sigma-hole interactions\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Chalcogen bonding in the solid-state structures of 1,3-bis­(benzimidazoliumyl)benzene-based chalcogen-bonding donors

crossmark logo

aFakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, 44801, Germany
*Correspondence e-mail: stefan.m.huber@rub.de

Edited by T. Roseveare, University of Sheffield, United Kingdom (Received 24 August 2022; accepted 30 November 2022; online 11 January 2023)

1,3-Bis(benzimidazoliumyl)benzene-based chalcogen-bonding catalysts were previously successfully applied in different benchmark reactions. In one of those examples, i.e. the activation of quinolines, sulfur- and selenium-based chalcogen-bonding catalysts showed comparable properties, which is unexpected, as the selenium-con­taining catalysts should show superior catalytic properties due to the increased polarizability of selenium compared to sulfur. Herein, we present four crystal structures of the respective 1,3-bis­(benzimidazoliumyl)benzene-based chalcogen-bonding catalyst con­taining sulfur (3S) and selenium (3Se, three forms) as Lewis acidic centres. The sulfur-con­taining catalyst shows weaker chalcogen bonding compared to its selenium analogue, as well as anion–π interactions. The selenium-based analogues, on the other hand, show stronger chalcogen-bonding motifs compared to the sulfur equivalent, de­pen­ding on the crystallization conditions, but in every case, the intermolecular interactions are comparable in strength. Other interactions, such as hydrogen bonding and anion–π, were also observed, but in the latter case, the interaction distances are longer compared to those of the sulfur-based equivalent. The solid-state structures could not further explain the high catalytic activity of the sulfur-con­taining catalysts. Therefore, a comparison of their σ-hole depths from density functional theory (DFT) gas-phase calculations was performed, which are again in line with the previously found properties in the solid-state structures.

1. Introduction

Chalcogen bonding (ChB) (Aakeroy et al., 2019[Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889-1892.]) is defined as the attractive interaction of Lewis acidic chalcogen centres with Lewis bases and is closely related to hydrogen bonding (Doyle & Jacobsen, 2007[Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713-5743.]) and halogen bonding (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). However, chalcogen bonding is the least investigated interaction in this group. This interaction can be explained by three major contributions, again similar to hydrogen and halogen bonding: (i) charge transfer, described by an n→σ*-orbital interaction (Mulliken, 1952[Mulliken, R. S. (1952). J. Am. Chem. Soc. 74, 811-824.]); (ii) electrostatic attraction of the lone pair of the Lewis base with an electropositive region (σ-hole) at the chalcogen (Rosenfield et al., 1977[Rosenfield, R. E., Parthasarathy, R. & Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860-4862.]); (iii) dispersion (Bleiholder et al., 2006[Bleiholder, C., Werz, D. B., Köppel, H. & Gleiter, R. (2006). J. Am. Chem. Soc. 128, 2666-2674.]). In general, chalcogen bonding is a more directional interaction compared to hydro­gen bonding, which is explained by the absence of filled p-orbitals at hydrogen and by the fact that the σ*-orbital of the R—H bond is comprised of the 1s orbital on the hydrogen side. Furthermore, the interaction site is not limited to a single atom and can vary between tellurium, selenium and sulfur, which consequently allows the fine tuning of the interaction strength. Less electronegativity and easier polarization of the chalcogen leads to an increased anisotropic electron distribution and thus an enlarged electropositive region (σ-hole), as well as to a lower-lying σ*-orbital of the R—Ch bond. Hence, the strength of the chalcogen bonding increases with the atomic number of chalcogen (S < Se < Te). Another difference to hydrogen and halogen bonding is the second substituent located at the interacting atom. This interaction was observed in several solid-state systems, such as Ebselen, a synthetic organo­selenium drug (Dupont et al., 1990[Dupont, L., Dideberg, O. & Jacquemin, P. (1990). Acta Cryst. C46, 484-486.]) and di­phenyl diselenide with iodine (Kubiniok et al., 1988[Kubiniok, S., du Mont, W.-W., Pohl, S. & Saak, W. (1988). Angew. Chem. Int. Ed. Engl. 27, 431-433.]). Intensive studies (Bleiholder et al., 2006[Bleiholder, C., Werz, D. B., Köppel, H. & Gleiter, R. (2006). J. Am. Chem. Soc. 128, 2666-2674.]) and applications of the Gleiter group used chalcogen–chalcogen interactions to synthesize porous materials, such as nanotubes (Werz et al., 2002[Werz, D. B., Gleiter, R. & Rominger, F. (2002). J. Am. Chem. Soc. 124, 10638-10639.]), that incorporated other organic molecules like solvents (Werz et al., 2004[Werz, D. B., Gleiter, R. & Rominger, F. (2004). J. Org. Chem. 69, 2945-2952.]). In parallel, first applications in solution appeared as intramolecular chalcogen bonding was applied for the rigidification of intermediates to induce chirality (Fujita et al., 1994[Fujita, K., Iwaoka, M. & Tomoda, S. (1994). Chem. Lett. 23, 923-926.]; Wirth, 1995[Wirth, T. (1995). Angew. Chem. Int. Ed. Engl. 34, 1726-1728.]; Tiecco et al., 2002[Tiecco, M., Testaferri, L., Santi, C., Tomassini, C., Marini, F., Bagnoli, L. & Temperini, A. (2002). Chem. Eur. J. 8, 1118-1124.]). Moving from intra- to intermolecular interactions in solution, pioneering works in the field of anion recognition via chalcogen bonding have been performed by Gabbaï and co-workers (Zhao & Gabbaï, 2010[Zhao, H. & Gabbaï, F. P. (2010). Nat. Chem. 2, 984-990.]) using charged chalcogen-bonding donors, and by Taylor and co-workers with neutral chalcogen-bonding donors (Garrett et al., 2015[Garrett, G. E., Gibson, G. L., Straus, R. N., Seferos, D. S. & Taylor, M. S. (2015). J. Am. Chem. Soc. 137, 4126-4133.]). Extending the field of anion recognition to anion transport, the group of Matile introduced neutral dithieno­thio­phene (DTT) chalcogen-bonding donors (Benz et al., 2016[Benz, S., Macchione, M., Verolet, Q., Mareda, J., Sakai, N. & Matile, S. (2016). J. Am. Chem. Soc. 138, 9093-9096.]), which were also employed in oligomeric fashion as transmembrane transporters in further studies (Macchione et al., 2018[Macchione, M., Tsemperouli, M., Goujon, A., Mallia, A. R., Sakai, N., Sugihara, K. & Matile, S. (2018). Helv. Chim. Acta, 101, e1800014.]). Furthermore, with the DTT motif, the first application of chalcogen bonding in organocatalysis was presented by the same group (Benz et al., 2017[Benz, S., López-Andarias, J., Mareda, J., Sakai, N. & Matile, S. (2017). Angew. Chem. Int. Ed. 56, 812-815.]). Catalytic amounts of these compounds successfully activate quinolines for their reductive hydrogenation to 1,2,3,4-tetra­hydro­quinoline derivatives. In halogen-bonding organocatalysis, cationic donors were often markedly more active than neutral donors (Jungbauer & Huber, 2015[Jungbauer, S. H. & Huber, S. M. (2015). J. Am. Chem. Soc. 137, 12110-12120.]). There­fore, our group reported the use of cationic chalcogen-bonding donors, which con­tained the more Lewis acidic chalcogen selenium on a 1,3-bis­(benz­imidazoliumyl)benzene scaffold (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.]). These catalysts were used in stoichiometric (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.]) and catalytic (Wonner et al., 2017b[Wonner, P., Vogel, L., Kniep, F. & Huber, S. M. (2017b). Chem. Eur. J. 23, 16972-16975.]) activations of carbon–halide bonds. We also successfully demonstrated the catalytic activity of the same catalyst and the sulfur congener in the above-mentioned hydrogenation reaction (Wonner et al., 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]).

The use of cationic selenium-based Lewis acids was further extended by Wang and co-workers in the activation of carbonyl functionalities (Wang et al., 2019[Wang, W., Zhu, H., Liu, S., Zhao, Z., Zhang, L., Hao, J. & Wang, Y. (2019). J. Am. Chem. Soc. 141, 9175-9179.]). As the development of chalcogen-bonding catalysts moved on, tellurium-based catalysts were introduced and applied in the activation of trans-β-nitro­styrene (Wonner et al., 2019a[Wonner, P., Dreger, A., Vogel, L., Engelage, E. & Huber, S. M. (2019a). Angew. Chem. Int. Ed. 58, 16923-16927.]) and crotono­phenone (Wonner et al., 2020[Wonner, P., Steinke, T., Vogel, L. & Huber, S. M. (2020). Chem. Eur. J. 26, 1258-1262.]) for Michael reactions, as well as in the activation of a carbon–chloride bond (Steinke et al., 2021[Steinke, T., Wonner, P., Engelage, E. & Huber, S. M. (2021). Synthesis, 53, 2043-2050.]) and of imines (Steinke et al., 2022[Steinke, T., Wonner, P., Gauld, R. M., Heinrich, S. & Huber, S. M. (2022). Chem. A Eur. J. 28, e202200917.]). Lately, hypervalent tellurium-based chalcogen-bonding donors were introduced in organocatalysis (Weiss et al., 2021[Weiss, R., Aubert, E., Pale, P. & Mamane, V. (2021). Angew. Chem. Int. Ed. 60, 19281-19286.]; Zhou & Gabbaï, 2021[Zhou, B. & Gabbaï, F. P. (2021). J. Am. Chem. Soc. 143, 8625-8630.]). Herein, we present four crystal structures of 1,3-bis­(benz­imid­azoliumyl)benzene-based chalcogen-bonding donors with selenium and sulfur as Lewis acidic centres. Monodentate, bidentate and biaxial intermolecular chalcogen-bonding inter­actions are observed in these solid-state structures, which are further discussed in terms of previously observed catalytic activity. In addition, we performed DFT calculations to analyze chalcogen bonding in the absence of packing effects observed in the crystal structures of the catalyst system at hand.

2. Experimental

2.1. General remarks

Commercially available chemicals were purchased from ABCR, Alfa Aesar, Carbolution, Merck, ChemPur, Sigma–Aldrich, Roth or VWR and were used without further purification. All experiments were carried out under an inert gas atmosphere with dry solvents and flame-dried glassware using standard Schlenk techniques. Dry di­chloro­methane, di­ethyl ether and tetra­hydro­furan were received from an MBRAUN MB SPS-800 solvent purification system. Solvents were distilled and dried over a 4 Å molecular sieve and finally dried on an Alox column. Other dry solvents were dried with flame-dried 4 Å molecular sieve. A Karl Fischer Titroline 7500KF trace with Honeywell Hydranal–Coulomat AD solution was used to determine residual water. Merck thin-layer chromatography (TLC) aluminium sheets (silica gel 60, F254) were used for TLC analysis. Substances were detected by fluorescence under UV light (wavelength λ = 254 nm). Column chromatography was performed with silica gel (grain size 0.04–0.063 mm, Macherey–Nagel-Si60) and distilled solvents. The solvents used as eluents with the corresponding RF values are listed for the corresponding experiments. 1H and 13C NMR spectra were recorded at room tem­per­ature with a Bruker AVIII 300 spectrometer. 19F NMR spectra were recorded at room tem­per­ature with a Bruker DPX-250 spectrometer and were measured proton decoupled if not further noted. ESI–MS spectra were recorded with a Bruker Esquire 6000, with the compounds dissolved in aceto­nitrile or methanol. EI–MS spectra were recorded on a Jeol AccuTOF. FT–IR spectra were recorded with a Shimadzu IR Affinity-IS spectrometer equipped with a Specac-Quest ATR module. The crystal structures were analysed on a Rigaku Synergy dual-source device, with a Cu microfocus sealed tube (Cu Kα) using mirror monochromators and a HyPix-6000HE Hybrid photon coun­ting X-ray detector. The crystals were mounted in Hampton CryoLoops using GE/Bayer silicone grease. Data were re­corded and reduced using Crysalis PRO software (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). The structure was solved using WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) in combination with SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined with shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

2.2. Synthesis of known compounds

1,3-Bis(benzimidazolyl)­benzene (Ganta & Chand, 2015[Ganta, S. & Chand, D. K. (2015). Dalton Trans. 44, 15181-15188.]) and 3,3′-dimethyl-1,1′-(1,3-phenylene)bis(1H-1,3-ben­zo­di­az­ol-3-ium) bis(tri­fluoro­methane­sul­fon­ate), 1 (Liu et al., 2019[Liu, X., Ma, S. & Toy, P. H. (2019). Org. Lett. 21, 9212-9216.]), were synthesized according to literature procedures.

2.3. Synthesis of new compounds

2.3.1. Precursor 2S

A reported procedure was slightly modified for the synthesis of compound 2S (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.], 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]). In a flame-dried 100 ml Schlenk flask, 1.00 g of 1 (1.57 mmol, 1.00 eq.) was added and dissolved in 30 ml dry methanol (52.3 mM). To the solution were added 1.00 g sulfur (3.92 mmol, 2.50 eq.) and 1.28 g Cs2CO3 (3.92 mmol, 2.50 eq.). The resulting suspension was stirred for 24 h under reflux. The mixture was filtered over a pad of silica, which was rinsed twice with dichloromethane (DCM). The solvents were removed under reduced pressure and the crude solid was purified by column chromatography with pentane–EtOAc (2:1 v/v) (RF = 0.33). The solvents were removed under reduced pressure and product 2S was obtained as a white solid (m.p. 240 °C). Yield: 0.547 g (1.36 mmol, 87%). 1H NMR (300 MHz, chloro­form-d): δ (ppm) = 7.82–7.75 (m, 4H), 7.48 (d, J = 7.9 Hz, 2H), 7.36 (t, J = 7.7 Hz, 4H), 7.29–7.23 (m, 2H), 3.92 (s, 6H). 13C NMR (75 MHz, chloro­form-d): δ (ppm) = 170.30, 136.84, 132.73, 132.64, 130.36, 128.19, 127.74, 123.83 (d, J = 5.5 Hz), 110.59, 109.05, 31.48. ATR-IR: [\tilde v] (cm−1) = 3030 (w), 2924 (m), 2345 (w), 1736 (m), 1728 (m), 1601 (s), 1589 (m), 1476 (s), 1454 (m), 1427 (s), 1377 (vs), 1337 (vs), 1302 (s), 1265 (s), 1211 (vs), 1161 (m), 1144 (m), 1119 (s), 1015 (m), 993 (m), 924 (m), 887 (w), 849 (w), 806 (s), 743 (vs), 714 (vs), 692 (vs), 615 (s), 559 (vs), 540 (m), 471 (s), 432 (m), 420 (vs). EI–MS (70 eV): m/z(+) = 402.2 [M]+, 369.2 [M − S]+.

2.3.2. Precursor 2Se

A reported procedure was slightly modified for the synthesis of compound 2Se (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.], 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]). In a flame-dried 100 ml Schlenk flask, 0.50 g of 1 (0.783 mmol, 1.00 eq.) was added and dissolved in 15 ml dry methanol (52.3 mM). To this solution were added 0.155 g selenium (1.96 mmol, 2.50 eq.) and 0.638 g Cs2CO3 (1.96 mmol, 2.50 eq.). The resulting suspension was stirred for 24 h under reflux. The mixture was filtered over a pad of silica, which was rinsed twice with DCM. The solvents were removed under reduced pressure and the crude solid was purified by column chromatography with pentane–EtOAc (1:1 v/v) (RF = 0.59). The solvents were removed under reduced pressure and product 2Se was obtained as a white solid (m.p. = 266 °C). Yield: 0.234 g (0.471 mmol, 60%). 1H NMR (400 MHz, aceto­nitrile-d3): δ (ppm) = 7.86–7.75 (m, 4H), 7.48 (d, J = 7.9 Hz, 2H), 7.36 (t, J = 7.7 Hz, 4H), 7.31–7.24 (m, 2H), 3.92 (s, 6H). 13C NMR (75 MHz, chloro­form-d): δ (ppm) = 167.36, 137.58, 133.97, 133.67, 130.52, 128.97, 128.97, 124.29 (d, J = 1.2 Hz), 111.31, 109.58, 33.58. ATR-IR: [\tilde v] (cm−1) = 3053 (w), 2922 (m), 2853 (w), 1726 (w), 1601 (m), 1589 (m), 1493 (m), 1474 (s), 1456 (m), 1425 (m), 1375 (s), 1333 (vs), 1306 (s), 1298 (s), 1263.37 (s), 1211 (s), 1161 (m), 1144 (m), 1121 (s), 1084 (s), 1015 (m), 991 (m), 874 (m), 853 (m), 808 (s), 802 (s), 745 (vs), 709 (s), 691 (s), 675 (m), 646 (m), 617 (m), 592 (m), 557 (s), 534 (m), 469 (m), 430 (m). EI–MS (70 ev): m/z = 417.10 [M − Se]+.

2.3.3. Chalcogen-bonding donor 3S

A reported procedure was slightly modified for the synthesis of compound 3S (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.], 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]). To a flame-dried 50 ml Schlenk flask was added 0.400 g of 2S (0.984 mmol, 1.00 eq.) dissolved in 15 ml dry DCM (66.3 mM). Afterwards, 0.281 ml methyl tri­fluoro­methane­sulfonate (0.408 g, 2.48 mmol, 2.50 eq.) was added dropwise. The mixture was stirred for 24 h at room tem­per­ature. The solvent was removed under reduced pressure. The crude solid was washed three times with di­ethyl ether and three times with pentane, and then dried under high vacuum. Product 3S was obtained as a pale-yellow solid (m.p. = 222 °C). Yield: 0.630 g (0.858 mmol, 86%). 1H NMR (300 MHz, acetonitrile-d3): δ (ppm) = 8.14 (dd, J = 9.0, 6.9 Hz, 1H), 8.07–8.01 (m, 2H), 7.99–7.94 (m, 3H), 7.75 (qd, J = 8.2 Hz, J = 1.2 Hz, 4H), 7.58 (d, J = 7.8 Hz, 2H), 4.22 (s, 6H), 2.51 (s, 6H). 13C NMR (75 MHz, acetonitrile-d3): δ (ppm) = 151.97, 135.33, 134.21, 133.95, 131.59, 129.21, 128.85, 127.87, 114.35, 113.82, 34.55, 18.20. 19F NMR (235 MHz, aceto­nitrile-d3): δ (ppm) = −79.31 (s, 6F). ATR-IR: [\tilde v] (cm−1) = 3066 (w), 3045 (w), 1604 (w), 1508 (m), 1498 (m), 1483 (m), 1463 (m), 1398 (w), 1319 (w), 1254 (vs), 1223 (vs), 1148 (vs), 1088 (m), 1028 (vs), 982 (m), 925 (w), 849 (w), 818 (m), 799 (w), 767 (s), 754 (s), 746 (s), 698 (s), 633 (vs), 573 (s), 559 (s), 515 (vs), 444 (m), 417 (m). ESI–MS: m/z(+) = calc. 581.10 [M + OTf]+; found 581.10 [M + OTf]+. m/z(−) = calc. 148.95 [OTf]; found 149.29 [OTf].

2.3.4. Chalcogen-bonding donor 3Se

A reported procedure was slightly modified for the synthesis of compound 3Se (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.], 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]). To a flame-dried 50 ml Schlenk flask was added 0.150 g of 2Se (0.302 mmol, 1.00 eq.) dissolved in 20 ml dry DCM (15.1 mM). Afterwards, 85.5 µl methyl tri­fluoro­methane­sulfonate (0.124 g, 0.756 mmol, 2.50 eq.) was added dropwise. The mixture was stirred for 24 h at room tem­per­ature. The solvent was removed under reduced pressure. The crude solid was washed three times with di­ethyl ether and three times with pentane, and then dried under high vacuum. The crude solid was dissolved in the minimum amount of aceto­nitrile and precipitated by the addition of di­ethyl ether. The solid was filtered off and dried under high vacuum. Product 3Se was obtained as a pale-yellow solid (m.p. = 239 °C) after washing with di­ethyl ether and pentane. Yield: 0.230 g (0.278 mmol, 92%). 1H NMR (400 MHz, aceto­nitrile-d3): δ (ppm) = 8.14 (dd, J = 8.8, 6.7 Hz, 1H), 8.07–8.01 (m, 2H), 7.99–7.94 (m, 3H), 7.82–7.68 (m, 4H), 7.58 (d, J = 7.9 Hz, 2H), 4.22 (s, 6H), 2.50 (s, 6H). 13C NMR (75 MHz, aceto­nitrile-d3): δ (ppm) = 148.30, 136.11, 134.90, 134.21, 133.71, 128.93, 128.59, 128.28, 114.33, 113.87, 35.73, 11.10. 19F NMR (377 MHz, chloro­form-d): δ (ppm) = −79.34 (s, 6F). ATR-IR: [\tilde v] (cm−1) = 3082 (w), 2951 (w), 2360 (w), 1740 (w), 1605 (w), 1506 (m), 1476 (m), 1458 (m), 1404 (w), 1360 (w), 1308 (w), 1254 (vs), 1221 (s), 1138 (s), 1092 (w), 1078 (w), 1026 (vs), 935 (w), 908 (w), 829 (w), 773 (w), 758 (s), 739 (m), 710 (w), 692 (m), 667.37 (w), 633 (vs), 571 (m), 557 (m), 515 (s), 469 (w), 449 (w), 430 (w). ESI–MS: m/z(+) = calc. 676.99 [M − OTf]+, 264.02 [M − 2OTf]2+; found 676.64 [M − OTf]+, 263.00 [M − 2OTf]2+. m/z(−) = calc. 148.95 [OTf]; found 148.64 [OTf].

2.4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were refined using the riding model in idealized positions and isotropic radii, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for other H atoms.

Table 1
Experimental details

Experiments were carried out at 170 K with Cu Kα radiation using a Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector. H-atom parameters were constrained.

  3S 3Se-A 3Se-B 3Se-C
Crystal data
Chemical formula C24H24N4S22+·2CF3O3S C24H24N4Se22+·2CF3O3S C24H24N4Se22+·2CF3O3S C24H24N4Se22+·2CF3O3S·0.5C2H4Cl2
Mr 730.73 824.53 824.53 874.01
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c Triclinic, P[\overline{1}]
a, b, c (Å) 7.7776 (2), 22.5823 (6), 18.2338 (5) 7.74775 (4), 13.12863 (8), 31.27496 (18) 13.8634 (4), 7.7558 (2), 29.3266 (7) 9.3672 (1), 13.3265 (2), 13.6445 (1)
α, β, γ (°) 90, 99.329 (2), 90 90, 90.6141 (5), 90 90, 94.246 (2), 90 102.515 (1), 93.231 (1), 96.198 (1)
V3) 3160.16 (15) 3181.02 (3) 3144.59 (14) 1647.49 (3)
Z 4 4 4 2
μ (mm−1) 3.51 4.88 4.94 5.48
Crystal size (mm) 0.13 × 0.06 × 0.03 0.29 × 0.14 × 0.08 0.03 × 0.02 × 0.01 0.19 × 0.10 × 0.08
 
Data collection
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.579, 1.000 0.300, 1.000 0.900, 0.969 0.456, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21606, 5564, 4631 37979, 5613, 5268 28154, 5529, 4865 19605, 5795, 5307
Rint 0.043 0.039 0.073 0.046
(sin θ/λ)max−1) 0.595 0.595 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.205, 1.09 0.028, 0.070, 1.02 0.053, 0.142, 1.06 0.048, 0.127, 1.05
No. of reflections 5564 5613 5529 5795
No. of parameters 419 486 419 484
No. of restraints 0 0 0 28
Δρmax, Δρmin (e Å−3) 0.69, −0.39 0.60, −0.78 1.21, −0.84 0.84, −0.80
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.de/diamond.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Discussion

As described in the Introduction, selenium-based chalcogen-bonding catalysts deriving from a 1,3-bis­(benzimidazoliumyl)benzene frame were applied in several reactions. Whereas the first report describes the application in a stoichiometric activation of a carbon–bromine bond (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.]), the following article dealt with the catalytic activation of a carbon–chloride bond (Wonner et al., 2017b[Wonner, P., Vogel, L., Kniep, F. & Huber, S. M. (2017b). Chem. Eur. J. 23, 16972-16975.]). As these reactions rely at least partially on the binding of the catalyst to the halide leaving group, they are typically easier to activate or catalyse than reactions involving neutral organic functional groups like carbonyls or imines. Therefore, the next step was the activation of quinolines in a transfer hydrogenation reaction (Wonner et al., 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]). However, this benchmark reaction showed surprisingly similar catalytic activities between preorganized and non-preorganized catalysts, as well as between sulfur- and selenium-based chalcogen-bonding donors. On theoretical grounds, the preorganized and the selenium-based variant would have been expected to be noticeably more potent. In particular, the comparable per­for­mance of the catalyst differing in the chalcogen atom was puzzling and intriguing, as this could mean that better accessible sulfur variants could be used in catalysis without much loss of turn-over frequency.

To further investigate this issue, the non-preorganized sulfur- and selenium-based catalysts were subjected to crystallization studies to investigate the chalcogen-bonding properties. Crystallization of these compounds proved difficult despite various efforts made while varying parameters that affect the crystallization process, such as tem­per­ature, concentration and crystallization techniques. The octyl chains, which are responsible for the good solubility of the catalysts in organic solvents, are most likely the reason for this. To avoid this challenge, the respective all-methyl­ated catalysts (3S and 3Se) were synthesized. The preparation of these compounds followed an already reported route (Fig. 1[link]) (Wonner et al., 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]), with 1,3-bis­(benzimidazolyl)­benzene (Ganta & Chand, 2015[Ganta, S. & Chand, D. K. (2015). Dalton Trans. 44, 15181-15188.]) and compound 1 (Liu et al., 2019[Liu, X., Ma, S. & Toy, P. H. (2019). Org. Lett. 21, 9212-9216.]) being synthesized according to literature procedures. The next step was the formation of the respective sulfur or selenium urea compounds (2S and 2Se) under basic conditions. The final step, methyl­ation of the urea compound, yielded the all-methyl­ated compounds 3S and 3Se.

[Figure 1]
Figure 1
Synthesis of the chalcogen-bonding catalysts investigated in this report. (i) Ch (2.50 eq.), Cs2CO3 (2.50 eq.), MeOH, reflux, 3 d (2S = 87%; 2Se = 60%); (ii) MeOTf (2.50 eq.), DCM, room temperature, 24 h (3S = 86%; 3Se = 92%) (Ch = S or Se) (Wonner et al., 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]).

Next, crystallization studies were carried out. The vapour diffusion method was applied successfully to crystallize com­pound 3S from di­chloro­methane and cyclo­hexane (Fig. 2[link]). This compound crystallizes in the monoclinic space group P21/c. The unit-cell constants are a = 7.7776 (2), b = 22.5823 (6) and c = 18.2338 (5) Å, with a volume of 3160.16 (15) Å3 and a density of 1.536 Mg m−3. The unit cell is built up of four ion pairs. Within this structure, an intermolecular interaction between atoms S1 and F1 of a tri­fluoro­methane­sul­fon­ate anion is observed. The S1⋯F1 distance is 3.154 (3) Å, 96% of the van der Waals radii (Σrω), and the directionality is rather poor (C1—S1⋯F1 = 146.9°). The supposedly more Lewis basic O atoms of the tri­fluoro­methane­sul­fon­ate anion are involved in two anion–π interactions with the imidazole unit of benzimidazole. These interactions have distances O6⋯cent = 2.894 (4) Å and O3⋯cent = 3.068 (3) Å from the calculated centroid (cent) of the imidazole unit to the tri­fluoro­methane­sul­fon­ate O atoms. From this O atom to the closest C atom, the distances in both cases are 11% shorter than the Σrω (which possibly indicates a stronger interaction compared to the already mentioned chalcogen-bonding interaction). In addition, hydrogen bonding between atoms O4 and H15 in the 2-position of the central arene core [with H15⋯O4 = 2.468 (5) Å, 94% of Σrω, and C15—H15⋯O4 = 166.5°] is observed.

[Figure 2]
Figure 2
The molecular structure of 3S with the chalcogen bonding, anion–π interactions and hydrogen bonding marked, and with displacement ellipsoids drawn at the 50% probability level.

Overall, merely a chalcogen-bonding interaction between sulfur and fluorine was observed with a distance that corresponds to 96% of the Σrω. Additional weak hydrogen bonding found in this structure between the backbone H atoms of the arene core and the benzimidazolium unit will not be further discussed in this article.

Under the same crystallization conditions, the selenium-con­taining equivalent 3Se crystallizes also in the monoclinic space group P21/c (Fig. 3[link]). The unit-cell constants are a = 7.74775 (4), b = 13.12863 (8) and c = 31.27496 (18) Å, with a volume of 3181.02 (3) Å3 and a density of 1.722 Mg m−3. The unit cell con­tains four ion pairs and bidentate chalcogen bonding from the Se1 and Se2 centres of 3Se to tri­fluoro­methane­sul­fon­ate atom O4 is observed. Some of the anions involved in these interactions are disordered over two positions. The interaction distances are Se1⋯O4 = 3.031 (2) Å and Se2⋯O4 = 3.080 (2) Å, with angles of C3—Se1⋯O4 = 165.31° and C11—Se2⋯O4 = 159.89°. The sum of the van der Waals radii is 3.42 Å and therefore the observed distances amount to 89 and 90% of this measure, thus classifying this interaction as stronger chalcogen bonding compared to the interaction found in the structure of 3S. Atom Se2, which already features chalcogen bonding in the elongation of the benzimidazole C11—Se bond, faces also a second chalcogen-bonding interaction to atom O3A of the second tri­fluoro­methane­sul­fon­ate anion in the elongation of the CH3—Se bond, with an Se2⋯O3A distance of 3.035 (3) Å and a C2—Se2⋯O3A angle of 158.07° (89% of Σrω). This additional interaction vividly demonstrates the property of chalcogens to form two noncovalent interactions based on their Lewis acidity. Although only one electron-withdrawing substituent is used, both axes simultaneously seem to be available for chalcogen bonding.

[Figure 3]
Figure 3
Structure A of 3Se with the chalcogen bonding, hydrogen bonding and anion–π interactions marked, and with displacement ellipsoids drawn at the 50% probability level. For the sake of clarity, only H atoms involved in hydrogen bonding are shown. Symmetry operation to generate the second molecule of 3Se and tri­fluoro­methane­sul­fon­ate: −x + 1, −y + 1, −x + 1.

Taking a closer look at the unit cell, several other intermolecular interactions are found. The remaining O atoms (O5 and O6) of this tri­fluoro­methane­sul­fon­ate anion are involved in two anion–π interactions to an imidazole group of benz­im­id­azole [O5⋯cent = 3.269 (3) Å and O6⋯cent = 3.307 (3) Å]. These interactions can be considered very weak, as the distances are close to the actual Σrω with 99 and 100%. Atom O5 faces additional hydrogen bonding, formed with atom H20 sitting in the 4-position of the central arene core [H20⋯O5 = 2.397 (2) Å, 91% of Σrω, and C20—H20⋯O5 = 143.01°]. Moreover, atom O1A of the tri­fluoro­methane­sul­fon­ate anion is employed in a second hydrogen-bonding interaction to H24, sitting in the 2-position of the central arene core [H24⋯O1A = 2.402 (4) Å, 92% of Σrω, and C24—H24⋯O1A = 161.21°]. These two hydrogen-bonding interactions indicate a Lewis acidic character of the benzene H atoms. The overall picture of the unit cell is therefore described by two chalcogen-bonding donors which are bridged with two tri­fluoro­methane­sul­fon­ate anions via chalcogen bonding, hydrogen bonding and anion–π interactions. This structure features comparable binding distances within the chalcogen-bonding donor, e.g. the distances of the carbon–selenium bonds and also similar distances of the observed intermolecular chalcogen bonding to a related compound (Wonner et al., 2017a[Wonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009-12012.]). The distances of the anion–π interactions in 3S are on average 9% shorter than the corresponding interactions found in this crystal structure. This could be explained by the fact that one tri­fluoro­methane­sul­fon­ate O atom forms this interaction in the structure of 3S, whereas two tri­fluoro­methane­sul­fon­ate O atoms are involved in the interaction with 3Se, which geometrically leads to an increased interaction distance. Another explanation could be the more electron-withdrawing properties of sulfur compared to selenium based on the difference in their electronegativity, leading to a more polarized imidazolium system when sulfur is implemented.

Besides this structure, a second crystal structure (B) of 3Se was obtained from crystallization at lower tem­per­atures (4–5 °C) (Fig. 4[link]). The crystal system is again monoclinic with the space group P21/c. The parameters of the unit cell are a = 13.8634 (4), b = 7.7558 (2) and c = 29.3267 (7) Å, with a volume of 3144.59 (14) Å3 and a density of 1.742 Mg m−3. The unit cell once more consists of four ion pairs. Different to the previously described solid-state structure (A of 3Se), each selenium centre features its own chalcogen-bonding interaction to an O atom of a tri­fluoro­methane­sul­fon­ate anion. The distances of these interactions are Se1⋯O3 = 3.074 (4) Å (90% of Σrω) and Se2⋯O1 = 3.052 (4) Å (89% of Σrω), with C3—Se1⋯O3 = 167.87° and C5—Se2⋯O1 = 171.26°. Besides these interactions and differences, yet another short contact is observed. Atom Se1, already featuring chalcogen bonding in the elongation of the benzimidazole C3—Se1 bond, faces also a second chalcogen-bonding interaction to atom O5 of the second tri­fluoro­methane­sul­fon­ate anion in the elongation of the CH3—Se bond. This interaction [Se1⋯O5 = 3.033 (3) Å, 89% of Σrω, with C3—Se1⋯O5 = 161.19°] gives Se1 again a biaxial character. However, only one of the two Se atoms features this biaxial system, as also seen in structure A of 3Se (Fig. 3[link]). Between the two crystal structures of 3Se, only minor differences are observed, as the Se⋯O chalcogen-bonding interaction distances are in both cases approximately 90% of the van der Waals radii. The angles of the structure obtained at lower tem­per­atures are closer to 170°. Both structures feature a biaxial chalcogen centre with similar Se⋯O distances (89% of the van der Waals radii) and similar angles below 160°, which are less directional than the interactions in the elongation of the benzimidazole C—Se bond. Similar to the previously described structures, the 2-position hydrogen (H19) of the central arene core shows its Lewis acidic po­tential in a hydrogen-bonding interaction to one of the tri­fluoro­methane­sul­fon­ate anions (O6) [H19⋯O6 = 2.550 (4) Å, 98% of Σrω, and C19—H19⋯O6 = 157.75°].

[Figure 4]
Figure 4
Structure B of 3Se grown at 4–5 °C, with the chalcogen bonding and hydrogen bonding marked, and with displacement ellipsoids drawn at the 50% probability level.

Changing the solvent in the crystallization experiments from di­chloro­methane to 1,2-di­chloro­ethane ended up yielding yet another structural variation (structure C of 3Se) (Fig. 5[link]). In this case, a triclinic space group P[\overline 1], with unit-cell parameters of a = 9.3672 (1), b = 13.3265 (2) and c = 13.6445 (1) Å, with a volume of 1647.49 (3) Å3 and a density of 1.762 Mg m−3 was obtained. The unit cell is built up of two ion pairs along with four crystallized 1,2-di­chloro­methane molecules. The binding distances and angles within the donor are comparable to the previously described structure of 3Se. The crystal structure features two independent intermolecular interactions. The first one includes the Se1 centre and atom Cl1 of 1,2-di­chloro­ethane, with an Se1⋯Cl1 distance of 3.535 (24) Å, which corresponds to 97% of the Σrω, and a C3A—Se1A⋯Cl1A angle of 176°. The second short contact can be found between the Se2 centre and tri­fluoro­methane­sul­fon­ate atom O3, with an Se2⋯O3 distance of 3.133 (4) Å (92% of Σrω) and a C11—Se2⋯O3 angle of 168°. This Se⋯O interaction is again comparable to the other observed chalcogen-bonding interactions for 3Se. The distance of Se1A to the Cl1A atom of 1,2-di­chloro­ethane is very close to the Σrω, which indicates a weaker interaction compared to the interaction of selenium with a tri­fluoro­methane­sul­fon­ate O atom. However, since the solvent is not charged and thus a neutral chalcogen-bonding acceptor is involved in the Se⋯Cl interaction, a weaker interaction is expected. The slightly longer distance to the tri­fluoro­methane­sul­fon­ate O atom compared to the distance in structures A and B of 3Se can be explained by the fact that two independent Se⋯O/Cl chalcogen-bonding interactions, yet no co-operative effect, are present.

[Figure 5]
Figure 5
Structure C of 3Se, with chalcogen bonding to tri­fluoro­methane­sul­fon­ate and 1,2-di­chloro­ethane marked, and with displacement ellipsoids drawn at the 50% probability level. The di­chloro­ethane molecule and tri­fluoro­methane­sul­fon­ate anion are generated by (x + 1, y, z).

In addition, this structure also features anion–π interactions (Fig. 6[link]). An imidazole moiety of one of the two benzimidazolium systems coordinates with each side to one tri­fluoro­methane­sul­fon­ate anion [O1⋯cent = 3.152 (3) Å and O4B⋯cent = 3.063 (4) Å]. Atom O2 sitting on the same tri­fluoro­methane­sul­fon­ate anion as O1 also forms an anion–π interaction [O2⋯cent = 2.920 (3) Å], becoming therefore a bridging moiety between two chalcogen-bonding donors. The imidazole system of this interaction does not feature a second anion–π interaction. The distances of these interactions are 5–13% shorter than the Σrω of the O atom to the closest C atom. These anion–π interactions are up to 10% shorter compared to those found in structure A of 3Se (Fig. 4[link]), and provide further indications that the weak anion–π interaction in structure A is due to geometric limitations. Comparing the interaction with 3S indicates interactions of similar strength, even though selenium is less electronegative and does not polarize the imidazole moiety of benzimidazole in the same fashion as the more electronegative sulfur could do.

[Figure 6]
Figure 6
Structure C of 3Se, with the anion–π interactions to tri­fluoro­methane­sul­fon­ate marked, and with displacement ellipsoids drawn at the 50% probability level. H atoms and 1,2-di­chloro­ethane molecules have been omitted for clarity. The first tri­fluoro­methane­sul­fon­ate anion is generated by (x, y, z − 1) and the second tri­fluoro­methane­sul­fon­ate anion and 3Se are generated by (−x + 1, −y + 1, −z).

Considering the fact that the carbon–nitro­gen bonds to the central scaffold are free to rotate and therefore the Lewis acidic selenium centres could in principle point in opposite directions, it is interesting to see that a syn-like conformer has been observed in all of the presented structures. The only exception is the disorder found in structure C of 3Se, with a ratio of 95:5 of the syn- and anti-like conformers. This is especially remarkable for the structure of 3S and structure C of 3Se, as no bidentate interaction of the Lewis acidic centres keeps the compound in this conformation, and the last structure of 3Se, as two independent chalcogen-bonding interactions are found, which in principle could also point in different directions.

Overlaying the structure of 3S and structure B of 3Se stresses the similarity of the compounds (Fig. 7[link]). The 1,3-bis­benzimidazolium scaffolds are matching each other in terms of geometry. The biggest difference is that one of the methyl groups located at the chalcogens (right side in this plot) is pointing in opposite direction. Nevertheless, they are roughly occupying the same space. The bigger difference is the orientation of one of the two tri­fluoro­methane­sul­fon­ate anions. Whereas for 3S, the CF3 group of tri­fluoro­methane­sul­fon­ate is facing the sulfur, it is the SO3 moiety that is facing the selenium centre in structure B of 3Se.

[Figure 7]
Figure 7
Overlay plot of the structures of 3S (blue bonds) and 3Se (structure B) (red bonds).

Besides these solid-state structures, we also performed density functional theory (DFT) calculations to further evaluate and elucidate chalcogen-bonding properties of the herein considered catalyst system. For the in silico investigations, the M06-2X functional (Zhao & Truhlar, 2008[Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215-241.]) with the triple-zeta def2-TZVP basis set (Weigend & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]) and Grimme's D3 dispersion correction was applied (Grimme et al., 2010[Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.]; Grimme, 2012[Grimme, S. (2012). Chem. Eur. J. 18, 9955-9964.]). In the electrostatic plots, the energy potentials are set to 87.8 and 153.1 kcal mol−1 and are projected with 0.001 e Bohr−3. The surface map values are summed up in Table 2[link] in kcal mol−1.

Table 2
Surface map values for the σ-holes of 3Ch

Entry Compound C(benzim)—Ch1a C(benzim)—Ch2a CH3—Ch1a CH3—Ch2a C(core)—Hb Maximum
1 3Te 152.4 153.3 147.8 147.2 145.2
2 3Se 146.6 144.7 145.9 145.6 146.9c 147.9
3 3S 141.0 144.2 144.5 144.9c 146.6c 149.1
Notes: (a) surface map values in kcal mol−1 in the elongation of the respective bonds, (b) the H atom at the 2-position of the central benzene core and (c) approximate values due to the unclear definition of the σ-holes.

First, we consider the `depth' of the σ-holes, which are localized at the elongation of the benzimidazole C—Ch bonds [Figs. 8[link](a), 8(c) and 8(e)]. According to the expected tendency, the surface map values for these σ-holes (at Ch1 and Ch2) are decreasing with the decreasing atomic number of the implemented chalcogen (Table 2[link]). In any case, both σ-holes in the described areas show slightly different values (e.g. 152.4 and 153.3 kcal mol−1 for 3Te). The comparison of 3Se and 3S is of special interest, as these data can be compared with the previously reported catalysis data (Wonner et al., 2019b[Wonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673-1678.]). If a deeper σ-hole depth is equal to stronger catalytic activity, 3Se should show an increased activation compared to 3S. As stated above, this is not the case. Therefore, the observed catalytic activity in the reduction of quinolines cannot be further explained taking only these σ-holes into account.

[Figure 8]
Figure 8
Plots of the optimized structure of 3Ch created with CLYView (Legault, 2009[Legault, C. Y. (2009). CYLview. Version 1.0b. Université de Sherbrooke, Canada.]), along with the electrostatic potential surface with an energy scale of 87.8–153.1 kcal mol−1 projected with 0.001 e Bohr−3. (a)/(b) Ch = Te, (c)/(d) Ch = Se and (e)/(f) Ch = S.

Shining light on the remaining σ-holes of these systems, that in the elongation of the CH3—Ch bond [Figs. 8[link](b), 8(d) and 8(f)] could provide hints on the origins of the comparable catalytic properties. 3Te shows defined σ-holes [Fig. 8[link](b)] in this region with decreased absolute values of potentials [with respect to those of the C(benzim)—Ch bond] of 147.8 and 147.2 kcal mol−1. Besides this electron-poor area, the H atom in the 2-position of the central arene core also features an electropositive potential of 145.2 kcal mol−1.

Moving to 3Se, these σ-holes are less defined and less separated from the electron-poor region at the central arene core [Fig. 8[link](d)]. In contrast to 3Te, the four chalcogen-based electron-deficient areas for 3Se show comparable energies (Table 2[link], entry 2). The estimated energy for the σ-hole of the 2-position H atom shows a potentially more Lewis acidic area compared to those located at the chalcogen. In two of the three crystal structures of 3Se, we observed weak hydrogen bonding of this H atom. The overall maximum value for 3Se was observed right between the less defined chalcogen and hydrogen σ-hole, with a value of 147.9 kcal mol−1. For 3Te, no such value was found, as they did not overcome the classic σ-hole values.

Continuing these investigations with 3S, no separation of the σ-holes (CH3—S bond) is spotted and a connected electron-deficient system covering these σ-holes and the 2-position H atom of the central core is observed. The surface map values (Table 2[link], entry 3) are reversed to those from 3Te, as the 2-position seems to be the most Lewis acidic centre, followed by the CH3—S bond σ-holes. The C(benzim)—S bond σ-holes are those that are the least Lewis acidic. Matching this with the crystal structure of 3S, these data are confirmed, as no chalcogen bonding in the elongation of the C(benzim)—S bond is found, but one intermolecular action is observed in the elongation of the CH3—S bond which is theoretically favoured. Like 3Se, the most electron-deficient area of 3S is again observed between the central arene core and the chalcogen. However, in the case of 3S, the difference to the second most Lewis acidic centre (2.5 kcal mol−1) is larger than the difference in 3Se (1.0 kcal mol−1). Since sulfur is more electron withdrawing, the larger electron deficient area might be explained by the more electron-withdrawing sulfur, which impacts the whole structure. This might also explain the reason for the catalytic activity in the reduction of quinolones. Nevertheless, it is necessary to mention that various reference experiments were carried out in that reaction which indicate an activation based on chalcogen bonding, for instance, by using the respective hydrogen-bonding equivalents.

4. Conclusion

In summary, we presented four solid-state structures of sulfur- and selenium-con­taining chalcogen-bonding catalysts. The structures and their interactions are matched with in silico-calculated respective structures to shine some light on the fairly surprising results of their application in the activation of quinolines. The structure of 3S features one chalcogen-bon­ding interaction from sulfur to fluorine of the tri­fluoro­methane­sul­fon­ate counter-anion, which has an interaction distance close to the sum of the van der Waals radii, whilst also anion–π interactions and hydrogen bonding are observed. These results are in line with the theoretically predicted data. In three crystal structures of the selenium-based analogue 3Se, different mono- and bidentate, as well as biaxial binding motifs to neutral and negatively charged molecules based on chalcogen bonding, are present. Nevertheless, these structures also con­tained anion–π interactions along with hydrogen bonding. The results could also be related to calculational data. We further extended the DFT calculations to the appropriate tellurium-based compound, which could not be synthesized, and observed the most suitable theoretical properties for chalcogen bonding. However, the unusual activities of the previous report on the reduction of quinolines could not be satisfactorily explained.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a) and shelXle (Hübschle et al., 2011); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

3,3'-Bis(methylsulfanyl)-1,1'-(1,3-phenylene)bis(1H-1,3-benzodiazol-3-ium) bis(trifluoromethanesulfonate) (ts-049_3S) top
Crystal data top
C24H24N4S22+·2CF3O3SF(000) = 1496
Mr = 730.73Dx = 1.536 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.7776 (2) ÅCell parameters from 5564 reflections
b = 22.5823 (6) Åθ = 3.1–66.5°
c = 18.2338 (5) ŵ = 3.51 mm1
β = 99.329 (2)°T = 170 K
V = 3160.16 (15) Å3Needle, translucent white
Z = 40.13 × 0.06 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5564 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4631 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
ω scansθmax = 66.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 95
Tmin = 0.579, Tmax = 1.000k = 2526
21606 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.0868P)2 + 6.2578P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5564 reflectionsΔρmax = 0.69 e Å3
419 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35126 (16)0.56835 (6)0.25113 (7)0.0608 (4)
N10.3348 (5)0.50402 (16)0.3780 (2)0.0540 (10)
O10.0399 (6)0.41389 (17)0.2140 (3)0.0872 (13)
F10.0689 (4)0.51149 (15)0.12752 (18)0.0726 (8)
C10.5501 (7)0.6107 (3)0.2717 (3)0.0715 (15)
H1A0.5792260.6273050.2256220.107*
H1AB0.6449290.5848530.2947720.107*
H1AC0.5341720.6429300.3059870.107*
C20.3914 (7)0.4486 (2)0.3489 (4)0.0719 (16)
H2A0.2892780.4252390.3277120.108*
H2AB0.4613060.4262700.3891910.108*
H2AC0.4619140.4570870.3101990.108*
S20.49729 (19)0.80031 (6)0.25935 (8)0.0670 (4)
N20.2444 (4)0.59565 (15)0.3825 (2)0.0443 (8)
O20.2997 (5)0.4683 (2)0.2232 (3)0.0866 (13)
F20.1862 (5)0.48431 (17)0.0786 (2)0.0926 (11)
S30.11679 (15)0.47000 (5)0.22368 (7)0.0541 (3)
N30.3109 (5)0.80886 (15)0.3752 (2)0.0470 (9)
O30.0234 (5)0.50764 (17)0.2798 (2)0.0698 (10)
F30.1486 (5)0.56541 (14)0.1402 (2)0.0952 (12)
C30.3109 (5)0.55545 (19)0.3401 (3)0.0494 (11)
C40.2803 (5)0.5108 (2)0.4456 (3)0.0520 (11)
S40.77237 (17)0.72091 (5)0.48588 (8)0.0614 (4)
N40.5248 (5)0.87227 (16)0.3815 (2)0.0536 (10)
O40.6806 (7)0.66722 (19)0.4697 (4)0.118 (2)
F40.7760 (9)0.7011 (3)0.6268 (3)0.157 (2)
C50.2729 (7)0.4715 (2)0.5046 (4)0.0674 (16)
H50.3108600.4316420.5031260.081*
O50.9570 (5)0.71609 (19)0.5008 (3)0.0824 (12)
F50.5543 (10)0.7495 (4)0.5733 (4)0.197 (4)
O60.7038 (6)0.76858 (18)0.4399 (3)0.0870 (13)
F60.8004 (12)0.7926 (3)0.5986 (3)0.183 (3)
C60.2087 (7)0.4934 (3)0.5638 (3)0.0711 (16)
H60.2003750.4676340.6042570.085*
C70.1544 (7)0.5519 (3)0.5683 (3)0.0658 (14)
H70.1129740.5650880.6117250.079*
C80.1598 (6)0.5913 (2)0.5103 (3)0.0560 (12)
H80.1204780.6310150.5119170.067*
C90.2250 (5)0.56933 (19)0.4506 (3)0.0470 (10)
C250.0943 (6)0.5092 (2)0.1387 (3)0.0575 (12)
C100.1780 (5)0.65309 (18)0.3587 (2)0.0427 (9)
C130.0411 (6)0.7624 (2)0.3156 (3)0.0540 (11)
H130.0058690.8003850.3015950.065*
C120.0553 (7)0.7121 (2)0.2967 (3)0.0618 (13)
H120.1695670.7154180.2691760.074*
C110.0119 (6)0.6568 (2)0.3173 (3)0.0540 (11)
H110.0541440.6220750.3034040.065*
C150.2777 (5)0.70264 (18)0.3781 (2)0.0431 (9)
H150.3913740.6995980.4062690.052*
C140.2070 (6)0.75701 (18)0.3553 (2)0.0451 (10)
C160.3153 (6)0.84064 (18)0.4413 (3)0.0481 (10)
C170.2144 (7)0.8362 (2)0.4963 (3)0.0597 (13)
H170.1205170.8089610.4935250.072*
C180.2588 (8)0.8743 (2)0.5563 (3)0.0683 (14)
H180.1941190.8730570.5962470.082*
C190.3968 (9)0.9144 (2)0.5590 (3)0.0742 (17)
H190.4215580.9401110.6006300.089*
C260.7166 (13)0.7413 (5)0.5744 (5)0.111 (3)
C200.4967 (7)0.9181 (2)0.5047 (3)0.0645 (14)
H200.5911750.9450750.5074640.077*
C210.4523 (6)0.87969 (17)0.4445 (3)0.0501 (11)
C220.6779 (7)0.9045 (2)0.3644 (4)0.0718 (16)
H22A0.7064550.8903250.3170050.108*
H22B0.7771330.8975550.4039770.108*
H22C0.6520040.9469260.3608210.108*
C230.4388 (6)0.82879 (18)0.3403 (3)0.0493 (10)
C240.3058 (10)0.8150 (3)0.1931 (4)0.091 (2)
H24A0.3348570.8136900.1427820.137*
H24B0.2606930.8543570.2024000.137*
H24C0.2170900.7850690.1978020.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0561 (7)0.0656 (8)0.0585 (7)0.0077 (6)0.0024 (5)0.0152 (6)
N10.044 (2)0.0352 (19)0.075 (3)0.0007 (15)0.0119 (19)0.0064 (18)
O10.117 (3)0.044 (2)0.107 (3)0.011 (2)0.038 (3)0.012 (2)
F10.0648 (18)0.076 (2)0.076 (2)0.0092 (15)0.0057 (15)0.0123 (16)
C10.065 (3)0.073 (4)0.073 (4)0.024 (3)0.000 (3)0.003 (3)
C20.065 (3)0.040 (3)0.105 (5)0.008 (2)0.007 (3)0.011 (3)
S20.0748 (8)0.0602 (8)0.0694 (9)0.0106 (6)0.0218 (7)0.0042 (6)
N20.0456 (19)0.0336 (17)0.050 (2)0.0044 (14)0.0049 (15)0.0005 (15)
O20.059 (2)0.104 (3)0.099 (3)0.018 (2)0.017 (2)0.023 (3)
F20.104 (3)0.090 (2)0.071 (2)0.027 (2)0.0237 (19)0.0061 (18)
S30.0519 (6)0.0430 (6)0.0658 (7)0.0074 (5)0.0044 (5)0.0067 (5)
N30.050 (2)0.0331 (18)0.056 (2)0.0003 (15)0.0019 (17)0.0019 (16)
O30.075 (2)0.068 (2)0.061 (2)0.0241 (18)0.0018 (18)0.0094 (18)
F30.115 (3)0.0526 (19)0.110 (3)0.0221 (18)0.008 (2)0.0145 (18)
C30.039 (2)0.038 (2)0.066 (3)0.0016 (17)0.0071 (19)0.006 (2)
C40.039 (2)0.041 (2)0.069 (3)0.0034 (18)0.011 (2)0.007 (2)
S40.0610 (7)0.0418 (6)0.0767 (9)0.0067 (5)0.0030 (6)0.0067 (6)
N40.050 (2)0.0355 (19)0.073 (3)0.0002 (16)0.0037 (19)0.0095 (18)
O40.105 (4)0.051 (2)0.172 (5)0.009 (2)0.052 (3)0.012 (3)
F40.177 (5)0.190 (6)0.107 (4)0.019 (4)0.028 (4)0.063 (4)
C50.054 (3)0.043 (3)0.094 (4)0.004 (2)0.021 (3)0.017 (3)
O50.061 (2)0.077 (3)0.107 (3)0.0120 (19)0.005 (2)0.002 (2)
F50.156 (5)0.274 (9)0.188 (6)0.080 (6)0.110 (5)0.087 (6)
O60.103 (3)0.063 (2)0.093 (3)0.032 (2)0.011 (2)0.022 (2)
F60.297 (10)0.146 (5)0.104 (4)0.022 (6)0.022 (5)0.047 (4)
C60.067 (3)0.070 (4)0.069 (4)0.015 (3)0.011 (3)0.030 (3)
C70.059 (3)0.072 (4)0.061 (3)0.009 (3)0.006 (2)0.013 (3)
C80.053 (3)0.056 (3)0.054 (3)0.001 (2)0.004 (2)0.009 (2)
C90.043 (2)0.040 (2)0.053 (3)0.0036 (18)0.0056 (19)0.0060 (19)
C250.056 (3)0.046 (3)0.064 (3)0.001 (2)0.014 (2)0.006 (2)
C100.048 (2)0.033 (2)0.044 (2)0.0002 (17)0.0016 (18)0.0010 (17)
C130.054 (3)0.040 (2)0.064 (3)0.0059 (19)0.002 (2)0.006 (2)
C120.052 (3)0.052 (3)0.072 (3)0.000 (2)0.017 (2)0.002 (2)
C110.049 (2)0.042 (2)0.065 (3)0.0054 (19)0.010 (2)0.002 (2)
C150.043 (2)0.037 (2)0.046 (2)0.0008 (17)0.0032 (17)0.0030 (17)
C140.053 (2)0.034 (2)0.047 (2)0.0027 (18)0.0026 (19)0.0025 (17)
C160.053 (2)0.034 (2)0.054 (3)0.0054 (18)0.001 (2)0.0024 (18)
C170.067 (3)0.042 (3)0.067 (3)0.000 (2)0.000 (2)0.010 (2)
C180.089 (4)0.058 (3)0.057 (3)0.006 (3)0.009 (3)0.009 (2)
C190.096 (4)0.048 (3)0.068 (4)0.002 (3)0.018 (3)0.013 (3)
C260.122 (7)0.122 (7)0.094 (6)0.036 (5)0.034 (5)0.042 (5)
C200.069 (3)0.039 (3)0.076 (4)0.004 (2)0.015 (3)0.003 (2)
C210.056 (3)0.025 (2)0.062 (3)0.0002 (17)0.011 (2)0.0046 (18)
C220.058 (3)0.053 (3)0.103 (5)0.012 (2)0.008 (3)0.016 (3)
C230.053 (2)0.034 (2)0.060 (3)0.0040 (18)0.002 (2)0.0091 (19)
C240.112 (5)0.101 (5)0.059 (3)0.032 (4)0.008 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—C31.726 (5)C5—C61.353 (9)
S1—C11.806 (5)C5—H50.9500
N1—C31.350 (6)F5—C261.273 (10)
N1—C41.375 (7)F6—C261.367 (12)
N1—C21.455 (6)C6—C71.394 (8)
O1—S31.424 (4)C6—H60.9500
F1—C251.319 (6)C7—C81.387 (7)
C1—H1A0.9800C7—H70.9500
C1—H1AB0.9800C8—C91.365 (7)
C1—H1AC0.9800C8—H80.9500
C2—H2A0.9800C10—C151.375 (6)
C2—H2AB0.9800C10—C111.388 (6)
C2—H2AC0.9800C13—C121.374 (7)
S2—C231.737 (5)C13—C141.379 (6)
S2—C241.790 (7)C13—H130.9500
N2—C31.349 (6)C12—C111.382 (7)
N2—C91.407 (6)C12—H120.9500
N2—C101.437 (5)C11—H110.9500
O2—S31.422 (4)C15—C141.382 (6)
F2—C251.332 (5)C15—H150.9500
S3—O31.434 (4)C16—C171.373 (7)
S3—C251.818 (6)C16—C211.377 (6)
N3—C231.342 (6)C17—C181.390 (7)
N3—C161.400 (6)C17—H170.9500
N3—C141.435 (5)C18—C191.399 (9)
F3—C251.339 (6)C18—H180.9500
C4—C91.397 (6)C19—C201.357 (9)
C4—C51.403 (7)C19—H190.9500
S4—O41.414 (4)C20—C211.398 (7)
S4—O61.415 (4)C20—H200.9500
S4—O51.422 (4)C22—H22A0.9800
S4—C261.797 (9)C22—H22B0.9800
N4—C231.347 (6)C22—H22C0.9800
N4—C211.369 (7)C24—H24A0.9800
N4—C221.471 (6)C24—H24B0.9800
F4—C261.344 (9)C24—H24C0.9800
C3—S1—C1100.0 (2)F2—C25—F3106.7 (4)
C3—N1—C4109.1 (4)F1—C25—S3112.2 (3)
C3—N1—C2125.2 (5)F2—C25—S3112.5 (4)
C4—N1—C2125.4 (4)F3—C25—S3111.7 (4)
S1—C1—H1A109.5C15—C10—C11121.8 (4)
S1—C1—H1AB109.5C15—C10—N2119.8 (4)
H1A—C1—H1AB109.5C11—C10—N2118.5 (4)
S1—C1—H1AC109.5C12—C13—C14119.0 (4)
H1A—C1—H1AC109.5C12—C13—H13120.5
H1AB—C1—H1AC109.5C14—C13—H13120.5
N1—C2—H2A109.5C13—C12—C11120.8 (4)
N1—C2—H2AB109.5C13—C12—H12119.6
H2A—C2—H2AB109.5C11—C12—H12119.6
N1—C2—H2AC109.5C12—C11—C10118.7 (4)
H2A—C2—H2AC109.5C12—C11—H11120.6
H2AB—C2—H2AC109.5C10—C11—H11120.6
C23—S2—C24101.6 (3)C10—C15—C14117.7 (4)
C3—N2—C9109.2 (4)C10—C15—H15121.1
C3—N2—C10125.9 (4)C14—C15—H15121.1
C9—N2—C10124.3 (4)C13—C14—C15122.0 (4)
O2—S3—O1114.5 (3)C13—C14—N3120.0 (4)
O2—S3—O3114.3 (3)C15—C14—N3117.9 (4)
O1—S3—O3116.2 (3)C17—C16—C21123.1 (4)
O2—S3—C25104.0 (3)C17—C16—N3130.9 (4)
O1—S3—C25103.2 (2)C21—C16—N3106.0 (4)
O3—S3—C25102.2 (2)C16—C17—C18115.5 (5)
C23—N3—C16108.7 (4)C16—C17—H17122.2
C23—N3—C14125.8 (4)C18—C17—H17122.2
C16—N3—C14124.7 (4)C17—C18—C19121.3 (6)
N2—C3—N1108.6 (4)C17—C18—H18119.4
N2—C3—S1124.8 (3)C19—C18—H18119.4
N1—C3—S1126.6 (4)C20—C19—C18122.7 (5)
N1—C4—C9107.9 (4)C20—C19—H19118.6
N1—C4—C5132.3 (5)C18—C19—H19118.6
C9—C4—C5119.7 (5)F5—C26—F4109.5 (8)
O4—S4—O6113.6 (3)F5—C26—F6107.5 (9)
O4—S4—O5115.7 (3)F4—C26—F6104.6 (9)
O6—S4—O5116.3 (3)F5—C26—S4114.0 (8)
O4—S4—C26102.7 (5)F4—C26—S4111.1 (6)
O6—S4—C26102.4 (3)F6—C26—S4109.6 (6)
O5—S4—C26103.4 (4)C19—C20—C21115.9 (5)
C23—N4—C21108.8 (4)C19—C20—H20122.0
C23—N4—C22126.0 (5)C21—C20—H20122.0
C21—N4—C22125.1 (4)N4—C21—C16107.9 (4)
C6—C5—C4116.6 (5)N4—C21—C20130.7 (5)
C6—C5—H5121.7C16—C21—C20121.4 (5)
C4—C5—H5121.7N4—C22—H22A109.5
C5—C6—C7123.2 (5)N4—C22—H22B109.5
C5—C6—H6118.4H22A—C22—H22B109.5
C7—C6—H6118.4N4—C22—H22C109.5
C8—C7—C6121.1 (6)H22A—C22—H22C109.5
C8—C7—H7119.5H22B—C22—H22C109.5
C6—C7—H7119.5N3—C23—N4108.6 (4)
C9—C8—C7115.8 (5)N3—C23—S2126.5 (3)
C9—C8—H8122.1N4—C23—S2124.7 (4)
C7—C8—H8122.1S2—C24—H24A109.5
C8—C9—C4123.6 (4)S2—C24—H24B109.5
C8—C9—N2131.0 (4)H24A—C24—H24B109.5
C4—C9—N2105.3 (4)S2—C24—H24C109.5
F1—C25—F2106.9 (5)H24A—C24—H24C109.5
F1—C25—F3106.3 (4)H24B—C24—H24C109.5
3,3'-Bis(methylselanyl)-1,1'-(1,3-phenylene)bis(1H-1,3-benzodiazol-3-ium) bis(trifluoromethanesulfonate) 1,2-dichloroethane hemisolvate (TS-056_3Se-C) top
Crystal data top
C24H24N4Se22+·2CF3O3S·0.5C2H4Cl2Z = 2
Mr = 874.01F(000) = 870
Triclinic, P1Dx = 1.762 Mg m3
a = 9.3672 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.3265 (2) ÅCell parameters from 5795 reflections
c = 13.6445 (1) Åθ = 3.3–66.5°
α = 102.515 (1)°µ = 5.48 mm1
β = 93.231 (1)°T = 170 K
γ = 96.198 (1)°Cut plate, translucent colourless
V = 1647.49 (3) Å30.19 × 0.10 × 0.08 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5795 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5307 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
ω scansθmax = 66.5°, θmin = 3.3°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 1110
Tmin = 0.456, Tmax = 1.000k = 1515
19605 measured reflectionsl = 1416
Refinement top
Refinement on F228 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0607P)2 + 3.3756P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5795 reflectionsΔρmax = 0.84 e Å3
484 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Due to a 95:5 disorder of one the benzimidazolium rings and a shift issue involving N1B, the atom was fixed at 0.314376 0.678949 0.447267

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se1A0.51229 (5)0.78078 (3)0.20663 (3)0.03655 (15)0.9498 (10)
N1A0.3629 (6)0.7664 (3)0.3822 (3)0.0317 (8)0.9498 (10)
N2A0.4146 (11)0.6162 (3)0.3040 (4)0.0261 (7)0.9498 (10)
C1A0.7037 (5)0.7379 (4)0.2166 (3)0.0420 (10)0.9498 (10)
H1AA0.7645820.7682080.1717330.063*0.9498 (10)
H1AB0.6965690.6622220.1969950.063*0.9498 (10)
H1AC0.7462730.7617710.2861960.063*0.9498 (10)
C3A0.4277 (7)0.7173 (3)0.3041 (3)0.0282 (10)0.9498 (10)
C4A0.3515 (9)0.8774 (4)0.4098 (6)0.0499 (17)0.9498 (10)
H4AA0.3603530.9007700.4833220.075*0.9498 (10)
H4AB0.2579030.8905910.3828670.075*0.9498 (10)
H4AC0.4287600.9151320.3816360.075*0.9498 (10)
C5A0.3027 (4)0.6943 (3)0.4323 (3)0.0315 (8)0.9498 (10)
C6A0.2161 (5)0.7041 (4)0.5138 (3)0.0423 (11)0.9498 (10)
H6A0.1909370.7692390.5474240.051*0.9498 (10)
C7A0.1696 (5)0.6134 (4)0.5419 (3)0.0455 (11)0.9498 (10)
H7A0.1088460.6161140.5956010.055*0.9498 (10)
C8A0.2087 (5)0.5180 (4)0.4944 (5)0.0421 (12)0.9498 (10)
H8A0.1764840.4583180.5182780.051*0.9498 (10)
C9A0.2924 (4)0.5074 (3)0.4139 (3)0.0341 (9)0.9498 (10)
H9A0.3177490.4422750.3806330.041*0.9498 (10)
C10A0.3373 (5)0.5987 (4)0.3846 (3)0.0283 (11)0.9498 (10)
Se1B0.3520 (10)0.4679 (6)0.4492 (6)0.03655 (15)0.0502 (10)
C1B0.170 (9)0.503 (11)0.499 (13)0.0420 (10)0.0502 (10)
H1BA0.1540020.5718360.4883500.063*0.0502 (10)
H1BB0.1710450.5036920.5705620.063*0.0502 (10)
H1BC0.0912540.4517060.4617250.063*0.0502 (10)
N1B0.3143760.6789490.4472670.0317 (8)0.0502 (10)
N2B0.41 (2)0.604 (4)0.312 (8)0.0261 (7)0.0502 (10)
C3B0.359 (15)0.590 (4)0.400 (5)0.0282 (10)0.0502 (10)
C4B0.262 (13)0.702 (6)0.547 (4)0.0499 (17)0.0502 (10)
H4BA0.2672570.7776600.5711490.075*0.0502 (10)
H4BB0.3205960.6740780.5934200.075*0.0502 (10)
H4BC0.1611400.6713050.5433590.075*0.0502 (10)
C5B0.341 (16)0.762 (5)0.403 (8)0.0315 (8)0.0502 (10)
C6B0.322 (19)0.867 (6)0.417 (9)0.0423 (11)0.0502 (10)
H6B0.2824950.9041600.4741580.051*0.0502 (10)
C7B0.366 (9)0.912 (4)0.340 (5)0.0455 (11)0.0502 (10)
H7B0.3404950.9786470.3384200.055*0.0502 (10)
C8B0.446 (8)0.864 (4)0.264 (4)0.0421 (12)0.0502 (10)
H8B0.4822760.9015470.2165170.051*0.0502 (10)
C9B0.474 (8)0.763 (4)0.257 (5)0.0341 (9)0.0502 (10)
H9B0.5325210.7310730.2078710.041*0.0502 (10)
C10B0.413 (16)0.712 (4)0.325 (8)0.0283 (11)0.0502 (10)
C2A0.9577 (5)0.5809 (3)0.2775 (3)0.0440 (10)
H2AA1.0006220.6511340.2768820.066*
H2AB1.0222880.5495760.3179070.066*
H2AC0.8647110.5838600.3067530.066*
N30.7211 (3)0.3466 (2)0.1936 (2)0.0279 (6)
N40.9361 (3)0.2978 (2)0.1916 (2)0.0311 (6)
Se20.92896 (4)0.49697 (3)0.13920 (3)0.03528 (14)
C110.8597 (4)0.3727 (3)0.1769 (3)0.0293 (7)
C121.0894 (4)0.2924 (4)0.1769 (3)0.0410 (9)
H12A1.1396580.2841180.2390780.062*
H12B1.1315410.3562780.1597120.062*
H12C1.0993650.2330660.1220440.062*
C130.8453 (4)0.2191 (3)0.2166 (3)0.0312 (8)
C140.8724 (5)0.1257 (3)0.2395 (3)0.0389 (9)
H140.9659440.1043110.2385270.047*
C150.7561 (5)0.0660 (3)0.2636 (3)0.0443 (10)
H150.7695640.0011510.2786210.053*
C160.6181 (5)0.0981 (3)0.2668 (3)0.0445 (10)
H160.5414100.0549140.2850920.053*
C170.5906 (5)0.1913 (3)0.2439 (3)0.0384 (9)
H170.4974320.2133140.2459280.046*
C180.7082 (4)0.2503 (3)0.2177 (3)0.0310 (8)
C190.4537 (4)0.5337 (3)0.2273 (2)0.0260 (7)
C200.3729 (4)0.5062 (3)0.1355 (3)0.0321 (8)
H200.2952220.5428710.1221990.039*
C210.4075 (5)0.4237 (3)0.0631 (3)0.0385 (9)
H210.3517920.4028880.0001760.046*
C220.5228 (4)0.3717 (3)0.0820 (3)0.0332 (8)
H220.5472010.3159450.0321320.040*
C230.6021 (4)0.4021 (3)0.1748 (3)0.0279 (7)
C240.5678 (4)0.4821 (3)0.2498 (3)0.0270 (7)
H240.6204280.5007390.3139830.032*
S10.11819 (10)0.75468 (7)0.09579 (7)0.0331 (2)
F10.2088 (4)0.9489 (3)0.1760 (3)0.0861 (12)
F20.0039 (4)0.8998 (3)0.2082 (3)0.0947 (14)
F30.0356 (5)0.9246 (3)0.0616 (4)0.1094 (15)
O10.1765 (4)0.7316 (3)0.1871 (2)0.0558 (8)
O20.2189 (3)0.7585 (3)0.0206 (2)0.0495 (8)
O30.0227 (4)0.7008 (3)0.0599 (2)0.0528 (8)
C250.0879 (6)0.8895 (4)0.1370 (5)0.0594 (13)
F40.0437 (4)0.1670 (4)0.5413 (5)0.126 (2)
F50.2090 (5)0.0786 (3)0.5591 (3)0.0908 (12)
F60.0937 (4)0.0531 (2)0.4146 (3)0.0793 (10)
C260.1483 (5)0.1260 (4)0.4950 (4)0.0552 (12)
Cl1A0.352 (2)0.1088 (13)0.0121 (18)0.062 (2)0.574 (10)
C27A0.5136 (10)0.0490 (7)0.0184 (7)0.0509 (18)0.574 (10)
H27A0.5409770.0333000.0885710.061*0.574 (10)
H27B0.5931420.0960790.0243360.061*0.574 (10)
Cl1B0.345 (3)0.1106 (19)0.003 (2)0.067 (5)0.426 (10)
C27B0.4228 (14)0.0051 (10)0.0141 (9)0.0509 (18)0.426 (10)
H27C0.4205250.0141720.0841010.061*0.426 (10)
H27D0.3665560.0665030.0312330.061*0.426 (10)
S2A0.2594 (6)0.2311 (5)0.4639 (5)0.0436 (9)0.480 (4)
O4A0.3166 (4)0.2966 (3)0.5527 (3)0.0635 (7)0.480 (4)
O5A0.1604 (10)0.2659 (6)0.4004 (6)0.0635 (7)0.480 (4)
O6A0.3731 (9)0.1796 (7)0.4160 (6)0.0635 (7)0.480 (4)
S2B0.2967 (6)0.2109 (5)0.4596 (5)0.0436 (9)0.520 (4)
O4B0.3166 (4)0.2966 (3)0.5527 (3)0.0635 (7)0.520 (4)
O5B0.2447 (9)0.2429 (6)0.3721 (5)0.0635 (7)0.520 (4)
O6B0.4035 (8)0.1392 (6)0.4430 (6)0.0635 (7)0.520 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se1A0.0403 (3)0.0340 (2)0.0387 (3)0.00902 (18)0.00641 (19)0.01247 (18)
N1A0.039 (3)0.0313 (17)0.024 (2)0.0121 (15)0.0022 (16)0.0016 (14)
N2A0.0257 (19)0.0271 (16)0.0244 (18)0.007 (2)0.0029 (13)0.0012 (13)
C1A0.034 (2)0.052 (3)0.041 (2)0.0068 (19)0.0057 (18)0.010 (2)
C3A0.031 (2)0.0296 (19)0.023 (3)0.0095 (16)0.0001 (19)0.0020 (15)
C4A0.072 (6)0.033 (2)0.045 (3)0.020 (3)0.013 (3)0.000 (2)
C5A0.036 (2)0.036 (2)0.0205 (17)0.0099 (16)0.0002 (15)0.0009 (15)
C6A0.047 (3)0.052 (3)0.0261 (19)0.018 (2)0.0065 (18)0.0009 (19)
C7A0.052 (3)0.059 (3)0.026 (2)0.011 (2)0.0114 (18)0.0076 (19)
C8A0.042 (3)0.056 (3)0.030 (2)0.003 (3)0.005 (3)0.014 (2)
C9A0.035 (2)0.043 (2)0.0261 (18)0.0103 (18)0.0059 (16)0.0080 (17)
C10A0.026 (3)0.035 (2)0.0219 (19)0.0076 (15)0.0016 (18)0.0020 (15)
Se1B0.0403 (3)0.0340 (2)0.0387 (3)0.00902 (18)0.00641 (19)0.01247 (18)
C1B0.034 (2)0.052 (3)0.041 (2)0.0068 (19)0.0057 (18)0.010 (2)
N1B0.039 (3)0.0313 (17)0.024 (2)0.0121 (15)0.0022 (16)0.0016 (14)
N2B0.0257 (19)0.0271 (16)0.0244 (18)0.007 (2)0.0029 (13)0.0012 (13)
C3B0.031 (2)0.0296 (19)0.023 (3)0.0095 (16)0.0001 (19)0.0020 (15)
C4B0.072 (6)0.033 (2)0.045 (3)0.020 (3)0.013 (3)0.000 (2)
C5B0.036 (2)0.036 (2)0.0205 (17)0.0099 (16)0.0002 (15)0.0009 (15)
C6B0.047 (3)0.052 (3)0.0261 (19)0.018 (2)0.0065 (18)0.0009 (19)
C7B0.052 (3)0.059 (3)0.026 (2)0.011 (2)0.0114 (18)0.0076 (19)
C8B0.042 (3)0.056 (3)0.030 (2)0.003 (3)0.005 (3)0.014 (2)
C9B0.035 (2)0.043 (2)0.0261 (18)0.0103 (18)0.0059 (16)0.0080 (17)
C10B0.026 (3)0.035 (2)0.0219 (19)0.0076 (15)0.0016 (18)0.0020 (15)
C2A0.046 (2)0.042 (2)0.041 (2)0.0025 (18)0.0002 (18)0.0067 (18)
N30.0314 (15)0.0262 (14)0.0275 (14)0.0103 (12)0.0057 (12)0.0047 (12)
N40.0321 (16)0.0347 (16)0.0270 (15)0.0106 (13)0.0031 (12)0.0047 (12)
Se20.0374 (2)0.0349 (2)0.0354 (2)0.00516 (17)0.00790 (17)0.01026 (17)
C110.0319 (19)0.0328 (18)0.0234 (16)0.0108 (15)0.0035 (14)0.0034 (14)
C120.031 (2)0.056 (2)0.040 (2)0.0166 (18)0.0052 (16)0.0129 (19)
C130.038 (2)0.0320 (18)0.0228 (16)0.0098 (15)0.0053 (14)0.0021 (14)
C140.052 (2)0.035 (2)0.0325 (19)0.0177 (18)0.0041 (17)0.0075 (16)
C150.063 (3)0.030 (2)0.042 (2)0.0132 (19)0.005 (2)0.0083 (17)
C160.059 (3)0.033 (2)0.043 (2)0.0037 (19)0.010 (2)0.0096 (17)
C170.041 (2)0.036 (2)0.039 (2)0.0075 (17)0.0107 (17)0.0066 (17)
C180.037 (2)0.0283 (18)0.0274 (17)0.0098 (15)0.0043 (15)0.0035 (14)
C190.0274 (17)0.0256 (17)0.0240 (16)0.0052 (13)0.0058 (13)0.0016 (13)
C200.0301 (18)0.0360 (19)0.0307 (18)0.0115 (15)0.0012 (14)0.0051 (15)
C210.043 (2)0.045 (2)0.0257 (18)0.0138 (18)0.0031 (15)0.0003 (16)
C220.042 (2)0.0320 (18)0.0233 (17)0.0101 (16)0.0033 (15)0.0009 (14)
C230.0307 (18)0.0273 (17)0.0278 (17)0.0083 (14)0.0079 (14)0.0072 (14)
C240.0299 (17)0.0265 (17)0.0238 (16)0.0056 (14)0.0028 (13)0.0030 (13)
S10.0357 (5)0.0350 (5)0.0303 (4)0.0125 (4)0.0068 (4)0.0064 (4)
F10.083 (2)0.0558 (18)0.100 (3)0.0195 (17)0.032 (2)0.0168 (18)
F20.080 (2)0.0578 (19)0.137 (3)0.0152 (17)0.065 (2)0.015 (2)
F30.117 (3)0.078 (3)0.158 (4)0.041 (2)0.002 (3)0.069 (3)
O10.0515 (19)0.080 (2)0.0465 (17)0.0198 (17)0.0052 (14)0.0311 (17)
O20.0509 (18)0.064 (2)0.0327 (15)0.0124 (15)0.0140 (13)0.0042 (14)
O30.0496 (18)0.0523 (18)0.0515 (18)0.0028 (15)0.0018 (14)0.0069 (15)
C250.054 (3)0.046 (3)0.080 (4)0.009 (2)0.021 (3)0.012 (3)
F40.065 (2)0.098 (3)0.198 (5)0.003 (2)0.051 (3)0.012 (3)
F50.149 (4)0.062 (2)0.063 (2)0.008 (2)0.008 (2)0.0237 (16)
F60.092 (2)0.0539 (18)0.079 (2)0.0090 (17)0.0269 (19)0.0038 (16)
C260.050 (3)0.042 (2)0.067 (3)0.011 (2)0.004 (2)0.003 (2)
Cl1A0.072 (5)0.056 (3)0.057 (3)0.002 (3)0.008 (3)0.016 (2)
C27A0.054 (5)0.048 (5)0.048 (3)0.006 (3)0.008 (4)0.009 (3)
Cl1B0.061 (4)0.063 (5)0.078 (12)0.016 (4)0.013 (5)0.015 (5)
C27B0.054 (5)0.048 (5)0.048 (3)0.006 (3)0.008 (4)0.009 (3)
S2A0.044 (3)0.053 (2)0.0337 (7)0.0048 (14)0.0019 (15)0.0100 (13)
O4A0.0682 (17)0.0675 (17)0.0527 (15)0.0037 (14)0.0107 (12)0.0189 (12)
O5A0.0682 (17)0.0675 (17)0.0527 (15)0.0037 (14)0.0107 (12)0.0189 (12)
O6A0.0682 (17)0.0675 (17)0.0527 (15)0.0037 (14)0.0107 (12)0.0189 (12)
S2B0.044 (3)0.053 (2)0.0337 (7)0.0048 (14)0.0019 (15)0.0100 (13)
O4B0.0682 (17)0.0675 (17)0.0527 (15)0.0037 (14)0.0107 (12)0.0189 (12)
O5B0.0682 (17)0.0675 (17)0.0527 (15)0.0037 (14)0.0107 (12)0.0189 (12)
O6B0.0682 (17)0.0675 (17)0.0527 (15)0.0037 (14)0.0107 (12)0.0189 (12)
Geometric parameters (Å, º) top
Se1A—C3A1.891 (4)N3—C231.444 (5)
Se1A—C1A1.946 (4)N4—C111.331 (5)
N1A—C3A1.338 (5)N4—C131.391 (5)
N1A—C5A1.386 (5)N4—C121.468 (5)
N1A—C4A1.461 (5)Se2—C111.899 (4)
N2A—C3A1.339 (5)C12—H12A0.9800
N2A—C10A1.397 (6)C12—H12B0.9800
N2A—C191.439 (4)C12—H12C0.9800
C1A—H1AA0.9800C13—C181.392 (5)
C1A—H1AB0.9800C13—C141.393 (5)
C1A—H1AC0.9800C14—C151.376 (7)
C4A—H4AA0.9800C14—H140.9500
C4A—H4AB0.9800C15—C161.405 (7)
C4A—H4AC0.9800C15—H150.9500
C5A—C10A1.382 (6)C16—C171.391 (6)
C5A—C6A1.404 (6)C16—H160.9500
C6A—C7A1.380 (7)C17—C181.392 (6)
C6A—H6A0.9500C17—H170.9500
C7A—C8A1.393 (8)C19—C201.382 (5)
C7A—H7A0.9500C19—C241.386 (5)
C8A—C9A1.376 (7)C20—C211.389 (5)
C8A—H8A0.9500C20—H200.9500
C9A—C10A1.391 (7)C21—C221.386 (6)
C9A—H9A0.9500C21—H210.9500
Se1B—C3B1.89 (2)C22—C231.387 (5)
Se1B—C1B1.94 (2)C22—H220.9500
C1B—H1BA0.9800C23—C241.387 (5)
C1B—H1BB0.9800C24—H240.9500
C1B—H1BC0.9800S1—O21.437 (3)
N1B—C3B1.337 (19)S1—O31.437 (3)
N1B—C5B1.38 (2)S1—O11.439 (3)
N1B—C4B1.455 (18)S1—C251.821 (5)
N2B—C3B1.35 (2)F1—C251.323 (6)
N2B—C10B1.40 (2)F2—C251.328 (6)
N2B—C191.446 (16)F3—C251.310 (7)
C4B—H4BA0.9800F4—C261.301 (6)
C4B—H4BB0.9800F5—C261.322 (6)
C4B—H4BC0.9800F6—C261.333 (6)
C5B—C10B1.38 (2)C26—S2A1.794 (9)
C5B—C6B1.41 (2)C26—S2B1.850 (8)
C6B—C7B1.37 (2)Cl1A—C27A1.78 (2)
C6B—H6B0.9500C27A—C27Ai1.499 (18)
C7B—C8B1.40 (2)C27A—H27A0.9900
C7B—H7B0.9500C27A—H27B0.9900
C8B—C9B1.38 (2)Cl1B—C27B1.81 (3)
C8B—H8B0.9500C27B—C27Bi1.52 (3)
C9B—C10B1.38 (2)C27B—H27C0.9900
C9B—H9B0.9500C27B—H27D0.9900
C2A—Se21.961 (4)S2A—O4A1.372 (8)
C2A—H2AA0.9800S2A—O5A1.415 (8)
C2A—H2AB0.9800S2A—O6A1.441 (9)
C2A—H2AC0.9800S2B—O5B1.430 (8)
N3—C111.352 (5)S2B—O6B1.451 (8)
N3—C181.388 (5)S2B—O4B1.500 (7)
C3A—Se1A—C1A99.1 (2)N4—C11—N3108.8 (3)
C3A—N1A—C5A108.9 (3)N4—C11—Se2126.9 (3)
C3A—N1A—C4A126.5 (4)N3—C11—Se2124.2 (3)
C5A—N1A—C4A124.6 (3)N4—C12—H12A109.5
C3A—N2A—C10A109.4 (3)N4—C12—H12B109.5
C3A—N2A—C19127.2 (3)H12A—C12—H12B109.5
C10A—N2A—C19122.9 (4)N4—C12—H12C109.5
Se1A—C1A—H1AA109.5H12A—C12—H12C109.5
Se1A—C1A—H1AB109.5H12B—C12—H12C109.5
H1AA—C1A—H1AB109.5N4—C13—C18106.6 (3)
Se1A—C1A—H1AC109.5N4—C13—C14131.5 (4)
H1AA—C1A—H1AC109.5C18—C13—C14121.9 (4)
H1AB—C1A—H1AC109.5C15—C14—C13116.3 (4)
N1A—C3A—N2A108.6 (3)C15—C14—H14121.9
N1A—C3A—Se1A124.8 (3)C13—C14—H14121.9
N2A—C3A—Se1A126.5 (3)C14—C15—C16122.1 (4)
N1A—C4A—H4AA109.5C14—C15—H15119.0
N1A—C4A—H4AB109.5C16—C15—H15119.0
H4AA—C4A—H4AB109.5C17—C16—C15121.8 (4)
N1A—C4A—H4AC109.5C17—C16—H16119.1
H4AA—C4A—H4AC109.5C15—C16—H16119.1
H4AB—C4A—H4AC109.5C16—C17—C18115.7 (4)
C10A—C5A—N1A107.4 (4)C16—C17—H17122.1
C10A—C5A—C6A120.9 (4)C18—C17—H17122.1
N1A—C5A—C6A131.7 (4)N3—C18—C13106.5 (3)
C7A—C6A—C5A115.9 (4)N3—C18—C17131.3 (3)
C7A—C6A—H6A122.0C13—C18—C17122.2 (3)
C5A—C6A—H6A122.0C20—C19—C24122.5 (3)
C6A—C7A—C8A122.4 (4)C20—C19—N2A118.9 (5)
C6A—C7A—H7A118.8C24—C19—N2A118.6 (5)
C8A—C7A—H7A118.8C20—C19—N2B121 (9)
C9A—C8A—C7A122.2 (5)C24—C19—N2B115 (8)
C9A—C8A—H8A118.9C19—C20—C21118.7 (3)
C7A—C8A—H8A118.9C19—C20—H20120.7
C8A—C9A—C10A115.4 (4)C21—C20—H20120.7
C8A—C9A—H9A122.3C22—C21—C20120.5 (3)
C10A—C9A—H9A122.3C22—C21—H21119.7
C5A—C10A—C9A123.2 (4)C20—C21—H21119.7
C5A—C10A—N2A105.7 (4)C21—C22—C23119.1 (3)
C9A—C10A—N2A131.0 (4)C21—C22—H22120.5
C3B—Se1B—C1B86 (5)C23—C22—H22120.5
Se1B—C1B—H1BA109.5C24—C23—C22121.9 (3)
Se1B—C1B—H1BB109.5C24—C23—N3119.7 (3)
H1BA—C1B—H1BB109.5C22—C23—N3118.4 (3)
Se1B—C1B—H1BC109.5C19—C24—C23117.3 (3)
H1BA—C1B—H1BC109.5C19—C24—H24121.3
H1BB—C1B—H1BC109.5C23—C24—H24121.3
C3B—N1B—C5B116 (4)O2—S1—O3115.94 (19)
C3B—N1B—C4B128 (3)O2—S1—O1114.8 (2)
C5B—N1B—C4B116 (4)O3—S1—O1114.0 (2)
C3B—N2B—C10B102 (4)O2—S1—C25103.0 (2)
C3B—N2B—C19132 (3)O3—S1—C25104.2 (2)
C10B—N2B—C19126 (4)O1—S1—C25102.5 (3)
N1B—C3B—N2B108.1 (18)F3—C25—F1108.3 (5)
N1B—C3B—Se1B125.1 (18)F3—C25—F2108.6 (5)
N2B—C3B—Se1B127 (3)F1—C25—F2106.9 (5)
N1B—C4B—H4BA109.5F3—C25—S1110.9 (4)
N1B—C4B—H4BB109.5F1—C25—S1111.3 (4)
H4BA—C4B—H4BB109.5F2—C25—S1110.7 (4)
N1B—C4B—H4BC109.5F4—C26—F5104.9 (5)
H4BA—C4B—H4BC109.5F4—C26—F6109.4 (5)
H4BB—C4B—H4BC109.5F5—C26—F6107.1 (4)
N1B—C5B—C10B97 (5)F4—C26—S2A105.8 (4)
N1B—C5B—C6B141 (6)F5—C26—S2A116.0 (4)
C10B—C5B—C6B122 (2)F6—C26—S2A113.2 (5)
C7B—C6B—C5B114 (3)F4—C26—S2B119.5 (4)
C7B—C6B—H6B122.9F5—C26—S2B105.5 (4)
C5B—C6B—H6B122.9F6—C26—S2B109.7 (4)
C6B—C7B—C8B123 (3)C27Ai—C27A—Cl1A107.9 (10)
C6B—C7B—H7B118.3C27Ai—C27A—H27A110.1
C8B—C7B—H7B118.3Cl1A—C27A—H27A110.1
C9B—C8B—C7B120 (2)C27Ai—C27A—H27B110.1
C9B—C8B—H8B119.8Cl1A—C27A—H27B110.1
C7B—C8B—H8B119.8H27A—C27A—H27B108.4
C10B—C9B—C8B117 (2)C27Bi—C27B—Cl1B108.7 (15)
C10B—C9B—H9B121.4C27Bi—C27B—H27C110.0
C8B—C9B—H9B121.4Cl1B—C27B—H27C110.0
C9B—C10B—C5B121 (3)C27Bi—C27B—H27D110.0
C9B—C10B—N2B122 (6)Cl1B—C27B—H27D110.0
C5B—C10B—N2B116 (6)H27C—C27B—H27D108.3
Se2—C2A—H2AA109.5O4A—S2A—O5A119.3 (5)
Se2—C2A—H2AB109.5O4A—S2A—O6A108.6 (5)
H2AA—C2A—H2AB109.5O5A—S2A—O6A116.4 (7)
Se2—C2A—H2AC109.5O4A—S2A—C26107.6 (5)
H2AA—C2A—H2AC109.5O5A—S2A—C26100.8 (5)
H2AB—C2A—H2AC109.5O6A—S2A—C26102.0 (5)
C11—N3—C18108.9 (3)O5B—S2B—O6B115.3 (6)
C11—N3—C23125.6 (3)O5B—S2B—O4B113.1 (5)
C18—N3—C23125.0 (3)O6B—S2B—O4B118.8 (5)
C11—N4—C13109.2 (3)O5B—S2B—C26107.5 (5)
C11—N4—C12126.8 (3)O6B—S2B—C2699.5 (5)
C13—N4—C12123.8 (3)O4B—S2B—C2699.5 (4)
C11—Se2—C2A94.86 (17)
Symmetry code: (i) x+1, y, z.
3,3'-Bis(methylselanyl)-1,1'-(1,3-phenylene)bis(1H-1,3-benzodiazol-3-ium) bis(trifluoromethanesulfonate) (TS-056_twin_twin1_hklf4_3Se-B) top
Crystal data top
C24H24N4Se22+·2CF3O3SF(000) = 1640
Mr = 824.53Dx = 1.742 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.8634 (4) ÅCell parameters from 5529 reflections
b = 7.7558 (2) Åθ = 3.0–66.5°
c = 29.3266 (7) ŵ = 4.93 mm1
β = 94.246 (2)°T = 170 K
V = 3144.59 (14) Å3Needle, clear colourless
Z = 40.03 × 0.02 × 0.01 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5529 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4865 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.073
ω scansθmax = 66.5°, θmin = 3.0°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 1616
Tmin = 0.900, Tmax = 0.969k = 89
28154 measured reflectionsl = 3434
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0737P)2 + 7.2679P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5529 reflectionsΔρmax = 1.21 e Å3
419 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.11263 (3)0.38325 (5)0.29868 (2)0.03215 (15)
F10.0959 (2)0.5093 (5)0.47848 (13)0.0694 (9)
N10.0191 (2)0.2977 (5)0.36753 (12)0.0341 (8)
C10.0526 (4)0.2371 (8)0.25052 (17)0.0579 (14)
H1A0.0528110.2969170.2210990.087*
H1AB0.0142150.2116410.2571040.087*
H1AC0.0889920.1290920.2491420.087*
S10.25873 (8)0.56039 (14)0.19470 (4)0.0372 (3)
O10.3333 (3)0.5611 (5)0.23149 (13)0.0578 (9)
Se20.41613 (3)0.38318 (6)0.31859 (2)0.04288 (17)
F20.2279 (3)0.4471 (5)0.51749 (10)0.0692 (9)
N20.0917 (2)0.1025 (4)0.36094 (12)0.0294 (7)
C20.5275 (4)0.4091 (9)0.2823 (2)0.0670 (17)
H2A0.5054890.4426000.2510660.101*
H2AB0.5624690.2993840.2817260.101*
H2AC0.5705880.4983080.2959940.101*
S20.25037 (8)0.53832 (14)0.43272 (4)0.0362 (2)
O20.2737 (3)0.6768 (5)0.15809 (12)0.0504 (8)
O30.1633 (3)0.5591 (5)0.20962 (15)0.0626 (11)
N30.4414 (2)0.0865 (4)0.37656 (12)0.0302 (7)
F30.1680 (2)0.2696 (4)0.46669 (10)0.0543 (7)
C30.0593 (3)0.2557 (5)0.34562 (13)0.0284 (8)
O40.2589 (2)0.7146 (4)0.44704 (12)0.0461 (8)
F40.2640 (3)0.2227 (4)0.19986 (15)0.0768 (10)
N40.5505 (2)0.2813 (4)0.39527 (13)0.0332 (7)
C40.0785 (4)0.4534 (6)0.36051 (19)0.0455 (11)
H4A0.0565190.5190970.3346710.068*
H4AB0.0721620.5246740.3881720.068*
H4AC0.1463240.4204970.3540100.068*
C50.4743 (3)0.2459 (5)0.36683 (15)0.0334 (9)
O50.1875 (3)0.5115 (5)0.39240 (11)0.0552 (9)
F50.3616 (4)0.3304 (5)0.15549 (18)0.1116 (19)
C60.6053 (4)0.4434 (6)0.39690 (19)0.0468 (11)
H6A0.6657730.4272990.3821190.070*
H6AB0.6199830.4776270.4288340.070*
H6AC0.5666910.5336560.3808490.070*
O60.3386 (3)0.4417 (5)0.43480 (14)0.0567 (9)
F60.2080 (5)0.3186 (6)0.13605 (17)0.132 (2)
C70.0375 (3)0.1685 (6)0.39801 (15)0.0352 (9)
C90.1050 (4)0.0002 (8)0.4544 (2)0.0603 (16)
H90.1524210.0174100.4756900.072*
C80.1085 (4)0.1495 (7)0.42879 (18)0.0503 (12)
H80.1566730.2348190.4320120.060*
C110.0402 (3)0.1056 (5)0.42061 (16)0.0367 (10)
H110.0914930.1861740.4191210.044*
C100.0346 (4)0.1258 (8)0.4502 (2)0.0582 (15)
H100.0371140.2283540.4677910.070*
C150.6343 (3)0.0366 (7)0.48347 (15)0.0451 (12)
H150.6805430.0589330.5083190.054*
C140.6384 (3)0.1164 (6)0.46087 (16)0.0406 (11)
H140.6859310.2010810.4693170.049*
C130.5690 (3)0.1418 (6)0.42471 (14)0.0335 (9)
C120.0327 (3)0.0416 (6)0.39394 (15)0.0347 (9)
C180.4995 (3)0.0169 (5)0.41286 (14)0.0305 (8)
C190.2665 (3)0.0943 (5)0.36723 (13)0.0275 (8)
H190.2672770.1965410.3850890.033*
C200.1806 (3)0.0211 (5)0.35003 (13)0.0290 (8)
C210.1784 (3)0.1307 (5)0.32508 (15)0.0356 (9)
H210.1184360.1805040.3142070.043*
C220.2648 (3)0.2086 (6)0.31623 (16)0.0393 (10)
H220.2640810.3122850.2989420.047*
C230.3522 (3)0.1372 (5)0.33229 (15)0.0345 (9)
H230.4114770.1907010.3260810.041*
C240.3520 (3)0.0128 (5)0.35743 (13)0.0286 (8)
C250.2726 (5)0.3490 (7)0.1695 (2)0.0605 (15)
C260.1816 (3)0.4383 (6)0.47555 (15)0.0348 (9)
C170.4944 (3)0.1372 (6)0.43601 (14)0.0348 (9)
H170.4459420.2208030.4281410.042*
C160.5645 (3)0.1619 (7)0.47140 (15)0.0416 (10)
H160.5653020.2670640.4880230.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0312 (3)0.0304 (3)0.0348 (3)0.00345 (16)0.00218 (18)0.00444 (17)
F10.0504 (18)0.072 (2)0.089 (2)0.0141 (16)0.0303 (17)0.0140 (19)
N10.0276 (17)0.0327 (18)0.0423 (19)0.0033 (14)0.0039 (14)0.0015 (15)
C10.062 (3)0.073 (4)0.039 (3)0.028 (3)0.001 (2)0.001 (3)
S10.0404 (6)0.0362 (6)0.0363 (5)0.0002 (4)0.0109 (4)0.0051 (4)
O10.068 (2)0.054 (2)0.050 (2)0.0099 (18)0.0077 (18)0.0003 (17)
Se20.0324 (3)0.0370 (3)0.0598 (3)0.00622 (18)0.0076 (2)0.0149 (2)
F20.082 (2)0.089 (2)0.0353 (15)0.0044 (19)0.0021 (15)0.0053 (16)
N20.0249 (17)0.0310 (17)0.0326 (18)0.0010 (13)0.0044 (13)0.0030 (14)
C20.054 (3)0.085 (4)0.064 (4)0.014 (3)0.018 (3)0.022 (3)
S20.0395 (6)0.0339 (5)0.0353 (5)0.0043 (4)0.0029 (4)0.0009 (4)
O20.064 (2)0.0450 (19)0.0436 (18)0.0139 (17)0.0129 (16)0.0093 (15)
O30.051 (2)0.057 (2)0.084 (3)0.0100 (18)0.031 (2)0.022 (2)
N30.0236 (16)0.0293 (17)0.0380 (19)0.0027 (13)0.0049 (14)0.0002 (14)
F30.0634 (19)0.0422 (15)0.0579 (17)0.0081 (13)0.0083 (14)0.0115 (13)
C30.0238 (19)0.029 (2)0.032 (2)0.0025 (15)0.0017 (15)0.0026 (16)
O40.050 (2)0.0325 (16)0.055 (2)0.0073 (14)0.0011 (15)0.0056 (14)
F40.088 (3)0.0385 (17)0.107 (3)0.0012 (16)0.027 (2)0.0149 (18)
N40.0261 (17)0.0294 (17)0.045 (2)0.0006 (14)0.0059 (14)0.0080 (15)
C40.040 (3)0.037 (2)0.061 (3)0.014 (2)0.009 (2)0.008 (2)
C50.027 (2)0.030 (2)0.044 (2)0.0026 (16)0.0060 (17)0.0021 (18)
O50.081 (3)0.048 (2)0.0348 (17)0.0169 (18)0.0084 (16)0.0041 (15)
F50.147 (4)0.062 (2)0.140 (4)0.011 (3)0.105 (4)0.013 (2)
C60.040 (3)0.036 (2)0.064 (3)0.009 (2)0.005 (2)0.014 (2)
O60.0429 (19)0.060 (2)0.069 (2)0.0070 (17)0.0161 (17)0.0009 (19)
F60.222 (7)0.068 (3)0.096 (3)0.024 (3)0.061 (4)0.025 (2)
C70.027 (2)0.042 (2)0.036 (2)0.0028 (18)0.0016 (16)0.0069 (19)
C90.038 (3)0.086 (4)0.059 (3)0.012 (3)0.019 (2)0.033 (3)
C80.035 (2)0.065 (3)0.052 (3)0.012 (2)0.015 (2)0.015 (2)
C110.033 (2)0.031 (2)0.047 (3)0.0097 (17)0.0108 (19)0.0229 (18)
C100.046 (3)0.063 (3)0.067 (4)0.007 (2)0.013 (3)0.034 (3)
C150.033 (2)0.070 (3)0.032 (2)0.015 (2)0.0021 (18)0.003 (2)
C140.028 (2)0.057 (3)0.037 (2)0.0027 (19)0.0040 (18)0.012 (2)
C130.027 (2)0.042 (2)0.033 (2)0.0059 (17)0.0090 (16)0.0093 (18)
C120.0238 (19)0.042 (2)0.038 (2)0.0001 (17)0.0025 (16)0.0049 (18)
C180.0224 (19)0.035 (2)0.035 (2)0.0060 (16)0.0073 (15)0.0038 (17)
C190.029 (2)0.0250 (18)0.0284 (19)0.0004 (15)0.0038 (15)0.0019 (15)
C200.029 (2)0.0273 (19)0.031 (2)0.0016 (15)0.0051 (15)0.0024 (16)
C210.034 (2)0.033 (2)0.040 (2)0.0052 (17)0.0006 (18)0.0044 (17)
C220.041 (2)0.030 (2)0.047 (3)0.0008 (18)0.0026 (19)0.0109 (19)
C230.034 (2)0.031 (2)0.039 (2)0.0045 (17)0.0061 (17)0.0039 (17)
C240.0268 (19)0.0282 (19)0.031 (2)0.0002 (15)0.0018 (15)0.0015 (16)
C250.076 (4)0.041 (3)0.067 (4)0.009 (3)0.020 (3)0.005 (3)
C260.037 (2)0.034 (2)0.034 (2)0.0011 (18)0.0050 (17)0.0015 (17)
C170.031 (2)0.041 (2)0.034 (2)0.0081 (17)0.0078 (17)0.0015 (18)
C160.040 (2)0.050 (3)0.036 (2)0.016 (2)0.0121 (18)0.004 (2)
Geometric parameters (Å, º) top
Se1—C31.890 (4)C4—H4AC0.9800
Se1—C11.949 (5)F5—C251.337 (8)
F1—C261.319 (5)C6—H6A0.9800
N1—C31.343 (5)C6—H6AB0.9800
N1—C71.379 (6)C6—H6AC0.9800
N1—C41.467 (6)F6—C251.300 (8)
C1—H1A0.9800C7—C81.391 (6)
C1—H1AB0.9800C7—C121.396 (6)
C1—H1AC0.9800C9—C81.379 (8)
S1—O31.424 (4)C9—C101.393 (8)
S1—O21.430 (3)C9—H90.9500
S1—O11.438 (4)C8—H80.9500
S1—C251.814 (6)C11—C121.383 (6)
Se2—C51.901 (4)C11—C101.410 (7)
Se2—C21.949 (6)C11—H110.9500
F2—C261.346 (5)C10—H100.9500
N2—C31.336 (5)C15—C141.362 (7)
N2—C121.395 (5)C15—C161.398 (8)
N2—C201.442 (5)C15—H150.9500
C2—H2A0.9800C14—C131.392 (6)
C2—H2AB0.9800C14—H140.9500
C2—H2AC0.9800C13—C181.391 (6)
S2—O51.431 (4)C18—C171.379 (6)
S2—O61.432 (4)C19—C201.381 (6)
S2—O41.432 (3)C19—C241.391 (6)
S2—C261.807 (4)C19—H190.9500
N3—C51.356 (5)C20—C211.385 (6)
N3—C181.396 (5)C21—C221.383 (6)
N3—C241.440 (5)C21—H210.9500
F3—C261.345 (5)C22—C231.383 (6)
F4—C251.335 (7)C22—H220.9500
N4—C51.326 (6)C23—C241.377 (6)
N4—C131.396 (6)C23—H230.9500
N4—C61.468 (6)C17—C161.382 (6)
C4—H4A0.9800C17—H170.9500
C4—H4AB0.9800C16—H160.9500
C3—Se1—C193.1 (2)C10—C9—H9118.7
C3—N1—C7109.2 (3)C9—C8—C7116.4 (5)
C3—N1—C4126.7 (4)C9—C8—H8121.8
C7—N1—C4124.1 (4)C7—C8—H8121.8
Se1—C1—H1A109.5C12—C11—C10114.3 (4)
Se1—C1—H1AB109.5C12—C11—H11122.8
H1A—C1—H1AB109.5C10—C11—H11122.8
Se1—C1—H1AC109.5C9—C10—C11121.9 (5)
H1A—C1—H1AC109.5C9—C10—H10119.1
H1AB—C1—H1AC109.5C11—C10—H10119.1
O3—S1—O2115.1 (2)C14—C15—C16122.3 (4)
O3—S1—O1113.7 (3)C14—C15—H15118.8
O2—S1—O1115.1 (2)C16—C15—H15118.8
O3—S1—C25104.3 (3)C15—C14—C13116.3 (4)
O2—S1—C25103.8 (2)C15—C14—H14121.9
O1—S1—C25102.5 (3)C13—C14—H14121.9
C5—Se2—C298.9 (2)C18—C13—C14121.2 (4)
C3—N2—C12109.5 (3)C18—C13—N4107.0 (4)
C3—N2—C20125.9 (3)C14—C13—N4131.7 (4)
C12—N2—C20124.1 (3)C11—C12—N2130.4 (4)
Se2—C2—H2A109.5C11—C12—C7123.9 (4)
Se2—C2—H2AB109.5N2—C12—C7105.6 (4)
H2A—C2—H2AB109.5C17—C18—C13122.7 (4)
Se2—C2—H2AC109.5C17—C18—N3131.5 (4)
H2A—C2—H2AC109.5C13—C18—N3105.8 (4)
H2AB—C2—H2AC109.5C20—C19—C24117.5 (4)
O5—S2—O6115.2 (3)C20—C19—H19121.2
O5—S2—O4114.4 (2)C24—C19—H19121.2
O6—S2—O4115.8 (2)C19—C20—C21121.8 (4)
O5—S2—C26101.0 (2)C19—C20—N2117.9 (3)
O6—S2—C26103.8 (2)C21—C20—N2120.2 (4)
O4—S2—C26104.0 (2)C22—C21—C20119.0 (4)
C5—N3—C18109.2 (3)C22—C21—H21120.5
C5—N3—C24125.0 (3)C20—C21—H21120.5
C18—N3—C24125.2 (3)C21—C22—C23120.7 (4)
N2—C3—N1108.6 (3)C21—C22—H22119.7
N2—C3—Se1124.8 (3)C23—C22—H22119.7
N1—C3—Se1126.5 (3)C24—C23—C22118.9 (4)
C5—N4—C13109.3 (3)C24—C23—H23120.5
C5—N4—C6125.7 (4)C22—C23—H23120.5
C13—N4—C6125.0 (4)C23—C24—C19122.0 (4)
N1—C4—H4A109.5C23—C24—N3120.5 (4)
N1—C4—H4AB109.5C19—C24—N3117.4 (3)
H4A—C4—H4AB109.5F6—C25—F4106.2 (5)
N1—C4—H4AC109.5F6—C25—F5110.4 (6)
H4A—C4—H4AC109.5F4—C25—F5104.8 (5)
H4AB—C4—H4AC109.5F6—C25—S1112.6 (5)
N4—C5—N3108.7 (4)F4—C25—S1112.0 (4)
N4—C5—Se2128.8 (3)F5—C25—S1110.5 (4)
N3—C5—Se2122.5 (3)F1—C26—F3107.7 (4)
N4—C6—H6A109.5F1—C26—F2106.9 (4)
N4—C6—H6AB109.5F3—C26—F2106.1 (4)
H6A—C6—H6AB109.5F1—C26—S2113.0 (3)
N4—C6—H6AC109.5F3—C26—S2110.9 (3)
H6A—C6—H6AC109.5F2—C26—S2111.9 (3)
H6AB—C6—H6AC109.5C18—C17—C16115.5 (4)
N1—C7—C8132.2 (4)C18—C17—H17122.2
N1—C7—C12107.0 (4)C16—C17—H17122.2
C8—C7—C12120.8 (4)C17—C16—C15121.9 (5)
C8—C9—C10122.5 (5)C17—C16—H16119.0
C8—C9—H9118.7C15—C16—H16119.0
3,3'-Bis(methylselanyl)-1,1'-(1,3-phenylene)bis(1H-1,3-benzodiazol-3-ium) bis(trifluoromethanesulfonate) (TS-058_3Se_A) top
Crystal data top
C24H24N4Se22+·2CF3O3SF(000) = 1640
Mr = 824.53Dx = 1.722 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.74775 (4) ÅCell parameters from 5613 reflections
b = 13.12863 (8) Åθ = 2.8–66.5°
c = 31.27496 (18) ŵ = 4.88 mm1
β = 90.6141 (5)°T = 170 K
V = 3181.02 (3) Å3Cut prism, clear colourless
Z = 40.29 × 0.14 × 0.08 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5613 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5268 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
ω scansθmax = 66.5°, θmin = 2.8°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 98
Tmin = 0.300, Tmax = 1.000k = 1515
37979 measured reflectionsl = 3337
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0314P)2 + 3.2601P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5613 reflectionsΔρmax = 0.60 e Å3
486 parametersΔρmin = 0.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.65737 (3)0.42578 (2)0.43767 (2)0.03035 (8)
Se20.65188 (3)0.64005 (2)0.34377 (2)0.03505 (8)
N10.5833 (2)0.20696 (14)0.44266 (6)0.0270 (4)
N20.3857 (2)0.29649 (13)0.40949 (5)0.0228 (4)
N30.3914 (2)0.53847 (14)0.29349 (5)0.0250 (4)
N40.5899 (2)0.60572 (14)0.25347 (6)0.0277 (4)
C10.7135 (4)0.4171 (2)0.49873 (8)0.0433 (6)
H1A0.6204620.3815360.5135780.065*
H1AB0.7263610.4858870.5104940.065*
H1AC0.8217740.3794960.5026770.065*
C20.4748 (4)0.7348 (3)0.36256 (10)0.0541 (7)
H2A0.5125080.7677080.3891980.081*
H2AB0.3670430.6977460.3674250.081*
H2AC0.4558010.7867890.3404990.081*
C30.5385 (3)0.30088 (16)0.43047 (6)0.0244 (4)
C40.7418 (3)0.1769 (2)0.46527 (9)0.0439 (6)
H4A0.7190250.1713760.4959410.066*
H4AB0.8314220.2282530.4605590.066*
H4AC0.7811350.1108900.4544290.066*
C50.4536 (3)0.13950 (17)0.43035 (7)0.0286 (5)
C60.4380 (4)0.03435 (18)0.43572 (8)0.0382 (6)
H60.5226000.0045950.4506510.046*
C70.2925 (4)0.0094 (2)0.41803 (9)0.0466 (7)
H70.2769080.0808690.4207330.056*
C80.1666 (4)0.0474 (2)0.39622 (9)0.0451 (7)
H80.0680920.0135460.3848100.054*
C90.1819 (3)0.15228 (19)0.39078 (8)0.0350 (5)
H90.0975310.1913470.3758270.042*
C100.3293 (3)0.19581 (16)0.40876 (7)0.0263 (4)
C110.5374 (3)0.59428 (17)0.29369 (7)0.0259 (4)
C120.7436 (3)0.6609 (2)0.23925 (9)0.0418 (6)
H12A0.7895340.7021110.2628790.063*
H12B0.7125570.7053660.2152110.063*
H12C0.8314660.6119740.2301460.063*
C130.4767 (3)0.55470 (16)0.22628 (7)0.0274 (4)
C140.4739 (4)0.5422 (2)0.18222 (8)0.0405 (6)
H140.5599000.5712170.1645470.049*
C150.3396 (4)0.4855 (2)0.16546 (8)0.0467 (7)
H150.3328240.4757040.1353950.056*
C160.2127 (4)0.4419 (2)0.19127 (8)0.0420 (6)
H160.1231430.4028950.1782660.050*
C170.2144 (3)0.45407 (19)0.23485 (7)0.0324 (5)
H170.1284600.4248640.2524940.039*
C180.3495 (3)0.51175 (16)0.25161 (6)0.0252 (4)
C190.3045 (3)0.38090 (16)0.38795 (6)0.0226 (4)
C200.1522 (3)0.42223 (17)0.40319 (7)0.0272 (5)
H200.0995290.3953700.4280550.033*
C210.0786 (3)0.50337 (19)0.38142 (7)0.0318 (5)
H210.0253780.5326010.3915760.038*
C220.1547 (3)0.54272 (19)0.34491 (7)0.0301 (5)
H220.1031400.5979160.3298510.036*
C230.3072 (3)0.49972 (17)0.33100 (6)0.0246 (4)
C240.3829 (3)0.41797 (16)0.35164 (6)0.0236 (4)
H240.4858200.3880530.3411980.028*
S20.23709 (8)0.27181 (4)0.53076 (2)0.03371 (14)
F40.1481 (3)0.14818 (19)0.59164 (7)0.0915 (8)
F50.0647 (2)0.22005 (16)0.55977 (7)0.0693 (5)
F60.0696 (3)0.09949 (15)0.52938 (9)0.0915 (7)
O40.2348 (3)0.35229 (15)0.56160 (7)0.0536 (5)
O50.1547 (3)0.29449 (18)0.49060 (6)0.0630 (6)
O60.3970 (3)0.21663 (19)0.52873 (7)0.0632 (6)
C260.0923 (4)0.1797 (2)0.55375 (9)0.0483 (7)
S1A0.82979 (10)0.33445 (8)0.30604 (3)0.0304 (3)0.728 (3)
F1A0.8104 (4)0.2125 (2)0.23925 (10)0.0611 (8)0.728 (3)
F2A0.5919 (5)0.3100 (3)0.24631 (12)0.0580 (9)0.728 (3)
F3A0.8292 (3)0.3715 (2)0.22338 (7)0.0585 (7)0.728 (3)
O1A0.7200 (5)0.2707 (3)0.33147 (13)0.0531 (9)0.728 (3)
O2A1.0134 (13)0.3105 (6)0.3063 (2)0.0341 (11)0.728 (3)
O3A0.7920 (3)0.44154 (19)0.30852 (10)0.0446 (7)0.728 (3)
C27A0.7659 (14)0.3056 (8)0.2506 (3)0.039 (2)0.728 (3)
C27B0.8672 (13)0.2688 (10)0.3114 (3)0.039 (2)0.272 (3)
O1B0.7976 (10)0.4328 (6)0.2719 (4)0.069 (3)0.272 (3)
O2B0.5834 (15)0.2999 (10)0.2679 (4)0.049 (3)0.272 (3)
O3B0.8581 (12)0.2808 (11)0.2293 (3)0.066 (3)0.272 (3)
F1B0.7846 (11)0.2951 (9)0.3465 (3)0.070 (3)0.272 (3)
F2B1.022 (3)0.2947 (16)0.3152 (6)0.0341 (11)0.272 (3)
F3B0.8668 (9)0.1687 (5)0.3093 (2)0.064 (2)0.272 (3)
S1B0.7620 (8)0.3257 (5)0.26391 (18)0.0344 (11)0.272 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02959 (13)0.03091 (14)0.03050 (13)0.00819 (9)0.00250 (9)0.00076 (9)
Se20.02722 (14)0.04291 (16)0.03488 (14)0.00386 (10)0.00660 (10)0.00055 (10)
N10.0296 (9)0.0268 (9)0.0246 (9)0.0009 (7)0.0010 (7)0.0016 (7)
N20.0228 (8)0.0257 (9)0.0200 (8)0.0035 (7)0.0038 (6)0.0006 (7)
N30.0219 (8)0.0336 (10)0.0197 (8)0.0020 (7)0.0009 (7)0.0043 (7)
N40.0256 (9)0.0274 (9)0.0301 (9)0.0024 (7)0.0068 (7)0.0040 (7)
C10.0525 (16)0.0437 (15)0.0334 (13)0.0052 (12)0.0106 (11)0.0058 (11)
C20.0454 (16)0.0613 (19)0.0554 (17)0.0049 (14)0.0078 (13)0.0225 (15)
C30.0240 (10)0.0295 (11)0.0198 (10)0.0018 (8)0.0029 (8)0.0000 (8)
C40.0410 (14)0.0407 (14)0.0498 (15)0.0086 (11)0.0116 (12)0.0033 (12)
C50.0349 (12)0.0283 (11)0.0228 (10)0.0029 (9)0.0087 (9)0.0016 (8)
C60.0532 (15)0.0289 (12)0.0327 (12)0.0001 (11)0.0138 (11)0.0031 (10)
C70.0620 (17)0.0290 (13)0.0492 (15)0.0147 (12)0.0215 (13)0.0035 (11)
C80.0452 (15)0.0422 (14)0.0482 (15)0.0210 (12)0.0125 (12)0.0110 (12)
C90.0325 (12)0.0395 (13)0.0332 (12)0.0090 (10)0.0075 (10)0.0061 (10)
C100.0296 (11)0.0268 (11)0.0226 (10)0.0064 (9)0.0096 (8)0.0015 (8)
C110.0220 (10)0.0289 (11)0.0267 (11)0.0017 (8)0.0014 (8)0.0027 (9)
C120.0363 (13)0.0434 (14)0.0460 (14)0.0139 (11)0.0154 (11)0.0029 (11)
C130.0317 (11)0.0250 (11)0.0255 (11)0.0002 (9)0.0056 (9)0.0023 (8)
C140.0541 (15)0.0412 (14)0.0265 (12)0.0077 (12)0.0131 (11)0.0019 (10)
C150.0673 (18)0.0500 (16)0.0229 (12)0.0142 (14)0.0064 (11)0.0045 (11)
C160.0533 (16)0.0437 (14)0.0290 (12)0.0132 (12)0.0018 (11)0.0024 (10)
C170.0305 (11)0.0409 (13)0.0258 (11)0.0066 (10)0.0009 (9)0.0059 (9)
C180.0275 (10)0.0281 (11)0.0201 (10)0.0016 (9)0.0020 (8)0.0040 (8)
C190.0214 (10)0.0275 (11)0.0190 (9)0.0038 (8)0.0001 (8)0.0016 (8)
C200.0227 (10)0.0388 (12)0.0201 (10)0.0024 (9)0.0039 (8)0.0012 (9)
C210.0223 (10)0.0454 (13)0.0278 (11)0.0054 (10)0.0055 (8)0.0009 (10)
C220.0239 (11)0.0394 (13)0.0269 (11)0.0032 (9)0.0015 (9)0.0040 (9)
C230.0216 (10)0.0342 (11)0.0181 (10)0.0054 (9)0.0017 (8)0.0015 (8)
C240.0180 (9)0.0319 (11)0.0209 (10)0.0011 (8)0.0020 (8)0.0000 (8)
S20.0418 (3)0.0356 (3)0.0239 (3)0.0108 (2)0.0078 (2)0.0002 (2)
F40.0806 (14)0.1174 (18)0.0760 (14)0.0289 (13)0.0233 (11)0.0721 (14)
F50.0361 (9)0.0898 (14)0.0821 (13)0.0170 (9)0.0008 (8)0.0215 (11)
F60.1023 (17)0.0403 (10)0.131 (2)0.0263 (11)0.0255 (15)0.0046 (12)
O40.0619 (13)0.0463 (11)0.0525 (12)0.0137 (9)0.0055 (9)0.0187 (9)
O50.0956 (17)0.0673 (14)0.0263 (9)0.0012 (12)0.0000 (10)0.0162 (9)
O60.0446 (11)0.0844 (16)0.0609 (13)0.0016 (11)0.0140 (10)0.0131 (12)
C260.0465 (16)0.0443 (16)0.0538 (16)0.0142 (12)0.0152 (12)0.0205 (13)
S1A0.0247 (4)0.0284 (6)0.0381 (5)0.0023 (3)0.0045 (3)0.0052 (3)
F1A0.0574 (16)0.0514 (15)0.0745 (18)0.0056 (13)0.0013 (13)0.0349 (14)
F2A0.0324 (14)0.0642 (19)0.077 (2)0.0109 (12)0.0141 (19)0.013 (2)
F3A0.0561 (15)0.0740 (19)0.0452 (13)0.0226 (14)0.0094 (11)0.0064 (12)
O1A0.046 (2)0.0530 (18)0.060 (2)0.0061 (16)0.0217 (17)0.0019 (17)
O2A0.0296 (13)0.033 (3)0.040 (4)0.0034 (18)0.003 (2)0.0030 (18)
O3A0.0425 (14)0.0325 (13)0.0587 (18)0.0090 (11)0.0093 (13)0.0168 (12)
C27A0.034 (3)0.037 (4)0.046 (5)0.005 (3)0.001 (4)0.010 (3)
C27B0.046 (6)0.040 (7)0.031 (5)0.014 (5)0.016 (4)0.006 (4)
O1B0.038 (4)0.031 (4)0.136 (10)0.002 (3)0.018 (5)0.011 (5)
O2B0.026 (4)0.054 (5)0.066 (7)0.003 (3)0.009 (5)0.008 (6)
O3B0.053 (5)0.117 (12)0.027 (4)0.018 (6)0.002 (4)0.022 (5)
F1B0.045 (5)0.124 (9)0.041 (4)0.017 (5)0.014 (3)0.004 (4)
F2B0.0296 (13)0.033 (3)0.040 (4)0.0034 (18)0.003 (2)0.0030 (18)
F3B0.059 (4)0.038 (3)0.095 (5)0.009 (3)0.021 (3)0.018 (3)
S1B0.0244 (14)0.034 (2)0.045 (3)0.0040 (15)0.003 (2)0.0025 (19)
Geometric parameters (Å, º) top
Se1—C31.893 (2)C14—C151.378 (4)
Se1—C11.957 (2)C14—H140.9500
Se2—C111.890 (2)C15—C161.401 (4)
Se2—C21.948 (3)C15—H150.9500
N1—C31.335 (3)C16—C171.372 (3)
N1—C51.391 (3)C16—H160.9500
N1—C41.465 (3)C17—C181.390 (3)
N2—C31.349 (3)C17—H170.9500
N2—C101.392 (3)C19—C241.382 (3)
N2—C191.438 (3)C19—C201.388 (3)
N3—C111.348 (3)C20—C211.384 (3)
N3—C181.391 (3)C20—H200.9500
N3—C231.441 (3)C21—C221.390 (3)
N4—C111.335 (3)C21—H210.9500
N4—C131.388 (3)C22—C231.384 (3)
N4—C121.467 (3)C22—H220.9500
C1—H1A0.9800C23—C241.380 (3)
C1—H1AB0.9800C24—H240.9500
C1—H1AC0.9800S2—O41.4308 (19)
C2—H2A0.9800S2—O51.434 (2)
C2—H2AB0.9800S2—O61.437 (2)
C2—H2AC0.9800S2—C261.804 (3)
C4—H4A0.9800F4—C261.323 (3)
C4—H4AB0.9800F5—C261.342 (4)
C4—H4AC0.9800F6—C261.311 (4)
C5—C101.384 (3)S1A—O3A1.438 (3)
C5—C61.396 (3)S1A—O1A1.439 (4)
C6—C71.376 (4)S1A—O2A1.456 (9)
C6—H60.9500S1A—C27A1.837 (9)
C7—C81.400 (4)F1A—C27A1.320 (9)
C7—H70.9500F2A—C27A1.355 (11)
C8—C91.392 (4)F3A—C27A1.312 (11)
C8—H80.9500C27B—F2B1.25 (3)
C9—C101.390 (3)C27B—F3B1.315 (14)
C9—H90.9500C27B—F1B1.323 (13)
C12—H12A0.9800C27B—S1B1.844 (12)
C12—H12B0.9800O1B—S1B1.454 (10)
C12—H12C0.9800O2B—S1B1.431 (13)
C13—C141.388 (3)O3B—S1B1.445 (8)
C13—C181.390 (3)
C3—Se1—C199.69 (10)C13—C14—H14121.8
C11—Se2—C297.32 (11)C14—C15—C16122.2 (2)
C3—N1—C5108.90 (18)C14—C15—H15118.9
C3—N1—C4126.9 (2)C16—C15—H15118.9
C5—N1—C4124.16 (19)C17—C16—C15121.7 (2)
C3—N2—C10108.78 (18)C17—C16—H16119.2
C3—N2—C19124.90 (17)C15—C16—H16119.2
C10—N2—C19126.05 (18)C16—C17—C18115.9 (2)
C11—N3—C18109.19 (17)C16—C17—H17122.0
C11—N3—C23125.12 (17)C18—C17—H17122.0
C18—N3—C23125.06 (17)C17—C18—C13122.8 (2)
C11—N4—C13109.01 (18)C17—C18—N3131.26 (19)
C11—N4—C12126.7 (2)C13—C18—N3105.94 (18)
C13—N4—C12124.24 (19)C24—C19—C20121.8 (2)
Se1—C1—H1A109.5C24—C19—N2117.53 (18)
Se1—C1—H1AB109.5C20—C19—N2120.64 (18)
H1A—C1—H1AB109.5C21—C20—C19118.65 (19)
Se1—C1—H1AC109.5C21—C20—H20120.7
H1A—C1—H1AC109.5C19—C20—H20120.7
H1AB—C1—H1AC109.5C20—C21—C22120.9 (2)
Se2—C2—H2A109.5C20—C21—H21119.5
Se2—C2—H2AB109.5C22—C21—H21119.5
H2A—C2—H2AB109.5C23—C22—C21118.5 (2)
Se2—C2—H2AC109.5C23—C22—H22120.7
H2A—C2—H2AC109.5C21—C22—H22120.7
H2AB—C2—H2AC109.5C24—C23—C22122.01 (19)
N1—C3—N2108.89 (18)C24—C23—N3117.49 (18)
N1—C3—Se1129.86 (16)C22—C23—N3120.49 (19)
N2—C3—Se1121.22 (16)C23—C24—C19118.02 (19)
N1—C4—H4A109.5C23—C24—H24121.0
N1—C4—H4AB109.5C19—C24—H24121.0
H4A—C4—H4AB109.5O4—S2—O5115.36 (14)
N1—C4—H4AC109.5O4—S2—O6114.79 (14)
H4A—C4—H4AC109.5O5—S2—O6116.21 (14)
H4AB—C4—H4AC109.5O4—S2—C26102.35 (14)
C10—C5—N1106.97 (19)O5—S2—C26102.44 (13)
C10—C5—C6121.7 (2)O6—S2—C26102.69 (14)
N1—C5—C6131.3 (2)F6—C26—F4108.1 (3)
C7—C6—C5115.9 (3)F6—C26—F5106.4 (2)
C7—C6—H6122.1F4—C26—F5106.6 (3)
C5—C6—H6122.1F6—C26—S2112.8 (2)
C6—C7—C8122.5 (2)F4—C26—S2111.59 (19)
C6—C7—H7118.8F5—C26—S2111.08 (19)
C8—C7—H7118.8O3A—S1A—O1A114.6 (2)
C9—C8—C7121.8 (2)O3A—S1A—O2A114.2 (4)
C9—C8—H8119.1O1A—S1A—O2A117.0 (3)
C7—C8—H8119.1O3A—S1A—C27A101.5 (4)
C10—C9—C8115.3 (2)O1A—S1A—C27A104.3 (4)
C10—C9—H9122.3O2A—S1A—C27A102.3 (5)
C8—C9—H9122.3F3A—C27A—F1A109.6 (7)
C5—C10—C9122.8 (2)F3A—C27A—F2A106.6 (8)
C5—C10—N2106.42 (19)F1A—C27A—F2A106.0 (7)
C9—C10—N2130.8 (2)F3A—C27A—S1A112.2 (6)
N4—C11—N3108.73 (18)F1A—C27A—S1A112.1 (7)
N4—C11—Se2126.88 (16)F2A—C27A—S1A110.0 (5)
N3—C11—Se2124.28 (15)F2B—C27B—F3B106.2 (13)
N4—C12—H12A109.5F2B—C27B—F1B108.7 (13)
N4—C12—H12B109.5F3B—C27B—F1B107.5 (11)
H12A—C12—H12B109.5F2B—C27B—S1B112.5 (10)
N4—C12—H12C109.5F3B—C27B—S1B111.4 (7)
H12A—C12—H12C109.5F1B—C27B—S1B110.4 (8)
H12B—C12—H12C109.5O2B—S1B—O3B118.4 (7)
N4—C13—C14131.9 (2)O2B—S1B—O1B113.3 (7)
N4—C13—C18107.11 (18)O3B—S1B—O1B115.1 (9)
C14—C13—C18121.0 (2)O2B—S1B—C27B104.7 (7)
C15—C14—C13116.4 (2)O3B—S1B—C27B102.1 (6)
C15—C14—H14121.8O1B—S1B—C27B99.9 (7)
 

Acknowledgements

Funding by the Deutsche For­schungsgemeinschaft (DFG, Germany Research Foundation) under Germany's Excellence Strategy is gratefully acknowledged. The authors declare no conflict of interest. Open access funding enabled and organized by Projekt DEAL.

Funding information

The following funding is acknowledged: Deutsche For­sch­ungs­gemeinschaft (grant Nos. EXC 2033-390677874-RESOLV and HU1782/5-1).

References

First citationAakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889–1892.  Web of Science CrossRef CAS Google Scholar
First citationBenz, S., López–Andarias, J., Mareda, J., Sakai, N. & Matile, S. (2017). Angew. Chem. Int. Ed. 56, 812–815.  Web of Science CrossRef CAS Google Scholar
First citationBenz, S., Macchione, M., Verolet, Q., Mareda, J., Sakai, N. & Matile, S. (2016). J. Am. Chem. Soc. 138, 9093–9096.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBleiholder, C., Werz, D. B., Köppel, H. & Gleiter, R. (2006). J. Am. Chem. Soc. 128, 2666–2674.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDoyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDupont, L., Dideberg, O. & Jacquemin, P. (1990). Acta Cryst. C46, 484–486.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujita, K., Iwaoka, M. & Tomoda, S. (1994). Chem. Lett. 23, 923–926.  CrossRef Web of Science Google Scholar
First citationGanta, S. & Chand, D. K. (2015). Dalton Trans. 44, 15181–15188.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGarrett, G. E., Gibson, G. L., Straus, R. N., Seferos, D. S. & Taylor, M. S. (2015). J. Am. Chem. Soc. 137, 4126–4133.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGrimme, S. (2012). Chem. Eur. J. 18, 9955–9964.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGrimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.  Web of Science CrossRef PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJungbauer, S. H. & Huber, S. M. (2015). J. Am. Chem. Soc. 137, 12110–12120.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKubiniok, S., du Mont, W.-W., Pohl, S. & Saak, W. (1988). Angew. Chem. Int. Ed. Engl. 27, 431–433.  CSD CrossRef Web of Science Google Scholar
First citationLegault, C. Y. (2009). CYLview. Version 1.0b. Université de Sherbrooke, Canada.  Google Scholar
First citationLiu, X., Ma, S. & Toy, P. H. (2019). Org. Lett. 21, 9212–9216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacchione, M., Tsemperouli, M., Goujon, A., Mallia, A. R., Sakai, N., Sugihara, K. & Matile, S. (2018). Helv. Chim. Acta, 101, e1800014.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMulliken, R. S. (1952). J. Am. Chem. Soc. 74, 811–824.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.de/diamondGoogle Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRosenfield, R. E., Parthasarathy, R. & Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860–4862.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteinke, T., Wonner, P., Engelage, E. & Huber, S. M. (2021). Synthesis, 53, 2043–2050.  CAS Google Scholar
First citationSteinke, T., Wonner, P., Gauld, R. M., Heinrich, S. & Huber, S. M. (2022). Chem. A Eur. J. 28, e202200917.  Web of Science CrossRef Google Scholar
First citationTiecco, M., Testaferri, L., Santi, C., Tomassini, C., Marini, F., Bagnoli, L. & Temperini, A. (2002). Chem. Eur. J. 8, 1118–1124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W., Zhu, H., Liu, S., Zhao, Z., Zhang, L., Hao, J. & Wang, Y. (2019). J. Am. Chem. Soc. 141, 9175–9179.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeiss, R., Aubert, E., Pale, P. & Mamane, V. (2021). Angew. Chem. Int. Ed. 60, 19281–19286.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerz, D. B., Gleiter, R. & Rominger, F. (2002). J. Am. Chem. Soc. 124, 10638–10639.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWerz, D. B., Gleiter, R. & Rominger, F. (2004). J. Org. Chem. 69, 2945–2952.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWirth, T. (1995). Angew. Chem. Int. Ed. Engl. 34, 1726–1728.  CrossRef CAS Web of Science Google Scholar
First citationWonner, P., Dreger, A., Vogel, L., Engelage, E. & Huber, S. M. (2019a). Angew. Chem. Int. Ed. 58, 16923–16927.  Web of Science CSD CrossRef CAS Google Scholar
First citationWonner, P., Steinke, T. & Huber, S. M. (2019b). Synlett, 30, 1673–1678.  CAS Google Scholar
First citationWonner, P., Steinke, T., Vogel, L. & Huber, S. M. (2020). Chem. Eur. J. 26, 1258–1262.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWonner, P., Vogel, L., Düser, M., Gomes, L., Kniep, F., Mallick, B., Werz, D. B. & Huber, S. M. (2017a). Angew. Chem. Int. Ed. 56, 12009–12012.  Web of Science CSD CrossRef CAS Google Scholar
First citationWonner, P., Vogel, L., Kniep, F. & Huber, S. M. (2017b). Chem. Eur. J. 23, 16972–16975.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, H. & Gabbaï, F. P. (2010). Nat. Chem. 2, 984–990.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215–241.  Web of Science CrossRef CAS Google Scholar
First citationZhou, B. & Gabbaï, F. P. (2021). J. Am. Chem. Soc. 143, 8625–8630.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds