research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis and crystal structures of new chiral 3-amino-2H-azirines and the Pd com­plex of one of them

crossmark logo

aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
*Correspondence e-mail: anthony.linden@chem.uzh.ch

Edited by G. P. A. Yap, University of Delaware, USA (Received 1 February 2023; accepted 17 February 2023; online 23 February 2023)

3-Amino-2H-azirines are potentially versatile building blocks in heterocyclic and peptide synthesis. Three new 3-amino-2H-azirines have been synthesized as racemates or mixtures of diastereoisomers in cases where another chiral residue is incorporated as the exocyclic amine. The crystal structures of two of them, an approximately 1:1 diastereoisomeric mixture of (2R)- and (2S)-2-ethyl-3-[(2S)-2-(1-meth­oxy-1,1-di­phenyl­meth­yl)pyrrolidin-1-yl]-2-methyl-2H-azirine, C23H28N2O, 11, and 2-benzyl-3-(N-methyl-N-phenyl­amino)-2-phenyl-2H-azirine, C22H20N2, 12, and the third as its diastereoisomeric trans-PdCl2 com­plex, trans-di­chlorido­[(2R)-2-ethyl-2-methyl-3-(X)-2H-azirine][(2S)-2-ethyl-2-methyl-3-(X)-2H-azirine]palladium(II), where X = N-{[(1S,2S,5S)-6,6-di­methylbi­cyclo­[3.1.1]heptan-2-yl]meth­yl}-N-phenyl­amino, [PdCl2(C21H30N2)2], 14, have been determined and the geometries of the azirine rings com­pared with those of 11 other 3-amino-2H-azirine structures reported in the literature. Most notable is the very long formal N—C single bond, which is, with one exception, around 1.57 Å. Each com­pound has crystallized in a chiral space group. The Pd atom in the trans-PdCl2 com­plex is coordinated by one of each of the pair of diastereoisomers, while both of the diastereoisomers share the same crystallographic site in the structure of 11; this property thereby manifesting itself as disorder. The chosen crystal of 12 is either an inversion twin or com­posed of a pure enanti­omorph, but this could not be established specifically.

1. Introduction

Since the first synthesis of 3-amino-2H-azirines (Rens & Ghosez, 1970[Rens, M. & Ghosez, L. (1970). Tetrahedron Lett. 11, 3765-3768.]), the chemistry of these three-membered cyclic amidines has been studied intensively (Heimgartner, 1979[Heimgartner, H. (1979). Chimia, 33, 111-118.], 1981[Heimgartner, H. (1981). Isr. J. Chem. 21, 151-156.], 1986[Heimgartner, H. (1986). Isr. J. Chem. 27, 3-15.], 1991[Heimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238-264.]; Eremeev & Piskunova, 1990[Eremeev, A. V. & Piskunova, I. P. (1990). Chem. Heterocycl. Compd. 26, 719-738.]). They have been found to be versatile building blocks in heterocyclic and peptide synthesis. In com­parison with the better known 3-aryl-2H-azirines (three-mem­bered cyclic imines), the 3-amino derivatives are stronger bases and more reactive nucleophiles. For example, 3-phenyl-2H-azirine reacts with carb­oxy­lic acids in refluxing benzene to give the corresponding N-phenacyl­car­box­amides (Sato et al., 1967[Sato, S., Kato, H. & Ohta, M. (1967). Bull. Chem. Soc. Jpn, 40, 2938-2942.]; Black & Doyle, 1978[Black, D. St C. & Doyle, J. E. (1978). Aust. J. Chem. 31, 2313-2315.]), and the reaction of 2,2-dimethyl-3-phenyl-2H-azirine with mercapto­acetic acid was performed in acetone at 343 K for 15 h yielding N-(1,1-dimethyl-2-oxo-2-phenyl­eth­yl)-2-mercaptoacetamide (Él'kinson & Eremeev, 1986[Él'kinson, R. S. & Eremeev, A. V. (1986). Chem. Heterocycl. Compd. 22, 161-166.]). Only 3-alkyl-2H-azirine-2-phos­phine oxides exhibited a higher reactivity; a slow reaction with carb­oxy­lic acids in tetra­hydro­furan (THF) occurs already at room temperature within 1–4 days (Palacios et al., 2002[Palacios, F., Aparicio, D., Ochoa de Retana, A. M., de los Santos, J. M., Gil, J. I. & Alonso, J. M. (2002). J. Org. Chem. 67, 7283-7288.]). On the other hand, N,N-disubstituted 3-amino-2H-azirines of type 1 react with carb­oxy­lic acids (Vittorelli et al., 1974[Vittorelli, P., Heimgartner, H., Schmid, H., Hoet, P. & Ghosez, L. (1974). Tetrahedron, 30, 3737-3740.]; Obrecht & Heimgartner, 1983[Obrecht, D. & Heimgartner, H. (1983). Tetrahedron Lett. 24, 1921-1924.]) and N-protected amino acids (Obrecht & Heimgartner, 1987[Obrecht, D. & Heimgartner, H. (1987). Helv. Chim. Acta, 70, 102-115.]; Wipf & Heimgartner, 1988[Wipf, P. & Heimgartner, H. (1988). Helv. Chim. Acta, 71, 140-154.]; Dan­necker-Dörig et al., 2011[Dannecker-Dörig, I., Linden, A. & Heimgartner, H. (2011). Helv. Chim. Acta, 94, 993-1011.]) at 273–298 K within a few minutes to give products of type 2 (Scheme 1[link]). The analogous reaction of 3-amino-2-phenyl­carbamoyl-2H-azirine with acetic acid in ace­tone was carried out at 323 K within 1 h (Eremeev et al., 1985[Eremeev, A. V., Piskunova, I. P. & Él'kinson, R. S. (1985). Chem. Heterocycl. Compd. 21, 998-1002.]).

[Scheme 1]

Furthermore, 3-amino-2H-azirines, 1, react spontaneously with NH-acidic heterocycles if their pKa value is less than 8 (Chaloupka et al., 1977[Chaloupka, S., Vittorelli, P., Heimgartner, H., Schmid, H., Link, H., Bernauer, K. & Oberhänsli, W. E. (1977). Helv. Chim. Acta, 60, 2476-2495.]; Scholl et al., 1978[Scholl, B., Bieri, J. H. & Heimgartner, H. (1978). Helv. Chim. Acta, 61, 3050-3067.]). For example, the reaction with 3,3-disubstituted azetidine-2,4-diones (malon­imides) in 2-propanol at room temperature yields 1,4-diazepine derivatives, 3 (Scheme 1[link]). In all of these reactions, 1 has to be activated by protonation to enable the addition of the nucleophilic com­pound. On the other hand, reactions of 1 with non-acidic N-nucleophiles, such as primary amino com­pounds (Hugener & Heimgartner, 1995[Hugener, M. & Heimgartner, H. (1995). Helv. Chim. Acta, 78, 1823-1836.]) or sodium amidates (Arnhold et al., 1995[Arnhold, F. S., Chaloupka, S., Linden, A. & Heimgartner, H. (1995). Helv. Chim. Acta, 78, 899-909.]), can be performed via BF3 catalysis. In the latter case, 4,4-di­substituted 5-amino-4H-imidazoles, 4, are formed (Scheme 1[link]); the reaction mechanism is explained by the initial com­plexation of the ring N atom of 1 with BF3. Similarly, the ZnCl2-catalyzed reaction of 3-aryl-2H-azirines with benzimidates has been elaborated as an efficient preparation of imidazoles (Shi et al., 2018[Shi, S., Xu, K., Jiang, C. & Ding, Z. (2018). J. Org. Chem. 83, 14791-14796.]).

[Scheme 2]

Based on these results, we expected that reactions of 1 with nucleophiles may also be catalyzed by com­plexation of 1 with ZnBr2 or PdCl2. Corresponding com­plexes of 3-amino-2H-azirines 1 are known (Hassner et al., 1978[Hassner, A., Bunnell, C. A. & Haltiwanger, K. (1978). J. Org. Chem. 43, 57-61.]; Dietliker et al., 1978[Dietliker, K., Schmid, U., Mukherjee-Müller, G. & Heimgartner, H. (1978). Chimia, 32, 164-166.]; Dos Santos Filho et al., 1983[Dos Santos Filho, P. F., Ortella do Zelada, L. A. & Schuchardt, U. (1983). Quim. Nova, 6, 69-70.]; Heimgartner, 1991[Heimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238-264.]; Villalgordo & Heimgartner, 1993[Villalgordo, J. M. & Heimgartner, H. (1993). Tetrahedron, 49, 7215-7222.]). Unfortunately, attempts to catalyze the reaction of 1a with imidazolidine-2,4-diones (hydantoins), 5, by using ZnBr2 (Scheme 2[link]) were only mildly successful (Schläpfer-Dähler et al., 1992[Schläpfer-Dähler, M., Mukherjee-Müller, G. & Heimgartner, H. (1992). Helv. Chim. Acta, 75, 1251-1261.]). Whereas the formation of the 4H-imidazole derivatives, 6, from 1a and 5 was achieved in refluxing aceto­nitrile within two days, the reaction of the azirine com­plex 7 with 5 was com­plete after 14–24 h, and after decom­plexation of the 4H-imidazole com­plexes, 8, by treatment with NaOH, com­pounds 6 were obtained in slightly increased yields.

[Scheme 3]

On the other hand, we successfully used the com­plexation of the hetero­spiro­cyclic 3-amino-2H-azirine, 9, with PdCl2 for the chromatographic purification of this com­pound as a race­mate (Villalgordo & Heimgartner, 1993[Villalgordo, J. M. & Heimgartner, H. (1993). Tetrahedron, 49, 7215-7222.]). Because 3-am­ino-2H-azirines with two different substituents at the alkyl atom, C2, of the azirine ring, e.g. 1012, are useful building blocks for chiral α,α-disubstituted α-amino acids, the separation of the diastereoisomers or enanti­omers is an important issue (Bucher et al., 1995[Bucher, C. B., Linden, A. & Heimgartner, H. (1995). Helv. Chim. Acta, 78, 935-946.], 1996[Bucher, C. B. & Heimgartner, H. (1996). Helv. Chim. Acta, 79, 1903-1915.], 2020[Bucher, C. B., Linden, A. & Heimgartner, H. (2020). Chem. Biodivers. 17, e2000246.]; Brun et al., 2001[Brun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756-1777.], 2002[Brun, K. A., Linden, A. & Heimgartner, H. (2002). Helv. Chim. Acta, 85, 3422-3443.]). Therefore, we synthesized the azirines 1012 with the aim of separating the stereoisomers after their direct crystallization or crystallization of their PdCl2 com­plexes (Scheme 3[link]).

2. Experimental

2.1. Synthesis and crystallization

The 3-amino-2H-azirines 1012 were prepared according to previously described syntheses. In the case of 10, sequential treatment of 1 g (3.19 mmol) of a diastereomeric mixture of the corresponding 2-methyl­butyric acid amide, 13, bearing the chiral residue derived from (−)-trans-myrtanol, in dry THF (15 ml) with lithium diiso­propyl­amide (LDA), di­phenyl­phosphoryl chloride (DPPCl) and NaN3 in DMF (Scheme 4[link]; Villalgordo, 1992[Villalgordo, J. M. (1992). PhD thesis, University of Zurich, Switzerland.]; cf. Villalgordo & Heimgartner, 1993[Villalgordo, J. M. & Heimgartner, H. (1993). Tetrahedron, 49, 7215-7222.]) led to the desired product. Chromatographic work-up on SiO2 (hex­ane–AcOEt, 9:1 v/v) gave 712 mg (72%) of 10 as a mix­ture of diastereoisomers as a slightly yellow oil. To a well-stirred suspension of 156 mg (0.654 mmol) PdCl2 in dry aceto­nitrile (MeCN, 1.5 ml) at 273 K was added a solution of 200 mg (0.654 mmol) of azirine 10 in MeCN (0.5 ml). After stirring for 10 h, the solvent was partially evaporated and the residue was filtered through a short column of SiO2 (hexa­ne–ethyl acetate, 9:1 v/v). Evaporation of the solvents gave 475 mg (92%) of the Pd com­plex, 14, as a red–orange solid. Recrystallization from MeCN by slow evaporation of the

[Scheme 4]
solvent yielded orange crystals of suitable quality for crystal structure analysis. The crystal structure of 14 revealed that one of each of the diastereoisomers of 10 were coordinated to the Pd centre to give a mol­ecule with the absolute stereochemistry shown in Scheme 4[link].
[Scheme 5]

Starting with the known (S)-pyrrolidine derivative 15 (Enders et al., 1988[Enders, D., Kipphardt, P., Gerdes, P., Breña-Valle, L. J. & Bhushan, V. (1988). Bull. Soc. Chim. Belg. 97, 691-704.]), the azirine 17 was prepared following pro­cedures described earlier (Scheme 5[link]; Bucher, 1996[Bucher, C. B. (1996). PhD thesis, University of Zurich, Switzerland.]; cf. Bucher & Heimgartner, 1996[Bucher, C. B. & Heimgartner, H. (1996). Helv. Chim. Acta, 79, 1903-1915.]). Whereas the precursor 16 was obtained in good yield (84%) as a mixture of diastereoisomers, the standard transformation to the amino­azirine led to a ca 2:1 mixture of the diastereomeric azirines 17 in only 10% yield. The electrolytical removal of the phenyl­sulfonyl group (–2.1 V, EtOH, Me4NCl, 278 K; cf. Bucher & Heimgartner, 1996[Bucher, C. B. & Heimgartner, H. (1996). Helv. Chim. Acta, 79, 1903-1915.]) gave only a few crystals of the desired azirine 11, which were recrystallized from MeOH/Et2O, yielding crystals suitable for crystal structure determination.

[Scheme 6]

3-Amino-2-benzyl-2-phenyl-2H-azirine 12 was synthesized either from the amide 18 (cf. Villalgordo & Heimgartner, 1993[Villalgordo, J. M. & Heimgartner, H. (1993). Tetrahedron, 49, 7215-7222.]) or the thio­amide 19 (cf. Bucher et al., 1995[Bucher, C. B., Linden, A. & Heimgartner, H. (1995). Helv. Chim. Acta, 78, 935-946.]; Brun et al., 2002[Brun, K. A., Linden, A. & Heimgartner, H. (2002). Helv. Chim. Acta, 85, 3422-3443.]), respectively (Scheme 6[link]). In the first case, starting with 2.50 g (7.9 mmol) of 18, azirine 12 was obtained in 70% yield (1.74 g) as a slightly yellow oil, which solidified under high vacuum (Gubler, 1996[Gubler, R. (1996). Diploma thesis, University of Zurich, Switzerland.]). In the second approach, the amide 18 was transformed into the thio­amide 19 in 94% yield, and 19.20 g (57.9 mmol) of the latter were treated with phosgene in DMF/CH2Cl2 and then with sodium azide in THF/DMF to give 11.05 g (61%) of azirine 12 as a yellowish solid. Recrystallization of the azirine 12 from Et2O/hexane yielded colourless crystals of a single enanti­omer suitable for a crystal structure analysis.

2.2. Analytical and spectroscopic data

Compound 10 (mixture of diastereoisomers): slightly yellow oil; IR (CHCl3): 2970 (s), 2920 (s), 2870 (m), 1745 (s), 1600 (s), 1500 (s), 1455 (m), 1375 (m), 1365 (m), 1290 (m), 1240 (m), 1185 (s), 1155 (m), 1100 (m), 965 (m), 690 (m) cm−1; 1H NMR (CDCl3): δ 7.4–7.0 (m, 5 arom. H), 3.72 (br s, CH2N), 2.53 (br s, 1H), 2.15–2.05 (m, 1H), 1.9–1.55 (m, 9H), 1.39, 1.16 (2s, 2 Me), 0.74 (br s, Me), 0.73 (s, Me); 13C NMR (CDCl3): δ 166.6 (s, C=N), 150.3, 141.7 (2s, 1 arom. C), 129.6, 129.1, 125.3, 123.1, 119.9, 117.3 (6d, 5 arom. CH), 63.4, 51.4 (2t, CH2N), 42.6 (d, CH), 40.5 (q, Me), 38.9 (s, Me2C), 32.5 (d, CH), 30.0, 29.9 (2t, CH2), 26.4 (d, CH), 23.7, 23.3 (2t, 2 CH2), 19.7 (q, Me), 19.0, 18.9 (2t, CH2), 9.6 (q, Me); CI–MS: 311 (100, [M + 1]+). Compound 14: orange solid; m.p. 411–413 K; IR (KBr): 2910 (s), 1800 (s), 1595 (s), 1495 (s), 1460 (m), 1380 (m), 1365 (m), 1230 (m), 1215 (m), 1200 (m), 1155 (m), 1080 (m), 1065 (m), 760 (m), 690 (s) cm−1; 1H NMR (DMSO-d6): δ 7.5–7.15 (m, 10 arom. H), 4.45–4.25 (m, 1H), 4.2–3.95 (m, 2H), 3.66 (br s, 2H), 2.3–1.9 (m, 4H), 1.85–1.45 (m, 15H), 1.4–1.25 (m, 8H), 1.15–1.05 (m, 7H), 0.75–0.55 (m, 11H); 13C NMR (DMSO-d6): δ 164.2, 164.0 (2s, 2 C=N), 140.3, 140.2 (2s, 2 arom. C), 130.1, 129.7, 125.7, 119.9, 119.7, 119.5 (6d, 10 arom. CH), 52.7, 52.5 (2t, 2 CH2N), 49.2, 49.1 (2s, 2 C), 40.7, 40.6 (2d, 2 CH), 32.5, 32.1 (2d, 2 CH), 29.4, 29.3, 28.4, 28.3 (4t, 4 CH2), 26.4, 26.3 (2q, 2 Me), 23.6, 23.5 (2t, 2 CH2), 22.8, 22.6 (2d, 2 CH), 19.8, 19.6 (2q, 2 Me), 18.4, 18.2 (2t, 2 CH2), 9.6, 9.2 (2q, 2 Me).

Compound 16 (mixture of diastereoisomers): colourless oil; IR (CHCl3): 3000 (m), 1625 (s), 1495 (w), 1465 (m), 1450 (s), 1310 (s), 1150 (s), 1090 (s), 1075 (s), 705 (s), 690 (m) cm−1; 1H NMR (CDCl3) (2 diastereoisomers, 1 rotamer): δ 7.95–7.85, 7.7–7.55, 7.45–7.35 (3m, 15 arom. H), 5.55, 5.41, 5.00 (3d, 1H), 3.7–3.65, 3.6–3.5 (2m, 1H), 3.3–2.95 (m, 2.5H), 2.9–2.8 (m with 3s at 2.89, 2.86, and 2.83, 1H and MeO), 2.7–2.6 (m, 0.5H), 2.2–1.85 (m, 4H), 1.55–1.35 (m, 1H), 1.2–1.05 (m with 2d at 1.18, 1.06, 2.5H), 1.1–0.95 (m, 1H), 0.85–0.75 (m, 0.5 H); CI–MS: 492 ([M + H]+), 460 ([M − MeO]+). Compound 17 (mixture of diastereoisomers): colourless solid; IR (KBr): 2950 (m, broad), 1765 (s), 1450 (s), 1310 (s), 1150 (s), 1085 (m), 1070 (m), 760 (m), 705 (m), 690 (m) cm−1; ESI–MS: 511 ([M + Na]+), 489 ([M + H]+). Compound 11 (mixture of diastereoisomers): colourless crystals.

Compound 12 (mixture of enanti­omers): yellowish solid; m.p. 345–348 K; IR (CHCl3): 2985 (m), 1760 (s, broad), 1600 (s), 1498 (s), 1452 (m), 1390 (m), 1326 (m), 1283 (m), 1110 (m), 1075 (m), 696 (m); 1H NMR (DMSO-d6): δ 7.4–7.05 (m, 15 arom. H), 3.61, 3.49 (AB, JAB = 15.0, PhCH2), 3.26 (s, MeN); 13C NMR (DMSO-d6): δ 159.6 (s, C=N), 143.4, 142.7, 138.0 (3s, 3 arom. C), 130.1, 129.5, 128.5, 128.1, 126.8, 126.7, 126.3, 123.6, 117.6 (9d, 15 arom. CH), 41.3 (s, C2), 40.3 (t, PhCH2), 36.0 (q, CH3N); EI–MS: 312 (M+.), 297 ([M – CH3]+), 221 ([M – C7H7]+), 206, 178, 118, 103, 91, 77.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For each structure, the methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic), 0.99 (methyl­ene) or 1.00 Å (methine) and with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Experiments were carried out at 173 K with Mo Kα radiation using a Rigaku AFC-5R diffractometer. H-atom parameters were constrained.

  11 12 14
Crystal data
Chemical formula C23H28N2O C22H20N2 [PdCl2(C21H30N2)2]
Mr 348.47 312.40 798.24
Crystal system, space group Monoclinic, P21 Orthorhombic, P212121 Triclinic, P1
a, b, c (Å) 7.792 (4), 14.462 (6), 9.113 (3) 10.642 (2), 15.8762 (18), 10.273 (2) 9.070 (2), 10.504 (6), 11.756 (2)
α, β, γ (°) 90, 105.87 (3), 90 90, 90, 90 80.14 (3), 76.054 (19), 73.67 (2)
V3) 987.8 (8) 1735.7 (5) 1036.7 (7)
Z 2 4 1
μ (mm−1) 0.07 0.07 0.61
Crystal size (mm) 0.38 × 0.23 × 0.23 0.48 × 0.40 × 0.35 0.48 × 0.25 × 0.25
 
Data collection
No. of measured, independent and observed [I > 2σ(I)] reflections 3163, 2962, 1920 3349, 3238, 2569 6352, 6046, 5673
Rint 0.029 0.014 0.015
(sin θ/λ)max−1) 0.703 0.703 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 1.02 0.043, 0.118, 1.04 0.033, 0.087, 1.06
No. of reflections 2962 3238 6046
No. of parameters 345 218 600
No. of restraints 398 0 629
Δρmax, Δρmin (e Å−3) 0.29, −0.27 0.22, −0.18 0.73, −0.34
Absolute structure Absolute structure set to match the known S-con­figuration at atom C9 of the pyrrolidine residue Absolute structure chosen arbitrarily Flack parameter determined by classical intensity fit (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.], 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.])
Absolute structure parameter −1 (3) −1.8 (10) −0.02 (2)
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991[Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]), TEXSAN PROCESS (Molecular Structure Corporation, 1989[Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Package. Version 5.0. MSC, The Woodlands, Texas, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

The mol­ecule in the crystal structure of com­pound 11 is disordered in two regions. Atom C7 of the five-membered ring occupies two positions which represent alternate envelope conformations of the ring; the site-occupation factor of the major conformer refined to 0.619 (18). In addition, the azirine ring and its C2-ethyl and methyl substituents required three sets of positions to adequately model the arrangement. These positions indicate that the 2R and 2S diastereoisomers have crystallized at the same crystallographic site in the crystal and that the 2S diastereoisomer is further disordered over two conformations. The site occupation of the 2R con­figuration at atom C2 refined to 0.432 (3), while the site-occupation factors for the two conformations of the 2S diastereoisomer refined to 0.305 (3) and 0.263 (3) for the conformations containing atoms with A and B suffixes, respectively, in their labels (Fig. 1[link]). Target bond-length restraints were applied to the disordered atoms. In addition, similarity restraints were applied to the chemically equivalent bond lengths and angles involving all disordered atoms, while neighbouring atoms within and between each arrangement of the disordered groups were restrained to have similar atomic displacement parameters.

[Figure 1]
Figure 1
Views and atom-labelling schemes of the individual disordered com­ponents in the mol­ecular structure of 11, showing (a) the disorder com­ponent com­posed of the 2R diastereoisomer, and (b) the major and (c) the minor disordered conformations in the com­ponent com­posed of the 2S diastereo­isomer. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. An overlay of all three disorder com­ponents is presented in the supporting information (Fig. S1).

In the structure of 14, the chiral residue derived from (−)-trans-myrtanol in each ligand is conformationally disordered. Two sets of positions were defined for the atoms of each disordered residue and the site-occupation factors of the major conformations of these groups refined to 0.621 (11) and 0.675 (9) for the ligands containing atoms N1 and N21, respectively. Similarity restraints were applied to the chemically equivalent bond lengths involving all disordered C atoms, while neighbouring atoms within and between each conformation of the disordered groups were restrained to have similar atomic displacement parameters.

3. Results and discussion

The syntheses described in the Introduction include nonstereo­specific reactions during the azirine ring formation to give 3-amino-2H-azirines. Therefore, the products are expected to be either racemic mixtures or, when another residue in the mol­ecule contains one or more invariant stereogenic centres, mixtures of diastereoisomers. The three crystal structures described here are of crystals obtained from the products 11 (Fig. 1[link]), 12 (Fig. 2[link]) and the PdCl2 com­plex with 10 (14; Fig. 3[link]). The chosen crystal in each case had crystallized in a chiral space group, which is a necessity for 11 and 14, because these mol­ecules contain invariant chiral exocyclic amine residues derived from the known (S)-pyrrolidine derivative, 15, and (−)-trans-myrtanol {i.e. [(1S,2S,5S)-6,6-di­methylbi­cyclo­[3.1.1]heptan-2-yl]methanol}, respectively. The absolute structure chosen when refining the models for 11 and 14 was thus aligned to match the chirality of the known chiral residues. In the case of 14, the strong anomalous scattering power im­parted by the Pd and Cl atoms allowed the absolute con­fig­uration of all stereogenic centres to be confirmed confidently from the diffraction experiment by refinement of the absolute structure parameter (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.], 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), which converged to a value of −0.02 (2). The absolute structure of 11 could not be determined independently from the diffraction experiment on account of the weak anomalous scattering power of the com­pound with the available Mo Kα X-ray radiation (the work was carried out in the early 1990s when it was not common to use Cu Kα radiation routinely).

[Figure 2]
Figure 2
View of the mol­ecule of 12, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 3]
Figure 3
Views of the (a) major and (b) minor disorder com­ponents of the mol­ecule of 14, showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. An overlay of the two disorder com­ponents is presented in the supporting information (Fig. S2).

In contrast, com­pound 12 only contains a single stereogenic centre, which is at atom C2 of the azirine ring, so a racemic mixture could conceivably have crystallized in an achiral space group. Given that the synthesis of com­pound 12 most likely produced a racemic mixture of the product and not a single enanti­omer, the fact that com­pound 12 crystallized in a chiral space group indicates that either a single enanti­omer has crystallized in a spontaneous resolution process, or the crystal is an inversion twin and therefore a racemic mixture or another ratio (solid solution) of enanti­omers. For the same reasons as given above for com­pound 11, the absolute structure of 12 could not be determined. Therefore, the presence of a specific enanti­omer or even an inversion twin could not be established and the con­figuration of the mol­ecule defined in the refinement model and depicted in Fig. 2[link] was chosen arbitrarily.

The unique mol­ecule in the crystal structure of com­pound 11 is disordered in two regions (Fig. 1[link]). The five-membered pyrrolidine ring has two distorted envelope conformations, while the azirine ring and its C2-ethyl and methyl substituents are disordered over three arrangements. The disorder model indicates that the 2R and 2S diastereoisomers are present in the crystal and are distributed randomly at the same crystallographic site. There is a slight excess of the 2S diastereo­isomer, which is disordered additionally over two con­form­ations (see Section 2.3[link] for more details).

The crystal structure of com­pound 14 reveals one symmetry-unique trans-PdCl2L1L2 com­plex mol­ecule, where L1 and L2 are diastereoisomers of product 10, which coordinate to the metal via their azirine ring N atom (Fig. 3[link]). The diastereoisomers are the 2S and 2R species which result from inter­change of the positions of the ethyl and methyl substituents at atom C2 of the azirine ring, while the con­figuration of the chiral residue derived from (−)-trans-myrtanol remains con­stant. It is perhaps remarkable that the Pd com­plex con­tains one of each of the pair of diastereoisomers, as conceivably the com­plex could consist of two of the same di­as­tereo­isomer or a nonstoichiometric ratio of the two diastereoisomers, which would manifest itself in the same sort of disorder of the ethyl and methyl substitution site that was observed for 11, as described above. In the structure of 14, the chiral residue derived from (−)-trans-myrtanol in each ligand is conformationally disordered (Fig. 3[link]), but this has no consequence for the unique absolute con­figuration of the residue. The coordination geometry around the Pd atom is square planar, as usual, and the coordination geometry is listed in Table 2[link].

Table 2
Selected geometric parameters (Å, °) around the Pd atom of 14

Pd1—Cl1 2.3049 (19) Pd1—N1 1.962 (6)
Pd1—Cl2 2.2988 (19) Pd1—N21 1.999 (5)
       
Cl1—Pd1—Cl2 179.45 (9) Cl2—Pd1—N1 89.11 (17)
Cl1—Pd1—N1 90.34 (16) Cl2—Pd1—N21 90.82 (16)
Cl1—Pd1—N21 9.73 (16) N1—Pd1—N21 179.6 (3)

Reports of crystal structures of 3-amino-2H-azirines are quite rare. The Cambridge Structural Database (CSD; Version 5.43 with November 2022 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists only 11 structures, of which seven have been reported by the Heimgartner group (Villalgordo & Heimgartner, 1992[Villalgordo, J. M. & Heimgartner, H. (1992). Helv. Chim. Acta, 75, 1866-1871.]; Bucher & Heimgartner, 1996[Bucher, C. B. & Heimgartner, H. (1996). Helv. Chim. Acta, 79, 1903-1915.]; Brun et al., 2001[Brun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756-1777.]) and the remaining four were reported by Galloy et al. (1974[Galloy, J., Putzeys, J.-P., Germain, G., Declercq, J.-P. & Van Meerssche, M. (1974). Acta Cryst. B30, 2462-2464.], 1980[Galloy, J., Declerq, J. P. & van Meersche, M. (1980). Cryst. Struct. Commun. 9, 151-156.]), Piskunova et al. (1993[Piskunova, I. P., Eremeev, A. V., Mishnev, A. F. & Vosekalna, I. A. (1993). Tetrahedron, 49, 4671-4676.]) and Peters et al. (2000[Peters, K., Peters, E.-M., Hergenröther, T. & Quast, H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 303-304.]). The geometry of the azirine ring (Table 3[link]) generally shows little variation across all of these structures. Possibly the most remarkable feature is the very long N—C single bond, which is, with one exception, always around 1.57 Å [mean 1.572 (5) Å for 10 structures], com­pared with N—C distances closer to 1.47 Å usually found for simple imines. This contrasts with the shorter formal C—C single bond with a mean length of 1.437 (7) Å. The short formal C—N single bond to the exocyclic N atom, with a mean value of 1.333 (12) Å, is likely a consequence of electron-pair delocalization between the exocyclic N atom and the ring N=C bond; Galloy et al. (1974[Galloy, J., Putzeys, J.-P., Germain, G., Declercq, J.-P. & Van Meerssche, M. (1974). Acta Cryst. B30, 2462-2464.]) described this as the consequence of a contribution from a polar mesomeric form. The biggest ring geometry outlier amongst the 11 structures men­tioned above is in the structure of 3-di­methyl­amino-2-di­methyl­carbamoyl-2-phen­oxy-2H-azirine (3-phen­oxy-3-di­methyl­carbamoyldi­methyl­amino-2-azirine) (Galloy et al., 1974[Galloy, J., Putzeys, J.-P., Germain, G., Declercq, J.-P. & Van Meerssche, M. (1974). Acta Cryst. B30, 2462-2464.]), in which, in particular, the ring N—C single bond of 1.49 Å is significantly shorter than in the other structures. This might result from the inductive electron-withdrawal properties of the O atom in the phenoxy substituent at the azirine ring sp3-hybridized C atom, whereas all other structures have C atoms as the first atom of each substituent. The three new crystal structures reported here are no exception, notwithstanding the potential low accuracy for the disordered azirine ring in 11 because of the restraints applied while modelling the disorder; see Section 2.3[link]. The coordination of the azirine rings via their N atom to the Pd atom in com­plex 14 also appears to influence very slightly the geometry of the azirine ring to give marginally shorter N—C and longer C—C single bonds, respectively (Table 3[link]). This is perhaps unsurprising given the change in the electronic properties as a result of the coordination.

Table 3
Azirine ring geometry (Å, °) in 3-amino-2H-azirines

CSD refcode/Compound No. N1=C3 N1—C2 C2—C3 C3—N4 C3=N1—C2 N1=C3—C2 N1—C2—C3 Reference
ABUKUD 1.271 (3) 1.577 (3) 1.436 (3) 1.333 (3) 59.38 (16) 71.01 (19) 49.61 (15) Brun et al. (2001[Brun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756-1777.])
ABULAK 1.275 (5) 1.577 (5) 1.436 (5) 1.347 (4) 59.4 (2) 70.9 (3) 49.8 (2) Brun et al. (2001[Brun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756-1777.])
ABULEO 1.2712 (13) 1.5766 (16) 1.4290 (16) 1.3401 (12) 59.08 (7) 71.178 (7) 49.74 (7) Brun et al. (2001[Brun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756-1777.])
ABULIS 1.277 (3) 1.570 (3) 1.435 (3) 1.340 (2) 59.49 (14) 70.47 (14) 50.05 (12) Brun et al. (2001[Brun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756-1777.])
ABULOY 1.290 (8) 1.575 (7) 1.442 (10) 1.327 (9) 59.5 (4) 70.1 (5) 50.4 (4) Brun et al. (2001[Brun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756-1777.])
HAGGUR 1.262 1.565 1.454 1.317 60.8 69.9 49.3 Piskunova et al. (1993[Piskunova, I. P., Eremeev, A. V., Mishnev, A. F. & Vosekalna, I. A. (1993). Tetrahedron, 49, 4671-4676.])
JUNJEH 1.264 (3) 1.565 (3) 1.434 (3) 1.342 (3) 59.8 (2) 70.6 (2) 49.6 (1) Villalgordo & Heimgartner (1992[Villalgordo, J. M. & Heimgartner, H. (1992). Helv. Chim. Acta, 75, 1866-1871.])
LERJUN 1.278 (3) 1.568 (3) 1.435 (4) 1.315 (4) 59.55 (18) 70.3 (2) 50.17 (16) Peters et al. (2000[Peters, K., Peters, E.-M., Hergenröther, T. & Quast, H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 303-304.])
MAZRPZ 1.254 1.575 1.428 1.343 59.4 71.6 49.1 Galloy et al. (1980[Galloy, J., Declerq, J. P. & van Meersche, M. (1980). Cryst. Struct. Commun. 9, 151-156.])
PXCAZN 1.279 1.490 1.429 1.317 61.6 66.5 51.9 Galloy et al. (1974[Galloy, J., Putzeys, J.-P., Germain, G., Declercq, J.-P. & Van Meerssche, M. (1974). Acta Cryst. B30, 2462-2464.])
TIBFUF 1.283 (3) 1.568 (3) 1.438 (3) 1.322 (3) 59.56 (16) 70.12 (16) 50.32 (14) Bucher & Heimgartner (1996[Bucher, C. B. & Heimgartner, H. (1996). Helv. Chim. Acta, 79, 1903-1915.])
11, 2R com­ponent 1.280 (6) 1.525 (6) 1.456 (6) 1.323 (5) 61.8 (3) 67.4 (4) 50.8 (3) This work
11, 2S major com­ponent 1.281 (6) 1.515 (7) 1.448 (6) 1.323 (5) 61.7 (4) 67.1 (4) 51.1 (3) This work
11, 2S minor com­ponent 1.283 (7) 1.517 (7) 1.475 (6) 1.323 (5) 62.9 (4) 66.3 (4) 50.7 (3) This work
12 1.271 (3) 1.588 (3) 1.446 (3) 1.344 (3) 59.55 (14) 71.20 (16) 49.26 (12) This work
14 ligand 1 1.294 (8) 1.550 (8) 1.476 (8) 1.326 (8) 61.8 (4) 67.7 (4) 50.5 (4) This work
14 ligand 2 1.250 (8) 1.519 (8) 1.465 (9) 1.332 (8) 63.0 (4) 67.5 (5) 49.5 (4) This work

4. Conclusion

The 3-amino-2H-azirines 1012 were synthesized with the aim of separating the stereoisomers after their direct crystallization or crystallization of their PdCl2 com­plexes, as exemplified by com­plex 14, which incorporates com­pound 10 as ligands. Unfortunately, this objective was not achieved, as the crystal structures of 11 and 14 revealed the presence of a diastereoisomeric mixture of the azirines in the crystals, and the crystal structure of 12 was inconclusive as to whether the chosen crystal was enanti­omerically pure or also a racemic mixture that had crystallized as an inversion twin. Nonetheless, the study has added to the small number of recorded crystal structures of amino­azirines with their unusually long formal ring N—C single bonds.

Supporting information


Computing details top

For all structures, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009). Software used to prepare material for publication: publCIF (Westrip, 2010) for (11); publCIF (Westrip, 2010) and PLATON (Spek, 2020) for (12), (14).

(2R)- and (2S)-2-ethyl-3-[(2S)-2-(1-methoxy-1,1-diphenylmethyl)pyrrolidin-1-yl]-2-methyl-2H-azirine (11) top
Crystal data top
C23H28N2OF(000) = 376
Mr = 348.47Dx = 1.172 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.792 (4) ÅCell parameters from 25 reflections
b = 14.462 (6) Åθ = 17.7–19.8°
c = 9.113 (3) ŵ = 0.07 mm1
β = 105.87 (3)°T = 173 K
V = 987.8 (8) Å3Prism, colorless
Z = 20.38 × 0.23 × 0.23 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.029
Radiation source: Rigaku rotating anode generatorθmax = 30.0°, θmin = 2.7°
Graphite crystal monochromatorh = 010
ωθ scansk = 020
3163 measured reflectionsl = 1212
2962 independent reflections3 standard reflections every 150 reflections
1920 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.387P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.29 e Å3
2962 reflectionsΔρmin = 0.27 e Å3
345 parametersAbsolute structure: Absolute structure set to match the known S-configuration at atom C9 of the pyrrolidine residue
398 restraintsAbsolute structure parameter: 1 (3)
Primary atom site location: dual
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: MeOH / diethyl ether Crystal mount: on a glass fibre Client: C.b Bucher Sample code: CB P7 (HG9418)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure is disordered in two regions of the molecule. Atom C7 of the 5-membered ring occupies two positions which represent alternate envelope conformations of the ring; the site occupation factor of the major conformer refined to 0.619 (18). In addition, the azirine ring and its C2-ethyl and methyl substituents required three sets of positions to adequately model the arrangement. These positions indicate that the (2R)- and (2S)- diastereoisomers have crystallized at the same crystallographic site in the crystal and that the (2S)- diastereoisomer is further disordered over two conformations. The site occupation of the (2R)- configuration at atom C2 refined to 0.432 (3), while the site occupation factors for the two conformations of the (2S)- diastereoisomer refined to 0.305 (3) for atoms C4A and C5A, and 0.263 (3) for atoms C4B and C5B. Target bond length restraints were applied to the disordered atoms. In addition, similarity restraints were applied to the chemically equivalent bond lengths and angles involving all disordered atoms, while neighbouring atoms within and between each arrangement of the disordered groups were restrained to have similar atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5838 (3)0.2687 (2)0.7857 (2)0.0394 (5)
N40.2761 (4)0.3773 (2)0.7412 (3)0.0391 (7)
C30.3095 (5)0.4107 (2)0.6166 (4)0.0469 (9)
N10.2403 (9)0.4569 (8)0.4951 (9)0.055 (2)0.432 (3)
C10.5347 (14)0.5438 (6)0.5956 (12)0.048 (2)0.432 (3)
H110.4900360.5882500.5128430.073*0.432 (3)
H120.6638030.5361680.6133210.073*0.432 (3)
H130.5096890.5665430.6888670.073*0.432 (3)
C20.4432 (9)0.4515 (5)0.5519 (8)0.0453 (17)0.432 (3)
C40.5470 (12)0.3901 (6)0.4717 (10)0.0509 (19)0.432 (3)
H410.5723930.4255920.3871640.061*0.432 (3)
H420.6628720.3745790.5447410.061*0.432 (3)
C50.4550 (18)0.3015 (7)0.4081 (14)0.049 (2)0.432 (3)
H510.5171680.2733810.3391850.074*0.432 (3)
H520.3311410.3146940.3516620.074*0.432 (3)
H530.4567060.2587300.4918530.074*0.432 (3)
N1A0.2141 (11)0.4320 (11)0.4828 (10)0.059 (3)0.305 (3)
C1A0.500 (2)0.3648 (11)0.4341 (16)0.057 (2)0.305 (3)
H140.6118410.3432170.5035560.085*0.305 (3)
H150.5235230.3929720.3438910.085*0.305 (3)
H160.4182300.3123520.4027610.085*0.305 (3)
C2A0.4153 (12)0.4355 (8)0.5143 (11)0.053 (2)0.305 (3)
C4A0.5117 (14)0.5276 (8)0.5362 (13)0.049 (2)0.305 (3)
H430.5172500.5509890.4355100.059*0.305 (3)
H440.4420640.5725710.5785290.059*0.305 (3)
C5A0.6990 (16)0.5224 (10)0.6411 (15)0.053 (3)0.305 (3)
H540.7675190.4761130.6023540.079*0.305 (3)
H550.6940800.5047570.7436860.079*0.305 (3)
H560.7567880.5828740.6451690.079*0.305 (3)
N1B0.2371 (12)0.4361 (12)0.4788 (10)0.058 (3)0.263 (3)
C1B0.449 (3)0.3092 (10)0.438 (2)0.057 (3)0.263 (3)
H170.3672650.2627810.4585660.086*0.263 (3)
H180.5724910.2874170.4778810.086*0.263 (3)
H190.4234650.3190510.3277380.086*0.263 (3)
C2B0.4262 (12)0.3991 (7)0.5150 (12)0.050 (2)0.263 (3)
C4B0.5818 (15)0.4642 (8)0.5261 (15)0.051 (2)0.263 (3)
H450.6943080.4291290.5641630.061*0.263 (3)
H460.5769780.4868000.4225010.061*0.263 (3)
C5B0.586 (3)0.5465 (10)0.629 (2)0.052 (3)0.263 (3)
H570.6571530.5960110.6008890.078*0.263 (3)
H580.6396760.5284180.7350930.078*0.263 (3)
H590.4641600.5686330.6170690.078*0.263 (3)
C60.0944 (6)0.3839 (4)0.7543 (6)0.0659 (12)
H610.0200570.3329410.6978300.079*0.619 (18)
H620.0397910.4435540.7129190.079*0.619 (18)
H630.0366110.3224030.7457720.079*0.381 (18)
H640.0207350.4256960.6760140.079*0.381 (18)
C70.1097 (8)0.3770 (8)0.9210 (7)0.062 (2)0.619 (18)
H710.0710630.3151960.9461130.074*0.619 (18)
H720.0345220.4244510.9514860.074*0.619 (18)
C80.3074 (6)0.3929 (3)1.0036 (5)0.0570 (11)
H810.3445780.3535921.0957160.068*0.619 (18)
H820.3287510.4584701.0345330.068*0.619 (18)
H830.2981390.3389721.0677980.068*0.381 (18)
H840.3690480.4435151.0707460.068*0.381 (18)
C7A0.1251 (14)0.4237 (12)0.9132 (10)0.062 (3)0.381 (18)
H730.1186370.4920190.9088180.074*0.381 (18)
H740.0333940.4006560.9609030.074*0.381 (18)
C90.4115 (5)0.3667 (2)0.8881 (3)0.0344 (7)
H90.5070960.4138550.8941810.041*
C100.4983 (4)0.2691 (2)0.9076 (3)0.0317 (6)
C110.7023 (5)0.1938 (4)0.7849 (5)0.0557 (11)
H1110.7340100.1933390.6880030.084*
H1120.6438360.1353780.7968300.084*
H1130.8105780.2011880.8693520.084*
C120.6416 (4)0.2600 (3)1.0622 (3)0.0349 (7)
C130.6851 (5)0.1736 (3)1.1310 (5)0.0485 (10)
H1310.6206180.1203031.0858230.058*
C140.8228 (6)0.1649 (3)1.2657 (5)0.0593 (12)
H1410.8498360.1059711.3124510.071*
C150.9193 (5)0.2411 (3)1.3310 (5)0.0552 (11)
H1511.0126330.2352701.4227090.066*
C160.8790 (6)0.3262 (3)1.2620 (4)0.0552 (11)
H1610.9462020.3788651.3063250.066*
C170.7429 (5)0.3360 (3)1.1297 (4)0.0439 (9)
H1710.7178690.3952551.0839620.053*
C180.3539 (4)0.1949 (2)0.8815 (4)0.0325 (7)
C190.2780 (5)0.1600 (3)0.7344 (4)0.0371 (8)
H1910.3225350.1797330.6523260.045*
C200.1384 (5)0.0969 (3)0.7075 (4)0.0433 (9)
H200.0903290.0731480.6074390.052*
C210.0688 (5)0.0681 (3)0.8229 (5)0.0454 (9)
H210.0283430.0259450.8030030.054*
C220.1426 (5)0.1018 (3)0.9690 (5)0.0459 (9)
H220.0964770.0818161.0499750.055*
C230.2823 (5)0.1639 (3)0.9981 (4)0.0382 (8)
H230.3309800.1860231.0991430.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0388 (12)0.0475 (14)0.0337 (11)0.0035 (12)0.0130 (9)0.0018 (12)
N40.0347 (15)0.0380 (16)0.0420 (17)0.0017 (13)0.0060 (12)0.0072 (14)
C30.051 (2)0.044 (2)0.0366 (19)0.0013 (17)0.0027 (16)0.0074 (15)
N10.067 (4)0.050 (5)0.036 (3)0.002 (3)0.007 (3)0.002 (3)
C10.067 (4)0.055 (4)0.024 (4)0.002 (4)0.014 (4)0.007 (3)
C20.062 (3)0.049 (3)0.023 (3)0.002 (3)0.008 (3)0.004 (3)
C40.072 (4)0.054 (4)0.024 (3)0.003 (3)0.008 (3)0.008 (3)
C50.074 (4)0.056 (4)0.026 (4)0.006 (4)0.026 (3)0.005 (3)
N1A0.069 (4)0.055 (5)0.038 (4)0.014 (4)0.014 (4)0.012 (4)
C1A0.078 (4)0.058 (4)0.031 (4)0.005 (4)0.010 (4)0.004 (4)
C2A0.070 (3)0.055 (4)0.029 (3)0.007 (3)0.005 (3)0.010 (3)
C4A0.066 (4)0.054 (4)0.026 (4)0.001 (4)0.009 (4)0.008 (4)
C5A0.054 (5)0.063 (5)0.039 (4)0.006 (5)0.009 (4)0.007 (4)
N1B0.067 (4)0.056 (5)0.038 (4)0.013 (4)0.010 (4)0.011 (4)
C1B0.078 (5)0.065 (5)0.029 (5)0.009 (5)0.015 (4)0.002 (4)
C2B0.067 (3)0.053 (4)0.027 (3)0.013 (3)0.009 (3)0.013 (3)
C4B0.065 (4)0.056 (4)0.030 (4)0.006 (4)0.009 (3)0.003 (3)
C5B0.064 (5)0.055 (5)0.033 (5)0.006 (5)0.007 (5)0.002 (4)
C60.046 (2)0.056 (3)0.098 (3)0.005 (2)0.025 (2)0.000 (3)
C70.071 (4)0.045 (4)0.086 (4)0.026 (3)0.048 (3)0.020 (3)
C80.092 (3)0.036 (2)0.053 (2)0.007 (2)0.037 (2)0.0018 (17)
C7A0.070 (5)0.042 (5)0.087 (5)0.029 (5)0.044 (4)0.017 (5)
C90.0445 (18)0.0312 (16)0.0252 (15)0.0028 (15)0.0056 (13)0.0022 (13)
C100.0356 (15)0.0328 (16)0.0243 (13)0.0023 (15)0.0042 (11)0.0018 (13)
C110.043 (2)0.062 (3)0.063 (3)0.0077 (19)0.0155 (18)0.011 (2)
C120.0349 (15)0.0378 (18)0.0286 (14)0.0024 (15)0.0028 (12)0.0007 (14)
C130.047 (2)0.038 (2)0.050 (2)0.0034 (17)0.0056 (17)0.0050 (17)
C140.055 (2)0.054 (3)0.056 (2)0.002 (2)0.0083 (19)0.021 (2)
C150.046 (2)0.064 (3)0.044 (2)0.0097 (19)0.0079 (17)0.016 (2)
C160.055 (2)0.059 (3)0.041 (2)0.020 (2)0.0052 (18)0.0031 (19)
C170.051 (2)0.040 (2)0.0331 (17)0.0149 (18)0.0003 (15)0.0063 (15)
C180.0327 (15)0.0287 (16)0.0326 (16)0.0047 (13)0.0032 (12)0.0000 (13)
C190.0400 (18)0.0362 (18)0.0325 (16)0.0068 (15)0.0053 (14)0.0014 (15)
C200.0391 (18)0.0384 (19)0.044 (2)0.0027 (16)0.0024 (15)0.0106 (16)
C210.0340 (18)0.0371 (19)0.059 (2)0.0032 (15)0.0022 (17)0.0012 (17)
C220.045 (2)0.042 (2)0.050 (2)0.0017 (18)0.0125 (17)0.0040 (18)
C230.0408 (17)0.0354 (17)0.0331 (16)0.0001 (15)0.0013 (14)0.0028 (15)
Geometric parameters (Å, º) top
O1—C111.424 (5)C6—C71.494 (6)
O1—C101.443 (4)C6—C7A1.515 (7)
N4—C31.323 (5)C6—H610.9900
N4—C61.456 (5)C6—H620.9900
N4—C91.469 (4)C6—H630.9900
C3—N11.280 (6)C6—H640.9900
C3—N1A1.281 (6)C7—C81.535 (6)
C3—N1B1.283 (7)C7—H710.9900
C3—C2A1.448 (6)C7—H720.9900
C3—C21.456 (6)C8—C7A1.501 (7)
C3—C2B1.475 (6)C8—C91.541 (5)
N1—C21.525 (6)C8—H810.9900
C1—C21.514 (7)C8—H820.9900
C1—H110.9800C8—H830.9900
C1—H120.9800C8—H840.9900
C1—H130.9800C7A—H730.9900
C2—C41.517 (6)C7A—H740.9900
C4—C51.505 (7)C9—C101.555 (5)
C4—H410.9900C9—H91.0000
C4—H420.9900C10—C181.526 (5)
C5—H510.9800C10—C121.546 (4)
C5—H520.9800C11—H1110.9800
C5—H530.9800C11—H1120.9800
N1A—C2A1.515 (7)C11—H1130.9800
C1A—C2A1.508 (7)C12—C171.395 (5)
C1A—H140.9800C12—C131.398 (5)
C1A—H150.9800C13—C141.398 (5)
C1A—H160.9800C13—H1310.9500
C2A—C4A1.516 (7)C14—C151.375 (6)
C4A—C5A1.512 (7)C14—H1410.9500
C4A—H430.9900C15—C161.377 (6)
C4A—H440.9900C15—H1510.9500
C5A—H540.9800C16—C171.378 (5)
C5A—H550.9800C16—H1610.9500
C5A—H560.9800C17—H1710.9500
N1B—C2B1.517 (7)C18—C231.402 (5)
C1B—C2B1.511 (7)C18—C191.403 (4)
C1B—H170.9800C19—C201.390 (5)
C1B—H180.9800C19—H1910.9500
C1B—H190.9800C20—C211.374 (6)
C2B—C4B1.517 (7)C20—H200.9500
C4B—C5B1.509 (7)C21—C221.386 (5)
C4B—H450.9900C21—H210.9500
C4B—H460.9900C22—C231.380 (5)
C5B—H570.9800C22—H220.9500
C5B—H580.9800C23—H230.9500
C5B—H590.9800
C11—O1—C10116.3 (3)N4—C6—C7A101.6 (5)
C3—N4—C6118.0 (3)N4—C6—H61110.6
C3—N4—C9124.0 (3)C7—C6—H61110.6
C6—N4—C9113.8 (3)N4—C6—H62110.6
N1—C3—N4142.9 (5)C7—C6—H62110.6
N1A—C3—N4134.9 (5)H61—C6—H62108.7
N1B—C3—N4143.9 (6)N4—C6—H63111.5
N1A—C3—C2A67.1 (4)C7A—C6—H63111.5
N4—C3—C2A157.3 (6)N4—C6—H64111.5
N1—C3—C267.4 (4)C7A—C6—H64111.5
N4—C3—C2145.7 (4)H63—C6—H64109.3
N1B—C3—C2B66.3 (4)C6—C7—C8106.2 (4)
N4—C3—C2B142.9 (5)C6—C7—H71110.5
C3—N1—C261.8 (3)C8—C7—H71110.5
C2—C1—H11109.5C6—C7—H72110.5
C2—C1—H12109.5C8—C7—H72110.5
H11—C1—H12109.5H71—C7—H72108.7
C2—C1—H13109.5C7A—C8—C9107.1 (5)
H11—C1—H13109.5C7—C8—C9105.9 (4)
H12—C1—H13109.5C7—C8—H81110.6
C3—C2—C1126.1 (6)C9—C8—H81110.6
C3—C2—C4119.5 (6)C7—C8—H82110.6
C1—C2—C4111.6 (6)C9—C8—H82110.6
C3—C2—N150.8 (3)H81—C8—H82108.7
C1—C2—N1114.5 (8)C7A—C8—H83110.3
C4—C2—N1120.4 (6)C9—C8—H83110.3
C5—C4—C2115.1 (7)C7A—C8—H84110.3
C5—C4—H41108.5C9—C8—H84110.3
C2—C4—H41108.5H83—C8—H84108.5
C5—C4—H42108.5C8—C7A—C6106.9 (5)
C2—C4—H42108.5C8—C7A—H73110.3
H41—C4—H42107.5C6—C7A—H73110.3
C4—C5—H51109.5C8—C7A—H74110.3
C4—C5—H52109.5C6—C7A—H74110.3
H51—C5—H52109.5H73—C7A—H74108.6
C4—C5—H53109.5N4—C9—C8102.5 (3)
H51—C5—H53109.5N4—C9—C10112.3 (3)
H52—C5—H53109.5C8—C9—C10116.1 (3)
C3—N1A—C2A61.7 (4)N4—C9—H9108.5
C2A—C1A—H14109.5C8—C9—H9108.5
C2A—C1A—H15109.5C10—C9—H9108.5
H14—C1A—H15109.5O1—C10—C18110.7 (3)
C2A—C1A—H16109.5O1—C10—C12109.4 (2)
H14—C1A—H16109.5C18—C10—C12113.6 (3)
H15—C1A—H16109.5O1—C10—C9101.2 (2)
C3—C2A—C1A123.0 (8)C18—C10—C9109.9 (3)
C3—C2A—N1A51.1 (3)C12—C10—C9111.4 (3)
C1A—C2A—N1A116.8 (8)O1—C11—H111109.5
C3—C2A—C4A118.8 (7)O1—C11—H112109.5
C1A—C2A—C4A113.2 (7)H111—C11—H112109.5
N1A—C2A—C4A120.3 (8)O1—C11—H113109.5
C5A—C4A—C2A113.4 (7)H111—C11—H113109.5
C5A—C4A—H43108.9H112—C11—H113109.5
C2A—C4A—H43108.9C17—C12—C13117.9 (3)
C5A—C4A—H44108.9C17—C12—C10121.0 (3)
C2A—C4A—H44108.9C13—C12—C10120.8 (3)
H43—C4A—H44107.7C12—C13—C14120.6 (4)
C4A—C5A—H54109.5C12—C13—H131119.7
C4A—C5A—H55109.5C14—C13—H131119.7
H54—C5A—H55109.5C15—C14—C13120.4 (4)
C4A—C5A—H56109.5C15—C14—H141119.8
H54—C5A—H56109.5C13—C14—H141119.8
H55—C5A—H56109.5C14—C15—C16119.3 (3)
C3—N1B—C2B62.9 (4)C14—C15—H151120.4
C2B—C1B—H17109.5C16—C15—H151120.4
C2B—C1B—H18109.5C15—C16—C17121.1 (4)
H17—C1B—H18109.5C15—C16—H161119.5
C2B—C1B—H19109.5C17—C16—H161119.5
H17—C1B—H19109.5C16—C17—C12120.8 (4)
H18—C1B—H19109.5C16—C17—H171119.6
C3—C2B—C1B124.2 (8)C12—C17—H171119.6
C3—C2B—C4B120.4 (6)C23—C18—C19117.3 (3)
C1B—C2B—C4B111.8 (7)C23—C18—C10122.4 (3)
C3—C2B—N1B50.7 (3)C19—C18—C10120.1 (3)
C1B—C2B—N1B115.8 (9)C20—C19—C18120.7 (3)
C4B—C2B—N1B120.4 (8)C20—C19—H191119.7
C5B—C4B—C2B114.4 (8)C18—C19—H191119.7
C5B—C4B—H45108.7C21—C20—C19121.2 (3)
C2B—C4B—H45108.7C21—C20—H20119.4
C5B—C4B—H46108.7C19—C20—H20119.4
C2B—C4B—H46108.7C20—C21—C22118.8 (4)
H45—C4B—H46107.6C20—C21—H21120.6
C4B—C5B—H57109.5C22—C21—H21120.6
C4B—C5B—H58109.5C23—C22—C21120.8 (4)
H57—C5B—H58109.5C23—C22—H22119.6
C4B—C5B—H59109.5C21—C22—H22119.6
H57—C5B—H59109.5C22—C23—C18121.2 (3)
H58—C5B—H59109.5C22—C23—H23119.4
N4—C6—C7105.6 (4)C18—C23—H23119.4
C6—N4—C3—N17.5 (12)N4—C6—C7—C815.1 (8)
C9—N4—C3—N1148.2 (10)C6—C7—C8—C924.1 (8)
C6—N4—C3—N1A18.2 (12)C9—C8—C7A—C620.6 (13)
C9—N4—C3—N1A173.9 (11)N4—C6—C7A—C828.0 (12)
C6—N4—C3—N1B17.6 (15)C3—N4—C9—C8142.1 (4)
C9—N4—C3—N1B173.3 (14)C6—N4—C9—C814.5 (4)
C6—N4—C3—C2A177.5 (13)C3—N4—C9—C1092.6 (4)
C9—N4—C3—C2A21.8 (15)C6—N4—C9—C10110.7 (4)
C6—N4—C3—C2151.7 (7)C7A—C8—C9—N44.4 (8)
C9—N4—C3—C24.0 (9)C7—C8—C9—N423.0 (5)
C6—N4—C3—C2B150.7 (7)C7A—C8—C9—C10127.2 (8)
C9—N4—C3—C2B53.5 (9)C7—C8—C9—C1099.8 (5)
N4—C3—N1—C2159.1 (9)C11—O1—C10—C1873.4 (3)
N1—C3—C2—C193.9 (10)C11—O1—C10—C1252.5 (4)
N4—C3—C2—C163.7 (12)C11—O1—C10—C9170.1 (3)
N1—C3—C2—C4106.8 (8)N4—C9—C10—O163.3 (3)
N4—C3—C2—C495.7 (9)C8—C9—C10—O1179.3 (3)
N4—C3—C2—N1157.5 (10)N4—C9—C10—C1853.8 (3)
C3—N1—C2—C1117.6 (7)C8—C9—C10—C1863.7 (4)
C3—N1—C2—C4104.9 (8)N4—C9—C10—C12179.4 (3)
C3—C2—C4—C524.7 (11)C8—C9—C10—C1263.1 (4)
C1—C2—C4—C5173.2 (9)O1—C10—C12—C1779.1 (4)
N1—C2—C4—C534.7 (11)C18—C10—C12—C17156.7 (3)
N4—C3—N1A—C2A173.5 (9)C9—C10—C12—C1731.9 (4)
N1A—C3—C2A—C1A99.7 (11)O1—C10—C12—C1394.6 (4)
N4—C3—C2A—C1A68.3 (16)C18—C10—C12—C1329.6 (5)
N4—C3—C2A—N1A168.0 (16)C9—C10—C12—C13154.4 (3)
N1A—C3—C2A—C4A107.2 (10)C17—C12—C13—C141.9 (6)
N4—C3—C2A—C4A84.9 (16)C10—C12—C13—C14175.8 (4)
C3—N1A—C2A—C1A112.1 (10)C12—C13—C14—C151.1 (7)
C3—N1A—C2A—C4A104.3 (9)C13—C14—C15—C160.2 (7)
C3—C2A—C4A—C5A90.7 (11)C14—C15—C16—C170.6 (7)
C1A—C2A—C4A—C5A65.0 (13)C15—C16—C17—C120.2 (7)
N1A—C2A—C4A—C5A150.2 (10)C13—C12—C17—C161.4 (6)
N4—C3—N1B—C2B151.2 (11)C10—C12—C17—C16175.3 (4)
N1B—C3—C2B—C1B97.1 (12)O1—C10—C18—C23163.1 (3)
N4—C3—C2B—C1B54.9 (14)C12—C10—C18—C2339.6 (4)
N1B—C3—C2B—C4B106.2 (11)C9—C10—C18—C2385.9 (3)
N4—C3—C2B—C4B101.8 (11)O1—C10—C18—C1921.7 (4)
N4—C3—C2B—N1B152.0 (11)C12—C10—C18—C19145.1 (3)
C3—N1B—C2B—C1B114.3 (10)C9—C10—C18—C1989.3 (3)
C3—N1B—C2B—C4B106.2 (9)C23—C18—C19—C200.4 (5)
C3—C2B—C4B—C5B8.9 (17)C10—C18—C19—C20175.8 (3)
C1B—C2B—C4B—C5B168.3 (15)C18—C19—C20—C211.2 (5)
N1B—C2B—C4B—C5B50.7 (16)C19—C20—C21—C221.3 (6)
C3—N4—C6—C7158.3 (6)C20—C21—C22—C230.8 (6)
C9—N4—C6—C70.2 (6)C21—C22—C23—C180.0 (6)
C3—N4—C6—C7A131.3 (8)C19—C18—C23—C220.2 (5)
C9—N4—C6—C7A26.9 (8)C10—C18—C23—C22175.1 (3)
2-Benzyl-3-(N-methyl-N-phenylamino)-2-phenyl-2H-azirine (12) top
Crystal data top
C22H20N2Dx = 1.196 Mg m3
Mr = 312.40Melting point: 346.5 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 10.642 (2) ÅCell parameters from 25 reflections
b = 15.8762 (18) Åθ = 18.4–19.7°
c = 10.273 (2) ŵ = 0.07 mm1
V = 1735.7 (5) Å3T = 173 K
Z = 4Prism, colorless
F(000) = 6640.48 × 0.40 × 0.35 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.014
Radiation source: Rigaku rotating anode generatorθmax = 30.0°, θmin = 2.6°
Graphite crystal monochromatorh = 014
ωθ scansk = 122
3349 measured reflectionsl = 114
3238 independent reflections3 standard reflections every 150 reflections
2569 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.234P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.22 e Å3
3238 reflectionsΔρmin = 0.17 e Å3
218 parametersAbsolute structure: Absolute structure chosen arbitrarily
0 restraintsAbsolute structure parameter: 1.8 (10)
Primary atom site location: dual
Special details top

Experimental. Solvent used: diethyl ether / hexane Crystal mount: on a glass fibre Client: R. Gubler Sample code: RG007 (HG9516)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47471 (16)0.55930 (11)0.17401 (19)0.0357 (4)
N40.48045 (16)0.68242 (10)0.02403 (17)0.0298 (3)
C20.57272 (19)0.61965 (12)0.2438 (2)0.0317 (4)
C30.50191 (18)0.63046 (12)0.1249 (2)0.0299 (4)
C50.5554 (2)0.76023 (13)0.0159 (2)0.0365 (5)
H510.6086980.7650530.0933270.055*
H520.4989720.8089350.0111820.055*
H530.6082360.7584740.0621260.055*
C60.39484 (18)0.66107 (12)0.0765 (2)0.0300 (4)
C70.3172 (2)0.59000 (13)0.0653 (3)0.0390 (5)
H70.3180470.5569870.0118460.047*
C80.2388 (2)0.56850 (14)0.1689 (3)0.0476 (6)
H80.1851360.5209590.1608920.057*
C90.2373 (2)0.61471 (16)0.2827 (3)0.0460 (6)
H90.1869460.5973300.3541030.055*
C100.3103 (2)0.68671 (17)0.2914 (2)0.0437 (5)
H100.3075410.7200620.3680880.052*
C110.38768 (19)0.71060 (15)0.1884 (2)0.0358 (4)
H110.4358030.7608410.1944850.043*
C120.5270 (2)0.66084 (16)0.3694 (2)0.0402 (5)
H1210.5101810.6163030.4345840.048*
H1220.5946920.6972150.4042120.048*
C130.4093 (2)0.71334 (14)0.35199 (19)0.0345 (4)
C140.4185 (2)0.79880 (15)0.3213 (3)0.0448 (6)
H140.4990450.8240680.3136870.054*
C150.3118 (3)0.84738 (15)0.3016 (3)0.0495 (6)
H150.3200850.9052440.2796670.059*
C160.1941 (2)0.81229 (16)0.3138 (3)0.0456 (6)
H160.1211560.8456940.3004240.055*
C170.1830 (2)0.72775 (16)0.3456 (2)0.0433 (5)
H170.1021270.7032240.3554700.052*
C180.2898 (2)0.67890 (15)0.3632 (2)0.0388 (5)
H180.2810190.6207800.3832500.047*
C190.7071 (2)0.59151 (12)0.2360 (2)0.0322 (4)
C200.7617 (2)0.57313 (13)0.1152 (2)0.0368 (5)
H200.7137550.5797070.0378930.044*
C210.8853 (2)0.54538 (14)0.1074 (3)0.0439 (6)
H210.9211380.5333030.0248300.053*
C220.9567 (2)0.53517 (15)0.2190 (3)0.0506 (7)
H221.0410280.5159820.2132400.061*
C230.9042 (2)0.55311 (16)0.3387 (3)0.0501 (6)
H230.9529040.5463910.4154870.060*
C240.7801 (2)0.58105 (14)0.3480 (3)0.0410 (5)
H240.7450230.5930330.4309600.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0336 (8)0.0332 (8)0.0403 (9)0.0035 (7)0.0002 (8)0.0031 (8)
N40.0320 (8)0.0265 (7)0.0310 (8)0.0025 (7)0.0036 (7)0.0004 (7)
C20.0325 (9)0.0295 (9)0.0330 (10)0.0007 (8)0.0004 (8)0.0025 (8)
C30.0270 (8)0.0304 (9)0.0322 (9)0.0001 (8)0.0020 (8)0.0019 (8)
C50.0425 (11)0.0315 (10)0.0355 (10)0.0107 (9)0.0085 (9)0.0010 (9)
C60.0250 (9)0.0296 (9)0.0355 (10)0.0036 (7)0.0025 (8)0.0063 (8)
C70.0352 (10)0.0288 (9)0.0529 (13)0.0003 (8)0.0091 (10)0.0024 (10)
C80.0361 (11)0.0311 (10)0.0756 (18)0.0026 (9)0.0168 (12)0.0155 (12)
C90.0366 (11)0.0497 (13)0.0517 (14)0.0120 (10)0.0171 (11)0.0201 (12)
C100.0406 (11)0.0553 (14)0.0351 (11)0.0095 (11)0.0069 (10)0.0074 (11)
C110.0314 (10)0.0422 (11)0.0338 (10)0.0007 (9)0.0019 (8)0.0023 (9)
C120.0401 (11)0.0500 (12)0.0304 (10)0.0077 (10)0.0013 (9)0.0002 (10)
C130.0376 (10)0.0390 (10)0.0267 (9)0.0047 (9)0.0017 (9)0.0031 (9)
C140.0403 (11)0.0398 (12)0.0544 (14)0.0056 (10)0.0097 (11)0.0089 (11)
C150.0576 (14)0.0321 (11)0.0588 (16)0.0035 (10)0.0106 (13)0.0047 (11)
C160.0453 (12)0.0432 (12)0.0484 (13)0.0117 (10)0.0017 (11)0.0103 (11)
C170.0357 (11)0.0487 (13)0.0456 (13)0.0003 (10)0.0012 (10)0.0078 (11)
C180.0437 (12)0.0361 (11)0.0366 (11)0.0018 (9)0.0026 (10)0.0006 (9)
C190.0343 (9)0.0244 (8)0.0380 (10)0.0024 (7)0.0010 (9)0.0045 (8)
C200.0383 (11)0.0294 (10)0.0429 (12)0.0032 (9)0.0014 (10)0.0017 (9)
C210.0420 (12)0.0314 (10)0.0584 (15)0.0036 (10)0.0104 (11)0.0036 (11)
C220.0358 (11)0.0367 (11)0.079 (2)0.0076 (9)0.0005 (13)0.0038 (13)
C230.0406 (12)0.0453 (13)0.0643 (17)0.0058 (11)0.0112 (13)0.0095 (13)
C240.0412 (12)0.0394 (12)0.0424 (13)0.0033 (9)0.0044 (10)0.0049 (10)
Geometric parameters (Å, º) top
N1—C31.271 (3)C12—H1220.9900
N1—C21.588 (3)C13—C181.389 (3)
N4—C31.344 (3)C13—C141.396 (3)
N4—C61.418 (2)C14—C151.387 (4)
N4—C51.472 (3)C14—H140.9500
C2—C31.446 (3)C15—C161.377 (4)
C2—C191.500 (3)C15—H150.9500
C2—C121.526 (3)C16—C171.387 (4)
C5—H510.9800C16—H160.9500
C5—H520.9800C17—C181.388 (3)
C5—H530.9800C17—H170.9500
C6—C111.395 (3)C18—H180.9500
C6—C71.403 (3)C19—C241.398 (3)
C7—C81.395 (3)C19—C201.401 (3)
C7—H70.9500C20—C211.390 (3)
C8—C91.380 (4)C20—H200.9500
C8—H80.9500C21—C221.384 (4)
C9—C101.385 (4)C21—H210.9500
C9—H90.9500C22—C231.380 (4)
C10—C111.393 (3)C22—H220.9500
C10—H100.9500C23—C241.396 (3)
C11—H110.9500C23—H230.9500
C12—C131.515 (3)C24—H240.9500
C12—H1210.9900
C3—N1—C259.55 (14)C13—C12—H122108.9
C3—N4—C6121.59 (17)C2—C12—H122108.9
C3—N4—C5117.81 (17)H121—C12—H122107.7
C6—N4—C5120.47 (17)C18—C13—C14117.7 (2)
C3—C2—C19119.13 (18)C18—C13—C12122.0 (2)
C3—C2—C12119.83 (17)C14—C13—C12120.2 (2)
C19—C2—C12118.48 (18)C15—C14—C13121.1 (2)
C3—C2—N149.26 (12)C15—C14—H14119.5
C19—C2—N1114.98 (16)C13—C14—H14119.5
C12—C2—N1115.54 (17)C16—C15—C14120.4 (2)
N1—C3—N4144.4 (2)C16—C15—H15119.8
N1—C3—C271.20 (16)C14—C15—H15119.8
N4—C3—C2144.39 (19)C15—C16—C17119.4 (2)
N4—C5—H51109.5C15—C16—H16120.3
N4—C5—H52109.5C17—C16—H16120.3
H51—C5—H52109.5C16—C17—C18120.1 (2)
N4—C5—H53109.5C16—C17—H17119.9
H51—C5—H53109.5C18—C17—H17119.9
H52—C5—H53109.5C17—C18—C13121.3 (2)
C11—C6—C7119.27 (19)C17—C18—H18119.4
C11—C6—N4120.03 (18)C13—C18—H18119.4
C7—C6—N4120.69 (19)C24—C19—C20118.24 (19)
C8—C7—C6119.1 (2)C24—C19—C2121.4 (2)
C8—C7—H7120.5C20—C19—C2120.34 (19)
C6—C7—H7120.5C21—C20—C19120.7 (2)
C9—C8—C7121.5 (2)C21—C20—H20119.7
C9—C8—H8119.2C19—C20—H20119.7
C7—C8—H8119.2C22—C21—C20120.6 (3)
C8—C9—C10119.2 (2)C22—C21—H21119.7
C8—C9—H9120.4C20—C21—H21119.7
C10—C9—H9120.4C23—C22—C21119.4 (2)
C9—C10—C11120.5 (2)C23—C22—H22120.3
C9—C10—H10119.8C21—C22—H22120.3
C11—C10—H10119.8C22—C23—C24120.6 (2)
C10—C11—C6120.3 (2)C22—C23—H23119.7
C10—C11—H11119.9C24—C23—H23119.7
C6—C11—H11119.9C23—C24—C19120.5 (2)
C13—C12—C2113.54 (17)C23—C24—H24119.8
C13—C12—H121108.9C19—C24—H24119.8
C2—C12—H121108.9
C3—N1—C2—C19107.9 (2)N1—C2—C12—C1358.1 (2)
C3—N1—C2—C12108.4 (2)C2—C12—C13—C1888.6 (3)
C2—N1—C3—N4178.6 (4)C2—C12—C13—C1490.1 (3)
C6—N4—C3—N11.6 (4)C18—C13—C14—C150.5 (4)
C5—N4—C3—N1174.2 (3)C12—C13—C14—C15178.3 (2)
C6—N4—C3—C2179.3 (3)C13—C14—C15—C160.8 (4)
C5—N4—C3—C23.5 (4)C14—C15—C16—C170.1 (4)
C19—C2—C3—N199.1 (2)C15—C16—C17—C180.9 (4)
C12—C2—C3—N199.3 (2)C16—C17—C18—C131.3 (4)
C19—C2—C3—N479.5 (4)C14—C13—C18—C170.6 (3)
C12—C2—C3—N482.1 (4)C12—C13—C18—C17179.3 (2)
N1—C2—C3—N4178.6 (4)C3—C2—C19—C24179.25 (19)
C3—N4—C6—C11171.07 (19)C12—C2—C19—C2417.4 (3)
C5—N4—C6—C114.7 (3)N1—C2—C19—C24125.1 (2)
C3—N4—C6—C78.5 (3)C3—C2—C19—C202.2 (3)
C5—N4—C6—C7175.7 (2)C12—C2—C19—C20164.1 (2)
C11—C6—C7—C82.8 (3)N1—C2—C19—C2053.4 (3)
N4—C6—C7—C8176.8 (2)C24—C19—C20—C210.1 (3)
C6—C7—C8—C91.0 (3)C2—C19—C20—C21178.67 (19)
C7—C8—C9—C103.6 (3)C19—C20—C21—C220.2 (3)
C8—C9—C10—C112.3 (3)C20—C21—C22—C230.2 (4)
C9—C10—C11—C61.5 (3)C21—C22—C23—C240.2 (4)
C7—C6—C11—C104.1 (3)C22—C23—C24—C190.2 (4)
N4—C6—C11—C10175.48 (19)C20—C19—C24—C230.1 (3)
C3—C2—C12—C132.2 (3)C2—C19—C24—C23178.7 (2)
C19—C2—C12—C13159.53 (19)
trans-Dichlorido[(2R)-2-ethyl-2-methyl-3-(N-{[(1S,2S,5S)-6,6-dimethylbicyclo[3.1.1]heptan-2-yl]methyl}-N-phenylamino)-2H-azirine][(2S)-2-ethyl-2-methyl-3-(N-{[(1S,2S,5S)-6,6-dimethylbicyclo[3.1.1]heptan-2-yl]methyl}-N-phenylamino)-2H-azirine]palladium(II) (14) top
Crystal data top
[PdCl2(C21H30N2)2]F(000) = 420
Mr = 798.24Dx = 1.279 Mg m3
Triclinic, P1Melting point: 412 K
a = 9.070 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.504 (6) ÅCell parameters from 22 reflections
c = 11.756 (2) Åθ = 23.1–23.5°
α = 80.14 (3)°µ = 0.61 mm1
β = 76.054 (19)°T = 173 K
γ = 73.67 (2)°Prism, orange
V = 1036.7 (7) Å30.48 × 0.25 × 0.25 mm
Z = 1
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.015
Radiation source: Rigaku rotating anode generatorθmax = 30.0°, θmin = 2.6°
Graphite crystal monochromatorh = 1211
ωθ scansk = 140
6352 measured reflectionsl = 1616
6046 independent reflections3 standard reflections every 150 reflections
5673 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1903P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.73 e Å3
6046 reflectionsΔρmin = 0.34 e Å3
600 parametersAbsolute structure: Flack parameter determined by classical intensity fit (Flack & Bernardinelli, 1999, 2000)
629 restraintsAbsolute structure parameter: 0.02 (2)
Primary atom site location: dual
Special details top

Experimental. Solvent used: MeCN Crystal mount: on a glass fibre Client: Jose Vollalgordo Sample code: HG9208

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Both of the fused-ring substituents are disordered. Two sets of positions were defined for the atoms of each disordered group and the site occupation factors of the major conformations of these groups refined to 0.621 (11) and 0.675 (9). Similarity restraints were applied to the chemically equivalent bond lengths involving all disordered C-atoms, while neighbouring atoms within and between each conformation of the disordered groups were restrained to have similar atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.00133 (6)0.00002 (5)0.00194 (6)0.03619 (7)
Cl10.2121 (2)0.0604 (2)0.13095 (17)0.0610 (5)
Cl20.2083 (2)0.0595 (2)0.12815 (17)0.0609 (5)
N10.0314 (6)0.0904 (5)0.1205 (5)0.0403 (12)
N40.2372 (6)0.0475 (4)0.2366 (5)0.0336 (10)
N210.0306 (6)0.0909 (5)0.1270 (5)0.0407 (12)
N240.2425 (6)0.0399 (5)0.2356 (5)0.0354 (11)
C10.1882 (9)0.1991 (7)0.2842 (7)0.063 (2)
H110.1827150.1058310.3162980.095*
H120.2007720.2522390.3483470.095*
H130.2780320.2338190.2453200.095*
C20.0419 (8)0.2074 (6)0.1974 (7)0.0453 (15)
C30.1039 (6)0.1007 (5)0.1994 (5)0.0335 (12)
C40.0328 (10)0.3439 (6)0.1371 (9)0.074 (2)
H410.0665020.4071970.1973480.089*
H420.1074490.3730300.0830280.089*
C50.1243 (11)0.3514 (9)0.0694 (9)0.080 (3)
H510.2013540.3133730.1198290.121*
H520.1516660.3008290.0012990.121*
H530.1246020.4448370.0420700.121*
C60.2586 (7)0.0945 (5)0.3376 (5)0.0300 (10)
C70.3964 (7)0.1225 (6)0.3399 (6)0.0411 (12)
H70.4804730.1134520.2731670.049*
C80.4110 (8)0.1648 (7)0.4425 (6)0.0510 (14)
H80.5074080.1813340.4461120.061*
C90.2897 (10)0.1825 (7)0.5366 (6)0.0547 (16)
H90.3010660.2140850.6043050.066*
C100.1511 (9)0.1552 (7)0.5353 (6)0.0471 (13)
H100.0669650.1666690.6019530.057*
C110.1349 (8)0.1105 (6)0.4348 (6)0.0418 (13)
H1110.0395350.0909440.4328610.050*
C120.3610 (6)0.0529 (5)0.1708 (5)0.0349 (11)
H1210.3379550.0502470.0921600.042*
H1220.4625930.0296890.1587140.042*
C130.3763 (3)0.1954 (3)0.2338 (3)0.0412 (6)
H1310.3860300.1987860.3172430.049*0.621 (11)
H1320.3682730.1885290.3189570.049*0.379 (11)
C140.2348 (9)0.2472 (9)0.2287 (10)0.0435 (11)0.621 (11)
H1410.1310240.1808810.2458990.052*0.621 (11)
C150.2702 (14)0.3043 (8)0.1091 (10)0.0457 (12)0.621 (11)
H1510.1765290.3112290.0838340.055*0.621 (11)
H1520.3395890.2621430.0444900.055*0.621 (11)
C160.3562 (8)0.4344 (8)0.1756 (7)0.0487 (11)0.621 (11)
H1610.3497900.5183530.1498720.058*0.621 (11)
C170.5238 (9)0.4342 (7)0.1868 (9)0.0520 (13)0.621 (11)
H1710.5420060.4716970.2669160.062*0.621 (11)
H1720.6049350.4872040.1284020.062*0.621 (11)
C180.5271 (7)0.2833 (6)0.1621 (7)0.0489 (14)0.621 (11)
H1810.5339840.2535340.0767890.059*0.621 (11)
H1820.6209840.2723090.1843630.059*0.621 (11)
C190.2356 (9)0.3921 (8)0.2914 (7)0.0494 (11)0.621 (11)
C200.2853 (13)0.4231 (8)0.4105 (8)0.0604 (16)0.621 (11)
H2010.1976320.3827550.4710930.091*0.621 (11)
H2020.3149910.5200280.4311140.091*0.621 (11)
H2030.3750290.3864860.4056010.091*0.621 (11)
C210.0816 (11)0.4305 (9)0.3046 (10)0.0608 (17)0.621 (11)
H2110.0999490.5278610.3191940.091*0.621 (11)
H2120.0049860.3898640.3709740.091*0.621 (11)
H2130.0409030.3985490.2320100.091*0.621 (11)
C14A0.2410 (15)0.2559 (14)0.2287 (17)0.0453 (14)0.379 (11)
H1420.1326260.1968610.2476000.054*0.379 (11)
C15A0.278 (2)0.3325 (14)0.1192 (17)0.0460 (15)0.379 (11)
H1530.3464450.2965340.0493450.055*0.379 (11)
H1540.1847000.3459710.0983890.055*0.379 (11)
C16A0.3669 (14)0.4546 (13)0.1925 (12)0.0489 (14)0.379 (11)
H1620.3580370.5450070.1834780.059*0.379 (11)
C17A0.5303 (15)0.4232 (12)0.1469 (14)0.0495 (15)0.379 (11)
H1730.6120550.4995780.1731670.059*0.379 (11)
H1740.5533710.4114580.0596170.059*0.379 (11)
C18A0.5361 (9)0.2943 (11)0.1932 (13)0.0459 (16)0.379 (11)
H1830.6007150.2462070.1298850.055*0.379 (11)
H1840.5905760.3215770.2603430.055*0.379 (11)
C19A0.2744 (14)0.3924 (14)0.3092 (11)0.0516 (14)0.379 (11)
C20A0.3734 (19)0.4330 (12)0.4038 (12)0.062 (2)0.379 (11)
H2040.3121810.3952380.4764950.093*0.379 (11)
H2050.4039530.5305430.4190750.093*0.379 (11)
H2060.4677940.3992510.3764270.093*0.379 (11)
C21A0.1293 (17)0.4479 (13)0.3420 (15)0.058 (2)0.379 (11)
H2140.0646500.4170820.4165690.088*0.379 (11)
H2150.0683040.4165820.2797140.088*0.379 (11)
H2160.1618230.5456690.3506800.088*0.379 (11)
C220.0410 (8)0.1990 (6)0.2093 (6)0.0430 (14)
C230.1067 (7)0.0951 (5)0.2012 (6)0.0376 (14)
C240.1913 (6)0.1886 (6)0.2983 (5)0.0436 (13)
H2410.2810450.2224210.2593310.065*
H2420.2051190.2416950.3627920.065*
H2430.1844160.0950540.3300970.065*
C250.0367 (8)0.3391 (7)0.1589 (7)0.0581 (16)
H2510.0516390.3925070.2243560.070*
H2520.1255340.3782540.1181350.070*
C260.1150 (10)0.3502 (8)0.0725 (8)0.075 (3)
H2610.1290110.3004520.0056930.113*
H2620.2037230.3129540.1122450.113*
H2630.1101170.4442520.0438080.113*
C270.2687 (7)0.0792 (5)0.3380 (6)0.0363 (12)
C280.1482 (9)0.1022 (7)0.4350 (6)0.0451 (15)
H280.0484120.0901960.4344940.054*
C290.1732 (9)0.1429 (7)0.5332 (7)0.0524 (17)
H290.0891450.1583970.5995230.063*
C300.3134 (9)0.1615 (7)0.5380 (6)0.0505 (14)
H300.3278420.1886240.6067260.061*
C310.4364 (9)0.1399 (8)0.4399 (7)0.0590 (17)
H3110.5349290.1537520.4414230.071*
C320.4156 (8)0.0980 (7)0.3394 (6)0.0440 (13)
H3210.4995620.0825350.2730360.053*
C330.3591 (8)0.0615 (6)0.1641 (6)0.0462 (15)
H3310.4625190.0764650.1850670.055*
H3320.3694200.0260560.0796870.055*
C340.3167 (5)0.1938 (4)0.1812 (3)0.0514 (8)
H3420.2064610.1765710.1703390.062*0.675 (9)
H3410.2093430.1790350.1652310.062*0.325 (9)
C350.3261 (13)0.2654 (8)0.3067 (6)0.0560 (11)0.675 (9)
H3510.2741010.2054590.3701120.067*0.675 (9)
C360.4993 (12)0.3386 (8)0.3120 (10)0.0586 (13)0.675 (9)
H3610.5778570.3006280.2525990.070*0.675 (9)
H3620.5231190.3526280.3917960.070*0.675 (9)
C370.4636 (8)0.4606 (7)0.2760 (7)0.0637 (13)0.675 (9)
H3710.5185090.5502190.3103250.076*0.675 (9)
C380.4770 (12)0.4422 (7)0.1405 (7)0.0655 (15)0.675 (9)
H3810.4100400.4915770.1206290.079*0.675 (9)
H3820.5869200.4801590.1017770.079*0.675 (9)
C390.4258 (10)0.2921 (7)0.0928 (7)0.0610 (14)0.675 (9)
H3910.5219120.2604450.0588200.073*0.675 (9)
H3920.3719640.2859530.0274030.073*0.675 (9)
C400.2883 (8)0.4063 (7)0.3370 (7)0.0620 (12)0.675 (9)
C410.1575 (10)0.4264 (9)0.2865 (9)0.0682 (15)0.675 (9)
H4110.0554820.3843200.3330490.102*0.675 (9)
H4120.1669990.5220890.2894520.102*0.675 (9)
H4130.1661180.3856000.2044440.102*0.675 (9)
C420.2614 (12)0.4558 (8)0.4684 (8)0.0733 (18)0.675 (9)
H4210.3459610.4454930.5017820.110*0.675 (9)
H4220.2604520.5502250.4792250.110*0.675 (9)
H4230.1604720.4035660.5086540.110*0.675 (9)
C35A0.324 (3)0.2710 (16)0.3051 (9)0.0582 (15)0.325 (9)
H3520.2726330.2240500.3771540.070*0.325 (9)
C36A0.494 (3)0.360 (2)0.293 (2)0.0608 (17)0.325 (9)
H3630.5741950.3161460.2424370.073*0.325 (9)
H3640.5239850.3996640.3697540.073*0.325 (9)
C37A0.4482 (16)0.4574 (15)0.2307 (14)0.0637 (16)0.325 (9)
H3720.4901460.5549200.2532710.076*0.325 (9)
C38A0.478 (3)0.4082 (14)0.0965 (14)0.0658 (19)0.325 (9)
H3830.4107230.4395760.0581740.079*0.325 (9)
H3840.5888480.4466320.0601840.079*0.325 (9)
C39A0.442 (2)0.2529 (14)0.0752 (12)0.059 (2)0.325 (9)
H3930.5387650.2236970.0672130.071*0.325 (9)
H3940.4018230.2206900.0013810.071*0.325 (9)
C40A0.2717 (16)0.3953 (16)0.2863 (13)0.0623 (14)0.325 (9)
C41A0.1466 (19)0.3853 (17)0.2161 (17)0.065 (2)0.325 (9)
H4140.1738370.3380560.1376170.098*0.325 (9)
H4150.0444700.3362130.2574290.098*0.325 (9)
H4160.1413160.4751700.2081530.098*0.325 (9)
C42A0.217 (2)0.4583 (17)0.4110 (16)0.0720 (19)0.325 (9)
H4240.1831970.5378190.4067150.108*0.325 (9)
H4250.1289250.3938010.4530030.108*0.325 (9)
H4260.3036340.4835740.4531990.108*0.325 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02889 (9)0.05094 (12)0.03025 (9)0.01255 (7)0.00740 (6)0.00235 (7)
Cl10.0464 (10)0.0986 (14)0.0444 (11)0.0366 (10)0.0074 (9)0.0178 (11)
Cl20.0590 (12)0.0948 (13)0.0412 (11)0.0482 (11)0.0062 (9)0.0157 (10)
N10.036 (3)0.047 (3)0.037 (3)0.009 (2)0.010 (2)0.002 (2)
N40.034 (2)0.0322 (19)0.034 (2)0.0070 (17)0.0041 (19)0.0070 (17)
N210.031 (2)0.055 (3)0.038 (3)0.010 (2)0.006 (2)0.013 (2)
N240.031 (2)0.044 (2)0.033 (2)0.0055 (18)0.0096 (18)0.0087 (18)
C10.052 (4)0.064 (4)0.072 (5)0.009 (3)0.016 (3)0.035 (3)
C20.034 (3)0.047 (3)0.056 (4)0.001 (2)0.021 (2)0.008 (2)
C30.031 (3)0.038 (2)0.030 (3)0.008 (2)0.007 (2)0.002 (2)
C40.074 (5)0.038 (3)0.114 (6)0.017 (3)0.046 (4)0.024 (3)
C50.068 (5)0.069 (5)0.102 (7)0.038 (4)0.008 (5)0.021 (5)
C60.036 (2)0.0268 (18)0.030 (2)0.0083 (16)0.0108 (18)0.0037 (15)
C70.035 (2)0.050 (2)0.040 (3)0.0110 (18)0.0046 (18)0.0133 (18)
C80.049 (3)0.067 (3)0.051 (3)0.021 (2)0.020 (2)0.018 (2)
C90.077 (4)0.056 (3)0.040 (3)0.025 (3)0.015 (3)0.010 (2)
C100.055 (3)0.051 (3)0.034 (3)0.018 (2)0.002 (2)0.011 (2)
C110.040 (3)0.046 (3)0.037 (3)0.013 (2)0.001 (2)0.005 (2)
C120.035 (2)0.036 (2)0.037 (2)0.0138 (18)0.0034 (19)0.0081 (17)
C130.0455 (15)0.0321 (13)0.0477 (16)0.0021 (12)0.0168 (13)0.0115 (12)
C140.0450 (18)0.0287 (18)0.0530 (19)0.0082 (17)0.0002 (17)0.0096 (17)
C150.048 (2)0.034 (3)0.059 (2)0.013 (2)0.010 (2)0.012 (2)
C160.0523 (19)0.031 (2)0.063 (2)0.0078 (17)0.0096 (18)0.0146 (18)
C170.048 (2)0.036 (2)0.069 (3)0.0013 (17)0.013 (2)0.016 (2)
C180.040 (2)0.040 (2)0.069 (3)0.0007 (17)0.021 (2)0.014 (2)
C190.056 (2)0.0293 (16)0.062 (2)0.0134 (19)0.0057 (19)0.0085 (17)
C200.071 (3)0.039 (2)0.065 (3)0.011 (3)0.009 (3)0.000 (2)
C210.063 (3)0.040 (3)0.073 (4)0.018 (3)0.002 (3)0.005 (3)
C14A0.047 (2)0.030 (2)0.055 (2)0.007 (2)0.003 (2)0.009 (2)
C15A0.049 (2)0.032 (3)0.058 (2)0.010 (2)0.009 (2)0.010 (2)
C16A0.052 (2)0.029 (2)0.063 (3)0.005 (2)0.010 (2)0.011 (2)
C17A0.048 (2)0.037 (2)0.065 (3)0.002 (2)0.016 (2)0.016 (2)
C18A0.041 (2)0.037 (2)0.065 (3)0.002 (2)0.023 (3)0.016 (2)
C19A0.057 (2)0.0315 (19)0.062 (2)0.009 (2)0.004 (2)0.007 (2)
C20A0.071 (4)0.038 (3)0.065 (4)0.006 (4)0.004 (4)0.001 (3)
C21A0.061 (3)0.036 (3)0.069 (3)0.013 (3)0.001 (3)0.002 (3)
C220.045 (3)0.037 (2)0.046 (3)0.013 (2)0.005 (2)0.004 (2)
C230.038 (3)0.037 (2)0.040 (3)0.012 (2)0.004 (3)0.012 (2)
C240.030 (2)0.050 (3)0.045 (3)0.010 (2)0.004 (2)0.007 (2)
C250.043 (3)0.056 (3)0.066 (3)0.003 (2)0.010 (2)0.002 (3)
C260.076 (5)0.062 (4)0.076 (6)0.009 (4)0.025 (5)0.024 (4)
C270.038 (2)0.034 (2)0.032 (3)0.0032 (17)0.0045 (19)0.0037 (17)
C280.049 (3)0.051 (3)0.038 (3)0.020 (2)0.004 (2)0.009 (2)
C290.060 (3)0.054 (3)0.034 (3)0.009 (2)0.006 (2)0.012 (2)
C300.059 (3)0.058 (3)0.037 (3)0.010 (2)0.016 (2)0.013 (2)
C310.042 (3)0.091 (4)0.045 (3)0.015 (3)0.006 (2)0.018 (3)
C320.033 (2)0.061 (3)0.038 (2)0.008 (2)0.0077 (18)0.010 (2)
C330.039 (3)0.056 (3)0.034 (2)0.004 (2)0.001 (2)0.016 (2)
C340.0448 (16)0.0529 (17)0.0630 (19)0.0032 (14)0.0140 (15)0.0346 (15)
C350.0542 (19)0.0442 (19)0.073 (2)0.0138 (17)0.0061 (19)0.0233 (18)
C360.058 (2)0.046 (2)0.076 (3)0.009 (2)0.015 (2)0.022 (2)
C370.064 (2)0.050 (2)0.080 (3)0.0092 (18)0.013 (2)0.026 (2)
C380.065 (3)0.054 (3)0.077 (3)0.006 (2)0.008 (3)0.033 (2)
C390.061 (2)0.057 (3)0.066 (3)0.002 (2)0.008 (2)0.039 (2)
C400.064 (2)0.0469 (19)0.079 (3)0.0185 (17)0.003 (2)0.025 (2)
C410.067 (3)0.055 (3)0.087 (3)0.024 (2)0.004 (3)0.025 (3)
C420.080 (3)0.051 (3)0.085 (4)0.024 (3)0.004 (3)0.015 (3)
C35A0.056 (2)0.047 (2)0.074 (3)0.012 (2)0.007 (2)0.024 (2)
C36A0.060 (3)0.047 (3)0.076 (3)0.008 (2)0.012 (3)0.023 (3)
C37A0.064 (2)0.049 (2)0.079 (3)0.011 (2)0.009 (3)0.024 (3)
C38A0.065 (3)0.055 (3)0.075 (3)0.004 (3)0.007 (3)0.028 (3)
C39A0.060 (3)0.053 (3)0.067 (3)0.005 (3)0.010 (3)0.033 (3)
C40A0.062 (2)0.048 (2)0.081 (3)0.019 (2)0.006 (2)0.024 (2)
C41A0.064 (4)0.052 (4)0.089 (4)0.027 (3)0.006 (4)0.023 (4)
C42A0.072 (3)0.054 (3)0.088 (3)0.022 (3)0.000 (3)0.015 (3)
Geometric parameters (Å, º) top
Pd1—Cl12.3049 (19)C19A—C20A1.526 (6)
Pd1—Cl22.2988 (19)C20A—H2040.9800
Pd1—N11.962 (6)C20A—H2050.9800
Pd1—N211.999 (5)C20A—H2060.9800
N1—C31.294 (8)C21A—H2140.9800
N1—C21.550 (8)C21A—H2150.9800
N4—C31.326 (8)C21A—H2160.9800
N4—C61.434 (7)C22—C231.465 (9)
N4—C121.472 (7)C22—C251.497 (9)
N21—C231.250 (8)C22—C241.524 (8)
N21—C221.519 (8)C24—H2410.9800
N24—C231.332 (8)C24—H2420.9800
N24—C271.427 (8)C24—H2430.9800
N24—C331.485 (7)C25—C261.521 (11)
C1—C21.481 (11)C25—H2510.9900
C1—H110.9800C25—H2520.9900
C1—H120.9800C26—H2610.9800
C1—H130.9800C26—H2620.9800
C2—C31.476 (8)C26—H2630.9800
C2—C41.502 (9)C27—C281.378 (9)
C4—C51.471 (12)C27—C321.406 (9)
C4—H410.9900C28—C291.385 (10)
C4—H420.9900C28—H280.9500
C5—H510.9800C29—C301.355 (11)
C5—H520.9800C29—H290.9500
C5—H530.9800C30—C311.398 (10)
C6—C71.369 (8)C30—H300.9500
C6—C111.391 (9)C31—C321.399 (10)
C7—C81.401 (9)C31—H3110.9500
C7—H70.9500C32—H3210.9500
C8—C91.356 (10)C33—C341.513 (8)
C8—H80.9500C33—H3310.9900
C9—C101.370 (10)C33—H3320.9900
C9—H90.9500C34—C351.547 (4)
C10—C111.397 (10)C34—C35A1.548 (5)
C10—H100.9500C34—C39A1.553 (5)
C11—H1110.9500C34—C391.556 (4)
C12—C131.536 (6)C34—H3421.0000
C12—H1210.9900C34—H3411.0000
C12—H1220.9900C35—C361.554 (5)
C13—C141.545 (4)C35—C401.575 (5)
C13—C18A1.548 (4)C35—H3511.0000
C13—C14A1.549 (4)C36—C371.552 (5)
C13—C181.560 (4)C36—H3610.9900
C13—H1311.0000C36—H3620.9900
C13—H1321.0000C37—C381.550 (5)
C14—C151.550 (5)C37—C401.565 (5)
C14—C191.572 (5)C37—H3711.0000
C14—H1411.0000C38—C391.558 (5)
C15—C161.554 (5)C38—H3810.9900
C15—H1510.9900C38—H3820.9900
C15—H1520.9900C39—H3910.9900
C16—C171.558 (5)C39—H3920.9900
C16—C191.570 (5)C40—C411.525 (6)
C16—H1611.0000C40—C421.527 (6)
C17—C181.570 (5)C41—H4110.9800
C17—H1710.9900C41—H4120.9800
C17—H1720.9900C41—H4130.9800
C18—H1810.9900C42—H4210.9800
C18—H1820.9900C42—H4220.9800
C19—C211.527 (5)C42—H4230.9800
C19—C201.528 (6)C35A—C36A1.553 (5)
C20—H2010.9800C35A—C40A1.572 (5)
C20—H2020.9800C35A—H3521.0000
C20—H2030.9800C36A—C37A1.552 (5)
C21—H2110.9800C36A—H3630.9900
C21—H2120.9800C36A—H3640.9900
C21—H2130.9800C37A—C38A1.557 (5)
C14A—C15A1.553 (5)C37A—C40A1.572 (5)
C14A—C19A1.572 (5)C37A—H3721.0000
C14A—H1421.0000C38A—C39A1.558 (5)
C15A—C16A1.552 (5)C38A—H3830.9900
C15A—H1530.9900C38A—H3840.9900
C15A—H1540.9900C39A—H3930.9900
C16A—C17A1.557 (5)C39A—H3940.9900
C16A—C19A1.567 (5)C40A—C42A1.527 (6)
C16A—H1621.0000C40A—C41A1.528 (6)
C17A—C18A1.562 (5)C41A—H4140.9800
C17A—H1730.9900C41A—H4150.9800
C17A—H1740.9900C41A—H4160.9800
C18A—H1830.9900C42A—H4240.9800
C18A—H1840.9900C42A—H4250.9800
C19A—C21A1.526 (6)C42A—H4260.9800
Cl1—Pd1—Cl2179.45 (9)C19A—C20A—H206109.5
Cl1—Pd1—N190.34 (16)H204—C20A—H206109.5
Cl1—Pd1—N2189.73 (16)H205—C20A—H206109.5
Cl2—Pd1—N189.11 (17)C19A—C21A—H214109.5
Cl2—Pd1—N2190.82 (16)C19A—C21A—H215109.5
N1—Pd1—N21179.6 (3)H214—C21A—H215109.5
C3—N1—C261.8 (4)C19A—C21A—H216109.5
C3—N1—Pd1153.3 (4)H214—C21A—H216109.5
C2—N1—Pd1144.7 (4)H215—C21A—H216109.5
C3—N4—C6118.4 (5)C23—C22—C25118.9 (6)
C3—N4—C12119.5 (5)C23—C22—N2149.5 (4)
C6—N4—C12122.0 (5)C25—C22—N21117.4 (6)
C23—N21—C2263.0 (4)C23—C22—C24124.2 (6)
C23—N21—Pd1150.5 (4)C25—C22—C24113.8 (5)
C22—N21—Pd1146.1 (5)N21—C22—C24117.3 (5)
C23—N24—C27119.4 (5)N21—C23—N24142.6 (6)
C23—N24—C33117.1 (5)N21—C23—C2267.5 (5)
C27—N24—C33123.5 (5)N24—C23—C22149.6 (6)
C2—C1—H11109.5C22—C24—H241109.5
C2—C1—H12109.5C22—C24—H242109.5
H11—C1—H12109.5H241—C24—H242109.5
C2—C1—H13109.5C22—C24—H243109.5
H11—C1—H13109.5H241—C24—H243109.5
H12—C1—H13109.5H242—C24—H243109.5
C3—C2—C1121.0 (6)C22—C25—C26113.9 (6)
C3—C2—C4119.5 (6)C22—C25—H251108.8
C1—C2—C4116.4 (6)C26—C25—H251108.8
C3—C2—N150.5 (4)C22—C25—H252108.8
C1—C2—N1115.9 (6)C26—C25—H252108.8
C4—C2—N1116.3 (7)H251—C25—H252107.7
N1—C3—N4141.0 (6)C25—C26—H261109.5
N1—C3—C267.7 (4)C25—C26—H262109.5
N4—C3—C2150.7 (6)H261—C26—H262109.5
C5—C4—C2114.2 (7)C25—C26—H263109.5
C5—C4—H41108.7H261—C26—H263109.5
C2—C4—H41108.7H262—C26—H263109.5
C5—C4—H42108.7C28—C27—C32119.6 (6)
C2—C4—H42108.7C28—C27—N24119.9 (6)
H41—C4—H42107.6C32—C27—N24120.4 (6)
C4—C5—H51109.5C27—C28—C29119.8 (7)
C4—C5—H52109.5C27—C28—H28120.1
H51—C5—H52109.5C29—C28—H28120.1
C4—C5—H53109.5C30—C29—C28122.2 (7)
H51—C5—H53109.5C30—C29—H29118.9
H52—C5—H53109.5C28—C29—H29118.9
C7—C6—C11120.3 (6)C29—C30—C31118.7 (7)
C7—C6—N4121.6 (6)C29—C30—H30120.6
C11—C6—N4118.1 (5)C31—C30—H30120.6
C6—C7—C8118.8 (6)C30—C31—C32120.5 (7)
C6—C7—H7120.6C30—C31—H311119.7
C8—C7—H7120.6C32—C31—H311119.7
C9—C8—C7121.0 (6)C31—C32—C27119.1 (7)
C9—C8—H8119.5C31—C32—H321120.5
C7—C8—H8119.5C27—C32—H321120.5
C8—C9—C10120.8 (6)N24—C33—C34113.6 (5)
C8—C9—H9119.6N24—C33—H331108.9
C10—C9—H9119.6C34—C33—H331108.9
C9—C10—C11119.2 (7)N24—C33—H332108.9
C9—C10—H10120.4C34—C33—H332108.9
C11—C10—H10120.4H331—C33—H332107.7
C6—C11—C10120.0 (6)C33—C34—C35111.2 (4)
C6—C11—H111120.0C33—C34—C35A114.0 (7)
C10—C11—H111120.0C33—C34—C39A96.0 (7)
N4—C12—C13113.1 (4)C35A—C34—C39A117.5 (11)
N4—C12—H121109.0C33—C34—C39113.2 (5)
C13—C12—H121109.0C35—C34—C39106.9 (6)
N4—C12—H122109.0C33—C34—H342108.5
C13—C12—H122109.0C35—C34—H342108.5
H121—C12—H122107.8C39—C34—H342108.5
C12—C13—C14110.4 (4)C33—C34—H341109.5
C12—C13—C18A114.5 (6)C35A—C34—H341109.5
C12—C13—C14A113.3 (6)C39A—C34—H341109.5
C18A—C13—C14A109.7 (9)C34—C35—C36109.8 (7)
C12—C13—C18105.7 (4)C34—C35—C40117.2 (6)
C14—C13—C18108.1 (6)C36—C35—C4087.5 (5)
C12—C13—H131110.8C34—C35—H351113.3
C14—C13—H131110.8C36—C35—H351113.3
C18—C13—H131110.8C40—C35—H351113.3
C12—C13—H132106.2C37—C36—C3586.0 (6)
C18A—C13—H132106.2C37—C36—H361114.3
C14A—C13—H132106.2C35—C36—H361114.3
C13—C14—C15107.8 (8)C37—C36—H362114.3
C13—C14—C19115.4 (6)C35—C36—H362114.3
C15—C14—C1988.0 (6)H361—C36—H362111.5
C13—C14—H141114.2C38—C37—C36108.7 (7)
C15—C14—H141114.2C38—C37—C40109.0 (6)
C19—C14—H141114.2C36—C37—C4087.9 (5)
C14—C15—C1684.3 (6)C38—C37—H371115.9
C14—C15—H151114.6C36—C37—H371115.9
C16—C15—H151114.6C40—C37—H371115.9
C14—C15—H152114.6C37—C38—C39111.4 (6)
C16—C15—H152114.6C37—C38—H381109.3
H151—C15—H152111.7C39—C38—H381109.3
C15—C16—C17113.9 (8)C37—C38—H382109.3
C15—C16—C1987.9 (6)C39—C38—H382109.3
C17—C16—C19109.5 (7)H381—C38—H382108.0
C15—C16—H161114.2C34—C39—C38117.8 (5)
C17—C16—H161114.2C34—C39—H391107.9
C19—C16—H161114.2C38—C39—H391107.9
C16—C17—C18104.7 (7)C34—C39—H392107.9
C16—C17—H171110.8C38—C39—H392107.9
C18—C17—H171110.8H391—C39—H392107.2
C16—C17—H172110.8C41—C40—C42108.5 (7)
C18—C17—H172110.8C41—C40—C37119.7 (6)
H171—C17—H172108.9C42—C40—C37110.7 (6)
C13—C18—C17110.6 (5)C41—C40—C35117.4 (7)
C13—C18—H181109.5C42—C40—C35114.1 (5)
C17—C18—H181109.5C37—C40—C3584.9 (6)
C13—C18—H182109.5C40—C41—H411109.5
C17—C18—H182109.5C40—C41—H412109.5
H181—C18—H182108.1H411—C41—H412109.5
C21—C19—C20109.1 (7)C40—C41—H413109.5
C21—C19—C16112.8 (6)H411—C41—H413109.5
C20—C19—C16121.0 (7)H412—C41—H413109.5
C21—C19—C14114.0 (5)C40—C42—H421109.5
C20—C19—C14115.0 (7)C40—C42—H422109.5
C16—C19—C1483.1 (6)H421—C42—H422109.5
C19—C20—H201109.5C40—C42—H423109.5
C19—C20—H202109.5H421—C42—H423109.5
H201—C20—H202109.5H422—C42—H423109.5
C19—C20—H203109.5C34—C35A—C36A104.7 (15)
H201—C20—H203109.5C34—C35A—C40A97.7 (9)
H202—C20—H203109.5C36A—C35A—C40A88.2 (12)
C19—C21—H211109.5C34—C35A—H352120.0
C19—C21—H212109.5C36A—C35A—H352120.0
H211—C21—H212109.5C40A—C35A—H352120.0
C19—C21—H213109.5C37A—C36A—C35A89.1 (13)
H211—C21—H213109.5C37A—C36A—H363113.8
H212—C21—H213109.5C35A—C36A—H363113.8
C13—C14A—C15A112.4 (13)C37A—C36A—H364113.8
C13—C14A—C19A103.1 (9)C35A—C36A—H364113.8
C15A—C14A—C19A89.9 (10)H363—C36A—H364111.0
C13—C14A—H142116.0C36A—C37A—C38A106.9 (15)
C15A—C14A—H142116.0C36A—C37A—C40A88.2 (12)
C19A—C14A—H142116.0C38A—C37A—C40A108.5 (13)
C16A—C15A—C14A87.1 (11)C36A—C37A—H372116.5
C16A—C15A—H153114.1C38A—C37A—H372116.5
C14A—C15A—H153114.1C40A—C37A—H372116.5
C16A—C15A—H154114.1C37A—C38A—C39A111.1 (12)
C14A—C15A—H154114.1C37A—C38A—H383109.4
H153—C15A—H154111.3C39A—C38A—H383109.4
C15A—C16A—C17A95.1 (13)C37A—C38A—H384109.4
C15A—C16A—C19A90.1 (10)C39A—C38A—H384109.4
C17A—C16A—C19A113.0 (11)H383—C38A—H384108.0
C15A—C16A—H162117.7C34—C39A—C38A109.0 (9)
C17A—C16A—H162117.7C34—C39A—H393109.9
C19A—C16A—H162117.7C38A—C39A—H393109.9
C16A—C17A—C18A111.7 (11)C34—C39A—H394109.9
C16A—C17A—H173109.3C38A—C39A—H394109.9
C18A—C17A—H173109.3H393—C39A—H394108.3
C16A—C17A—H174109.3C42A—C40A—C41A107.5 (14)
C18A—C17A—H174109.3C42A—C40A—C37A113.9 (13)
H173—C17A—H174107.9C41A—C40A—C37A118.6 (12)
C13—C18A—C17A116.4 (8)C42A—C40A—C35A104.5 (11)
C13—C18A—H183108.2C41A—C40A—C35A123.3 (13)
C17A—C18A—H183108.2C37A—C40A—C35A87.7 (12)
C13—C18A—H184108.2C40A—C41A—H414109.5
C17A—C18A—H184108.2C40A—C41A—H415109.5
H183—C18A—H184107.3H414—C41A—H415109.5
C21A—C19A—C20A112.8 (12)C40A—C41A—H416109.5
C21A—C19A—C16A103.1 (10)H414—C41A—H416109.5
C20A—C19A—C16A110.9 (11)H415—C41A—H416109.5
C21A—C19A—C14A110.1 (8)C40A—C42A—H424109.5
C20A—C19A—C14A128.1 (11)C40A—C42A—H425109.5
C16A—C19A—C14A85.8 (11)H424—C42A—H425109.5
C19A—C20A—H204109.5C40A—C42A—H426109.5
C19A—C20A—H205109.5H424—C42A—H426109.5
H204—C20A—H205109.5H425—C42A—H426109.5
Pd1—N1—C2—C3175.6 (8)Pd1—N21—C22—C23172.8 (9)
C3—N1—C2—C1110.0 (7)C23—N21—C22—C25105.9 (7)
Pd1—N1—C2—C165.6 (10)Pd1—N21—C22—C2581.4 (10)
C3—N1—C2—C4107.7 (7)C23—N21—C22—C24113.0 (7)
Pd1—N1—C2—C476.7 (10)Pd1—N21—C22—C2459.8 (10)
C2—N1—C3—N4172.9 (9)C22—N21—C23—N24175.3 (11)
Pd1—N1—C3—N412.8 (16)Pd1—N21—C23—N2413.0 (17)
Pd1—N1—C3—C2174.3 (10)Pd1—N21—C23—C22171.8 (10)
C6—N4—C3—N1177.2 (7)C27—N24—C23—N21175.9 (8)
C12—N4—C3—N15.5 (11)C33—N24—C23—N213.6 (13)
C6—N4—C3—C216.3 (14)C27—N24—C23—C2212.7 (15)
C12—N4—C3—C2160.9 (10)C33—N24—C23—C22167.7 (10)
C1—C2—C3—N199.5 (7)C25—C22—C23—N21102.7 (7)
C4—C2—C3—N1101.2 (8)C24—C22—C23—N2198.5 (7)
C1—C2—C3—N489.6 (13)C25—C22—C23—N2471.6 (14)
C4—C2—C3—N469.6 (14)N21—C22—C23—N24174.3 (13)
N1—C2—C3—N4170.8 (12)C24—C22—C23—N2487.2 (13)
C3—C2—C4—C58.7 (12)C23—C22—C25—C2617.5 (10)
C1—C2—C4—C5168.9 (8)N21—C22—C25—C2639.1 (10)
N1—C2—C4—C549.0 (10)C24—C22—C25—C26178.5 (6)
C3—N4—C6—C7135.4 (6)C23—N24—C27—C2839.0 (9)
C12—N4—C6—C741.8 (8)C33—N24—C27—C28140.5 (7)
C3—N4—C6—C1145.0 (8)C23—N24—C27—C32139.3 (6)
C12—N4—C6—C11137.8 (6)C33—N24—C27—C3241.2 (9)
C11—C6—C7—C81.3 (10)C32—C27—C28—C290.4 (10)
N4—C6—C7—C8178.4 (6)N24—C27—C28—C29178.7 (6)
C6—C7—C8—C92.3 (11)C27—C28—C29—C300.0 (11)
C7—C8—C9—C102.1 (11)C28—C29—C30—C310.6 (11)
C8—C9—C10—C110.8 (11)C29—C30—C31—C320.9 (11)
C7—C6—C11—C100.0 (9)C30—C31—C32—C270.6 (12)
N4—C6—C11—C10179.6 (6)C28—C27—C32—C310.1 (11)
C9—C10—C11—C60.2 (10)N24—C27—C32—C31178.3 (6)
C3—N4—C12—C13106.1 (6)C23—N24—C33—C3473.5 (7)
C6—N4—C12—C1376.7 (6)C27—N24—C33—C34106.0 (7)
N4—C12—C13—C1471.7 (7)N24—C33—C34—C3568.1 (7)
N4—C12—C13—C18A159.6 (6)N24—C33—C34—C35A68.1 (11)
N4—C12—C13—C14A73.6 (10)N24—C33—C34—C39A168.1 (10)
N4—C12—C13—C18171.6 (5)N24—C33—C34—C39171.5 (6)
C12—C13—C14—C1584.1 (6)C33—C34—C35—C3681.2 (6)
C18—C13—C14—C1531.1 (7)C39—C34—C35—C3642.8 (7)
C12—C13—C14—C19179.4 (6)C33—C34—C35—C40178.8 (6)
C18—C13—C14—C1965.3 (9)C39—C34—C35—C4054.8 (9)
C13—C14—C15—C1685.8 (7)C34—C35—C36—C3790.4 (7)
C19—C14—C15—C1630.3 (6)C40—C35—C36—C3727.7 (6)
C14—C15—C16—C1780.1 (8)C35—C36—C37—C3881.6 (7)
C14—C15—C16—C1930.4 (6)C35—C36—C37—C4027.8 (6)
C15—C16—C17—C1817.8 (10)C36—C37—C38—C3932.8 (10)
C19—C16—C17—C1878.8 (9)C40—C37—C38—C3961.6 (9)
C12—C13—C18—C17159.4 (7)C33—C34—C39—C38139.8 (8)
C14—C13—C18—C1741.1 (9)C35—C34—C39—C3817.0 (10)
C16—C17—C18—C1347.0 (10)C37—C38—C39—C3422.0 (11)
C15—C16—C19—C2183.2 (7)C38—C37—C40—C4137.1 (9)
C17—C16—C19—C21162.1 (6)C36—C37—C40—C41146.2 (8)
C15—C16—C19—C20145.0 (8)C38—C37—C40—C42164.5 (6)
C17—C16—C19—C2030.3 (9)C36—C37—C40—C4286.4 (7)
C15—C16—C19—C1430.0 (5)C38—C37—C40—C3581.6 (6)
C17—C16—C19—C1484.7 (6)C36—C37—C40—C3527.5 (6)
C13—C14—C19—C21169.4 (8)C34—C35—C40—C4137.5 (11)
C15—C14—C19—C2181.8 (8)C36—C35—C40—C41148.4 (7)
C13—C14—C19—C2042.3 (11)C34—C35—C40—C42166.1 (7)
C15—C14—C19—C20151.1 (8)C36—C35—C40—C4282.9 (8)
C13—C14—C19—C1678.7 (9)C34—C35—C40—C3783.5 (8)
C15—C14—C19—C1630.1 (6)C36—C35—C40—C3727.5 (6)
C12—C13—C14A—C15A90.3 (10)C33—C34—C35A—C36A90.5 (11)
C18A—C13—C14A—C15A39.0 (12)C39A—C34—C35A—C36A20.6 (15)
C12—C13—C14A—C19A174.3 (8)C33—C34—C35A—C40A179.3 (8)
C18A—C13—C14A—C19A56.4 (14)C39A—C34—C35A—C40A69.5 (15)
C13—C14A—C15A—C16A84.2 (12)C34—C35A—C36A—C37A77.7 (14)
C19A—C14A—C15A—C16A19.9 (10)C40A—C35A—C36A—C37A19.7 (12)
C14A—C15A—C16A—C17A93.1 (11)C35A—C36A—C37A—C38A89.1 (14)
C14A—C15A—C16A—C19A20.0 (10)C35A—C36A—C37A—C40A19.7 (12)
C15A—C16A—C17A—C18A68.5 (16)C36A—C37A—C38A—C39A35 (2)
C19A—C16A—C17A—C18A23.8 (18)C40A—C37A—C38A—C39A59.1 (19)
C12—C13—C18A—C17A123.7 (12)C33—C34—C39A—C38A156.6 (14)
C14A—C13—C18A—C17A5.0 (17)C35A—C34—C39A—C38A35.6 (19)
C16A—C17A—C18A—C1321 (2)C37A—C38A—C39A—C3427 (2)
C15A—C16A—C19A—C21A89.9 (12)C36A—C37A—C40A—C42A85.4 (16)
C17A—C16A—C19A—C21A174.5 (11)C38A—C37A—C40A—C42A167.4 (14)
C15A—C16A—C19A—C20A149.1 (12)C36A—C37A—C40A—C41A146.6 (16)
C17A—C16A—C19A—C20A53.5 (14)C38A—C37A—C40A—C41A39.4 (18)
C15A—C16A—C19A—C14A19.8 (10)C36A—C37A—C40A—C35A19.5 (12)
C17A—C16A—C19A—C14A75.9 (11)C38A—C37A—C40A—C35A87.7 (12)
C13—C14A—C19A—C21A164.4 (12)C34—C35A—C40A—C42A160.7 (13)
C15A—C14A—C19A—C21A82.6 (13)C36A—C35A—C40A—C42A94.6 (15)
C13—C14A—C19A—C20A20.2 (19)C34—C35A—C40A—C41A37.9 (19)
C15A—C14A—C19A—C20A133.2 (14)C36A—C35A—C40A—C41A142.6 (15)
C13—C14A—C19A—C16A93.2 (12)C34—C35A—C40A—C37A85.2 (13)
C15A—C14A—C19A—C16A19.8 (10)C36A—C35A—C40A—C37A19.5 (12)
Azirine ring geometry (Å, °) in 3-amino-2H-azirines top
CSD refcode/Compound No.N1C3N1—C2C2—C3C3—N4C3N1—C2N1C3—C2N1—C2—C3Reference
ABUKUD1.271 (3)1.577 (3)1.436 (3)1.333 (3)59.38 (16)71.01 (19)49.61 (15)Brun et al. (2001)
ABULAK1.275 (5)1.577 (5)1.436 (5)1.347 (4)59.4 (2)70.9 (3)49.8 (2)Brun et al. (2001)
ABULEO1.2712 (13)1.5766 (16)1.4290 (16)1.3401 (12)59.08 (7)71.178 (7)49.74 (7)Brun et al. (2001)
ABULIS1.277 (3)1.570 (3)1.435 (3)1.340 (2)59.49 (14)70.47 (14)50.05 (12)Brun et al. (2001)
ABULOY1.290 (8)1.575 (7)1.442 (10)1.327 (9)59.5 (4)70.1 (5)50.4 (4)Brun et al. (2001)
HAGGUR1.2621.5651.4541.31760.869.949.3Piskunova et al. (1993)
JUNJEH1.264 (3)1.565 (3)1.434 (3)1.342 (3)59.8 (2)70.6 (2)49.6 (1)Villalgordo & Heimgartner (1992)
LERJUN1.278 (3)1.568 (3)1.435 (4)1.315 (4)59.55 (18)70.3 (2)50.17 (16)Peters et al. (2000)
MAZRPZ1.2541.5751.4281.34359.471.649.1Galloy et al. (1980)
PXCAZN1.2791.4901.4291.31761.666.551.9Galloy et al. (1974)
TIBFUF1.283 (3)1.568 (3)1.438 (3)1.322 (3)59.56 (16)70.12 (16)50.32 (14)Bucher & Heimgartner (1996)
11 (2R)- component1.280 (6)1.525 (6)1.456 (6)1.323 (5)61.8 (3)67.4 (4)50.8 (3)This work
11 (2S)- major component1.281 (6)1.515 (7)1.448 (6)1.323 (5)61.7 (4)67.1 (4)51.1 (3)This work
11 (2S)- minor component1.283 (7)1.517 (7)1.475 (6)1.323 (5)62.9 (4)66.3 (4)50.7 (3)This work
121.271 (3)1.588 (3)1.446 (3)1.344 (3)59.55 (14)71.20 (16)49.26 (12)This work
14 ligand 11.294 (8)1.550 (8)1.476 (8)1.326 (8)61.8 (4)67.7 (4)50.5 (4)This work
14 ligand 21.250 (8)1.519 (8)1.465 (9)1.332 (8)63.0 (4)67.5 (5)49.5 (4)This work
 

Footnotes

Part of a PhD thesis, University of Zurich, 1995. Present address: Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland.

§Part of a Diploma thesis, University of Zurich, 1995. Present address: S&P Global, Neumühlequai 6, CH-8001 Zurich, Switzerland.

Part of a PhD thesis, University of Zurich, 1992, Present address: Eurofins Villapharma Research, Parque Tecnológico de Fuente Álamo, Av. Azul, E-30320 Fuenta Álamo de Murcia, Spain.

Acknowledgements

Open access funding provided by Universitat Zurich.

Funding information

Funding for this research was provided by: Alfred Werner Legat (grant to CBB; studentship to CBB); Prof. Dr. Hans E. Schmid-Stiftung (grant to JMV; studentship to JMV); Swiss National Science Foundation (grant to HH); F. Hoffmann–La Roche AG, Basel (grant to HH).

References

First citationArnhold, F. S., Chaloupka, S., Linden, A. & Heimgartner, H. (1995). Helv. Chim. Acta, 78, 899–909.  CrossRef CAS Google Scholar
First citationBlack, D. St C. & Doyle, J. E. (1978). Aust. J. Chem. 31, 2313–2315.  CrossRef CAS Google Scholar
First citationBrun, K. A., Linden, A. & Heimgartner, H. (2001). Helv. Chim. Acta, 84, 1756–1777.  CrossRef CAS Google Scholar
First citationBrun, K. A., Linden, A. & Heimgartner, H. (2002). Helv. Chim. Acta, 85, 3422–3443.  CrossRef CAS Google Scholar
First citationBucher, C. B. (1996). PhD thesis, University of Zurich, Switzerland.  Google Scholar
First citationBucher, C. B. & Heimgartner, H. (1996). Helv. Chim. Acta, 79, 1903–1915.  CrossRef CAS Google Scholar
First citationBucher, C. B., Linden, A. & Heimgartner, H. (1995). Helv. Chim. Acta, 78, 935–946.  CrossRef CAS Google Scholar
First citationBucher, C. B., Linden, A. & Heimgartner, H. (2020). Chem. Biodivers. 17, e2000246.  CrossRef PubMed Google Scholar
First citationChaloupka, S., Vittorelli, P., Heimgartner, H., Schmid, H., Link, H., Bernauer, K. & Oberhänsli, W. E. (1977). Helv. Chim. Acta, 60, 2476–2495.  CrossRef CAS Google Scholar
First citationDannecker-Dörig, I., Linden, A. & Heimgartner, H. (2011). Helv. Chim. Acta, 94, 993–1011.  Google Scholar
First citationDietliker, K., Schmid, U., Mukherjee-Müller, G. & Heimgartner, H. (1978). Chimia, 32, 164–166.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDos Santos Filho, P. F., Ortella do Zelada, L. A. & Schuchardt, U. (1983). Quim. Nova, 6, 69–70.  CAS Google Scholar
First citationÉl'kinson, R. S. & Eremeev, A. V. (1986). Chem. Heterocycl. Compd. 22, 161–166.  Google Scholar
First citationEnders, D., Kipphardt, P., Gerdes, P., Breña-Valle, L. J. & Bhushan, V. (1988). Bull. Soc. Chim. Belg. 97, 691–704.  CrossRef CAS Google Scholar
First citationEremeev, A. V. & Piskunova, I. P. (1990). Chem. Heterocycl. Compd. 26, 719–738.  CrossRef Google Scholar
First citationEremeev, A. V., Piskunova, I. P. & Él'kinson, R. S. (1985). Chem. Heterocycl. Compd. 21, 998–1002.  CrossRef Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalloy, J., Declerq, J. P. & van Meersche, M. (1980). Cryst. Struct. Commun. 9, 151–156.  CAS Google Scholar
First citationGalloy, J., Putzeys, J.-P., Germain, G., Declercq, J.-P. & Van Meerssche, M. (1974). Acta Cryst. B30, 2462–2464.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGubler, R. (1996). Diploma thesis, University of Zurich, Switzerland.  Google Scholar
First citationHassner, A., Bunnell, C. A. & Haltiwanger, K. (1978). J. Org. Chem. 43, 57–61.  CrossRef CAS Google Scholar
First citationHeimgartner, H. (1979). Chimia, 33, 111–118.  CAS Google Scholar
First citationHeimgartner, H. (1981). Isr. J. Chem. 21, 151–156.  CrossRef CAS Google Scholar
First citationHeimgartner, H. (1986). Isr. J. Chem. 27, 3–15.  CrossRef CAS Google Scholar
First citationHeimgartner, H. (1991). Angew. Chem. Int. Ed. Engl. 30, 238–264.  CrossRef Web of Science Google Scholar
First citationHugener, M. & Heimgartner, H. (1995). Helv. Chim. Acta, 78, 1823–1836.  CrossRef CAS Google Scholar
First citationMolecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Package. Version 5.0. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMolecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationObrecht, D. & Heimgartner, H. (1983). Tetrahedron Lett. 24, 1921–1924.  CrossRef CAS Google Scholar
First citationObrecht, D. & Heimgartner, H. (1987). Helv. Chim. Acta, 70, 102–115.  CrossRef CAS Google Scholar
First citationPalacios, F., Aparicio, D., Ochoa de Retana, A. M., de los Santos, J. M., Gil, J. I. & Alonso, J. M. (2002). J. Org. Chem. 67, 7283–7288.  CrossRef PubMed CAS Google Scholar
First citationPeters, K., Peters, E.-M., Hergenröther, T. & Quast, H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 303–304.  CrossRef CAS Google Scholar
First citationPiskunova, I. P., Eremeev, A. V., Mishnev, A. F. & Vosekalna, I. A. (1993). Tetrahedron, 49, 4671–4676.  CrossRef CAS Google Scholar
First citationRens, M. & Ghosez, L. (1970). Tetrahedron Lett. 11, 3765–3768.  CrossRef Google Scholar
First citationSato, S., Kato, H. & Ohta, M. (1967). Bull. Chem. Soc. Jpn, 40, 2938–2942.  CrossRef CAS Google Scholar
First citationSchläpfer-Dähler, M., Mukherjee-Müller, G. & Heimgartner, H. (1992). Helv. Chim. Acta, 75, 1251–1261.  Google Scholar
First citationScholl, B., Bieri, J. H. & Heimgartner, H. (1978). Helv. Chim. Acta, 61, 3050–3067.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, S., Xu, K., Jiang, C. & Ding, Z. (2018). J. Org. Chem. 83, 14791–14796.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVillalgordo, J. M. (1992). PhD thesis, University of Zurich, Switzerland.  Google Scholar
First citationVillalgordo, J. M. & Heimgartner, H. (1992). Helv. Chim. Acta, 75, 1866–1871.  CrossRef CAS Google Scholar
First citationVillalgordo, J. M. & Heimgartner, H. (1993). Tetrahedron, 49, 7215–7222.  CrossRef CAS Google Scholar
First citationVittorelli, P., Heimgartner, H., Schmid, H., Hoet, P. & Ghosez, L. (1974). Tetrahedron, 30, 3737–3740.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWipf, P. & Heimgartner, H. (1988). Helv. Chim. Acta, 71, 140–154.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds