (7) | 0.0047 (6) | 0.0057 (6) | 0.0015 (6) |
C8A | 0.0180 (7) | 0.0172 (7) | 0.0172 (7) | 0.0014 (5) | 0.0071 (5) | −0.0002 (5) |
C21 | 0.0231 (8) | 0.0182 (8) | 0.0259 (8) | −0.0017 (6) | 0.0048 (6) | −0.0010 (6) |
C41 | 0.0179 (7) | 0.0164 (7) | 0.0175 (7) | −0.0003 (6) | 0.0035 (5) | 0.0007 (5) |
C42 | 0.0178 (7) | 0.0161 (7) | 0.0179 (7) | −0.0013 (5) | 0.0041 (5) | 0.0008 (5) |
C421 | 0.0152 (7) | 0.0169 (7) | 0.0159 (7) | 0.0003 (5) | 0.0016 (5) | −0.0012 (5) |
C422 | 0.0178 (7) | 0.0195 (8) | 0.0204 (7) | −0.0013 (6) | 0.0051 (6) | 0.0011 (5) |
C423 | 0.0168 (7) | 0.0239 (8) | 0.0192 (7) | 0.0040 (6) | 0.0049 (6) | −0.0008 (6) |
C424 | 0.0221 (8) | 0.0153 (7) | 0.0173 (7) | 0.0060 (6) | 0.0016 (6) | −0.0006 (5) |
F424 | 0.0298 (5) | 0.0174 (5) | 0.0296 (5) | 0.0095 (4) | 0.0076 (4) | 0.0024 (4) |
C425 | 0.0201 (7) | 0.0162 (7) | 0.0207 (7) | −0.0014 (6) | 0.0030 (6) | 0.0002 (5) |
C426 | 0.0152 (7) | 0.0195 (7) | 0.0193 (7) | 0.0002 (5) | 0.0030 (5) | −0.0001 (6) |
N1—C2 | 1.3227 (19) | C21—H21A | 0.9800 |
N1—C8A | 1.3712 (19) | C21—H21B | 0.9800 |
C2—C3 | 1.420 (2) | C21—H21C | 0.9800 |
C2—C21 | 1.500 (2) | C41—C42 | 1.337 (2) |
C3—C4 | 1.375 (2) | C41—H41 | 0.9500 |
C3—H3 | 0.9500 | C42—C421 | 1.471 (2) |
C4—C4A | 1.432 (2) | C42—H42 | 0.9500 |
C4—C41 | 1.475 (2) | C421—C426 | 1.401 (2) |
C4A—C5 | 1.418 (2) | C421—C422 | 1.401 (2) |
C4A—C8A | 1.423 (2) | C422—C423 | 1.388 (2) |
C5—C6 | 1.373 (2) | C422—H422 | 0.9500 |
C5—H5 | 0.9500 | C423—C424 | 1.373 (2) |
C6—C7 | 1.408 (2) | C423—H423 | 0.9500 |
C6—H6 | 0.9500 | C424—F424 | 1.3653 (16) |
C7—C8 | 1.370 (2) | C424—C425 | 1.383 (2) |
C7—H7 | 0.9500 | C425—C426 | 1.388 (2) |
C8—C8A | 1.417 (2) | C425—H425 | 0.9500 |
C8—H8 | 0.9500 | C426—H426 | 0.9500 |
C2—N1—C8A | 118.08 (13) | C2—C21—H21B | 109.5 |
N1—C2—C3 | 122.60 (13) | H21A—C21—H21B | 109.5 |
N1—C2—C21 | 116.82 (13) | C2—C21—H21C | 109.5 |
C3—C2—C21 | 120.56 (13) | H21A—C21—H21C | 109.5 |
C4—C3—C2 | 120.85 (13) | H21B—C21—H21C | 109.5 |
C4—C3—H3 | 119.6 | C42—C41—C4 | 122.66 (14) |
C2—C3—H3 | 119.6 | C42—C41—H41 | 118.7 |
C3—C4—C4A | 117.71 (13) | C4—C41—H41 | 118.7 |
C3—C4—C41 | 121.31 (13) | C41—C42—C421 | 127.21 (14) |
C4A—C4—C41 | 120.94 (13) | C41—C42—H42 | 116.4 |
C5—C4A—C8A | 118.70 (13) | C421—C42—H42 | 116.4 |
C5—C4A—C4 | 123.56 (13) | C426—C421—C422 | 118.18 (13) |
C8A—C4A—C4 | 117.71 (13) | C426—C421—C42 | 123.07 (13) |
C6—C5—C4A | 120.64 (14) | C422—C421—C42 | 118.76 (13) |
C6—C5—H5 | 119.7 | C423—C422—C421 | 121.28 (14) |
C4A—C5—H5 | 119.7 | C423—C422—H422 | 119.4 |
C5—C6—C7 | 120.23 (14) | C421—C422—H422 | 119.4 |
C5—C6—H6 | 119.9 | C424—C423—C422 | 118.29 (13) |
C7—C6—H6 | 119.9 | C424—C423—H423 | 120.9 |
C8—C7—C6 | 120.82 (14) | C422—C423—H423 | 120.9 |
C8—C7—H7 | 119.6 | F424—C424—C423 | 118.45 (13) |
C6—C7—H7 | 119.6 | F424—C424—C425 | 118.63 (13) |
C7—C8—C8A | 120.11 (14) | C423—C424—C425 | 122.92 (14) |
C7—C8—H8 | 119.9 | C424—C425—C426 | 118.07 (14) |
C8A—C8—H8 | 119.9 | C424—C425—H425 | 121.0 |
N1—C8A—C8 | 117.46 (13) | C426—C425—H425 | 121.0 |
N1—C8A—C4A | 123.03 (13) | C425—C426—C421 | 121.26 (13) |
C8—C8A—C4A | 119.48 (13) | C425—C426—H426 | 119.4 |
C2—C21—H21A | 109.5 | C421—C426—H426 | 119.4 |
C8A—N1—C2—C3 | 0.1 (2) | C5—C4A—C8A—N1 | 178.89 (13) |
C8A—N1—C2—C21 | −178.20 (13) | C4—C4A—C8A—N1 | 1.0 (2) |
N1—C2—C3—C4 | −0.9 (2) | C5—C4A—C8A—C8 | 1.1 (2) |
C21—C2—C3—C4 | 177.35 (13) | C4—C4A—C8A—C8 | −176.78 (13) |
C2—C3—C4—C4A | 1.7 (2) | C3—C4—C41—C42 | 38.8 (2) |
C2—C3—C4—C41 | −175.99 (13) | C4A—C4—C41—C42 | −138.76 (15) |
C3—C4—C4A—C5 | −179.48 (13) | C4—C41—C42—C421 | 178.04 (14) |
C41—C4—C4A—C5 | −1.8 (2) | C41—C42—C421—C426 | 5.5 (2) |
C3—C4—C4A—C8A | −1.72 (19) | C41—C42—C421—C422 | −174.47 (15) |
C41—C4—C4A—C8A | 175.96 (13) | C426—C421—C422—C423 | −0.2 (2) |
C8A—C4A—C5—C6 | −1.2 (2) | C42—C421—C422—C423 | 179.79 (14) |
C4—C4A—C5—C6 | 176.49 (14) | C421—C422—C423—C424 | −0.4 (2) |
C4A—C5—C6—C7 | 0.0 (2) | C422—C423—C424—F424 | −178.42 (13) |
C5—C6—C7—C8 | 1.4 (2) | C422—C423—C424—C425 | 1.0 (2) |
C6—C7—C8—C8A | −1.5 (2) | F424—C424—C425—C426 | 178.42 (13) |
C2—N1—C8A—C8 | 177.65 (13) | C423—C424—C425—C426 | −1.0 (2) |
C2—N1—C8A—C4A | −0.2 (2) | C424—C425—C426—C421 | 0.4 (2) |
C7—C8—C8A—N1 | −177.65 (13) | C422—C421—C426—C425 | 0.2 (2) |
C7—C8—C8A—C4A | 0.3 (2) | C42—C421—C426—C425 | −179.79 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N1i | 0.95 | 2.62 | 3.561 (2) | 170 |
Symmetry code: (i) −x+1, −y, −z+1. |
C19H14F3N | F(000) = 1296 |
Mr = 313.31 | Dx = 1.381 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.2696 (10) Å | Cell parameters from 3752 reflections |
b = 10.8096 (7) Å | θ = 2.2–28.3° |
c = 16.1495 (8) Å | µ = 0.11 mm−1 |
β = 91.440 (2)° | T = 100 K |
V = 3013.8 (3) Å3 | Block, colourless |
Z = 8 | 0.16 × 0.14 × 0.12 mm |
Bruker D8 Venture diffractometer | 3750 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 2921 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.085 |
φ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −22→22 |
Tmin = 0.888, Tmax = 0.987 | k = −14→14 |
46287 measured reflections | l = −21→20 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0491P)2 + 3.926P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3750 reflections | Δρmax = 0.33 e Å−3 |
209 parameters | Δρmin = −0.29 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.35530 (8) | 0.65666 (13) | 0.70993 (8) | 0.0214 (3) | |
C2 | 0.40811 (9) | 0.73252 (15) | 0.68089 (10) | 0.0220 (3) | |
C3 | 0.47497 (9) | 0.69044 (15) | 0.64043 (10) | 0.0208 (3) | |
H3 | 0.5106 | 0.7490 | 0.6197 | 0.025* | |
C4 | 0.48905 (9) | 0.56618 (15) | 0.63077 (9) | 0.0184 (3) | |
C4A | 0.43320 (9) | 0.48166 (15) | 0.66242 (9) | 0.0176 (3) | |
C5 | 0.44046 (9) | 0.35106 (15) | 0.65886 (10) | 0.0216 (3) | |
H5 | 0.4847 | 0.3153 | 0.6345 | 0.026* | |
C6 | 0.38443 (10) | 0.27589 (16) | 0.69007 (10) | 0.0242 (3) | |
H6 | 0.3905 | 0.1886 | 0.6874 | 0.029* | |
C7 | 0.31786 (10) | 0.32625 (16) | 0.72612 (10) | 0.0245 (4) | |
H7 | 0.2789 | 0.2732 | 0.7465 | 0.029* | |
C8 | 0.30976 (9) | 0.45181 (16) | 0.73152 (10) | 0.0221 (3) | |
H8 | 0.2651 | 0.4855 | 0.7562 | 0.026* | |
C8A | 0.36711 (9) | 0.53235 (15) | 0.70072 (9) | 0.0187 (3) | |
C21 | 0.39360 (11) | 0.86894 (16) | 0.69174 (13) | 0.0324 (4) | |
H21A | 0.3714 | 0.8837 | 0.7461 | 0.049* | |
H21B | 0.3574 | 0.8978 | 0.6482 | 0.049* | |
H21C | 0.4426 | 0.9141 | 0.6879 | 0.049* | |
C41 | 0.55777 (9) | 0.52090 (15) | 0.58805 (9) | 0.0189 (3) | |
H41 | 0.5541 | 0.4430 | 0.5610 | 0.023* | |
C42 | 0.62479 (9) | 0.58178 (15) | 0.58464 (10) | 0.0205 (3) | |
H42 | 0.6276 | 0.6595 | 0.6120 | 0.025* | |
C421 | 0.69464 (9) | 0.54044 (15) | 0.54269 (9) | 0.0181 (3) | |
C422 | 0.76181 (9) | 0.61241 (16) | 0.55017 (10) | 0.0224 (3) | |
H422 | 0.7611 | 0.6860 | 0.5824 | 0.027* | |
C423 | 0.82949 (9) | 0.57845 (15) | 0.51149 (10) | 0.0229 (3) | |
H423 | 0.8747 | 0.6282 | 0.5172 | 0.027* | |
C424 | 0.83043 (9) | 0.47101 (15) | 0.46437 (9) | 0.0188 (3) | |
C425 | 0.76429 (9) | 0.39804 (15) | 0.45619 (9) | 0.0196 (3) | |
H425 | 0.7652 | 0.3246 | 0.4239 | 0.024* | |
C426 | 0.69721 (9) | 0.43241 (15) | 0.49513 (10) | 0.0198 (3) | |
H426 | 0.6523 | 0.3820 | 0.4895 | 0.024* | |
C427 | 0.90242 (9) | 0.43013 (16) | 0.42322 (10) | 0.0232 (3) | |
F471 | 0.93775 (6) | 0.33641 (11) | 0.46404 (8) | 0.0390 (3) | |
F472 | 0.88912 (7) | 0.38927 (13) | 0.34613 (7) | 0.0460 (3) | |
F473 | 0.95562 (6) | 0.51919 (11) | 0.41781 (8) | 0.0390 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0182 (7) | 0.0233 (7) | 0.0229 (7) | 0.0019 (5) | 0.0041 (5) | −0.0005 (5) |
C2 | 0.0196 (8) | 0.0223 (8) | 0.0245 (8) | 0.0015 (6) | 0.0053 (6) | 0.0003 (6) |
C3 | 0.0168 (7) | 0.0223 (8) | 0.0236 (8) | −0.0009 (6) | 0.0048 (6) | 0.0016 (6) |
C4 | 0.0154 (7) | 0.0235 (8) | 0.0162 (7) | 0.0020 (6) | 0.0002 (5) | −0.0001 (6) |
C4A | 0.0160 (7) | 0.0218 (8) | 0.0150 (7) | 0.0001 (6) | −0.0010 (5) | 0.0004 (6) |
C5 | 0.0208 (8) | 0.0224 (8) | 0.0216 (7) | 0.0016 (6) | 0.0010 (6) | −0.0013 (6) |
C6 | 0.0270 (9) | 0.0213 (8) | 0.0241 (8) | −0.0028 (7) | −0.0003 (6) | 0.0003 (6) |
C7 | 0.0226 (8) | 0.0278 (9) | 0.0233 (8) | −0.0066 (7) | 0.0022 (6) | 0.0012 (6) |
C8 | 0.0174 (7) | 0.0280 (9) | 0.0210 (7) | −0.0021 (6) | 0.0033 (6) | −0.0005 (6) |
C8A | 0.0171 (7) | 0.0228 (8) | 0.0163 (7) | 0.0005 (6) | 0.0004 (6) | 0.0004 (6) |
C21 | 0.0306 (10) | 0.0227 (9) | 0.0448 (11) | 0.0030 (7) | 0.0160 (8) | −0.0003 (8) |
C41 | 0.0173 (7) | 0.0210 (7) | 0.0186 (7) | 0.0030 (6) | 0.0013 (6) | 0.0000 (6) |
C42 | 0.0187 (7) | 0.0225 (8) | 0.0205 (7) | 0.0012 (6) | 0.0015 (6) | −0.0019 (6) |
C421 | 0.0159 (7) | 0.0217 (8) | 0.0169 (7) | 0.0007 (6) | 0.0013 (5) | 0.0011 (6) |
C422 | 0.0196 (8) | 0.0223 (8) | 0.0254 (8) | −0.0014 (6) | 0.0020 (6) | −0.0057 (6) |
C423 | 0.0175 (8) | 0.0236 (8) | 0.0277 (8) | −0.0042 (6) | 0.0021 (6) | −0.0033 (6) |
C424 | 0.0160 (7) | 0.0217 (8) | 0.0189 (7) | 0.0014 (6) | 0.0013 (6) | 0.0017 (6) |
C425 | 0.0193 (7) | 0.0199 (7) | 0.0197 (7) | −0.0003 (6) | 0.0018 (6) | −0.0021 (6) |
C426 | 0.0158 (7) | 0.0218 (8) | 0.0220 (7) | −0.0025 (6) | 0.0010 (6) | −0.0010 (6) |
C427 | 0.0201 (8) | 0.0248 (8) | 0.0251 (8) | −0.0019 (6) | 0.0041 (6) | −0.0024 (6) |
F471 | 0.0287 (6) | 0.0367 (6) | 0.0522 (7) | 0.0131 (5) | 0.0118 (5) | 0.0077 (5) |
F472 | 0.0307 (6) | 0.0758 (9) | 0.0318 (6) | −0.0015 (6) | 0.0096 (5) | −0.0237 (6) |
F473 | 0.0274 (6) | 0.0328 (6) | 0.0578 (7) | −0.0076 (5) | 0.0212 (5) | −0.0055 (5) |
N1—C2 | 1.321 (2) | C21—H21C | 0.9800 |
N1—C8A | 1.368 (2) | C41—C42 | 1.334 (2) |
C2—C3 | 1.416 (2) | C41—H41 | 0.9500 |
C2—C21 | 1.507 (2) | C42—C421 | 1.468 (2) |
C3—C4 | 1.375 (2) | C42—H42 | 0.9500 |
C3—H3 | 0.9500 | C421—C426 | 1.399 (2) |
C4—C4A | 1.432 (2) | C421—C422 | 1.400 (2) |
C4—C41 | 1.471 (2) | C422—C423 | 1.388 (2) |
C4A—C5 | 1.419 (2) | C422—H422 | 0.9500 |
C4A—C8A | 1.422 (2) | C423—C424 | 1.389 (2) |
C5—C6 | 1.369 (2) | C423—H423 | 0.9500 |
C5—H5 | 0.9500 | C424—C425 | 1.392 (2) |
C6—C7 | 1.411 (2) | C424—C427 | 1.491 (2) |
C6—H6 | 0.9500 | C425—C426 | 1.383 (2) |
C7—C8 | 1.368 (2) | C425—H425 | 0.9500 |
C7—H7 | 0.9500 | C426—H426 | 0.9500 |
C8—C8A | 1.418 (2) | C427—F473 | 1.3350 (19) |
C8—H8 | 0.9500 | C427—F472 | 1.335 (2) |
C21—H21A | 0.9800 | C427—F471 | 1.347 (2) |
C21—H21B | 0.9800 | ||
C2—N1—C8A | 117.72 (14) | H21A—C21—H21C | 109.5 |
N1—C2—C3 | 122.85 (15) | H21B—C21—H21C | 109.5 |
N1—C2—C21 | 116.62 (14) | C42—C41—C4 | 124.49 (15) |
C3—C2—C21 | 120.53 (15) | C42—C41—H41 | 117.8 |
C4—C3—C2 | 120.99 (15) | C4—C41—H41 | 117.8 |
C4—C3—H3 | 119.5 | C41—C42—C421 | 126.36 (15) |
C2—C3—H3 | 119.5 | C41—C42—H42 | 116.8 |
C3—C4—C4A | 117.40 (14) | C421—C42—H42 | 116.8 |
C3—C4—C41 | 121.69 (14) | C426—C421—C422 | 118.27 (14) |
C4A—C4—C41 | 120.90 (14) | C426—C421—C42 | 123.05 (14) |
C5—C4A—C8A | 118.29 (14) | C422—C421—C42 | 118.68 (14) |
C5—C4A—C4 | 124.02 (14) | C423—C422—C421 | 121.30 (15) |
C8A—C4A—C4 | 117.69 (14) | C423—C422—H422 | 119.4 |
C6—C5—C4A | 120.77 (15) | C421—C422—H422 | 119.4 |
C6—C5—H5 | 119.6 | C422—C423—C424 | 119.29 (15) |
C4A—C5—H5 | 119.6 | C422—C423—H423 | 120.4 |
C5—C6—C7 | 120.90 (16) | C424—C423—H423 | 120.4 |
C5—C6—H6 | 119.5 | C423—C424—C425 | 120.34 (14) |
C7—C6—H6 | 119.5 | C423—C424—C427 | 120.88 (14) |
C8—C7—C6 | 119.67 (15) | C425—C424—C427 | 118.77 (14) |
C8—C7—H7 | 120.2 | C426—C425—C424 | 119.97 (15) |
C6—C7—H7 | 120.2 | C426—C425—H425 | 120.0 |
C7—C8—C8A | 120.89 (15) | C424—C425—H425 | 120.0 |
C7—C8—H8 | 119.6 | C425—C426—C421 | 120.83 (14) |
C8A—C8—H8 | 119.6 | C425—C426—H426 | 119.6 |
N1—C8A—C8 | 117.23 (14) | C421—C426—H426 | 119.6 |
N1—C8A—C4A | 123.33 (14) | F473—C427—F472 | 106.26 (14) |
C8—C8A—C4A | 119.44 (15) | F473—C427—F471 | 105.69 (14) |
C2—C21—H21A | 109.5 | F472—C427—F471 | 105.82 (14) |
C2—C21—H21B | 109.5 | F473—C427—C424 | 113.47 (14) |
H21A—C21—H21B | 109.5 | F472—C427—C424 | 112.81 (14) |
C2—C21—H21C | 109.5 | F471—C427—C424 | 112.17 (13) |
C8A—N1—C2—C3 | 0.7 (2) | C4—C4A—C8A—C8 | 178.87 (14) |
C8A—N1—C2—C21 | 179.91 (15) | C3—C4—C41—C42 | 28.1 (2) |
N1—C2—C3—C4 | −1.3 (3) | C4A—C4—C41—C42 | −153.27 (16) |
C21—C2—C3—C4 | 179.50 (16) | C4—C41—C42—C421 | −179.85 (15) |
C2—C3—C4—C4A | 0.6 (2) | C41—C42—C421—C426 | 4.6 (3) |
C2—C3—C4—C41 | 179.28 (15) | C41—C42—C421—C422 | −175.68 (16) |
C3—C4—C4A—C5 | −178.50 (15) | C426—C421—C422—C423 | 0.2 (2) |
C41—C4—C4A—C5 | 2.8 (2) | C42—C421—C422—C423 | −179.59 (15) |
C3—C4—C4A—C8A | 0.6 (2) | C421—C422—C423—C424 | 0.1 (3) |
C41—C4—C4A—C8A | −178.12 (13) | C422—C423—C424—C425 | −0.2 (2) |
C8A—C4A—C5—C6 | 1.3 (2) | C422—C423—C424—C427 | −178.80 (15) |
C4—C4A—C5—C6 | −179.65 (15) | C423—C424—C425—C426 | 0.0 (2) |
C4A—C5—C6—C7 | 0.4 (2) | C427—C424—C425—C426 | 178.65 (15) |
C5—C6—C7—C8 | −1.3 (3) | C424—C425—C426—C421 | 0.3 (2) |
C6—C7—C8—C8A | 0.5 (2) | C422—C421—C426—C425 | −0.3 (2) |
C2—N1—C8A—C8 | −179.51 (14) | C42—C421—C426—C425 | 179.40 (15) |
C2—N1—C8A—C4A | 0.6 (2) | C423—C424—C427—F473 | −16.7 (2) |
C7—C8—C8A—N1 | −178.81 (15) | C425—C424—C427—F473 | 164.64 (15) |
C7—C8—C8A—C4A | 1.1 (2) | C423—C424—C427—F472 | −137.61 (16) |
C5—C4A—C8A—N1 | 177.91 (14) | C425—C424—C427—F472 | 43.7 (2) |
C4—C4A—C8A—N1 | −1.2 (2) | C423—C424—C427—F471 | 102.99 (18) |
C5—C4A—C8A—C8 | −2.0 (2) | C425—C424—C427—F471 | −75.67 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C426—H426···Cg1i | 0.95 | 2.86 | 3.3627 (17) | 114 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
C18H13Cl2N | F(000) = 1296 |
Mr = 314.19 | Dx = 1.478 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 30.5651 (15) Å | Cell parameters from 3210 reflections |
b = 3.8629 (2) Å | θ = 2.6–27.5° |
c = 25.5357 (13) Å | µ = 0.45 mm−1 |
β = 110.497 (2)° | T = 100 K |
V = 2824.1 (2) Å3 | Needle, yellow |
Z = 8 | 0.20 × 0.10 × 0.06 mm |
Bruker D8 Venture diffractometer | 3208 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 2930 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.042 |
φ and ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −38→38 |
Tmin = 0.897, Tmax = 0.973 | k = −5→4 |
28110 measured reflections | l = −33→33 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0342P)2 + 4.0386P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3208 reflections | Δρmax = 0.33 e Å−3 |
191 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.56531 (4) | 0.8852 (3) | 0.48948 (5) | 0.0130 (2) | |
C2 | 0.54198 (5) | 0.7306 (3) | 0.44182 (6) | 0.0128 (3) | |
C3 | 0.56318 (5) | 0.6274 (4) | 0.40297 (6) | 0.0137 (3) | |
H3 | 0.5448 | 0.5189 | 0.3690 | 0.016* | |
C4 | 0.60991 (5) | 0.6819 (4) | 0.41372 (5) | 0.0125 (3) | |
C4A | 0.63640 (5) | 0.8465 (4) | 0.46545 (5) | 0.0119 (3) | |
C5 | 0.68484 (5) | 0.9218 (4) | 0.48195 (6) | 0.0138 (3) | |
H5 | 0.7014 | 0.8612 | 0.4580 | 0.017* | |
C6 | 0.70793 (5) | 1.0802 (4) | 0.53186 (6) | 0.0150 (3) | |
H6 | 0.7405 | 1.1247 | 0.5426 | 0.018* | |
C7 | 0.68373 (5) | 1.1781 (4) | 0.56761 (6) | 0.0151 (3) | |
H7 | 0.7000 | 1.2881 | 0.6023 | 0.018* | |
C8 | 0.63677 (5) | 1.1148 (4) | 0.55238 (6) | 0.0136 (3) | |
H8 | 0.6206 | 1.1858 | 0.5763 | 0.016* | |
C8A | 0.61204 (5) | 0.9449 (3) | 0.50145 (5) | 0.0118 (3) | |
C21 | 0.49105 (5) | 0.6559 (4) | 0.42929 (6) | 0.0161 (3) | |
H21A | 0.4794 | 0.8008 | 0.4530 | 0.024* | |
H21B | 0.4871 | 0.4113 | 0.4368 | 0.024* | |
H21C | 0.4735 | 0.7070 | 0.3899 | 0.024* | |
C41 | 0.63227 (5) | 0.5763 (4) | 0.37352 (6) | 0.0137 (3) | |
H41 | 0.6627 | 0.4787 | 0.3873 | 0.016* | |
C42 | 0.61108 (5) | 0.6134 (4) | 0.31843 (6) | 0.0135 (3) | |
H42 | 0.5808 | 0.7145 | 0.3062 | 0.016* | |
C421 | 0.62973 (5) | 0.5137 (4) | 0.27438 (5) | 0.0123 (3) | |
C422 | 0.59998 (5) | 0.3598 (4) | 0.22471 (6) | 0.0135 (3) | |
Cl42 | 0.54280 (2) | 0.25868 (9) | 0.21885 (2) | 0.01765 (10) | |
C423 | 0.61385 (5) | 0.2738 (4) | 0.18021 (6) | 0.0154 (3) | |
H423 | 0.5925 | 0.1695 | 0.1475 | 0.018* | |
C424 | 0.65948 (5) | 0.3429 (4) | 0.18423 (6) | 0.0163 (3) | |
H424 | 0.6696 | 0.2848 | 0.1542 | 0.020* | |
C425 | 0.69023 (5) | 0.4961 (4) | 0.23194 (6) | 0.0148 (3) | |
H425 | 0.7214 | 0.5450 | 0.2346 | 0.018* | |
C426 | 0.67535 (5) | 0.5782 (4) | 0.27589 (6) | 0.0130 (3) | |
Cl46 | 0.71648 (2) | 0.77500 (9) | 0.33402 (2) | 0.01667 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0133 (5) | 0.0127 (6) | 0.0132 (5) | 0.0006 (4) | 0.0048 (4) | 0.0009 (4) |
C2 | 0.0125 (6) | 0.0112 (6) | 0.0143 (6) | 0.0010 (5) | 0.0043 (5) | 0.0018 (5) |
C3 | 0.0145 (6) | 0.0146 (7) | 0.0108 (6) | 0.0001 (5) | 0.0028 (5) | −0.0003 (5) |
C4 | 0.0152 (6) | 0.0113 (6) | 0.0107 (6) | 0.0022 (5) | 0.0043 (5) | 0.0022 (5) |
C4A | 0.0126 (6) | 0.0113 (6) | 0.0113 (6) | 0.0009 (5) | 0.0035 (5) | 0.0026 (5) |
C5 | 0.0138 (6) | 0.0144 (7) | 0.0140 (6) | 0.0016 (5) | 0.0059 (5) | 0.0027 (5) |
C6 | 0.0116 (6) | 0.0146 (7) | 0.0176 (7) | −0.0002 (5) | 0.0034 (5) | 0.0033 (5) |
C7 | 0.0169 (7) | 0.0138 (7) | 0.0120 (6) | −0.0008 (5) | 0.0021 (5) | −0.0001 (5) |
C8 | 0.0174 (7) | 0.0128 (6) | 0.0116 (6) | 0.0011 (5) | 0.0063 (5) | 0.0007 (5) |
C8A | 0.0133 (6) | 0.0101 (6) | 0.0119 (6) | 0.0010 (5) | 0.0044 (5) | 0.0025 (5) |
C21 | 0.0135 (7) | 0.0175 (7) | 0.0178 (7) | −0.0010 (5) | 0.0062 (5) | −0.0023 (6) |
C41 | 0.0145 (6) | 0.0132 (7) | 0.0138 (6) | 0.0018 (5) | 0.0054 (5) | 0.0006 (5) |
C42 | 0.0120 (6) | 0.0151 (7) | 0.0140 (6) | 0.0011 (5) | 0.0055 (5) | −0.0006 (5) |
C421 | 0.0140 (6) | 0.0128 (6) | 0.0095 (6) | 0.0017 (5) | 0.0035 (5) | 0.0021 (5) |
C422 | 0.0111 (6) | 0.0150 (7) | 0.0137 (6) | 0.0013 (5) | 0.0035 (5) | 0.0021 (5) |
Cl42 | 0.01233 (16) | 0.0229 (2) | 0.01625 (17) | −0.00152 (13) | 0.00313 (13) | 0.00075 (13) |
C423 | 0.0188 (7) | 0.0138 (7) | 0.0125 (6) | 0.0007 (5) | 0.0041 (5) | −0.0011 (5) |
C424 | 0.0209 (7) | 0.0160 (7) | 0.0142 (6) | 0.0019 (6) | 0.0089 (5) | 0.0000 (5) |
C425 | 0.0140 (6) | 0.0151 (7) | 0.0162 (6) | 0.0012 (5) | 0.0065 (5) | 0.0013 (5) |
C426 | 0.0135 (6) | 0.0122 (6) | 0.0116 (6) | 0.0008 (5) | 0.0022 (5) | 0.0016 (5) |
Cl46 | 0.01376 (17) | 0.02144 (19) | 0.01317 (16) | −0.00336 (13) | 0.00267 (12) | −0.00164 (13) |
N1—C2 | 1.3186 (18) | C21—H21A | 0.9800 |
N1—C8A | 1.3713 (17) | C21—H21B | 0.9800 |
C2—C3 | 1.4188 (19) | C21—H21C | 0.9800 |
C2—C21 | 1.5034 (18) | C41—C42 | 1.3345 (19) |
C3—C4 | 1.3730 (19) | C41—H41 | 0.9500 |
C3—H3 | 0.9500 | C42—C421 | 1.4791 (18) |
C4—C4A | 1.4336 (19) | C42—H42 | 0.9500 |
C4—C41 | 1.4762 (18) | C421—C426 | 1.4035 (18) |
C4A—C5 | 1.4203 (18) | C421—C422 | 1.4075 (18) |
C4A—C8A | 1.4227 (18) | C422—C423 | 1.3850 (19) |
C5—C6 | 1.366 (2) | C422—Cl42 | 1.7454 (14) |
C5—H5 | 0.9500 | C423—C424 | 1.388 (2) |
C6—C7 | 1.4130 (19) | C423—H423 | 0.9500 |
C6—H6 | 0.9500 | C424—C425 | 1.384 (2) |
C7—C8 | 1.3711 (19) | C424—H424 | 0.9500 |
C7—H7 | 0.9500 | C425—C426 | 1.3874 (19) |
C8—C8A | 1.4159 (19) | C425—H425 | 0.9500 |
C8—H8 | 0.9500 | C426—Cl46 | 1.7479 (14) |
C2—N1—C8A | 117.80 (12) | C2—C21—H21B | 109.5 |
N1—C2—C3 | 122.74 (13) | H21A—C21—H21B | 109.5 |
N1—C2—C21 | 117.92 (12) | C2—C21—H21C | 109.5 |
C3—C2—C21 | 119.32 (12) | H21A—C21—H21C | 109.5 |
C4—C3—C2 | 120.99 (13) | H21B—C21—H21C | 109.5 |
C4—C3—H3 | 119.5 | C42—C41—C4 | 122.10 (13) |
C2—C3—H3 | 119.5 | C42—C41—H41 | 119.0 |
C3—C4—C4A | 117.69 (12) | C4—C41—H41 | 119.0 |
C3—C4—C41 | 121.40 (13) | C41—C42—C421 | 126.85 (13) |
C4A—C4—C41 | 120.91 (12) | C41—C42—H42 | 116.6 |
C5—C4A—C8A | 118.73 (12) | C421—C42—H42 | 116.6 |
C5—C4A—C4 | 123.91 (12) | C426—C421—C422 | 114.95 (12) |
C8A—C4A—C4 | 117.34 (12) | C426—C421—C42 | 125.20 (12) |
C6—C5—C4A | 120.84 (13) | C422—C421—C42 | 119.73 (12) |
C6—C5—H5 | 119.6 | C423—C422—C421 | 123.63 (13) |
C4A—C5—H5 | 119.6 | C423—C422—Cl42 | 117.44 (11) |
C5—C6—C7 | 120.43 (13) | C421—C422—Cl42 | 118.90 (10) |
C5—C6—H6 | 119.8 | C422—C423—C424 | 118.79 (13) |
C7—C6—H6 | 119.8 | C422—C423—H423 | 120.6 |
C8—C7—C6 | 120.11 (13) | C424—C423—H423 | 120.6 |
C8—C7—H7 | 119.9 | C425—C424—C423 | 120.14 (13) |
C6—C7—H7 | 119.9 | C425—C424—H424 | 119.9 |
C7—C8—C8A | 120.84 (13) | C423—C424—H424 | 119.9 |
C7—C8—H8 | 119.6 | C424—C425—C426 | 119.72 (13) |
C8A—C8—H8 | 119.6 | C424—C425—H425 | 120.1 |
N1—C8A—C8 | 117.54 (12) | C426—C425—H425 | 120.1 |
N1—C8A—C4A | 123.43 (12) | C425—C426—C421 | 122.76 (13) |
C8—C8A—C4A | 119.04 (12) | C425—C426—Cl46 | 116.38 (10) |
C2—C21—H21A | 109.5 | C421—C426—Cl46 | 120.85 (10) |
C8A—N1—C2—C3 | −0.4 (2) | C5—C4A—C8A—C8 | 0.12 (19) |
C8A—N1—C2—C21 | 178.35 (12) | C4—C4A—C8A—C8 | −178.67 (12) |
N1—C2—C3—C4 | 0.6 (2) | C3—C4—C41—C42 | 39.5 (2) |
C21—C2—C3—C4 | −178.06 (13) | C4A—C4—C41—C42 | −140.35 (15) |
C2—C3—C4—C4A | 0.0 (2) | C4—C41—C42—C421 | −179.23 (13) |
C2—C3—C4—C41 | −179.85 (13) | C41—C42—C421—C426 | −44.5 (2) |
C3—C4—C4A—C5 | −179.50 (13) | C41—C42—C421—C422 | 139.58 (15) |
C41—C4—C4A—C5 | 0.3 (2) | C426—C421—C422—C423 | 0.4 (2) |
C3—C4—C4A—C8A | −0.78 (19) | C42—C421—C422—C423 | 176.74 (13) |
C41—C4—C4A—C8A | 179.06 (12) | C426—C421—C422—Cl42 | 178.52 (10) |
C8A—C4A—C5—C6 | 1.1 (2) | C42—C421—C422—Cl42 | −5.14 (18) |
C4—C4A—C5—C6 | 179.83 (13) | C421—C422—C423—C424 | −0.2 (2) |
C4A—C5—C6—C7 | −1.2 (2) | Cl42—C422—C423—C424 | −178.36 (11) |
C5—C6—C7—C8 | 0.0 (2) | C422—C423—C424—C425 | −0.2 (2) |
C6—C7—C8—C8A | 1.3 (2) | C423—C424—C425—C426 | 0.5 (2) |
C2—N1—C8A—C8 | 179.24 (12) | C424—C425—C426—C421 | −0.3 (2) |
C2—N1—C8A—C4A | −0.5 (2) | C424—C425—C426—Cl46 | −179.35 (11) |
C7—C8—C8A—N1 | 178.89 (13) | C422—C421—C426—C425 | −0.2 (2) |
C7—C8—C8A—C4A | −1.3 (2) | C42—C421—C426—C425 | −176.27 (13) |
C5—C4A—C8A—N1 | 179.88 (12) | C422—C421—C426—Cl46 | 178.89 (10) |
C4—C4A—C8A—N1 | 1.1 (2) | C42—C421—C426—Cl46 | 2.8 (2) |
Parameter | (I) | (II) | (III) | |||
C3—C4—C41—C42 | 38.8 (2) | 28.1 (2) | 39.5 (2) | |||
C41—C42—C421—C422 | -174.47 (15) | -175.59 (15) | 139.58 (15) |
Compound | D—H···A | D—H | H···A | D···A | D—H···A | |
(I) | C8—H8···N1i | 0.95 | 2.62 | 3.561 (2) | 170 | |
(II) | C7—H7···N1ii | 0.95 | 2.75 | 3.678 (3) | 168 | |
C426—H426···Cg1iii | 0.95 | 2.86 | 3.3627 (17) | 114 | ||
(III) | C21—H21A···N1iv | 0.98 | 2.63 | 3.594 (3) | 170 |
Cg1 represents the centroid of the N1/C2//C4/C4A/C8A ring. Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1/2, y-1/2, -z+3/2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1. |
Acknowledgements
JC thanks the Centro de Instrumentación Científico–Técnica of the Universidad de Jaén (UJA) and its staff for the data collection.
Funding information
Funding for this research was provided by: Vicerrectoría de Investigación y Extensión of the Industrial University of Santander (grant No. 2680 to AP); Universidad de Jaén and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucá, Spain) (award to JC).
References
Alacid, E. & Nájera, C. (2009). J. Org. Chem. 74, 8191–8195. Web of Science CrossRef PubMed CAS Google Scholar
Alkorta, I. & Elguero, J. (1998). Struct. Chem. 9, 59–63. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960–6968. Web of Science CrossRef CAS PubMed Google Scholar
Das, J., Vellakkaran, M. & Banerjee, D. (2019). Chem. Commun. 55, 7530–7533. Web of Science CSD CrossRef Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gulakova, E. N., Sitin, A. G., Kuz'mina, L. G. & Fedorova, O. A. (2011). Russ. J. Org. Chem. 47, 245–252. Web of Science CrossRef CAS Google Scholar
Jamal, Z., Teo, Y.-C. & Lim, G. S. (2016). Tetrahedron, 72, 2132–2138. Web of Science CrossRef CAS Google Scholar
Kamal, A., Rahim, A., Riyaz, S., Poornachandra, Y., Balakrishna, M., Kumar, C., Hussaini, S., Sridhar, B. & Machiraju, P. (2015). Org. Biomol. Chem. 13, 1347–1357. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 648–1654. Web of Science CrossRef Google Scholar
Kuz'mina, L. G., Sitin, A. G., Gulakova, E. N., Fedorpva, O. A., Lermontova, F. K. & Churakov, A. V. (2011). Kristollografiya, 56, 656–665. Google Scholar
Lee, V. M., Gavrishova, T. N. & Budyka, M. F. (2009). Chem. Heterocycl. C, 45, 1279–1280. Web of Science CrossRef CAS Google Scholar
Leonard, J. T. & Roy, K. (2008). Eur. J. Med. Chem. 43, 81–92. Web of Science CrossRef PubMed CAS Google Scholar
Mahajan, S., Gupta, S., Jariwala, N., Bhadane, D., Bhutani, L., Kulkarni, S. & Singh, I. (2018). Lett. Drug. Des. Discov. 15, 937–944. Web of Science CrossRef CAS Google Scholar
Mäkelä, M. K., Bulatov, E., Malinen, K., Talvitie, J., Nieger, M., Melchionna, M., Lenarda, A., Hu, T., Wirtanen, T. & Helaja, J. (2021). Adv. Synth. Catal. 363, 3775–3782. Google Scholar
Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804–1822. Google Scholar
Moss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222. CrossRef CAS Web of Science Google Scholar
Mousnier, A., Leh, H., Mouscadet, J.-F. & Dargemont, C. (2004). Mol. Pharmacol. 66, 783–788. Web of Science CrossRef PubMed CAS Google Scholar
Mrozek-Wilczkiewicz, A., Kuczak, M., Malarz, K., Cieślik, W., Spaczyńska, E. & Musiol, R. (2019). Eur. J. Med. Chem. 177, 338–349. Web of Science CAS PubMed Google Scholar
Mrozek-Wilczkiewicz, A., Spaczynska, E., Malarz, K., Cieslik, W., Rams-Baron, M., Kryštof, V. & Musiol, R. (2015). PLoS One, 10, e0142678. Web of Science PubMed Google Scholar
Musiol, R. (2020). Med. Chem. 16, 141–154. Web of Science CrossRef CAS PubMed Google Scholar
Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060. CrossRef CAS Web of Science Google Scholar
Omar, W. A. E. & Hormi, O. E. O. (2009). Tetrahedron, 65, 4422–4428. Web of Science CrossRef CAS Google Scholar
Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504. CrossRef Web of Science Google Scholar
Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256. CrossRef Web of Science Google Scholar
Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883–890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Sharma, R., Kumar, R., Kumar, L. & Sharma, U. (2015). Eur. J. Org. Chem. 2015, 7519–7528. Web of Science CSD CrossRef CAS Google Scholar
Sharma, V., Slathia, N., Mahajan, S., Kapoor, K. K. & Gupta, V. K. (2021). Polyclclic Aromatic Compounds, https://doi.org/10.1080/10406638.2021.1996409. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47. CrossRef CAS Web of Science Google Scholar
Valle, G., Busetti, V. & Galiazzo, G. (1986). Z. Kristallogr. Cryst. Mater. 177, 315–318. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.