research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

FeIII in the high-spin state in di­methyl­ammonium bis­­[3-eth­­oxy­salicyl­aldehyde thio­semi­car­ba­zon­ato(2–)-κ3O2,N1,S]ferrate(III)

crossmark logo

aCollege of Engineering and Physical Sciences, School of Infrastructure and Sustainable Engineering, Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, West Midlands, B4 7ET, United Kingdom, bDepartment of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom, cNational Crystallography Service, Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom, and dEnergy and Bioproducts Research Institute, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
*Correspondence e-mail: p.vankoningsbruggen@aston.ac.uk

Edited by D. R. Turner, University of Monash, Australia (Received 7 November 2022; accepted 1 December 2022; online 1 January 2023)

The synthesis and crystal structure (100 K) of the title com­pound, [(CH3)2NH2][Fe(C10H11O2N3S)2], are reported. The asymmetric unit consists of an octa­hedral [FeIII(L)2] fragment, where L2− is 3-eth­oxy­salicyl­aldehyde thio­semi­car­ba­zon­ate(2−), and a di­methyl­ammonium cation. Each L2− ligand binds with the thiol­ate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions, and mutually trans N atoms. The FeIII ion is in the high-spin state at 100 K. The variable-tem­per­ature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with D = 0.83 (1) cm−1 and g = 2.

1. Introduction

The continuing research and development of switchable mag­netic, optical and/or photomagnetic materials seeks to provide solutions for the societal desire towards more advanced electronic devices (e.g. larger data storage capacity and faster data processing) and their miniaturization by offering industry novel magnetic materials that can be implemented in electronic devices for information storage and as displays (Létard et al., 2004[Létard, J. F., Guionneau, P. & Goux-Capes, L. (2004). Top. Curr. Chem. 235, 221-249.]; Gütlich et al., 2004[Gütlich, P., van Koningsbruggen, P. J. & Renz, F. (2004). Struct. Bond. 107, 27-75.]; Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]; van Koningsbruggen et al. 2004[Koningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.]; Halcrow, 2013[Halcrow, M. A. (2013). Editor. In Spin-Crossover Materials. Oxford: John Wiley & Sons Ltd.]; Molnár et al., 2018[Molnár, G., Rat, S., Salmon, L., Nicolazzi, W. & Bousseksou, A. (2018). Adv. Mater. 30, 1703862.]; Senthil Kumar et al., 2017[Senthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176-205.]; Rubio-Giménez et al., 2019[Rubio-Giménez, V., Bartual-Murgui, C., Galbiati, M., Núñez-López, A., Castells-Gil, J., Quinard, B., Seneor, P., Otero, E., Ohresser, P., Cantarero, A., Coronado, E., Real, J. A., Mattana, R., Tatay, S. & Martí-Gastaldo, C. (2019). Chem. Sci. 10, 4038-4047.]; Tissot et al., 2019[Tissot, A., Kesse, X., Giannopoulou, S., Stenger, I., Binet, L., Rivière, E. & Serre, C. (2019). Chem. Commun. 55, 194-197.]; Karuppannan et al., 2021[Karuppannan, S. K., Martín-Rodríguez, A., Ruiz, E., Harding, P., Harding, D. J., Yu, X., Tadich, A., Cowie, B., Qi, D. & Nijhuis, C. A. (2021). Chem. Sci. 12, 2381-2388.]). Spin-crossover materials have attractive physical properties that make them suitable candidates for fulfilling these requirements. Such com­pounds exhibiting a tem­per­ature-dependent crossover between electronic states having a different magnetic moment were first discovered for iron(III) tris­(di­thio­carbamates) (Cambi & Szegö, 1931[Cambi, L. & Szegö, L. (1931). Berichte, 64, 2591-2598.], 1933[Cambi, L. & Szegö, L. (1933). Berichte, 66, 656-661.]). Since then, two main families of FeIII spin-crossover systems have been extensively studied, i.e. those containing ligands sporting chalcogen donor atoms and those based on multidentate N,O-donating Schiff base-type ligands (van Koningsbruggen et al., 2004[Koningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.]; Harding et al., 2016[Harding, D. J., Harding, P. & Phonsri, W. (2016). Coord. Chem. Rev. 313, 38-61.]). It has been found that the magnetic inter­conversion between the low-spin (S = 1/2) and high-spin (S = 5/2) state in FeIII systems can be triggered by a change in tem­per­ature or pressure, or by light irradiation (Hayami et al., 2000[Hayami, S., Gu, Z., Shiro, M., Einaga, Y., Fujishima, A. & Sato, O. (2000). J. Am. Chem. Soc. 122, 7126-7127.], 2009[Hayami, S., Hiki, K., Kawahara, T., Maeda, Y., Urakami, D., Inoue, K., Ohama, M., Kawata, S. & Sato, O. (2009). Chem. Eur. J. 15, 3497-3508.]; van Koningsbruggen et al., 2004[Koningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.]; Harding et al., 2016[Harding, D. J., Harding, P. & Phonsri, W. (2016). Coord. Chem. Rev. 313, 38-61.]).

The generation of FeIII spin-crossover behaviour using par­ticular salicyl­aldehyde thio­semicarbazone derivatives has been extensively studied by several research groups (van Koningsbruggen et al., 2004[Koningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.]; Phonsri et al., 2017[Phonsri, W., Darveniza, L. C., Batten, S. R. & Murray, K. S. (2017). Inorganics, 5, 51.]; Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.], 2015[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2015). Acta Cryst. C71, 169-174.], 2020[Powell, R. E., Stöger, B., Knoll, C., Müller, D., Weinberger, P. & van Koningsbruggen, P. J. (2020). Acta Cryst. C76, 625-631.], 2022[Powell, R. E., Lees, M. R., Tizzard, G. J. & van Koningsbruggen, P. J. (2022). Acta Cryst. C78, 63-69.]; Powell, 2016[Powell, R. E. (2016). PhD thesis, Aston University, Birmingham, UK.]; Yemeli Tido, 2010[Yemeli Tido, E. W. (2010). PhD thesis, University of Groningen, The Netherlands.]; Zelentsov et al., 1973[Zelentsov, V. V., Bogdanova, L. G., Ablov, A. V., Gerbeleu, N. V. & Dyatlova, C. V. (1973). Russ. J. Inorg. Chem. 18, 2654-2657.]; Ryabova et al., 1978[Ryabova, N. A., Ponomarev, V. I., Atovmyan, L. O., Zelentsov, V. V. & Shipilov, V. I. (1978). Koord. Khim. 4, 119.], 1981a[Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. & Atovmyan, L. O. (1981a). Kristallografiya, 26, 101-108.],b[Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V., Shipilov, V. I. & Atovmyan, L. O. (1981b). J. Struct. Chem. 22, 234-238.], 1982[Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. & Atovmyan, L. O. (1982). Kristallografiya, 27, 81-91.]; Floquet et al., 2003[Floquet, S., Boillot, M. L., Rivière, E., Varret, F., Boukheddaden, K., Morineau, D. & Négrier, P. (2003). New J. Chem. 27, 341-348.], 2006[Floquet, S., Guillou, N., Négrier, P., Rivière, E. & Boillot, M. L. (2006). New J. Chem. 30, 1621-1627.], 2009[Floquet, S., Muñoz, M. C., Guillot, R., Rivière, E., Blain, G., Réal, J. A. & Boillot, M. L. (2009). Inorg. Chim. Acta, 362, 56-64.]; Li et al., 2013[Li, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. & Sato, O. (2013). Chem. Eur. J. 19, 12948-12952.], 2016[Li, Z.-Y., Ohtsu, H., Kojima, T., Dai, J.-W., Yoshida, T., Breedlove, B. K., Zhang, W.-X., Iguchi, H., Sato, O., Kawano, M. & Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 5184-5189.]).

Our research demonstrated that the electronic state of an FeIII ion surrounded by two such tridentate O,N,S-thio­semi­car­ba­zon­ate ligands depends on the substituents and degree of deprotonation of the R-salicyl­aldehyde 4R′-thio­semi­car­ba­zone ligands, the identity of the counter-ion and the nature and degree of solvation (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.], 2015[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2015). Acta Cryst. C71, 169-174.], 2020[Powell, R. E., Stöger, B., Knoll, C., Müller, D., Weinberger, P. & van Koningsbruggen, P. J. (2020). Acta Cryst. C76, 625-631.], 2022[Powell, R. E., Lees, M. R., Tizzard, G. J. & van Koningsbruggen, P. J. (2022). Acta Cryst. C78, 63-69.]; Powell, 2016[Powell, R. E. (2016). PhD thesis, Aston University, Birmingham, UK.]; Yemeli Tido, 2010[Yemeli Tido, E. W. (2010). PhD thesis, University of Groningen, The Netherlands.]).

In fact, in solution, the free R-salicyl­aldehyde 4R′-thio­semicarbazone ligand (H2L) exists in two tautomeric forms, i.e. the thione and thiol forms, as illustrated in Scheme 1[link]. Moreover, the ligand may also be present in its neutral, anionic or dianionic form. We established that the formation of a particular type of FeIII com­plex unit, i.e. neutral, monocationic or monoanionic, can be achieved by tuning the degree of deprotonation of the ligand through pH variation of the reaction solution during the synthesis (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.], 2015[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2015). Acta Cryst. C71, 169-174.], 2020[Powell, R. E., Stöger, B., Knoll, C., Müller, D., Weinberger, P. & van Koningsbruggen, P. J. (2020). Acta Cryst. C76, 625-631.], 2022[Powell, R. E., Lees, M. R., Tizzard, G. J. & van Koningsbruggen, P. J. (2022). Acta Cryst. C78, 63-69.]; Powell, 2016[Powell, R. E. (2016). PhD thesis, Aston University, Birmingham, UK.]; Yemeli Tido, 2010[Yemeli Tido, E. W. (2010). PhD thesis, University of Groningen, The Netherlands.]; Floquet et al., 2009[Floquet, S., Muñoz, M. C., Guillot, R., Rivière, E., Blain, G., Réal, J. A. & Boillot, M. L. (2009). Inorg. Chim. Acta, 362, 56-64.]).

[Scheme 1]

We have thus been particularly proficient in preparing anionic FeIII com­plexes of the general formula (cation+)[Fe(L2−)2x(solvent), such as Cs[Fe(3-OEt-thsa-Me)2]·CH3OH, containing 3-eth­oxy­salicyl­aldehyde methyl­thio­semi­car­ba­zon­ate(2−) (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.]), Cs[Fe(5-Br-thsa)2] containing 5-bromo­salicyl­aldehyde thio­semi­car­ba­zon­ate(2−) (Powell et al., 2015[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2015). Acta Cryst. C71, 169-174.]) and NH4[Fe(thsa)2] containing salicyl­aldehyde thio­semi­car­ba­zon­ate(2−) (Powell et al., 2020[Powell, R. E., Stöger, B., Knoll, C., Müller, D., Weinberger, P. & van Koningsbruggen, P. J. (2020). Acta Cryst. C76, 625-631.]). In all of these com­pounds, FeIII exhibits the low-spin state.

Here we report a novel FeIII com­pound of this family, namely, di­methyl­ammonium bis­[3-eth­oxy­salicyl­aldehyde thio­semi­car­ba­zon­ato(2–)-κ3O2,N1,S]ferrate(III), [(CH3)2NH2][Fe(3-OEt-thsa)2], (I)[link] (see Scheme 2[link]), containing two dianionic tri­dentate ligands, i.e. 3-eth­oxy­salicyl­aldehyde thio­semi­car­ba­zon­ate(2−), whose structure was determined at 100 K and confirmed that FeIII is in the high-spin state.

2. Experimental

2.1. Spectroscopic and magnetic measurements

A room-tem­per­ature IR spectrum of 3-eth­oxy­salicyl­alde­hyde thio­semicarbazone within the range 4000–400 cm−1 was recorded on a PerkinElmer FT–IR spectrometer Spectrum RXI using KBr pellets. IR spectroscopic measurements of (I)[link] within the range 4000–600 cm−1 were carried out at room tem­per­ature using an ATR (attenuated total reflectance) PerkinElmer FT–IR Frontier spectrometer.

[Scheme 2]

1H and 13C NMR spectra were recorded in DMSO-d6 (dimethyl sulfoxide) using a Bruker cryomagnet BZH 300/52 spectrometer (300 MHz), with the recorded chemical shifts in δ (in parts per million) relative to an inter­nal standard of tetra­methyl­silane (TMS).

Measurements of direct current (dc) magnetic susceptibility, χM, versus tem­per­ature, T, were conducted between 5 and 320 K, heating and cooling at a rate of 2 K min−1 in an applied field, μ0H, of 0.1 T using a Quantum Design MPMS-5S super­conducting quantum inter­ference device (SQUID) magnetometer. The SQUID magnetometer was calibrated using a standard palladium sample. The background due to the sample holder and the diamagnetic signal of the sample, estimated using Pascal's constants (Bain et al., 2008[Bain, G. A. & Berry, J. F. (2008). J. Chem. Educ. 85, 532-536.]), was subtracted from the measured molar magnetic susceptibility χM.

2.2. Synthesis

The synthesis of 3-eth­oxy­salicyl­aldehyde thio­semi­car­ba­zone (H2-3-OEt-thsa) was carried out according to the general procedure described by Yemeli Tido (2010[Yemeli Tido, E. W. (2010). PhD thesis, University of Groningen, The Netherlands.]) (yield: 11.14 g, 46.55 mmol, 95.0%; m.p. 224 °C). H2-3-OEt-thsa is soluble in methanol, ethanol, acetone and DMSO. 1H NMR (300 MHz, DMSO-d6): δ (ppm) 11.39 (1H, s, OH), 9.02 (1H, s, S=C—NH), 8.40 (1H, s, N=C—H), 7.90–8.13 (2H, m, S=C—NH2), 6.72–7.50 (aromatic 3H, m, C—H), 4.05 (2H, q, O—CH2), 1.35 (3H, t, O—C—CH3). 13C NMR (300 MHz, DMSO-d6): δ (ppm) 182.8 (C=S), 147.4, 146.7 (C—O), 140.1 (C=N), 119.5, 118.7, 114.5 (C aromatic), 64.6 (C—N), 74.0 (O—CH2), 15.1 (O—C—CH3). IR (cm−1, KBr): 3400 (νOH), 3169 (νNH), 3249 (νNH2), 2935 (νCH3), 2896 (νCH2), 1618 (νC=N), 1535–1600 (νC=C), 1270 (νC—N), 1167 (νC=S).

The synthesis of [(CH3)2NH2][Fe(3-OEt-thsa)2], (I)[link], was carried out as follows: Fe(NO3)3·9H2O (1.0 mmol, 0.40 g) was dissolved in water (10 ml). The ligand H2-3-OEt-thsa (2.0 mmol, 0.46 g) was dissolved in methanol (60 ml) with the addition of di­methyl­amine, 40 wt% in water (10 mmol, 0.51 ml). To this mixture, the FeIII salt solution was added dropwise with constant stirring. The resulting dark-green solution was stirred and heated to 80 °C for approximately 10 min. The solution was then allowed to stand at room tem­per­ature until crystals had formed. The dark-green microcrystals were isolated by filtration and dried (yield: 0.30 g, 0.52 mmol, 52.0%). IR (cm−1, ATR): 3436, 3414 (νNH), 3265, 3098 (νNH2), 3012 (νCH3), 2971 (νCH2), 1614, 1586 (νC=N), 1570–1541 (νC=C ring), 1238 (νC—O), 1215 (νN—N), 1078 (νC—N), 736 (νC—S).

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms of terminal amine atoms N103 and N3 were located in difference Fourier maps and refined with restrained N—H distances of 0.86 (2) Å and with Uiso(H) = 1.2Ueq(N). The remaining H atoms were included in the refinement in calculated positions and treated as riding on their parent atoms, with N—H distances of 0.91 Å and Uiso(H) = 1.2Ueq(N) for the amine N atom of the cation, C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl (–CH=) H atoms, C—H distances of 0.99 Å and Uiso(H) = 1.2Ueq(C) for secondary (–CH2–) H atoms, and C—H dis­tances of 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl (–CH3) H atoms.

Table 1
Experimental details

Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum rotating anode generator with VHF Varimax optics (70 µm focus).

Crystal data
Chemical formula (C2H8N)[Fe(C10H11N3O2S)2]
Mr 576.50
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.4359 (3), 16.0265 (5), 17.2333 (7)
β (°) 98.668 (4)
V3) 2576.35 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.08 × 0.05 × 0.01
 
Data collection
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.661, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16969, 5903, 4415
Rint 0.055
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.096, 1.02
No. of reflections 5903
No. of parameters 341
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.38
Computer programs: CrystalClear-SM Expert (Rigaku, 2013[Rigaku (2013). CrystalClear-SM Expert. Riguku Corporation, The Woodlands, Texas, USA.]), CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

In solution, the free ligand, i.e. 3-eth­oxy­salicyl­aldehyde thio­semicarbazone (H2L), exists in two tautomeric forms, the thione and the thiol form, as illustrated in Scheme 1[link]. Consequently, in FeIII com­pounds, the ligand may be present as either one of the possible tautomers, and may be neutral, anionic or dianionic. Referring to the thiol tautomer, neutral H2L has H atoms located on the phenol O atom and the thiol S atom. The first deprotonation step involving the phenol group results in the formation of 3-eth­oxy­salicyl­aldehyde thio­semicarbazone(1−) (abbreviated as HL). Subsequent deprotonation yields 3-eth­oxy­salicyl­aldehyde thio­semi­car­ba­zon­ate(2−) (abbreviated as L2−).

The structure of di­methyl­ammonium bis­[3-eth­oxy­salicyl­aldehyde thio­semi­car­ba­zon­ato(2−)-κ3O2,N1,S]ferrate(III), (I)[link] (Fig. 1[link]), was determined at 100 K. Compound (I)[link] crystallized in the monoclinic space group P21/n, with Z = 4. The asymmetric unit consists of one formula unit, [(CH3)2NH2][Fe(3-OEt-thsa)2], with no atom on a special position. The FeIII cation is coordinated by the thiol­ate S, phenolate O and imine N atoms of each of the two dianionic O,N,S-tridentate L2− ligands. The donor atoms of the ligands are situated in two perpendicular planes, with the O and S atoms in cis positions, and mutually trans N atoms. Selected geometric parameters are listed in Table 2[link].

Table 2
Selected geometric parameters (Å, °)

Fe1—S1 2.4320 (6) Fe1—O101 1.9595 (16)
Fe1—S101 2.4389 (7) Fe1—N1 2.167 (2)
Fe1—O1 1.9806 (16) Fe1—N101 2.131 (2)
       
S1—Fe1—S101 98.98 (2) C108—S101—Fe1 95.71 (8)
O1—Fe1—S1 158.48 (5) C2—O1—Fe1 127.41 (14)
O1—Fe1—S101 91.30 (5) C102—O101—Fe1 130.25 (16)
O1—Fe1—N1 82.17 (7) C7—N1—Fe1 124.80 (15)
O1—Fe1—N101 107.31 (7) C8—N2—N1 113.96 (19)
O101—Fe1—S1 94.31 (5) C107—N101—Fe1 123.56 (16)
O101—Fe1—S101 158.89 (5) C108—N102—N101 114.09 (19)
O101—Fe1—O1 81.91 (7) C2—C1—C7 121.2 (2)
O101—Fe1—N1 105.56 (7) O1—C2—C1 122.4 (2)
O101—Fe1—N101 84.03 (7) N1—C7—C1 125.3 (2)
N1—Fe1—S1 78.45 (5) N2—C8—S1 125.75 (17)
N1—Fe1—S101 93.18 (5) C102—C101—C107 121.2 (2)
N101—Fe1—S1 93.26 (5) O101—C102—C101 123.1 (2)
N101—Fe1—S101 78.93 (5) N101—C107—C101 125.9 (2)
N101—Fe1—N1 167.63 (7) N102—C108—S101 125.65 (18)
C8—S1—Fe1 95.87 (8)    
[Figure 1]
Figure 1
The mol­ecular structure and atom-numbering scheme for (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.

The FeIIIO2N2S2 coordination sphere exhibits a distorted octa­hedral geometry, as evidenced by the bond angles of the Fe atom and the ligand donor atoms (vide infra). X-ray structural data of similar FeIII–bis­(ligand) com­pounds con­taining two dianionic thio­semi­car­ba­zon­ate(2−) ligands show that the Fe—S, Fe—O and Fe—N bond lengths are in the ranges 2.23–2.31, 1.93–1.95 and 1.88–1.96 Å, respectively, for low-spin FeIII com­pounds, and in the ranges 2.40–2.44, 1.96–1.99 and 2.05–2.15 Å, respectively, for the corresponding high-spin FeIII com­pounds (van Koningsbruggen et al., 2004[Koningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.]). The bond lengths involving the Fe atom and the donor atoms in (I) correspond with FeIII being in the high-spin state at 100 K.

Variable-tem­per­ature magnetic susceptibility measurements (5–320 K) confirm that the FeIII ion in (I)[link] is indeed in the high-spin state over this tem­per­ature range (Powell, 2016[Powell, R. E. (2016). PhD thesis, Aston University, Birmingham, UK.]). High-spin FeIII has also been evidenced in the related Cs[Fe(thsa)2] com­pound at 103 (and 298 K) (Ryabova et al., 1981a[Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. & Atovmyan, L. O. (1981a). Kristallografiya, 26, 101-108.]). It is significant to note that the Fe—O distances seem to be less sensitive to the change in FeIII spin state than the Fe—N and Fe—S distances, which may be related to the π-acceptor capability of the N- and S-donor atoms as opposed to the π-donor capability of the O-donor atoms. This is of particular significance when FeIII is in the low-spin state, as increased π backbonding will lead to com­paratively more pronounced shortening of the Fe—N and Fe—S bonds than of the Fe—O bonds (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.]).

Furthermore, the spin state of the FeIII cation can be related to the bond angles of the FeO2N2S2 coordination core. An analysis of the bond angles involving the opposite ligand donor atoms at 100 K is very enlightening, as it shows that the octa­hedral geometry of the present high-spin FeIII com­pound, with O1—Fe1—S1 = 158.48 (5)°, O101—Fe1—S101 = 158.89 (5)° and N1—Fe1—N101 = 167.63 (7)°, is considerably less regular than that of the low-spin com­pound Cs[Fe(3-OEt-thsa-Me)2]·CH3OH, with the bond angles S11—Fe—O11 = 177.83 (14)°, S21—Fe—O21 = 178.01 (13)° and N11—Fe—N21 = 178.9 (2)° (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.]), which are closer to 180°. This is in agreement with the low-spin FeIII ion adopting a more regular octa­hedral geometry than the high-spin FeIII ion (van Koningsbruggen et al., 2004[Koningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.]).

The ligands have been found to be in the dianionic form as no H atoms were located on the phenolate O (O1 and O101) or the thiol­ate S (S1 and S101) atoms. The charge of the two L2− ligands is balanced by the presence of the monovalent di­methyl­ammonium cation together with the trivalent iron cation. The tridentate ligands of the present com­pound are coordinated to the FeIII cation by the thiol­ate S, phenolate O and imine N atoms, forming six- and five-mem­bered chelate rings. The six-mem­bered chelate ring involves a significantly less restricted bite angle [O1—Fe—N1 = 82.17 (7)° and O101—Fe—N101 = 84.03 (7)°] than the five-mem­bered chelate ring [S1—Fe—N1 = 78.45 (5)° and S101—Fe—N101 = 78.93 (5)°]. The r.m.s. deviations from their least-squares plane of atoms of the six-mem­bered chelate ring of both coordinated ligands are 0.197 and 0.177 Å for Fe1/N11/C17/C11/C12/O11 and Fe1/N101/C107/C101/C102/O101, respectively, and the corresponding values for the five-mem­bered chelate rings are 0.129 and 0.102 Å for Fe1/N11/C12/C18/S11 and Fe1/N101/C102/C108/S101, respectively. It appears that the metal chelate rings deviate slightly from the ideal planar structure. Furthermore, the O—Fe—N and S—Fe—N bite angles of the six- and five-mem­bered chelates are deficient by ca 38 and 30°, respectively, com­pared to the angle at the vertex of a regular hexa­gon (120°) or penta­gon (108°), respectively. In com­parison to other (cation+)[Fe(L2−)2x(solvent) com­pounds of related ligands (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.], 2015[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2015). Acta Cryst. C71, 169-174.], 2020[Powell, R. E., Stöger, B., Knoll, C., Müller, D., Weinberger, P. & van Koningsbruggen, P. J. (2020). Acta Cryst. C76, 625-631.]), the deficiency of the bite angle in both the six- and five-mem­bered chelate rings is larger than expected, though it has been recognized that these other FeIII bis­(ligand) com­pounds contain FeIII in the low-spin state, whereas the present com­pound contains FeIII in the high-spin state. Consequently, (I) displays longer FeIII–donor atom bond lengths, which are associated with more restricted bite angles. Moreover, the remaining bond angles involving each six-mem­bered chelate ring (Table 2[link]) are, as expected, within ca 5° of the value of 125°. However, the C—S—Fe bond angles involving each five-mem­bered chelate ring are only about 95°, providing an additional deficiency of 13°. The additional deficiency can be offset by increasing the other bond angles within this five-mem­bered chelate ring to ca 120°. It has been found that the N—N—C angles are <120° and the N—C—S angles are >120°; these values suggest sp2 hybridization at the C and N atoms.

The stability of the FeIII com­plex is further enhanced by the high degree of electron delocalization throughout the chelated ligands, which is evident from the geometric parameters. The C—S, C—N and N—N bond lengths of (I)[link] show characteristics of a bond order between 1 (i.e. single bond) and 2 (i.e. double bond). The C8—S1 bond length of 1.746 (3) Å and the C108—S101 bond length of 1.752 (2) Å suggest partial electron delocalization of these C—S bonds. This feature has also been found in the structure of the related high-spin FeIII com­pound Cs[Fe(thsa)2] at 103 K (Ryabova et al., 1981a[Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. & Atovmyan, L. O. (1981a). Kristallografiya, 26, 101-108.]), in which the C—S bond lengths of 1.749 (9) and 1.761 (9) Å are indicative of partial electron delocalization.

In addition, the electron delocalization within each of the O,N,S-tridentate ligands is confirmed by a bond order larger than 1 for the C—N bond involving the deprotonated hydrazinic N atom, which is inferred from the lengths for the C7—N1 and C107—N101 bonds in (I) at 100 K of 1.301 (3) and 1.301 (3) Å, respectively, which correspond to the C—N bond lengths of 1.314 (10) and 1.303 (11) Å, respectively, for Cs[Fe(thsa)2] at 103 K (Ryabova et al., 1981a[Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. & Atovmyan, L. O. (1981a). Kristallografiya, 26, 101-108.]).

Moreover, the N—N bond lengths of (I)[link] at 100 K are N1—N2 of 1.395 (2) Å and N101—N102 of 1.399 (3) Å, which indicates partial electron delocalization within the five-mem­bered chelate ring.

The hydro­gen-bonding inter­actions of (I)[link], identified using the default parameters of OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), are listed in Table 3[link] and displayed in Fig. 2[link]. The N atom of the di­methyl­ammonium cation forms two hydro­gen bonds: one contact is formed with the phenolate O atom of one ligand, whereas the second contact is formed with the eth­oxy O atom of the sali­cyl­aldehyde moiety of the other ligand. The N201—H20A⋯O102 and N201—H20B⋯O1 contacts form an intra­molecular hydro­gen-bonded ring system, giving rise to an R22(9) ring (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N201—H20A⋯O102 0.91 1.97 2.877 (3) 174
N201—H20B⋯O1 0.91 1.86 2.766 (3) 173
[Figure 2]
Figure 2
The unit cell of (I)[link], with displacement ellipsoids drawn at the 50% probability level.

Magnetic susceptibility versus tem­per­ature measurements for (I)[link] were carried out to investigate the spin state of the FeIII ion. The data collected on heating and cooling coincide over the tem­per­ature range studied. The tem­per­ature dependence of χMT collected on cooling between 320 and 5 K is displayed in Fig. 3[link]. Above 100 K, χMT is tem­per­ature independent with a value of 4.41 (1) cm3 K mol−1 [5.94 (1) µB/Fe]. This is just above the expected value of 4.38 cm3 K mol−1 (5.92 µB/Fe) for FeIII in its high-spin (S = 5/2) state with an electronic g factor of 2. χM−1(T) is linear in T and a fit to a Curie–Weiss law between 100 and 320 K shown in Fig. 4[link] gives a Weiss tem­per­ature of −3.3 (1) K and an effective moment of 6.00 (1) µB/Fe.

[Figure 3]
Figure 3
χMT versus T for (I)[link]. The data were measured while cooling at a rate of 2 K min−1 in an applied field μ0H of 0.1 T.
[Figure 4]
Figure 4
Temperature dependence of the molar magnetic susceptibility, χM, for (I)[link]. The solid red lines show fits to the data using Equation (1)[link], with D = 0.83 (1) cm−1 and g = 2. The blue line shows a fit of χM−1(T) above 100 K using a Curie–Weiss law.

χMT drops rapidly below 100 K. This may be due to weak (anti­ferro)magnetic inter­actions between neighbouring spins or may reflect a splitting of the S = 5/2 state (O'Connor, 1982[O'Connor, C. J. (1982). Progress in Inorganic Chemistry, edited by S. J. Lippard, Vol. 29, pp. 203-283. New York: John Wiley & Sons, Inc.]). Studies using aligned single crystals are needed to differentiate between these possibilities. For splitting, the spin Hamiltonian can be written as HS = HCEF + Hz, where the crystalline electric field (CEF) term HCEF = D[Sz2S(+ 1)/3] + E(Sx2Sy2), with D and E being the axial and rhombic zero-field splitting, respectively. The 6S high-spin state is split into three Kramers doublets. For E = 0, the doublets are separated by 2D and 6D from the lowest energy doublet. The Zeeman energy Hz = gμBHSz and the molar susceptibility with a field along z is

[{\chi }_{\rm M}={{{{N}_{\rm A}g}^{2 }{\mu }_{\rm B}^{2}}\over{4{k}_{\rm B}T}}\left[{{1 + {9e}^{-2X }+ {25e}^{-6X}}\over{1 + {e}^{-2X} + {e}^{-6X}}}\right], \eqno(1)]

where X = D/kBT, NA is Avogadro's number and kB is the Boltzmann constant (O'Connor, 1982[O'Connor, C. J. (1982). Progress in Inorganic Chemistry, edited by S. J. Lippard, Vol. 29, pp. 203-283. New York: John Wiley & Sons, Inc.]). A fit gives D = 0.83 (1) cm−1 with g = 2. D is in the range expected for high-spin FeIII (Chen et al., 2002[Chen, C.-H., Lee, Y.-Y., Liau, B.-C., Elango, S., Chen, J.-H., Hsieh, H.-Y., Liao, F.-L., Wang, S.-L. & Hwang, L.-P. (2002). J. Chem. Soc. Dalton Trans. pp. 3001-3006.]; Yemeli Tido et al., 2007[Yemeli Tido, E. W., Vertelman, E. J. M., Meetsma, A. & van Koningsbruggen, P. J. (2007). Inorg. Chim. Acta, 360, 3896-3902.]). Fits with a finite E expected for a system with a rhombic distortion are possible, cf. Chen et al. (2002[Chen, C.-H., Lee, Y.-Y., Liau, B.-C., Elango, S., Chen, J.-H., Hsieh, H.-Y., Liao, F.-L., Wang, S.-L. & Hwang, L.-P. (2002). J. Chem. Soc. Dalton Trans. pp. 3001-3006.]), but these require a knowledge of the ratio λ = E/D from other studies, such as electron para­magnetic resonance (EPR) spectroscopy.

It is of inter­est to com­pare the two FeIII com­pounds that have so far been reported to contain the 3-eth­oxy­salicyl­aldehyde 4-R′-thio­semi­car­ba­zon­ate(2−) dianion. In Cs[Fe(3-OEt-thsa-Me)2]·CH3OH (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.]), FeIII is low spin, whereas in the present [(CH3)2NH2][Fe(3-OEt-thsa)2] com­pound, (I)[link], the metal ion adopts the high-spin state. The differences between the two com­pounds further involve: (i) the relative size of the R′ substituent on the terminal N atom of the thio­semicarbazide moiety, as (I) contains a H atom, whereas Cs[Fe(3-OEt-thsa-Me)2]·CH3OH (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.]) contains a methyl substituent; (ii) the difference in the size and inter­molecular inter­actions involving the associated outer-sphere monovalent cation, i.e. (CH3)2NH2+ versus Cs+; and (iii) the presence of a methanol solvent mol­ecule in the crystal lattice of Cs­[Fe(3-OEt-thsa-Me)2]·CH3OH (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.]). These differences are associated with (I) forming intra­molecular ring systems through hydro­gen bonds (vide supra), whereas Cs­[Fe(3-OEt-thsa-Me)2]·CH3OH forms inter­mole­cular hydro­gen-bonded ring systems which link neighbouring FeIII entities. These factors determine the arrangement of the FeIII entities within the unit cell, which is further characterized by the space group P21/n, with Z = 4 and V = 2576.35 (17) Å3 for (I), with a volume of 644.09 Å3 per high-spin FeIII formula unit, and the space group P[\overline{1}], with Z = 2 and V = 1369.5 (8) Å3 for Cs[Fe(3-OEt-thsa-Me)2]·CH3OH, with a volume of 684.75 Å3 per low-spin FeIII formula unit (Powell et al., 2014[Powell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.]); hence the volume increase associated with FeIII being low-spin com­pared to high-spin is more than offset by the differences in substituents, com­position and crystal packing.

Evidently, the intricate inter­play between the variation in cation, ligand substituents and associated solvent mol­ecules affects the crystal packing of com­pounds of this class of (cation+)[Fe(L2−)2x(solvent) materials and allows for a variation of the spin state of FeIII, with some members dis­playing tem­per­ature-dependent spin-crossover behaviour (van Koningsbruggen et al., 2004[Koningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.]; Powell, 2016[Powell, R. E. (2016). PhD thesis, Aston University, Birmingham, UK.]). Further studies by our group will additionally focus on tuning the spin state of FeIII by varying the degree of deprotonation of the ligand.

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2013); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dimethylammonium bis[3-ethoxysalicylaldehyde thiosemicarbazonato(2-)-κ3O2,N1,S]ferrate(III) top
Crystal data top
(C2H8N)[Fe(C10H11N3O2S)2]F(000) = 1204
Mr = 576.50Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 9.4359 (3) ÅCell parameters from 7929 reflections
b = 16.0265 (5) Åθ = 2.3–27.5°
c = 17.2333 (7) ŵ = 0.79 mm1
β = 98.668 (4)°T = 100 K
V = 2576.35 (17) Å3Plate, dark green
Z = 40.08 × 0.05 × 0.01 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
5903 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+4415 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.055
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.3°
profile data from ω–scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1920
Tmin = 0.661, Tmax = 1.000l = 2220
16969 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.042P)2 + 0.8071P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5903 reflectionsΔρmax = 0.38 e Å3
341 parametersΔρmin = 0.37 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms bonded to N3 and N103 were located in the difference map and then refined with Uiso 1.2 times the parent atoms and a geometrical distance restraint

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.70898 (4)0.21635 (2)0.50186 (2)0.00856 (10)
S10.62044 (6)0.25318 (4)0.62279 (3)0.01270 (14)
S1010.84413 (7)0.09133 (4)0.54708 (4)0.01227 (14)
O10.70288 (17)0.18269 (10)0.39082 (9)0.0110 (4)
O20.84874 (18)0.12675 (10)0.27538 (10)0.0161 (4)
O1010.66835 (17)0.32616 (10)0.45361 (9)0.0119 (4)
O1020.52885 (18)0.45436 (10)0.38418 (9)0.0137 (4)
N10.5051 (2)0.15161 (12)0.48756 (11)0.0106 (4)
N20.3979 (2)0.17493 (12)0.53078 (12)0.0117 (4)
N30.3409 (2)0.25363 (14)0.63117 (13)0.0153 (5)
H3A0.256 (2)0.2433 (17)0.6111 (15)0.018*
H3B0.369 (3)0.2879 (14)0.6684 (13)0.018*
N1010.9159 (2)0.26779 (12)0.54029 (11)0.0103 (4)
N1021.0392 (2)0.21832 (12)0.55538 (11)0.0104 (4)
N1031.1288 (2)0.08691 (13)0.56251 (13)0.0157 (5)
H10A1.116 (3)0.0359 (11)0.5552 (15)0.019*
H10B1.209 (2)0.1093 (16)0.5565 (16)0.019*
C10.5548 (2)0.05970 (14)0.38160 (14)0.0107 (5)
C20.6673 (3)0.10847 (15)0.35927 (13)0.0104 (5)
C30.7393 (3)0.07927 (15)0.29831 (14)0.0140 (5)
C40.6979 (3)0.00603 (15)0.25903 (14)0.0154 (6)
H40.74610.01220.21750.019*
C50.5848 (3)0.04148 (16)0.28023 (14)0.0173 (6)
H50.55670.09190.25320.021*
C60.5141 (3)0.01476 (15)0.34072 (14)0.0144 (5)
H60.43740.04700.35470.017*
C70.4709 (3)0.08925 (15)0.44005 (14)0.0117 (5)
H70.38400.06080.44390.014*
C80.4427 (3)0.22466 (14)0.59064 (14)0.0118 (5)
C90.9693 (3)0.14200 (17)0.33761 (15)0.0200 (6)
H9A1.05430.11060.32640.024*
H9B0.94490.12210.38840.024*
C101.0037 (3)0.23397 (18)0.34309 (17)0.0275 (7)
H10C1.03180.25300.29350.041*
H10D1.08280.24360.38600.041*
H10E0.91900.26500.35330.041*
C1010.8381 (3)0.41371 (14)0.53308 (14)0.0107 (5)
C1020.7139 (3)0.40090 (14)0.47803 (14)0.0099 (5)
C1030.6384 (3)0.47241 (15)0.44448 (14)0.0116 (5)
C1040.6755 (3)0.55135 (15)0.47206 (14)0.0150 (5)
H1040.62060.59810.45130.018*
C1050.7940 (3)0.56275 (15)0.53065 (15)0.0156 (6)
H1050.81720.61700.55090.019*
C1060.8772 (3)0.49560 (15)0.55903 (15)0.0143 (5)
H1060.96110.50420.59620.017*
C1070.9385 (3)0.34655 (14)0.55569 (14)0.0110 (5)
H1071.02900.36130.58440.013*
C1081.0136 (3)0.13784 (15)0.55374 (13)0.0115 (5)
C1090.4454 (3)0.52495 (15)0.34938 (14)0.0150 (5)
H10F0.50890.56600.32900.018*
H10G0.39650.55280.38930.018*
C1100.3359 (3)0.49200 (16)0.28312 (16)0.0218 (6)
H11A0.38540.46940.24160.033*
H11B0.27220.53750.26180.033*
H11C0.27940.44780.30310.033*
N2010.5046 (2)0.29205 (13)0.31206 (12)0.0164 (5)
H20A0.51470.34490.33140.020*
H20B0.57290.25980.34060.020*
C2010.5291 (3)0.29274 (18)0.22933 (16)0.0258 (7)
H20C0.45410.32580.19780.039*
H20D0.52650.23540.20930.039*
H20E0.62300.31750.22600.039*
C2020.3612 (3)0.26016 (19)0.32239 (17)0.0282 (7)
H20F0.28700.29540.29290.042*
H20G0.35150.26130.37820.042*
H20H0.35030.20270.30290.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00729 (18)0.00775 (18)0.01073 (18)0.00032 (14)0.00164 (13)0.00020 (13)
S10.0093 (3)0.0159 (3)0.0132 (3)0.0012 (3)0.0025 (2)0.0035 (2)
S1010.0096 (3)0.0095 (3)0.0177 (3)0.0001 (2)0.0021 (2)0.0006 (2)
O10.0119 (9)0.0094 (9)0.0121 (9)0.0015 (7)0.0028 (7)0.0021 (7)
O20.0157 (10)0.0200 (10)0.0136 (9)0.0029 (8)0.0049 (7)0.0004 (7)
O1010.0135 (9)0.0076 (9)0.0140 (9)0.0003 (7)0.0003 (7)0.0006 (7)
O1020.0166 (10)0.0093 (9)0.0145 (9)0.0046 (7)0.0003 (7)0.0016 (7)
N10.0104 (11)0.0108 (10)0.0109 (10)0.0010 (8)0.0023 (8)0.0009 (8)
N20.0087 (11)0.0130 (11)0.0144 (11)0.0008 (8)0.0051 (8)0.0024 (8)
N30.0097 (11)0.0175 (12)0.0194 (12)0.0023 (10)0.0047 (9)0.0064 (9)
N1010.0069 (10)0.0132 (11)0.0109 (10)0.0005 (8)0.0018 (8)0.0005 (8)
N1020.0058 (10)0.0107 (10)0.0143 (11)0.0019 (8)0.0001 (8)0.0002 (8)
N1030.0097 (11)0.0107 (11)0.0264 (13)0.0001 (10)0.0020 (9)0.0026 (9)
C10.0097 (13)0.0095 (12)0.0122 (12)0.0020 (10)0.0008 (10)0.0007 (9)
C20.0097 (13)0.0111 (12)0.0094 (12)0.0033 (10)0.0020 (9)0.0002 (9)
C30.0123 (13)0.0159 (13)0.0138 (13)0.0013 (10)0.0023 (10)0.0012 (10)
C40.0199 (14)0.0174 (14)0.0097 (13)0.0036 (11)0.0045 (11)0.0027 (10)
C50.0234 (15)0.0123 (13)0.0144 (13)0.0012 (11)0.0031 (11)0.0051 (10)
C60.0151 (14)0.0100 (13)0.0170 (13)0.0013 (10)0.0014 (10)0.0014 (10)
C70.0093 (13)0.0108 (12)0.0151 (13)0.0018 (10)0.0018 (10)0.0014 (9)
C80.0114 (13)0.0104 (12)0.0142 (13)0.0004 (10)0.0041 (10)0.0031 (9)
C90.0148 (14)0.0293 (16)0.0159 (14)0.0016 (12)0.0019 (11)0.0041 (11)
C100.0275 (17)0.0341 (18)0.0220 (15)0.0162 (14)0.0071 (13)0.0039 (12)
C1010.0098 (12)0.0089 (12)0.0142 (13)0.0004 (10)0.0042 (10)0.0001 (9)
C1020.0128 (13)0.0079 (12)0.0104 (12)0.0005 (10)0.0061 (10)0.0011 (9)
C1030.0103 (13)0.0117 (12)0.0137 (13)0.0014 (10)0.0047 (10)0.0013 (9)
C1040.0186 (14)0.0106 (13)0.0173 (13)0.0032 (11)0.0073 (11)0.0037 (10)
C1050.0174 (14)0.0094 (13)0.0212 (14)0.0020 (11)0.0067 (11)0.0035 (10)
C1060.0112 (13)0.0127 (13)0.0191 (14)0.0030 (10)0.0023 (10)0.0036 (10)
C1070.0090 (13)0.0111 (12)0.0124 (12)0.0017 (10)0.0005 (10)0.0007 (9)
C1080.0116 (13)0.0133 (13)0.0096 (12)0.0020 (10)0.0019 (10)0.0008 (9)
C1090.0153 (14)0.0136 (13)0.0168 (13)0.0060 (11)0.0046 (11)0.0061 (10)
C1100.0223 (15)0.0217 (15)0.0209 (15)0.0078 (12)0.0014 (12)0.0061 (11)
N2010.0182 (12)0.0157 (12)0.0135 (11)0.0040 (9)0.0035 (9)0.0002 (9)
C2010.0339 (18)0.0268 (16)0.0171 (15)0.0033 (13)0.0047 (13)0.0020 (12)
C2020.0231 (16)0.0317 (17)0.0290 (17)0.0007 (13)0.0015 (13)0.0074 (13)
Geometric parameters (Å, º) top
Fe1—S12.4320 (6)C6—H60.9500
Fe1—S1012.4389 (7)C7—H70.9500
Fe1—O11.9806 (16)C9—H9A0.9900
Fe1—O1011.9595 (16)C9—H9B0.9900
Fe1—N12.167 (2)C9—C101.509 (4)
Fe1—N1012.131 (2)C10—H10C0.9800
S1—C81.746 (3)C10—H10D0.9800
S101—C1081.752 (2)C10—H10E0.9800
O1—C21.330 (3)C101—C1021.407 (3)
O2—C31.387 (3)C101—C1061.417 (3)
O2—C91.461 (3)C101—C1071.448 (3)
O101—C1021.320 (3)C102—C1031.425 (3)
O102—C1031.381 (3)C103—C1041.378 (3)
O102—C1091.455 (3)C104—H1040.9500
N1—N21.395 (2)C104—C1051.401 (4)
N1—C71.301 (3)C105—H1050.9500
N2—C81.322 (3)C105—C1061.377 (4)
N3—H3A0.840 (17)C106—H1060.9500
N3—H3B0.857 (17)C107—H1070.9500
N3—C81.352 (3)C109—H10F0.9900
N101—N1021.399 (3)C109—H10G0.9900
N101—C1071.301 (3)C109—C1101.515 (4)
N102—C1081.312 (3)C110—H11A0.9800
N103—H10A0.834 (17)C110—H11B0.9800
N103—H10B0.854 (17)C110—H11C0.9800
N103—C1081.350 (3)N201—H20A0.9100
C1—C21.417 (3)N201—H20B0.9100
C1—C61.409 (3)N201—C2011.478 (3)
C1—C71.451 (3)N201—C2021.482 (3)
C2—C31.414 (3)C201—H20C0.9800
C3—C41.382 (3)C201—H20D0.9800
C4—H40.9500C201—H20E0.9800
C4—C51.403 (3)C202—H20F0.9800
C5—H50.9500C202—H20G0.9800
C5—C61.387 (3)C202—H20H0.9800
S1—Fe1—S10198.98 (2)C10—C9—H9A109.6
O1—Fe1—S1158.48 (5)C10—C9—H9B109.6
O1—Fe1—S10191.30 (5)C9—C10—H10C109.5
O1—Fe1—N182.17 (7)C9—C10—H10D109.5
O1—Fe1—N101107.31 (7)C9—C10—H10E109.5
O101—Fe1—S194.31 (5)H10C—C10—H10D109.5
O101—Fe1—S101158.89 (5)H10C—C10—H10E109.5
O101—Fe1—O181.91 (7)H10D—C10—H10E109.5
O101—Fe1—N1105.56 (7)C102—C101—C106119.9 (2)
O101—Fe1—N10184.03 (7)C102—C101—C107121.2 (2)
N1—Fe1—S178.45 (5)C106—C101—C107118.4 (2)
N1—Fe1—S10193.18 (5)O101—C102—C101123.1 (2)
N101—Fe1—S193.26 (5)O101—C102—C103118.8 (2)
N101—Fe1—S10178.93 (5)C101—C102—C103118.1 (2)
N101—Fe1—N1167.63 (7)O102—C103—C102114.1 (2)
C8—S1—Fe195.87 (8)C104—C103—O102125.0 (2)
C108—S101—Fe195.71 (8)C104—C103—C102120.8 (2)
C2—O1—Fe1127.41 (14)C103—C104—H104119.9
C3—O2—C9114.40 (18)C103—C104—C105120.1 (2)
C102—O101—Fe1130.25 (16)C105—C104—H104119.9
C103—O102—C109116.38 (18)C104—C105—H105119.9
N2—N1—Fe1120.93 (14)C106—C105—C104120.3 (2)
C7—N1—Fe1124.80 (15)C106—C105—H105119.9
C7—N1—N2114.27 (19)C101—C106—H106119.9
C8—N2—N1113.96 (19)C105—C106—C101120.3 (2)
H3A—N3—H3B127 (3)C105—C106—H106119.9
C8—N3—H3A115.3 (19)N101—C107—C101125.9 (2)
C8—N3—H3B116.1 (18)N101—C107—H107117.1
N102—N101—Fe1122.38 (14)C101—C107—H107117.1
C107—N101—Fe1123.56 (16)N102—C108—S101125.65 (18)
C107—N101—N102113.96 (19)N102—C108—N103116.7 (2)
C108—N102—N101114.09 (19)N103—C108—S101117.50 (18)
H10A—N103—H10B120 (3)O102—C109—H10F110.2
C108—N103—H10A118.5 (19)O102—C109—H10G110.2
C108—N103—H10B116.3 (19)O102—C109—C110107.7 (2)
C2—C1—C7121.2 (2)H10F—C109—H10G108.5
C6—C1—C2119.4 (2)C110—C109—H10F110.2
C6—C1—C7119.1 (2)C110—C109—H10G110.2
O1—C2—C1122.4 (2)C109—C110—H11A109.5
O1—C2—C3118.7 (2)C109—C110—H11B109.5
C3—C2—C1118.8 (2)C109—C110—H11C109.5
O2—C3—C2119.4 (2)H11A—C110—H11B109.5
C4—C3—O2119.6 (2)H11A—C110—H11C109.5
C4—C3—C2120.9 (2)H11B—C110—H11C109.5
C3—C4—H4119.9H20A—N201—H20B107.7
C3—C4—C5120.2 (2)C201—N201—H20A108.9
C5—C4—H4119.9C201—N201—H20B108.9
C4—C5—H5120.0C201—N201—C202113.4 (2)
C6—C5—C4119.9 (2)C202—N201—H20A108.9
C6—C5—H5120.0C202—N201—H20B108.9
C1—C6—H6119.6N201—C201—H20C109.5
C5—C6—C1120.7 (2)N201—C201—H20D109.5
C5—C6—H6119.6N201—C201—H20E109.5
N1—C7—C1125.3 (2)H20C—C201—H20D109.5
N1—C7—H7117.3H20C—C201—H20E109.5
C1—C7—H7117.3H20D—C201—H20E109.5
N2—C8—S1125.75 (17)N201—C202—H20F109.5
N2—C8—N3116.2 (2)N201—C202—H20G109.5
N3—C8—S1118.00 (19)N201—C202—H20H109.5
O2—C9—H9A109.6H20F—C202—H20G109.5
O2—C9—H9B109.6H20F—C202—H20H109.5
O2—C9—C10110.2 (2)H20G—C202—H20H109.5
H9A—C9—H9B108.1
Fe1—S1—C8—N218.8 (2)C3—O2—C9—C10129.0 (2)
Fe1—S1—C8—N3163.13 (18)C3—C4—C5—C60.2 (4)
Fe1—S101—C108—N10217.0 (2)C4—C5—C6—C10.3 (4)
Fe1—S101—C108—N103167.08 (18)C6—C1—C2—O1174.2 (2)
Fe1—O1—C2—C138.7 (3)C6—C1—C2—C32.4 (3)
Fe1—O1—C2—C3144.75 (18)C6—C1—C7—N1172.3 (2)
Fe1—O101—C102—C10120.9 (3)C7—N1—N2—C8165.6 (2)
Fe1—O101—C102—C103162.28 (15)C7—C1—C2—O10.7 (4)
Fe1—N1—N2—C814.1 (3)C7—C1—C2—C3175.8 (2)
Fe1—N1—C7—C18.6 (4)C7—C1—C6—C5174.9 (2)
Fe1—N101—N102—C1088.4 (3)C9—O2—C3—C260.1 (3)
Fe1—N101—C107—C10115.1 (3)C9—O2—C3—C4122.8 (3)
O1—C2—C3—O22.7 (3)C101—C102—C103—O102172.33 (19)
O1—C2—C3—C4174.3 (2)C101—C102—C103—C1047.8 (3)
O2—C3—C4—C5178.3 (2)C102—C101—C106—C1050.1 (3)
O101—C102—C103—O1024.6 (3)C102—C101—C107—N10112.6 (4)
O101—C102—C103—C104175.2 (2)C102—C103—C104—C1053.8 (3)
O102—C103—C104—C105176.4 (2)C103—O102—C109—C110177.88 (19)
N1—N2—C8—S16.2 (3)C103—C104—C105—C1062.3 (4)
N1—N2—C8—N3175.6 (2)C104—C105—C106—C1014.2 (4)
N2—N1—C7—C1171.7 (2)C106—C101—C102—O101177.3 (2)
N101—N102—C108—S1018.5 (3)C106—C101—C102—C1035.8 (3)
N101—N102—C108—N103175.57 (19)C106—C101—C107—N101176.1 (2)
N102—N101—C107—C101168.3 (2)C107—N101—N102—C108168.2 (2)
C1—C2—C3—O2179.4 (2)C107—C101—C102—O10111.5 (3)
C1—C2—C3—C42.3 (4)C107—C101—C102—C103165.3 (2)
C2—C1—C6—C51.4 (4)C107—C101—C106—C105171.4 (2)
C2—C1—C7—N114.3 (4)C109—O102—C103—C102178.22 (18)
C2—C3—C4—C51.2 (4)C109—O102—C103—C1041.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N201—H20A···O1020.911.972.877 (3)174
N201—H20B···O10.911.862.766 (3)173
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]) at the University of Southampton for the collection of the crystallographic data.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBain, G. A. & Berry, J. F. (2008). J. Chem. Educ. 85, 532–536.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCambi, L. & Szegö, L. (1931). Berichte, 64, 2591–2598.  Google Scholar
First citationCambi, L. & Szegö, L. (1933). Berichte, 66, 656–661.  Google Scholar
First citationChen, C.-H., Lee, Y.-Y., Liau, B.-C., Elango, S., Chen, J.-H., Hsieh, H.-Y., Liao, F.-L., Wang, S.-L. & Hwang, L.-P. (2002). J. Chem. Soc. Dalton Trans. pp. 3001–3006.  Web of Science CSD CrossRef Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFloquet, S., Boillot, M. L., Rivière, E., Varret, F., Boukheddaden, K., Morineau, D. & Négrier, P. (2003). New J. Chem. 27, 341–348.  Web of Science CrossRef CAS Google Scholar
First citationFloquet, S., Guillou, N., Négrier, P., Rivière, E. & Boillot, M. L. (2006). New J. Chem. 30, 1621–1627.  Web of Science CSD CrossRef CAS Google Scholar
First citationFloquet, S., Muñoz, M. C., Guillot, R., Rivière, E., Blain, G., Réal, J. A. & Boillot, M. L. (2009). Inorg. Chim. Acta, 362, 56–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationGütlich, P., van Koningsbruggen, P. J. & Renz, F. (2004). Struct. Bond. 107, 27–75.  Google Scholar
First citationHalcrow, M. A. (2013). Editor. In Spin-Crossover Materials. Oxford: John Wiley & Sons Ltd.  Google Scholar
First citationHarding, D. J., Harding, P. & Phonsri, W. (2016). Coord. Chem. Rev. 313, 38–61.  Web of Science CrossRef CAS Google Scholar
First citationHayami, S., Gu, Z., Shiro, M., Einaga, Y., Fujishima, A. & Sato, O. (2000). J. Am. Chem. Soc. 122, 7126–7127.  Web of Science CSD CrossRef CAS Google Scholar
First citationHayami, S., Hiki, K., Kawahara, T., Maeda, Y., Urakami, D., Inoue, K., Ohama, M., Kawata, S. & Sato, O. (2009). Chem. Eur. J. 15, 3497–3508.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKaruppannan, S. K., Martín-Rodríguez, A., Ruiz, E., Harding, P., Harding, D. J., Yu, X., Tadich, A., Cowie, B., Qi, D. & Nijhuis, C. A. (2021). Chem. Sci. 12, 2381–2388.  Web of Science CrossRef CAS Google Scholar
First citationKoningsbruggen, P. J. van, Maeda, Y. & Oshio, H. (2004). Top. Curr. Chem. 233, 259–324.  Web of Science CrossRef Google Scholar
First citationLétard, J. F., Guionneau, P. & Goux-Capes, L. (2004). Top. Curr. Chem. 235, 221–249.  Google Scholar
First citationLi, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. & Sato, O. (2013). Chem. Eur. J. 19, 12948–12952.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Z.-Y., Ohtsu, H., Kojima, T., Dai, J.-W., Yoshida, T., Breedlove, B. K., Zhang, W.-X., Iguchi, H., Sato, O., Kawano, M. & Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 5184–5189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolnár, G., Rat, S., Salmon, L., Nicolazzi, W. & Bousseksou, A. (2018). Adv. Mater. 30, 1703862.  Google Scholar
First citationO'Connor, C. J. (1982). Progress in Inorganic Chemistry, edited by S. J. Lippard, Vol. 29, pp. 203–283. New York: John Wiley & Sons, Inc.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPhonsri, W., Darveniza, L. C., Batten, S. R. & Murray, K. S. (2017). Inorganics, 5, 51.  Web of Science CrossRef Google Scholar
First citationPowell, R. E. (2016). PhD thesis, Aston University, Birmingham, UK.  Google Scholar
First citationPowell, R. E., Lees, M. R., Tizzard, G. J. & van Koningsbruggen, P. J. (2022). Acta Cryst. C78, 63–69.  CrossRef IUCr Journals Google Scholar
First citationPowell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595–598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPowell, R. E., Schwalbe, C. H., Tizzard, G. J. & van Koningsbruggen, P. J. (2015). Acta Cryst. C71, 169–174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPowell, R. E., Stöger, B., Knoll, C., Müller, D., Weinberger, P. & van Koningsbruggen, P. J. (2020). Acta Cryst. C76, 625–631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2013). CrystalClear-SM Expert. Riguku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRubio-Giménez, V., Bartual-Murgui, C., Galbiati, M., Núñez-López, A., Castells-Gil, J., Quinard, B., Seneor, P., Otero, E., Ohresser, P., Cantarero, A., Coronado, E., Real, J. A., Mattana, R., Tatay, S. & Martí-Gastaldo, C. (2019). Chem. Sci. 10, 4038–4047.  Web of Science PubMed Google Scholar
First citationRyabova, N. A., Ponomarev, V. I., Atovmyan, L. O., Zelentsov, V. V. & Shipilov, V. I. (1978). Koord. Khim. 4, 119.  Google Scholar
First citationRyabova, N. A., Ponomarev, V. I., Zelentsov, V. V. & Atovmyan, L. O. (1981a). Kristallografiya, 26, 101–108.  CAS Google Scholar
First citationRyabova, N. A., Ponomarev, V. I., Zelentsov, V. V. & Atovmyan, L. O. (1982). Kristallografiya, 27, 81–91.  CAS Google Scholar
First citationRyabova, N. A., Ponomarev, V. I., Zelentsov, V. V., Shipilov, V. I. & Atovmyan, L. O. (1981b). J. Struct. Chem. 22, 234–238.  CrossRef Web of Science Google Scholar
First citationSenthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176–205.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTissot, A., Kesse, X., Giannopoulou, S., Stenger, I., Binet, L., Rivière, E. & Serre, C. (2019). Chem. Commun. 55, 194–197.  Web of Science CrossRef CAS Google Scholar
First citationYemeli Tido, E. W. (2010). PhD thesis, University of Groningen, The Netherlands.  Google Scholar
First citationYemeli Tido, E. W., Vertelman, E. J. M., Meetsma, A. & van Koningsbruggen, P. J. (2007). Inorg. Chim. Acta, 360, 3896–3902.  Web of Science CSD CrossRef CAS Google Scholar
First citationZelentsov, V. V., Bogdanova, L. G., Ablov, A. V., Gerbeleu, N. V. & Dyatlova, C. V. (1973). Russ. J. Inorg. Chem. 18, 2654-2657.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds