research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

X-ray-determined structure of the technetium com­plex [Tc2(μ-CO)2(NC5H5)2(CO)6] revisited: [Tc2(μ-OMe)2(NC5H5)2(CO)6] as the correct formulation

crossmark logo

aKlinik für Nuklearmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 9, D-24105 Kiel, Germany, bKekulé-Institut für Organische Chemie and Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and cDepartamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
*Correspondence e-mail: mara@uniovi.es

Edited by M. Rosales-Hoz, Cinvestav, Mexico (Received 17 August 2023; accepted 11 September 2023; online 18 September 2023)

Some of us reported previously the structure of di-μ-carbonyl-bis­[tricarbon­yl(pyridine)­technetium], [Tc2(μ-CO)2(C5H5N)2(CO)6], as the main product of the reaction of [Tc2(CO)10] with pyridine at room temperature, using the reagent itself as solvent [Zuhayra et al. (2008). Inorg. Chem. 47, 10177–10182]. On the basis of an X-ray analysis of the product, a mol­ecular structure was proposed with two bridging carbonyls displaying very unusual geometrical features, not explained at the time. Subsequent chemical considerations, coupled with density functional theory (DFT) calculations, prompted us to revise the original structure determination. Using the original raw diffraction data, we have now per­form­ed new refinements to show that the previously proposed `bridging car­bon­yls' actually correspond to bridging methoxide groups, and that the crystals analyzed at the time therefore would correspond to the com­plex di-μ-methoxido-bis­[tricarbon­yl(pyridine)­technetium], syn-[Tc2(μ-OMe)2(NC5H5)2(CO)6]. This methoxide-bridged com­plex likely was a minor side product formed along with the main product in the above reaction, perhaps due to the presence of trace amounts of methanol and air in the reaction mixture.

1. Introduction

Some of us reported previously that the room-temperature reaction of [Tc2(CO)10] with pyridine, using the reagent itself as solvent, yields the octa­carbonyl com­plex [Tc2(NC5H5)2(CO)8] (1) as the unique product, which upon heating undergoes an inter­esting C—H bond cleavage of a pyridine mol­ecule (Zuhayra et al., 2008[Zuhayra, M., Lützen, U., Lützen, A., Papp, L., Henze, E., Friedrichs, G. & Oberdorfer, F. (2008). Inorg. Chem. 47, 10177-10182.]). On the basis of an X-ray analysis of the above product, a mol­ecular structure was pro­posed for isomer syn-1 with two bridging carbonyls dis­playing several unusual geometrical features not explained at the time (Fig. 1[link]): (i) a strong pyramidalization of the bridgehead C atoms, with unusually small displacement parameters and very large C—O separations of ca 1.45 Å, actually close to the reference value of 1.42 Å for a C(sp3)—O single bond (Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]), and far larger than the reference value of 1.21 Å for a double bond between these atoms (Pyykkö & Atsumi, 2009[Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770-12779.]); and (ii) a large inter­metallic separation of ca 3.37 Å, far above that of the parent com­plex [Tc2(CO)10] (ca 3.03 Å; Bailey & Dahl, 1965[Bailey, M. F. & Dahl, L. F. (1965). Inorg. Chem. 4, 1140-1145.]; Sidorenko et al., 2011[Sidorenko, G. V., Miroslavov, A. E., Grigor'ev, M. S., Gurzhiy, V. V., Lumpov, A. A., Mikhalev, V. A. & Suglobov, D. N. (2011). Radiochemistry, 53, 44-50.]), and inconsistent with the formulation of a single Tc—Tc bond, as required by application of the 18-electron rule to com­plex syn-1. Recently, we used density functional theory (DFT) calculations to find that the most likely structure of 1 would display only terminal carbonyls and a staggered conformation, as observed in the parent precursor, and that the crystals anal­ysed by X-ray diffraction in 2008 would most likely cor­respond to either the hydro­peroxide-bridged ditechnetium(I) com­plex syn-[Tc2(μ-OOH)2(NC5H5)2(CO)6] (syn-2) or its methoxide-bridged analogue syn-[Tc2(μ-OMe)2(NC5H5)2(CO)6] (syn-3) (García-Vivó & Ruiz, 2020[García-Vivó, D. & Ruiz, M. A. (2020). ChemRxiv, https://doi.org/10.26434/chemrxiv.12964574.v1.]). This prompted us to revise the structure determination of com­pound syn-1 by per­forming new refinements using the original raw diffraction data, which is the purpose of the present article. As will be shown below, the new refinements indicate beyond doubt that the crystal actually analyzed at the time was not that of com­pound syn-1 but that of the methoxide-bridged com­plex syn-[Tc2(μ-OMe)2(NC5H5)2(CO)6] (syn-3), whereby the `anoma­lous' geometrical parameters mentioned above now become `as expected'.

[Figure 1]
Figure 1
(a) The mol­ecular structure (30% probability displacement ellipsoids) of the presumed com­pound syn-1, with H atoms omitted for clarity. (b) A view of the mol­ecule along an axis close to the inter­metallic line (García-Vivó & Ruiz, 2020[García-Vivó, D. & Ruiz, M. A. (2020). ChemRxiv, https://doi.org/10.26434/chemrxiv.12964574.v1.]). Both images were generated from the original CIF file (Zuhayra et al., 2008[Zuhayra, M., Lützen, U., Lützen, A., Papp, L., Henze, E., Friedrichs, G. & Oberdorfer, F. (2008). Inorg. Chem. 47, 10177-10182.]). Selected bond lengths (Å): Tc1⋯Tc2 = 3.370 (3), C1—O1 = 1.148 (13), C2—O2 = 1.14 (2), C3—O3 = 1.149 (15), C4—O4 = 1.451 (14) and C5—O5 = 1.470 (14).

2. Experimental

Diffraction data were collected on a Siemens Nicolet Syntex R3m/V diffractometer using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Intensities were measured by fine-slicing φ-scans and corrected for background, polarization and Lorentz effects. The original structure of syn-1 was solved by direct methods and refined with the programs SHELXS86 and SHELXL93 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) by a full-matrix least-squares method based on F2 (Zuhayra et al., 2008[Zuhayra, M., Lützen, U., Lützen, A., Papp, L., Henze, E., Friedrichs, G. & Oberdorfer, F. (2008). Inorg. Chem. 47, 10177-10182.]).

Taking the same diffraction data, the structures of syn-2 and syn-3 were now solved by a dual-space algorithm using SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined by full-matrix least-squares on F2 using SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) environments.

2.1. Refinement

Crystal data, data collection and structure refinement details for syn-1, syn-2 and syn-3 are summarized in Table 1[link]. All carbon-bound H atoms were calculated at their optimal positions and treated as riding on their parent atoms using isotropic displacement parameters 1.2 (or 1.5 in the case of methyl groups) times larger than the Ueq values of the respective parent atoms. The methyl groups in syn-3 were calculated as idealized rotating groups. We could not recover from the stored old data (recorded some 20 years ago) all the information currently required for standard CIF files, and this caused the appearance of some A-level alerts in the corresponding checkCIF reports for syn-2 and syn-3.

Table 1
Experimental details for structural determinations of com­plexes syn-1 to syn-3

  syn-1a syn-2 syn-3
Crystal data      
Chemical formula C18H10N2O8Tc2 C16H12N2O10Tc2 C18H16N2O8Tc2
Mr 578.28 588.28 584.33
Crystal system, space group Ortho­rhom­bic, Pna21 Ortho­rhom­bic, Pna21 Ortho­rhom­bic, Pna21
Temperature (K) 200 200 200
a, b, c (Å) 18.116 (16), 10.359 (8), 12.148 (10) 18.116 (16), 10.359 (8), 12.148 (10) 18.116 (16), 10.359 (8), 12.148 (10)
V3) 2280 (3) 2280 (3) 2280 (3)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.25 1.26 1.26
Crystal size (mm) 0.3 × 0.2 × 0.2 0.3 × 0.2 × 0.2 0.3 × 0.2 × 0.2
       
Data collection      
No. of measured, independent and observed [I > 2σ(I)] reflections 2614, 2614, 2265 2614, 2614, 2265 2614, 2614, 2265
(sin θ/λ)max−1) 0.639 0.639 0.639
       
Refinement      
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.146, 1.10 0.046, 0.122, 1.05 0.042, 0.113, 1.05
No. of reflections 2614 2614 2614
No. of parameters 273 281 274
No. of restraints 1 4 1
H-atom treatment Only H-atom displacement parameters refined Only H-atom displacement parameters refined H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.16, −1.14 1.12, −0.97 1.13, −1.03
Flack parameter 0.07 (10) 0.04 (9) 0.02 (8)
Note: (a) data taken from Zuhayra et al. (2008[Zuhayra, M., Lützen, U., Lützen, A., Papp, L., Henze, E., Friedrichs, G. & Oberdorfer, F. (2008). Inorg. Chem. 47, 10177-10182.]). Computer programs: SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

The small size of the displacement ellipsoids of the bridgehead `carbon' atoms (C4 and C5) in the original structure determination of syn-1, com­pared to those of the corresponding O atoms (O4 and O5; Fig. 1[link] and Table 2[link]), suggested that positions C4 and C5 might actually correspond to atoms having a higher number of electrons (Stout & Jensen, 1989[Stout, G. H. & Jensen, L. H. (1989). X-Ray Structure Determination, 2nd ed., ch. 16, p. 358. New York: John Wiley & Sons.]). Moreover, the theoretical calculations mentioned above indicated that replacing the bridging carbonyl ligands in syn-1 with either OOH (peroxide) or OMe (methoxide) groups would yield com­plexes with geometries matching the anomalous features of the original structural determination (García-Vivó & Ruiz, 2020[García-Vivó, D. & Ruiz, M. A. (2020). ChemRxiv, https://doi.org/10.26434/chemrxiv.12964574.v1.]). We then proceeded to make new refinements with the original raw diffraction data under both hypotheses (syn-2 and syn-3, respectively). Both refinements converged satisfactorily to give improved fitting parameters, com­pared to the original refinement based on the formulation syn-[Tc2(μ-CO)2(NC5H5)2(CO)6] (Fig. 2[link], and Tables 1[link] and 2[link]), but there were some significant differences between them: (i) the R1, wR2 and goodness-of-fit (GOF) values were better for syn-3. (ii) the Ueq values for the heavy atoms at the bridging positions (OO or OC) were more similar to each other in the case of syn-3; in contrast, the Ueq values for the O(H) atoms in syn-2 were almost three times the value of the corresponding bridgehead O atom. This is clearly reflected in the significantly smaller values of ca 0.01 Å2 in the difference between the mean-square displacement amplitudes (ΔMSDA) for the C4/O4 or C5/O5 pairs in syn-3, as expected for mutually bonded atoms (Hirshfeld, 1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]), which can be com­pared with values of ca 0.04 Å2 for the corresponding pairs in either syn-2 or syn-1 (Table 2[link]). Moreover, we note that the average C—O bond length for the bridging methoxide groups in syn-3 (ca 1.42 Å) exactly matches the reference value for a C(sp3)—O single bond. In contrast, the average O—O bond length of 1.43 Å in the formulation as syn-2 falls below the values of 1.45–1.50 Å typically determined for OOR-bridged com­plexes (García-Vivó & Ruiz, 2020[García-Vivó, D. & Ruiz, M. A. (2020). ChemRxiv, https://doi.org/10.26434/chemrxiv.12964574.v1.]). All of this provides conclusive evidence for the presence of methoxide groups bridging the Tc atoms in the com­plex under discussion. It is thus concluded that the crystal analyzed at the time actually was not one of com­pound syn-1 but one of the methoxide-bridged com­plex syn-[Tc2(μ-OMe)2(NC5H5)2(CO)6] (syn-3). We finally note that the geometrical parameters ob­tained for this com­plex are similar to those determined previously for different rhenium com­plexes with dimetal cores of the type syn-[Re2(μ-OR)2L2(CO)6] having bridging alkoxide or hydroxide ligands and terminal pyridine, dipyridyl and poly­pyridyl ligands (García-Vivó & Ruiz, 2020[García-Vivó, D. & Ruiz, M. A. (2020). ChemRxiv, https://doi.org/10.26434/chemrxiv.12964574.v1.]). The latter belong to a relatively large family of com­plexes which have been studied extensively because of their photophysical and chemical properties, host–guest inter­actions and biological activity.

Table 2
Selected parameters (Å, Å2) for structural determinations following formulations as syn-1 to syn-3

Parameter syn-1a syn-2 syn-3
  (XY = CO) (XY = OO) (XY = OC)
Tc⋯Tc 3.370 (3) 3.369 (3) 3.368 (3)
Average Tc—(μ-X) 2.163 2.162 2.163
X4—Y4 1.451 (14) 1.441 (12) 1.424 (11)
X5—Y5 1.470 (14) 1.433 (14) 1.415 (11)
Ueq(X4) 0.018 (2) 0.034 (2) 0.035 (2)
Ueq(X5) 0.019 (1) 0.037 (2) 0.038 (1)
Ueq(Y4) 0.083 (3) 0.082 (3) 0.044 (2)
Ueq(Y5) 0.112 (5) 0.116 (5) 0.061 (3)
ΔMSDA(X4—Y4) 0.052 (8) 0.036 (8) 0.010 (6)
ΔMSDA(X5—Y5) 0.040 (11) 0.041 (11) 0.008 (7)
Note: (a) data taken from Zuhayra et al. (2008[Zuhayra, M., Lützen, U., Lützen, A., Papp, L., Henze, E., Friedrichs, G. & Oberdorfer, F. (2008). Inorg. Chem. 47, 10177-10182.]).
[Figure 2]
Figure 2
The mol­ecular structure (30% probability displacement ellipsoids) fol­lowing formulations as (a) syn-2 and (b) syn-3.

After concluding that the crystal analyzed at the time, formed through crystallization from acetone/n-hexane of the bulk product obtained when reacting [Tc2(CO)10] with pyridine at room temperature, corresponds to the methoxide-bridged com­plex syn-3 rather than the simple substitution product syn-1, the question then to be answered is from where could the methoxide ligands possibly arise. Unfortunately, we are not in a position to reproduce the above synthetic pro­cedure in our laboratories, so we can only speculate about its possible origin. We currently trust that com­plex syn-3 might just have been a very minor side product formed along with the major product, which just happened to crystallize first from the reaction mixture. Inter­estingly, we note that many dirhenium polypyridyl com­plexes with metal cores of the type syn-[Re2(μ-OR)2L2(CO)6] have been made by reacting [Re2(CO)10] with stoichiometric amounts of the pertinent N-donor ligand in the corresponding alcohol (ROH) or water, although high temperatures are typically required to form these pro­ducts. However, a separate experiment carried out previously by us revealed that stirring [Re2(CO)10] in pyridine at room tem­perature for 4 d caused no detectable transformation on the Re2 substrate, unless air is admitted into the reaction flask (García-Vivó & Ruiz, 2020[García-Vivó, D. & Ruiz, M. A. (2020). ChemRxiv, https://doi.org/10.26434/chemrxiv.12964574.v1.]). Based on the above indirect pieces of evidence, we tend now to think that formation of the methoxide-bridged com­plex syn-3 during the slow reaction of [Tc2(CO)10] with pyridine at room temperature (5 d) might have followed from the presence of trace amounts of methanol and air in the reaction mixture.

4. Conclusion

The raw diffraction data of the com­pound formulated in 2008 as syn-[Tc2(μ-CO)2(NC5H5)2(CO)6] have now been re-pro­cessed under the hypothesis that the bridging ligands might actually be either hydro­peroxide or methoxide ligands. The latter option proved to be the correct one, as it leads not only to better agreement parameters, such as R, wR or GOF, but also to chemically more sensible inter­atomic distances and displacement parameters for the non-H atoms of the bridging ligands. The formation of syn-[Tc2(μ-OMe)2(NC5H5)2(CO)6] in the room-temperature reaction of [Tc2(CO)10] with pyridine might have been facilitated at the time by the presence of unnoticed trace amounts of methanol and air in the reaction mixture.

Supporting information


Computing details top

For both structures, program(s) used to solve structure: SHELXL2017 (Sheldrick, 2015b) in WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXT2014 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-peroxido-bis[tricarbonyl(pyridine)technetium] syn-[Tc2(CH3O)2(NC5H5)2(CO)6] (syn2) top
Crystal data top
[Tc2(HO2)2(C5H5N)2(CO)6]F(000) = 1152
Mr = 588.28Dx = 1.714 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 18.116 (16) ŵ = 1.26 mm1
b = 10.359 (8) ÅT = 200 K
c = 12.148 (10) Å, colorless
V = 2280 (3) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Siemens Nicolet Syntex R3m/V
diffractometer
θmax = 27.0°, θmin = 2.3°
2614 measured reflectionsh = 1923
2614 independent reflectionsk = 138
2265 reflections with I > 2σ(I)l = 1015
Refinement top
Refinement on F2Only H-atom displacement parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0734P)2 + 2.8233P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max < 0.001
wR(F2) = 0.122Δρmax = 1.12 e Å3
S = 1.05Δρmin = 0.97 e Å3
2614 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
281 parametersExtinction coefficient: 0.0030 (4)
4 restraintsAbsolute structure: No quotients, so Flack parameter determined by classical intensity fit
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tc10.40833 (4)0.80691 (7)0.49957 (6)0.0389 (2)
Tc20.29129 (3)0.74681 (7)0.70890 (8)0.03599 (19)
O10.3474 (5)1.0862 (7)0.4879 (9)0.072 (2)
O20.4001 (6)0.8051 (10)0.2445 (8)0.076 (3)
O30.5616 (5)0.9329 (10)0.4740 (9)0.075 (3)
O4B0.4419 (6)0.8844 (11)0.7446 (9)0.082 (3)
O5B0.2428 (9)0.7334 (16)0.4609 (10)0.116 (5)
O60.2295 (4)1.0247 (7)0.7043 (10)0.069 (2)
O70.1264 (4)0.6803 (10)0.7349 (8)0.071 (3)
O80.3006 (5)0.7811 (12)0.9603 (8)0.078 (3)
N10.4528 (4)0.6049 (7)0.5105 (8)0.0383 (16)
N20.3282 (4)0.5403 (7)0.7176 (7)0.0372 (15)
C10.3693 (6)0.9809 (10)0.4936 (11)0.053 (2)
C20.4032 (7)0.8043 (15)0.3418 (13)0.061 (4)
C30.5047 (6)0.8826 (10)0.4845 (11)0.055 (3)
O40.4056 (3)0.7889 (7)0.6774 (7)0.0343 (17)
O50.3036 (4)0.7139 (8)0.5344 (6)0.0374 (15)
C60.2552 (5)0.9227 (10)0.7038 (10)0.047 (2)
C70.1898 (5)0.7011 (12)0.7244 (10)0.052 (2)
C80.2977 (7)0.7689 (14)0.8681 (15)0.061 (4)
C90.5176 (6)0.5817 (10)0.5665 (8)0.046 (2)
H90.54170.65130.60240.066 (13)*
C100.5490 (6)0.4571 (12)0.5718 (10)0.055 (3)
H100.59370.44300.61070.066 (13)*
C110.5134 (6)0.3554 (11)0.5192 (10)0.056 (3)
H110.53380.27090.52150.066 (13)*
C120.4483 (6)0.3780 (11)0.4635 (9)0.053 (3)
H120.42300.30960.42760.066 (13)*
C130.4199 (5)0.5063 (9)0.4610 (8)0.043 (2)
H130.37530.52200.42200.066 (13)*
C140.3902 (6)0.5067 (10)0.7709 (9)0.046 (2)
H140.41980.57250.80280.066 (13)*
C150.4128 (6)0.3779 (12)0.7809 (10)0.055 (3)
H150.45670.35670.81970.066 (13)*
C160.3705 (7)0.2823 (10)0.7337 (10)0.055 (3)
H160.38510.19450.73920.066 (13)*
C170.3064 (6)0.3156 (10)0.6779 (9)0.049 (2)
H170.27620.25140.64480.066 (13)*
C180.2872 (5)0.4471 (10)0.6717 (8)0.044 (2)
H180.24350.47070.63350.066 (13)*
H4B0.46 (4)0.96 (3)0.72 (2)1.4 (15)*
H5B0.248 (7)0.721 (12)0.387 (3)0.05 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tc10.0428 (3)0.0385 (4)0.0354 (3)0.0053 (3)0.0039 (4)0.0030 (4)
Tc20.0338 (3)0.0386 (4)0.0356 (3)0.0011 (3)0.0005 (3)0.0025 (3)
O10.102 (6)0.047 (4)0.068 (5)0.019 (4)0.007 (5)0.018 (5)
O20.101 (7)0.087 (7)0.040 (5)0.013 (5)0.002 (4)0.005 (4)
O30.058 (4)0.076 (6)0.092 (8)0.004 (4)0.010 (5)0.025 (6)
O4B0.081 (6)0.083 (7)0.083 (7)0.007 (5)0.008 (5)0.010 (6)
O5B0.107 (9)0.183 (15)0.058 (6)0.005 (9)0.027 (7)0.003 (7)
O60.063 (4)0.046 (4)0.098 (7)0.016 (3)0.012 (6)0.012 (5)
O70.038 (4)0.104 (7)0.070 (6)0.011 (4)0.001 (4)0.002 (5)
O80.080 (6)0.121 (8)0.034 (4)0.013 (6)0.006 (4)0.016 (5)
N10.041 (3)0.037 (4)0.037 (4)0.003 (3)0.003 (4)0.004 (4)
N20.039 (3)0.037 (4)0.035 (4)0.000 (3)0.003 (3)0.002 (3)
C10.067 (6)0.052 (5)0.038 (5)0.016 (4)0.011 (6)0.003 (5)
C20.062 (8)0.083 (10)0.039 (7)0.004 (6)0.000 (5)0.003 (6)
C30.055 (5)0.052 (6)0.058 (7)0.003 (5)0.001 (5)0.019 (6)
O40.041 (4)0.036 (3)0.026 (4)0.004 (3)0.000 (2)0.002 (3)
O50.034 (3)0.050 (4)0.028 (3)0.003 (3)0.009 (2)0.001 (3)
C60.039 (4)0.053 (5)0.049 (5)0.002 (4)0.003 (5)0.017 (5)
C70.038 (5)0.070 (6)0.049 (6)0.001 (4)0.006 (4)0.010 (6)
C80.064 (8)0.058 (7)0.060 (10)0.018 (6)0.004 (6)0.008 (6)
C90.048 (5)0.050 (5)0.042 (5)0.005 (4)0.004 (4)0.002 (4)
C100.049 (5)0.059 (7)0.057 (6)0.011 (5)0.006 (5)0.004 (5)
C110.063 (6)0.045 (5)0.059 (8)0.015 (5)0.015 (5)0.007 (5)
C120.063 (6)0.044 (5)0.051 (6)0.005 (5)0.004 (5)0.010 (5)
C130.050 (5)0.034 (4)0.047 (5)0.001 (4)0.004 (4)0.004 (4)
C140.054 (5)0.040 (5)0.043 (5)0.004 (4)0.010 (4)0.002 (4)
C150.060 (6)0.057 (6)0.049 (6)0.014 (5)0.007 (5)0.004 (5)
C160.074 (7)0.039 (5)0.052 (7)0.012 (5)0.005 (5)0.008 (4)
C170.057 (6)0.037 (5)0.053 (6)0.010 (4)0.006 (4)0.004 (4)
C180.047 (5)0.045 (5)0.041 (5)0.008 (4)0.004 (4)0.002 (4)
Geometric parameters (Å, º) top
Tc1—N12.246 (7)O5B—O51.433 (14)
Tc1—C11.937 (10)O6—C61.155 (12)
Tc1—C21.919 (16)O7—C71.176 (12)
Tc1—C31.922 (11)O8—C81.13 (2)
Tc1—O42.168 (9)N1—C91.377 (12)
Tc1—O52.170 (7)N1—C131.327 (12)
Tc2—N22.244 (7)N2—C141.342 (12)
Tc2—O42.150 (7)N2—C181.339 (12)
Tc2—O52.158 (8)C9—C101.412 (15)
Tc2—C61.937 (10)C10—C111.391 (17)
Tc2—C71.907 (10)C11—C121.380 (16)
Tc2—C81.951 (18)C12—C131.426 (14)
O1—C11.162 (12)C14—C151.401 (15)
O2—C21.183 (19)C15—C161.376 (17)
O3—C31.162 (14)C16—C171.389 (16)
O4B—O41.441 (12)C17—C181.408 (14)
C1—Tc1—N1178.7 (4)C8—Tc2—O5170.4 (4)
C1—Tc1—O496.3 (4)C9—N1—Tc1119.8 (6)
C1—Tc1—O595.8 (4)C13—N1—Tc1121.9 (6)
C2—Tc1—N193.6 (5)C13—N1—C9118.2 (8)
C2—Tc1—C187.6 (6)C14—N2—Tc2121.3 (6)
C2—Tc1—C387.4 (6)C18—N2—Tc2120.1 (6)
C2—Tc1—O4173.0 (4)C18—N2—C14118.5 (8)
C2—Tc1—O598.4 (5)O1—C1—Tc1178.1 (10)
C3—Tc1—N193.4 (4)O2—C2—Tc1178.8 (14)
C3—Tc1—C187.1 (5)O3—C3—Tc1177.3 (10)
C3—Tc1—O498.7 (4)Tc2—O4—Tc1102.5 (3)
C3—Tc1—O5173.6 (4)O4B—O4—Tc1119.6 (7)
O4—Tc1—N182.5 (3)O4B—O4—Tc2118.6 (6)
O4—Tc1—O575.4 (3)Tc2—O5—Tc1102.2 (3)
O5—Tc1—N183.6 (3)O5B—O5—Tc1119.3 (8)
O4—Tc2—N285.1 (3)O5B—O5—Tc2120.7 (8)
O4—Tc2—O576.0 (3)O6—C6—Tc2175.4 (9)
O5—Tc2—N282.2 (3)O7—C7—Tc2176.2 (11)
C6—Tc2—N2177.5 (3)O8—C8—Tc2179.2 (13)
C6—Tc2—O497.4 (3)N1—C9—C10121.7 (10)
C6—Tc2—O598.8 (4)C11—C10—C9119.0 (10)
C6—Tc2—C886.6 (6)C12—C11—C10119.5 (10)
C7—Tc2—N292.6 (4)C11—C12—C13118.6 (10)
C7—Tc2—O4174.8 (4)N1—C13—C12123.0 (9)
C7—Tc2—O599.1 (4)N2—C14—C15122.2 (10)
C7—Tc2—C684.9 (4)C16—C15—C14119.1 (10)
C7—Tc2—C889.3 (5)C15—C16—C17119.4 (10)
C8—Tc2—N292.7 (5)C16—C17—C18118.2 (9)
C8—Tc2—O495.5 (5)N2—C18—C17122.6 (9)
di-µ-methoxido-bis[tricarbonyl(pyridine)technetium], syn-[Tc2(CH3O)2(NC5H5)2(CO)6] (syn3) top
Crystal data top
[Tc2(CH3O)2(C5H5N)2(CO)6]F(000) = 1152
Mr = 584.33Dx = 1.702 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 18.116 (16) ŵ = 1.26 mm1
b = 10.359 (8) ÅT = 200 K
c = 12.148 (10) Å, colorless
V = 2280 (3) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Siemens Nicolet Syntex R3m/V
diffractometer
θmax = 27.0°, θmin = 2.3°
2614 measured reflectionsh = 1923
2614 independent reflectionsk = 138
2265 reflections with I > 2σ(I)l = 1015
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0658P)2 + 2.1707P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.113Δρmax = 1.13 e Å3
S = 1.05Δρmin = 1.03 e Å3
2614 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
274 parametersExtinction coefficient: 0.0027 (4)
1 restraintAbsolute structure: No quotients, so Flack parameter determined by classical intensity fit
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3474 (5)1.0858 (7)0.4880 (8)0.073 (2)
O20.4008 (5)0.8066 (10)0.2443 (7)0.078 (3)
O30.5615 (4)0.9325 (9)0.4743 (9)0.077 (3)
O40.4059 (3)0.7895 (7)0.6772 (6)0.0346 (16)
O50.3036 (4)0.7137 (7)0.5342 (6)0.0379 (14)
O60.2294 (4)1.0246 (7)0.7049 (9)0.070 (2)
O70.1264 (4)0.6800 (9)0.7355 (8)0.071 (2)
O80.2997 (5)0.7804 (11)0.9605 (7)0.078 (3)
N10.4529 (3)0.6053 (7)0.5102 (7)0.0379 (15)
N20.3279 (3)0.5405 (6)0.7179 (6)0.0370 (14)
C10.3690 (5)0.9810 (9)0.4936 (10)0.053 (2)
C20.4030 (7)0.8046 (14)0.3420 (12)0.063 (4)
C30.5048 (6)0.8829 (10)0.4843 (10)0.056 (3)
C40.4421 (5)0.8837 (9)0.7433 (8)0.044 (2)
H4A0.41760.96740.73420.066*
H4B0.49380.89100.72030.066*
H4C0.43990.85760.82070.066*
C50.2435 (6)0.7327 (13)0.4615 (9)0.061 (3)
H5A0.20190.67870.48460.091*
H5B0.25840.70890.38660.091*
H5C0.22870.82370.46280.091*
C60.2553 (4)0.9227 (9)0.7041 (10)0.048 (2)
C70.1901 (5)0.7010 (11)0.7240 (9)0.053 (2)
C80.2970 (7)0.7691 (13)0.8678 (14)0.058 (4)
C90.5175 (5)0.5815 (9)0.5663 (8)0.046 (2)
H90.54170.65100.60240.055*
C100.5489 (5)0.4568 (11)0.5718 (9)0.055 (2)
H100.59350.44260.61110.066*
C110.5134 (6)0.3554 (10)0.5189 (9)0.057 (3)
H110.53390.27100.52080.068*
C120.4482 (6)0.3784 (10)0.4636 (9)0.054 (2)
H120.42270.30990.42810.065*
C130.4197 (5)0.5062 (9)0.4607 (8)0.044 (2)
H130.37510.52170.42170.053*
C140.3900 (5)0.5067 (9)0.7710 (8)0.046 (2)
H140.41950.57240.80330.055*
C150.4127 (6)0.3789 (11)0.7806 (9)0.053 (2)
H150.45660.35820.81930.064*
C160.3709 (6)0.2825 (9)0.7333 (9)0.054 (3)
H160.38580.19480.73860.065*
C170.3063 (5)0.3156 (9)0.6776 (8)0.049 (2)
H170.27610.25140.64470.059*
C180.2873 (5)0.4469 (9)0.6718 (8)0.045 (2)
H180.24370.47040.63340.053*
Tc10.40832 (3)0.80689 (6)0.49960 (6)0.03886 (19)
Tc20.29129 (3)0.74678 (7)0.70886 (8)0.03592 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.103 (5)0.047 (4)0.068 (5)0.019 (4)0.007 (5)0.019 (4)
O20.104 (7)0.091 (7)0.039 (4)0.020 (5)0.000 (4)0.005 (4)
O30.058 (4)0.078 (5)0.095 (8)0.004 (4)0.009 (5)0.028 (5)
O40.041 (4)0.036 (3)0.028 (3)0.003 (2)0.000 (2)0.003 (2)
O50.038 (3)0.048 (3)0.028 (3)0.001 (3)0.010 (2)0.001 (3)
O60.064 (4)0.045 (4)0.101 (6)0.016 (3)0.009 (5)0.010 (5)
O70.039 (3)0.102 (6)0.072 (6)0.009 (4)0.001 (4)0.003 (5)
O80.082 (6)0.119 (8)0.034 (4)0.012 (5)0.006 (4)0.017 (4)
N10.041 (3)0.036 (3)0.036 (4)0.003 (2)0.003 (3)0.004 (3)
N20.039 (3)0.038 (3)0.034 (3)0.001 (3)0.003 (3)0.002 (3)
C10.069 (6)0.051 (5)0.038 (4)0.015 (4)0.014 (6)0.001 (5)
C20.065 (8)0.085 (10)0.039 (7)0.004 (6)0.001 (5)0.005 (5)
C30.058 (5)0.055 (5)0.054 (6)0.001 (4)0.003 (5)0.019 (5)
C40.039 (4)0.046 (5)0.048 (5)0.002 (4)0.001 (4)0.005 (4)
C50.045 (5)0.092 (8)0.045 (5)0.000 (5)0.013 (4)0.000 (5)
C60.039 (4)0.052 (5)0.052 (5)0.002 (4)0.002 (4)0.017 (5)
C70.040 (4)0.069 (6)0.050 (6)0.002 (4)0.005 (4)0.008 (5)
C80.059 (7)0.055 (6)0.060 (9)0.014 (5)0.005 (5)0.010 (6)
C90.046 (5)0.050 (5)0.042 (5)0.006 (4)0.004 (4)0.004 (4)
C100.048 (5)0.061 (6)0.056 (6)0.010 (4)0.005 (4)0.003 (5)
C110.062 (5)0.046 (5)0.063 (8)0.014 (4)0.015 (5)0.007 (5)
C120.065 (6)0.044 (5)0.053 (6)0.002 (5)0.003 (5)0.010 (4)
C130.046 (5)0.037 (4)0.048 (5)0.002 (4)0.003 (4)0.006 (4)
C140.054 (5)0.042 (5)0.043 (5)0.002 (4)0.010 (4)0.001 (4)
C150.054 (5)0.055 (6)0.051 (5)0.011 (4)0.010 (4)0.003 (5)
C160.071 (6)0.039 (5)0.053 (6)0.014 (4)0.005 (5)0.007 (4)
C170.059 (5)0.038 (4)0.050 (5)0.008 (4)0.007 (4)0.003 (4)
C180.049 (5)0.044 (5)0.041 (4)0.008 (4)0.005 (4)0.002 (4)
Tc10.0428 (3)0.0385 (3)0.0353 (3)0.0053 (3)0.0039 (4)0.0030 (4)
Tc20.0336 (3)0.0386 (3)0.0355 (3)0.0011 (3)0.0005 (3)0.0025 (3)
Geometric parameters (Å, º) top
O1—C11.157 (11)N2—C181.339 (11)
O2—C21.187 (18)N2—Tc22.240 (7)
O3—C31.155 (13)C1—Tc11.940 (9)
O4—C41.424 (11)C2—Tc11.917 (15)
O4—Tc12.166 (8)C3—Tc11.926 (11)
O4—Tc22.157 (6)C6—Tc21.936 (9)
O5—C51.415 (11)C7—Tc21.903 (9)
O5—Tc12.170 (7)C8—Tc21.947 (16)
O5—Tc22.160 (8)C9—C101.413 (14)
O6—C61.155 (11)C10—C111.389 (16)
O7—C71.183 (11)C11—C121.380 (15)
O8—C81.134 (18)C12—C131.421 (14)
N1—C91.376 (11)C14—C151.391 (14)
N1—C131.333 (11)C15—C161.378 (16)
N1—Tc12.243 (7)C16—C171.393 (15)
N2—C141.343 (11)C17—C181.405 (13)
C4—O4—Tc1119.7 (6)O4—Tc1—N182.7 (3)
C4—O4—Tc2119.0 (6)O5—Tc1—N183.7 (3)
Tc2—O4—Tc1102.4 (3)C1—Tc1—O496.1 (4)
C5—O5—Tc1119.3 (7)C1—Tc1—O595.7 (4)
C5—O5—Tc2120.8 (7)C1—Tc1—N1178.8 (4)
Tc2—O5—Tc1102.1 (3)C2—Tc1—O4173.2 (4)
C9—N1—Tc1120.1 (6)C2—Tc1—O598.3 (5)
C13—N1—C9118.0 (8)C2—Tc1—N193.6 (5)
C13—N1—Tc1121.9 (6)C2—Tc1—C187.5 (6)
C14—N2—Tc2121.4 (6)C2—Tc1—C387.4 (5)
C18—N2—C14118.1 (8)C3—Tc1—O498.6 (4)
C18—N2—Tc2120.5 (6)C3—Tc1—O5173.8 (4)
O1—C1—Tc1177.9 (9)C3—Tc1—N193.4 (3)
O2—C2—Tc1178.1 (13)C3—Tc1—C187.1 (4)
O3—C3—Tc1177.6 (9)O4—Tc2—O576.0 (3)
O6—C6—Tc2175.2 (9)O4—Tc2—N285.4 (2)
O7—C7—Tc2176.0 (10)O5—Tc2—N282.3 (3)
O8—C8—Tc2179.0 (13)C6—Tc2—O497.2 (3)
N1—C9—C10121.9 (9)C6—Tc2—O598.9 (4)
C11—C10—C9118.9 (9)C6—Tc2—N2177.3 (3)
C12—C11—C10119.4 (9)C6—Tc2—C886.3 (5)
C11—C12—C13118.9 (9)C7—Tc2—O4174.7 (4)
N1—C13—C12122.9 (9)C7—Tc2—O598.9 (4)
N2—C14—C15122.4 (9)C7—Tc2—N292.4 (4)
C16—C15—C14119.5 (9)C7—Tc2—C685.0 (4)
C15—C16—C17119.0 (9)C7—Tc2—C889.1 (5)
C16—C17—C18117.9 (9)C8—Tc2—O495.8 (4)
N2—C18—C17123.0 (8)C8—Tc2—O5170.8 (4)
O4—Tc1—O575.6 (2)C8—Tc2—N292.8 (4)
Experimental details for structural determinations as complexes syn-1 to syn-3 top
syn-1syn-2syn-3
Crystal data
Chemical formulaC18H10N2O8Tc2C16H12N2O10Tc2C18H16N2O8Tc2
Mr578.28588.28584.33
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pna21Orthorhombic, Pna21
Temperature (K)200200200
a, b, c (Å)18.116 (16), 10.359 (8), 12.148 (10)18.116 (16), 10.359 (8), 12.148 (10)18.116 (16), 10.359 (8), 12.148 (10)
V3)2280 (3)2280 (3)2280 (3)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm-1)1.251.261.26
Crystal size (mm)0.3 × 0.2 × 0.20.3 × 0.2 × 0.20.3 × 0.2 × 0.2
Data collection
No. of measured, independent and observed [I > 2σ(I)] reflections2614, 2614, 22652614, 2614, 22652614, 2614, 2265
Rint0.0000
(sin θ/λ)max-1)0.6390.6390.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S0.052, 0.146, 1.100.046, 0.122, 1.050.042, 0.113, 1.05
No. of reflections261426142614
No. of parameters273281274
No. of restraints141
H-atom treatmentonly H-atom displacement parameters refinedH-atom parameters constrained
Δρmax, Δρmin (e Å-3)1.16, -1.141.12, -0.971.13, -1.03
Flack parameter0.07 (10)0.04 (9)0.02 (8)
Selected parameters for structural determinations following formulations as syn-1 to syn-3 top
Parametersyn-1asyn-2syn-3
(XY = CO)(XY = OO)(XY = OC)
Tc···Tc3.370 (3)3.369 (3)3.368 (3)
Average Tc—(µ-X)2.1632.1622.163
X4—Y41.451 (14)1.441 (12)1.424 (11)
X5—Y51.470 (14)1.433 (14)1.415 (11)
Ueq(X4)0.018 (2)0.034 (2)0.035 (2)
Ueq(X5)0.019 (1)0.037 (2)0.038 (1)
Ueq(Y4)0.083 (3)0.082 (3)0.044 (2)
Ueq(Y5)0.112 (5)0.116 (5)0.061 (3)
ΔMSDA(X4—Y4)0.052 (8)0.036 (8)0.010 (6)
ΔMSDA(X5—Y5)0.040 (11)0.041 (11)0.008 (7)
Note: (a) data taken from Zuhayra et al. (2008).
 

Funding information

Funding for this research was provided by: Ministerio de Ciencia, Innovación y Universidades (grant No. PGC2018-097366-B-I00).

References

First citationBailey, M. F. & Dahl, L. F. (1965). Inorg. Chem. 4, 1140–1145.  CSD CrossRef CAS Web of Science Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcía-Vivó, D. & Ruiz, M. A. (2020). ChemRxiv, https://doi.org/10.26434/chemrxiv.12964574.v1Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770–12779.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSidorenko, G. V., Miroslavov, A. E., Grigor'ev, M. S., Gurzhiy, V. V., Lumpov, A. A., Mikhalev, V. A. & Suglobov, D. N. (2011). Radiochemistry, 53, 44–50.  CSD CrossRef CAS Google Scholar
First citationStout, G. H. & Jensen, L. H. (1989). X-Ray Structure Determination, 2nd ed., ch. 16, p. 358. New York: John Wiley & Sons.  Google Scholar
First citationZuhayra, M., Lützen, U., Lützen, A., Papp, L., Henze, E., Friedrichs, G. & Oberdorfer, F. (2008). Inorg. Chem. 47, 10177–10182.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds