research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal structure and characterization of the sul­fa­methazine–pi­peri­dine salt

crossmark logo

aInstituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipán, km 1.7 s/n, Teotitlán de Flores Magón, Oaxaca, 68540, Mexico, bFacultad de Ciencias Químicas, Universidad de Colima, km 9 Carretera Colima-Coquimatlán, Coquimatlán, Colima, 28400, Mexico, cInstituto de Investigación en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico, and dFacultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
*Correspondence e-mail: juan_saulo@unca.edu.mx, hector.garcia@unam.mx

Edited by I. Oswald, University of Strathclyde, United Kingdom (Received 10 November 2022; accepted 21 December 2022; online 27 February 2022)

Sulfamethazine [N1-(4,6-di­methyl­pyrimidin-2-yl)sulfanilamide] is an anti­micro­bial drug that possesses functional groups capable of acting as hydro­gen-bond donors and acceptors, which make it a suitable supra­molecular building block for the formation of co­crystals and salts. We report here the crystal structure and solid-state characterization of the 1:1 salt pi­peri­dinium sul­fa­methazinate (PPD+·SUL, C5H12N+·C12H13N4O2S) (I). The salt was obtained by the solvent-assisted grinding method and was characterized by IR spectroscopy, powder X-ray diffraction, solid-state 13C NMR spectroscopy and thermal analysis [differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)]. Salt I crystallized in the monoclinic space group P21/n and showed a 1:1 stoichiometry revealing proton transfer from SUL to PPD to form salt I. The PPD+ and SUL ions are connected by N—H+⋯O and N—H+⋯N inter­actions. The self-assembly of SUL anions displays the amine–sulfa C(8) motif. The supra­molecular architecture of salt I revealed the formation of inter­connected supra­molecular sheets.

1. Introduction

Sulfonamides are anti­microbial drugs used for the treatment of human and veterinary bacterial infections, and act by inhibiting the enzyme di­hydro­pteroate synthase, a key enzyme involved in folate synthesis (Ovung & Bhattacharyya, 2021[Ovung, A. & Bhattacharyya, J. (2021). Biophys. Rev. 13, 259-272.]). The chemical structure of sulfonamides includes SO2, NH and NH2 groups capable of acting as hydro­gen-bond donors and acceptors, and also arene rings capable of forming π-inter­actions, which make them suitable supra­molecular building blocks for use in crystal engineering for the formation of pharmaceutical co­crystals (Caira, 2007[Caira, M. R. (2007). Mol. Pharm. 4, 310-316.]).

Pharmaceutical co­crystals are crystalline materials com­posed of an active pharmaceutical ingredient (API) and a co­crystal coformer which remain together in the crystalline lattice principally via hydro­gen-bond inter­actions. Pharmaceutical co­crystallization offers the possibility of obtaining new solid forms of APIs and improving poor physicochemical properties (Bolla & Nangia, 2016[Bolla, G. & Nangia, A. (2016). Chem. Commun. 52, 8342-8360.]).

Sulfamethazine (SUL) co­crystals, solvates and salts have been prepared to study its ability to form noncovalent inter­actions, amidine–imidine tautomerism and proton transfer (Ghosh et al., 2011[Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.]; Zhang et al., 2017[Zhang, X., Zhou, L., Wang, C., Li, Y., Wu, Y., Zhang, M. & Yin, Q. (2017). Cryst. Growth Des. 17, 6151-6157.]; Singh & Baruah, 2019[Singh, M. P. & Baruah, J. B. (2019). ACS Omega, 4, 11609-11620.]). Concerning the improvement of physicochemical and pharmaceutical properties, co­crystals of sul­fa­methazine with 4-amino­salicylic acid and 4-amino­benzoic acid enhance solubility, dissolution and anti­bacterial activity (Pan et al., 2019[Pan, X., Zheng, Y., Chen, R., Qiu, S., Chen, Z., Rao, W., Chen, S., You, Y., Lü, J., Xu, L. & Guan, X. (2019). Cryst. Growth Des. 19, 2455-2460.]; Serrano et al., 2016[Serrano, D. R., Persoons, T., D'Arcy, D. M., Galiana, C., Dea-Ayuela, M. A. & Healy, A. M. (2016). Eur. J. Pharm. Sci. 89, 125-136.]).

Piperidine (PPD) is a heterocyclic amine that possesses an N—H group able to act as a hydro­gen-bond donor. Combination with pharmaceutical ingredients gives rise to the formation of co­crystals (with curcumin; Sanphui & Bolla, 2018[Sanphui, P. & Bolla, G. (2018). Cryst. Growth Des. 18, 5690-5711.]) or salts [with diclofenac (Fini et al. 2012[Fini, A., Cavallari, C., Bassini, G., Ospitali, F. & Morigi, R. (2012). J. Pharm. Sci. 101, 3157-3168.]) and sulfa­pyridine (Pratt et al., 2011[Pratt, J., Hutchinson, J. & Klein Stevens, C. L. (2011). Acta Cryst. C67, o487-o491.])]. The formation of co­crystals or

[Scheme 1]
salts can be predicted (not exactly) using the ΔpKa criteria from [pKa(base) – pKa(acid)]. When the value of ΔpKa is greater than 3, salt formation occurs, and when the value of ΔpKa is less than 0, co­crystal formation occurs. ΔpKa values between 0 and 3 do not give clear information about the co­crystal/salt preference (Kumar & Nanda, 2018[Kumar, S. & Nanda, A. (2018). Mol. Cryst. Liq. Cryst. 667, 54-77.]). We report here a crystallization study between sul­fa­methazine (pKa = 7.40; Zhang et al., 2016[Zhang, C., Lai, C., Zeng, G., Huang, D., Yang, C., Wang, Y., Zhou, Y. & Cheng, M. (2016). Water Res. 95, 103-112.]) and pi­peri­dine (pKa = 11.10; Luna et al., 2016[Luna, O. F., Gomez, J., Cárdenas, C., Albericio, F., Marshall, S. H. & Guzmán, F. (2016). Molecules, 21, 1542.]) (Fig. 1[link]), producing the PPD+·SUL salt, I (ΔpKa = 3.7) (Scheme 1[link]) by solvent-assisted grinding and solvent evaporation. The solid-state characterization was performed by IR spectroscopy (IR), powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (13C NMR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The crystal structure was ob­tained by single-crystal X-ray diffraction.
[Figure 1]
Figure 1
IR spectra of (a) PPD, (b) SUL, (c) the polycrystalline powder of I and (d) crystal I.

2. Experimental

2.1. Synthesis and crystallization

Sulfamethazine and pi­peri­dine were purchased from Aldrich. Di­chloro­methane and ethanol were purchased from Química Mayer. All reagents were used as received.

Sulfamethazine (0.3 g, 1.077 mmol) and pi­peri­dine (0.106 ml, 1.077 mmol), in a 1:1 molar ratio, were placed in a mortar. Before grinding, 0.5 ml of di­chloro­methane was added. The mixture was then ground with a pestle for 3 min. After the grinding time, the di­chloro­methane was evaporated and the powder was collected in the centre of the mortar. The cycle of adding 0.5 ml of di­chloro­methane and grinding for 3 min was repeated three more times until a grinding time of 12 min was reached. The polycrystalline ground powder of I was collected and stored in a glass vial. Single crystals suitable for X-ray diffraction were obtained from a solution of I in ethanol left to evaporate at room tem­per­ature.

2.2. IR spectroscopy

The IR spectra of solid powders of SUL and PPD, the polycrystalline powder of I and the single crystal of I were acquired in a Bruker Tensor 27 spectrophotometer equipped with an attenuated total reflectance (ATR) system accessory (16 scans, spectral range 600–4000 cm−1, resolution 4 cm−1).

2.3. Powder X-ray diffraction

Powder X-ray diffraction (PXRD) patterns of SUL, PPD and the polycrystalline powder of I were recorded on a PANalytical X'Pert PRO diffractometer with Cu Kα1 radiation (λ = 1.5405 Å, 45 kV, 40 mA) from 2.02 to 49.93° in 2θ.

2.4. Solid-state 13C NMR

Cross-polarization/magic angle spinning (CP/MAS) 13C NMR experiments of the solid powders of SUL and the polycrystalline powder of I were performed on a Bruker 400 Avance III (13C, 100 MHz) instrument at 25 °C. 4 mm bullet-type Kel-F zirconia rotors were used (containing about 100 mg of the sample). The spinning rate and acquisition time were 8 kHz and 32 ms, respectively. The recycle time of the pulse was 3 s. The adamantane signal was used as the external reference (δ = 38.48 ppm).

2.5. Thermal analysis

Differential scanning calorimetry (DSC) measurements were obtained on a TA Instruments Q100 instrument. Samples placed in aluminium pans were heated from 25 to 255 °C under a nitro­gen atmosphere at a rate of 10 °C min−1. Thermogravimetric analysis (TGA) was performed on a TA Instruments SDT Q600 instrument. Samples placed in aluminium pans were heated from 25 to 315 °C under a nitro­gen atmosphere at a rate of 10 °C min−1. Heating of I was performed in a VelaQuin 9053A oven at 185 °C for 1 h (arbitrary time).

2.6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms of amine N—H groups were located in a difference map and refined isotropically with Uiso(H) = 1.2Ueq(N). H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) for aromatic and methyl­ene groups, and 1.5Ueq(C) for methyl groups.

Table 1
Experimental details

Crystal data
Chemical formula C5H12N+·C12H13N4O2S
Mr 363.48
Crystal system, space group Monoclinic, P21/n
Tem­per­ature (K) 130
a, b, c (Å) 10.5713 (7), 12.1313 (8), 14.3623 (10)
β (°) 97.182 (7)
V3) 1827.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.53 × 0.43 × 0.34
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Analytical (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.93, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 10086, 4298, 3667
Rint 0.025
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.04
No. of reflections 4298
No. of parameters 241
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.44
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

3.1. Solid-state characterization of salt I

The formation of the new solid phase of salt I was evidenced by IR spectroscopy because the IR spectrum was different from those of the starting materials PPD and SUL, showing shifts in the N—H and SO2 bands (Fig. 1[link]), indicating the formation of inter­molecular inter­actions [the IR spectra of SUL and PPD were assigned according with Yang et al. (2005[Yang, X. L., Liu, J., Yang, L. & Zhang, X. Y. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 761-766.]) and Güllüoğlu et al. (2007[Güllüoğlu, M. T., Erdoğdu, Y. & Yurdakul, Ş. (2007). J. Mol. Struct. 834-836, 540-547.]), respectively]. The distinctive bands in the IR spectra of the polycrystalline powder of I and the single crystal of I are those at 3076 and 3073 cm−1, respectively, belonging to the pi­peri­dinium N—H+ group (Silverstein et al., 1991[Silverstein, R. M., Bassler, G. C. & Morrill, T. C. (1991). Spectrometric Identification of Organic Compounds, 5th ed., p. 103. New York: Wiley.]); also, the SO2 band at 1114 cm−1 in the polycrystalline powder and the single crystal of I, which is shifted to a lower wavenumber with respect to the starting material SUL (1145 cm−1), indicated deprotonation of the sulfonamide group, as observed in the formation of the benzamidinium sulfamerazinate salt (Kamali et al., 2015[Kamali, N., Aljohani, M., McArdle, P. & Erxleben, A. (2015). Cryst. Growth Des. 15, 3905-3916.]) and in the formation of metallic complexes of SUL with silver and copper (Tailor & Patel, 2015[Tailor, S. M. & Patel, U. H. (2015). J. Coord. Chem. 68, 2192-2207.]). The N—H bands of SUL were also shifted from 3441 and 3339 to 3452 and 3351 cm−1 in the polycrystalline powder of I, and to 3451 and 3350 cm−1 in the single crystal of I (Fig. 1[link]).

The experimental PXRD pattern of SUL matched well with the simulated pattern obtained from Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) for the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode SLFNMD01 (Basak et al., 1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.]). The PXRD pattern of the polycrystalline powder of I was different from the PXRD pattern of SUL and matched well with the simulated pattern of crystal I obtained from Mercury (Fig. 2[link]). The complete transformation of the starting components into the new solid phase of I was evidenced by the absence of the diffraction peaks at 2θ = 9.4, 15.3, 18.6, 24.7 and 26.5° belonging to the starting material SUL in the PXRD pattern of the polycrystalline powder of I, and the appearance of new diffraction peaks at 2θ = 11.1, 12.2, 13.2, 14.5, 20.9, 22.0 and 23.1°.

[Figure 2]
Figure 2
Powder X-ray diffractograms of (a) SUL, (b) the polycrystalline powder of I and (c) the simulated pattern for I.

The polycrystalline powder of I was characterized by 13C CP/MAS NMR spectroscopy and each signal represents a chemically different C atom. The 13C NMR spectrum of SUL was assigned according to Fu et al. (2016[Fu, X., Li, J., Wang, L., Wu, B., Xu, X., Deng, Z. & Zhang, H. (2016). RSC Adv. 6, 26474-26478.]) and Grossjohann et al. (2015[Grossjohann, C., Serrano, D. R., Paluch, K., O'Connell, P., Vella-Zarb, L., Manesiotis, P., McCabe, T., Tajber, L., Corrigan, O. I. & Healy, A. M. (2015). J. Pharm. Sci. 104, 1385-1398.]), and was used to assign the spectrum of the polycrystalline powder of I. The 13C NMR spectrum of I contained the signals for both SUL and PPD, and most of the 13C NMR signals were shifted with respect to the 13C NMR spectrum of SUL due to the change in the chemical environment as a consequence of the formation of the salt (Fig. 3[link]). Evidence of the deprotonation of SUL was observed by the shift to a higher frequency of the C7 signal from 155.9 ppm in SUL to 164.6 ppm in I in a similar way to when SUL is deprotonated to form metallic complexes (Hossain et al., 2007[Hossain, G. M. G., Amoroso, A. J., Banu, A. & Malik, K. M. A. (2007). Polyhedron, 26, 967-974.]). A similar case is observed when saccharin is deprotonated to form salts with fluoro­quinolones, since the 13C NMR signal of the carbonyl C atom (next to the negatively charged N atom) is shifted from 164.0 to 172–173 ppm after deprotonation (Romañuk et al., 2009[Romañuk, C. B., Manzo, R. H., Linck, Y. G., Chattah, A. K., Monti, G. A. & Olivera, M. E. (2009). J. Pharm. Sci. 98, 3788-3801.]). A comparison of the C7 chemical shifts, obtained from solid-state 13C NMR spectroscopic analysis reported for co­crystals of SUL in the amidine form, and co­crystals and salts in the imine form (Fig. 4[link]), revealed that in the amidine form, the C7 (C—NH) signal appeared at 155.2 ppm in the sul­fa­methazine–4-amino­salicylic acid co­crystal (similar to free SUL) (Grossjohann et al., 2015[Grossjohann, C., Serrano, D. R., Paluch, K., O'Connell, P., Vella-Zarb, L., Manesiotis, P., McCabe, T., Tajber, L., Corrigan, O. I. & Healy, A. M. (2015). J. Pharm. Sci. 104, 1385-1398.]), while in the sul­fa­methazine–saccharin co­crystal, where SUL adopts the imine form, the C7 (C=N) signal was shifted to a lower frequency, appearing at 152.7 ppm due to shielding caused by the formation of the C=N bond. In the sul­fa­methazinium saccharinate imine salt, the C7 signal (C=NH+) appeared at 150.2 ppm (shifted to a lower frequency), showing greater shielding due to the protonation of the C=N bond (Fu et al., 2016[Fu, X., Li, J., Wang, L., Wu, B., Xu, X., Deng, Z. & Zhang, H. (2016). RSC Adv. 6, 26474-26478.]) (Fig. 4[link]). On the other hand, when amidine SUL is deprotonated as in I, the C7 (C—N) signal appears at a higher frequency with respect to free SUL, because it is deshielded as a consequence of the negatively charged nitro­gen effect. Whole assignments of the 13C NMR signals are included in Table 2[link].

Table 2
CP/MAS solid-state 13C NMR chemical shifts (ppm) of SUL and I

  SUL I   SUL I
C1 126.1 126.1 C9 117.9 114.0
C2 130.8 132.6 C10 167.0 166.2
C3 114.4 111.2 C11 22.0 24.3
C4 153.9 151.1 C12 21.1 23.6
C5 115.8 111.2 Ca 21.9
C6 130.8 129.9 Cb 21.9
C7 155.9 164.6 Cc 46.6
C8 169.9 169.8      
[Figure 3]
Figure 3
The solid-state 13C NMR spectra of (a) the polycrystalline powder of I and (b) SUL.
[Figure 4]
Figure 4
Chemical shift of the C7 13C NMR signal in the different forms of SUL.

The thermal properties of the single crystal of I were investigated by TGA/DSC. The DSC plot of crystal I showed three endothermic peaks (Fig. 5[link]). Considering that the crystal structure of I is composed of only PPD and SUL, the peak at 170.19 °C is assigned to a solid–solid transition before the evaporation of PPD, the peak at 180.42 °C is assigned to the evaporation of PPD and the peak at 198.25 °C is attributed to the melting of SUL (Singh & Baruah, 2019[Singh, M. P. & Baruah, J. B. (2019). ACS Omega, 4, 11609-11620.]). The TGA plot showed a weight loss of 21.99% at 185 °C, corresponding to the loss of PPD, as suggested by the DSC curve (Fig. 5[link]). The mass loss after the melting of SUL is attributed to the degradation of SUL. To confirm the loss of PPD, a 100 mg sample of the polycrystalline powder of I was heated at 185 °C for 1 h, then an IR spectrum was recorded and compared with that obtained at room tem­per­ature (25 °C). The IR spectrum of I obtained at 185 °C is similar to the IR spectrum of pure SUL, confirming the loss of PPD (Fig. 5[link]).

[Figure 5]
Figure 5
(a) The DSC curve of crystal I, (b) the TGA curve of crystal I and (c) the IR spectra of the polycrystalline powder of I before and after heating.

3.2. Crystal structure of I

Salt I crystallized in the space group P21/n with one SUL anion and one PPD+ cation in the asymmetric unit (Z = 4) (Fig. 6[link]) connected by an N—H+⋯O=S (N4—H4D⋯O2) hydro­gen bond. The crystal structure of salt I showed deprotonation of the sulfonamide N atom of SUL and protonation of the amine group of PPD (to form the pi­peri­dinium group), as predicted by the ΔpKa criteria. The SUL anion adopts a V shape, with a C1—S1—N5—C7 torsion angle of −61.39 (11)°. A search performed in the the CSD (accessed September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for crystal structures of pure SUL and its co­crystals and salts in the amidine form, revealed that in the self-assembly of SUL mol­ecules, four supra­molecular patterns are preferred (three involving amine–sulfa inter­actions and one involving a sulfa–sulfa inter­action) (Fig. 7[link]). In salt I, the SUL anion adopts the sulfa–amine C(8) pattern (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) formed by the N1—H1D⋯O1i hydro­gen bond, producing a supra­molecular tape running along the b axis. Hydrogen-bond details and symmetry codes of crystal I is given in Table 3[link]. The two-dimensional supra­molecular array is formed by the inter­linking of C(8) SUL tapes with the PPD+ protons (N4—H4D⋯O2 and N4—H4E⋯N2iii; Table 3[link]), giving rise to a supra­molecular sheet extended along the ab plane (Fig. 8[link]). Supra­molecular sheets are linked by N1—H1E⋯O1ii and N1—H1D⋯O1i hydrogen bonds involving two SUL anions and two PPD+ cations, showing an R42(8) hydro­gen-bond motif in a similar manner to the sul­fa­methazine–fumaric acid co­crystal (Fig. 8[link]) (Ghosh et al., 2011[Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1i 0.88 (2) 2.06 (2) 2.9383 (18) 175.1 (17)
N1—H1E⋯O1ii 0.835 (19) 2.251 (19) 3.0397 (17) 157.6 (18)
N4—H4D⋯O2 0.893 (18) 2.157 (18) 2.8980 (16) 140.0 (15)
N4—H4E⋯N2iii 0.951 (19) 1.865 (19) 2.8085 (18) 171.0 (15)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}], [-z+{\script{1\over 2}}].
[Figure 6]
Figure 6
The asymmetric unit of I, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydro­gen bonds.
[Figure 7]
Figure 7
The hydro­gen-bond patterns adopted in the self-assembly of SUL.
[Figure 8]
Figure 8
(a) The supra­molecular sheet of I formed by inter­linked C(8) chains of SUL anions extended along the ab plane. (b) The inter­connection of SUL anions depicting the R42(8) hydro­gen-bond motif. Some H atoms have been omitted for clarity. Dashed lines represent hydro­gen bonds.

The crystal structure of pure SUL adopts the sulfa–sulfa C22(4) pattern (Fig. 7[link]) and, after grinding, SUL transfers a proton to PPD (evidenced by the shift of the C7 signal in the 13C CP/MAS NMR spectrum and the appearance of the band at 3067 cm−1 in the IR spectrum) to form the PPD+·SUL salt, I, displaying the sulfa–amine C(8) motif, changing the hydro­gen-bonding pattern (evidenced by the shifts in the IR bands) and the chemical environment (shifting the 13C NMR signals). Heating I at 185 °C leads to the loss of PPD (according to DSC/TGA information and IR spectra) and the remaining SUL returns to the sulfa–sulfa C22(4) pattern before melting at 198.25 °C.

4. Conclusions

The salt pi­peri­dinium sul­fa­methazinate, PPD+·SUL, I, was obtained by solvent-assisted grinding. Proton transfer was confirmed by IR spectroscopy, solid-state 13C NMR spectroscopy and single-crystal X-ray diffraction. The complete transformation of the starting material into the new crystalline phase was confirmed by PXRD analysis. The IR spectra and the PXRD patterns of the polycrystalline powder and the single crystal of I matched well, indicating a structural homogeneity between the polycrystalline powder and the single crystal. The crystal structure of salt PPD+·SUL revealed a 1:1 stoichiometry and the SUL anion adopts the sulfa–amine C(8) hydro­gen-bond pattern, forming two-dimensional supra­molecular sheets. Thermal analysis showed the loss of PPD before the melting of SUL.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a)'; program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b)'; molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: ORTEP for Windows (Farrugia, 2012).

Piperidin-1-ium 4-{[(4,6-dimethylpyrimidin-2-yl)azanidyl]sulfonyl}aniline top
Crystal data top
C5H12N+·C12H13N4O2SF(000) = 776
Mr = 363.48Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4261 reflections
a = 10.5713 (7) Åθ = 3.7–29.4°
b = 12.1313 (8) ŵ = 0.20 mm1
c = 14.3623 (10) ÅT = 130 K
β = 97.182 (7)°Prism, colourless
V = 1827.4 (2) Å30.53 × 0.43 × 0.34 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
4298 independent reflections
Graphite monochromator3667 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.025
ω scansθmax = 29.4°, θmin = 3.9°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
h = 1410
Tmin = 0.93, Tmax = 0.945k = 1515
10086 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.7985P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.37 e Å3
4298 reflectionsΔρmin = 0.43 e Å3
241 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0340 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Structure solution and refinement were carried out with the programs SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b). Full-matrix least-squares refinement was carried out by minimizing (Fo2 - Fc2)2. All nonhydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60035 (12)0.22230 (11)0.25758 (9)0.0157 (3)
C20.67492 (13)0.28748 (11)0.32312 (9)0.0182 (3)
H20.655240.3633750.3290280.022*
C30.77718 (13)0.24215 (12)0.37940 (9)0.0197 (3)
H30.826750.2869490.4243640.024*
C40.80861 (13)0.13058 (12)0.37083 (9)0.0181 (3)
C50.73159 (14)0.06562 (12)0.30567 (10)0.0202 (3)
H50.7507550.0103110.2993070.024*
C60.62780 (13)0.11129 (12)0.25051 (9)0.0186 (3)
H60.575220.0661530.2076240.022*
C70.34585 (12)0.32016 (11)0.31808 (9)0.0162 (3)
C80.22968 (13)0.35756 (13)0.43981 (10)0.0207 (3)
C90.22099 (13)0.24615 (13)0.45791 (10)0.0218 (3)
H90.1741670.2197140.5056340.026*
C100.28327 (13)0.17430 (13)0.40372 (10)0.0206 (3)
C110.16802 (17)0.44169 (15)0.49643 (11)0.0319 (4)
H11A0.0965580.4076730.5231260.048*
H11B0.1365980.5032840.4558260.048*
H11C0.2307170.4689440.5472530.048*
C120.28810 (16)0.05272 (13)0.42176 (12)0.0293 (4)
H12A0.3755670.0311460.4454250.044*
H12B0.2605410.0132030.3632150.044*
H12C0.2313490.0342250.4684450.044*
C130.10554 (16)0.15893 (13)0.06282 (10)0.0260 (3)
H13A0.0268390.1204070.035830.031*
H13B0.1728660.1431580.0225770.031*
C140.08120 (17)0.28175 (14)0.06426 (11)0.0302 (4)
H14A0.0497040.3071060.0000190.036*
H14B0.1621930.320630.0849210.036*
C150.01636 (15)0.31071 (15)0.13004 (11)0.0294 (4)
H15A0.0237730.3918340.134550.035*
H15B0.1008310.2810170.1044640.035*
C160.02347 (15)0.26287 (14)0.22704 (10)0.0264 (3)
H16A0.1019060.3002940.255960.032*
H16B0.0444860.2767030.2671760.032*
C170.04779 (15)0.14019 (14)0.22257 (11)0.0258 (3)
H17A0.0773580.112040.2862790.031*
H17B0.0324130.1016860.1989810.031*
N10.91410 (13)0.08717 (12)0.42253 (9)0.0247 (3)
H1D0.9330 (18)0.0180 (17)0.4128 (13)0.03*
H1E0.9426 (18)0.1211 (16)0.4712 (13)0.03*
N20.29435 (11)0.39582 (10)0.37202 (8)0.0184 (3)
N30.34236 (11)0.21007 (10)0.33225 (8)0.0189 (3)
N40.14602 (12)0.11727 (11)0.15932 (8)0.0193 (3)
H4D0.2191 (17)0.1505 (15)0.1814 (12)0.023*
H4E0.1647 (16)0.0409 (16)0.1552 (12)0.023*
N50.40244 (11)0.36429 (10)0.24673 (8)0.0171 (2)
O10.53436 (9)0.35578 (9)0.12003 (7)0.0208 (2)
O20.39831 (9)0.19763 (8)0.13606 (7)0.0210 (2)
S10.47516 (3)0.28499 (3)0.18398 (2)0.01499 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (6)0.0194 (7)0.0136 (6)0.0011 (5)0.0033 (5)0.0008 (5)
C20.0187 (6)0.0172 (7)0.0190 (6)0.0011 (5)0.0037 (5)0.0033 (5)
C30.0177 (6)0.0235 (7)0.0174 (6)0.0004 (6)0.0011 (5)0.0052 (6)
C40.0174 (6)0.0242 (7)0.0133 (6)0.0023 (6)0.0040 (5)0.0021 (5)
C50.0236 (7)0.0165 (7)0.0204 (6)0.0032 (6)0.0029 (6)0.0003 (5)
C60.0204 (6)0.0181 (7)0.0169 (6)0.0013 (5)0.0009 (5)0.0024 (5)
C70.0132 (6)0.0180 (6)0.0173 (6)0.0013 (5)0.0016 (5)0.0004 (5)
C80.0171 (6)0.0281 (8)0.0169 (6)0.0016 (6)0.0030 (5)0.0011 (6)
C90.0195 (7)0.0289 (8)0.0177 (6)0.0030 (6)0.0050 (5)0.0028 (6)
C100.0192 (7)0.0227 (7)0.0197 (6)0.0025 (6)0.0015 (5)0.0034 (6)
C110.0355 (9)0.0340 (9)0.0294 (8)0.0050 (7)0.0166 (7)0.0025 (7)
C120.0358 (9)0.0225 (8)0.0308 (8)0.0035 (7)0.0084 (7)0.0068 (7)
C130.0318 (8)0.0285 (8)0.0181 (6)0.0017 (7)0.0043 (6)0.0007 (6)
C140.0371 (9)0.0297 (9)0.0244 (7)0.0091 (7)0.0069 (7)0.0055 (6)
C150.0236 (7)0.0357 (9)0.0283 (8)0.0084 (7)0.0010 (6)0.0010 (7)
C160.0231 (7)0.0335 (9)0.0232 (7)0.0034 (7)0.0052 (6)0.0040 (7)
C170.0236 (7)0.0333 (9)0.0219 (7)0.0025 (6)0.0083 (6)0.0011 (6)
N10.0245 (6)0.0269 (7)0.0210 (6)0.0074 (5)0.0038 (5)0.0020 (5)
N20.0175 (5)0.0192 (6)0.0189 (5)0.0019 (5)0.0039 (5)0.0001 (5)
N30.0195 (6)0.0176 (6)0.0204 (5)0.0003 (5)0.0057 (5)0.0014 (5)
N40.0187 (6)0.0190 (6)0.0203 (6)0.0033 (5)0.0027 (5)0.0008 (5)
N50.0177 (5)0.0164 (6)0.0178 (5)0.0025 (4)0.0049 (4)0.0018 (4)
O10.0222 (5)0.0247 (5)0.0163 (4)0.0002 (4)0.0057 (4)0.0045 (4)
O20.0193 (5)0.0237 (5)0.0193 (5)0.0016 (4)0.0008 (4)0.0033 (4)
S10.01488 (17)0.01668 (18)0.01356 (16)0.00063 (12)0.00244 (12)0.00128 (12)
Geometric parameters (Å, º) top
C1—C61.3840 (19)C12—H12B0.98
C1—C21.3954 (18)C12—H12C0.98
C1—S11.7600 (13)C13—N41.4870 (19)
C2—C31.3806 (19)C13—C141.513 (2)
C2—H20.95C13—H13A0.99
C3—C41.403 (2)C13—H13B0.99
C3—H30.95C14—C151.524 (2)
C4—N11.3657 (18)C14—H14A0.99
C4—C51.403 (2)C14—H14B0.99
C5—C61.3860 (19)C15—C161.519 (2)
C5—H50.95C15—H15A0.99
C6—H60.95C15—H15B0.99
C7—N31.3522 (18)C16—C171.513 (2)
C7—N21.3581 (18)C16—H16A0.99
C7—N51.3594 (17)C16—H16B0.99
C8—N21.3406 (18)C17—N41.4888 (19)
C8—C91.382 (2)C17—H17A0.99
C8—C111.503 (2)C17—H17B0.99
C9—C101.388 (2)N1—H1D0.88 (2)
C9—H90.95N1—H1E0.835 (19)
C10—N31.3388 (18)N4—H4D0.893 (18)
C10—C121.497 (2)N4—H4E0.951 (19)
C11—H11A0.98N5—S11.5817 (12)
C11—H11B0.98O1—S11.4548 (10)
C11—H11C0.98O2—S11.4551 (10)
C12—H12A0.98
C6—C1—C2119.67 (12)N4—C13—H13B109.5
C6—C1—S1121.68 (10)C14—C13—H13B109.5
C2—C1—S1118.63 (11)H13A—C13—H13B108.1
C3—C2—C1120.27 (13)C13—C14—C15111.41 (14)
C3—C2—H2119.9C13—C14—H14A109.3
C1—C2—H2119.9C15—C14—H14A109.3
C2—C3—C4120.65 (13)C13—C14—H14B109.3
C2—C3—H3119.7C15—C14—H14B109.3
C4—C3—H3119.7H14A—C14—H14B108
N1—C4—C3120.71 (13)C16—C15—C14110.42 (13)
N1—C4—C5120.82 (14)C16—C15—H15A109.6
C3—C4—C5118.44 (12)C14—C15—H15A109.6
C6—C5—C4120.57 (13)C16—C15—H15B109.6
C6—C5—H5119.7C14—C15—H15B109.6
C4—C5—H5119.7H15A—C15—H15B108.1
C1—C6—C5120.35 (13)C17—C16—C15111.47 (13)
C1—C6—H6119.8C17—C16—H16A109.3
C5—C6—H6119.8C15—C16—H16A109.3
N3—C7—N2124.15 (12)C17—C16—H16B109.3
N3—C7—N5121.69 (12)C15—C16—H16B109.3
N2—C7—N5114.17 (12)H16A—C16—H16B108
N2—C8—C9121.82 (13)N4—C17—C16110.17 (12)
N2—C8—C11116.92 (14)N4—C17—H17A109.6
C9—C8—C11121.25 (13)C16—C17—H17A109.6
C8—C9—C10117.48 (13)N4—C17—H17B109.6
C8—C9—H9121.3C16—C17—H17B109.6
C10—C9—H9121.3H17A—C17—H17B108.1
N3—C10—C9121.72 (14)C4—N1—H1D117.9 (12)
N3—C10—C12116.29 (13)C4—N1—H1E116.8 (13)
C9—C10—C12122.00 (14)H1D—N1—H1E122.6 (18)
C8—C11—H11A109.5C8—N2—C7117.23 (12)
C8—C11—H11B109.5C10—N3—C7117.36 (12)
H11A—C11—H11B109.5C13—N4—C17111.33 (12)
C8—C11—H11C109.5C13—N4—H4D108.2 (11)
H11A—C11—H11C109.5C17—N4—H4D109.7 (11)
H11B—C11—H11C109.5C13—N4—H4E108.2 (10)
C10—C12—H12A109.5C17—N4—H4E112.7 (10)
C10—C12—H12B109.5H4D—N4—H4E106.5 (15)
H12A—C12—H12B109.5C7—N5—S1118.76 (10)
C10—C12—H12C109.5O1—S1—O2112.96 (6)
H12A—C12—H12C109.5O1—S1—N5106.19 (6)
H12B—C12—H12C109.5O2—S1—N5115.47 (6)
N4—C13—C14110.59 (12)O1—S1—C1106.49 (6)
N4—C13—H13A109.5O2—S1—C1107.62 (6)
C14—C13—H13A109.5N5—S1—C1107.65 (6)
C6—C1—C2—C31.3 (2)N3—C7—N2—C84.15 (19)
S1—C1—C2—C3177.34 (10)N5—C7—N2—C8175.69 (11)
C1—C2—C3—C40.8 (2)C9—C10—N3—C73.89 (19)
C2—C3—C4—N1176.12 (13)C12—C10—N3—C7176.15 (13)
C2—C3—C4—C51.8 (2)N2—C7—N3—C100.54 (19)
N1—C4—C5—C6177.21 (13)N5—C7—N3—C10179.28 (12)
C3—C4—C5—C60.7 (2)C14—C13—N4—C1758.69 (17)
C2—C1—C6—C52.4 (2)C16—C17—N4—C1358.96 (16)
S1—C1—C6—C5176.21 (11)N3—C7—N5—S14.87 (17)
C4—C5—C6—C11.4 (2)N2—C7—N5—S1175.29 (9)
N2—C8—C9—C100.7 (2)C7—N5—S1—O1175.12 (10)
C11—C8—C9—C10178.52 (13)C7—N5—S1—O258.85 (12)
C8—C9—C10—N34.5 (2)C7—N5—S1—C161.39 (11)
C8—C9—C10—C12175.53 (14)C6—C1—S1—O1109.20 (12)
N4—C13—C14—C1555.83 (18)C2—C1—S1—O169.41 (12)
C13—C14—C15—C1653.48 (19)C6—C1—S1—O212.19 (13)
C14—C15—C16—C1754.01 (18)C2—C1—S1—O2169.20 (10)
C15—C16—C17—N456.68 (17)C6—C1—S1—N5137.27 (12)
C9—C8—N2—C73.38 (19)C2—C1—S1—N544.12 (12)
C11—C8—N2—C7177.37 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.523.4629 (18)175
N1—H1D···O1ii0.88 (2)2.06 (2)2.9383 (18)175.1 (17)
N1—H1E···O1iii0.835 (19)2.251 (19)3.0397 (17)157.6 (18)
N4—H4D···N30.893 (18)2.492 (18)3.2334 (17)140.8 (14)
N4—H4D···O20.893 (18)2.157 (18)2.8980 (16)140.0 (15)
N4—H4E···N2iv0.951 (19)1.865 (19)2.8085 (18)171.0 (15)
N4—H4E···N5iv0.951 (19)2.706 (18)3.4168 (17)132.0 (13)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
CP/MAS solid-state 13C NMR chemical shifts (ppm) of SUL and I top
SULISULI
C1126.1126.1C9117.9114.0
C2130.8132.6C10167.0166.2
C3114.4111.2C1122.024.3
C4153.9151.1C1221.123.6
C5115.8111.2Ca21.9
C6130.8129.9Cb21.9
C7155.9164.6Cc46.6
C8169.9169.8
 

Funding information

Funding for this research was provided by: Universidad de la Cañada (grant No. PFI-05/17); Facultad de Química, UNAM (grant No. PAIP 5000-9112).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBasak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492–494.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBolla, G. & Nangia, A. (2016). Chem. Commun. 52, 8342–8360.  Web of Science CrossRef CAS Google Scholar
First citationCaira, M. R. (2007). Mol. Pharm. 4, 310–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFini, A., Cavallari, C., Bassini, G., Ospitali, F. & Morigi, R. (2012). J. Pharm. Sci. 101, 3157–3168.  CrossRef CAS PubMed Google Scholar
First citationFu, X., Li, J., Wang, L., Wu, B., Xu, X., Deng, Z. & Zhang, H. (2016). RSC Adv. 6, 26474–26478.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrossjohann, C., Serrano, D. R., Paluch, K., O'Connell, P., Vella-Zarb, L., Manesiotis, P., McCabe, T., Tajber, L., Corrigan, O. I. & Healy, A. M. (2015). J. Pharm. Sci. 104, 1385–1398.  CrossRef CAS PubMed Google Scholar
First citationGüllüoğlu, M. T., Erdoğdu, Y. & Yurdakul, Ş. (2007). J. Mol. Struct. 834–836, 540–547.  Google Scholar
First citationHossain, G. M. G., Amoroso, A. J., Banu, A. & Malik, K. M. A. (2007). Polyhedron, 26, 967–974.  CSD CrossRef CAS Google Scholar
First citationKamali, N., Aljohani, M., McArdle, P. & Erxleben, A. (2015). Cryst. Growth Des. 15, 3905–3916.  CSD CrossRef CAS Google Scholar
First citationKumar, S. & Nanda, A. (2018). Mol. Cryst. Liq. Cryst. 667, 54–77.  Web of Science CrossRef CAS Google Scholar
First citationLuna, O. F., Gomez, J., Cárdenas, C., Albericio, F., Marshall, S. H. & Guzmán, F. (2016). Molecules, 21, 1542.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOvung, A. & Bhattacharyya, J. (2021). Biophys. Rev. 13, 259–272.  CrossRef CAS PubMed Google Scholar
First citationPan, X., Zheng, Y., Chen, R., Qiu, S., Chen, Z., Rao, W., Chen, S., You, Y., Lü, J., Xu, L. & Guan, X. (2019). Cryst. Growth Des. 19, 2455–2460.  CSD CrossRef CAS Google Scholar
First citationPratt, J., Hutchinson, J. & Klein Stevens, C. L. (2011). Acta Cryst. C67, o487–o491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRomañuk, C. B., Manzo, R. H., Linck, Y. G., Chattah, A. K., Monti, G. A. & Olivera, M. E. (2009). J. Pharm. Sci. 98, 3788–3801.  Web of Science PubMed Google Scholar
First citationSanphui, P. & Bolla, G. (2018). Cryst. Growth Des. 18, 5690–5711.  CrossRef CAS Google Scholar
First citationSerrano, D. R., Persoons, T., D'Arcy, D. M., Galiana, C., Dea-Ayuela, M. A. & Healy, A. M. (2016). Eur. J. Pharm. Sci. 89, 125–136.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverstein, R. M., Bassler, G. C. & Morrill, T. C. (1991). Spectrometric Identification of Organic Compounds, 5th ed., p. 103. New York: Wiley.  Google Scholar
First citationSingh, M. P. & Baruah, J. B. (2019). ACS Omega, 4, 11609–11620.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTailor, S. M. & Patel, U. H. (2015). J. Coord. Chem. 68, 2192–2207.  CSD CrossRef CAS Google Scholar
First citationYang, X. L., Liu, J., Yang, L. & Zhang, X. Y. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 761–766.  Web of Science CrossRef CAS Google Scholar
First citationZhang, C., Lai, C., Zeng, G., Huang, D., Yang, C., Wang, Y., Zhou, Y. & Cheng, M. (2016). Water Res. 95, 103–112.  CrossRef CAS PubMed Google Scholar
First citationZhang, X., Zhou, L., Wang, C., Li, Y., Wu, Y., Zhang, M. & Yin, Q. (2017). Cryst. Growth Des. 17, 6151–6157.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds