research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A structural com­parison of salt forms of dopamine with the structures of other phenyl­ethyl­amines

crossmark logo

aDepartment of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, United Kingdom
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by R. I. Cooper, University of Oxford, United Kingdom (Received 28 June 2023; accepted 4 September 2023; online 11 September 2023)

The structures of four salt forms of dopamine are reported. These are dopamine [2-(3,4-di­hydroxy­phen­yl)ethan-1-aminium] benzoate, C8H12NO2+·C7H5O2, I, dopamine 4-nitro­benzoate, C8H12NO2+·C7H4NO4, II, dopamine ethane­di­sul­fon­ate, 2C8H12NO2+·C2H4O6S22−, III, and dopamine 4-hy­droxy­benzene­sul­fon­ate monohydrate, C8H12NO2+·C6H5O4S·H2O, IV. In all four structures, the dopamine cation adopts an extended conformation. Inter­molecular inter­action motifs that are common in the salt forms of tyramine can be found in related dopamine structures, but hydrogen bonding in the dopamine structures appear to be more variable and less predictable than for tyramine. Packing analysis discovered three dopamine-containing groups of structures that can be described as isostructural with regards to the cation positions. Two of these groups contain both dopamine and tyramine species, and one of these is also highly variable in other ways too, containing anhydrous and hydrated forms, different anion types and ionized and neutral phenyl­ethyl­amine species. As such, the group illustrates that packing behaviour can be robust and similar even where inter­molecular inter­actions such as hydrogen bonds are very different.

1. Introduction

The generation of salt forms of an active pharmaceutical ingredient (API) is a well-known process used by the pharmaceutical industry to change important material properties of the API. Idealizing properties such as solubility, stability or hygroscopicity is important to the development of an effective and commercially successful API (Stahl & Wermuth, 2008[Stahl, P. H. & Wermuth, C. G. (2008). Editors. Handbook of Pharmaceutical Salts: Properties, Selection and Use. VHCA: Zurich.]). It is generally accepted that there are links between the solid-state structure and the material properties of inter­est, and that a greater understanding of such structure-to-property correlations should help to rationalize salt screening and other form-choice processes.

Phenyl­ethyl­amine (PEA) com­pounds (Scheme 1) have long been known to have a large variety of pharmaceutical and bio­logical roles (e.g. Brown et al., 1979[Brown, H., Difrancesco, D. & Noble, S. (1979). Nature, 280, 235-236.]; Drew et al., 1978[Drew, C. D., Knight, G. T., Hughes, D. T. & Bush, M. (1978). Br. J. Clin. Pharmacol. 6, 221-225.]; Broadley, 2010[Broadley, K. J. (2010). Pharmacol. Ther. 125, 363-375.]; Dennany et al., 2015[Dennany, L., Kennedy, A. R. & Walker, B. (2015). Acta Cryst. C71, 844-849.]). Due to their favourable handling characteristics, several have been used in studies where relatively large numbers of salt forms of a given API have been crystallographically characterized and the structures then used to systematically investigate material properties. The earliest examples of this are the studies by Davey investigating the structures and crystal properties of pseudo­ephedrine salts forms and their relationships to solubility (Black et al., 2007[Black, S. N., Collier, E. A., Davey, R. J. & Roberts, R. J. (2007). J. Pharm. Sci. 96, 1053-1068.]; Collier et al., 2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]). A problem with similar studies using large numbers of crystal structures is how to simply com­pare and contrast multiple structures. One solution to this are the packing similarity tools available within Mercury (Taylor & Wood, 2019[Taylor, R. & Wood, P. A. (2019). Chem. Rev. 119, 9427-9477.]; Childs et al., 2009[Childs, S. L., Wood, P. A., Rodríguez-Hornedo, N., Reddy, L. S. & Hardcastle, K. I. (2009). Cryst. Growth Des. 9, 1869-1888.]; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). In the area of PEA salt forms, these tools have been used to investigate hydrate formation in tyramine salt forms (Briggs et al., 2012[Briggs, N. E. B., Kennedy, A. R. & Morrison, C. A. (2012). Acta Cryst. B68, 453-464.]), and density and melting point in pairs of enanti­opure and racemic methyl­ephedrine salt forms (Kennedy et al., 2011[Kennedy, A. R., Morrison, C. A., Briggs, N. E. B. & Arbuckle, W. (2011). Cryst. Growth Des. 11, 1821-1834.]). An intriguing result using this approach was that groups of methyl­ephedrine salt forms that showed isostructural cation packing also showed tighter correlation between aqueous solubility and melting point than did similar salt forms that were not part of isostructural packing groups (de Moraes et al., 2017[Moraes, L. S. de, Edwards, D., Florence, A. J., Johnston, A., Johnston, B. F., Morrison, C. A. & Kennedy, A. R. (2017). Cryst. Growth Des. 17, 3277-3286.]).

[Scheme 1]

Dopamine is a biologically significant member of the PEA family and arguably the most well known. In the brain it is a neurotransmitter and it is known to play a role in a wide range of human bodily functions, including motor control, motivation, gastrointestinal tract function and operation of the im­mune system. It is well known that loss of the ability to secrete dopamine leads to Parkinson's disease (e.g. Wenzel et al., 2015[Wenzel, J. M., Rauscher, N. A., Cheer, J. F. & Oleson, E. B. (2015). ACS Chem. Neurosci. 6, 16-26.]; Schultz, 2007[Schultz, W. (2007). Annu. Rev. Neurosci. 30, 259-288.]). Perhaps less well known is that dopamine in the form of its HCl salt is used as an API, for instance, in the treatment of neonatal shock (Noori et al., 2003[Noori, S., Freidlich, P. & Seri, I. (2003). NeoReviews, 4, e283-e288.]). Some crystallographic work has been undertaken on forms of dopamine. Dopamine itself has been shown to exist in the solid as a zwitterionic form, with deprotonation of the OH group meta to the ethyl­amine substituent (Cruickshank et al., 2013[Cruickshank, L., Kennedy, A. R. & Shankland, N. (2013). J. Mol. Struct. 1051, 132-136.]). The structures of some simple salt forms of dopamine are also know. These include forms with inorganic anions [the halides DOPAMN01, QQQAEJ02 and ATOLUR04 (Giesecke, 1980[Giesecke, J. (1980). Acta Cryst. B36, 178-181.]; Pike & Dziura, 2013[Pike, R. D. & Dziura, T. M. (2013). CSD Communication. CCDC 932183 (CCDC refcode QQQAEJ02). https://dx.doi.org/10.5517/cc1090fr.]; Ivanova & Spiteller, 2017[Ivanova, B. B. & Spiteller, M. (2017). In Horizons in Neuroscience Research, Vol. 29, edited by A. Costa & E. Villalba, pp. 1-78. New York: Nova Science Publishers Inc.]); the nitrate CIZYAN (Gatfaoui et al., 2014[Gatfaoui, S., Marouani, H., Roisnel, T. & Dhaouadi, H. (2014). Acta Cryst. E70, o571-o572.]); and the perchlorate OGEGAJ (Boghaei et al., 2008[Boghaei, D. M., Baniyaghoob, S., Najafpour, M. M. & McKee, V. (2008). Acta Cryst. E64, o2268.])] and four forms with small to medium sized organic anions (ATOLIF, ATOMAY, RAWDEB and MIYLOV; Ivanova & Spiteller, 2010[Ivanova, B. & Spiteller, M. (2010). Spectrochim. Acta A Mol. Biomol. Spectrosc. 77, 849-855.]; Feng et al., 2017[Feng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037-4041.]; Ohba & Ito, 2002[Ohba, S. & Ito, Y. (2002). Acta Cryst. E58, o586-o587.]). This gives a total of ten relevant literature structures available from the Cambridge Structural Database (CSD, Version 5.43, update of November 2022, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). To this data set we herein add the structures of the benzoate, 4-nitro­benzoate, ethane­disulfonate and 4-hy­droxy­benzene­sulfonate salt forms of dopamine. The new structures are described and a com­parative analysis of the packing of dopamine and its salt forms, and those of the closely related PEA species tyramine is presented.

2. Experimental

2.1. Synthesis and crystallization

Dopamine hydro­chloride was purchased from Sigma–Aldrich. Because of the well-known rapid oxidation of dopamine under basic conditions (Richter & Waddell, 1983[Richter, H. W. & Waddell, W. H. (1983). J. Am. Chem. Soc. 105, 5434-5440.]), the HCl salt was converted to neutral dopamine under an N2 at­mo­sphere and in a Schlenk tube. This was done by addition of NaOH to ice-cooled aqueous solutions of dopamine HCl. Dopamine free base precipitated in 51–59% yield after 2 h. The white solid was separated by filtration and stored under N2 before use. Salt forms I to IV were prepared by adding dopamine (0.2 g) and an equimolar amount of the appropriate acid to degassed water (5 ml). The mixtures were stirred and heated under N2 to 313 K before being filtered to leave clear solutions. These solutions were left to evaporate slowly. Crystals suitable for single-crystal diffraction were obtained directly from these solutions within one week. For both I and II, crystals of the salt form grew alongside a small number of crystals of the parent benzoic acid.

2.2. Refinement

The anion of IV was found to be disordered, with the benzene ring rotated by approximately 52° around an axis that runs through atoms S1, C9, C12 and O6. Thus, four aromatic C—H groups were each modelled as split over two sites with occupancies refined to a 50:50 ratio. No further restraints or constraints were required to satisfactorily model these disordered atoms. For I, II and III, all H atoms bonded to O or N atoms were positioned as found by difference synthesis and refined freely and isotropically. For IV, restraints on the O—H bond lengths were required and they were set to 0.88 (1) Å. For I to IV, H atoms bound to C atoms were placed in idealized positions and refined in riding modes. C—H bond lengths of 0.95 and 0.99 Å were used for CH and CH2 groups, respectively, and Uiso(H) values were set at 1.2Ueq(C) of the parent atom. Further crystallographic details and refinement parameters are given in Table 1[link].

Table 1
Experimental details

For all structures: Z = 4. Experiments were carried out at 123 K. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). H atoms were treated by a mixture of independent and constrained refinement.

  I II III IV
Crystal data
Chemical formula C8H12NO2+·C7H5O2 C8H12NO2+·C7H4NO4 2C8H12NO2+·C2H4O6S22− C8H12NO2+·C6H5O4S·H2O
Mr 275.29 320.30 496.54 345.36
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Orthorhombic, Pbca Monoclinic, P21/c
a, b, c (Å) 11.7637 (6), 11.7460 (5), 10.3316 (5) 7.4993 (2), 18.5051 (5), 10.7610 (3) 10.6328 (5), 8.5651 (5), 23.8669 (13) 17.4085 (8), 11.9234 (5), 7.6779 (3)
α, β, γ (°) 90, 111.384 (6), 90 90, 99.628 (3), 90 90, 90, 90 90, 95.273 (4), 90
V3) 1329.30 (12) 1472.33 (7) 2173.6 (2) 1586.95 (12)
Radiation type Cu Kα Mo Kα Cu Kα Cu Kα
μ (mm−1) 0.83 0.11 2.75 2.15
Crystal size (mm) 0.35 × 0.10 × 0.02 0.35 × 0.25 × 0.05 0.30 × 0.15 × 0.05 0.5 × 0.15 × 0.07
 
Data collection
Diffractometer Oxford Diffraction Gemini S Oxford Diffraction Xcalibur E Oxford Diffraction Gemini S Oxford Diffraction Gemini S
Tmin, Tmax 0.761, 1.000 0.928, 1.000 0.500, 1.000 0.653, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5127, 2614, 2033 7174, 3573, 2620 7583, 2172, 1924 6603, 3113, 2474
Rint 0.026 0.026 0.032 0.040
(sin θ/λ)max−1) 0.619 0.682 0.626 0.621
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.171, 1.02 0.048, 0.112, 1.03 0.041, 0.134, 1.14 0.057, 0.169, 1.04
No. of reflections 2614 3573 2172 3113
No. of parameters 201 228 165 277
No. of restraints 0 0 0 5
Δρmax, Δρmin (e Å−3) 0.63, −0.27 0.34, −0.23 0.62, −0.57 0.81, −0.41
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and SHELXL in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

The structures of IIV are shown in Figs. 1[link]–4[link][link][link], with crystallographic parameters detailed in Table 1[link] and hydrogen-bonding parameters detailed in Tables 2[link]–5[link][link][link]. The asymmetric units of both I and II consist of a dopamine cation and a (substituted) benzoate anion. The asymmetric unit of III consists of a dopamine cation and half of an ethane­disulfonate dianion. Here the dianion has a crystallographic centre of symmetry in the middle of its C—C bond. Finally, IV is a monohydrate and so the asymmetric unit consists of a dopamine cation, a disordered hy­droxy­benzene­sulfonate anion and a water mol­ecule. In all four cases, the dopamine moiety has been protonated at the amine group and the H atom of the meta-hy­droxy substituent is orientated towards the O atom of the para-hy­droxy group to form an intra­molecular hydrogen bond. All of the ethyl­ammonium chains adopt extended con­formations, with the N1—C1—C2—C3 torsion angles ranging from −168.89 (14) to 176.39 (16)°. This corresponds to an anti arrangement of the large aromatic and NH3 substituents on the C1—C2 fragment. The relevant literature salt forms as listed in Table 6[link] also adopt extended conformations, with the exception of the di­nitro­benzoate salt MIYLOV. This is the only form to have a folded conformation, displaying an N—C—C—C torsion angle of 60.5° (Ohba & Ito, 2002[Ohba, S. & Ito, Y. (2002). Acta Cryst. E58, o586-o587.]). This distribution of conformations resembles that found for the salt forms of the closely related tyramine cation. Of 42 tyramine salt forms, the majority displayed extended conformations and only four displayed a folded conformation (Briggs et al., 2012[Briggs, N. E. B., Kennedy, A. R. & Morrison, C. A. (2012). Acta Cryst. B68, 453-464.]).

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O2 0.84 (4) 2.29 (4) 2.736 (3) 113 (3)
O1—H1H⋯O3i 0.84 (4) 2.17 (4) 2.872 (3) 141 (3)
O2—H2H⋯O4ii 0.85 (4) 1.83 (4) 2.666 (2) 171 (3)
N1—H1N⋯O4iii 0.98 (3) 1.87 (4) 2.834 (3) 167 (3)
N1—H2N⋯O3 0.95 (3) 1.93 (3) 2.867 (3) 171 (3)
N1—H3N⋯O3iv 0.87 (4) 2.04 (4) 2.866 (3) 156 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, -y, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O2 0.87 (2) 2.31 (2) 2.7384 (17) 110.4 (19)
O1—H1H⋯O4i 0.87 (2) 1.99 (2) 2.8030 (17) 156 (2)
O2—H2H⋯O3ii 0.94 (2) 1.64 (2) 2.5780 (16) 178 (2)
N1—H1N⋯O4iii 0.97 (2) 1.80 (3) 2.763 (2) 170 (2)
N1—H2N⋯O2iv 0.90 (2) 2.44 (2) 2.9890 (18) 119.7 (16)
N1—H2N⋯O6iv 0.90 (2) 2.41 (2) 3.095 (2) 133.8 (17)
N1—H3N⋯O2v 0.88 (2) 2.50 (2) 2.9956 (19) 116.6 (15)
N1—H3N⋯O4vi 0.88 (2) 2.50 (2) 3.1125 (18) 127.5 (16)
N1—H3N⋯O5vii 0.88 (2) 2.48 (2) 3.181 (2) 137.3 (16)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) x, y, z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O2 0.85 (3) 2.32 (3) 2.746 (2) 112 (2)
O1—H1H⋯O3i 0.85 (3) 2.02 (3) 2.807 (2) 154 (3)
O2—H2H⋯O4ii 0.89 (3) 1.85 (3) 2.727 (2) 167 (3)
N1—H1N⋯O5iii 0.90 (3) 1.89 (3) 2.762 (2) 163 (2)
N1—H2N⋯O2iv 0.85 (3) 2.11 (3) 2.890 (2) 152 (2)
N1—H2N⋯O3v 0.85 (3) 2.49 (3) 2.974 (2) 117 (2)
N1—H3N⋯O4vi 0.89 (3) 2.00 (3) 2.776 (2) 146 (3)
N1—H3N⋯O5vii 0.89 (3) 2.61 (3) 3.112 (2) 117 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for IV[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O2 0.87 (1) 2.28 (3) 2.749 (3) 114 (3)
O1—H1H⋯O3i 0.87 (1) 1.95 (2) 2.754 (3) 152 (3)
O2—H2H⋯O1Wii 0.88 (1) 1.84 (2) 2.693 (3) 164 (4)
N1—H1N⋯O4iii 0.86 (4) 1.99 (4) 2.850 (3) 178 (4)
N1—H2N⋯O5 0.86 (4) 1.91 (4) 2.766 (3) 172 (3)
N1—H3N⋯O3iv 0.86 (4) 2.27 (4) 2.927 (3) 133 (3)
N1—H3N⋯O6v 0.86 (4) 2.46 (4) 3.005 (3) 122 (3)
O6—H3H⋯O1Wv 0.88 (1) 1.83 (2) 2.686 (3) 164 (4)
O1W—H1W⋯O2vi 0.88 (1) 1.88 (1) 2.752 (3) 175 (4)
O1W—H2W⋯O4 0.88 (1) 1.82 (1) 2.698 (3) 177 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 6
Available crystal structures of dopamine forms

CSD refcode Anion Solvent Comment Reference
TIRZAX None – free base structure none Zwitterion Cruickshank et al. (2013[Cruickshank, L., Kennedy, A. R. & Shankland, N. (2013). J. Mol. Struct. 1051, 132-136.])
DOPAMN01 Chloride none   Giesecke (1980[Giesecke, J. (1980). Acta Cryst. B36, 178-181.])
QQQAEJ02 Bromide none   Pike & Dziura (2013[Pike, R. D. & Dziura, T. M. (2013). CSD Communication. CCDC 932183 (CCDC refcode QQQAEJ02). https://dx.doi.org/10.5517/cc1090fr.])
ATOLUR04 Iodide none H-atom positions changed Ivanova & Spiteller (2017[Ivanova, B. B. & Spiteller, M. (2017). In Horizons in Neuroscience Research, Vol. 29, edited by A. Costa & E. Villalba, pp. 1-78. New York: Nova Science Publishers Inc.])
CIZYAN Nitrate none Z′ = 2 Gatfaoui et al. (2014[Gatfaoui, S., Marouani, H., Roisnel, T. & Dhaouadi, H. (2014). Acta Cryst. E70, o571-o572.])
OGEGAJ Perchlorate none   Boghaei et al. (2008[Boghaei, D. M., Baniyaghoob, S., Najafpour, M. M. & McKee, V. (2008). Acta Cryst. E64, o2268.])
ATOLIF 3-Carb­oxy-4-hy­droxy­benzene­sulfonate 1.5 H2O H-atom positions changed Ivanova & Spiteller (2010[Ivanova, B. & Spiteller, M. (2010). Spectrochim. Acta A Mol. Biomol. Spectrosc. 77, 849-855.])
ATOMAY Hydrogen squarate none H-atom positions changed Ivanova & Spiteller (2010[Ivanova, B. & Spiteller, M. (2010). Spectrochim. Acta A Mol. Biomol. Spectrosc. 77, 849-855.])
RAWDEB Pyrene­tetra­sulfonate 5 H2O Contains 1 dopamine and 3 guanidinium cations Feng et al. (2017[Feng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037-4041.])
MIYLOV 3,5-Di­nitro­benzoate none   Ohba & Ito (2002[Ohba, S. & Ito, Y. (2002). Acta Cryst. E58, o586-o587.])
I Benzoate none   This work
II 4-Nitro­benzoate none   This work
III Ethane­disulfonate none   This work
IV 4-Hy­droxy­benzene­sulfonate 1 H2O Disordered anion This work
[Figure 1]
Figure 1
View of the asymmetric unit contents of I, with non-H atoms shown as 50% probability displacement ellipsoids. Here and in Figs. 2[link]–4[link][link], H atoms are drawn as spheres of arbitrary size.
[Figure 2]
Figure 2
View of the asymmetric unit contents of II, with non-H atoms shown as 50% probability displacement ellipsoids.
[Figure 3]
Figure 3
View of the asymmetric unit contents of III, extended to show the com­plete dianion generated by the inversion centre in the C—C bond. Non-H atoms are shown as 50% probability displacement ellipsoids.
[Figure 4]
Figure 4
View of the asymmetric unit contents of IV, with disorder of atoms C10, C11, C13 and C14 hidden for clarity. Non-H atoms are shown as 50% probability displacement ellipsoids.

The dopamine cations of IIV utilize all three NH groups and both OH groups as hydrogen-bond donors, but apart from that, there is little similarity between them and in detail each acts in a different manner. As shown in Table 7[link], in benzoate I all potential donors make a single hydrogen bond to an O atom of a benzoate COO group. Here, none of the atoms of the cation acts as an acceptor and hydrogen bonds exist only between cations and anions. In II, the number of potential hydrogen-bond acceptors is increased by the inclusion of an NO2 group on the anion. This leads to the cation making extra donor inter­actions, with one NH group and the para-OH group both acting as bifurcated donors to two hydro­gen bonds. Again, no atom of the cation acts as an acceptor and all hydrogen bonds are formed between cations and anions. In III, all five cation donor groups make single hydrogen bonds, but in contrast to I and II, the para-OH group also acts as an acceptor, accepting a hydrogen-bond contact from a neighbouring RNH3 group. Thus, in III, there are hydrogen bonds both between cations and anions, and between pairs of cations. In the hydrate IV, one of the NH groups makes a bifurcated donor inter­action with two neighbouring SO3 groups and all other cation donor atoms make single hydrogen bonds. That from the para-OH group donates to a water mol­ecule, but all others are to anions. The para-OH group also accepts a hydrogen bond from a water mol­ecule. In IV, hydrogen bonds link cations to anions, and both cations and anions to water. However, unlike III, there are no cation-to-cation hydrogen-bond contacts.

Table 7
Selected hydrogen-bonding features in the structures of salt forms of dopamine

The table shows the various potential acceptor (A) and donor (D) groups of the dopamine cation (first row) and details the types of fragment that form hydrogen bonds with these groups (body of table).

CSD refcode Anion para-OH D para-OH A meta-OH D meta-OH A 1st NH D 2nd NH D 3rd NH D
DOPAMN01 Cl anion NH anion   anion and OH anion anion
QQQARJ02 Br anion NH anion   anion and OH anion anion
ATOLUR04 I anion NH anion NH anion and OH anion and OH anion
CIZYAN Fragment 1 NO3 2 O of anion   anion NH anion and OH 2 O of anion 2 × anions
CIZYAN Fragment 2 NO3 anion NH anion NH OH 2 O of anion 2 × anions and OH
OGEGAJ ClO4 anion NH anion NH anion and OH anion OH
ATOLIF carb­oxy­hydroxy­benzene­sulfonate anion H2O H2O   anion anion H2O
ATOMAY squarate anion 2 × NH anion   anion anion 2 × OH
RAWDEB pyrene­tetra­sulfonate H2O   anion 2 × NH (guad) H2O H2O H2O
MIYLOV di­nitro­benzoate anion   anion (nitro)   anion anion (nitro) 2 O of anion
I benzoate anion   anion   anion anion anion
II nitro­benzoate 2 O of anion   anion   anion anion (nitro) 2 × anion (COO and nitro)
III ethane­disulfonate anion NH anion   anion anion OH
IV hy­droxy­benzene­sulfonate H2O H2O anion   anion and OH anion anion

A large-scale structural study on tyramine salt forms identified two common hydrogen-bonding motifs that co-existed in 19 of 24 benzoate and sulfonate salts of that com­pound (Briggs et al., 2012[Briggs, N. E. B., Kennedy, A. R. & Morrison, C. A. (2012). Acta Cryst. B68, 453-464.]). These motifs were both one-dimensional (1D) chain structures, one of graph set C22(6) corresponding to an (⋯OXO⋯HNH⋯)n (X = C or S) linkage and one of graph set C22(13) corresponding to COO or SO3 groups bonding to both the NH3 head and the para-OH tail of the cation. Here only structures I and III show both motifs. They also have an additional C22(12) motif. This latter is equivalent to the C22(13) motif, but utilizes the extra meta-OH group of dopamine rather than the para-OH group which is common to both dopamine and tyramine. Figs. 5[link] and 6[link] illustrate these hydro­gen-bonded-chain features. Structure IV contains both the C22(6) and the C22(12) motifs, but the para-OH group of this hydrate only hydrogen bonds to water mol­ecules and thus the C22(13) motif does not occur here. In contrast, of the three motifs described above, the nitro­benzoate salt II only displays the C22(13) chain. In the hydrogen bonding of structure II, ring motifs become prevalent, including that formed by a tetra­mer consisting of two cations and two anions. These are linked by hydrogen bonding between the catechol moieties and the carboxyl­ate groups in an R44(18) motif. This coplanar tetra­mer is then capped on each side of the plane through hydrogen bonds to the RNH3 groups of two further cations, as shown in Fig. 7[link].

[Figure 5]
Figure 5
Part of the 1D C22(6) motif found in III. The hydrogen-bonded chain propagates parallel to the a direction.
[Figure 6]
Figure 6
An illustration showing the repeating core of the C22(13) motif, utilizing the para-OH group, of structure I. A similar C22(12) motif, using the same functional groups but utilizing the meta-OH group rather than the para-OH group, also exists here.
[Figure 7]
Figure 7
A central hydrogen-bonding motif in II consisting of four coplanar groups linked via the catechol and carboxyl­ate groups. This unit is capped top and bottom by hydrogen bonds to the RNH3 group of the cation.

On attempting to com­pare the hydrogen-bonding behaviour of dopamine cations in structures IIV with that in the literature salt forms, a problem was observed. The H-atom positions recovered for the structures of ATOLIF, ATOMAY and, to a certain extent, ATOLUR04 appeared unusual (Fig. 8[link]) (Ivanova & Spiteller, 2010[Ivanova, B. & Spiteller, M. (2010). Spectrochim. Acta A Mol. Biomol. Spectrosc. 77, 849-855.], 2017[Ivanova, B. B. & Spiteller, M. (2017). In Horizons in Neuroscience Research, Vol. 29, edited by A. Costa & E. Villalba, pp. 1-78. New York: Nova Science Publishers Inc.]). As well as unusual out-of-plane conformations, those groups which would be expected to be strong hydrogen-bond donors did not connect with geometrically reasonable acceptor atoms, in contradiction to Etter's rules (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). In all three cases, alternative H-atom positions that did give typical hydrogen-bond inter­actions were available. Thus, for these structures, before hydrogen-bonding motifs were analysed, the H atoms were removed and manually replaced with the H atoms situated so as to give typical hydrogen-bonding geometries. For the hydrate ATOLUR04, H atoms were missing from the water mol­ecule sites. Thus, before analysis, these H atoms were also added in geometrically reasonable expected positions. All further discussion of the hydrogen bonding of these three com­­pounds thus refers to the edited structures. Atomic structures for these edited structures are given in CIF format in the supporting information.

[Figure 8]
Figure 8
(a) The structure of ATOMAY as recovered from the CSD. Note the unusual out-of-plane geometry of the H atoms of the OH substituents. These out-of-plane H atoms do not form hydrogen bonds with neighbouring ions. (b) The structure of ATOMAY edited so as to place H atoms in-plane and in geometries that maximize hydrogen bonding.

When examining all 13 available salt forms of dopamine in Table 7[link], it becomes apparent that the hydrogen-bonding be­haviour of the cation is very variable. Of 14 crystallo­graphically independent dopamine fragments, only two, those of the chloride DOPAMN01 and the bromide QQQEAJ01, have the same set of inter­actions originating from the dopamine cation. Furthermore, none of the literature carboxyl­ate or sulfonate structures feature the combination of C22(6) and C22(13) chains that is found to be prevalent in tyramine salt forms (Briggs et al., 2012[Briggs, N. E. B., Kennedy, A. R. & Morrison, C. A. (2012). Acta Cryst. B68, 453-464.]). The halide salt forms of dopamine (Cl, Br and I) do though present the C21(4), C21(11) and C21(10) chains that are the monoatomic ion equivalent of the three motifs discussed above for COO- and SO3-based ions. Finally, it is noted that the ladder-like structures commonly seen for other carboxyl­ate salt forms of RNH3+ species (Kinbara et al., 1996[Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.]) are found for neither dopamine salt forms nor for tyramine salt forms.

In an attempt to find further com­parable features across the structural group, use was made of the `crystal packing similarity' module within Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]; Childs et al., 2009[Childs, S. L., Wood, P. A., Rodríguez-Hornedo, N., Reddy, L. S. & Hardcastle, K. I. (2009). Cryst. Growth Des. 9, 1869-1888.]). This was used to investigate similarity in the cation packing across the available dopamine forms by investigating geometrical similarity between small clusters of dopamine cations. In doing so other species present, such as anions and solvent mol­ecules, were ignored. An initial calculation using only the dopamine structures identified that the chloride and bromide salts of dopamine were isostructural at a cluster size of 15 cations, and that the iodide and perchlorate salt forms were similarly isostructural (Figs. 9[link] and 10[link]). For the Cl/Br pair, the reported unit cells and space groups clearly indicate that the com­plete structures are both isostructural and isomorphous (Giesecke, 1980[Giesecke, J. (1980). Acta Cryst. B36, 178-181.]; Pike & Dziura, 2013[Pike, R. D. & Dziura, T. M. (2013). CSD Communication. CCDC 932183 (CCDC refcode QQQAEJ02). https://dx.doi.org/10.5517/cc1090fr.]). However, there is no such similarity in the unit cells of the I/ClO4 pair (Ivanova & Spiteller, 2017[Ivanova, B. B. & Spiteller, M. (2017). In Horizons in Neuroscience Research, Vol. 29, edited by A. Costa & E. Villalba, pp. 1-78. New York: Nova Science Publishers Inc.]; Boghaei et al., 2008[Boghaei, D. M., Baniyaghoob, S., Najafpour, M. M. & McKee, V. (2008). Acta Cryst. E64, o2268.]).

[Figure 9]
Figure 9
Overlay diagram showing the packing of 15 dopamine cations of the chloride structure (multicoloured) and 15 dopamine cations of the bromide structure (green). The r.m.s. value is 0.210 Å. Anions have been omitted for clarity.
[Figure 10]
Figure 10
Overlay diagram showing the packing of 15 dopamine cations of the perchlorate structure (multicoloured) and 15 dopamine cations of the iodide structure (green). The r.m.s. value is 0.451 Å. Anions have been omitted for clarity.

More inter­esting results were obtained when the packing similarity module was applied to a data set that included both the available dopamine forms and those of tyramine. This time six groups of structures with similar cation packing arrays at the level of a 15 from 15 match were identified (Table 8[link]). Group 1 contains only the dopamine I/ClO4 pair as already seen, and groups 4, 5 and 6 contain only tyramine structures. However, groups 2 and 3 are inter­esting as they contain both dopamine and tyramine structures. Group 2 contains I, the benzoate salt of dopamine, and both the 4-amino- and 4-methyl­benzoate salt forms of tyramine. Group 3 is an expanded version of the dopamine Cl/Br grouping that now also contains III, the ethane­disulfonate salt of dopamine, and six forms of tyramine. These are the chloride, bromide, perchlorate, BF4 and di­hydrogen phosphate salts of tyramine, and also the neutral hemihydrate of tyramine. (Note: when assessing dopamine structures alone, the ethane­disulfonate structure III was found to be related to the Cl/Br group, but only at a level with 7 from 15 matches. However, the larger and more varied dopamine/tyramine group appears to allow a fuller match.) Each group of Table 8[link] is com­posed of structures with broadly similar anion types. Thus, for example, group 2 contains only structures with benzoate or para-benzoate anions, and group 3 is com­posed of species with simple inorganic anions or coformers. Beyond this basic similarity though lies a great deal of variation. For example, group 3 encom­passes structures with different cations, with different anions, with and without solvent present, and with neutral PEA species rather than charged ones, see Fig. 11[link] as an example.

Table 8
Groups identified as having isostructural packing of cations

  Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Cations Dop only Dop and Tyr Dop and Tyr Tyr only Tyr only Tyr only
Structure ATOLUR04 [dop][I] I [dop][benzoate] DOPAMN01 [dop][Cl] MEDGEJ MEDBAA MEDBOO
  OGEGAJ [dop][ClO4] MEDDEG [tyr][4-amino­benzoate] QQQAEJ02 [dop][Br] MEDGUZ MEDBII MEDBUU
    MEDFEI [tyr][4-methyl­benzoate] III [dop][ethane­disulfonate] MEDHEK   MEDCEF
      TIRZEB Tyramine hemihydrate     MEDDOQ
      TYRAMC11 [tyr][Cl]      
      MECYAW [tyr][Br]      
      MECYIE [tyr][BF4]·H2O      
      MECYUQ [tyr][PO4H2]·2H2O      
      MECYOK [tyr][ClO4]·H2O      
Comments   Mixed cations with benzoate or para-substituted benzoate anions Mixed cations and neutral tryamine; mixed anhydrate and hydrate; simple inorganic anions All di­carboxyl­ate anions Benzoate and halobenzoate anions All halo or methyl-substituted benzoate anions
Note: Dop is the dopamine cation and Tyr is the tyramine cation.
[Figure 11]
Figure 11
Overlay diagram showing the packing of 15 dopamine cations of the chloride structure (green) and 15 tyramine units of the hemihydrate structure. The r.m.s. value is 0.566 Å. Anions and water mol­ecules have been omitted for clarity.

This, of course, leads to very different hydrogen bonding throughout the structures of these com­pounds. From a chemical identity point of view, the two most different structures of group 3 are the ethane­disulfonate salt of dopamine, III, and the hemihydrate of tyramine, TIRZEB (Cruickshank et al., 2013[Cruickshank, L., Kennedy, A. R. & Shankland, N. (2013). J. Mol. Struct. 1051, 132-136.]). The ethane­disulfonate dianion does not fit well with the descriptor used above of a `simple inorganic anion' being as it is both larger than the other anions in this group and doubly charged. This is reconciled simply. The ethane­disulfonate ion lies upon a crystallographic centre of sym­metry, thus making the unique repeating structural part the much smaller `O3SCH2' fragment which is a reasonable match to a `simple inorganic anion'. The ethane­disulfonate anion takes the structural place of two anions in other group member structures, such as that of dopamine chloride, DOPAMN01. The intra­molecular S⋯S separation of 4.338 Å in III com­pares well with the inter­molecular Cl⋯Cl distance of 4.303 Å in the chloride. Tyramine hemihydrate, TIRZEB, is an inter­esting structure. Disorder of the phenol H-atom positions in this structure means that the tyramine fragments present are best thought of as a mix of neutral, cationic and zwitterionic forms of tyramine (Cruickshank et al., 2013[Cruickshank, L., Kennedy, A. R. & Shankland, N. (2013). J. Mol. Struct. 1051, 132-136.]). This presents some difference to the cationic PEA forms that make up the rest of group 3. Water is obviously a neutral coformer rather than the small anions found in the rest of group 3, but a further difference is stoichiometry. There is only one water mol­ecule per two tyramine fragments in TIRZEB, as opposed to one monoanionic fragment per organic cation in all the other structures of group 3. Despite all this variation in chemical identity and in the type and number of the strong hydrogen-bonding inter­molecular inter­actions, the cations of these groups still adopt similar packing arrangements. Con­versely, similarities in hydrogen bonding do not necessarily seem to lead to similarity in cation packing. One of the few patterns in the hydrogen-bonding behaviour of the dopamine salts is that all three halides have structures based around the same chain-type inter­actions (see above). Despite this hydro­gen-bonding similarity, only the Cl and Br salt forms are found in group 3, with the iodide salt grouping with the perchlorate in group 1. A similar observation that PEA cation packing was not governed by hydrogen-bond formation, though one from a data set that did not feature different cations, was made in a study on methyl­ephedrine salt forms (Kennedy et al., 2011[Kennedy, A. R., Morrison, C. A., Briggs, N. E. B. & Arbuckle, W. (2011). Cryst. Growth Des. 11, 1821-1834.]). In a related point, Collier et al. (2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]) noted that it was simply the gross amphiphilic nature of the ephedrine cation that dominated packing in structures of its salt forms, rather than the detail of the functional groups or individual inter­action types.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I); SHELXS (Sheldrick, 2015a) for (II), (III), (IV). For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020). Software used to prepare material for publication: SHELXL2018 in WinGX (Farrugia, 2012) for (I), (II); SHELXL in WinGX (Farrugia, 2012) for (III), (IV).

2-(3,4-Dihydroxyphenyl)ethan-1-aminium benzoate (I) top
Crystal data top
C8H12NO2+·C7H5O2F(000) = 584
Mr = 275.29Dx = 1.376 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 11.7637 (6) ÅCell parameters from 1775 reflections
b = 11.7460 (5) Åθ = 5.5–72.6°
c = 10.3316 (5) ŵ = 0.83 mm1
β = 111.384 (6)°T = 123 K
V = 1329.30 (12) Å3Blade, colourless
Z = 40.35 × 0.10 × 0.02 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
2033 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.026
ω scansθmax = 72.8°, θmin = 8.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 1414
Tmin = 0.761, Tmax = 1.000k = 1414
5127 measured reflectionsl = 912
2614 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0888P)2 + 0.9631P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2614 reflectionsΔρmax = 0.63 e Å3
201 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All measurements were made with Oxford Diffraction instruments using Crysalis PRO software for data collection and reduction (Rigaku OD, 2019). Solution was by direct methods, SIR92 or SHELXS (Altomare et al., 1994; Sheldrick, 2015a). All structures were refined to convergence against F2 using all unique reflections and the program SHELXL2018 as implemented within WinGX (Sheldrick, 2015b; Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.20255 (19)0.04346 (18)0.6282 (2)0.0421 (5)
O21.28979 (15)0.19051 (14)0.84779 (19)0.0276 (4)
O30.43021 (15)0.11232 (14)0.60916 (17)0.0292 (4)
O40.40997 (15)0.30029 (14)0.62181 (17)0.0281 (4)
N10.62199 (17)0.05339 (17)0.6759 (2)0.0244 (4)
C10.7372 (2)0.0150 (2)0.7240 (4)0.0409 (7)
H1A0.7281840.0797540.6596960.049*
H1B0.7505660.0465420.8173020.049*
C20.8451 (2)0.0529 (2)0.7309 (3)0.0413 (7)
H2A0.8276260.0921260.6408800.050*
H2B0.8600280.1119040.8036100.050*
C30.9600 (2)0.0188 (2)0.7628 (3)0.0358 (6)
C41.0295 (2)0.0041 (2)0.6822 (3)0.0345 (6)
H41.0037290.0481940.6069400.041*
C51.1370 (2)0.0650 (2)0.7098 (3)0.0319 (6)
C61.1783 (2)0.14003 (19)0.8221 (3)0.0275 (5)
C71.1075 (2)0.1579 (2)0.9009 (3)0.0368 (6)
H71.1325900.2109080.9754470.044*
C80.9974 (3)0.0971 (2)0.8703 (3)0.0426 (7)
H80.9482180.1100460.9241250.051*
C90.5586 (2)0.20615 (19)0.8119 (2)0.0235 (5)
C100.5704 (2)0.1143 (2)0.9017 (2)0.0271 (5)
H100.5111380.0552480.8770670.033*
C110.6686 (2)0.1094 (2)1.0268 (3)0.0322 (6)
H110.6746770.0485331.0894620.039*
C120.7579 (2)0.1925 (2)1.0610 (3)0.0362 (6)
H120.8268130.1869911.1450340.043*
C130.7464 (2)0.2843 (2)0.9716 (3)0.0353 (6)
H130.8072830.3419130.9949160.042*
C140.6458 (2)0.2915 (2)0.8487 (2)0.0279 (5)
H140.6367400.3553590.7893350.033*
C150.4585 (2)0.20679 (19)0.6709 (2)0.0230 (5)
H1N0.618 (3)0.112 (3)0.741 (3)0.044 (9)*
H2N0.555 (3)0.003 (3)0.660 (3)0.044 (9)*
H3N0.607 (3)0.091 (3)0.599 (4)0.040 (8)*
H1H1.266 (3)0.084 (3)0.654 (4)0.049 (10)*
H2H1.324 (3)0.200 (3)0.935 (4)0.045 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (11)0.0485 (12)0.0364 (11)0.0140 (9)0.0126 (9)0.0125 (9)
O20.0259 (8)0.0289 (9)0.0274 (10)0.0054 (6)0.0090 (7)0.0019 (7)
O30.0327 (9)0.0249 (8)0.0276 (9)0.0030 (7)0.0081 (7)0.0012 (7)
O40.0351 (9)0.0250 (8)0.0244 (9)0.0084 (7)0.0109 (7)0.0030 (6)
N10.0249 (10)0.0216 (9)0.0253 (11)0.0021 (7)0.0077 (8)0.0006 (8)
C10.0309 (13)0.0294 (13)0.065 (2)0.0063 (10)0.0201 (13)0.0031 (12)
C20.0335 (13)0.0304 (13)0.0571 (19)0.0042 (11)0.0131 (12)0.0056 (12)
C30.0291 (12)0.0287 (12)0.0435 (16)0.0006 (10)0.0062 (11)0.0022 (11)
C40.0309 (12)0.0319 (13)0.0327 (14)0.0026 (10)0.0020 (10)0.0012 (10)
C50.0276 (11)0.0297 (12)0.0286 (13)0.0016 (10)0.0013 (10)0.0061 (10)
C60.0226 (11)0.0239 (11)0.0325 (13)0.0006 (8)0.0058 (9)0.0057 (9)
C70.0336 (13)0.0344 (13)0.0438 (16)0.0015 (11)0.0161 (12)0.0047 (11)
C80.0388 (14)0.0368 (14)0.0608 (19)0.0016 (11)0.0285 (14)0.0039 (13)
C90.0270 (11)0.0253 (11)0.0197 (11)0.0052 (8)0.0102 (9)0.0004 (8)
C100.0313 (11)0.0261 (11)0.0267 (12)0.0052 (9)0.0139 (10)0.0031 (9)
C110.0410 (13)0.0326 (12)0.0250 (13)0.0120 (10)0.0145 (11)0.0069 (10)
C120.0352 (13)0.0461 (15)0.0233 (13)0.0096 (11)0.0058 (10)0.0002 (11)
C130.0337 (13)0.0400 (14)0.0302 (13)0.0035 (11)0.0094 (11)0.0059 (11)
C140.0340 (12)0.0274 (11)0.0235 (12)0.0007 (9)0.0120 (10)0.0013 (9)
C150.0243 (10)0.0254 (11)0.0228 (11)0.0037 (8)0.0129 (9)0.0018 (8)
Geometric parameters (Å, º) top
O1—C51.358 (3)C4—H40.9500
O1—H1H0.84 (4)C5—C61.396 (4)
O2—C61.374 (3)C6—C71.377 (4)
O2—H2H0.85 (4)C7—C81.410 (4)
O3—C151.263 (3)C7—H70.9500
O4—C151.256 (3)C8—H80.9500
N1—C11.496 (3)C9—C141.385 (3)
N1—H1N0.98 (3)C9—C101.396 (3)
N1—H2N0.95 (3)C9—C151.503 (3)
N1—H3N0.87 (4)C10—C111.386 (4)
C1—C21.478 (4)C10—H100.9500
C1—H1A0.9900C11—C121.381 (4)
C1—H1B0.9900C11—H110.9500
C2—C31.523 (3)C12—C131.394 (4)
C2—H2A0.9900C12—H120.9500
C2—H2B0.9900C13—C141.387 (4)
C3—C41.373 (4)C13—H130.9500
C3—C81.384 (4)C14—H140.9500
C4—C51.389 (4)
C5—O1—H1H110 (2)O2—C6—C5116.8 (2)
C6—O2—H2H108 (2)C7—C6—C5119.0 (2)
C1—N1—H1N114.8 (19)C6—C7—C8119.6 (3)
C1—N1—H2N108 (2)C6—C7—H7120.2
H1N—N1—H2N108 (3)C8—C7—H7120.2
C1—N1—H3N116 (2)C3—C8—C7120.9 (3)
H1N—N1—H3N103 (3)C3—C8—H8119.5
H2N—N1—H3N106 (3)C7—C8—H8119.5
C2—C1—N1112.6 (2)C14—C9—C10119.5 (2)
C2—C1—H1A109.1C14—C9—C15120.2 (2)
N1—C1—H1A109.1C10—C9—C15120.0 (2)
C2—C1—H1B109.1C11—C10—C9119.9 (2)
N1—C1—H1B109.1C11—C10—H10120.0
H1A—C1—H1B107.8C9—C10—H10120.0
C1—C2—C3113.0 (2)C12—C11—C10120.5 (2)
C1—C2—H2A109.0C12—C11—H11119.8
C3—C2—H2A109.0C10—C11—H11119.8
C1—C2—H2B109.0C11—C12—C13119.7 (2)
C3—C2—H2B109.0C11—C12—H12120.1
H2A—C2—H2B107.8C13—C12—H12120.1
C4—C3—C8119.0 (2)C14—C13—C12119.8 (2)
C4—C3—C2118.5 (2)C14—C13—H13120.1
C8—C3—C2122.6 (3)C12—C13—H13120.1
C3—C4—C5120.6 (3)C9—C14—C13120.4 (2)
C3—C4—H4119.7C9—C14—H14119.8
C5—C4—H4119.7C13—C14—H14119.8
O1—C5—C4117.3 (2)O4—C15—O3124.5 (2)
O1—C5—C6122.0 (2)O4—C15—C9118.4 (2)
C4—C5—C6120.7 (3)O3—C15—C9117.03 (19)
O2—C6—C7124.1 (2)
N1—C1—C2—C3173.1 (2)C2—C3—C8—C7176.9 (3)
C1—C2—C3—C4132.1 (3)C6—C7—C8—C30.6 (4)
C1—C2—C3—C848.5 (4)C14—C9—C10—C110.3 (3)
C8—C3—C4—C51.4 (4)C15—C9—C10—C11174.7 (2)
C2—C3—C4—C5178.1 (2)C9—C10—C11—C122.6 (4)
C3—C4—C5—O1178.1 (2)C10—C11—C12—C132.7 (4)
C3—C4—C5—C61.7 (4)C11—C12—C13—C140.3 (4)
O1—C5—C6—O20.7 (3)C10—C9—C14—C132.1 (3)
C4—C5—C6—O2175.4 (2)C15—C9—C14—C13172.3 (2)
O1—C5—C6—C7179.9 (2)C12—C13—C14—C92.0 (4)
C4—C5—C6—C73.7 (4)C14—C9—C15—O440.3 (3)
O2—C6—C7—C8176.6 (2)C10—C9—C15—O4145.3 (2)
C5—C6—C7—C82.5 (4)C14—C9—C15—O3138.7 (2)
C4—C3—C8—C72.6 (4)C10—C9—C15—O335.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O20.84 (4)2.29 (4)2.736 (3)113 (3)
O1—H1H···O3i0.84 (4)2.17 (4)2.872 (3)141 (3)
O2—H2H···O4ii0.85 (4)1.83 (4)2.666 (2)171 (3)
N1—H1N···O4iii0.98 (3)1.87 (4)2.834 (3)167 (3)
N1—H2N···O30.95 (3)1.93 (3)2.867 (3)171 (3)
N1—H3N···O3iv0.87 (4)2.04 (4)2.866 (3)156 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y, z+1.
2-(3,4-Dihydroxyphenyl)ethan-1-aminium 4-nitrobenzoate (II) top
Crystal data top
C8H12NO2+·C7H4NO4F(000) = 672
Mr = 320.30Dx = 1.445 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4993 (2) ÅCell parameters from 2686 reflections
b = 18.5051 (5) Åθ = 3.3–29.5°
c = 10.7610 (3) ŵ = 0.11 mm1
β = 99.628 (3)°T = 123 K
V = 1472.33 (7) Å3Fragment from sheet, light orange
Z = 40.35 × 0.25 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2620 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
ω scansθmax = 29.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 910
Tmin = 0.928, Tmax = 1.000k = 2322
7174 measured reflectionsl = 1414
3573 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.3527P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3573 reflectionsΔρmax = 0.34 e Å3
228 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All measurements were made with Oxford Diffraction instruments using Crysalis PRO software for data collection and reduction (Rigaku OD, 2019). Solution was by direct methods, SIR92 or SHELXS (Altomare et al., 1994; Sheldrick, 2015a). All structures were refined to convergence against F2 using all unique reflections and the program SHELXL2018 as implemented within WinGX (Sheldrick, 2015b; Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02468 (17)0.39442 (7)0.68207 (11)0.0229 (3)
O20.10642 (16)0.39286 (6)0.93533 (11)0.0184 (3)
O30.27783 (16)0.38212 (6)0.16312 (11)0.0238 (3)
O40.12298 (16)0.48019 (6)0.19981 (11)0.0211 (3)
O50.63600 (17)0.36449 (7)0.79848 (11)0.0290 (3)
O60.47314 (17)0.45641 (7)0.83201 (11)0.0255 (3)
N10.2961 (2)0.04959 (8)0.54829 (14)0.0169 (3)
N20.52353 (19)0.41058 (8)0.76138 (13)0.0205 (3)
C10.2126 (2)0.10833 (8)0.61416 (16)0.0196 (4)
H1A0.2102210.0937360.7023800.023*
H1B0.0863040.1160900.5719750.023*
C20.3181 (2)0.17811 (8)0.61303 (15)0.0188 (4)
H2A0.4486450.1681800.6394650.023*
H2B0.3004040.1977050.5262250.023*
C30.2576 (2)0.23360 (8)0.70057 (15)0.0166 (3)
C40.1396 (2)0.28844 (9)0.65451 (15)0.0162 (3)
H40.0938670.2905700.5667680.019*
C50.0869 (2)0.34033 (8)0.73371 (15)0.0157 (3)
C60.1551 (2)0.33782 (8)0.86302 (15)0.0151 (3)
C70.2698 (2)0.28231 (9)0.91013 (15)0.0193 (4)
H70.3139780.2796090.9980560.023*
C80.3211 (2)0.23034 (9)0.82974 (16)0.0198 (4)
H80.4000420.1923360.8631030.024*
C90.2296 (2)0.42853 (9)0.23546 (15)0.0164 (3)
C100.3042 (2)0.42168 (9)0.37466 (15)0.0157 (3)
C110.4354 (2)0.36997 (9)0.41723 (15)0.0190 (4)
H110.4751850.3376920.3589190.023*
C120.5082 (2)0.36536 (9)0.54460 (16)0.0196 (4)
H120.5982300.3305200.5746360.023*
C130.4454 (2)0.41318 (9)0.62609 (15)0.0171 (3)
C140.3140 (2)0.46390 (9)0.58735 (15)0.0187 (4)
H140.2726370.4952260.6464140.022*
C150.2434 (2)0.46829 (9)0.46006 (15)0.0185 (4)
H150.1530880.5031980.4310170.022*
H1H0.044 (3)0.4259 (13)0.738 (2)0.053 (7)*
H2H0.170 (3)0.3879 (12)1.018 (2)0.050 (7)*
H1N0.416 (3)0.0382 (11)0.593 (2)0.047 (7)*
H2N0.233 (3)0.0082 (12)0.5439 (19)0.033 (6)*
H3N0.306 (3)0.0615 (10)0.470 (2)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0292 (7)0.0225 (7)0.0167 (6)0.0109 (5)0.0025 (5)0.0010 (5)
O20.0255 (6)0.0160 (6)0.0142 (6)0.0048 (5)0.0047 (5)0.0013 (5)
O30.0249 (7)0.0277 (7)0.0175 (6)0.0075 (6)0.0001 (5)0.0057 (5)
O40.0248 (6)0.0190 (6)0.0178 (6)0.0053 (5)0.0015 (5)0.0009 (5)
O50.0284 (7)0.0360 (8)0.0210 (6)0.0088 (6)0.0004 (5)0.0066 (6)
O60.0296 (7)0.0300 (7)0.0166 (6)0.0003 (6)0.0031 (5)0.0052 (5)
N10.0180 (7)0.0145 (7)0.0185 (7)0.0010 (6)0.0039 (6)0.0038 (6)
N20.0188 (7)0.0241 (8)0.0183 (7)0.0037 (6)0.0021 (6)0.0031 (6)
C10.0209 (8)0.0166 (8)0.0228 (8)0.0001 (7)0.0084 (7)0.0063 (7)
C20.0214 (9)0.0161 (8)0.0201 (8)0.0002 (7)0.0067 (7)0.0038 (7)
C30.0170 (8)0.0136 (8)0.0197 (8)0.0024 (7)0.0047 (7)0.0029 (7)
C40.0166 (8)0.0177 (8)0.0143 (7)0.0020 (7)0.0027 (6)0.0014 (7)
C50.0136 (8)0.0145 (8)0.0191 (8)0.0008 (6)0.0030 (6)0.0019 (7)
C60.0163 (8)0.0126 (7)0.0171 (8)0.0022 (6)0.0044 (6)0.0031 (7)
C70.0217 (9)0.0188 (8)0.0165 (8)0.0014 (7)0.0007 (7)0.0018 (7)
C80.0199 (9)0.0154 (8)0.0228 (9)0.0043 (7)0.0001 (7)0.0003 (7)
C90.0136 (8)0.0181 (8)0.0173 (8)0.0014 (7)0.0024 (6)0.0007 (7)
C100.0150 (8)0.0153 (8)0.0167 (8)0.0025 (7)0.0023 (6)0.0006 (7)
C110.0197 (8)0.0185 (8)0.0188 (8)0.0014 (7)0.0035 (7)0.0020 (7)
C120.0176 (8)0.0189 (8)0.0217 (8)0.0024 (7)0.0021 (7)0.0036 (7)
C130.0176 (8)0.0196 (8)0.0137 (8)0.0043 (7)0.0009 (6)0.0019 (7)
C140.0213 (9)0.0181 (8)0.0173 (8)0.0013 (7)0.0045 (7)0.0021 (7)
C150.0178 (8)0.0180 (8)0.0192 (8)0.0015 (7)0.0017 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—C51.3619 (19)C3—C81.393 (2)
O1—H1H0.87 (2)C4—C51.385 (2)
O2—C61.3681 (18)C4—H40.9500
O2—H2H0.94 (2)C5—C61.401 (2)
O3—C91.2524 (19)C6—C71.381 (2)
O4—C91.2641 (19)C7—C81.390 (2)
O5—N21.2188 (18)C7—H70.9500
O6—N21.2392 (18)C8—H80.9500
N1—C11.491 (2)C9—C101.514 (2)
N1—H1N0.97 (2)C10—C151.392 (2)
N1—H2N0.90 (2)C10—C111.393 (2)
N1—H3N0.88 (2)C11—C121.391 (2)
N2—C131.477 (2)C11—H110.9500
C1—C21.515 (2)C12—C131.383 (2)
C1—H1A0.9900C12—H120.9500
C1—H1B0.9900C13—C141.374 (2)
C2—C31.513 (2)C14—C151.386 (2)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—H150.9500
C3—C41.383 (2)
C5—O1—H1H111.8 (16)C4—C5—C6119.58 (15)
C6—O2—H2H108.8 (14)O2—C6—C7123.66 (14)
C1—N1—H1N110.5 (13)O2—C6—C5116.89 (14)
C1—N1—H2N112.9 (13)C7—C6—C5119.42 (14)
H1N—N1—H2N106.0 (18)C6—C7—C8120.43 (15)
C1—N1—H3N112.2 (13)C6—C7—H7119.8
H1N—N1—H3N108.0 (18)C8—C7—H7119.8
H2N—N1—H3N106.9 (18)C7—C8—C3120.45 (15)
O5—N2—O6122.91 (14)C7—C8—H8119.8
O5—N2—C13118.99 (14)C3—C8—H8119.8
O6—N2—C13118.09 (14)O3—C9—O4124.31 (15)
N1—C1—C2110.85 (13)O3—C9—C10117.40 (14)
N1—C1—H1A109.5O4—C9—C10118.29 (14)
C2—C1—H1A109.5C15—C10—C11119.99 (15)
N1—C1—H1B109.5C15—C10—C9119.58 (14)
C2—C1—H1B109.5C11—C10—C9120.42 (14)
H1A—C1—H1B108.1C12—C11—C10120.37 (15)
C3—C2—C1111.22 (13)C12—C11—H11119.8
C3—C2—H2A109.4C10—C11—H11119.8
C1—C2—H2A109.4C13—C12—C11117.78 (15)
C3—C2—H2B109.4C13—C12—H12121.1
C1—C2—H2B109.4C11—C12—H12121.1
H2A—C2—H2B108.0C14—C13—C12123.22 (15)
C4—C3—C8118.75 (15)C14—C13—N2117.89 (14)
C4—C3—C2121.02 (14)C12—C13—N2118.89 (15)
C8—C3—C2120.23 (15)C13—C14—C15118.44 (15)
C3—C4—C5121.33 (15)C13—C14—H14120.8
C3—C4—H4119.3C15—C14—H14120.8
C5—C4—H4119.3C14—C15—C10120.18 (15)
O1—C5—C4118.54 (14)C14—C15—H15119.9
O1—C5—C6121.82 (14)C10—C15—H15119.9
N1—C1—C2—C3168.89 (14)O4—C9—C10—C155.0 (2)
C1—C2—C3—C499.97 (18)O3—C9—C10—C116.4 (2)
C1—C2—C3—C880.32 (19)O4—C9—C10—C11173.84 (15)
C8—C3—C4—C51.2 (2)C15—C10—C11—C121.1 (2)
C2—C3—C4—C5178.55 (15)C9—C10—C11—C12177.81 (15)
C3—C4—C5—O1177.74 (14)C10—C11—C12—C130.4 (2)
C3—C4—C5—C60.5 (2)C11—C12—C13—C140.8 (2)
O1—C5—C6—O20.8 (2)C11—C12—C13—N2178.59 (14)
C4—C5—C6—O2176.30 (14)O5—N2—C13—C14177.64 (14)
O1—C5—C6—C7179.07 (15)O6—N2—C13—C143.4 (2)
C4—C5—C6—C72.0 (2)O5—N2—C13—C122.9 (2)
O2—C6—C7—C8176.47 (15)O6—N2—C13—C12176.00 (14)
C5—C6—C7—C81.7 (2)C12—C13—C14—C151.2 (2)
C6—C7—C8—C30.0 (3)N2—C13—C14—C15178.16 (14)
C4—C3—C8—C71.5 (2)C13—C14—C15—C100.5 (2)
C2—C3—C8—C7178.26 (15)C11—C10—C15—C140.6 (2)
O3—C9—C10—C15174.74 (15)C9—C10—C15—C14178.26 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O20.87 (2)2.31 (2)2.7384 (17)110.4 (19)
O1—H1H···O4i0.87 (2)1.99 (2)2.8030 (17)156 (2)
O2—H2H···O3ii0.94 (2)1.64 (2)2.5780 (16)178 (2)
N1—H1N···O4iii0.97 (2)1.80 (3)2.763 (2)170 (2)
N1—H2N···O2iv0.90 (2)2.44 (2)2.9890 (18)119.7 (16)
N1—H2N···O6iv0.90 (2)2.41 (2)3.095 (2)133.8 (17)
N1—H3N···O2v0.88 (2)2.50 (2)2.9956 (19)116.6 (15)
N1—H3N···O4vi0.88 (2)2.50 (2)3.1125 (18)127.5 (16)
N1—H3N···O5vii0.88 (2)2.48 (2)3.181 (2)137.3 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x1/2, y+1/2, z1/2.
2-(3,4-Dihydroxyphenyl)ethan-1-aminium ethane-1,2-disulfonate (III) top
Crystal data top
2C8H12NO2+·C2H4O6S22Dx = 1.517 Mg m3
Mr = 496.54Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, PbcaCell parameters from 3597 reflections
a = 10.6328 (5) Åθ = 3.7–74.7°
b = 8.5651 (5) ŵ = 2.75 mm1
c = 23.8669 (13) ÅT = 123 K
V = 2173.6 (2) Å3Slab, yellow
Z = 40.30 × 0.15 × 0.05 mm
F(000) = 1048
Data collection top
Oxford Diffraction Gemini S
diffractometer
1924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
ω scansθmax = 74.9°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 1212
Tmin = 0.500, Tmax = 1.000k = 810
7583 measured reflectionsl = 2926
2172 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0781P)2 + 1.1139P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.002
2172 reflectionsΔρmax = 0.62 e Å3
165 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All measurements were made with Oxford Diffraction instruments using Crysalis PRO software for data collection and reduction (Rigaku OD, 2019). Solution was by direct methods, SIR92 or SHELXS (Altomare et al., 1994; Sheldrick, 2015a). All structures were refined to convergence against F2 using all unique reflections and the program SHELXL2018 as implemented within WinGX (Sheldrick, 2015b; Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67052 (4)0.63900 (5)1.00071 (2)0.0157 (2)
O10.44177 (14)0.44564 (19)0.85879 (6)0.0250 (4)
O20.63054 (14)0.24475 (17)0.88987 (6)0.0219 (3)
O30.63463 (14)0.73346 (17)1.04876 (6)0.0236 (4)
O40.64846 (13)0.71856 (17)0.94706 (6)0.0212 (3)
O50.79810 (15)0.57875 (18)1.00334 (5)0.0211 (4)
N10.50796 (17)0.4682 (2)0.57846 (7)0.0195 (4)
C10.5254 (2)0.4025 (3)0.63567 (8)0.0231 (4)
H1A0.5580480.2945970.6326640.028*
H1B0.4429500.3980050.6549080.028*
C20.61585 (19)0.4999 (2)0.67027 (8)0.0206 (4)
H2A0.7001160.4986910.6526380.025*
H2B0.5862090.6094290.6716060.025*
C30.62440 (18)0.4351 (2)0.72921 (8)0.0190 (4)
C40.53191 (19)0.4718 (2)0.76855 (8)0.0199 (4)
H40.4660130.5415460.7587040.024*
C50.53525 (17)0.4074 (2)0.82203 (8)0.0188 (4)
C60.63283 (18)0.3064 (2)0.83667 (8)0.0186 (4)
C70.72407 (18)0.2677 (2)0.79749 (8)0.0214 (4)
H70.7894260.1969860.8071650.026*
C80.71985 (18)0.3322 (2)0.74412 (8)0.0212 (4)
H80.7828470.3057500.7175390.025*
C90.5686 (2)0.4744 (2)1.00146 (7)0.0191 (5)
H9A0.5879860.4060960.9691250.023*
H9B0.5826270.4135841.0361730.023*
H1H0.443 (3)0.383 (3)0.8861 (12)0.034 (7)*
H1N0.578 (3)0.470 (3)0.5576 (11)0.033 (7)*
H2H0.707 (3)0.228 (3)0.9040 (12)0.041 (8)*
H2N0.482 (2)0.563 (3)0.5787 (9)0.020 (6)*
H3N0.451 (3)0.415 (4)0.5588 (12)0.038 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0138 (3)0.0198 (3)0.0135 (3)0.00014 (16)0.00111 (14)0.00113 (15)
O10.0206 (7)0.0374 (9)0.0168 (7)0.0070 (6)0.0034 (5)0.0027 (6)
O20.0174 (7)0.0321 (8)0.0163 (7)0.0005 (6)0.0013 (5)0.0045 (5)
O30.0260 (8)0.0247 (7)0.0201 (7)0.0046 (6)0.0057 (6)0.0040 (5)
O40.0168 (7)0.0278 (8)0.0191 (7)0.0002 (6)0.0013 (5)0.0064 (6)
O50.0154 (7)0.0264 (8)0.0216 (7)0.0025 (6)0.0010 (5)0.0032 (5)
N10.0197 (9)0.0246 (9)0.0143 (8)0.0012 (7)0.0001 (6)0.0004 (7)
C10.0262 (11)0.0274 (10)0.0158 (9)0.0067 (9)0.0005 (7)0.0030 (8)
C20.0178 (10)0.0271 (10)0.0170 (9)0.0021 (8)0.0004 (7)0.0028 (7)
C30.0173 (9)0.0240 (9)0.0156 (9)0.0026 (8)0.0017 (7)0.0001 (7)
C40.0155 (9)0.0246 (9)0.0195 (9)0.0021 (7)0.0033 (7)0.0011 (7)
C50.0137 (9)0.0260 (10)0.0167 (9)0.0009 (8)0.0004 (7)0.0015 (7)
C60.0168 (9)0.0248 (10)0.0143 (9)0.0022 (8)0.0021 (7)0.0006 (7)
C70.0150 (9)0.0281 (10)0.0212 (9)0.0019 (8)0.0025 (7)0.0010 (8)
C80.0166 (9)0.0286 (10)0.0184 (9)0.0013 (8)0.0020 (7)0.0041 (8)
C90.0170 (12)0.0219 (10)0.0185 (10)0.0031 (8)0.0007 (6)0.0005 (7)
Geometric parameters (Å, º) top
S1—O51.4527 (16)C2—C31.515 (2)
S1—O31.4544 (14)C2—H2A0.9900
S1—O41.4693 (14)C2—H2B0.9900
S1—C91.778 (2)C3—C81.390 (3)
O1—C51.366 (2)C3—C41.396 (3)
O1—H1H0.85 (3)C4—C51.391 (3)
O2—C61.375 (2)C4—H40.9500
O2—H2H0.89 (3)C5—C61.396 (3)
N1—C11.488 (2)C6—C71.388 (3)
N1—H1N0.90 (3)C7—C81.389 (3)
N1—H2N0.85 (3)C7—H70.9500
N1—H3N0.89 (3)C8—H80.9500
C1—C21.518 (3)C9—C9i1.525 (4)
C1—H1A0.9900C9—H9A0.9900
C1—H1B0.9900C9—H9B0.9900
O5—S1—O3114.11 (9)H2A—C2—H2B108.2
O5—S1—O4110.58 (8)C8—C3—C4119.03 (18)
O3—S1—O4112.78 (9)C8—C3—C2120.91 (17)
O5—S1—C9106.68 (10)C4—C3—C2119.97 (17)
O3—S1—C9105.85 (9)C5—C4—C3120.65 (18)
O4—S1—C9106.21 (9)C5—C4—H4119.7
C5—O1—H1H109.1 (19)C3—C4—H4119.7
C6—O2—H2H113.2 (18)O1—C5—C4118.42 (17)
C1—N1—H1N114.3 (17)O1—C5—C6121.93 (17)
C1—N1—H2N113.1 (15)C4—C5—C6119.64 (17)
H1N—N1—H2N105 (2)O2—C6—C7122.86 (17)
C1—N1—H3N112.1 (18)O2—C6—C5117.13 (17)
H1N—N1—H3N106 (2)C7—C6—C5119.96 (18)
H2N—N1—H3N106 (2)C6—C7—C8120.00 (18)
N1—C1—C2111.72 (16)C6—C7—H7120.0
N1—C1—H1A109.3C8—C7—H7120.0
C2—C1—H1A109.3C7—C8—C3120.69 (18)
N1—C1—H1B109.3C7—C8—H8119.7
C2—C1—H1B109.3C3—C8—H8119.7
H1A—C1—H1B107.9C9i—C9—S1110.76 (19)
C3—C2—C1109.98 (16)C9i—C9—H9A109.5
C3—C2—H2A109.7S1—C9—H9A109.5
C1—C2—H2A109.7C9i—C9—H9B109.5
C3—C2—H2B109.7S1—C9—H9B109.5
C1—C2—H2B109.7H9A—C9—H9B108.1
N1—C1—C2—C3176.39 (16)C4—C5—C6—C71.6 (3)
C1—C2—C3—C895.6 (2)O2—C6—C7—C8178.95 (17)
C1—C2—C3—C481.0 (2)C5—C6—C7—C81.5 (3)
C8—C3—C4—C50.4 (3)C6—C7—C8—C30.4 (3)
C2—C3—C4—C5176.98 (17)C4—C3—C8—C70.5 (3)
C3—C4—C5—O1179.24 (18)C2—C3—C8—C7177.11 (18)
C3—C4—C5—C60.7 (3)O5—S1—C9—C9i179.75 (15)
O1—C5—C6—O20.7 (3)O3—S1—C9—C9i58.36 (18)
C4—C5—C6—O2179.24 (17)O4—S1—C9—C9i61.76 (18)
O1—C5—C6—C7178.33 (18)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O20.85 (3)2.32 (3)2.746 (2)112 (2)
O1—H1H···O3i0.85 (3)2.02 (3)2.807 (2)154 (3)
O2—H2H···O4ii0.89 (3)1.85 (3)2.727 (2)167 (3)
N1—H1N···O5iii0.90 (3)1.89 (3)2.762 (2)163 (2)
N1—H2N···O2iv0.85 (3)2.11 (3)2.890 (2)152 (2)
N1—H2N···O3v0.85 (3)2.49 (3)2.974 (2)117 (2)
N1—H3N···O4vi0.89 (3)2.00 (3)2.776 (2)146 (3)
N1—H3N···O5vii0.89 (3)2.61 (3)3.112 (2)117 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y1/2, z; (iii) x+3/2, y+1, z1/2; (iv) x+1, y+1/2, z+3/2; (v) x, y+3/2, z1/2; (vi) x+1, y1/2, z+3/2; (vii) x1/2, y, z+3/2.
2-(3,4-Dihydroxyphenyl)ethan-1-aminium 4-hydroxybenzenesulfonate monohydrate (IV) top
Crystal data top
C8H12NO2+·C6H5O4S·H2OF(000) = 728
Mr = 345.36Dx = 1.446 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 17.4085 (8) ÅCell parameters from 2384 reflections
b = 11.9234 (5) Åθ = 4.5–73.0°
c = 7.6779 (3) ŵ = 2.15 mm1
β = 95.273 (4)°T = 123 K
V = 1586.95 (12) Å3Cut lath, colourless
Z = 40.5 × 0.15 × 0.07 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
2474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
ω scansθmax = 73.1°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 2021
Tmin = 0.653, Tmax = 1.000k = 914
6603 measured reflectionsl = 69
3113 independent reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.107P)2 + 0.1388P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3113 reflectionsΔρmax = 0.81 e Å3
277 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All measurements were made with Oxford Diffraction instruments using Crysalis PRO software for data collection and reduction (Rigaku OD, 2019). Solution was by direct methods, SIR92 or SHELXS (Altomare et al., 1994; Sheldrick, 2015a). All structures were refined to convergence against F2 using all unique reflections and the program SHELXL2018 as implemented within WinGX (Sheldrick, 2015b; Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.31573 (4)0.39989 (5)0.60904 (7)0.0224 (2)
O10.11995 (11)0.01838 (17)0.8196 (3)0.0286 (4)
O20.19486 (11)0.15240 (17)0.6330 (3)0.0299 (5)
O30.27420 (11)0.43408 (18)0.7561 (3)0.0308 (5)
O40.31045 (11)0.48640 (17)0.4714 (2)0.0266 (4)
O50.29390 (12)0.29108 (17)0.5367 (3)0.0308 (5)
O60.64350 (13)0.37956 (18)0.8833 (3)0.0360 (5)
O1W0.27025 (12)0.69308 (17)0.5738 (3)0.0315 (5)
N10.25024 (14)0.0775 (2)0.6281 (3)0.0255 (5)
C90.41447 (15)0.3914 (2)0.6877 (3)0.0222 (5)
C60.11546 (16)0.1565 (2)0.6607 (3)0.0259 (6)
C10.16405 (16)0.0764 (2)0.6140 (3)0.0266 (6)
H1A0.1458380.0015950.6267940.032*
H1B0.1440280.1034940.4966430.032*
C20.13242 (16)0.1494 (2)0.7523 (3)0.0267 (6)
H2A0.1532590.2264210.7456240.032*
H2B0.1485740.1190180.8700120.032*
C40.00070 (16)0.0649 (2)0.7806 (3)0.0244 (5)
H40.0254520.0028390.8396540.029*
C120.56822 (16)0.3803 (2)0.8163 (4)0.0263 (6)
C50.07927 (16)0.0670 (2)0.7523 (3)0.0229 (5)
C70.07172 (17)0.2442 (2)0.6040 (4)0.0295 (6)
H70.0964340.3056050.5430980.035*
C80.00801 (17)0.2426 (2)0.6361 (4)0.0285 (6)
H80.0375660.3034070.5981220.034*
C30.04508 (16)0.1524 (2)0.7237 (3)0.0238 (5)
C110.5229 (3)0.4732 (5)0.8581 (7)0.0282 (13)0.503 (5)
H110.5448090.5319860.9298910.034*0.503 (5)
C130.5367 (3)0.2934 (5)0.7181 (8)0.0263 (13)0.503 (5)
H130.5672830.2300720.6951500.032*0.503 (5)
C140.4587 (3)0.2980 (4)0.6512 (7)0.0260 (13)0.503 (5)
H140.4363540.2382590.5819890.031*0.503 (5)
C100.4459 (3)0.4773 (5)0.7929 (7)0.0278 (13)0.503 (5)
H100.4147310.5390820.8203980.033*0.503 (5)
C10A0.4634 (3)0.4819 (5)0.6575 (7)0.0242 (12)0.497 (5)
H10A0.4440060.5460190.5946670.029*0.497 (5)
C11A0.5408 (3)0.4758 (5)0.7211 (7)0.0281 (13)0.497 (5)
H11A0.5748960.5355080.7005730.034*0.497 (5)
C14A0.4415 (3)0.2978 (5)0.7743 (7)0.0240 (12)0.497 (5)
H14A0.4074900.2373250.7917650.029*0.497 (5)
C13A0.5190 (3)0.2905 (4)0.8374 (7)0.0247 (12)0.497 (5)
H13A0.5381350.2242210.8948190.030*0.497 (5)
H1H0.1688 (8)0.009 (3)0.785 (5)0.032 (9)*
H2H0.211 (2)0.206 (2)0.559 (4)0.039 (10)*
H1N0.268 (2)0.056 (3)0.731 (5)0.032 (9)*
H2N0.2645 (19)0.146 (3)0.610 (4)0.025 (8)*
H3N0.268 (2)0.037 (3)0.547 (5)0.041 (10)*
H3H0.663 (2)0.3119 (16)0.891 (5)0.047 (11)*
H1W0.247 (2)0.676 (4)0.666 (4)0.057 (13)*
H2W0.284 (2)0.6270 (18)0.537 (5)0.050 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0243 (3)0.0241 (4)0.0189 (3)0.0011 (2)0.0023 (2)0.0001 (2)
O10.0270 (9)0.0270 (10)0.0316 (10)0.0015 (8)0.0015 (8)0.0091 (8)
O20.0281 (10)0.0271 (10)0.0337 (10)0.0001 (8)0.0020 (8)0.0072 (8)
O30.0278 (10)0.0403 (12)0.0245 (9)0.0075 (9)0.0040 (7)0.0025 (8)
O40.0310 (9)0.0279 (10)0.0206 (9)0.0000 (8)0.0007 (7)0.0022 (7)
O50.0324 (10)0.0273 (10)0.0321 (10)0.0012 (8)0.0000 (8)0.0007 (8)
O60.0280 (10)0.0269 (11)0.0513 (13)0.0008 (9)0.0060 (9)0.0027 (9)
O1W0.0322 (10)0.0221 (10)0.0394 (11)0.0005 (9)0.0012 (9)0.0049 (8)
N10.0301 (12)0.0272 (13)0.0198 (11)0.0030 (10)0.0046 (9)0.0004 (9)
C90.0236 (12)0.0252 (13)0.0181 (11)0.0014 (10)0.0038 (9)0.0008 (10)
C60.0303 (13)0.0245 (13)0.0228 (12)0.0020 (11)0.0019 (10)0.0002 (10)
C10.0281 (14)0.0291 (14)0.0225 (12)0.0028 (11)0.0016 (10)0.0045 (10)
C20.0303 (14)0.0280 (14)0.0219 (12)0.0012 (11)0.0031 (10)0.0031 (10)
C40.0306 (13)0.0233 (13)0.0188 (11)0.0017 (11)0.0005 (10)0.0003 (10)
C120.0257 (13)0.0284 (14)0.0249 (12)0.0029 (11)0.0023 (10)0.0005 (11)
C50.0300 (13)0.0200 (12)0.0190 (11)0.0018 (10)0.0041 (10)0.0003 (9)
C70.0341 (14)0.0259 (14)0.0279 (13)0.0001 (12)0.0015 (10)0.0048 (11)
C80.0349 (14)0.0259 (14)0.0249 (12)0.0046 (12)0.0037 (10)0.0022 (11)
C30.0294 (13)0.0263 (13)0.0161 (11)0.0030 (11)0.0036 (9)0.0024 (10)
C110.033 (3)0.028 (3)0.023 (3)0.004 (2)0.000 (2)0.003 (2)
C130.032 (3)0.020 (3)0.027 (3)0.004 (2)0.003 (2)0.000 (2)
C140.032 (3)0.022 (3)0.023 (3)0.001 (2)0.000 (2)0.001 (2)
C100.030 (3)0.025 (3)0.030 (3)0.004 (2)0.007 (2)0.002 (2)
C10A0.029 (3)0.024 (3)0.020 (2)0.004 (2)0.0033 (19)0.001 (2)
C11A0.031 (3)0.025 (3)0.029 (3)0.005 (2)0.004 (2)0.003 (2)
C14A0.026 (3)0.024 (3)0.022 (3)0.006 (2)0.006 (2)0.000 (2)
C13A0.031 (3)0.021 (3)0.022 (3)0.002 (2)0.004 (2)0.001 (2)
Geometric parameters (Å, º) top
S1—O51.448 (2)C2—H2A0.9900
S1—O31.454 (2)C2—H2B0.9900
S1—O41.4734 (19)C4—C51.389 (4)
S1—C91.772 (3)C4—C31.393 (4)
O1—C51.369 (3)C4—H40.9500
O1—H1H0.874 (10)C12—C131.366 (6)
O2—C61.380 (3)C12—C13A1.391 (6)
O2—H2H0.880 (10)C12—C11A1.412 (6)
O6—C121.363 (3)C12—C111.414 (6)
O6—H3H0.876 (10)C7—C81.387 (4)
O1W—H1W0.876 (10)C7—H70.9500
O1W—H2W0.878 (10)C8—C31.395 (4)
N1—C11.495 (3)C8—H80.9500
N1—H1N0.86 (4)C11—C101.387 (8)
N1—H2N0.86 (4)C11—H110.9500
N1—H3N0.86 (4)C13—C141.408 (8)
C9—C14A1.361 (6)C13—H130.9500
C9—C101.385 (6)C14—H140.9500
C9—C141.397 (6)C10—H100.9500
C9—C10A1.407 (6)C10A—C11A1.391 (8)
C6—C71.387 (4)C10A—H10A0.9500
C6—C51.396 (4)C11A—H11A0.9500
C1—C21.516 (4)C14A—C13A1.393 (7)
C1—H1A0.9900C14A—H14A0.9500
C1—H1B0.9900C13A—H13A0.9500
C2—C31.517 (4)
O5—S1—O3114.67 (13)O6—C12—C13A122.2 (3)
O5—S1—O4110.80 (11)O6—C12—C11A117.9 (3)
O3—S1—O4110.98 (12)C13A—C12—C11A119.9 (4)
O5—S1—C9106.98 (12)O6—C12—C11117.2 (3)
O3—S1—C9106.68 (12)C13—C12—C11121.0 (4)
O4—S1—C9106.20 (12)O1—C5—C4118.2 (2)
C5—O1—H1H108 (2)O1—C5—C6122.3 (2)
C6—O2—H2H109 (2)C4—C5—C6119.5 (2)
C12—O6—H3H113 (3)C6—C7—C8120.2 (3)
H1W—O1W—H2W102 (4)C6—C7—H7119.9
C1—N1—H1N110 (2)C8—C7—H7119.9
C1—N1—H2N107 (2)C7—C8—C3120.5 (3)
H1N—N1—H2N110 (3)C7—C8—H8119.8
C1—N1—H3N111 (3)C3—C8—H8119.8
H1N—N1—H3N112 (3)C4—C3—C8118.9 (3)
H2N—N1—H3N106 (3)C4—C3—C2121.0 (2)
C10—C9—C14120.8 (4)C8—C3—C2120.1 (2)
C14A—C9—C10A121.5 (4)C10—C11—C12119.1 (5)
C14A—C9—S1119.6 (3)C10—C11—H11120.4
C10—C9—S1118.4 (3)C12—C11—H11120.4
C14—C9—S1120.8 (3)C12—C13—C14119.8 (5)
C10A—C9—S1118.9 (3)C12—C13—H13120.1
O2—C6—C7123.3 (2)C14—C13—H13120.1
O2—C6—C5116.7 (2)C9—C14—C13119.2 (5)
C7—C6—C5119.9 (3)C9—C14—H14120.4
N1—C1—C2111.8 (2)C13—C14—H14120.4
N1—C1—H1A109.3C9—C10—C11120.1 (5)
C2—C1—H1A109.3C9—C10—H10120.0
N1—C1—H1B109.3C11—C10—H10120.0
C2—C1—H1B109.3C11A—C10A—C9118.9 (5)
H1A—C1—H1B107.9C11A—C10A—H10A120.5
C1—C2—C3109.6 (2)C9—C10A—H10A120.5
C1—C2—H2A109.8C10A—C11A—C12119.6 (5)
C3—C2—H2A109.8C10A—C11A—H11A120.2
C1—C2—H2B109.8C12—C11A—H11A120.2
C3—C2—H2B109.8C9—C14A—C13A120.1 (4)
H2A—C2—H2B108.2C9—C14A—H14A120.0
C5—C4—C3120.9 (3)C13A—C14A—H14A120.0
C5—C4—H4119.5C12—C13A—C14A119.9 (5)
C3—C4—H4119.5C12—C13A—H13A120.0
O6—C12—C13121.8 (3)C14A—C13A—H13A120.0
O5—S1—C9—C14A41.3 (3)C7—C8—C3—C40.9 (4)
O3—S1—C9—C14A81.9 (3)C7—C8—C3—C2177.8 (2)
O4—S1—C9—C14A159.6 (3)C1—C2—C3—C480.3 (3)
O5—S1—C9—C10167.9 (3)C1—C2—C3—C898.4 (3)
O3—S1—C9—C1044.7 (3)O6—C12—C11—C10179.9 (4)
O4—S1—C9—C1073.7 (3)C13—C12—C11—C102.3 (7)
O5—S1—C9—C149.2 (3)O6—C12—C13—C14179.8 (4)
O3—S1—C9—C14132.4 (3)C11—C12—C13—C142.7 (7)
O4—S1—C9—C14109.2 (3)C10—C9—C14—C132.0 (7)
O5—S1—C9—C10A138.1 (3)S1—C9—C14—C13179.0 (4)
O3—S1—C9—C10A98.7 (3)C12—C13—C14—C90.5 (8)
O4—S1—C9—C10A19.8 (3)C14—C9—C10—C112.4 (7)
N1—C1—C2—C3175.7 (2)S1—C9—C10—C11179.5 (4)
C3—C4—C5—O1176.5 (2)C12—C11—C10—C90.3 (8)
C3—C4—C5—C62.0 (4)C14A—C9—C10A—C11A1.4 (7)
O2—C6—C5—O13.1 (4)S1—C9—C10A—C11A179.3 (4)
C7—C6—C5—O1176.2 (2)C9—C10A—C11A—C120.9 (7)
O2—C6—C5—C4178.4 (2)O6—C12—C11A—C10A177.1 (4)
C7—C6—C5—C42.2 (4)C13A—C12—C11A—C10A3.6 (7)
O2—C6—C7—C8179.8 (2)C10A—C9—C14A—C13A0.9 (7)
C5—C6—C7—C80.9 (4)S1—C9—C14A—C13A179.7 (4)
C6—C7—C8—C30.7 (4)O6—C12—C13A—C14A176.6 (4)
C5—C4—C3—C80.4 (4)C11A—C12—C13A—C14A4.1 (7)
C5—C4—C3—C2179.2 (2)C9—C14A—C13A—C121.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O20.87 (1)2.28 (3)2.749 (3)114 (3)
O1—H1H···O3i0.87 (1)1.95 (2)2.754 (3)152 (3)
O2—H2H···O1Wii0.88 (1)1.84 (2)2.693 (3)164 (4)
N1—H1N···O4iii0.86 (4)1.99 (4)2.850 (3)178 (4)
N1—H2N···O50.86 (4)1.91 (4)2.766 (3)172 (3)
N1—H3N···O3iv0.86 (4)2.27 (4)2.927 (3)133 (3)
N1—H3N···O6v0.86 (4)2.46 (4)3.005 (3)122 (3)
O6—H3H···O1Wv0.88 (1)1.83 (2)2.686 (3)164 (4)
O1W—H1W···O2vi0.88 (1)1.88 (1)2.752 (3)175 (4)
O1W—H2W···O40.88 (1)1.82 (1)2.698 (3)177 (4)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y1/2, z+3/2; (vi) x, y+1/2, z+3/2.
Available crystal structures of dopamine forms top
CSD refcodeAnionSolventCommentReference
TIRZAXNone – free base structurenoneZwitterionCruickshank et al. (2013)
DOPAMN01ChloridenoneGiesecke (1980)
QQQAEJ02BromidenonePike & Dziura (2013)
ATOLUR04IodidenoneH-atom positions changedIvanova & Spiteller (2017)
CIZYANNitratenoneZ' = 2Gatfaoui et al. (2014)
OGEGAJPerchloratenoneBoghaei et al. (2008)
ATOLIF3-Carboxy-4-hydroxybenzenesulfonate1.5 H2OH-atom positions changedIvanova & Spiteller (2010)
ATOMAYHydrogen squaratenoneH-atom positions changedIvanova & Spiteller (2010)
RAWDEBPyrenetetrasulfonate5 H2OContains 1 dopamine and 3 guanidinium cationsFeng et al. (2017)
MIYLOV3,5-DinitrobenzoatenoneOhba & Ito (2002)
IBenzoatenoneThis work
II4-NitrobenzoatenoneThis work
IIIEthanedisulfonatenoneThis work
IV4-Hydroxybenzenesulfonate1 H2ODisordered anionThis work
Selected hydrogen-bonding features in structures of salt forms of dopamine. The table shows the various potential acceptor and donor groups of the dopamine cation (first row) and details the types of fragment that form hydrogen bonds with these groups (body of table) top
CSD refcodeAnionpara-OH Dpara-OH Ameta-OH Dmeta-OH A1st NH D2nd NH D3rd NH D
DOPAMN01ClanionNHanionAnion and OHanionanion
QQQARJ02BranionNHanionanion and OHanionanion
ATOLUR04IanionNHanionNHanion and OHanion and OHanion
CIZYAN Fragment 1NO32 O of anionanionNHanion and OH2 O of anion2 × anions
CIZYAN Fragment 2NO3anionNHanionNHOH2 O of anion2 × anions and OH
OGEGAJClO4anionNHanionNHanion and OHanionOH
ATOLIFcarboxyhydroxy benzenesulfonateanionH2OH2OanionanionH2O
ATOMAYsquarateanion2 × NHanionanionanion2 × OH
RAWDEBpyrene- tetrasulfonateH2Oanion2 × NH (guad)H2OH2OH2O
MIYLOVdinitrobenzoateanionanion (nitro)anionanion (nitro)2 O of anion
Ibenzoateanionanionanionanionanion
IInitrobenzoate2 O of anionanionanionanion (nitro)2 × anion (COO and nitro)
IIIethanedisulfonateanionNHanionanionanionOH
IVhydroxybenzene sulfonateH2OH2Oanionanion and OHanionanion
Groups identified as having isostructural packing of cations top
Group 1Group 2Group 3Group 4Group 5Group 6
Cations in groupDop onlyDop and TyrDop and TyrTyr onlyTyr onlyTyr only
StructureATOLUR04 [dop][I]I [dop][benzoate]DOPAMN01 [dop][Cl]MEDGEJMEDBAAMEDBOO
OGEGAJ [dop][ClO4]MEDDEG [tyr][4-aminobenzoate]QQQAEJ02 [dop][Br]MEDGUZMEDBIIMEDBUU
MEDFEI [tyr][4-methylbenzoate]III [dop][ethanedisulfonate]MEDHEKMEDCEF
TIRZEB Tyramine hemihydrateMEDDOQ
TYRAMC11 [tyr][Cl]
MECYAW [tyr][Br]
MECYIE [tyr][BF4].H2O
MECYUQ [tyr][PO4H2].2H2O
MECYOK [tyr][ClO4].H2O
CommentsMixed cations with benzoate or para-substituted benzoate anionsMixed cations and neutral tryamine; mixed anhydrate and hydrate; simple inorganic anionsAll dicarboxylate anionsBenzoate and halobenzoate anionsAll halo or methyl-substituted benzoate anions
Note: Dop is the dopamine cation and Tyr is the tyramine cation.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlack, S. N., Collier, E. A., Davey, R. J. & Roberts, R. J. (2007). J. Pharm. Sci. 96, 1053–1068.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoghaei, D. M., Baniyaghoob, S., Najafpour, M. M. & McKee, V. (2008). Acta Cryst. E64, o2268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBriggs, N. E. B., Kennedy, A. R. & Morrison, C. A. (2012). Acta Cryst. B68, 453–464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBroadley, K. J. (2010). Pharmacol. Ther. 125, 363–375.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrown, H., Difrancesco, D. & Noble, S. (1979). Nature, 280, 235–236.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChilds, S. L., Wood, P. A., Rodríguez-Hornedo, N., Reddy, L. S. & Hardcastle, K. I. (2009). Cryst. Growth Des. 9, 1869–1888.  Web of Science CSD CrossRef CAS Google Scholar
First citationCollier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498–505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCruickshank, L., Kennedy, A. R. & Shankland, N. (2013). J. Mol. Struct. 1051, 132–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationDennany, L., Kennedy, A. R. & Walker, B. (2015). Acta Cryst. C71, 844–849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDrew, C. D., Knight, G. T., Hughes, D. T. & Bush, M. (1978). Br. J. Clin. Pharmacol. 6, 221–225.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, W.-X., van der Lee, A., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Chem. Eur. J. 23, 4037–4041.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGatfaoui, S., Marouani, H., Roisnel, T. & Dhaouadi, H. (2014). Acta Cryst. E70, o571–o572.  CSD CrossRef IUCr Journals Google Scholar
First citationGiesecke, J. (1980). Acta Cryst. B36, 178–181.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIvanova, B. & Spiteller, M. (2010). Spectrochim. Acta A Mol. Biomol. Spectrosc. 77, 849–855.  Web of Science CSD CrossRef PubMed Google Scholar
First citationIvanova, B. B. & Spiteller, M. (2017). In Horizons in Neuroscience Research, Vol. 29, edited by A. Costa & E. Villalba, pp. 1–78. New York: Nova Science Publishers Inc.  Google Scholar
First citationKennedy, A. R., Morrison, C. A., Briggs, N. E. B. & Arbuckle, W. (2011). Cryst. Growth Des. 11, 1821–1834.  Web of Science CSD CrossRef CAS Google Scholar
First citationKinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441–3449.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoraes, L. S. de, Edwards, D., Florence, A. J., Johnston, A., Johnston, B. F., Morrison, C. A. & Kennedy, A. R. (2017). Cryst. Growth Des. 17, 3277–3286.  Google Scholar
First citationNoori, S., Freidlich, P. & Seri, I. (2003). NeoReviews, 4, e283–e288.  CrossRef Google Scholar
First citationOhba, S. & Ito, Y. (2002). Acta Cryst. E58, o586–o587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPike, R. D. & Dziura, T. M. (2013). CSD Communication. CCDC 932183 (CCDC refcode QQQAEJ02). https://dx.doi.org/10.5517/cc1090frGoogle Scholar
First citationRichter, H. W. & Waddell, W. H. (1983). J. Am. Chem. Soc. 105, 5434–5440.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchultz, W. (2007). Annu. Rev. Neurosci. 30, 259–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2008). Editors. Handbook of Pharmaceutical Salts: Properties, Selection and Use. VHCA: Zurich.  Google Scholar
First citationTaylor, R. & Wood, P. A. (2019). Chem. Rev. 119, 9427–9477.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWenzel, J. M., Rauscher, N. A., Cheer, J. F. & Oleson, E. B. (2015). ACS Chem. Neurosci. 6, 16–26.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds