research papers
The heterometallic one-dimensional solvated coordination polymer [NiPt2Cl6(TRIP-Py)4]n
aInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de
The ditopic ligand 10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene (TRIP-Py, C29H20NPSi) binds as a pyridine donor to NiII and as a phosphatriptycene donor towards PtII. The selectivity relies entirely on the Pearson character of the donor sites and the matching hardness of the respective metal cations. The product is the one-dimensional coordination polymer catena-poly[[[dichloridonickel(II)]-bis{μ-10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene}-bis[dichloridoplatinum(II)]-bis{μ-10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene}] dichloromethane pentasolvate ethanol icosasolvate], {[NiPt2Cl6(TRIP-Py)4]·5CH2Cl2·20EtOH}n (1), which retains large pores due to the inherent rigidity of the ligand. This is enabled by the caged triptycene scaffold which fixes the direction of the phosphorus donor with respect to the remaining molecule and especially the pyridyl moiety. In its which was determined from synchrotron data, the pores of the polymer are filled with dichloromethane and ethanol molecules. Finding a suitable model for the pore content is complicated as it is too disordered to give a reasonable atomic model but too ordered to be described by an electron gas solvent mask. This article presents an in-depth description of this polymer, as well as a discussion on the use of the bypass algorithm for solvent masks.
Keywords: heterometallic; coordination polymer; synchrotron; platinum; nickel; crystal structure; bypass algorithm; solvent mask; caged triptycene.
CCDC reference: 2245178
1. Introduction
The research area of coordination polymers (CPs) has become an established field in modern inorganic and coordination chemistry over recent decades (Batten et al., 2008). CPs offer the possibility to adjust the material properties not just through the design of the ligand and the choice of the metal cation, but also through the dimensionality and topology of the CP. This allows a tailoring for a vast range of applications from catalysis, magnetism and optics to chemical separation, medicine and electrochemistry (Wang et al., 2020; Zhong et al., 2022; Yu et al., 2022; Zhou et al., 2022; Zhang et al., 2021; Indra et al., 2018). Controlling and understanding the properties of a CP requires information on its structure, making diffraction techniques indispensable for the field. As the growth of large single crystals of CPs can be quite challenging due to their inherent insolubility, the field profits heavily from high-flux X-ray sources like synchrotron facilities and modern techniques like electron diffraction (Balestri et al., 2019; Huang et al., 2021).
While the vast majority of CPs contains a single type of metal cation, interest in heterometallic CPs containing two or more different metal cations in an orderly fashion is steadily growing (Kremer & Englert, 2018; Kuwamura & Konno, 2021). This inherently increases the synthetic challenge but opens an even larger playground to tune and combine properties. Gaining control over the position of the two different cations is frequently achieved by using heterofunctional ligands with distinctly different coordination sites. These can, for example, differ in their Pearson hardness (Pearson, 1963) and preferably coordinate metal cations of matching Pearson character.
In this article, we address the selectivity of a soft phosphorus and a harder nitrogen donor. This combination has been demonstrated to give selective heterometallic coordination compounds for a long list of discrete metal complexes (Hara et al., 2021; Schroers et al., 2021). In CP chemistry, however, the same pair of donor sites has only very recently been used for a heterometallic CP (Gildenast et al., 2022a). The ligand used in this previous report on heterometallic ZnII/HgII polymers and also in the construction of the title compound is a rigid linear linker combining a pyridyl moiety with a phosphatriptycene, abbreviated as TRIP-Py (Fig. 1).
The phosphatriptycene belongs to the family of caged et al., 2021; Tsuji et al., 2006). The introduction of the secondary bridgehead forces the phenylene propellers to be parallel to the phosphorus lone pair. Thus, the H atoms are pointing in the same direction increasing steric demand. Accordingly, until our recent publication (Gildenast et al., 2022b), no metal complex with more than two phosphatriptycene ligands bound to a single metal cation had been reported. At the same time, the geometry forces acute C—P—C angles which increases the s-character of the lone pair, lowering its basicity and σ-donor strength while increasing the π acidity (Agou et al., 2004; Freijee & Stam, 1980; Jongsma et al., 1974; Drover et al., 2018; Hu et al., 2019; Mahaut et al., 2022). This strengthens the bond, especially towards electron-rich metal cations (Cao et al., 2019; Hu et al., 2021).
and has unique properties due to its special geometry (ShetIn this article, we present the crystallization and particularly challenging structural investigation of a desolvation-labile heterometallic CP in which TRIP-Py connects the softer PtII and the harder NiII cations. In contrast to our previously reported structures involving TRIP-Py, the halides coordinated at either metal cation are not engaged in polymer expansion and remain strictly terminal.
2. Experimental
Unless stated otherwise, all reagents and solvents were obtained from commercial sources and used without further purification. TRIP-Py and [PtCl2(COD)] were prepared according to published procedures (Gildenast et al., 2022a; Brauer, 1981). For the single-crystal X-ray diffraction measurement, the κ goniometer at PETRA-III, P24, EH1, was used. The instrument was equipped with a Dectris CdTe area detector. For our experiment, synchrotron radiation (25 keV, λ = 0.500 Å) was used at a temperature of 100 (2) K (Oxford Cryostream 600 instrument, Oxfordshire, UK). Data were integrated with XDS (Kabsch, 2010) and corrected for absorption by multi-scan methods with SADABS (Bruker, 2014). The powder diffraction patterns were recorded at the Institute of Inorganic Chemistry, RWTH Aachen University, using a curved Stoe imaging-plate detector (IP-PSD). The diffractogram was recorded on a flat sample at ambient temperature in transmission using Cu Kα1 radiation. The ATR FT–IR spectrum was measured with a Shimadzu IRSpirit with a QATR-S ATR unit equipped with a diamond prism and is shown in Fig. 2. It immediately shows the presence of the ditopic ligand in the solid. In the range between 1600 and 500 cm−1, the spectrum reflects the pattern observed for uncoordinated TRIP-Py (Gildenast et al., 2022a). The elemental analysis (CHN) was measured using a HERAEUS CHNO-Rapid VarioEL. The thermogravimetric (TGA) measurements were carried out with a Netzsch STA 409 C/CD in a of air (60 ml min−1) at a heating rate of 5 K min−1 on a sample dried in air. The EDX measurement was performed in a Leo/ZeissFE-SEM Supra 35 VP instrument equipped with an OxfordINCA Energy 200 (SiLi crystal, 133 eV, 10 mm2).
2.1. Synthesis and crystallization
TRIP-Py (17.6 mg, 0.04 mmol) and [PtCl2(COD)] (7.5 mg, 0.02 mmol) were each dissolved in dichloromethane (1 ml each) and the solutions were combined. NiCl2·6H2O (2.4 mg, 0.01 mmol) was dissolved in ethanol (1 ml). The two solutions were layered with a layer of the mixed solvents (1 ml) in between. After several days, light-green crystals of 1 were obtained. For bulk analyses, they were isolated by filtration and washed with ethanol (yield: 14.6 mg, 60%).
2.2. Refinement
Crystal data, data collection and structure 1 are summarized in Table 1 and the is shown in Fig. 3.
details forH atoms attached to C atoms were introduced in calculated positions and treated as riding, with Uiso(H) = 1.2Ueq(C). For the pyridyl rings, split positions were refined for the C atoms in positions 2, 3, 5 and 6 with respect to the nitrogen. Only a site occupancy of 0.5 is compatible with reasonable interatomic distances between neighbouring pyridyl rings. The contribution of pore-contained solvent to the structure factors was treated with the bypass algorithm as implemented in SQUEEZE in PLATON (van der Sluis & Spek, 1990; Spek, 2015); a detailed discussion of alternative approaches is given in Section 3 (Results and discussion).
3. Results and discussion
The title compound, [NiPt2Cl6(TRIP-Py)4]n, was prepared by reactive diffusion crystallization of an in-situ-generated dichloromethane solution of the complex [PtCl2(TRIP-Py)2] with an ethanolic solution of NiCl2. The insoluble product is a heterometallic coordination polymer connected via covalent and coordinative bonds in one spatial direction (Fig. 4).
The NiII cation is located on a crystallographic centre of inversion and resides in pseudo-octahedral coordination by two chloride ligands and four pyridyl donors of TRIP-Py ligands. Steric repulsion between ortho H atoms of adjacent ligands and between pyridyl H atoms and the halide ligands requires a tilt of the heteroaromatic rings. As a continuous windmill arrangement is incompatible with the inversion symmetry, disorder with alternative ring conformations of exactly half site occupancy is enforced. Each [NiCl2(TRIP-Py)4] cross is connected to the next one via two PtCl2 moieties with the P-atom donors in a cis configuration, resulting in a one-dimensional CP along [101]. Fig. 5 shows a scatter plot for the geometry of [PtX2(PR3)2] complexes and clearly displays the expected binodal distribution of the Pt—P distances, with the trans complexes showing systematically larger values as two π acceptors are opposed and compete for backbonding from the same metal d orbital. The data for the examples with phosphatriptycenes are especially highlighted, including the data from this article.
The plot shows that the Pt—P distances for phosphatriptycenes are very comparable to those of regular uncaged I complexes of phosphatriptycenes (Gildenast et al., 2022a) are among the shortest of all in the Cambridge Structural Database (CSD; Version 5.43, with updates from November 2022; Groom et al., 2016). We speculate that π backbonding may play a less pronounced role in the case of the PtII cation with its more positive formal charge. The P—Pt—P angle, however, is systematically at the larger end of the spectrum for phosphatriptycenes. The repulsion of the large triptycene moieties distorts the coordination sphere around the PtII cation increasing the P—Pt—P angle and compressing the three remaining cis angles. Additionally, a reduction in planarity of the coordination sphere occurs compared to the cis-PtCl2 complex of the uncaged phosphine PPh3 (Table 2).
In contrast, the metal–ligand distances in Au
|
There are very few contacts between individual polymer strands close to the sum of their van der Waals radii. This includes a contact between an aromatic H atom and a chloride ligand attached to the Ni centre [Cl3⋯H4a = 2.92 Å; symmetry code: (a) −x, −y + 2, −z + 1], an aromatic H atom pointing towards the centre of an aromatic ring [C10⋯H39b = 2.83 Å; symmetry code: (b) x, y, z − 1] and two aromatic C atoms around an inversion centre which puts them in a potential π-stacking position [C45⋯C45c = 3.369 (9) Å; symmetry code: (c) −x + 2, −y + 1, −z + 2]. In none of these does the molecular arrangement suggest a strong interaction. Instead, there is a distinct packing feature with the PtCl2 corner of each [Ni2Pt2(TRIP-Py)4] parallelogram pointing roughly towards the re-entrant corner of the NiCl2 vertex of a neighbouring strand. This results in a presumably weak offset π-stacking interaction [C16⋯C18d = 3.620 (5) Å; symmetry code: (d) −x, −y + 1, −z + 1]. Fig. 6 shows how adjacent polymers are interdigitated.
The centre of the parallelogram also corresponds to the largest pore along [100] (Fig. 7). The diameter of the largest possible sphere that can pass through this pore has been determined with Zeo++ (Willems et al., 2012) and amounts to 5.02 Å. The pores along [010] and [001] are slightly more narrow with limiting diameters of 3.86 and 4.15 Å, respectively, and have much more contorted pathways. Depending on which size is used for the probe radius, the three-dimensional pore system comprises between 52 and 56% of the unit-cell volume (SQUEEZE in PLATON, 1.5 and 1.0 Å probe radius, electron count remains roughly the same, <4% discrepancy).
The pore contains strongly disordered solvent molecules. Based on preliminary distances between residual electron-density peaks and in agreement with the solvents employed in the synthesis, both dichloromethane and ethanol molecules are present. A tentative A (Fig. 8).
of solvent molecules was performed, and 5.6 dichloromethane and 10.8 ethanol molecules per could be assigned in this modelOn the one hand, the above-mentioned solvent model A is not fully satisfactory: it did not account for the complete pore space but left a discrete void and a thin solvent-accessible channel, with a combined volume of 871 Å per Despite the combined use of rigid fragments and hard geometry restraints for the solvent part, this partial solvent model A did not converge without damping, most probably because of high correlation between variables describing the solvent. On the other hand, the graphical synopsis of the solvent-masking process in Fig. 9 indicates that `squeezing out' the entire solvent-filled pore according to model B is an equally crude approximation.
Fig. 9 shows that the contribution of the solvent molecules to the structure factors extends up to a resolution of 0.4 Å−1, i.e. almost into atomic resolution. The solvent part is at least in part associated with long-range order and cannot be well modelled by an electron gas. This explains why the solvent-squeezed structure model B retains a significant number of disagreeable intensities in the intermediate resolution range. These unsatisfactory intensity data show better agreement with the calculated structure factors from the partial solvent model A. In conclusion, we decided to report the more straightforward model B because localization of individual solvent molecules is not a crucial feature for the title structure. The overall content of the pore can be estimated from the results of the bypass algorithm as summarized in Table 3.
|
For the estimation of the spatial demand of a disordered solvent molecule, we followed the suggestion of Mecozzi & Rebek (1998) and assumed a 1.3-fold of the volume of the molecules in their own A combination of 5 dichloromethane (DCM) and 20 ethanol molecules per represents a good fit to pore volume and electron count. This amount of dichloromethane molecules is slightly lower than in our tentative molecular solvent model A, but we recall that this model is rather unstable. The large number of volatile solvent molecules also makes the compound prone to rapid This impairs a reasonable validation of the structure by powder diffraction. We measured powder patterns of both wet crystals taken directly from the mother liquor, as well as dried samples. Both of them look quite similar but do not match the phase characterized by single crystal X-ray diffraction. The loss of solvent molecules is also reflected in the elemental analysis which matches more closely the expected values of the desolvated polymer with small amounts of residual solvent (Table 4). The best match for the experimentally determined values is achieved for two dichloromethane molecules per unit cell.
|
The elemental analysis matches the results obtained in the thermogravimetric analysis (Fig. 10). {[NiPt2Cl6(TRIP-Py)4]·2DCM}n loses weight in two well-separated steps. First, a gradual loss of 6.7% of mass until 160 °C is observed, which agrees with the of two dichloromethane molecules. The second step begins at 350 °C and ends at 520 °C, after which 37.5% of the original sample weight is left. The identity of the remaining black powder could not be identified unambiguously. Its diffraction pattern displays merely reflections for elemental Pt. These are very broad, indicating a small average particle size. Using energy-dispersive (EDX), the elements Pt, Ni, Si and P were detected in a ratio of 2.0 (3):1.3 (4):4.1 (5):4.0 (5), in acceptable match with the composition in the original CP. From this we propose that Ni and Si stay in their oxidation states NiII and SiIV, that phosphorus is oxidized to phosphate anions and oxide anions balance the remaining positive charge. The total sum formula of this mixture has a molecular weight of 38.1% of the original CP and two molecules of dichloromethane, matching the experimental weight loss from the TGA measurement. The EDX measurement does however reveal a higher than expected value for oxygen. Our suggested composition would require a Pt:O ratio of 2:19; the EDX analysis yields 2.0 (3):34 (3). This discrepancy may be caused by a contribution to the oxygen signal from the material used for fixing the sample.
4. Conclusion
The structural characterization of 1 proved challenging but also rewarding. The PtCl2 moieties in the heterometallic polymer are exposed towards the periphery and therefore potentially useful for follow-up reactions. They might, for example, represent analytically active sites which could be tested in future experiments. The unique electronic properties of the phosphatriptycene can lead to interesting reactivities, and the very low solubility of the coordination polymer enables a simple separation of the catalyst from potential products.
Supporting information
CCDC reference: 2245178
https://doi.org/10.1107/S2053229623001845/ef3041sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229623001845/ef3041Isup2.hkl
Data collection: KAPPA (Paulmann, 2023); cell
XDS2022 (Kabsch 2010); data reduction: XDS2022 (Kabsch 2010); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).[NiPt2Cl6(C29H20NPSi)4]·5CH2Cl2·20C2H6O | Z = 1 |
Mr = 3773.65 | F(000) = 1936 |
Triclinic, P1 | Dx = 1.352 Mg m−3 |
a = 12.702 (7) Å | Synchrotron radiation, λ = 0.500 Å |
b = 19.372 (10) Å | Cell parameters from 18294 reflections |
c = 20.340 (7) Å | θ = 1.2–19.2° |
α = 71.313 (7)° | µ = 0.78 mm−1 |
β = 81.809 (13)° | T = 100 K |
γ = 78.917 (19)° | Block, colourless |
V = 4635 (4) Å3 | 0.20 × 0.20 × 0.10 mm |
Area detector Dectris CdTe on kappa goniometer at EH1 P24, DESY diffractometer | 16117 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.063 |
rotation method, ω scans | θmax = 19.2°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −15→16 |
Tmin = 0.775, Tmax = 0.837 | k = −24→25 |
161591 measured reflections | l = −26→25 |
20869 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0595P)2 + 1.5152P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
20869 reflections | Δρmax = 1.58 e Å−3 |
691 parameters | Δρmin = −1.04 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | −0.24780 (2) | 0.51481 (2) | 0.29402 (2) | 0.06157 (6) | |
Ni1 | 0.500000 | 1.000000 | 0.500000 | 0.06009 (16) | |
Cl1 | −0.34139 (10) | 0.42920 (5) | 0.27793 (5) | 0.0881 (3) | |
Cl2 | −0.25151 (9) | 0.44541 (5) | 0.41140 (4) | 0.0804 (3) | |
Cl3 | 0.33746 (8) | 1.07104 (4) | 0.54048 (4) | 0.0707 (2) | |
P1 | −0.13199 (8) | 0.57662 (4) | 0.31726 (4) | 0.0579 (2) | |
P2 | 0.71054 (8) | 0.58261 (4) | 1.18539 (4) | 0.0594 (2) | |
Si1 | 0.00870 (9) | 0.66614 (5) | 0.35694 (5) | 0.0662 (3) | |
Si2 | 0.65048 (11) | 0.65298 (6) | 1.03559 (5) | 0.0747 (3) | |
N1 | 0.4055 (2) | 0.93354 (13) | 0.47811 (13) | 0.0615 (7) | |
N2 | 0.5147 (3) | 0.92798 (14) | 0.60204 (14) | 0.0638 (7) | |
C1 | −0.1996 (3) | 0.64304 (17) | 0.36154 (15) | 0.0616 (8) | |
C2 | −0.3107 (3) | 0.6512 (2) | 0.37812 (18) | 0.0726 (10) | |
H2 | −0.352297 | 0.621783 | 0.366180 | 0.087* | |
C3 | −0.3602 (4) | 0.7016 (2) | 0.4117 (2) | 0.0857 (12) | |
H3 | −0.435817 | 0.706440 | 0.423534 | 0.103* | |
C4 | −0.3009 (4) | 0.7455 (2) | 0.4285 (2) | 0.0839 (12) | |
H4 | −0.335952 | 0.781279 | 0.450499 | 0.101* | |
C5 | −0.1910 (4) | 0.73726 (19) | 0.41323 (18) | 0.0747 (11) | |
H5 | −0.150370 | 0.766687 | 0.425910 | 0.090* | |
C6 | −0.1384 (3) | 0.68638 (17) | 0.37947 (16) | 0.0655 (9) | |
C7 | −0.0430 (3) | 0.62890 (17) | 0.24603 (16) | 0.0610 (8) | |
C8 | −0.0325 (3) | 0.62007 (18) | 0.18006 (17) | 0.0663 (9) | |
H8 | −0.071849 | 0.587614 | 0.170933 | 0.080* | |
C9 | 0.0353 (3) | 0.6585 (2) | 0.12800 (19) | 0.0740 (10) | |
H9 | 0.043503 | 0.652042 | 0.083080 | 0.089* | |
C10 | 0.0912 (4) | 0.7064 (2) | 0.1412 (2) | 0.0796 (11) | |
H10 | 0.134011 | 0.735560 | 0.104559 | 0.096* | |
C11 | 0.0850 (3) | 0.7122 (2) | 0.2087 (2) | 0.0742 (10) | |
H11 | 0.127244 | 0.742822 | 0.218113 | 0.089* | |
C12 | 0.0177 (3) | 0.67359 (18) | 0.26177 (17) | 0.0645 (9) | |
C13 | −0.0241 (3) | 0.52234 (17) | 0.37306 (15) | 0.0610 (8) | |
C14 | 0.0016 (3) | 0.44582 (18) | 0.39028 (16) | 0.0653 (9) | |
H14 | −0.039708 | 0.418773 | 0.374996 | 0.078* | |
C15 | 0.0870 (3) | 0.40926 (19) | 0.42954 (18) | 0.0701 (9) | |
H15 | 0.104350 | 0.357076 | 0.441135 | 0.084* | |
C16 | 0.1475 (3) | 0.4481 (2) | 0.45208 (18) | 0.0716 (10) | |
H16 | 0.204700 | 0.422437 | 0.480352 | 0.086* | |
C17 | 0.1250 (3) | 0.5241 (2) | 0.43358 (17) | 0.0714 (10) | |
H17 | 0.168677 | 0.550287 | 0.448018 | 0.086* | |
C18 | 0.0390 (3) | 0.56327 (18) | 0.39400 (16) | 0.0634 (9) | |
C19 | 0.0894 (3) | 0.72160 (18) | 0.38298 (18) | 0.0682 (9) | |
C20 | 0.1114 (4) | 0.78951 (19) | 0.33846 (19) | 0.0802 (12) | |
H20 | 0.084450 | 0.807822 | 0.293826 | 0.096* | |
C21 | 0.1715 (4) | 0.83071 (19) | 0.35790 (19) | 0.0772 (11) | |
H21 | 0.186567 | 0.876448 | 0.326142 | 0.093* | |
C22 | 0.2105 (3) | 0.80613 (17) | 0.42370 (17) | 0.0648 (9) | |
C23 | 0.1863 (3) | 0.74037 (19) | 0.46922 (18) | 0.0727 (10) | |
H23 | 0.210780 | 0.723180 | 0.514544 | 0.087* | |
C24 | 0.1257 (4) | 0.69867 (19) | 0.44891 (18) | 0.0767 (11) | |
H24 | 0.109036 | 0.653538 | 0.481077 | 0.092* | |
C25 | 0.2772 (3) | 0.84978 (17) | 0.44334 (16) | 0.0626 (9) | |
C30 | 0.7227 (3) | 0.68090 (17) | 1.14695 (16) | 0.0638 (9) | |
C31 | 0.7421 (4) | 0.72430 (18) | 1.18428 (18) | 0.0741 (10) | |
H31 | 0.750653 | 0.703499 | 1.232681 | 0.089* | |
C32 | 0.7495 (4) | 0.7982 (2) | 1.1519 (2) | 0.0935 (14) | |
H32 | 0.764497 | 0.827659 | 1.177804 | 0.112* | |
C33 | 0.7350 (5) | 0.8287 (2) | 1.0821 (2) | 0.1035 (16) | |
H33 | 0.742610 | 0.878863 | 1.059253 | 0.124* | |
C34 | 0.7091 (5) | 0.7860 (2) | 1.0448 (2) | 0.0946 (15) | |
H34 | 0.696578 | 0.807868 | 0.997051 | 0.114* | |
C35 | 0.7013 (4) | 0.71205 (19) | 1.07634 (17) | 0.0731 (10) | |
C36 | 0.5675 (3) | 0.5910 (2) | 1.17181 (18) | 0.0722 (10) | |
C37 | 0.4903 (4) | 0.5728 (3) | 1.2269 (2) | 0.0894 (12) | |
H37 | 0.510360 | 0.555013 | 1.273340 | 0.107* | |
C38 | 0.3836 (4) | 0.5804 (3) | 1.2145 (3) | 0.1151 (17) | |
H38 | 0.329718 | 0.569134 | 1.252141 | 0.138* | |
C39 | 0.3568 (5) | 0.6050 (4) | 1.1452 (4) | 0.126 (2) | |
H39 | 0.284802 | 0.607087 | 1.135954 | 0.152* | |
C40 | 0.4325 (5) | 0.6260 (3) | 1.0907 (3) | 0.1032 (15) | |
H40 | 0.411884 | 0.644376 | 1.044364 | 0.124* | |
C41 | 0.5400 (4) | 0.6208 (2) | 1.10275 (19) | 0.0783 (11) | |
C42 | 0.7794 (3) | 0.53983 (17) | 1.11977 (16) | 0.0640 (9) | |
C43 | 0.8554 (4) | 0.47551 (19) | 1.1399 (2) | 0.0762 (11) | |
H43 | 0.872652 | 0.455985 | 1.186972 | 0.091* | |
C44 | 0.9048 (5) | 0.4409 (2) | 1.0920 (3) | 0.0990 (15) | |
H44 | 0.955830 | 0.397246 | 1.106035 | 0.119* | |
C45 | 0.8809 (5) | 0.4690 (3) | 1.0234 (3) | 0.1097 (17) | |
H45 | 0.917069 | 0.445621 | 0.990063 | 0.132* | |
C46 | 0.8034 (5) | 0.5319 (2) | 1.0029 (2) | 0.0953 (15) | |
H46 | 0.784897 | 0.549482 | 0.956098 | 0.114* | |
C47 | 0.7530 (4) | 0.56904 (19) | 1.05017 (17) | 0.0722 (10) | |
C48 | 0.6162 (4) | 0.7046 (2) | 0.94515 (19) | 0.0813 (12) | |
C49 | 0.5188 (5) | 0.7547 (2) | 0.9328 (2) | 0.0978 (15) | |
H49 | 0.468475 | 0.759504 | 0.970978 | 0.117* | |
C50 | 0.4963 (4) | 0.7965 (2) | 0.8663 (2) | 0.0922 (14) | |
H50 | 0.429898 | 0.829047 | 0.858803 | 0.111* | |
C51 | 0.5695 (4) | 0.79157 (19) | 0.81019 (18) | 0.0743 (10) | |
C52 | 0.6650 (4) | 0.7436 (2) | 0.8214 (2) | 0.0825 (11) | |
H52 | 0.715192 | 0.739650 | 0.782915 | 0.099* | |
C53 | 0.6886 (4) | 0.7008 (2) | 0.88831 (19) | 0.0824 (11) | |
H53 | 0.755289 | 0.668589 | 0.895160 | 0.099* | |
C54 | 0.5486 (3) | 0.83811 (18) | 0.73752 (17) | 0.0700 (10) | |
C26A | 0.3650 (7) | 0.8758 (4) | 0.4001 (3) | 0.073 (2) | 0.5 |
H26A | 0.380745 | 0.866694 | 0.356212 | 0.087* | 0.5 |
C27A | 0.4301 (7) | 0.9145 (4) | 0.4191 (3) | 0.0663 (19) | 0.5 |
H27A | 0.493055 | 0.927869 | 0.390011 | 0.080* | 0.5 |
C28A | 0.3258 (6) | 0.9065 (3) | 0.5224 (3) | 0.0679 (19) | 0.5 |
H28A | 0.313484 | 0.915232 | 0.566382 | 0.081* | 0.5 |
C29A | 0.2598 (6) | 0.8658 (4) | 0.5067 (4) | 0.0683 (19) | 0.5 |
H29A | 0.201977 | 0.848688 | 0.539272 | 0.082* | 0.5 |
C55A | 0.5044 (8) | 0.9117 (4) | 0.7252 (4) | 0.078 (2) | 0.5 |
H55A | 0.484230 | 0.932357 | 0.762474 | 0.094* | 0.5 |
C56A | 0.4906 (7) | 0.9535 (4) | 0.6584 (4) | 0.073 (2) | 0.5 |
H56A | 0.462178 | 1.004310 | 0.650280 | 0.087* | 0.5 |
C57A | 0.5517 (7) | 0.8554 (3) | 0.6161 (3) | 0.072 (2) | 0.5 |
H57A | 0.565383 | 0.834537 | 0.578783 | 0.086* | 0.5 |
C58A | 0.5705 (7) | 0.8100 (4) | 0.6824 (3) | 0.075 (2) | 0.5 |
H58A | 0.598700 | 0.759225 | 0.689796 | 0.090* | 0.5 |
C26B | 0.2508 (6) | 0.9263 (3) | 0.4242 (4) | 0.069 (2) | 0.5 |
H26B | 0.189854 | 0.950550 | 0.398971 | 0.082* | 0.5 |
C27B | 0.3145 (7) | 0.9664 (3) | 0.4426 (4) | 0.071 (2) | 0.5 |
H27B | 0.295274 | 1.018489 | 0.430316 | 0.085* | 0.5 |
C28B | 0.4274 (6) | 0.8613 (3) | 0.4950 (3) | 0.0590 (16) | 0.5 |
H28B | 0.489230 | 0.837510 | 0.519544 | 0.071* | 0.5 |
C29B | 0.3656 (6) | 0.8171 (3) | 0.4793 (3) | 0.0588 (16) | 0.5 |
H29B | 0.384981 | 0.764966 | 0.493557 | 0.071* | 0.5 |
C55B | 0.4445 (7) | 0.8586 (4) | 0.7133 (3) | 0.0690 (19) | 0.5 |
H55B | 0.383869 | 0.842161 | 0.743340 | 0.083* | 0.5 |
C56B | 0.4322 (7) | 0.9030 (3) | 0.6450 (3) | 0.0677 (19) | 0.5 |
H56B | 0.362450 | 0.915862 | 0.628661 | 0.081* | 0.5 |
C57B | 0.6140 (6) | 0.9090 (4) | 0.6241 (3) | 0.0689 (19) | 0.5 |
H57B | 0.673096 | 0.925594 | 0.592533 | 0.083* | 0.5 |
C58B | 0.6323 (7) | 0.8659 (4) | 0.6913 (4) | 0.073 (2) | 0.5 |
H58B | 0.702983 | 0.855229 | 0.705945 | 0.087* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.09865 (11) | 0.05017 (7) | 0.04435 (7) | −0.03446 (6) | −0.03229 (6) | −0.00160 (5) |
Ni1 | 0.1002 (4) | 0.0404 (3) | 0.0481 (3) | −0.0289 (3) | −0.0364 (3) | −0.0020 (2) |
Cl1 | 0.1367 (9) | 0.0675 (5) | 0.0747 (5) | −0.0557 (6) | −0.0507 (6) | −0.0010 (4) |
Cl2 | 0.1125 (7) | 0.0818 (6) | 0.0483 (4) | −0.0517 (5) | −0.0360 (4) | 0.0119 (4) |
Cl3 | 0.1054 (7) | 0.0512 (4) | 0.0618 (4) | −0.0257 (4) | −0.0339 (4) | −0.0068 (3) |
P1 | 0.0903 (6) | 0.0504 (4) | 0.0427 (4) | −0.0317 (4) | −0.0256 (4) | −0.0068 (3) |
P2 | 0.0948 (6) | 0.0476 (4) | 0.0424 (4) | −0.0224 (4) | −0.0292 (4) | −0.0066 (3) |
Si1 | 0.1010 (7) | 0.0525 (5) | 0.0573 (5) | −0.0340 (5) | −0.0358 (5) | −0.0081 (4) |
Si2 | 0.1235 (9) | 0.0595 (5) | 0.0453 (5) | −0.0151 (5) | −0.0395 (5) | −0.0076 (4) |
N1 | 0.097 (2) | 0.0448 (13) | 0.0529 (14) | −0.0290 (13) | −0.0341 (14) | −0.0061 (11) |
N2 | 0.103 (2) | 0.0424 (12) | 0.0525 (14) | −0.0273 (13) | −0.0369 (14) | −0.0018 (10) |
C1 | 0.093 (3) | 0.0568 (17) | 0.0433 (15) | −0.0290 (17) | −0.0262 (15) | −0.0082 (12) |
C2 | 0.103 (3) | 0.070 (2) | 0.0556 (18) | −0.031 (2) | −0.0213 (18) | −0.0174 (16) |
C3 | 0.109 (3) | 0.087 (3) | 0.071 (2) | −0.026 (2) | −0.014 (2) | −0.029 (2) |
C4 | 0.121 (4) | 0.071 (2) | 0.072 (2) | −0.022 (2) | −0.018 (2) | −0.0293 (19) |
C5 | 0.119 (3) | 0.0572 (19) | 0.0580 (19) | −0.029 (2) | −0.030 (2) | −0.0134 (15) |
C6 | 0.106 (3) | 0.0485 (16) | 0.0505 (16) | −0.0274 (17) | −0.0306 (17) | −0.0072 (13) |
C7 | 0.086 (2) | 0.0540 (16) | 0.0491 (16) | −0.0299 (16) | −0.0242 (15) | −0.0048 (13) |
C8 | 0.096 (3) | 0.0584 (18) | 0.0518 (17) | −0.0300 (17) | −0.0240 (17) | −0.0084 (14) |
C9 | 0.101 (3) | 0.068 (2) | 0.0564 (19) | −0.030 (2) | −0.0150 (18) | −0.0105 (16) |
C10 | 0.104 (3) | 0.070 (2) | 0.067 (2) | −0.038 (2) | −0.013 (2) | −0.0062 (17) |
C11 | 0.098 (3) | 0.0598 (19) | 0.072 (2) | −0.0384 (19) | −0.0207 (19) | −0.0079 (16) |
C12 | 0.089 (2) | 0.0543 (17) | 0.0561 (17) | −0.0273 (16) | −0.0264 (16) | −0.0067 (14) |
C13 | 0.092 (2) | 0.0543 (16) | 0.0441 (15) | −0.0274 (16) | −0.0245 (15) | −0.0079 (12) |
C14 | 0.102 (3) | 0.0543 (17) | 0.0478 (16) | −0.0322 (17) | −0.0195 (16) | −0.0092 (13) |
C15 | 0.100 (3) | 0.0560 (18) | 0.0567 (18) | −0.0253 (18) | −0.0241 (18) | −0.0057 (14) |
C16 | 0.094 (3) | 0.066 (2) | 0.0565 (18) | −0.0243 (19) | −0.0305 (18) | −0.0030 (15) |
C17 | 0.097 (3) | 0.069 (2) | 0.0567 (18) | −0.0313 (19) | −0.0318 (18) | −0.0096 (15) |
C18 | 0.093 (2) | 0.0546 (17) | 0.0519 (16) | −0.0282 (16) | −0.0287 (16) | −0.0092 (13) |
C19 | 0.099 (3) | 0.0543 (17) | 0.0624 (19) | −0.0296 (17) | −0.0377 (18) | −0.0094 (14) |
C20 | 0.134 (3) | 0.0553 (18) | 0.065 (2) | −0.039 (2) | −0.053 (2) | −0.0030 (15) |
C21 | 0.126 (3) | 0.0550 (18) | 0.0624 (19) | −0.044 (2) | −0.042 (2) | −0.0019 (15) |
C22 | 0.096 (2) | 0.0507 (16) | 0.0579 (18) | −0.0317 (16) | −0.0320 (17) | −0.0085 (13) |
C23 | 0.115 (3) | 0.0582 (18) | 0.0563 (18) | −0.0412 (19) | −0.0393 (19) | −0.0035 (14) |
C24 | 0.122 (3) | 0.0588 (19) | 0.0600 (19) | −0.045 (2) | −0.036 (2) | −0.0035 (15) |
C25 | 0.096 (2) | 0.0484 (16) | 0.0519 (16) | −0.0294 (16) | −0.0295 (16) | −0.0067 (13) |
C30 | 0.098 (3) | 0.0501 (16) | 0.0466 (16) | −0.0183 (16) | −0.0235 (16) | −0.0079 (13) |
C31 | 0.124 (3) | 0.0514 (17) | 0.0530 (18) | −0.0167 (19) | −0.0322 (19) | −0.0113 (14) |
C32 | 0.168 (5) | 0.0524 (19) | 0.070 (2) | −0.028 (2) | −0.040 (3) | −0.0137 (17) |
C33 | 0.185 (5) | 0.051 (2) | 0.074 (3) | −0.031 (3) | −0.037 (3) | −0.0001 (18) |
C34 | 0.173 (5) | 0.054 (2) | 0.055 (2) | −0.022 (2) | −0.034 (2) | −0.0021 (16) |
C35 | 0.122 (3) | 0.0527 (17) | 0.0455 (16) | −0.0140 (19) | −0.0269 (18) | −0.0072 (13) |
C36 | 0.099 (3) | 0.066 (2) | 0.0568 (19) | −0.0221 (19) | −0.0289 (19) | −0.0117 (16) |
C37 | 0.105 (3) | 0.092 (3) | 0.074 (3) | −0.029 (2) | −0.029 (2) | −0.013 (2) |
C38 | 0.096 (4) | 0.134 (5) | 0.113 (4) | −0.026 (3) | −0.022 (3) | −0.025 (4) |
C39 | 0.098 (4) | 0.145 (5) | 0.140 (5) | −0.005 (4) | −0.054 (4) | −0.038 (4) |
C40 | 0.117 (4) | 0.108 (4) | 0.088 (3) | −0.013 (3) | −0.048 (3) | −0.019 (3) |
C41 | 0.104 (3) | 0.075 (2) | 0.062 (2) | −0.016 (2) | −0.038 (2) | −0.0143 (17) |
C42 | 0.100 (3) | 0.0487 (16) | 0.0520 (16) | −0.0234 (16) | −0.0264 (17) | −0.0124 (13) |
C43 | 0.118 (3) | 0.0528 (18) | 0.065 (2) | −0.0174 (19) | −0.035 (2) | −0.0138 (15) |
C44 | 0.141 (4) | 0.068 (2) | 0.094 (3) | 0.002 (3) | −0.032 (3) | −0.034 (2) |
C45 | 0.176 (5) | 0.079 (3) | 0.081 (3) | 0.003 (3) | −0.024 (3) | −0.041 (2) |
C46 | 0.169 (5) | 0.067 (2) | 0.056 (2) | −0.015 (3) | −0.030 (3) | −0.0206 (18) |
C47 | 0.117 (3) | 0.0587 (18) | 0.0476 (17) | −0.0232 (19) | −0.0292 (18) | −0.0107 (14) |
C48 | 0.134 (4) | 0.062 (2) | 0.0510 (19) | −0.011 (2) | −0.039 (2) | −0.0107 (15) |
C49 | 0.157 (4) | 0.077 (3) | 0.0485 (19) | 0.008 (3) | −0.029 (2) | −0.0111 (18) |
C50 | 0.136 (4) | 0.074 (2) | 0.055 (2) | 0.017 (2) | −0.032 (2) | −0.0119 (18) |
C51 | 0.118 (3) | 0.0559 (18) | 0.0539 (19) | −0.014 (2) | −0.037 (2) | −0.0099 (15) |
C52 | 0.112 (3) | 0.074 (2) | 0.056 (2) | −0.011 (2) | −0.030 (2) | −0.0045 (17) |
C53 | 0.107 (3) | 0.079 (2) | 0.056 (2) | −0.010 (2) | −0.033 (2) | −0.0046 (17) |
C54 | 0.112 (3) | 0.0520 (17) | 0.0515 (17) | −0.0182 (18) | −0.0361 (19) | −0.0072 (14) |
C26A | 0.121 (6) | 0.059 (4) | 0.051 (3) | −0.041 (4) | −0.033 (4) | −0.009 (3) |
C27A | 0.104 (5) | 0.057 (3) | 0.051 (3) | −0.043 (4) | −0.023 (3) | −0.009 (3) |
C28A | 0.107 (6) | 0.052 (3) | 0.056 (3) | −0.034 (4) | −0.031 (4) | −0.008 (3) |
C29A | 0.093 (5) | 0.051 (3) | 0.066 (4) | −0.029 (3) | −0.030 (4) | −0.006 (3) |
C55A | 0.130 (7) | 0.058 (4) | 0.052 (4) | −0.013 (4) | −0.040 (4) | −0.010 (3) |
C56A | 0.118 (6) | 0.047 (3) | 0.061 (4) | −0.013 (4) | −0.040 (4) | −0.012 (3) |
C57A | 0.132 (6) | 0.040 (3) | 0.049 (3) | −0.025 (4) | −0.039 (4) | −0.003 (2) |
C58A | 0.133 (7) | 0.047 (3) | 0.048 (3) | −0.016 (4) | −0.029 (4) | −0.007 (3) |
C26B | 0.102 (5) | 0.048 (3) | 0.067 (4) | −0.027 (3) | −0.048 (4) | −0.008 (3) |
C27B | 0.110 (6) | 0.045 (3) | 0.067 (4) | −0.022 (3) | −0.051 (4) | −0.004 (3) |
C28B | 0.092 (5) | 0.040 (3) | 0.053 (3) | −0.020 (3) | −0.037 (3) | −0.006 (2) |
C29B | 0.092 (5) | 0.042 (3) | 0.049 (3) | −0.027 (3) | −0.033 (3) | −0.002 (2) |
C55B | 0.109 (6) | 0.053 (3) | 0.047 (3) | −0.025 (4) | −0.028 (3) | −0.002 (3) |
C56B | 0.109 (6) | 0.048 (3) | 0.054 (3) | −0.024 (4) | −0.036 (4) | −0.008 (3) |
C57B | 0.095 (5) | 0.066 (4) | 0.054 (3) | −0.036 (4) | −0.035 (3) | −0.004 (3) |
C58B | 0.097 (5) | 0.066 (4) | 0.060 (4) | −0.029 (4) | −0.040 (4) | −0.001 (3) |
Pt1—P1 | 2.2493 (11) | C25—C29B | 1.364 (7) |
Pt1—P2i | 2.2567 (10) | C25—C26A | 1.386 (9) |
Pt1—Cl2 | 2.3335 (11) | C25—C26B | 1.391 (7) |
Pt1—Cl1 | 2.3426 (12) | C25—C29A | 1.398 (8) |
Ni1—N1ii | 2.100 (2) | C30—C31 | 1.374 (5) |
Ni1—N1 | 2.100 (2) | C30—C35 | 1.412 (4) |
Ni1—N2ii | 2.108 (2) | C31—C32 | 1.386 (5) |
Ni1—N2 | 2.108 (3) | C31—H31 | 0.9500 |
Ni1—Cl3 | 2.4461 (14) | C32—C33 | 1.377 (6) |
Ni1—Cl3ii | 2.4461 (14) | C32—H32 | 0.9500 |
P1—C1 | 1.817 (4) | C33—C34 | 1.395 (6) |
P1—C13 | 1.842 (3) | C33—H33 | 0.9500 |
P1—C7 | 1.853 (3) | C34—C35 | 1.385 (5) |
P2—C42 | 1.825 (4) | C34—H34 | 0.9500 |
P2—C30 | 1.840 (3) | C36—C37 | 1.382 (6) |
P2—C36 | 1.845 (4) | C36—C41 | 1.404 (5) |
Si1—C19 | 1.852 (3) | C37—C38 | 1.384 (7) |
Si1—C6 | 1.856 (4) | C37—H37 | 0.9500 |
Si1—C18 | 1.874 (3) | C38—C39 | 1.406 (8) |
Si1—C12 | 1.883 (4) | C38—H38 | 0.9500 |
Si2—C47 | 1.848 (4) | C39—C40 | 1.370 (8) |
Si2—C48 | 1.859 (4) | C39—H39 | 0.9500 |
Si2—C35 | 1.860 (4) | C40—C41 | 1.401 (7) |
Si2—C41 | 1.862 (5) | C40—H40 | 0.9500 |
N1—C28B | 1.313 (6) | C42—C43 | 1.406 (5) |
N1—C28A | 1.324 (8) | C42—C47 | 1.409 (4) |
N1—C27A | 1.345 (7) | C43—C44 | 1.371 (6) |
N1—C27B | 1.387 (7) | C43—H43 | 0.9500 |
N2—C56B | 1.326 (8) | C44—C45 | 1.381 (7) |
N2—C57B | 1.343 (8) | C44—H44 | 0.9500 |
N2—C57A | 1.344 (7) | C45—C46 | 1.399 (7) |
N2—C56A | 1.362 (8) | C45—H45 | 0.9500 |
C1—C2 | 1.394 (5) | C46—C47 | 1.395 (6) |
C1—C6 | 1.404 (4) | C46—H46 | 0.9500 |
C2—C3 | 1.374 (6) | C48—C53 | 1.383 (6) |
C2—H2 | 0.9500 | C48—C49 | 1.416 (7) |
C3—C4 | 1.382 (6) | C49—C50 | 1.374 (5) |
C3—H3 | 0.9500 | C49—H49 | 0.9500 |
C4—C5 | 1.376 (6) | C50—C51 | 1.382 (6) |
C4—H4 | 0.9500 | C50—H50 | 0.9500 |
C5—C6 | 1.392 (5) | C51—C52 | 1.377 (6) |
C5—H5 | 0.9500 | C51—C54 | 1.495 (4) |
C7—C8 | 1.391 (5) | C52—C53 | 1.388 (5) |
C7—C12 | 1.397 (4) | C52—H52 | 0.9500 |
C8—C9 | 1.377 (5) | C53—H53 | 0.9500 |
C8—H8 | 0.9500 | C54—C58A | 1.370 (8) |
C9—C10 | 1.382 (5) | C54—C55A | 1.382 (8) |
C9—H9 | 0.9500 | C54—C58B | 1.384 (9) |
C10—C11 | 1.402 (5) | C54—C55B | 1.416 (9) |
C10—H10 | 0.9500 | C26A—C27A | 1.383 (8) |
C11—C12 | 1.386 (5) | C26A—H26A | 0.9500 |
C11—H11 | 0.9500 | C27A—H27A | 0.9500 |
C13—C14 | 1.393 (5) | C28A—C29A | 1.384 (9) |
C13—C18 | 1.419 (4) | C28A—H28A | 0.9500 |
C14—C15 | 1.381 (5) | C29A—H29A | 0.9500 |
C14—H14 | 0.9500 | C55A—C56A | 1.357 (9) |
C15—C16 | 1.382 (5) | C55A—H55A | 0.9500 |
C15—H15 | 0.9500 | C56A—H56A | 0.9500 |
C16—C17 | 1.380 (5) | C57A—C58A | 1.378 (8) |
C16—H16 | 0.9500 | C57A—H57A | 0.9500 |
C17—C18 | 1.398 (5) | C58A—H58A | 0.9500 |
C17—H17 | 0.9500 | C26B—C27B | 1.383 (8) |
C19—C24 | 1.387 (4) | C26B—H26B | 0.9500 |
C19—C20 | 1.391 (4) | C27B—H27B | 0.9500 |
C20—C21 | 1.378 (4) | C28B—C29B | 1.398 (7) |
C20—H20 | 0.9500 | C28B—H28B | 0.9500 |
C21—C22 | 1.398 (4) | C29B—H29B | 0.9500 |
C21—H21 | 0.9500 | C55B—C56B | 1.394 (8) |
C22—C23 | 1.374 (4) | C55B—H55B | 0.9500 |
C22—C25 | 1.477 (4) | C56B—H56B | 0.9500 |
C23—C24 | 1.400 (4) | C57B—C58B | 1.381 (9) |
C23—H23 | 0.9500 | C57B—H57B | 0.9500 |
C24—H24 | 0.9500 | C58B—H58B | 0.9500 |
P1—Pt1—P2i | 103.07 (4) | C29B—C25—C22 | 121.7 (3) |
P1—Pt1—Cl2 | 87.07 (4) | C26A—C25—C22 | 121.3 (4) |
P2i—Pt1—Cl2 | 165.56 (4) | C26B—C25—C22 | 119.7 (4) |
P1—Pt1—Cl1 | 168.18 (4) | C29A—C25—C22 | 123.4 (4) |
P2i—Pt1—Cl1 | 84.82 (4) | C31—C30—C35 | 120.5 (3) |
Cl2—Pt1—Cl1 | 86.88 (4) | C31—C30—P2 | 123.7 (2) |
N1ii—Ni1—N1 | 180.0 | C35—C30—P2 | 115.6 (2) |
N1ii—Ni1—N2ii | 91.30 (10) | C30—C31—C32 | 120.5 (3) |
N1—Ni1—N2ii | 88.71 (10) | C30—C31—H31 | 119.7 |
N1ii—Ni1—N2 | 88.70 (10) | C32—C31—H31 | 119.7 |
N1—Ni1—N2 | 91.29 (10) | C33—C32—C31 | 119.7 (4) |
N2ii—Ni1—N2 | 180.0 | C33—C32—H32 | 120.1 |
N1ii—Ni1—Cl3 | 89.86 (10) | C31—C32—H32 | 120.1 |
N1—Ni1—Cl3 | 90.14 (10) | C32—C33—C34 | 119.9 (4) |
N2ii—Ni1—Cl3 | 89.62 (10) | C32—C33—H33 | 120.0 |
N2—Ni1—Cl3 | 90.39 (10) | C34—C33—H33 | 120.0 |
N1ii—Ni1—Cl3ii | 90.14 (10) | C35—C34—C33 | 121.0 (3) |
N1—Ni1—Cl3ii | 89.86 (10) | C35—C34—H34 | 119.5 |
N2ii—Ni1—Cl3ii | 90.39 (10) | C33—C34—H34 | 119.5 |
N2—Ni1—Cl3ii | 89.61 (10) | C34—C35—C30 | 118.0 (3) |
Cl3—Ni1—Cl3ii | 180.00 (3) | C34—C35—Si2 | 124.7 (3) |
C1—P1—C13 | 103.73 (15) | C30—C35—Si2 | 117.0 (3) |
C1—P1—C7 | 104.51 (15) | C37—C36—C41 | 121.5 (4) |
C13—P1—C7 | 96.17 (16) | C37—C36—P2 | 121.9 (3) |
C1—P1—Pt1 | 112.13 (12) | C41—C36—P2 | 116.5 (3) |
C13—P1—Pt1 | 117.55 (10) | C36—C37—C38 | 120.1 (4) |
C7—P1—Pt1 | 120.35 (10) | C36—C37—H37 | 119.9 |
C42—P2—C30 | 104.44 (16) | C38—C37—H37 | 119.9 |
C42—P2—C36 | 102.41 (17) | C37—C38—C39 | 118.6 (5) |
C30—P2—C36 | 97.21 (17) | C37—C38—H38 | 120.7 |
C42—P2—Pt1iii | 112.15 (11) | C39—C38—H38 | 120.7 |
C30—P2—Pt1iii | 124.07 (10) | C40—C39—C38 | 121.2 (5) |
C36—P2—Pt1iii | 113.67 (12) | C40—C39—H39 | 119.4 |
C19—Si1—C6 | 114.22 (17) | C38—C39—H39 | 119.4 |
C19—Si1—C18 | 117.44 (15) | C39—C40—C41 | 120.5 (5) |
C6—Si1—C18 | 103.04 (16) | C39—C40—H40 | 119.7 |
C19—Si1—C12 | 117.64 (16) | C41—C40—H40 | 119.7 |
C6—Si1—C12 | 102.99 (16) | C40—C41—C36 | 117.8 (4) |
C18—Si1—C12 | 99.12 (15) | C40—C41—Si2 | 125.9 (3) |
C47—Si2—C48 | 118.87 (18) | C36—C41—Si2 | 116.2 (3) |
C47—Si2—C35 | 103.99 (18) | C43—C42—C47 | 120.3 (3) |
C48—Si2—C35 | 111.43 (17) | C43—C42—P2 | 119.4 (3) |
C47—Si2—C41 | 101.77 (18) | C47—C42—P2 | 120.3 (3) |
C48—Si2—C41 | 118.6 (2) | C44—C43—C42 | 120.3 (4) |
C35—Si2—C41 | 99.62 (18) | C44—C43—H43 | 119.9 |
C28A—N1—C27A | 118.7 (4) | C42—C43—H43 | 119.9 |
C28B—N1—C27B | 116.3 (4) | C43—C44—C45 | 120.4 (4) |
C28B—N1—Ni1 | 124.2 (3) | C43—C44—H44 | 119.8 |
C28A—N1—Ni1 | 122.0 (3) | C45—C44—H44 | 119.8 |
C27A—N1—Ni1 | 119.1 (3) | C44—C45—C46 | 120.0 (4) |
C27B—N1—Ni1 | 119.5 (3) | C44—C45—H45 | 120.0 |
C56B—N2—C57B | 119.5 (5) | C46—C45—H45 | 120.0 |
C57A—N2—C56A | 115.6 (4) | C47—C46—C45 | 120.9 (4) |
C56B—N2—Ni1 | 123.9 (3) | C47—C46—H46 | 119.5 |
C57B—N2—Ni1 | 116.6 (3) | C45—C46—H46 | 119.5 |
C57A—N2—Ni1 | 123.2 (3) | C46—C47—C42 | 118.1 (4) |
C56A—N2—Ni1 | 121.2 (3) | C46—C47—Si2 | 129.0 (3) |
C2—C1—C6 | 119.8 (3) | C42—C47—Si2 | 112.9 (3) |
C2—C1—P1 | 121.1 (2) | C53—C48—C49 | 117.7 (3) |
C6—C1—P1 | 119.1 (3) | C53—C48—Si2 | 121.4 (3) |
C3—C2—C1 | 120.1 (4) | C49—C48—Si2 | 120.6 (3) |
C3—C2—H2 | 120.0 | C50—C49—C48 | 120.8 (4) |
C1—C2—H2 | 120.0 | C50—C49—H49 | 119.6 |
C2—C3—C4 | 120.5 (5) | C48—C49—H49 | 119.6 |
C2—C3—H3 | 119.7 | C49—C50—C51 | 120.5 (4) |
C4—C3—H3 | 119.7 | C49—C50—H50 | 119.8 |
C5—C4—C3 | 119.9 (4) | C51—C50—H50 | 119.8 |
C5—C4—H4 | 120.1 | C52—C51—C50 | 119.4 (3) |
C3—C4—H4 | 120.1 | C52—C51—C54 | 119.0 (4) |
C4—C5—C6 | 120.9 (3) | C50—C51—C54 | 121.6 (4) |
C4—C5—H5 | 119.5 | C51—C52—C53 | 120.7 (4) |
C6—C5—H5 | 119.5 | C51—C52—H52 | 119.7 |
C5—C6—C1 | 118.7 (4) | C53—C52—H52 | 119.7 |
C5—C6—Si1 | 126.8 (3) | C48—C53—C52 | 120.9 (4) |
C1—C6—Si1 | 114.4 (3) | C48—C53—H53 | 119.6 |
C8—C7—C12 | 121.3 (3) | C52—C53—H53 | 119.6 |
C8—C7—P1 | 120.6 (2) | C58A—C54—C55A | 118.5 (5) |
C12—C7—P1 | 118.0 (2) | C58B—C54—C55B | 116.9 (4) |
C9—C8—C7 | 119.8 (3) | C58A—C54—C51 | 122.0 (4) |
C9—C8—H8 | 120.1 | C55A—C54—C51 | 119.4 (4) |
C7—C8—H8 | 120.1 | C58B—C54—C51 | 120.0 (4) |
C8—C9—C10 | 119.9 (4) | C55B—C54—C51 | 123.0 (4) |
C8—C9—H9 | 120.1 | C27A—C26A—C25 | 121.7 (6) |
C10—C9—H9 | 120.1 | C27A—C26A—H26A | 119.1 |
C9—C10—C11 | 120.1 (3) | C25—C26A—H26A | 119.1 |
C9—C10—H10 | 120.0 | N1—C27A—C26A | 120.9 (7) |
C11—C10—H10 | 120.0 | N1—C27A—H27A | 119.6 |
C12—C11—C10 | 120.6 (3) | C26A—C27A—H27A | 119.6 |
C12—C11—H11 | 119.7 | N1—C28A—C29A | 122.3 (6) |
C10—C11—H11 | 119.7 | N1—C28A—H28A | 118.9 |
C11—C12—C7 | 118.1 (3) | C29A—C28A—H28A | 118.9 |
C11—C12—Si1 | 126.9 (3) | C28A—C29A—C25 | 120.7 (7) |
C7—C12—Si1 | 114.6 (2) | C28A—C29A—H29A | 119.7 |
C14—C13—C18 | 120.3 (3) | C25—C29A—H29A | 119.7 |
C14—C13—P1 | 123.4 (2) | C56A—C55A—C54 | 118.3 (7) |
C18—C13—P1 | 116.2 (2) | C56A—C55A—H55A | 120.9 |
C15—C14—C13 | 120.0 (3) | C54—C55A—H55A | 120.9 |
C15—C14—H14 | 120.0 | C55A—C56A—N2 | 124.7 (6) |
C13—C14—H14 | 120.0 | C55A—C56A—H56A | 117.6 |
C14—C15—C16 | 120.4 (3) | N2—C56A—H56A | 117.6 |
C14—C15—H15 | 119.8 | N2—C57A—C58A | 122.8 (6) |
C16—C15—H15 | 119.8 | N2—C57A—H57A | 118.6 |
C17—C16—C15 | 120.1 (3) | C58A—C57A—H57A | 118.6 |
C17—C16—H16 | 119.9 | C54—C58A—C57A | 119.9 (6) |
C15—C16—H16 | 119.9 | C54—C58A—H58A | 120.1 |
C16—C17—C18 | 121.3 (3) | C57A—C58A—H58A | 120.1 |
C16—C17—H17 | 119.3 | C27B—C26B—C25 | 119.0 (6) |
C18—C17—H17 | 119.3 | C27B—C26B—H26B | 120.5 |
C17—C18—C13 | 117.8 (3) | C25—C26B—H26B | 120.5 |
C17—C18—Si1 | 125.7 (2) | C26B—C27B—N1 | 122.6 (6) |
C13—C18—Si1 | 116.1 (2) | C26B—C27B—H27B | 118.7 |
C24—C19—C20 | 117.4 (3) | N1—C27B—H27B | 118.7 |
C24—C19—Si1 | 121.2 (2) | N1—C28B—C29B | 124.2 (5) |
C20—C19—Si1 | 121.3 (2) | N1—C28B—H28B | 117.9 |
C21—C20—C19 | 121.2 (3) | C29B—C28B—H28B | 117.9 |
C21—C20—H20 | 119.4 | C25—C29B—C28B | 119.2 (5) |
C19—C20—H20 | 119.4 | C25—C29B—H29B | 120.4 |
C20—C21—C22 | 120.9 (3) | C28B—C29B—H29B | 120.4 |
C20—C21—H21 | 119.5 | C56B—C55B—C54 | 119.2 (7) |
C22—C21—H21 | 119.5 | C56B—C55B—H55B | 120.4 |
C23—C22—C21 | 118.6 (3) | C54—C55B—H55B | 120.4 |
C23—C22—C25 | 120.9 (3) | N2—C56B—C55B | 122.1 (7) |
C21—C22—C25 | 120.5 (3) | N2—C56B—H56B | 119.0 |
C22—C23—C24 | 120.1 (3) | C55B—C56B—H56B | 119.0 |
C22—C23—H23 | 119.9 | N2—C57B—C58B | 121.7 (7) |
C24—C23—H23 | 119.9 | N2—C57B—H57B | 119.1 |
C19—C24—C23 | 121.6 (3) | C58B—C57B—H57B | 119.1 |
C19—C24—H24 | 119.2 | C57B—C58B—C54 | 120.5 (6) |
C23—C24—H24 | 119.2 | C57B—C58B—H58B | 119.8 |
C29B—C25—C26B | 118.6 (4) | C54—C58B—H58B | 119.8 |
C26A—C25—C29A | 115.3 (4) |
Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y+2, −z+1; (iii) x+1, y, z+1. |
[NiPt2Cl6(TRIP-Py)4]·5CH2Cl2·20EtOH | [PtCl2(PPh3)2]·CHCl3 | [PtCl2(PPh3)2]·3CHCl3 | |
Pt1—P1 | 2.2486 (17) | 2.2481 (18) | 2.2560 (19) |
Pt1—P2 | 2.2563 (16) | 2.266 (2) | 2.2708 (19) |
Pt1—Cl1 | 2.3428 (19) | 2.324 (2) | 2.353 (2) |
Pt1—Cl2 | 2.3337 (17) | 2.3548 (19) | 2.350 (2) |
P1—Pt1—P2 | 103.09 (5) | 97.43 (7) | 98.74 (7) |
Cl1—Pt1—Cl2 | 86.88 (4) | 86.48 (7) | 85.24 (7) |
P1—Pt1—Cl2 | 87.01 (4) | 89.85 (7) | 91.01 (7) |
P2—Pt1—Cl1 | 84.85 (4) | 86.26 (7) | 85.11 (7) |
τ4 | 0.19 | 0.08 | 0.10 |
φ(PtCl2, PtP2) | 14.04 (6) | 2.01 (10) | 3.69 (10) |
V (Å3) | e- | ρ (e- Å-3) | |
Void | 2528 | 740 | 0.29 |
CH2Cl2 | 107 | 42 | 0.39 |
EtOH | 97 | 26 | 0.27 |
5CH2Cl2 + 20EtOH | 2475 | 730 | 0.29 |
C | H | N | |
Analysis calculated for desolvated (C116H80Cl6N4NiP4Pt2Si4) | 57.39 | 3.32 | 2.31 |
Analysis calculated for ·5DCM·20EtOH (C161H210Cl16N4NiO20P4Pt2Si4) | 51.24 | 5.61 | 1.48 |
Analysis calculated for ·2DCM (C118H84Cl10N4NiP4Pt2Si4) | 54.56 | 3.26 | 2.16 |
Found | 53.98 | 3.37 | 2.15 |
Acknowledgements
We thank Dr Carsten Paulmann for help with the single-crystal X-ray diffraction measurement at the synchrotron beamline P24, PETRA III, DESY. The EDX analysis was carried out by Anne Frommelius, which is gratefully acknowledged. Open access funding enabled and organized by Projekt DEAL.
Funding information
Funding for this research was provided by: Studienstiftung des Deutschen Volkes (scholarship to HG); One Hundred-Talent Program of Shanxi Province (grant to UE).
References
Agou, T., Kobayashi, J. & Kawashima, T. (2004). Chem. Lett. 33, 1028–1029. Web of Science CrossRef CAS Google Scholar
Al-Fawaz, A., Aldridge, S., Coombs, D. L., Dickinson, A. A., Willock, D. J., Ooi, L.-L., Light, M. E., Coles, S. J. & Hursthouse, M. B. (2004). Dalton Trans. pp. 4030–4037. Web of Science CSD CrossRef Google Scholar
Balestri, D., Mazzeo, P. P., Carraro, C., Demitri, N., Pelagatti, P. & Bacchi, A. (2019). Angew. Chem. Int. Ed. 58, 17342–17350. CSD CrossRef CAS Google Scholar
Batten, S. R., Neville, S. M. & Turner, D. R. (2008). In Coordination Polymers. Cambridge: Royal Society of Chemistry. Google Scholar
Brauer, G. (1981). Editor. Handbuch der präparativen anorganischen Chemie, 3rd ed. Stuttgart: Palm und Enke Verlag GmbH. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, Y., Napoline, J. W., Bacsa, J., Pollet, P., Soper, J. D. & Sadighi, J. P. (2019). Organometallics, 38, 1868–1871. CSD CrossRef CAS Google Scholar
Drover, M. W., Nagata, K. & Peters, J. C. (2018). Chem. Commun. 54, 7916–7919. CSD CrossRef CAS Google Scholar
Freijee, F. J. M. & Stam, C. H. (1980). Acta Cryst. B36, 1247–1249. CSD CrossRef CAS IUCr Journals Google Scholar
Gildenast, H., Gruszien, L., Friedt, F. & Englert, U. (2022a). Dalton Trans. 51, 7828–7837. CSD CrossRef CAS Google Scholar
Gildenast, H., Hempelmann, G., Gruszien, L. & Englert, U. (2022b). Inorg. Chem. 62, 3178–3185. CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hara, N., Yamamoto, K., Tanaka, Y., Saito, T., Sakaki, S. & Nakao, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1859–1868. CSD CrossRef CAS Google Scholar
Hu, L., Mahaut, D., Tumanov, N., Wouters, J., Collard, L., Robiette, R. & Berionni, G. (2021). Dalton Trans. 50, 4772–4777. CSD CrossRef CAS Google Scholar
Hu, L., Mahaut, D., Tumanov, N., Wouters, J., Robiette, R. & Berionni, G. (2019). J. Org. Chem. 84, 11268–11274. CSD CrossRef CAS Google Scholar
Huang, Z., Grape, E. S., Li, J., Inge, A. K. & Zou, X. (2021). Coord. Chem. Rev. 427, 213583. Web of Science CrossRef Google Scholar
Indra, A., Song, T. & Paik, U. (2018). Adv. Mater. 30, e1705146. CrossRef Google Scholar
Jongsma, C., de Kleijn, J. P. & Bickelhaupt, F. (1974). Tetrahedron, 30, 3465–3469. CrossRef CAS Google Scholar
Jönsson, P. G. (1976). Acta Cryst. B32, 232–235. CSD CrossRef IUCr Journals Web of Science Google Scholar
Kabsch, W. (2010). Acta Cryst. D66, 125–132. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kawaguchi, T., Tanaka, K., Takeuchi, T. & Watanabé, T. (1973). Bull. Chem. Soc. Jpn, 46, 62–66. CSD CrossRef CAS Web of Science Google Scholar
Kremer, M. & Englert, U. (2018). Z. Kristallogr. 233, 437–452. Web of Science CrossRef CAS Google Scholar
Kuwamura, N. & Konno, T. (2021). Inorg. Chem. Front. 8, 2634–2649. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahaut, D., Berionni, G. & Champagne, B. (2022). J. Phys. Chem. A, 126, 2794–2801. CrossRef CAS Google Scholar
Mecozzi, S. & Rebek, J. J. (1998). Chem. Eur. J. 4, 1016–1022. CrossRef CAS Google Scholar
Miao, J., Hu, C., Feng, X., Chen, H. & Nie, Y. (2009). Acta Cryst. E65, m1025. CSD CrossRef IUCr Journals Google Scholar
Paulmann, C. (2023). KAPPA. DESY, Hamburg, Germany. Google Scholar
Pearson, R. G. (1963). J. Am. Chem. Soc. 85, 3533–3539. CrossRef CAS Web of Science Google Scholar
Schroers, J. P., Kliemann, M. N., Kollath, J. M. A. & Tauchert, M. E. (2021). Organometallics, 40, 3893–3906. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shet, H., Parmar, U., Bhilare, S. & Kapdi, A. R. (2021). Org. Chem. Front. 8, 1599–1656. CrossRef CAS Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tsuji, H., Inoue, T., Kaneta, Y., Sase, S., Kawachi, A. & Tamao, K. (2006). Organometallics, 25, 6142–6148. CSD CrossRef CAS Google Scholar
Ube, H., Yasuda, Y., Sato, H. & Shionoya, M. (2017). Nat. Commun. 8, 14296. CSD CrossRef Google Scholar
Wang, D.-G., Liang, Z., Gao, S., Qu, C. & Zou, R. (2020). Coord. Chem. Rev. 404, 213093. CrossRef Google Scholar
Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. (2012). Microporous Mesoporous Mater. 149, 134–141. Web of Science CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yu, Z., Tang, L., Ma, N., Horike, S. & Chen, W. (2022). Coord. Chem. Rev. 469, 214646. CrossRef Google Scholar
Zhang, S., Zhang, S., Luo, S. & Wu, D. (2021). Coord. Chem. Rev. 445, 214059. CrossRef Google Scholar
Zhong, X., Hu, J.-J., Yao, S.-L., Zhang, R.-J., Wang, J.-J., Cai, D.-G., Luo, T.-G., Peng, Y., Liu, S.-J. & Wen, H.-R. (2022). CrystEngComm, 24, 2370–2382. CrossRef CAS Google Scholar
Zhou, Z., Yu, F. & Ma, J. (2022). Environ. Chem. Lett. 20, 563–595. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.