research papers
Using synchrotron high-resolution powder X-ray diffraction for the
of a new cocrystal formed by two active principle ingredientsaUniversité de Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France, and bSynchrotron SOLEIL, L Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
*Correspondence e-mail: mathieu.guerain@univ-lille.fr
The S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is orthorhombic with the P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.
of a new 1:1 cocrystal of carbamazepine andKeywords: powder diffraction; API; carbamazepine; naproxen; cocrystal; PXRD; crystal structure; liquid-assisted grinding.
CCDC reference: 2327306
1. Introduction
In recent years, the design of functional pharmaceutical molecular materials by the cocrystallization technique has attracted increasing interest (Friščić & Jones, 2010) when other classical approaches based, for example, on salt formation or metastable polymorphs are not possible. The strong development of this strategy has the consequence that many new active pharmaceutical ingredients (APIs) synthesized in the crystalline state exhibit poor solubility and bioavailability that is a major roadblock for pharmaceutical development. The aim is to construct an assembly of neutral multiple chemical species, in a stoichiometric ratio, in the same via weak supramolecular interactions of various natures, such as van der Waals, hydrogen, halogen or π–π bonds. These multicomponent materials in the crystalline solid state have an obvious interest in terms of stability, but also in improving many physicochemical properties of an API, such as its aqueous solubility, dissolution, hygroscopicity or bioavailability. Up to now, pharmaceutical cocrystals generally consist of an API and a coformer present in the same (Friščić & Jones, 2010; Vishweshwar et al., 2006; Schultheiss & Newman, 2009; Brittain, 2013; Childs et al., 2009), for example, paracetamol–piperazine (Oswald et al., 2002), ibuprofen–nicotinamide (Berry et al., 2008), carbamazepine–saccharin (Fleischman et al., 2003), carbamazepine–tartaric acid (Guerain et al., 2020), etc. In general, the coformer is not an API. In certain cases that are still quite rare, two APIs can be combined (Drozd et al., 2017; Thakuria & Sarma, 2018), a situation which is of obvious interest for multi-therapy approaches.
Carbamazepine (CBZ, C15H12N2O, see Scheme 1), an API used as an anti-epileptic and analgesic drug, is a very common model system for the study of crystallization and cocrystallization (Childs et al., 2009). CBZ is characterized by a rich and five anhydrous crystalline forms (Grzesiak et al., 2003; Rustichelli et al., 2000; Arlin et al., 2011) have been reported in the literature. The structure of the stable phase at ambient temperature and atmospheric pressure, named Form III [CBZ(III)], is the commercial form. It is monoclinic with the P21/n and the following lattice parameters (Eccles et al., 2011): a = 7.55, b = 11.186, c = 13.954 Å and β = 92.938°.
Due to its high et al., 2006; Schultheiss & Newman, 2009; Childs et al., 2009; Guerain et al., 2020; Roca-Paixão et al., 2019; Surov, Ramazanova et al., 2023; Surov, Drozd et al., 2023).
and the hydrogen-bonding group offering the possibility of dimer formation, CBZ is also an excellent candidate for cocrystallization, as well as hydrate or solvate formation, as shown by examples in the literature (VishweshwarNaproxen (NAP, C14H14O3, see Scheme 1) is a nonsteroidal anti-inflammatory drug (NSAID) used to treat pain, menstrual cramps, inflammatory diseases, such as rheumatoid arthritis, gout and fever. The commercial form of S-naproxen (S-NAP) is the only known crystallographic form in the literature. It is monoclinic with the P21 and the following lattice parameters (Tang et al., 2015): a = 7.876, b = 5.783, c = 13.323 Å and β = 93.88°. S-NAP can form cocrystals with nicotinamide (Ando et al., 2012; Neurohr et al., 2015), isonicotinamide (Castro et al., 2011) and proline (Tilborg et al., 2013; Tumanova et al., 2018), such molecules being generally considered as safe.
In the present study it is shown that a cocrystal of CBZ and S-NAP (CBZ:S-NAP) can be been obtained from liquid-assisted grinding. It has been verified by coupling the search/match functionalities of Highscore software (Degen et al., 2014) with the Cambridge Structural Database (CSD; Groom et al., 2016), the Crystallographic Open Database (COD) (Gražulis et al., 2009) and the PDF-2 database of the International Center for Diffraction Data (ICDD) (Gates-Rector & Blanton, 2019), that this cocrystal has not been referenced in the literature.
A pharmaceutical composition that combines naproxen and carbamazepine is referred to in patent EA200200910 (A1) (Coe et al., 2003; A pharmaceutical composition for treatment of acute, chronic pain and/or neuropathic pain and migraines), but no reference is made to the elaboration of a cocrystal.
The present article aims to resolve the structure of the cocrystal CBZ:S-NAP obtained by liquid-assisted grinding in a 1:1 molar ratio. The structure was solved ab initio from powder X-ray diffraction using a direct-space approach (simulated annealing) and refined by the The positions of the H atoms were estimated from energy minimization simulation.
2. Experimental
2.1. Cocrystal synthesis
S-Naproxen (purity higher than 98%) was purchased from Sigma–Aldrich and the material was used without any purification. The analysis of the powder X-ray diffraction pattern has shown that the commercial material is in the stable monoclinic phase (CSD refcode COYRUD13; Tang et al., 2015).
Carbamazepine (purity 99.8%) was purchased from Duchefa Farma BV and the material was used without any purification. The analysis of the powder X-ray diffraction pattern has shown that the commercial material is in the stable monoclinic phase (CSD refcode CBMZPN14; Eccles et al., 2011).
The cocrystal was obtained by liquid-assisted grinding of 200 mg of a mixture of CBZ and S-NAP, in a 1:1 molar ratio, at 30 Hz for a period of 30 min, adding 20 µl of methanol to the mixture (Roca-Paixão et al., 2019). (DSC, Q1000, TA Instruments) reveals a single sharp endotherm associated with the melting of the synthesized pure cocrystal at Tm,onset = 125 °C, which demonstrates a decrease of the melting temperature compared to both parent compounds {Tm(NAP) = 155 °C and Tm[CBZ(III)] = 176 °C}. As is often the case with cocrystals obtained by grinding, and already observed in the case of carbamazepine, it was not possible to obtain a single crystal which would have facilitated the determination (Roca-Paixão et al., 2023; Guerain et al., 2020).
2.2. Data collection
The powder X-ray diffraction patterns were measured at the high-resolution powder diffraction beamline CRISTAL at the Synchrotron SOLEIL in France. The beamline is equipped with a 1D detector `MYTHEN2 X'. The selected energy was 18.4 keV, corresponding to a wavelength λ = 0.67132 Å, and a NIST standard LaB6 660a sample was used for calibration. The cocrystal powder was enclosed in a borosilicate capillary (diameter 0.5 mm) and mounted on the goniometer head. The capillary was rotated during the experiments to reduce the effect of a possible preferential orientation. Data were collected at room temperature in the 1.5–50° 2θ range in less than 2 min to avoid radiation damage to the sample.
2.3. Structure solution and refinement
Regarding the indexation, the profiles of 20 reflections with a 2θ angle lower than 15° were refined individually with the program DASH (David et al., 2006) in order to obtain their 2θ angular positions. The 2θ values of these reflections were computed in the program DICVOL (Boultif & Louër, 2004) and a unique orthorhombic cell was obtained: a = 33.564 ± 0.001, b = 26.444 ± 0.001, c = 5.3666 ± 0.001 Å and V = 4763.22 ± 0.2 Å3. The calculated figures of merit are M(20) = 19.2 and F(20) = 136.3 (de Wolff et al., 1968; Smith & Snyder, 1979).
Regarding the space-group determination, the DASH probabilistic approach (Markvardsen et al., 2008), based on the of Bragg peaks, was used. Eight individual peaks distributed over the whole 2θ range of the pattern were fitted to determine the peak-shape parameters, then the background, unit-cell and zero-point parameters were refined, and the most probable was calculated using Pawley (Pawley, 1981). This method was repeated over ten times, each time on different sets of peaks. It led systematically to the P212121, which is the most probable for an orthorhombic cell, according to the CSD.
Using this P212121) and the unit-cell parameters obtained previously, the X-ray diffraction pattern was refined using Pawley fitting (Pawley, 1981) with the program DASH (David et al., 2006). The was performed from 2θ = 1.5 to 15°. Again, eight individual peaks distributed over the whole 2θ range of the pattern were fitted to determine the peak-shape parameters. A five-term polynomial representing the background, the reflection intensities, the unit-cell parameters, the zero-point and the peak shape were refined. This led to a good correlation between the experimental diagram and the Pawley fitting to the profile, with χ2 = 23.34. This result was used for the structure solution. In order to determine a hypothetical structural model, the simulated annealing algorithm of the program DASH was used (David et al., 2006).
(Here, the S-NAP molecule and the CBZ molecule were retrieved from the CSD, i.e. from the monoclinic S-NAP phase model (Tang et al., 2015) and from the monoclinic CBZ phase model (Eccles et al., 2011), respectively. The volume calculated from the indexation (V = 4763.22 Å3) suggested the introduction of two molecules of CBZ and two molecules of S-NAP. The molecules were introduced randomly in the cell. The restraints options used for the calculations did not modify the bond lengths and angles. The translation and orientation parameters of the molecule in the cell, as well as the torsion angles, were defined as variables in the calculation. The maximum number of simulated annealing moves per run was fixed at 10 000 000 and led to the solution with a profile χ2 factor close to 56.2. As a result, this structure was used for Rietveld refinement.
From this structural model, rigid-body DASH. The was performed in three steps: first, the global isotropic temperature factor, second, the translation and orientation parameters of the molecule, and third, the five torsion angles. Strong restraints on the bond lengths and angles were applied. In particular, the naphthalene ring of the S-NAP molecules and the benzene rings of the CBZ molecules were kept planar. The lattice parameters and the background parameters were set free.
was performed usingThe structural model obtained from the simulated annealing was also minimized using periodic density functional theory with fixed-cell dispersion-corrected density functional theory (DFT-D) (Giannozzi et al., 2009, 2017). In this minimization, the positions of the atoms were not constrained. The Perdew–Burke–Ernzerhof (PBE) function was used with projector-augmented wave pseudopotentials and the Grimme D3 correction, as implemented in the pw.x executable of the Quantum Espresso program (Giannozzi et al., 2009, 2017). Overall, only tiny differences are found between the atomic positions determined from the DFT minimization and from the (see supporting information).
Atomic coordinates found at the end of the JANA2020 (Petrícek et al., 2014) and MAUD (Materials Analysis Using Diffraction; Lutterotti, 2010). JANA2020 was used to generate the more accurate and complete possible and MAUD was used to graphically compare the calculated and experimental X-ray diffraction diagram. One can see in Fig. 1 the very reasonable agreement found between the calculated and the experimental X-ray diffraction diagram, reinforcing the validity of the reported structure.
were introduced in the programsAt the end of the Rietveld refinements, the lattice parameters were a = 33.5486 (9), b = 26.4223 (6), c = 5.36515 (10) Å and V = 4755.83 (19) Å3. The final conventional Rietveld factors were R = 0.0413, Rwp = 0.0587, and Rexp = 0.0168. Such factors reflect the good correlation between the observed and simulated X-ray diffraction diagram, as shown in Fig. 1. Crystallographic data, profile and structural parameters are given in Table 1.
|
3. Discussion
The structure obtained for the title cocrystal has a large unit-cell volume (4755.83 Å3), i.e. more than four times the unit-cell volume of commercial CBZ, and almost eight times the unit-cell volume of commercial S-NAP. This is related to the large lattice parameters a and b, of 33.5486 (9) and 26.4223 (6) Å, respectively.
Such lattice parameters are not surprising and are often obtained in the case of pharmaceutical cocrystals, such as ibuprofen–nicotinamide (Berry et al., 2008), carbamazepine–indomethacine (Al Rahal et al., 2020), carbamazepine–tartaric acid (Guerain et al., 2020), naproxen–nicotinamide (Ando et al., 2012; Neurohr et al., 2015) and naproxen–isonicotinamide (Castro et al., 2011).
It is closely related to the intricate arrangement of CBZ and S-NAP molecules within the (Fig. 2). The CBZ and S-NAP molecules are stacked without orientation change along the c direction, leading to a rather small c parameter of 5.36515 (10) Å. However, the molecular arrangement exhibits a greater complexity in the a and b directions. Along the a direction, an alternation pattern of CBZ and S-NAP molecules is observed, with a 180° rotation between two S-NAP molecules and a 180° rotation of the CBZ amine group between two CBZ molecules, i.e. an alternation of a total of four molecules (two CBZ and two S-NAP), contributing to a substantial large a unit-cell parameter [33.5486 (9) Å]. In the b direction, an alternation pattern of four molecules of either CBZ or S-NAP is observed. This alternation is attributed to the dimer formation between CBZ molecules, with each dimer experiencing a 180° rotation of the amine group. Such a dimer formation is commonly observed in cocrystals involving CBZ molecules (Roca-Paixão et al., 2023; Walsh et al., 2003; Al Rahal et al., 2020; Habgood et al., 2010; Oliveira et al., 2011). As regards the S-NAP molecules, an inversion of the molecules two by two is observed, with, between two inversions, a 180° rotation of the carboxylic acid group. These two different conformations of the S-NAP molecules (by rotations of the groups along the C16—C17 and C30—C31 bonds) and the CBZ molecules (by rotations of the groups along the N1—C11 and N3—C54 bonds) are closely related to the complexity of the (see supporting information). As a consequence of these rotations, two symmetry-independent molecules (energetically different) can be distinguished, leading to a crystal symmetry lower than for a theoretical structure without those rotations. Such rotations facilitate the dimer formation (no steric hindrance) and break the symmetry, so the molecules forming the dimer are not identical.
This structural arrangement is linked to the hydrogen-bonding network of the cocrystal (Fig. 2). Notably, it is worth emphasizing that a single CBZ molecule interacts through three different hydrogen bonds, involving the two H atoms of its amine group and its O atom:
(i) with another CBZ molecule, with two N—H⋯O hydrogen bonds coming from one H atom of the amine group and forming a dimer as discussed previously;
(ii) with a S-NAP molecule, with an N—H⋯O hydrogen bond between the second H atom of the amine group and the carboxylic acid group of S-NAP;
(iii) with the same S-NAP molecule, with an O—H⋯O hydrogen bond between the O atoms of CBZ and the carboxylic acid group of S-NAP.
Consequently, the two S-NAP molecules also form a dimer which is based on the dimer of two CBZ molecules.
Also, the CBZ molecules are bound by hydrogen bonds of type (i), while the interactions between the two molecules composing the cocrystal are mainly related to hydrogen bonds of types (ii) and (iii), which bind the CBZ molecule to the S-NAP molecules. The whole forms a fairly rich and compact network of hydrogen bonds.
4. Conclusion
In this work, the cocrystal CBZ:S-NAP was synthesized by the liquid-assisted grinding in a 1:1 molar ratio. A search in the PDF-2, CSD and COD databases shows that the crystallographic structure of this cocrystal was unknown in the literature. It was solved using powder diffraction experiments at the beamline CRISTAL at the Synchrotron SOLEIL in France. Indexation of the diagram, simulated annealing, theoretical calculations and led to an orthorhombic cocrystal with the P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.36515 (10) Å and V = 4755.83 (19) Å3.
Supporting information
CCDC reference: 2327306
https://doi.org/10.1107/S2053229624000639/oj3014sup1.cif
contains datablocks global, I. DOI:https://doi.org/10.1107/S2053229624000639/oj3014sup2.txt
from DFT calculations. DOI:X-ray diagrams and vizualisation of the crystal structures. DOI: https://doi.org/10.1107/S2053229624000639/oj3014sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2053229624000639/oj3014Isup4.cml
C15H12N2O·C14H14O3 | V = 4755.83 (19) Å3 |
Mr = 933.1 | Z = 4 |
Orthorhombic, P212121 | F(000) = 1968 |
Hall symbol: P 2xab;2ybc;2zac | Dx = 1.303 Mg m−3 |
a = 33.5486 (9) Å | Synchrotron radiation |
b = 26.4223 (6) Å | T = 293 K |
c = 5.36515 (10) Å | white |
Synchrotron diffractometer | 2θmin = 1.5°, 2θmax = 20°, 2θstep = 0.004° |
Radiation source: synchrotron, synchrotron |
Rp = 0.041 | 0 restraints |
Rwp = 0.059 | 0 constraints |
Rexp = 0.017 | H-atom parameters constrained |
R(F) = 0.061 | Weighting scheme based on measured s.u.'s |
4626 data points | (Δ/σ)max < 0.001 |
Profile function: Pseudo-Voigt | Background function: 8 Legendre polynoms |
18 parameters | Preferred orientation correction: none |
x | y | z | Uiso*/Ueq | ||
O1 | −0.03708 | 0.79805 | −0.75688 | 0.0204* | |
N1 | −0.00202 | 0.86426 | −0.5944 | 0.0204* | |
N2 | 0.02941 | 0.80227 | −0.82658 | 0.0204* | |
H1 | 0.05247 | 0.8151 | −0.80009 | 0.0407* | |
H2 | 0.02947 | 0.77446 | −0.91061 | 0.0407* | |
C1 | 0.09551 | 0.88081 | −0.27503 | 0.0204* | |
H3 | 0.11052 | 0.86493 | −0.15204 | 0.0407* | |
C2 | 0.05877 | 0.86144 | −0.34163 | 0.0204* | |
H4 | 0.04911 | 0.83264 | −0.26252 | 0.0407* | |
C3 | 0.03627 | 0.88458 | −0.52524 | 0.0204* | |
C4 | −0.03623 | 0.89535 | −0.54339 | 0.0204* | |
C5 | −0.04183 | 0.94031 | −0.67733 | 0.0204* | |
C6 | −0.07707 | 0.96705 | −0.63353 | 0.0204* | |
H5 | −0.08178 | 0.99679 | −0.72138 | 0.0407* | |
C7 | −0.10505 | 0.95055 | −0.46369 | 0.0204* | |
H6 | −0.12832 | 0.96902 | −0.43898 | 0.0407* | |
C8 | 0.10994 | 0.92362 | −0.39067 | 0.0204* | |
H7 | 0.13461 | 0.93678 | −0.34574 | 0.0407* | |
C9 | 0.08768 | 0.94677 | −0.5727 | 0.0204* | |
H8 | 0.09776 | 0.97546 | −0.65081 | 0.0407* | |
C10 | 0.05023 | 0.92835 | −0.64399 | 0.0204* | |
C11 | −0.0049 | 0.8199 | −0.72844 | 0.0204* | |
C12 | −0.06406 | 0.87937 | −0.36864 | 0.0204* | |
H9 | −0.05944 | 0.85009 | −0.27671 | 0.0407* | |
C13 | −0.09858 | 0.90685 | −0.33082 | 0.0204* | |
H10 | −0.11738 | 0.89579 | −0.21586 | 0.0407* | |
C14 | −0.01222 | 0.96034 | −0.85026 | 0.0204* | |
H11 | −0.02189 | 0.97839 | −0.98618 | 0.0407* | |
C15 | 0.02731 | 0.95543 | −0.83354 | 0.0204* | |
H12 | 0.04209 | 0.97122 | −0.95782 | 0.0407* | |
O2 | 0.61529 | 0.25182 | 0.44673 | 0.0204* | |
O3 | 0.61376 | 0.1993 | 0.77426 | 0.0204* | |
H13 | 0.59031 | 0.19419 | 0.72567 | 0.0407* | |
O4 | 0.82124 | 0.014 | 0.82723 | 0.0204* | |
C16 | 0.63113 | 0.23257 | 0.62617 | 0.0204* | |
C17 | 0.673 | 0.24546 | 0.71131 | 0.0204* | |
H14 | 0.68691 | 0.26376 | 0.57338 | 0.0407* | |
C18 | 0.69468 | 0.19532 | 0.75826 | 0.0204* | |
C19 | 0.72531 | 0.18057 | 0.60479 | 0.0204* | |
H15 | 0.73189 | 0.20069 | 0.46404 | 0.0407* | |
C20 | 0.74722 | 0.13579 | 0.65344 | 0.0204* | |
C21 | 0.78048 | 0.12168 | 0.50486 | 0.0204* | |
H16 | 0.78657 | 0.14036 | 0.35857 | 0.0407* | |
C22 | 0.80374 | 0.08152 | 0.57065 | 0.0204* | |
H17 | 0.82634 | 0.07313 | 0.4724 | 0.0407* | |
C23 | 0.79456 | 0.05221 | 0.78338 | 0.0204* | |
C24 | 0.76167 | 0.063 | 0.92521 | 0.0204* | |
H18 | 0.755 | 0.04225 | 1.06351 | 0.0407* | |
C25 | 0.7375 | 0.1057 | 0.86336 | 0.0204* | |
C26 | 0.70467 | 0.12065 | 1.01286 | 0.0204* | |
H19 | 0.69689 | 0.10019 | 1.15002 | 0.0407* | |
C27 | 0.68404 | 0.16424 | 0.96221 | 0.0204* | |
H20 | 0.66229 | 0.17368 | 1.06554 | 0.0407* | |
C28 | 0.67241 | 0.27958 | 0.94087 | 0.0204* | |
H21 | 0.65965 | 0.31184 | 0.89884 | 0.0407* | |
H22 | 0.69978 | 0.2858 | 0.99658 | 0.0407* | |
H23 | 0.65738 | 0.263 | 1.07453 | 0.0407* | |
C29 | 0.81518 | −0.01618 | 1.04426 | 0.0204* | |
H24 | 0.81497 | 0.00558 | 1.19192 | 0.0407* | |
H25 | 0.8368 | −0.04094 | 1.0588 | 0.0407* | |
H26 | 0.78963 | −0.03393 | 1.03096 | 0.0407* | |
O5 | 0.12427 | 0.79096 | 0.99754 | 0.0204* | |
O6 | 0.10916 | 0.72942 | 0.72646 | 0.0204* | |
H27 | 0.08578 | 0.73546 | 0.77371 | 0.0407* | |
O7 | 0.32033 | 0.98612 | 0.7212 | 0.0204* | |
C30 | 0.1342 | 0.75939 | 0.84598 | 0.0204* | |
C31 | 0.17724 | 0.74861 | 0.7784 | 0.0204* | |
H28 | 0.19015 | 0.73071 | 0.92129 | 0.0407* | |
C32 | 0.1979 | 0.79981 | 0.74249 | 0.0204* | |
C33 | 0.22754 | 0.81472 | 0.90301 | 0.0204* | |
H29 | 0.23403 | 0.79397 | 1.04171 | 0.0407* | |
C34 | 0.24857 | 0.86058 | 0.86465 | 0.0204* | |
C35 | 0.28087 | 0.87499 | 1.02061 | 0.0204* | |
H30 | 0.28681 | 0.85563 | 1.16499 | 0.0407* | |
C36 | 0.30342 | 0.9164 | 0.96465 | 0.0204* | |
H31 | 0.32541 | 0.925 | 1.06774 | 0.0407* | |
C37 | 0.2944 | 0.94667 | 0.75497 | 0.0204* | |
C38 | 0.26236 | 0.93556 | 0.60631 | 0.0204* | |
H32 | 0.25576 | 0.95692 | 0.47013 | 0.0407* | |
C39 | 0.23898 | 0.89161 | 0.65781 | 0.0204* | |
C40 | 0.20713 | 0.8764 | 0.50086 | 0.0204* | |
H33 | 0.19942 | 0.89741 | 0.36561 | 0.0407* | |
C41 | 0.18735 | 0.83175 | 0.54162 | 0.0204* | |
H34 | 0.16625 | 0.82216 | 0.43343 | 0.0407* | |
C42 | 0.18014 | 0.71492 | 0.54795 | 0.0204* | |
H35 | 0.16791 | 0.68202 | 0.58336 | 0.0407* | |
H36 | 0.20821 | 0.71008 | 0.50379 | 0.0407* | |
H37 | 0.16612 | 0.73106 | 0.40878 | 0.0407* | |
C43 | 0.31238 | 1.02005 | 0.52057 | 0.0204* | |
H38 | 0.31132 | 1.00109 | 0.36392 | 0.0407* | |
H39 | 0.3336 | 1.04545 | 0.51129 | 0.0407* | |
H40 | 0.28677 | 1.03691 | 0.54886 | 0.0407* | |
O8 | 0.46553 | 0.26164 | 0.21291 | 0.0204* | |
N3 | 0.4964 | 0.33546 | 0.10608 | 0.0204* | |
N4 | 0.52998 | 0.27322 | 0.32447 | 0.0204* | |
H41 | 0.55079 | 0.29173 | 0.34056 | 0.0407* | |
H42 | 0.53123 | 0.24423 | 0.39775 | 0.0407* | |
C44 | 0.3987 | 0.37502 | −0.15742 | 0.0204* | |
H43 | 0.38096 | 0.36459 | −0.28034 | 0.0407* | |
C45 | 0.43356 | 0.34836 | −0.11794 | 0.0204* | |
H44 | 0.43924 | 0.32013 | −0.21514 | 0.0407* | |
C46 | 0.46007 | 0.36336 | 0.06524 | 0.0204* | |
C47 | 0.53309 | 0.36155 | 0.05497 | 0.0204* | |
C48 | 0.54479 | 0.40195 | 0.20748 | 0.0204* | |
C49 | 0.58211 | 0.42343 | 0.1609 | 0.0204* | |
H45 | 0.59083 | 0.45001 | 0.26057 | 0.0407* | |
C50 | 0.60635 | 0.40632 | −0.02873 | 0.0204* | |
H46 | 0.63112 | 0.42121 | −0.05492 | 0.0407* | |
C51 | 0.39018 | 0.41702 | −0.01484 | 0.0204* | |
H47 | 0.36678 | 0.43508 | −0.04149 | 0.0407* | |
C52 | 0.41644 | 0.4321 | 0.16689 | 0.0204* | |
H48 | 0.41033 | 0.4603 | 0.26322 | 0.0407* | |
C53 | 0.45216 | 0.40616 | 0.21116 | 0.0204* | |
C54 | 0.49572 | 0.28829 | 0.21582 | 0.0204* | |
C55 | 0.5572 | 0.34508 | −0.1392 | 0.0204* | |
H49 | 0.54858 | 0.31904 | −0.24273 | 0.0407* | |
C56 | 0.59395 | 0.36727 | −0.17914 | 0.0204* | |
H50 | 0.61023 | 0.35582 | −0.30739 | 0.0407* | |
C57 | 0.51934 | 0.42275 | 0.40268 | 0.0204* | |
H51 | 0.53216 | 0.43591 | 0.54197 | 0.0407* | |
C58 | 0.47957 | 0.42484 | 0.40198 | 0.0204* | |
H52 | 0.46785 | 0.44008 | 0.53995 | 0.0407* |
O1—C11 | 1.2337 (1) | O5—C30 | 1.2116 (1) |
N1—C3 | 1.4409 (1) | O6—H27 | 0.8396 (1) |
N1—C4 | 1.4377 (1) | O6—C30 | 1.3206 (1) |
N1—C11 | 1.3785 (1) | O7—C37 | 1.3697 (1) |
N2—H1 | 0.8565 (1) | O7—C43 | 1.4260 (1) |
N2—H2 | 0.8621 (1) | C30—C31 | 1.5158 (1) |
N2—C11 | 1.3488 (1) | C31—H28 | 0.9995 (1) |
C1—H3 | 0.9301 (1) | C31—C32 | 1.5322 (1) |
C1—C2 | 1.3816 (1) | C31—C42 | 1.5266 (1) |
C1—C8 | 1.3780 (1) | C32—C33 | 1.3732 (1) |
C2—H4 | 0.9296 (1) | C32—C41 | 1.4138 (1) |
C2—C3 | 1.3835 (1) | C33—H29 | 0.9496 (1) |
C3—C10 | 1.4010 (1) | C33—C34 | 1.4172 (1) |
C4—C5 | 1.4010 (1) | C34—C35 | 1.4210 (1) |
C4—C12 | 1.3889 (1) | C34—C39 | 1.4168 (1) |
C5—C6 | 1.3972 (1) | C35—H30 | 0.9494 (1) |
C5—C14 | 1.4587 (1) | C35—C36 | 1.3637 (1) |
C6—H5 | 0.9298 (1) | C36—H31 | 0.9496 (1) |
C6—C7 | 1.3790 (1) | C36—C37 | 1.4131 (1) |
C7—H6 | 0.9302 (1) | C37—C38 | 1.3703 (1) |
C7—C13 | 1.3742 (1) | C38—H32 | 0.9494 (1) |
C8—H7 | 0.9295 (1) | C38—C39 | 1.4283 (1) |
C8—C9 | 1.3732 (1) | C39—C40 | 1.4186 (1) |
C9—H8 | 0.9299 (1) | C40—H33 | 0.9495 (1) |
C9—C10 | 1.4006 (1) | C40—C41 | 1.3711 (1) |
C10—C15 | 1.4620 (1) | C41—H34 | 0.9499 (1) |
C12—H9 | 0.9305 (1) | C42—H35 | 0.9799 (1) |
C12—C13 | 1.3819 (1) | C42—H36 | 0.9794 (1) |
C13—H10 | 0.9293 (1) | C42—H37 | 0.9801 (1) |
C14—H11 | 0.9298 (1) | C43—H38 | 0.9791 (1) |
C14—C15 | 1.3355 (1) | C43—H39 | 0.9796 (1) |
C15—H12 | 0.9298 (1) | C43—H40 | 0.9796 (1) |
O2—C16 | 1.2116 (1) | O8—C54 | 1.2337 (1) |
O3—H13 | 0.8397 (1) | N3—C46 | 1.4412 (1) |
O3—C16 | 1.3205 (1) | N3—C47 | 1.4372 (1) |
O4—C23 | 1.3696 (1) | N3—C54 | 1.3786 (1) |
O4—C29 | 1.4259 (1) | N4—H41 | 0.8568 (1) |
C16—C17 | 1.5158 (1) | N4—H42 | 0.8620 (1) |
C17—H14 | 0.9996 (1) | N4—C54 | 1.3489 (1) |
C17—C18 | 1.5322 (1) | C44—H43 | 0.9301 (1) |
C17—C28 | 1.5265 (1) | C44—C45 | 1.3816 (1) |
C18—C19 | 1.3733 (1) | C44—C51 | 1.3778 (1) |
C18—C27 | 1.4139 (1) | C45—H44 | 0.9299 (1) |
C19—H15 | 0.9495 (1) | C45—C46 | 1.3835 (1) |
C19—C20 | 1.4172 (1) | C46—C53 | 1.4008 (1) |
C20—C21 | 1.4211 (1) | C47—C48 | 1.4011 (1) |
C20—C25 | 1.4166 (1) | C47—C55 | 1.3888 (1) |
C21—H16 | 0.9494 (1) | C48—C49 | 1.3972 (1) |
C21—C22 | 1.3636 (1) | C48—C57 | 1.4587 (1) |
C22—H17 | 0.9497 (1) | C49—H45 | 0.9299 (1) |
C22—C23 | 1.4132 (1) | C49—C50 | 1.3787 (1) |
C23—C24 | 1.3703 (1) | C50—H46 | 0.9301 (1) |
C24—H18 | 0.9493 (1) | C50—C56 | 1.3744 (1) |
C24—C25 | 1.4285 (1) | C51—H47 | 0.9298 (1) |
C25—C26 | 1.4186 (1) | C51—C52 | 1.3732 (1) |
C26—H19 | 0.9497 (1) | C52—H48 | 0.9297 (1) |
C26—C27 | 1.3709 (1) | C52—C53 | 1.4008 (1) |
C27—H20 | 0.9497 (1) | C53—C58 | 1.4620 (1) |
C28—H21 | 0.9801 (1) | C55—H49 | 0.9304 (1) |
C28—H22 | 0.9795 (1) | C55—C56 | 1.3819 (1) |
C28—H23 | 0.9800 (1) | C56—H50 | 0.9291 (1) |
C29—H24 | 0.9789 (1) | C57—H51 | 0.9297 (1) |
C29—H25 | 0.9799 (1) | C57—C58 | 1.3354 (1) |
C29—H26 | 0.9797 (1) | C58—H52 | 0.9299 (1) |
C3—N1—C4 | 116.7294 (16) | H27—O6—C30 | 109.4922 (14) |
C3—N1—C11 | 120.9078 (6) | C37—O7—C43 | 117.3545 (10) |
C4—N1—C11 | 121.9500 (10) | O5—C30—O6 | 124.3195 (13) |
H1—N2—H2 | 114.9620 (7) | O5—C30—C31 | 123.49 |
H1—N2—C11 | 124.7054 (14) | O6—C30—C31 | 112.1571 (13) |
H2—N2—C11 | 120.0349 (7) | C30—C31—H28 | 108.5568 (10) |
H3—C1—C2 | 119.9594 (10) | C30—C31—C32 | 107.1631 (11) |
H3—C1—C8 | 119.9702 (12) | C30—C31—C42 | 111.3469 (4) |
C2—C1—C8 | 120.0704 (6) | H28—C31—C32 | 108.5553 (11) |
C1—C2—H4 | 119.7453 (6) | H28—C31—C42 | 108.5216 (14) |
C1—C2—C3 | 120.4772 (10) | C32—C31—C42 | 112.5920 (10) |
H4—C2—C3 | 119.7775 (12) | C31—C32—C33 | 120.1333 (7) |
N1—C3—C2 | 120.3393 (10) | C31—C32—C41 | 120.6391 (9) |
N1—C3—C10 | 119.2435 (6) | C33—C32—C41 | 119.2148 (10) |
C2—C3—C10 | 120.4130 (11) | C32—C33—H29 | 119.4628 (10) |
N1—C4—C5 | 119.5966 (8) | C32—C33—C34 | 120.9788 (8) |
N1—C4—C12 | 119.4354 (12) | H29—C33—C34 | 119.5584 (9) |
C5—C4—C12 | 120.9213 (9) | C33—C34—C35 | 121.5477 (7) |
C4—C5—C6 | 117.1273 (7) | C33—C34—C39 | 119.7029 (9) |
C4—C5—C14 | 122.8582 (9) | C35—C34—C39 | 118.6419 (9) |
C6—C5—C14 | 119.9841 (13) | C34—C35—H30 | 119.7430 (9) |
C5—C6—H5 | 119.0707 (7) | C34—C35—C36 | 120.5557 (9) |
C5—C6—C7 | 121.8213 (12) | H30—C35—C36 | 119.7012 (9) |
H5—C6—C7 | 119.1080 (9) | C35—C36—H31 | 119.6524 (9) |
C6—C7—H6 | 119.9758 (12) | C35—C36—C37 | 120.7039 (9) |
C6—C7—C13 | 120.0598 (9) | H31—C36—C37 | 119.6437 (9) |
H6—C7—C13 | 119.9644 (7) | O7—C37—C36 | 113.5800 (10) |
C1—C8—H7 | 120.2072 (6) | O7—C37—C38 | 125.7488 (9) |
C1—C8—C9 | 119.6576 (12) | C36—C37—C38 | 120.6709 (8) |
H7—C8—C9 | 120.1352 (10) | C37—C38—H32 | 120.2332 (9) |
C8—C9—H8 | 119.0709 (12) | C37—C38—C39 | 119.4948 (9) |
C8—C9—C10 | 121.8215 (10) | H32—C38—C39 | 120.2720 (10) |
H8—C9—C10 | 119.1076 (6) | C34—C39—C38 | 119.8226 (10) |
C3—C10—C9 | 117.5511 (6) | C34—C39—C40 | 118.1683 (10) |
C3—C10—C15 | 122.9915 (11) | C38—C39—C40 | 121.9480 (9) |
C9—C10—C15 | 119.4513 (10) | C39—C40—H33 | 119.5503 (10) |
O1—C11—N1 | 121.5827 (7) | C39—C40—C41 | 120.9065 (7) |
O1—C11—N2 | 122.4722 (14) | H33—C40—C41 | 119.5432 (10) |
N1—C11—N2 | 115.9442 (8) | C32—C41—C40 | 120.9313 (10) |
C4—C12—H9 | 119.9074 (9) | C32—C41—H34 | 119.5473 (10) |
C4—C12—C13 | 120.1830 (12) | C40—C41—H34 | 119.5213 (8) |
H9—C12—C13 | 119.9097 (7) | C31—C42—H35 | 109.4871 (11) |
C7—C13—C12 | 119.8468 (7) | C31—C42—H36 | 109.4705 (3) |
C7—C13—H10 | 120.0860 (9) | C31—C42—H37 | 109.4327 (13) |
C12—C13—H10 | 120.0672 (12) | H35—C42—H36 | 109.4918 (10) |
C5—C14—H11 | 116.5743 (14) | H35—C42—H37 | 109.4372 (10) |
C5—C14—C15 | 126.7471 (10) | H36—C42—H37 | 109.5081 (11) |
H11—C14—C15 | 116.6787 (4) | O7—C43—H38 | 109.4555 (15) |
C10—C15—C14 | 128.0632 (6) | O7—C43—H39 | 109.4594 (11) |
C10—C15—H12 | 115.9733 (15) | O7—C43—H40 | 109.4493 (7) |
C14—C15—H12 | 115.9634 (10) | H38—C43—H39 | 109.4692 (7) |
H13—O3—C16 | 109.4938 (10) | H38—C43—H40 | 109.5010 (7) |
C23—O4—C29 | 117.3454 (9) | H39—C43—H40 | 109.4929 (17) |
O2—C16—O3 | 124.3346 (12) | C46—N3—C47 | 116.7413 (17) |
O2—C16—C17 | 123.4746 (6) | C46—N3—C54 | 120.8892 (9) |
O3—C16—C17 | 112.1610 (9) | C47—N3—C54 | 121.9580 (8) |
C16—C17—H14 | 108.5547 (11) | H41—N4—H42 | 114.9388 (10) |
C16—C17—C18 | 107.1671 (12) | H41—N4—C54 | 124.7071 (14) |
C16—C17—C28 | 111.3352 (6) | H42—N4—C54 | 120.0579 (6) |
H14—C17—C18 | 108.5630 (11) | H43—C44—C45 | 119.9531 (11) |
H14—C17—C28 | 108.5233 (14) | H43—C44—C51 | 119.9712 (10) |
C18—C17—C28 | 112.5927 (10) | C45—C44—C51 | 120.0757 (7) |
C17—C18—C19 | 120.1347 (7) | C44—C45—H44 | 119.7674 (7) |
C17—C18—C27 | 120.6362 (9) | C44—C45—C46 | 120.4658 (11) |
C19—C18—C27 | 119.2163 (10) | H44—C45—C46 | 119.7668 (10) |
C18—C19—H15 | 119.4671 (9) | N3—C46—C45 | 120.3412 (11) |
C18—C19—C20 | 120.9729 (8) | N3—C46—C53 | 119.2222 (7) |
H15—C19—C20 | 119.5600 (9) | C45—C46—C53 | 120.4324 (10) |
C19—C20—C21 | 121.5319 (8) | N3—C47—C48 | 119.6008 (7) |
C19—C20—C25 | 119.7090 (9) | N3—C47—C55 | 119.4473 (10) |
C21—C20—C25 | 118.6503 (9) | C48—C47—C55 | 120.9050 (11) |
C20—C21—H16 | 119.7563 (8) | C47—C48—C49 | 117.1338 (6) |
C20—C21—C22 | 120.5488 (10) | C47—C48—C57 | 122.8436 (11) |
H16—C21—C22 | 119.6949 (9) | C49—C48—C57 | 119.9922 (11) |
C21—C22—H17 | 119.6596 (10) | C48—C49—H45 | 119.0668 (6) |
C21—C22—C23 | 120.7144 (10) | C48—C49—C50 | 121.8271 (10) |
H17—C22—C23 | 119.6260 (8) | H45—C49—C50 | 119.1061 (12) |
O4—C23—C22 | 113.5941 (10) | C49—C50—H46 | 119.9854 (10) |
O4—C23—C24 | 125.7472 (9) | C49—C50—C56 | 120.0613 (11) |
C22—C23—C24 | 120.6585 (8) | H46—C50—C56 | 119.9533 (6) |
C23—C24—H18 | 120.2427 (8) | C44—C51—H47 | 120.2096 (7) |
C23—C24—C25 | 119.4986 (9) | C44—C51—C52 | 119.6588 (10) |
H18—C24—C25 | 120.2587 (10) | H47—C51—C52 | 120.1316 (11) |
C20—C25—C24 | 119.8201 (10) | C51—C52—H48 | 119.0669 (10) |
C20—C25—C26 | 118.1607 (9) | C51—C52—C53 | 121.8217 (11) |
C24—C25—C26 | 121.9581 (9) | H48—C52—C53 | 119.1114 (7) |
C25—C26—H19 | 119.5374 (9) | C46—C53—C52 | 117.5364 (7) |
C25—C26—C27 | 120.9190 (8) | C46—C53—C58 | 123.0090 (10) |
H19—C26—C27 | 119.5436 (10) | C52—C53—C58 | 119.4486 (11) |
C18—C27—C26 | 120.9244 (10) | O8—C54—N3 | 121.6149 (9) |
C18—C27—H20 | 119.5496 (9) | O8—C54—N4 | 122.4495 (14) |
C26—C27—H20 | 119.5260 (8) | N3—C54—N4 | 115.9347 (7) |
C17—C28—H21 | 109.4910 (11) | C47—C55—H49 | 119.9024 (12) |
C17—C28—H22 | 109.4595 (6) | C47—C55—C56 | 120.1963 (10) |
C17—C28—H23 | 109.4549 (13) | H49—C55—C56 | 119.9013 (6) |
H21—C28—H22 | 109.4942 (10) | C50—C56—C55 | 119.8360 (6) |
H21—C28—H23 | 109.4135 (11) | C50—C56—H50 | 120.0894 (11) |
H22—C28—H23 | 109.5143 (12) | C55—C56—H50 | 120.0746 (10) |
O4—C29—H24 | 109.4783 (16) | C48—C57—H51 | 116.5660 (15) |
O4—C29—H25 | 109.4424 (9) | C48—C57—C58 | 126.7540 (8) |
O4—C29—H26 | 109.4512 (6) | H51—C57—C58 | 116.6800 (7) |
H24—C29—H25 | 109.4533 (8) | C53—C58—C57 | 128.0583 (9) |
H24—C29—H26 | 109.5011 (7) | C53—C58—H52 | 115.9562 (15) |
H25—C29—H26 | 109.5010 (18) | C57—C58—H52 | 115.9855 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O8i | 0.86 | 2.24 | 2.9975 | 146.58 |
C1—H3···O5ii | 0.93 | 2.16 | 2.9505 | 141.86 |
O3—H13···O1iii | 0.84 | 1.80 | 2.5789 | 153.52 |
C28—H23···O2iv | 0.98 | 2.46 | 3.4024 | 160.33 |
O6—H27···O8v | 0.84 | 1.75 | 2.5179 | 150.36 |
N4—H41···O2 | 0.86 | 2.47 | 2.9902 | 119.52 |
N4—H42···O1iii | 0.86 | 2.17 | 2.9407 | 148.25 |
C51—H47···O4vi | 0.93 | 2.34 | 3.1120 | 140.49 |
Symmetry codes: (i) −x+1/2, −y+1, z−3/2; (ii) x, y, z−1; (iii) −x+1/2, −y+1, z+3/2; (iv) x, y, z+1; (v) −x+1/2, −y+1, z+1/2; (vi) x−1/2, −y+1/2, −z+1. |
Crystal data | |
Chemical formula | C15H12N2O.C14H14O3 |
Molecular weight (g mol-1) | 933.1 |
Crystal system, space group | orthorhombic, P212121 |
Temperature (K) | 293 |
a,b,c (Å) | 33.5486 (9), 26.4223 (6), 5.36515 (10) |
V (Å3) | 4755.83 (19) |
Z | 4 |
F(000) | 1968 |
µ (mm-1) | 0.077 |
Specimen shape, size (mm) | Cylinder, 0.5 |
2θ range (°) | 1.5–20 |
Data collection | |
Beamline | CRISTAL (SOLEIL) |
Specimen mounting | 0.5 mm diameter Lindemann capillary |
Data collection mode | Transmission |
Scan method | Continuous scan |
Radiation type | Synchrotron 18,47 KeV, λ = 0.67132 Å |
Binning size (°2θ) | 0.004 |
Refinement | |
R factors | R = 0.0413, Rwpnb =0.0587, Rexp = 0.0168 |
Acknowledgements
This project has received funding from the Interreg 2 Seas program 2014–2020 co-funded by the European Regional Development Fund (FEDER). The authors greatly acknowledge Florence Danède (MMT-UMET, Université de Lille) for performing the laboratory powder X-ray diffraction experiments.
Funding information
Funding for this research was provided by: European Regional Development Fund (FEDER) (subsidiary contract No. 2S01-059_IMODE).
References
Al Rahal, O., Majumder, M., Spillman, M. J., van de Streek, J. & Shankland, K. (2020). Crystals, 10, 42. CSD CrossRef Google Scholar
Ando, S., Kikuchi, J., Fujimura, Y., Ida, Y., Higashi, K., Moribe, K. & Yamamoto, K. (2012). J. Pharm. Sci. 101, 3214–3221. Web of Science CSD CrossRef CAS PubMed Google Scholar
Arlin, J. B., Price, L. S., Price, S. L. & Florence, A. J. (2011). Chem. Commun. 47, 7074. CSD CrossRef Google Scholar
Berry, D. J., Seaton, C. C., Clegg, W., Harrington, R. W., Coles, S. J., Horton, P. N., Hursthouse, M. B., Storey, R., Jones, W., Friščić, T. & Blagden, N. (2008). Cryst. Growth Des. 8, 1697–1712. Web of Science CSD CrossRef CAS Google Scholar
Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brittain, H. G. (2013). J. Pharm. Sci. 102, 311–317. Web of Science CrossRef CAS PubMed Google Scholar
Castro, R. A. E., Ribeiro, J. D. B., Maria, T. M. R., Ramos Silva, M., Yuste-Vivas, C., Canotilho, J. & Eusébio, M. E. S. (2011). Cryst. Growth Des. 11, 5396–5404. CAS Google Scholar
Childs, S. L., Wood, P. A., Rodríguez-Hornedo, N., Reddy, L. S. & Hardcastle, K. I. (2009). Cryst. Growth Des. 9, 1869–1888. Web of Science CSD CrossRef CAS Google Scholar
Coe, W. J., Harrigan, P. E., O'Neill, T. B., Sands, B. S. & Watsky, J. E. (2003). Patent EA200200910 (A1). Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915. Web of Science CrossRef CAS IUCr Journals Google Scholar
Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. (2014). Powder Diffr. 29, S13–S18. Web of Science CrossRef CAS Google Scholar
Drozd, K. V., Manin, A. N., Churakov, A. V. & Perlovich, G. L. (2017). CrystEngComm, 19, 4273–4286. Web of Science CSD CrossRef CAS Google Scholar
Eccles, K. S., Stokes, S. P., Daly, C. A., Barry, N. M., McSweeney, S. P., O'Neill, D. J., Kelly, D. M., Jennings, W. B., Ní Dhubhghaill, O. M., Moynihan, H. A., Maguire, A. R. & Lawrence, S. E. (2011). J. Appl. Cryst. 44, 213–215. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919. Web of Science CSD CrossRef CAS Google Scholar
Friščić, T. & Jones, W. (2010). J. Pharm. Pharmacol. 62, 1547–1559. Web of Science PubMed Google Scholar
Gates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352–360. CAS Google Scholar
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A. D., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. & Baroni, S. (2017). J. Phys. Condens. Matter, 29, 465901. CrossRef PubMed Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. & Wentzcovitch, R. M. (2009). J. Phys. Condens. Matter, 21, 395502. CrossRef PubMed Google Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726–729. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260–2271. Web of Science CSD CrossRef PubMed CAS Google Scholar
Guerain, M., Derollez, P., Roca-Paixão, L., Dejoie, C., Correia, N. T. & Affouard, F. (2020). Acta Cryst. C76, 225–230. CSD CrossRef IUCr Journals Google Scholar
Habgood, M., Deij, M. A., Mazurek, J., Price, S. L. & ter Horst, J. H. (2010). Cryst. Growth Des. 10, 903–912. Web of Science CSD CrossRef CAS Google Scholar
Lutterotti, L. (2010). Nucl. Instrum. Methods Phys. Res. B, 268, 334–340. Web of Science CrossRef CAS Google Scholar
Markvardsen, A. J., Shankland, K., David, W. I. F., Johnston, J. C., Ibberson, R. M., Tucker, M., Nowell, H. & Griffin, T. (2008). J. Appl. Cryst. 41, 1177–1181. Web of Science CrossRef CAS IUCr Journals Google Scholar
Neurohr, C., Marchivie, M., Lecomte, S., Cartigny, Y., Couvrat, N., Sanselme, M. & Subra-Paternault, P. (2015). Cryst. Growth Des. 15, 4616–4626. Web of Science CSD CrossRef CAS Google Scholar
Oliveira, M. A., Peterson, M. L. & Davey, R. J. (2011). Cryst. Growth Des. 11, 449–457. Web of Science CSD CrossRef CAS Google Scholar
Oswald, I. D. H., Allan, D. R., McGregor, P. A., Motherwell, W. D. S., Parsons, S. & Pulham, C. R. (2002). Acta Cryst. B58, 1057–1066. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357–361. CrossRef CAS Web of Science IUCr Journals Google Scholar
Petrícek, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345–352. Google Scholar
Roca-Paixão, L., Correia, N. T. & Affouard, F. (2019). CrystEngComm, 21, 6991–7001. Google Scholar
Roca-Paixão, L., Correia, N. T., Danède, F., Guerain, M. & Affouard, F. (2023). Cryst. Growth Des. 23, 1355–1369. Google Scholar
Rustichelli, C., Gamberini, G., Ferioli, V., Gamberini, M. C., Ficarra, R. & Tommasini, S. (2000). J. Pharm. Biomed. Anal. 23, 41–54. Web of Science CrossRef PubMed CAS Google Scholar
Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. Web of Science CrossRef PubMed CAS Google Scholar
Smith, G. S. & Snyder, R. L. (1979). J. Appl. Cryst. 12, 60–65. CrossRef CAS IUCr Journals Web of Science Google Scholar
Surov, A. O., Drozd, K. V., Ramazanova, A. G., Churakov, A. V., Vologzhanina, A. V., Kulikova, E. S. & Perlovich, G. L. (2023). Pharmaceutics, 15, 1747. CSD CrossRef PubMed Google Scholar
Surov, A. O., Ramazanova, A. G., Voronin, A. P., Drozd, K. V., Churakov, A. V. & Perlovich, G. L. (2023). Pharmaceutics, 15, 836. CSD CrossRef PubMed Google Scholar
Tang, G.-M., Wang, J.-H., Zhao, C., Wang, Y.-T., Cui, Y.-Z., Cheng, F.-Y. & Ng, S. W. (2015). CrystEngComm, 17, 7258–7261. CSD CrossRef Google Scholar
Thakuria, R. & Sarma, B. (2018). Crystals, 8, 101. CrossRef Google Scholar
Tilborg, A., Springuel, G., Norberg, B., Wouters, J. & Leyssens, T. (2013). CrystEngComm, 15, 3341–3350. Web of Science CSD CrossRef CAS Google Scholar
Tumanova, N., Tumanov, N., Fischer, F., Morelle, F., Ban, V., Robeyns, K., Filinchuk, Y., Wouters, J., Emmerling, F. & Leyssens, T. (2018). CrystEngComm, 20, 7308–7321. Web of Science CSD CrossRef CAS Google Scholar
Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499–516. Web of Science CrossRef PubMed CAS Google Scholar
Walsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186–187. Web of Science CSD CrossRef Google Scholar
Wolff, P. M. de (1968). J. Appl. Cryst. 1, 108–113. CrossRef IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.