research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Isostructural behaviour in ammonium and potassium salt forms of sulfonated azo dyes

crossmark logo

aDepartment of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XQ, United Kingdom
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by R. Diniz, Universidade Federal de Minas Gerais, Brazil (Received 11 January 2024; accepted 8 February 2024; online 15 February 2024)

The structures of five ammonium salt forms of mono­sulfonated azo dyes, derivatives of 4-(2-phenyldiazen-1-yl)benzenesulfonate, with the general formula [NH4][O3S(C6H4)NN(C6H3)RR′]·XH2O [R = OH, NH2 or N(C2H4OH)2; R′ = H or OH] are presented. All form simple layered structures with alternating hydro­phobic (organic) and hydro­philic (cation, solvent and polar groups) layers. To assess for isostructural behaviour of the ammonium cation with M+ ions, the packing of these structures is compared with literature examples. To aid this comparison, the corresponding structures of four potassium salt forms of the mono­sulfonated azo dyes are also presented herein. Of the five ammonium salts it is found that three have isostructural equivalents. In two cases this equivalent is a potassium salt form and in one case it is a rubidium salt form. The isostructurality of ion packing and of unit-cell symmetry and dimensions tolerates cases where the ammonium ions form somewhat different inter­action types with coformer species than do the potassium or rubidium ions. No sodium salt forms are found to be isostructural with any ammonium equivalent. However, similarities in the anion packing within a single hydro­phobic layer are found for a group that consists of the ammonium and rubidium salt forms of one azo anion species and the sodium and silver salt forms of a different azo species.

1. Introduction

The process of salt selection aims to choose the form of an active organic material that has the best properties for effectiveness and for commercialization. Salt selection is well studied in the area of pharmaceuticals (Stahl & Wermuth, 2008[Stahl, P. H. & Wermuth, C. G. (2008). Editors. Handbook of Pharmaceutical Salts: Properties, Selection and Use. VHCA: Zurich.]; Mahmood et al., 2023[Mahmood, T., Sarfraz, R. M., Ismail, A., Ali, M. & Khan, A. R. (2023). Assay Drug Dev. Technol. 21, 65-79.]; Bharate, 2021[Bharate, S. S. (2021). Pharm. Res. 38, 1307-1326.]; Arlin et al., 2011[Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318-1327.]; Black et al., 2007[Black, S. N., Collier, E. A., Davey, R. J. & Roberts, R. J. (2007). J. Pharm. Sci. 96, 1053-1068.]), but it is perhaps less well known that similar processes are used to select for material properties in other areas too. One example is the process of laking sulfonated azo colourants. A typical process here involves the substitution of an M+ cation with an M2+ cation, such as Ca or Ba, to switch from an aqueous-soluble dyestuff to an insoluble pigment (Christie & Mackay, 2008[Christie, R. M. & Mackay, J. L. (2008). Coloration Technol. 124, 133-144.]; Schmidt et al., 2009[Schmidt, M. U., van de Streek, J. & Ivashevskaya, S. N. (2009). Chem. Eur. J. 15, 338-341.]; Kennedy et al., 2012[Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064-3069.]). As with pharmaceuticals, the material properties of pigments are dependant upon their crystal structures, and upon the inter­molecular inter­actions present within the crystal (Hao & Iqbal, 1997[Hao, Z. & Iqbal, A. (1997). Coord. Chem. Rev. 26, 203-213.]). However, in the field of sulfonated azo colourants relatively few pigment structures are known due to the insoluble nature of the materials and to the highly anisotropic habits of many species. This means that a high percentage of the crystal structures that are known are derived from less common methods than standard single-crystal X-ray diffraction (e.g. structure from powder diffraction, from electron diffraction or through use of synchrotron radiation – see Schmidt et al., 2009[Schmidt, M. U., van de Streek, J. & Ivashevskaya, S. N. (2009). Chem. Eur. J. 15, 338-341.]; Gorelik et al., 2009[Gorelik, T., Schmidt, M. U., Brüning, J., Bekő, S. & Kolb, U. (2009). Cryst. Growth Des. 9, 3898-3903.]; Kennedy et al., 2000[Kennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638-640.]; Grzesiak-Nowak et al., 2019[Grzesiak-Nowak, M., Oszajca, M., Rafalska-Łasocha, A., Goszczycki, P., Ostrowska, K. & Łasocha, W. (2019). Dyes Pigments, 160, 252-258.]). One strategy for understanding the structure of sulfonated azo pigments has been to study systematically the structures of similarly functionalized, but easier to manipulate, dyes and then to cross-check any structure-to-property relationships identified against those pigment structures that are known (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. A. B., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.], 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-A., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. (2009). Chem. Eur. J. 15, 9494-9504.], 2012[Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064-3069.]).

Ammonium salt forms of sulfonated azo colourants are sometimes used in preference to alkali-metal salts, either in the finished product or as an inter­mediate prior to laking (Christie & Mackay, 2008[Christie, R. M. & Mackay, J. L. (2008). Coloration Technol. 124, 133-144.]; Al Isawi et al., 2021[Al Isawi, W. A., Jianrattanasawat, S., Tripodianos, E., Demadis, K. D., Kirillov, A. M., Zeller, M. & Mezei, G. (2021). Cryst. Growth Des. 21, 5421-5439.]; Gonzalez & Miksovska, 2014[Gonzalez, W. G. & Miksovska, J. (2014). Biochim. Biophys. Acta, 1844, 1472-1480.]). Despite this, only two structures of ammonium salts of sulfonated azo colourants appear to have been determined, namely, those of di­ammonium Orange G tetra­hydrate and of the nitrile-substituted [NH4][O3S(C6H4)NN(C6H4)NHCH2CH2CN]·H2O (Ojala et al., 1994[Ojala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994). Acta Cryst. B50, 684-694.]; Astbury et al., 2013[Astbury, C., Conway, L. K., Gillespie, C., Hodge, K., Innes, E. & Kennedy, A. R. (2013). Dyes Pigments, 97, 100-104.]). The NH4+ ion is sometimes known as a pseudo-alkali metal due to it propensity to act in an isostructural manner with the heavier Group 1 metal ions. Its effective ionic radius has been estimated at 1.40 to 1.67 Å, depending on the coordination number (Sidey, 2016[Sidey, V. (2016). Acta Cryst. B72, 626-633.]). Thus, as well as having the same charge as an alkali metal, it also has an ionic radius simi­lar to those of K+ and Rb+. An obvious difference is that bonds from an alkali-metal ion to, for example, an O-atom donor are typically described as ionic M—O inter­actions, whereas NH4+ will inter­act with O via N—H⋯O hydrogen bonds. As there are four H-atom donors per ammonium ion this may limit NH4+ to lower coordination numbers than those typically seen for K or Rb. It seems to be this feature that is responsible for ammonium forming isostructural pairs with Na compounds, as well as with K and Rb compounds, despite the smaller ionic radius of Na+ (e.g. Khan & Baur, 1972[Khan, A. A. & Baur, W. H. (1972). Acta Cryst. B28, 683-693.]; Christov, 2003[Christov, C. (2003). Calphad, 27, 153-160.]; Emerson et al., 2014[Emerson, A. J., Edwards, A. J., Batten, S. R. & Turner, D. R. (2014). CrystEngComm, 16, 1625-1631.]). Many examples of isostructurality between ammonium and Group 1 metal ions are for inorganic systems, but organic examples are also known. Of particular relevance to sulfonated azo species is the sweetener cyclamic acid. This is an RSO3-containing organic species and its ammonium, Na, K and Rb salt forms are known to form an isostructural series (Leban et al., 2007[Leban, I., Rudan-Tasič, D., Lah, N. & Klofutar, C. (2007). Acta Cryst. B63, 418-425.]).

In order to investigate the structural relationships between ammonium salt forms of sulfonated azo dyes and their alkali-metal congeners, we herein present the crystal structures of ammonium salts of five azo anion species (Scheme 1). The structures of their Na-salt equivalents have already been reported (Kennedy et al., 2001[Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, W. E. (2001). J. Chem. Soc. Dalton Trans. pp. 2199-2205.], 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, 662-678.]; Dodds et al., 2017[Dodds, C. A., Hobday, C. L., Kennedy, A. R., McKellar, S. C., Smillie, K. & Walls, A. (2017). New J. Chem. 41, 1574-1581.]), as has the structure of one of their K equivalents (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. A. B., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]). In order to complete the comparison we report herein the crystal structures of the remaining four K-salt equivalents.

[Scheme 1]

2. Experimental

The Na salt of dye 3 was obtained from Fujifilm. The other dyes were synthesized as their Na salts using the well-known azo-coupling method (Alsantali et al., 2022[Alsantali, R. I., Raja, Q. A., Alzahrani, A. Y. A., Sadiq, A., Naeem, N., Mughal, E. U., Al-Rooqi, M. M., El Guesmi, N., Moussa, Z. & Ahmed, S. A. (2022). Dyes Pigments, 199, 110050.]; Kennedy et al., 2001[Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, W. E. (2001). J. Chem. Soc. Dalton Trans. pp. 2199-2205.]). Na salts were converted to NH4 or K salts by reaction with a slight excess of either NH4Cl or KCl in warm water. Solutions were filtered to give clear aqueous solutions and then allowed to evaporate for 2 to 7 d. This gave yellow or yellow–orange crystals of the desired salt forms that were suitable for single-crystal diffraction analysis. FT–IR spectra were measured as KBr discs using a Nicolet Avatar 380 spectrometer. Raman data were measured from solids using a Reinshaw Ramascope with excitation at 785 nm. Aqueous UV–Vis spectra were measured using a Cary 300 Bio spectrophotometer and solid-state UV–Vis spectra were measured using a Phillips PU8749 spectrophotometer. Measurements on K1 were made at Station 9.8 of the Daresbury SRS. All other measurements were made using standard Rigaku Synergy-i (NH44) or Enraf–Nonius KappaCCD (all other structures) laboratory diffractometers equipped with CCD detectors.

2.1. Spectroscopic data

NH41, FT–IR (cm −1): 3421, 3267, 3088, 1598, 1501, 1280, 1193, 1040. Raman (cm−1): 1120, 1147, 1185, 1435, 1459, 1594. UV–Vis (λmax, nm): 348 (aq), 346 (solid).

NH42, FT–IR (cm −1): 1629, 1588, 1419, 1337, 1198, 1116, 1034, 999, 840, 804. Raman (cm−1): 239, 317, 348, 446, 836, 1036, 1122, 1161, 1197, 1324, 1375, 1419, 1591. UV–Vis (λmax, nm): 417 (aq), 334 (solid).

NH43, FT–IR (cm −1): 1634, 1603, 1501, 1398, 1383, 1275, 1193, 1116, 1034, 1004, 835. Raman (cm−1): peaks masked by fluorescence. UV–Vis (λmax, nm): 386 (aq), 332 (solid).

NH44, FT–IR (cm −1): 1598, 1511, 1403, 1213, 1116, 1075, 1024, 844, 814, 691. Raman (cm−1): 1034, 1115, 1143, 1197, 1315, 1356, 1387, 1419, 1441, 1589. UV–Vis (λmax, nm): 459 (aq), 418 (solid).

NH45, FT–IR (cm −1): 3405, 3190, 2366, 1597, 1495, 1423, 1177, 1136, 1034. Raman (cm−1): 1138, 1183, 1422, 1452 (somewhat masked by fluorescence). UV–Vis (λmax, nm): 348 (aq), 351 (solid).

K1, FT–IR (cm −1): 1593, 1460, 1372, 1178, 850, 717. Raman (cm−1): 628, 794, 922, 1102, 1121, 1147, 1158, 1309, 1396, 1435, 1590, 1607. UV–Vis (λmax, nm): 348 (aq), 334 (solid).

K2, FT–IR (cm −1): 3472, 3390, 1593, 1469, 1372, 1198, 1121, 1039, 839, 803. Raman (cm−1): 1033, 1122, 1161, 1198, 1326, 1374, 1418, 1592. UV–Vis (λmax, nm): 430 (aq), 336 (solid).

K3, FT–IR (cm −1): 1644, 1460, 1372, 1193, 1116, 1029, 839, 716. Raman (cm−1): 780, 921, 1036, 1120, 1152, 1427, 1588. UV–Vis (λmax, nm): 387 (aq), 345 (solid).

K4, FT–IR (cm −1): 1597, 1515, 1382, 1351, 1316, 1259, 1223, 1182, 1116, 1049, 1003. Raman (cm−1): 739, 1032, 1117, 1143, 1195, 1315, 1355, 1392, 1421, 1440. UV–Vis (λmax, nm): 458 (aq), 413 (solid).

K5, FT–IR (cm −1): 3390, 3078, 1603, 1501, 1383, 1188, 1034, 845. Raman (cm−1): 1136, 1169, 1185, 1424, 1454 (somewhat masked by fluorescence). UV–Vis (λmax, nm): 347 (aq), 348 (solid).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For K4, the azo­benzene core of one of the two crystallographically independent dye anions was treated as disordered over two sites. In a similar way, one of the four independent SO3 groups of K3 was also treated as disordered over two sites, a rotation about the C—S bond giving alternative positions for the three O atoms. In both cases, appropriate restraints and constraints on the displacement parameters were added so as to ensure that the structures approximated normal behaviour. Finally, one water mol­ecule of NH44 was modelled as rotationally disordered about atom O2W so that the water mol­ecule has three independent H-atom sites. Where possible, H atoms attached to O or to N atoms were positioned as found in difference syntheses and refined freely and isotropically. Where riding models were required, X—H bond lengths were set at 0.88 (1) Å. All H atoms bound to C atoms were included in riding models, with C—H = 0.95 or 0.99 Å for CH and CH2 groups, respectively. For all H atoms in riding models, Uiso(H) values were set to 1.2Ueq of the parent atom.

Table 1
Experimental details

H atoms were treated by a mixture of independent and constrained refinement. The absorption correction was multi-scan for NH41 (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) and K1 (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]).

  NH41 NH42 NH43
Crystal data
Chemical formula NH4+·C12H9N2O4S NH4+·C12H9N2O5S·2H2O NH4+·C12H10N3O3S·1.5H2O
Mr 295.31 347.34 321.35
Crystal system, space group Monoclinic, P21 Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 100 123 123
a, b, c (Å) 5.8163 (1), 6.9218 (1), 15.6295 (2) 8.2876 (1), 10.6404 (1), 17.4834 (3) 35.1636 (15), 7.8905 (3), 10.4972 (5)
α, β, γ (°) 90, 93.354 (1), 90 89.734 (1), 84.793 (1), 86.146 (1) 90, 100.091 (2), 90
V3) 628.15 (2) 1531.91 (4) 2867.5 (2)
Z 2 4 8
Radiation type Cu Kα Mo Kα Mo Kα
μ (mm−1) 2.48 0.25 0.25
Crystal size (mm) 0.22 × 0.12 × 0.06 0.42 × 0.40 × 0.10 0.35 × 0.30 × 0.05
 
Data collection
Diffractometer Rigaku Synergy-i Enraf–Nonius KappaCCD Enraf–Nonius KappaCCD
Tmin, Tmax 0.859, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10144, 2345, 2336 15978, 8209, 6704 6133, 3271, 1857
Rint 0.054 0.021 0.074
(sin θ/λ)max−1) 0.616 0.685 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.08 0.036, 0.094, 1.02 0.049, 0.105, 1.02
No. of reflections 2345 8209 3271
No. of parameters 203 495 231
No. of restraints 1 1 1
Δρmax, Δρmin (e Å−3) 0.26, −0.33 0.58, −0.41 0.26, −0.46
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.00 (2)
  NH44 NH45 K1
Crystal data
Chemical formula NH4+·C16H18N3O5S·H2O NH4+·C12H9N2O4S [K(C12H9N2O4S)(H2O)]
Mr 400.45 295.31 334.39
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pccn Triclinic, P[\overline{1}]
Temperature (K) 123 123 150
a, b, c (Å) 8.4933 (1), 13.0977 (2), 17.1657 (3) 12.6592 (3), 28.3597 (7), 7.1268 (2) 5.9620 (7), 7.2033 (11), 31.929 (5)
α, β, γ (°) 90.970 (1), 103.180 (1), 95.132 (1) 90, 90, 90 83.852 (14), 86.361 (15), 88.868 (15)
V3) 1850.43 (5) 2558.60 (11) 1360.5 (3)
Z 4 8 4
Radiation type Mo Kα Mo Kα Synchrotron, λ = 0.689 Å
μ (mm−1) 0.22 0.27 0.51
Crystal size (mm) 0.5 × 0.5 × 0.15 0.30 × 0.10 × 0.05 0.20 × 0.14 × 0.03
 
Data collection
Diffractometer Enraf–Nonius KappaCCD Enraf–Nonius KappaCCD Bruker APEXII CCD
Tmin, Tmax 0.751, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16736, 8841, 5911 5346, 2923, 1850 10143, 5691, 4405
Rint 0.043 0.069 0.032
(sin θ/λ)max−1) 0.660 0.649 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.04 0.051, 0.118, 1.03 0.060, 0.180, 1.02
No. of reflections 8841 2923 5691
No. of parameters 550 201 403
No. of restraints 8 0 6
Δρmax, Δρmin (e Å−3) 0.57, −0.42 0.29, −0.45 0.59, −0.67
  K3 K4 K5
Crystal data
Chemical formula [K(C12H10N3O3S)(H2O)2] [K(C16H18N3O5S)(H2O)2] [K(C12H9N2O4S)]
Mr 351.42 439.52 316.37
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Orthorhombic, Pccn
Temperature (K) 123 123 123
a, b, c (Å) 13.3058 (2), 13.6247 (2), 18.4664 (3) 9.4006 (2), 12.1583 (3), 34.4743 (9) 12.5535 (2), 27.9698 (5), 6.9982 (1)
α, β, γ (°) 88.373 (1), 73.971 (1), 66.313 (1) 90, 95.496 (1), 90 90, 90, 90
V3) 2933.52 (8) 3922.14 (16) 2457.20 (7)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.53 0.42 0.62
Crystal size (mm) 0.7 × 0.3 × 0.02 0.20 × 0.18 × 0.08 0.70 × 0.08 × 0.04
 
Data collection
Diffractometer Enraf–Nonius KappaCCD Enraf–Nonius KappaCCD Enraf–Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 26000, 13392, 10848 14501, 7971, 4387 5174, 2802, 1971
Rint 0.023 0.084 0.056
(sin θ/λ)max−1) 0.649 0.628 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.03 0.060, 0.102, 1.01 0.042, 0.092, 1.05
No. of reflections 13392 7971 2802
No. of parameters 895 560 185
No. of restraints 24 112 1
Δρmax, Δρmin (e Å−3) 0.80, −0.79 0.37, −0.34 0.39, −0.41
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), DENZO and COLLECT (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), APEX2, SAINT and SADABS (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

All structures discussed are of crystal samples obtained from aqueous recrystallizations. Aqueous conditions were chosen to best reflect normal synthesis and usage of sulfonated azo dyes. It is possible to dry the hydrate structures described to give anhydrous materials. However, no polymorph screen has been attempted and so the existence of other forms is entirely likely. Selected crystallographic and refinement parameters are given in Table 1[link] and selected geometric parameters are given in Tables 2 to 14[link][link][link][link][link][link][link][link][link][link][link][link][link]. Representations of the crystal structures of the ammonium salt forms NH41, NH42, NH43, NH44 and NH45 are given in Figs. 1 to 5[link][link][link][link][link]. Both the phenol derivatives NH41 and NH45 are simple anhydrous salts with an NH4+ cation and an azo anion in the asymmetric unit. The other species are all hydrated forms as shown in Table 15[link]. Additionally, both NH42 and NH44 are Z′ = 2 structures with two cation/anion pairs per asymmetric unit, as well as their accompanying water mol­ecules. The bond lengths about the azo chromophores are in good agreement with those described for s-block metal salts of similar azo anions (Kennedy et al., 2001[Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, W. E. (2001). J. Chem. Soc. Dalton Trans. pp. 2199-2205.], 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, 662-678.]). The N=N bonds range from 1.254 (3) to 1.275 (2) Å, whilst the C—N bonds show ranges of 1.423 (2)–1.439 (2) and 1.396 (2)–1.425 (3) Å for the bonds involving the C atoms of the sulfonated and nonsulfonated rings, respectively. The generally shorter bonds of the latter are due to resonance with the OH and amine substituents. It is noteworthy that it is NH42 that displays both the longest N=N bond and the shortest N—C bond. The intra­molecular O—H⋯N hydrogen bonding of NH42 raises the possibility of tautomerism in this species and, although the electron density shows that the compound clearly exists largely as the azo tautomer, the bond lengths observed tend to reflect a small contribution from the alternative hydrazone tautomer. [See Kennedy et al. (2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, 662-678.]) for a detailed discussion of factors that influence bond lengths and hence colour in similar azo dyes, and Yatsenko et al. (2024[Yatsenko, A. V., Kultin, D. Y. & Paseshnichenko, K. A. (2024). Dyes Pigments, 222, 111883.]) for a discussion on azo/hydrazone tautomerization in solid-state aryl­azo compounds.] Most of the azo anions have planar conformations, with angles between the planes of the aromatic rings ranging from 2.23 (9) to 12.32 (11)°. Despite this, the azo group does form a small step between the two parallel ring planes [e.g. in NH41, atom N2 lies 0.473 (5) Å out of the plane defined by atoms C1–C6]. The exception is the anion of NH43, which adopts a twisted conformation with an angle of 58.76 (11)° between the planes of its two aromatic rings. This out-of-plane twist in the solid state should alter the resonance through the azo­benzene fragment and may contribute to the relatively large difference found between the solution-state and solid-state λmax values (386 versus 332 nm). It has previously been shown for s-block metal salt forms that the planar or twisted conformation of ortho-sulfonated azo anions correlates with the packing motifs observed. Thus, twisted azo species gave structures with a simple alternating layer structure, i.e. layers of organic anions alternating with hydro­philic layers containing the cations and water mol­ecules. In contrast, planar azo anions gave structures with organic bilayers (Kennedy et al., 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-A., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. (2009). Chem. Eur. J. 15, 9494-9504.]). This is not observed here; all the ammonium salts of the para- and meta-sulfonated anions 1 to 5 give simple layering structures with no bilayers, irrespective of the planarity of the anion (see Figs. 6[link] and 7[link] for examples).

Table 2
Hydrogen-bond geometry (Å, °) for NH41[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H4N⋯O2i 0.91 (5) 2.30 (5) 2.940 (4) 127 (4)
N3—H4N⋯O1ii 0.91 (5) 2.21 (5) 2.969 (3) 141 (4)
N3—H3N⋯O3 0.86 (5) 1.96 (5) 2.808 (3) 170 (4)
N3—H1N⋯O1iii 0.86 (4) 2.03 (5) 2.889 (4) 176 (4)
N3—H2N⋯O4iv 0.88 (4) 2.10 (4) 2.946 (3) 159 (4)
O4—H1H⋯O2v 0.87 (5) 1.95 (5) 2.802 (3) 167 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [x-1, y, z]; (iii) [-x, y-{\script{1\over 2}}, -z]; (iv) [x-1, y, z-1]; (v) [-x+2, y+{\script{1\over 2}}, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for NH42[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1H⋯O4W 0.84 (2) 1.81 (2) 2.6357 (17) 170 (2)
O5—H2H⋯N1 0.98 (3) 1.65 (3) 2.5535 (16) 151 (2)
O9—H3H⋯O2W 0.85 (2) 1.83 (2) 2.6673 (16) 168 (2)
O10—H4H⋯N3 0.93 (3) 1.69 (3) 2.5420 (16) 149 (2)
N5—H1N⋯O1i 0.80 (2) 2.16 (2) 2.8858 (17) 151.1 (18)
N5—H1N⋯O1Wii 0.80 (2) 2.627 (19) 3.034 (2) 113.3 (15)
N5—H2N⋯O1 0.92 (2) 1.94 (2) 2.8403 (18) 168 (2)
N5—H3N⋯O3Wiii 0.94 (2) 1.91 (2) 2.8488 (17) 172 (2)
N5—H4N⋯O6iv 0.89 (2) 2.01 (2) 2.8425 (16) 156 (2)
N6—H5N⋯S2v 0.90 (2) 2.99 (2) 3.7547 (15) 143.5 (17)
N6—H5N⋯O7v 0.90 (2) 1.99 (2) 2.8804 (18) 168 (2)
N6—H6N⋯O1W 0.92 (2) 1.90 (2) 2.8027 (18) 169.7 (19)
N6—H7N⋯O3Wvi 0.92 (2) 1.96 (2) 2.8733 (19) 170.4 (19)
N6—H8N⋯O2vii 0.84 (2) 2.42 (2) 2.9090 (18) 117.8 (18)
N6—H8N⋯O3v 0.84 (2) 2.36 (2) 2.9153 (17) 123.8 (19)
O1W—H2W⋯O4viii 0.84 (3) 2.01 (3) 2.8150 (16) 162 (2)
O1W—H1W⋯O8 0.82 (3) 1.98 (3) 2.7858 (17) 166 (2)
O2W—H3W⋯O3viii 0.83 (3) 2.04 (3) 2.8639 (16) 171 (2)
O2W—H4W⋯O8vi 0.87 (1) 1.94 (1) 2.7918 (17) 169 (2)
O3W—H5W⋯O7viii 0.88 (3) 1.83 (3) 2.7106 (16) 179 (2)
O3W—H6W⋯O9 0.95 (3) 2.04 (3) 2.8347 (15) 140 (2)
O4W—H7W⋯O2ix 0.81 (2) 1.94 (2) 2.7482 (17) 175 (2)
O4W—H8W⋯O6ix 0.81 (3) 2.01 (3) 2.8128 (16) 171 (2)
Symmetry codes: (i) [-x+2, -y, -z]; (ii) [-x+1, -y+1, -z]; (iii) [x, y, z-1]; (iv) [x+1, y, z]; (v) [-x, -y+1, -z]; (vi) [-x, -y+1, -z+1]; (vii) [x-1, y+1, z]; (viii) [-x+1, -y+1, -z+1]; (ix) [-x+1, -y, -z+1].

Table 4
Hydrogen-bond geometry (Å, °) for NH43[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N⋯O2W 0.90 (3) 2.00 (3) 2.850 (3) 157 (2)
N4—H2N⋯O1i 0.94 (3) 1.93 (3) 2.862 (3) 167 (3)
N4—H2N⋯O1Wi 0.94 (3) 2.57 (3) 3.039 (3) 111 (2)
N4—H3N⋯O2ii 0.86 (3) 2.14 (3) 2.963 (3) 161 (3)
N4—H3N⋯O3ii 0.86 (3) 2.66 (3) 3.351 (3) 139 (3)
N4—H4N⋯O3iii 0.98 (4) 2.07 (4) 2.987 (3) 155 (3)
N3—H5N⋯O1Wi 0.85 (3) 2.23 (3) 3.067 (3) 168 (2)
N3—H6N⋯O2ii 0.86 (3) 2.17 (3) 3.015 (3) 165 (2)
O1W—H1W⋯N3ii 0.83 (3) 2.21 (3) 3.011 (3) 162 (3)
O1W—H2W⋯O3iv 0.88 (3) 1.99 (3) 2.861 (3) 169 (3)
O2W—H3W⋯O1v 0.87 (1) 1.97 (1) 2.792 (3) 159 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}], [z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 5
Hydrogen-bond geometry (Å, °) for NH44[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1i 0.88 (1) 1.93 (1) 2.802 (2) 176 (3)
O1W—H2W⋯O5ii 0.88 (1) 1.84 (1) 2.711 (2) 168 (2)
O2W—H3W⋯O1Aii 0.91 (1) 2.05 (1) 2.945 (2) 172 (3)
O2W—H4W⋯O2Wiii 0.89 (1) 2.29 (4) 3.031 (5) 141 (6)
O4—H1H⋯O3Aiv 0.84 (3) 2.05 (3) 2.885 (2) 169 (3)
O5—H2H⋯O1A 0.81 (3) 1.90 (3) 2.698 (2) 169 (3)
O4A—H3H⋯O1i 0.80 (3) 1.96 (3) 2.756 (2) 177 (3)
O5A—H4H⋯O4A 0.97 (3) 1.79 (3) 2.734 (2) 165 (3)
N4—H1N⋯O3 0.87 (3) 2.09 (3) 2.957 (3) 176 (2)
N4—H2N⋯O2v 0.95 (3) 1.92 (3) 2.841 (3) 163 (2)
N4—H3N⋯O3Avi 0.89 (3) 2.05 (3) 2.923 (3) 167 (2)
N4—H4N⋯O1W 1.13 (4) 1.69 (4) 2.818 (3) 176 (3)
N5—H5N⋯O2A 0.91 (3) 1.89 (3) 2.784 (3) 164 (2)
N5—H6N⋯O5Avii 0.89 (4) 2.21 (4) 2.935 (3) 138 (3)
N5—H6N⋯O1Wviii 0.89 (4) 2.51 (4) 3.094 (3) 123 (3)
N5—H7N⋯O3ix 0.96 (4) 2.03 (4) 2.952 (3) 159 (3)
N5—H8N⋯O4x 0.96 (3) 2.00 (3) 2.943 (3) 168 (3)
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, -y, -z+1]; (iii) [-x, -y, -z]; (iv) [x-1, y, z]; (v) [-x, -y+1, -z]; (vi) [x-1, y, z-1]; (vii) [-x+1, -y+1, -z+1]; (viii) [x, y, z+1]; (ix) [x+1, y, z+1]; (x) [-x+1, -y, -z+2].

Table 6
Hydrogen-bond geometry (Å, °) for NH45[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O2i 0.90 (4) 2.48 (3) 3.002 (4) 118 (3)
N3—H1N⋯O4ii 0.90 (4) 2.35 (3) 2.913 (4) 121 (3)
N3—H1N⋯O4iii 0.90 (4) 2.50 (4) 3.162 (4) 131 (3)
N3—H2N⋯O1 0.96 (4) 1.94 (4) 2.893 (3) 171 (3)
N3—H3N⋯O1iv 0.89 (3) 1.97 (3) 2.822 (3) 159 (3)
N3—H4N⋯O3v 0.90 (4) 1.97 (4) 2.831 (3) 160 (3)
O4—H1H⋯O2vi 0.82 (4) 2.00 (4) 2.707 (3) 144 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (iii) [-x+2, y-{\script{1\over 2}}], [-z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (vi) [-x+{\script{5\over 2}}, -y+{\script{3\over 2}}, z].

Table 7
Selected bond lengths (Å) for K1[link]

K1—O1 2.642 (2) K2—O5 2.625 (2)
K1—O2Wi 2.688 (3) K2—O2W 2.713 (2)
K1—O2ii 2.728 (2) K2—O7ii 2.736 (2)
K1—O6 2.829 (3) K2—O1ii 2.769 (2)
K1—O8iii 2.957 (2) K2—O8v 2.904 (2)
K1—O7 3.027 (2) K2—O3ii 3.020 (2)
K1—O4iv 3.116 (2) K2—O1W 3.050 (3)
K1—O1Wi 3.149 (2)    
Symmetry codes: (i) [x-1, y+1, z]; (ii) [x+1, y, z]; (iii) [-x+1, -y, -z+2]; (iv) [-x+1, -y, -z+1]; (v) [-x+2, -y-1, -z+2].

Table 8
Hydrogen-bond geometry (Å, °) for K1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4H⋯O1Wvi 0.88 (1) 1.83 (2) 2.676 (3) 160 (3)
O8—H8H⋯O6vii 0.88 (1) 1.93 (3) 2.748 (3) 155 (5)
O1W—H1W⋯O3ii 0.87 (1) 1.95 (2) 2.801 (3) 165 (4)
O1W—H2W⋯O2viii 0.88 (1) 1.93 (1) 2.803 (4) 177 (5)
O2W—H3W⋯O3ix 0.88 (1) 2.20 (3) 2.866 (3) 133 (4)
O2W—H3W⋯O4vi 0.88 (1) 2.29 (3) 2.905 (3) 127 (3)
O2W—H4W⋯O5ii 0.88 (1) 1.92 (2) 2.778 (3) 165 (4)
Symmetry codes: (ii) [x+1, y, z]; (vi) [-x+2, -y-1, -z+1]; (vii) [-x+2, -y, -z+2]; (viii) [x+1, y-1, z]; (ix) [x+2, y, z].

Table 9
Selected bond lengths (Å) for K3[link]

K1—O2 2.6531 (14) K3—O3C 2.649 (2)
K1—O1Ai 2.6570 (14) K3—O1B 2.7285 (16)
K1—O6Wii 2.7388 (15) K3—O5Wiv 2.8713 (16)
K1—O7Wii 2.7669 (15) K3—O4W 2.8932 (16)
K1—O1W 2.7806 (15) K3—O5W 2.9166 (15)
K1—O1A 2.8284 (14) K3—O3B 3.2009 (19)
K1—O2A 2.9928 (15) K3—O4Wiv 3.2971 (17)
K2—O3 2.7462 (14) K4—O2Bv 2.6854 (15)
K2—O1C 2.7536 (17) K4—O6W 2.7164 (15)
K2—O2A 2.7929 (14) K4—O2B 2.7701 (15)
K2—O2W 2.8559 (16) K4—O8W 2.8338 (16)
K2—O3Wiii 2.8666 (15) K4—O7W 2.8395 (16)
K2—O3W 2.8901 (16) K4—O3C 2.954 (2)
K2—O2 3.0708 (15) K4—O2C 3.097 (2)
K2—O3A 3.1446 (16) K4—O1B 3.1503 (16)
K3—O3 2.6206 (14)    
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z]; (iv) [-x+2, -y, -z]; (v) [-x+2, -y+1, -z].

Table 10
Hydrogen-bond geometry (Å, °) for K3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O3Bvi 0.92 (3) 2.35 (3) 3.210 (2) 155 (2)
N3—H2N⋯O2Wvi 0.81 (3) 2.40 (3) 3.147 (2) 154 (2)
N3A—H3N⋯O8Wvii 0.82 (3) 2.27 (3) 3.016 (2) 153 (3)
N3A—H4N⋯O1viii 0.88 (3) 2.27 (3) 3.115 (2) 161 (2)
N3B—H5N⋯O2Cix 0.90 (3) 2.50 (3) 3.384 (3) 167 (2)
N3B—H5N⋯O5Cix 0.90 (3) 2.26 (3) 3.078 (14) 151 (2)
N3B—H6N⋯O1Wvi 0.88 (3) 2.21 (3) 3.065 (2) 164 (2)
N3C—H7N⋯O4Wviii 0.86 (3) 2.38 (3) 3.149 (2) 149 (2)
N3C—H8N⋯O3Avii 0.87 (3) 2.53 (3) 3.330 (2) 154 (2)
O1W—H1W⋯N3Cx 0.87 (1) 2.62 (2) 3.428 (2) 156 (2)
O1W—H2W⋯O1Bii 0.87 (1) 1.94 (1) 2.808 (2) 174 (2)
O2W—H3W⋯O1Ciii 0.87 (1) 2.14 (1) 2.963 (3) 160 (3)
O2W—H3W⋯O5Ciii 0.87 (1) 2.24 (3) 2.973 (18) 143 (2)
O2W—H4W⋯N3Bvi 0.87 (1) 2.56 (2) 3.322 (2) 148 (2)
O3W—H5W⋯N3vi 0.87 (1) 2.25 (2) 3.036 (2) 151 (3)
O3W—H6W⋯O3B 0.87 (1) 2.15 (2) 2.906 (2) 145 (2)
O4W—H7W⋯O1 0.87 (1) 2.03 (1) 2.879 (2) 166 (3)
O4W—H8W⋯O3Civ 0.87 (1) 2.02 (1) 2.837 (2) 156 (2)
O4W—H8W⋯O6Civ 0.87 (1) 2.27 (2) 3.126 (16) 170 (3)
O5W—H9W⋯O3iv 0.87 (1) 2.66 (2) 3.376 (2) 141 (2)
O5W—H10W⋯O3Aiv 0.89 (1) 1.93 (1) 2.807 (2) 169 (2)
O6W—H11W⋯O5W 0.87 (1) 2.11 (1) 2.924 (2) 158 (2)
O6W—H12W⋯O1iv 0.86 (1) 1.95 (1) 2.7885 (19) 164 (3)
O7W—H13W⋯O2Cv 0.87 (1) 2.02 (1) 2.896 (2) 177 (3)
O7W—H13W⋯O5Cv 0.87 (1) 1.88 (2) 2.698 (12) 156 (3)
O7W—H14W⋯O3Wv 0.88 (1) 2.22 (1) 3.085 (2) 169 (2)
O8W—H15W⋯O2Axi 0.88 (1) 1.94 (1) 2.808 (2) 168 (2)
Symmetry codes: (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z]; (iv) [-x+2, -y, -z]; (v) [-x+2, -y+1, -z]; (vi) [-x+1, -y+1, -z+1]; (vii) [-x+2, -y, -z-1]; (viii) [x, y, z-1]; (ix) [x, y, z+1]; (x) [x-1, y, z+1]; (xi) [x+1, y, z].

Table 11
Selected bond lengths (Å) for K4[link]

K1—O2Wi 2.738 (3) K2—O5v 2.794 (3)
K1—O1Aii 2.771 (3) K2—O1A 2.800 (2)
K1—O1W 2.772 (3) K2—O2Aii 2.821 (2)
K1—O2A 2.786 (2) K2—O1 2.862 (2)
K1—O3Wiii 2.798 (3) K2—O1Wii 2.898 (3)
K1—O4Aiv 2.820 (3) K2—O3A 2.947 (2)
K1—O3A 2.919 (2) K2—O2 3.073 (3)
K2—O2Wi 2.753 (3)    
Symmetry codes: (i) [-x+2, -y+1, -z]; (ii) [-x+1, -y+1, -z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}], [z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 12
Hydrogen-bond geometry (Å, °) for K4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1H⋯O4W 0.87 (1) 1.84 (1) 2.703 (4) 171 (4)
O5—H2H⋯O4 0.88 (1) 1.85 (1) 2.719 (3) 173 (4)
O4A—H3H⋯O5A 0.87 (1) 1.86 (2) 2.695 (3) 161 (3)
O5A—H4H⋯O3W 0.88 (1) 1.93 (2) 2.738 (3) 154 (3)
O1W—H1W⋯O5Aiii 0.87 (1) 2.22 (2) 3.017 (3) 151 (3)
O1W—H2W⋯O4iv 0.87 (1) 2.08 (1) 2.906 (3) 158 (3)
O2W—H3W⋯O5v 0.87 (1) 1.93 (1) 2.791 (4) 170 (4)
O2W—H4W⋯O2 0.87 (1) 1.99 (2) 2.795 (3) 153 (3)
O3W—H5W⋯O3vi 0.87 (1) 1.93 (1) 2.786 (3) 167 (3)
O3W—H6W⋯O4Wvii 0.88 (1) 1.99 (1) 2.821 (4) 158 (3)
O4W—H7W⋯O4Aviii 0.88 (1) 1.94 (1) 2.789 (3) 163 (3)
O4W—H8W⋯O1vi 0.88 (1) 1.86 (1) 2.738 (3) 180 (4)
Symmetry codes: (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}], [z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+1, -y+1, -z+1]; (viii) [x+1, y, z].

Table 13
Selected bond lengths (Å) for K5[link]

K1—O2i 2.7117 (18) K1—O1 2.863 (2)
K1—O3ii 2.7511 (18) K1—O2 2.970 (2)
K1—O4iii 2.7954 (19) K1—O4v 3.0023 (19)
K1—O3iv 2.815 (2)    
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}], [z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z].

Table 14
Hydrogen-bond geometry (Å, °) for K5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1H⋯O1v 0.87 (1) 2.02 (3) 2.732 (3) 139 (3)
Symmetry code: (v) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z].

Table 15
Selected crystallographic parameters and bonding characteristics

  NH41 Na1 K1 NH42 Na2 K2 NH43 Na3 K3
CN 6 6 8, 7 6, 6 6 7, 7 6 6 7,8,8,8
CPD   1 3   2 1   2 2
H2O 0 2 1 2 2.5 2 1.5 2 2
Cation-to-SO3 inter­action yes yes yes yes yes yes yes yes yes
Cation-to-tail inter­action yes no yes no no no no yes no
Cation-to-water inter­action no yes yes yes yes yes yes yes yes
Space group P21 Pbcn P[\overline{1}] P[\overline{1}] C2/c P[\overline{1}] C2/c P21 P[\overline{1}]
a (Å) 5.8163 (1) 14.383 5.9620 (7) 8.2876 (1) 35.036 8.177 35.1636 (15) 7.829 13.3058 (2)
b (Å) 6.9218 (1) 5.813 7.2033 (11) 10.6404 (1) 5.410 10.529 7.8905 (3) 5.784 13.6247 (2)
c (Å) 15.6295 (2) 32.891 31.929 (5) 17.4834 (3) 15.978 17.483 10.4972 (5) 16.486 18.4664 (3)
α (°) 90 90 83.852 (14) 89.734 (1) 90 89.82 90 90 88.373 (1)
β (°) 93.354 (1) 90 86.361 (15) 84.793 (1) 98.05 85.49 100.091 (2) 98.62 73.971 (1)
γ (°) 90 90 88.868 (15) 86.146 (1) 90 86.81 90 90 66.313 (1)
V/Z3) 314.07 343.75 340.12 382.98 374.85 374.57 358.43 369.05 366.69
  NH44 Na4 K4 NH45 Na5 K5
CN 5, 6 7,7 7, 8 7 6 7
CPD   2 2   2 3
H2O 1 1.5 2 0 2 0
Cation-to-SO3 inter­action yes yes yes yes yes yes
Cation-to-tail inter­action yes yes yes yes yes yes
Cation-to-water inter­action yes yes yes no yes no
Space group P[\overline{1}] P[\overline{1}] P21/n Pccn Pbca Pccn
a (Å) 8.4930 (1) 9.691 9.4006 (2) 12.6590 (2) 7.123 12.5535 (2)
b (Å) 13.0980 (2) 11.487 12.1583 (3) 28.3600 (3) 11.940 27.9698 (5)
c (Å) 17.1660 (3) 16.605 34.4743 (9) 7.1270 (7) 32.561 6.9982 (1)
α (°) 90.970 (1) 93.73 90 90 90 90
β (°) 103.180 (1) 92.76 95.496 (1) 90 90 90
γ (°) 95.132 (1) 95.37 90 90 90 90
V/Z3) 462.61 458.04 490.27 319.82 346.14 307.15
Notes: CN = coordination number; CPD = coordination polymer dimensionality; V/Z = unit-cell volume divided by Z.
[Figure 1]
Figure 1
The asymmetric unit contents of NH41. Here and elsewhere displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary size.
[Figure 2]
Figure 2
The asymmetric unit contents of NH42.
[Figure 3]
Figure 3
The asymmetric unit contents of NH43. A twofold rotation axis passes through atom O2W.
[Figure 4]
Figure 4
The asymmetric unit contents of NH44. The water mol­ecule labelled O2W is disordered so as to give three independent H-atom sites.
[Figure 5]
Figure 5
The asymmetric unit contents of NH45.
[Figure 6]
Figure 6
Packed structure of NH45 viewed along the a axis. Note the simple layering structure with alternating hydro­phobic (aryl­azo) and hydro­philic (cation) layers parallel to the ac plane.
[Figure 7]
Figure 7
Packed structure of NH43 viewed along the b axis. Despite the twisted nature of the azo anion, this structure has a similar simple layering structure with alternating hydro­phobic (aryl­azo) and hydro­philic (cation and water) layers as the planar species. Here the layers lie parallel to the bc plane.

Each H atom of every NH4+ cation acts as a hydrogen-bond donor to at least one O atom. There are no NH4-to-N hydrogen-bonding inter­actions. From Tables 2[link] to 6 and the summary Table 15[link], it can be seen that of the 28 independent N—H donors of the ammonium groups, 10 form bifurcated hydrogen bonds and two (atoms H8N of NH42 and H1N of NH45) inter­act with three separate O-atom acceptors. Most ammonium cations inter­act with six O atoms, but one (that containing atom N4 of structure NH44) has a coordination number of 5 and one (containing atom N3 of NH45) has a coordination number of 7. In all five structures, the majority of the ammonium cation hydrogen-bond inter­actions are with the O atoms of the formally negatively charged SO3 groups. For the anhydrous species NH41 and NH45, the ammonium ions also donate hydrogen bonds to the phenol OH groups; thus, hydrogen bonding from ammonium to both the SO3 head and the OH tail of the azo anions leads to the anions bridging between the inorganic/hydro­philic layers of the packing structures (Fig. 6[link]). The hydrates NH42 and NH43 have no direct ammonium-to-tail-group hydrogen-bond inter­actions; instead, the water mol­ecules act as inter­mediaries or bridges and accept/donate hydrogen bonds from both ammonium and tail groups. Thus, for these hydrate species, inter­actions between the hydro­phobic and hydro­philic layers of the packing structure is via the water mol­ecules. Despite featuring a lower cation coordination number, in hydrate NH44, the cations donate hydrogen bonds to all of the different types of acceptor groups available, i.e. to the SO3 heads, to the OH groups of the tail and to bridging water mol­ecules.

As they are situated at the centre of the hydro­phobic layers, none of the –N=N– chromophore units take part in inter­molecular hydrogen bonding. Indeed, the azo groups of NH41, NH43 and NH44 have no inter­molecular contacts less than the sum of the van der Waals radii. NH45 is the only species of the five to show face-to-face π-contacts between the azo­benzene units, with closest N2⋯C4 and C7⋯C3 contact distances of 3.160 (4) and 3.352 (4) Å, respectively. This forms the stacking motif seen extending parallel to the c axis in Fig. 8[link]. In NH42, the ortho-OH substituent of one of the independent azo anions of the asymmetric unit approaches the azo group of the other anion [O10⋯N1 = 3.052 (2) Å], creating dimeric pairs of anions (Fig. 9[link]).

[Figure 8]
Figure 8
Part of azo stack propagating parallel to the c axis in the structure of NH45.
[Figure 9]
Figure 9
Dimeric close contact between the two azo anions of the asymmetric unit of NH42.

The structure of K2 was reported by Kennedy et al. (2004[Kennedy, A. R., Kirkhouse, J. A. B., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]). Here, we report the remaining K-salt structures of azo anions 1 to 5. Figs. 9 to 13[link][link][link][link][link] show the fundamental features of these structures and selected geometric parameters are given in Table 7[link] to 14. K5 is anhydrous and a Z′ = 1 structure, but all other K salts were isolated as hydrates and have Z′ = 2 (or 4 for K3); see Table 15[link] for a summary of these and other structural features. Values for the disordered anion of K4 have been excluded from the geometric discussion below. The azo N=N bond lengths range from 1.258 (3) to 1.276 (3) Å, with the long value again found for the salt of 2 with its intra­molecular O—H⋯N hydrogen bond and the possibility of tautomerization. The C—N bonds range from 1.420 (3) to 1.442 (4) and from 1.397 (3) to 1.432 (4) Å for the bonds to the sulfonated heads and to the phenol/amine tails, respectively. Again, it is K2 that presents the most different bond lengths. All these bond lengths are similar to those found for the NH4 salts, above, and for related sulfonated azo salt forms (Kennedy et al., 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, 662-678.]). Most azo anions have planar geometries [angles between ring planes = 0.93 (7) to 8.15 (22)°], with the exception of K1, where the two independent azo anions are both twisted [angles between ring planes = 43.15 (7) and 40.48 (8)°]. This contrasts with the ammonium salt structures, where all species were planar except for the twisted NH43. As with the NH4 species, all five K structures both planar and twisted have simple layered packing systems with layers of hydro­philic/inorganic species (K and water) alternating with layers of a hydro­phobic/organic nature (azo­benzene) (see Fig. 14[link] for an example).

[Figure 10]
Figure 10
The contents of the asymmetric unit of K1 extended so as to show the coordination geometry about each independent K centre.
[Figure 11]
Figure 11
The contents of the asymmetric unit of K3 extended so as to show the coordination geometry about each independent K centre. Disorder in the SO3 group of atom S1C is not shown for clarity.
[Figure 12]
Figure 12
The contents of the asymmetric unit of K4 extended so as to show the coordination geometry about each independent K centre. Disorder in the azo ion of atom N1A is not shown for clarity.
[Figure 13]
Figure 13
The contents of the asymmetric unit of K5 extended so as to show the coordination geometry about the K centre.
[Figure 14]
Figure 14
Packing diagram of K1 as viewed along the b axis. Note the alternating hydro­phobic and hydro­philic layers that propagate parallel to the ab plane. The three-dimensional coordination polymer propagates parallel to a and b (and throughout the hydro­philic layers) via sulfonate and water bridges between the K centres. The coordination polymer propagates parallel to c via K bonding to both the sulfonate head and the OH tail of the azo anions.

Each K centre has a coordination number of 7 or 8 (see Table 15[link]), with all bonds from K being to O atoms. All K centres inter­act with SO3 groups and, where present, with water mol­ecules. In K1, K4 and the anhydrous K5, there are also bonds formed between K and the OH groups of the tails of the azo anions. No such K-to-tail bonds are formed to the OH groups of K2 or to the NH2 groups of K3, instead these form only hydrogen bonds (Table 10[link]). This throws up a similarity to the NH4 structures, where no direct NH4-to-tail hydrogen bond was found for NH42 or NH43, despite such bonds existing in all other compounds. As would be expected from the positions of the sulfonate groups and the nature of the cation, all five potassium salts form structures described elsewhere as class three `higher connectivity' azo colourant structures (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. A. B., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]). Structures K1 and K5 both form three-dimensional coordination polymers, with K—O bonds (K-to-SO3 in K5 and both K-to-SO3 and K-to-OH2 in K1) forming bridges between K centres and allowing propagation of the polymer in two dimensions, whilst the third dimension features bridging between K centres through the body of the azo ion and hence utilizing both the head and tail functional groups of the azo anions (Fig. 14[link]). Despite also featuring bridges between K centres via head-to-tail contacts with the azo anion, K4 is only a two-dimensional coordination polymer. Here, SO3 and OH2 bridges between K centres lead only to discrete K4 tetra­mers and it is only the through-azo head-to-tail inter­actions that allow the coordination polymer to propagate parallel to the b and c directions (Fig. 15[link]). With no inter­action with the amine tail of the azo anion, K3 displays a two-dimensional coordination polymer structure based solely on SO3 and OH2 bridges between K centres. Here, the polymeric structure propagates parallel to the a and b directions (Fig. 16[link]). K2 also does not feature any K-to-tail inter­actions and here only a one-dimensional coordination poly­mer is formed. SO3 and OH2 bridges between K centres leads to a polymer that propagates parallel to the crystallographic a direction (Fig. 17[link]).

[Figure 15]
Figure 15
(a) View of K4 illustrating that here K tetra­mers link into a two-dimensional coordination polymer only via through-azo inter­actions with the head and tail groups of the azo anions. (b) Detail of one K4 tetra­meric unit.
[Figure 16]
Figure 16
The two-dimensional coordination polymer of K3 propagates only via sulfonate groups and water groups that bridge between K centres – there is no head-to-tail through-azo bridge.
[Figure 17]
Figure 17
The one-dimensional coordination polymer structure of K2, with the coordination chain propagating parallel to the a direction (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. A. B., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]).

The structures of the five Na salt equivalents of 1 to 5 crystallized from water solutions are all available from the literature (Kennedy et al., 2001[Kennedy, A. R., Hughes, M. P., Monaghan, M. L., Staunton, E., Teat, S. J. & Smith, W. E. (2001). J. Chem. Soc. Dalton Trans. pp. 2199-2205.], 2020[Kennedy, A. R., Conway, L. K., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Staunton, E., Teat, S. J. & Warren, J. E. (2020). Crystals, 10, 662-678.]; Dodds et al., 2017[Dodds, C. A., Hobday, C. L., Kennedy, A. R., McKellar, S. C., Smillie, K. & Walls, A. (2017). New J. Chem. 41, 1574-1581.]). As summarized in Table 15[link], Na1 forms a one-dimensional coordination polymer, whilst the other four Na structures all form two-dimensional coordination polymers. All Na centres are six-coordinate, except for those in Na4, which are seven-coordinate. All Na centres bond to O atoms of the sulfonate groups and to water ligands. Na1 and Na2 do not form bonds from Na to the tail phenol groups, but the other three structures do form Na-to-tail bonds to N or to O atoms. The azo anions that form bonds to Na with their tail groups are thus different from those that inter­act with K or with NH4, as described above. The generally lower coordination numbers of the Na salts (6 or 7) as compared to the K salts (7 or 8) seems to be reflected in a similarly generally lower dimensionality of coordination polymers (one- or two-dimensional for Na, and one- to three-dimensional for K), but this is not a hard and fast rule. This is shown by comparing Na2 with K2, where Na has a coordination number of 6 versus 7 for K, but where the Na compound is a two-dimensional coordination polymer and the K compound only one-dimensional.

Comparing the unit-cell dimensions given in Table 15[link], it can clearly be seen that there are two isostructural pairs. The space group and unit-cell dimensions of NH42 match those of K2 and there is a similar match between NH45 and K5. Based on the unit-cell dimensions, none of the Na species are isostructural with any NH4 or K salt form. For the NH45 and K5 pair, all generalized structural descriptors (such as Z′, hydration state and the coordination number of the cation) are identical, as would be expected for a truly isostructural pair. However, the descriptors given for the NH42 and K2 pair in Table 15[link], whilst mostly identical, do differ with respect to the coordination number of the cation. The NH4 ions are given as making six inter­actions each, whilst the K centres are given as each making seven inter­actions. Investigation shows that this difference is not just a case of an inappropriate cut-off distance being used to calculate potential hydrogen-bonding inter­actions. For example, the `extra' seventh bond for atom K1 is an inter­action with a sulfonate O atom. The closest sulfonate O atom to the equivalent ammonium ion in NH42, that has not already been accounted for as a hydrogen-bonding inter­action, gives an N⋯O distance of over 4.2 Å, which is clearly too long for a hydrogen bond; see Table 3[link] for genuine N⋯O hydrogen-bond distances. Thus, although NH42 and K2 have similar unit-cell dimensions and similar compositions, small changes in the orientations of the sulfonate groups and the cations allow the ammonium and potassium cations to make somewhat different inter­actions from each other. The ability of isostructural structures to tolerate small changes within a given packing motif has been discussed recently by Bombicz (2024[Bombicz, P. (2024). IUCrJ, 11, 3-6.]).

Expanding from the 15 structures of Table 15[link] to other literature structures, of the five azo anions studied here, only 3 has had the structure of its Rb salt form reported (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. A. B., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]). The structure of Rb3 is found to be isostructural with that of NH43 (compare C2/c, 35.256, 7.738, 10.674 Å and 99.88° with the values given for NH43 in Table 1[link]). As with NH42 and K2 above, all structural descriptors match, except for the Rb cation having a higher coordination number than the ammonium cation (8 versus 6). Other sulfonated monoazo NH4 salt form structures available are those of di­ammonium Orange G tetra­hydrate and of the nitrile-substituted [NH4][O3S(C6H4)NN(C6H4)NHCH2CH2CN]·H2O (Ojala et al., 1994[Ojala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994). Acta Cryst. B50, 684-694.]; Astbury et al., 2013[Astbury, C., Conway, L. K., Gillespie, C., Hodge, K., Innes, E. & Kennedy, A. R. (2013). Dyes Pigments, 97, 100-104.]). For these azo anions, the only available comparisons for the ammonium salts are the Na and mixed Na/K and Na/Rb salt forms of Orange G and the Na salt of the nitrile (Kennedy et al., 2006[Kennedy, A. R., Kirkhouse, J. B. A. & Whyte, L. (2006). Inorg. Chem. 45, 2965-2971.]; Astbury et al., 2013[Astbury, C., Conway, L. K., Gillespie, C., Hodge, K., Innes, E. & Kennedy, A. R. (2013). Dyes Pigments, 97, 100-104.]). Based on unit-cell dimensions, the nitrile shows no isostructurality. There are however similarities, if not exact matches, between the unit cells of the Orange G structures of Table 16[link]; see com­ments below for a fuller discussion of these features.

Table 16
Unit-cell dimensions of selected salt forms of Orange G (OG)

Data taken from Ojala et al. (1994[Ojala, W. H., Lu, L. K., Albers, K. E., Gleason, W. B., Richardson, T. I., Lovrien, R. E. & Sudbeck, E. A. (1994). Acta Cryst. B50, 684-694.]) and from Kennedy et al. (2006[Kennedy, A. R., Kirkhouse, J. B. A. & Whyte, L. (2006). Inorg. Chem. 45, 2965-2971.]).

  NH4OG AgOG NaOG Na/KOG Na/RbOG
Space group P[\overline{1}] P[\overline{1}] P[\overline{1}] P[\overline{1}] P[\overline{1}]
a (Å) 9.165 8.870 8.900 8.991 9.025
b (Å) 10.149 10.678 10.470 10.401 10.654
c (Å) 12.623 13.273 13.735 14.996 15.077
α (°) 87.43 73.56 73.49 83.35 82.30
β (°) 88.07 77.19 79.29 85.05 84.92
γ (°) 71.00 71.66 69.50 70.23 69.39

The `crystal packing similarity' tool available within Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) can be used to find packing simi­larity regardless of any matches in the unit-cell dimension. For instance, it has been used to find similarities in the packing behaviour of dopamine and tyramine fragments in the salt and hydrate forms of these active pharmaceutical ingredients (APIs), regardless of counter-ions, solvents and the identity and protonation state of the phenyl­ethyl­amine fragment itself (Kennedy et al., 2023[Kennedy, A. R., Cruickshank, L., Maher, P. & McKinnon, Z. (2023). Acta Cryst. C79, 386-394.]). This tool was applied to the 15 structures of Table 15[link] and to the other relevant NH4, Na, K, Rb, Cs and Ag salt structures found in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The packing analysis was set up to examine packed fragments consisting of 15 sulfonated azo mol­ecular units. Other components (cations and solvent mol­ecules) were ignored. Indeed, in order to simplify the definition of a `mol­ecular fragment', all metal ions were deleted from the CIF files used for these analyses. Only the three pairs previously identified as being isostructural from their unit-cell dimensions (i.e. NH42 and K2, NH45 and K5, and NH43 and Rb3) had azo anion packing that matched at a 15/15 level with a 20% tolerance allowed. However, it was found that NH43 also matched at a 13/15 level with the isostructural pair of structures having CSD refcodes BAH­NAC and BAHNIK (Dodds et al., 2017[Dodds, C. A., Hobday, C. L., Kennedy, A. R., McKellar, S. C., Smillie, K. & Walls, A. (2017). New J. Chem. 41, 1574-1581.]). Surprisingly, these two structures are not forms of the para-NH2-substituted anion 3, but correspond to the Na and Ag salt forms of the meta-OH-substituted anion 5. Further investigation of these structures reveals that it is their layered natures that lead to this partial match. Those azo fragments that lie within a single hydro­phobic layer of NH43 match well with their equivalents in Na5 and Ag5, despite the differences in SO3 position and the different chemical natures of the NH2/OH tail groups. However, the azo fragments within the neighbouring hydro­phobic layers do not match, being rotated with respect to one another (Fig. 18[link]). A similar situation was found for the Orange G salts of Table 16[link]. As is perhaps suggested by the differences in the unit-cell parameters, none of the metal salt forms were truly isostructural with the ammonium salt of Orange G. However, both the mixed Na/K and Na/Rb species matched the ammonium salt at a 12/15 level and the pure Na species matched at a 9/15 level. As with the case for 3 above, the matches within one organic layer are reasonable, but the structures do not match well when neighbouring layers are considered. Finally, examining the structures of Table 15[link] it can be seen that NH41 and K1 have somewhat similar a and b dimensions, whilst c is approximately doubled. Despite this, investigations showed that these structures did not show any significant similarity in the packing for the azo anions.

[Figure 18]
Figure 18
15-fragment overlay of the structure of NH43 (multicoloured) with that of BAHNIK (Ag5, green and red; Dodds et al., 2017[Dodds, C. A., Hobday, C. L., Kennedy, A. R., McKellar, S. C., Smillie, K. & Walls, A. (2017). New J. Chem. 41, 1574-1581.]). The anionic azo fragments in the central layer give reasonable packing matches for the azo­benzene units, but the anions of the neighbouring layers do not match well.

4. Summary

Five new structures of ammonium salt forms of sulfonated azo dyes have been presented and compared to the equivalent Na and K salt structures. Despite being based on ammonium-to-sulfonate hydrogen bonds rather than metal-ion-to-sulfonate bonds, the ammonium salt forms are found to have structural types that are in many ways similar to those found for heavier alkali-metal ions (Na, K and Rb). The ammonium structures have the same simple alternating hydro­phobic/hydro­philic layer structures described earlier for s-block metal salt forms of para- and meta-sulfonated azo dyes (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. A. B., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]) and do not show the more complicated layering motifs seen elsewhere (Kennedy et al., 2009[Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-A., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. (2009). Chem. Eur. J. 15, 9494-9504.]). Two of the five ammonium structures (NH42 and NH45) show isostructurality with their equivalent potassium structures. For anion 3, the ammonium and Rb salt forms are also found to be isostructural, although unfortunately no other Rb salt structures are available for comparison. For the isostructural pair of 5, all structural descriptors are very similar, but for the 2 and 3 pairs there are small differences in, for example, the rotation of the sulfonate groups that allow the ammonium cations to make less formal contacts than do the K or Rb ions. No sodium salt is found to be isostructural with an ammonium salt, but use of the `crystal packing similarity' tool within Mercury did highlight that the azo anions of NH43 do adopt similar packing to the chemically different azo anions of both Na5 and Ag5, although this similarity only holds within a single hydro­phobic layer, with neighbouring layers behaving differently. The ammonium salt of Orange G shows similar single-layer-matching behaviour with its Na and mixed Na/K and Na/Rb salt forms. Overall there is thus a high propensity for ammonium salt forms of sulfonated azo dyes to be isostructural with the equivalent K or Rb forms, a propensity which is aided by small amounts of flexibility in the structures that allows for the different coordinating abilities of the cations. Little evidence is found for isostructural relationships between the salt forms of sulfon­ated azo dyes of ammonium salts and the equivalent sodium salts. Here, the smaller radius of the Na+ ion is perhaps hard to offset against the lower coordination number of sodium. However, the similarity of anion packing found, for instance, within single layers for NH43 (and hence Rb3) with Na5 and Ag5 may indicate that isostructurality is possible and may be found if a larger sample of structures was available.

Supporting information


Computing details top

Ammonium 4-[2-(4-hydroxyphenyl)diazen-1-yl]benzenesulfonate (NH41) top
Crystal data top
NH4+·C12H9N2O4SF(000) = 308
Mr = 295.31Dx = 1.561 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 5.8163 (1) ÅCell parameters from 12251 reflections
b = 6.9218 (1) Åθ = 2.8–71.4°
c = 15.6295 (2) ŵ = 2.48 mm1
β = 93.354 (1)°T = 100 K
V = 628.15 (2) Å3Broken tablet, yellow
Z = 20.22 × 0.12 × 0.06 mm
Data collection top
Rigaku Synergy-i
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: microsource tubeRint = 0.054
ω scansθmax = 71.8°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
h = 77
Tmin = 0.859, Tmax = 1.000k = 88
10144 measured reflectionsl = 1819
2345 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3416P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.084Δρmax = 0.26 e Å3
S = 1.08Δρmin = 0.33 e Å3
2345 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
203 parametersExtinction coefficient: 0.0059 (10)
1 restraintAbsolute structure: Refined as an inversion twin.
Hydrogen site location: mixedAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35361 (10)0.29158 (10)0.12661 (3)0.0123 (2)
O10.4130 (4)0.4665 (3)0.08089 (13)0.0173 (5)
O20.4932 (4)0.1276 (3)0.10136 (13)0.0182 (5)
O30.1084 (3)0.2481 (4)0.12008 (12)0.0230 (6)
O41.1582 (3)0.3583 (3)0.85733 (13)0.0162 (5)
N10.6429 (4)0.3448 (4)0.49689 (15)0.0138 (5)
N20.8571 (4)0.3609 (4)0.51273 (15)0.0138 (5)
N30.2044 (4)0.3231 (4)0.01967 (16)0.0159 (6)
C10.4303 (5)0.3311 (4)0.23627 (17)0.0134 (6)
C20.2832 (4)0.2720 (5)0.29837 (16)0.0127 (5)
H20.1341870.2234600.2821730.015*
C30.3571 (4)0.2850 (5)0.38439 (15)0.0127 (5)
H30.2568990.2483540.4274380.015*
C40.5780 (5)0.3516 (4)0.40746 (18)0.0130 (6)
C50.7218 (5)0.4191 (4)0.34458 (17)0.0126 (6)
H50.8688740.4716050.3607300.015*
C60.6473 (5)0.4084 (4)0.25935 (18)0.0130 (6)
H60.7431840.4533180.2163820.016*
C70.9258 (5)0.3512 (4)0.60152 (17)0.0123 (6)
C81.1468 (5)0.4181 (4)0.62395 (17)0.0132 (6)
H81.2431250.4603080.5806050.016*
C91.2272 (5)0.4236 (4)0.70920 (17)0.0135 (6)
H91.3763890.4729610.7245180.016*
C101.0875 (5)0.3560 (4)0.77230 (17)0.0127 (6)
C110.8704 (4)0.2800 (5)0.74958 (16)0.0142 (5)
H110.7784250.2296190.7926130.017*
C120.7882 (4)0.2777 (5)0.66469 (16)0.0139 (5)
H120.6398770.2266530.6493350.017*
H1H1.268 (8)0.444 (8)0.861 (3)0.037 (12)*
H1N0.260 (7)0.214 (7)0.038 (2)0.018 (9)*
H2N0.114 (7)0.362 (6)0.060 (3)0.025 (10)*
H3N0.122 (8)0.301 (8)0.027 (3)0.043 (12)*
H4N0.312 (9)0.414 (8)0.008 (3)0.051 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0123 (3)0.0150 (3)0.0093 (3)0.0001 (3)0.0010 (2)0.0009 (3)
O10.0233 (10)0.0151 (11)0.0137 (9)0.0022 (9)0.0038 (8)0.0041 (8)
O20.0259 (11)0.0153 (11)0.0131 (10)0.0039 (9)0.0018 (8)0.0026 (8)
O30.0152 (10)0.0391 (16)0.0142 (9)0.0059 (10)0.0029 (7)0.0036 (10)
O40.0157 (10)0.0205 (11)0.0121 (9)0.0028 (9)0.0014 (7)0.0014 (8)
N10.0132 (11)0.0146 (13)0.0133 (11)0.0003 (9)0.0003 (9)0.0014 (9)
N20.0137 (11)0.0146 (11)0.0130 (11)0.0006 (10)0.0003 (9)0.0005 (9)
N30.0156 (11)0.0176 (16)0.0142 (12)0.0015 (10)0.0007 (10)0.0003 (10)
C10.0140 (12)0.0154 (16)0.0108 (12)0.0033 (10)0.0000 (9)0.0001 (10)
C20.0114 (11)0.0126 (14)0.0139 (12)0.0005 (12)0.0011 (9)0.0001 (12)
C30.0139 (11)0.0117 (12)0.0128 (11)0.0023 (13)0.0034 (9)0.0006 (12)
C40.0151 (13)0.0130 (13)0.0109 (12)0.0015 (11)0.0014 (10)0.0009 (10)
C50.0118 (12)0.0107 (14)0.0154 (13)0.0002 (11)0.0006 (10)0.0009 (11)
C60.0124 (12)0.0119 (14)0.0150 (13)0.0017 (11)0.0036 (10)0.0010 (11)
C70.0130 (12)0.0127 (14)0.0112 (12)0.0012 (11)0.0002 (10)0.0019 (10)
C80.0131 (12)0.0122 (14)0.0144 (13)0.0007 (11)0.0026 (10)0.0006 (11)
C90.0094 (12)0.0152 (15)0.0158 (13)0.0012 (11)0.0002 (10)0.0016 (12)
C100.0162 (13)0.0114 (13)0.0105 (12)0.0017 (11)0.0001 (10)0.0021 (10)
C110.0144 (12)0.0151 (14)0.0135 (11)0.0001 (13)0.0025 (9)0.0008 (13)
C120.0132 (12)0.0137 (14)0.0147 (12)0.0017 (13)0.0007 (9)0.0017 (13)
Geometric parameters (Å, º) top
S1—O31.456 (2)C3—C41.392 (4)
S1—O11.457 (2)C3—H30.9500
S1—O21.463 (2)C4—C51.407 (4)
S1—C11.767 (3)C5—C61.379 (4)
O4—C101.368 (3)C5—H50.9500
O4—H1H0.87 (5)C6—H60.9500
N1—N21.261 (3)C7—C81.392 (4)
N1—C41.427 (4)C7—C121.402 (4)
N2—C71.423 (4)C8—C91.386 (4)
N3—H1N0.86 (4)C8—H80.9500
N3—H2N0.88 (4)C9—C101.395 (4)
N3—H3N0.86 (5)C9—H90.9500
N3—H4N0.91 (5)C10—C111.394 (4)
C1—C21.392 (4)C11—C121.384 (3)
C1—C61.399 (4)C11—H110.9500
C2—C31.390 (3)C12—H120.9500
C2—H20.9500
O3—S1—O1113.38 (13)C5—C4—N1124.1 (3)
O3—S1—O2112.19 (14)C6—C5—C4119.4 (3)
O1—S1—O2111.15 (12)C6—C5—H5120.3
O3—S1—C1106.90 (12)C4—C5—H5120.3
O1—S1—C1107.07 (13)C5—C6—C1119.8 (3)
O2—S1—C1105.62 (12)C5—C6—H6120.1
C10—O4—H1H105 (3)C1—C6—H6120.1
N2—N1—C4113.0 (2)C8—C7—C12120.0 (2)
N1—N2—C7113.9 (2)C8—C7—N2115.6 (2)
H1N—N3—H2N105 (4)C12—C7—N2124.4 (2)
H1N—N3—H3N108 (4)C9—C8—C7120.4 (2)
H2N—N3—H3N109 (4)C9—C8—H8119.8
H1N—N3—H4N115 (4)C7—C8—H8119.8
H2N—N3—H4N112 (4)C8—C9—C10119.5 (3)
H3N—N3—H4N107 (4)C8—C9—H9120.2
C2—C1—C6121.0 (2)C10—C9—H9120.2
C2—C1—S1120.0 (2)O4—C10—C11117.9 (2)
C6—C1—S1118.8 (2)O4—C10—C9121.9 (3)
C3—C2—C1119.2 (2)C11—C10—C9120.2 (2)
C3—C2—H2120.4C12—C11—C10120.4 (2)
C1—C2—H2120.4C12—C11—H11119.8
C2—C3—C4120.0 (2)C10—C11—H11119.8
C2—C3—H3120.0C11—C12—C7119.4 (2)
C4—C3—H3120.0C11—C12—H12120.3
C3—C4—C5120.4 (3)C7—C12—H12120.3
C3—C4—N1115.5 (2)
C4—N1—N2—C7179.0 (2)C4—C5—C6—C10.1 (4)
O3—S1—C1—C215.9 (3)C2—C1—C6—C52.8 (4)
O1—S1—C1—C2137.7 (2)S1—C1—C6—C5172.3 (2)
O2—S1—C1—C2103.8 (2)N1—N2—C7—C8163.7 (3)
O3—S1—C1—C6169.0 (2)N1—N2—C7—C1217.3 (4)
O1—S1—C1—C647.2 (3)C12—C7—C8—C93.9 (4)
O2—S1—C1—C671.3 (3)N2—C7—C8—C9177.0 (3)
C6—C1—C2—C32.0 (4)C7—C8—C9—C101.9 (4)
S1—C1—C2—C3173.0 (2)C8—C9—C10—O4179.9 (3)
C1—C2—C3—C41.7 (5)C8—C9—C10—C111.3 (4)
C2—C3—C4—C54.5 (5)O4—C10—C11—C12178.7 (3)
C2—C3—C4—N1175.2 (3)C9—C10—C11—C122.4 (5)
N2—N1—C4—C3163.8 (3)C10—C11—C12—C70.4 (5)
N2—N1—C4—C516.0 (4)C8—C7—C12—C112.7 (4)
C3—C4—C5—C63.8 (4)N2—C7—C12—C11178.3 (3)
N1—C4—C5—C6176.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4N···O2i0.91 (5)2.30 (5)2.940 (4)127 (4)
N3—H4N···O1ii0.91 (5)2.21 (5)2.969 (3)141 (4)
N3—H3N···O30.86 (5)1.96 (5)2.808 (3)170 (4)
N3—H1N···O1iii0.86 (4)2.03 (5)2.889 (4)176 (4)
N3—H2N···O4iv0.88 (4)2.10 (4)2.946 (3)159 (4)
O4—H1H···O2v0.87 (5)1.95 (5)2.802 (3)167 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x, y1/2, z; (iv) x1, y, z1; (v) x+2, y+1/2, z+1.
Ammonium 4-[2-(2,4-dihydroxyphenyl)diazen-1-yl]benzenesulfonate dihydrate (NH42) top
Crystal data top
NH4+·C12H9N2O5S·2H2OZ = 4
Mr = 347.34F(000) = 728
Triclinic, P1Dx = 1.506 Mg m3
a = 8.2876 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6404 (1) ÅCell parameters from 8081 reflections
c = 17.4834 (3) Åθ = 1.0–29.1°
α = 89.734 (1)°µ = 0.25 mm1
β = 84.793 (1)°T = 123 K
γ = 86.146 (1)°Rhomb, yellow-orange
V = 1531.91 (4) Å30.42 × 0.40 × 0.10 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
Rint = 0.021
Radiation source: sealed tubeθmax = 29.1°, θmin = 1.2°
phi and ω scansh = 1111
15978 measured reflectionsk = 1414
8209 independent reflectionsl = 2323
6704 reflections with I > 2σ(I)
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.8626P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8209 reflectionsΔρmax = 0.58 e Å3
495 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62192 (4)0.04619 (3)0.10240 (2)0.01709 (8)
S20.09636 (4)0.38246 (3)0.12364 (2)0.01713 (8)
O10.76850 (13)0.01171 (10)0.06027 (6)0.0214 (2)
O20.48499 (13)0.03156 (11)0.09970 (6)0.0271 (2)
O30.58719 (14)0.17567 (10)0.07836 (6)0.0260 (2)
O40.98516 (14)0.14681 (10)0.75672 (6)0.0219 (2)
O50.71395 (13)0.04078 (10)0.56317 (6)0.0222 (2)
O60.07572 (14)0.25449 (10)0.09790 (6)0.0242 (2)
O70.22672 (14)0.43876 (10)0.07644 (6)0.0250 (2)
O80.05487 (13)0.46083 (11)0.12893 (6)0.0270 (2)
O90.52842 (13)0.41871 (10)0.76776 (6)0.0218 (2)
O100.51487 (14)0.23392 (10)0.52554 (6)0.0245 (2)
O1W0.16671 (16)0.71210 (13)0.15040 (8)0.0322 (3)
O2W0.38515 (14)0.56714 (12)0.88010 (7)0.0275 (2)
O3W0.71337 (14)0.32285 (11)0.88635 (7)0.0260 (2)
O4W0.84097 (16)0.00710 (11)0.85537 (7)0.0255 (2)
N10.76041 (15)0.05814 (11)0.43032 (7)0.0187 (2)
N20.85430 (15)0.13819 (11)0.45120 (7)0.0193 (2)
N30.33504 (14)0.35053 (11)0.43444 (7)0.0176 (2)
N40.28336 (14)0.43660 (11)0.48284 (7)0.0174 (2)
N50.93365 (17)0.16781 (13)0.03240 (7)0.0194 (2)
N60.39612 (17)0.72023 (14)0.04186 (8)0.0233 (3)
C10.66330 (17)0.05333 (13)0.19978 (7)0.0162 (3)
C20.77120 (17)0.13898 (13)0.22148 (8)0.0192 (3)
H10.8199140.1937010.1844160.023*
C30.80712 (18)0.14393 (13)0.29746 (8)0.0193 (3)
H20.8808010.2015930.3127730.023*
C40.73336 (17)0.06287 (13)0.35112 (8)0.0179 (3)
C50.62652 (18)0.02228 (14)0.32902 (8)0.0201 (3)
H30.5772840.0768570.3660130.024*
C60.59143 (18)0.02792 (14)0.25305 (8)0.0196 (3)
4H0.5191500.0866080.2376500.023*
C70.88081 (17)0.13237 (13)0.52941 (8)0.0181 (3)
C80.98383 (18)0.21938 (14)0.55419 (8)0.0213 (3)
H51.0305800.2768310.5182600.026*
C91.01927 (18)0.22375 (14)0.62985 (8)0.0207 (3)
H61.0900600.2830740.6458860.025*
C100.94882 (17)0.13902 (13)0.68248 (8)0.0180 (3)
C110.84685 (17)0.05103 (13)0.65983 (8)0.0184 (3)
H80.8008040.0059180.6962920.022*
C120.81178 (17)0.04618 (13)0.58317 (8)0.0175 (3)
C130.15837 (16)0.37139 (13)0.21753 (8)0.0166 (3)
C140.08726 (18)0.45338 (14)0.27459 (8)0.0219 (3)
H100.0011860.5124670.2638350.026*
C150.14229 (18)0.44866 (14)0.34716 (8)0.0221 (3)
H110.0946050.5047380.3862600.027*
C160.26783 (17)0.36126 (13)0.36236 (8)0.0169 (3)
C170.33736 (18)0.27771 (13)0.30555 (8)0.0195 (3)
H120.4213200.2170350.3167600.023*
C180.28372 (17)0.28334 (13)0.23264 (8)0.0195 (3)
H130.3319390.2277490.1934010.023*
C190.34935 (16)0.42642 (13)0.55348 (8)0.0162 (3)
C200.29766 (17)0.52133 (13)0.60747 (8)0.0188 (3)
H140.2229980.5877270.5941060.023*
C210.35318 (18)0.52007 (14)0.67955 (8)0.0196 (3)
H150.3149230.5836180.7160050.023*
C220.46707 (17)0.42355 (13)0.69833 (8)0.0172 (3)
C230.52292 (18)0.32983 (13)0.64569 (8)0.0189 (3)
H170.6016450.2662070.6587680.023*
C240.46361 (17)0.32899 (13)0.57373 (8)0.0172 (3)
H1H0.939 (3)0.092 (2)0.7835 (12)0.037 (6)*
H2H0.708 (3)0.022 (2)0.5086 (15)0.062 (7)*
H3H0.477 (3)0.473 (2)0.7984 (13)0.042 (6)*
H4H0.464 (3)0.254 (2)0.4811 (15)0.060 (7)*
H1N1.013 (2)0.1347 (18)0.0556 (11)0.023 (5)*
H2N0.871 (3)0.109 (2)0.0084 (13)0.042 (6)*
H3N0.868 (3)0.218 (2)0.0635 (13)0.045 (6)*
H4N0.966 (3)0.216 (2)0.0036 (14)0.047 (6)*
H5N0.354 (3)0.663 (2)0.0065 (13)0.040 (6)*
H6N0.329 (3)0.7249 (19)0.0805 (13)0.040 (6)*
H7N0.495 (3)0.697 (2)0.0640 (13)0.042 (6)*
H8N0.412 (3)0.790 (2)0.0202 (13)0.043 (6)*
H1W0.123 (3)0.640 (3)0.1495 (14)0.055 (7)*
H2W0.131 (3)0.754 (2)0.1849 (15)0.055 (7)*
H3W0.403 (3)0.641 (2)0.8893 (14)0.050 (7)*
H4W0.2803 (12)0.566 (2)0.8824 (13)0.048 (6)*
H5W0.733 (3)0.400 (2)0.8992 (14)0.055 (7)*
H6W0.691 (3)0.330 (3)0.8338 (17)0.078 (9)*
H7W0.744 (3)0.0001 (19)0.8695 (12)0.031 (5)*
H8W0.868 (3)0.080 (2)0.8637 (13)0.048 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01834 (17)0.01888 (16)0.01370 (15)0.00414 (13)0.00344 (12)0.00218 (12)
S20.01813 (17)0.01791 (16)0.01587 (16)0.00119 (12)0.00427 (12)0.00132 (12)
O10.0217 (5)0.0244 (5)0.0167 (5)0.0061 (4)0.0000 (4)0.0011 (4)
O20.0231 (6)0.0357 (6)0.0236 (5)0.0038 (5)0.0060 (4)0.0062 (5)
O30.0384 (6)0.0202 (5)0.0191 (5)0.0095 (5)0.0100 (5)0.0017 (4)
O40.0276 (6)0.0249 (5)0.0145 (5)0.0060 (4)0.0055 (4)0.0014 (4)
O50.0265 (6)0.0235 (5)0.0178 (5)0.0075 (4)0.0045 (4)0.0006 (4)
O60.0331 (6)0.0195 (5)0.0216 (5)0.0045 (4)0.0096 (4)0.0020 (4)
O70.0296 (6)0.0279 (6)0.0180 (5)0.0084 (5)0.0002 (4)0.0000 (4)
O80.0236 (6)0.0316 (6)0.0261 (6)0.0074 (5)0.0099 (4)0.0045 (5)
O90.0244 (5)0.0248 (5)0.0166 (5)0.0030 (4)0.0066 (4)0.0026 (4)
O100.0310 (6)0.0225 (5)0.0192 (5)0.0092 (4)0.0058 (4)0.0052 (4)
O1W0.0351 (7)0.0257 (6)0.0388 (7)0.0025 (5)0.0192 (6)0.0029 (5)
O2W0.0237 (6)0.0269 (6)0.0318 (6)0.0001 (5)0.0027 (5)0.0081 (5)
O3W0.0290 (6)0.0232 (6)0.0265 (6)0.0016 (5)0.0067 (5)0.0022 (4)
O4W0.0249 (6)0.0235 (6)0.0275 (6)0.0009 (5)0.0009 (5)0.0017 (4)
N10.0186 (6)0.0194 (6)0.0173 (6)0.0027 (5)0.0010 (5)0.0013 (4)
N20.0188 (6)0.0196 (6)0.0189 (6)0.0018 (5)0.0002 (5)0.0001 (4)
N30.0187 (6)0.0179 (6)0.0162 (5)0.0015 (5)0.0015 (4)0.0005 (4)
N40.0164 (6)0.0188 (6)0.0172 (5)0.0022 (4)0.0011 (4)0.0008 (4)
N50.0207 (6)0.0213 (6)0.0163 (6)0.0015 (5)0.0026 (5)0.0031 (5)
N60.0210 (7)0.0251 (7)0.0237 (7)0.0024 (5)0.0043 (5)0.0014 (6)
C10.0167 (6)0.0186 (6)0.0129 (6)0.0039 (5)0.0027 (5)0.0013 (5)
C20.0205 (7)0.0207 (7)0.0162 (6)0.0001 (5)0.0024 (5)0.0014 (5)
C30.0196 (7)0.0202 (7)0.0184 (6)0.0009 (5)0.0043 (5)0.0015 (5)
C40.0193 (7)0.0198 (7)0.0137 (6)0.0069 (5)0.0024 (5)0.0001 (5)
C50.0209 (7)0.0213 (7)0.0172 (6)0.0013 (6)0.0004 (5)0.0025 (5)
C60.0200 (7)0.0203 (7)0.0185 (7)0.0007 (5)0.0022 (5)0.0007 (5)
C70.0179 (7)0.0200 (7)0.0158 (6)0.0041 (5)0.0016 (5)0.0012 (5)
C80.0221 (7)0.0219 (7)0.0196 (7)0.0006 (6)0.0011 (5)0.0003 (5)
C90.0222 (7)0.0201 (7)0.0202 (7)0.0014 (6)0.0045 (6)0.0021 (5)
C100.0181 (7)0.0200 (7)0.0158 (6)0.0031 (5)0.0041 (5)0.0037 (5)
C110.0187 (7)0.0196 (7)0.0167 (6)0.0001 (5)0.0015 (5)0.0016 (5)
C120.0156 (6)0.0176 (6)0.0190 (6)0.0018 (5)0.0020 (5)0.0047 (5)
C130.0158 (6)0.0196 (6)0.0150 (6)0.0034 (5)0.0025 (5)0.0011 (5)
C140.0207 (7)0.0253 (7)0.0192 (7)0.0051 (6)0.0040 (5)0.0027 (6)
C150.0234 (7)0.0254 (7)0.0169 (6)0.0043 (6)0.0022 (6)0.0052 (5)
C160.0169 (6)0.0179 (6)0.0163 (6)0.0038 (5)0.0026 (5)0.0005 (5)
C170.0191 (7)0.0186 (7)0.0210 (7)0.0021 (5)0.0048 (5)0.0015 (5)
C180.0191 (7)0.0196 (7)0.0197 (7)0.0008 (5)0.0029 (5)0.0045 (5)
C190.0152 (6)0.0181 (6)0.0157 (6)0.0022 (5)0.0022 (5)0.0004 (5)
C200.0173 (7)0.0187 (7)0.0202 (7)0.0015 (5)0.0027 (5)0.0004 (5)
C210.0197 (7)0.0204 (7)0.0183 (6)0.0009 (5)0.0016 (5)0.0028 (5)
C220.0174 (6)0.0197 (6)0.0151 (6)0.0042 (5)0.0028 (5)0.0010 (5)
C230.0205 (7)0.0172 (6)0.0190 (6)0.0020 (5)0.0039 (5)0.0003 (5)
C240.0188 (7)0.0162 (6)0.0164 (6)0.0017 (5)0.0002 (5)0.0015 (5)
Geometric parameters (Å, º) top
S1—O21.4529 (12)C1—C61.389 (2)
S1—O31.4564 (11)C1—C21.396 (2)
S1—O11.4624 (10)C2—C31.3896 (19)
S1—C11.7700 (13)C2—H10.9500
S2—O81.4539 (11)C3—C41.399 (2)
S2—O71.4586 (11)C3—H20.9500
S2—O61.4617 (11)C4—C51.388 (2)
S2—C131.7653 (14)C5—C61.3875 (19)
O4—C101.3629 (16)C5—H30.9500
O4—H1H0.84 (2)C6—4H0.9500
O5—C121.3383 (17)C7—C81.397 (2)
O5—H2H0.98 (3)C7—C121.420 (2)
O9—C221.3574 (16)C8—C91.382 (2)
O9—H3H0.85 (2)C8—H50.9500
O10—C241.3413 (16)C9—C101.402 (2)
O10—H4H0.93 (3)C9—H60.9500
O1W—H1W0.82 (3)C10—C111.385 (2)
O1W—H2W0.84 (3)C11—C121.3990 (19)
O2W—H3W0.83 (3)C11—H80.9500
O2W—H4W0.867 (10)C13—C141.3913 (19)
O3W—H5W0.88 (3)C13—C181.3940 (19)
O3W—H6W0.95 (3)C14—C151.3863 (19)
O4W—H7W0.81 (2)C14—H100.9500
O4W—H8W0.81 (3)C15—C161.391 (2)
N1—N21.2680 (17)C15—H110.9500
N1—C41.4227 (17)C16—C171.3943 (19)
N2—C71.4050 (17)C17—C181.3874 (19)
N3—N41.2756 (16)C17—H120.9500
N3—C161.4244 (17)C18—H130.9500
N4—C191.3963 (17)C19—C201.4041 (19)
N5—H1N0.80 (2)C19—C241.4221 (19)
N5—H2N0.92 (2)C20—C211.3799 (19)
N5—H3N0.94 (2)C20—H140.9500
N5—H4N0.89 (2)C21—C221.4059 (19)
N6—H5N0.90 (2)C21—H150.9500
N6—H6N0.92 (2)C22—C231.3874 (19)
N6—H7N0.92 (2)C23—C241.3919 (19)
N6—H8N0.84 (2)C23—H170.9500
O2—S1—O3113.29 (7)C8—C7—N2115.77 (13)
O2—S1—O1111.57 (6)C8—C7—C12119.15 (13)
O3—S1—O1111.92 (7)N2—C7—C12125.08 (13)
O2—S1—C1106.74 (7)C9—C8—C7121.46 (14)
O3—S1—C1106.36 (6)C9—C8—H5119.3
O1—S1—C1106.44 (6)C7—C8—H5119.3
O8—S2—O7112.77 (7)C8—C9—C10118.78 (14)
O8—S2—O6112.41 (7)C8—C9—H6120.6
O7—S2—O6110.95 (7)C10—C9—H6120.6
O8—S2—C13106.48 (6)O4—C10—C11121.49 (13)
O7—S2—C13106.47 (6)O4—C10—C9117.21 (13)
O6—S2—C13107.32 (6)C11—C10—C9121.31 (13)
C10—O4—H1H110.2 (15)C10—C11—C12119.88 (13)
C12—O5—H2H101.5 (15)C10—C11—H8120.1
C22—O9—H3H110.6 (15)C12—C11—H8120.1
C24—O10—H4H103.8 (15)O5—C12—C11118.27 (13)
H1W—O1W—H2W109 (2)O5—C12—C7122.31 (12)
H3W—O2W—H4W105 (2)C11—C12—C7119.42 (13)
H5W—O3W—H6W104 (2)C14—C13—C18120.74 (13)
H7W—O4W—H8W104 (2)C14—C13—S2120.09 (11)
N2—N1—C4114.84 (12)C18—C13—S2119.11 (10)
N1—N2—C7114.40 (12)C15—C14—C13119.86 (13)
N4—N3—C16114.71 (11)C15—C14—H10120.1
N3—N4—C19114.81 (11)C13—C14—H10120.1
H1N—N5—H2N111.0 (18)C14—C15—C16119.56 (13)
H1N—N5—H3N113.3 (19)C14—C15—H11120.2
H2N—N5—H3N108.3 (19)C16—C15—H11120.2
H1N—N5—H4N108.0 (19)C15—C16—C17120.60 (13)
H2N—N5—H4N107.7 (19)C15—C16—N3123.87 (12)
H3N—N5—H4N108.4 (19)C17—C16—N3115.52 (12)
H5N—N6—H6N110.5 (18)C18—C17—C16119.88 (13)
H5N—N6—H7N110.3 (19)C18—C17—H12120.1
H6N—N6—H7N107.0 (18)C16—C17—H12120.1
H5N—N6—H8N109 (2)C17—C18—C13119.34 (13)
H6N—N6—H8N112 (2)C17—C18—H13120.3
H7N—N6—H8N108 (2)C13—C18—H13120.3
C6—C1—C2120.97 (12)N4—C19—C20116.23 (12)
C6—C1—S1119.83 (11)N4—C19—C24125.04 (12)
C2—C1—S1119.18 (11)C20—C19—C24118.73 (12)
C3—C2—C1119.78 (13)C21—C20—C19121.30 (13)
C3—C2—H1120.1C21—C20—H14119.3
C1—C2—H1120.1C19—C20—H14119.3
C2—C3—C4119.12 (13)C20—C21—C22119.15 (13)
C2—C3—H2120.4C20—C21—H15120.4
C4—C3—H2120.4C22—C21—H15120.4
C5—C4—C3120.73 (13)O9—C22—C23117.27 (12)
C5—C4—N1114.64 (13)O9—C22—C21121.83 (12)
C3—C4—N1124.62 (13)C23—C22—C21120.89 (12)
C6—C5—C4120.20 (13)C22—C23—C24120.02 (13)
C6—C5—H3119.9C22—C23—H17120.0
C4—C5—H3119.9C24—C23—H17120.0
C5—C6—C1119.19 (13)O10—C24—C23118.42 (12)
C5—C6—4H120.4O10—C24—C19121.70 (12)
C1—C6—4H120.4C23—C24—C19119.87 (12)
C4—N1—N2—C7179.73 (11)N2—C7—C12—C11179.40 (12)
C16—N3—N4—C19179.87 (11)O8—S2—C13—C1414.43 (14)
O2—S1—C1—C612.29 (13)O7—S2—C13—C14106.13 (13)
O3—S1—C1—C6133.52 (11)O6—S2—C13—C14135.01 (12)
O1—S1—C1—C6106.99 (12)O8—S2—C13—C18168.28 (12)
O2—S1—C1—C2169.23 (11)O7—S2—C13—C1871.16 (13)
O3—S1—C1—C247.99 (13)O6—S2—C13—C1847.70 (13)
O1—S1—C1—C271.50 (12)C18—C13—C14—C150.6 (2)
C6—C1—C2—C30.3 (2)S2—C13—C14—C15176.62 (12)
S1—C1—C2—C3178.79 (10)C13—C14—C15—C160.4 (2)
C1—C2—C3—C40.3 (2)C14—C15—C16—C170.7 (2)
C2—C3—C4—C50.5 (2)C14—C15—C16—N3178.73 (14)
C2—C3—C4—N1179.66 (12)N4—N3—C16—C157.1 (2)
N2—N1—C4—C5178.08 (12)N4—N3—C16—C17172.30 (13)
N2—N1—C4—C32.70 (19)C15—C16—C17—C181.5 (2)
C3—C4—C5—C60.0 (2)N3—C16—C17—C18178.00 (13)
N1—C4—C5—C6179.29 (12)C16—C17—C18—C131.2 (2)
C4—C5—C6—C10.6 (2)C14—C13—C18—C170.1 (2)
C2—C1—C6—C50.8 (2)S2—C13—C18—C17177.42 (11)
S1—C1—C6—C5179.23 (11)N3—N4—C19—C20178.63 (12)
N1—N2—C7—C8179.98 (12)N3—N4—C19—C240.9 (2)
N1—N2—C7—C120.06 (19)N4—C19—C20—C21179.16 (13)
N2—C7—C8—C9179.75 (13)C24—C19—C20—C211.2 (2)
C12—C7—C8—C90.3 (2)C19—C20—C21—C221.7 (2)
C7—C8—C9—C100.4 (2)C20—C21—C22—O9178.72 (13)
C8—C9—C10—O4179.37 (13)C20—C21—C22—C230.4 (2)
C8—C9—C10—C110.7 (2)O9—C22—C23—C24179.45 (13)
O4—C10—C11—C12179.74 (12)C21—C22—C23—C241.4 (2)
C9—C10—C11—C120.4 (2)C22—C23—C24—O10177.09 (13)
C10—C11—C12—O5179.41 (12)C22—C23—C24—C191.9 (2)
C10—C11—C12—C70.3 (2)N4—C19—C24—O102.1 (2)
C8—C7—C12—O5179.05 (13)C20—C19—C24—O10178.33 (13)
N2—C7—C12—O50.9 (2)N4—C19—C24—C23178.99 (13)
C8—C7—C12—C110.7 (2)C20—C19—C24—C230.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1H···O4W0.84 (2)1.81 (2)2.6357 (17)170 (2)
O5—H2H···N10.98 (3)1.65 (3)2.5535 (16)151 (2)
O9—H3H···O2W0.85 (2)1.83 (2)2.6673 (16)168 (2)
O10—H4H···N30.93 (3)1.69 (3)2.5420 (16)149 (2)
N5—H1N···O1i0.80 (2)2.16 (2)2.8858 (17)151.1 (18)
N5—H1N···O1Wii0.80 (2)2.627 (19)3.034 (2)113.3 (15)
N5—H2N···O10.92 (2)1.94 (2)2.8403 (18)168 (2)
N5—H3N···O3Wiii0.94 (2)1.91 (2)2.8488 (17)172 (2)
N5—H4N···O6iv0.89 (2)2.01 (2)2.8425 (16)156 (2)
N6—H5N···S2v0.90 (2)2.99 (2)3.7547 (15)143.5 (17)
N6—H5N···O7v0.90 (2)1.99 (2)2.8804 (18)168 (2)
N6—H6N···O1W0.92 (2)1.90 (2)2.8027 (18)169.7 (19)
N6—H7N···O3Wvi0.92 (2)1.96 (2)2.8733 (19)170.4 (19)
N6—H8N···O2vii0.84 (2)2.42 (2)2.9090 (18)117.8 (18)
N6—H8N···O3v0.84 (2)2.36 (2)2.9153 (17)123.8 (19)
O1W—H2W···O4viii0.84 (3)2.01 (3)2.8150 (16)162 (2)
O1W—H1W···O80.82 (3)1.98 (3)2.7858 (17)166 (2)
O2W—H3W···O3viii0.83 (3)2.04 (3)2.8639 (16)171 (2)
O2W—H4W···O8vi0.87 (1)1.94 (1)2.7918 (17)169 (2)
O3W—H5W···O7viii0.88 (3)1.83 (3)2.7106 (16)179 (2)
O3W—H6W···O90.95 (3)2.04 (3)2.8347 (15)140 (2)
O4W—H7W···O2ix0.81 (2)1.94 (2)2.7482 (17)175 (2)
O4W—H8W···O6ix0.81 (3)2.01 (3)2.8128 (16)171 (2)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x+1, y, z; (v) x, y+1, z; (vi) x, y+1, z+1; (vii) x1, y+1, z; (viii) x+1, y+1, z+1; (ix) x+1, y, z+1.
Ammonium 4-[2-(4-aminophenyl)diazen-1-yl]benzenesulfonate sesquihydrate (NH43) top
Crystal data top
NH4+·C12H10N3O3S·1.5(H2O)F(000) = 1352
Mr = 321.35Dx = 1.489 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
a = 35.1636 (15) ÅCell parameters from 3419 reflections
b = 7.8905 (3) Åθ = 1.0–27.5°
c = 10.4972 (5) ŵ = 0.25 mm1
β = 100.091 (2)°T = 123 K
V = 2867.5 (2) Å3Plate, yellow
Z = 80.35 × 0.30 × 0.05 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
Rint = 0.074
Radiation source: sealed tubeθmax = 27.5°, θmin = 2.4°
phi and ω scansh = 4545
6133 measured reflectionsk = 1010
3271 independent reflectionsl = 1313
1857 reflections with I > 2σ(I)
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0404P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3271 reflectionsΔρmax = 0.26 e Å3
231 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43663 (2)0.11499 (8)0.70251 (6)0.01953 (19)
O10.45304 (4)0.2492 (2)0.79049 (15)0.0232 (4)
O20.45060 (5)0.0525 (2)0.74823 (16)0.0254 (4)
O30.44203 (5)0.1429 (2)0.56905 (15)0.0258 (4)
O1W0.43599 (5)0.5179 (3)0.9712 (2)0.0288 (5)
O2W0.0000000.0222 (3)0.7500000.0255 (6)
N10.26669 (5)0.1179 (2)0.69356 (18)0.0206 (5)
N20.25653 (6)0.1029 (2)0.80233 (19)0.0209 (5)
N30.09692 (6)0.1286 (3)0.8002 (2)0.0229 (5)
N40.01011 (8)0.2779 (3)0.9447 (2)0.0231 (5)
C10.38640 (6)0.1194 (3)0.7015 (2)0.0158 (5)
C20.37175 (7)0.1937 (3)0.8030 (2)0.0178 (6)
H30.3888270.2456020.8721180.021*
C30.33251 (7)0.1922 (3)0.8037 (2)0.0199 (6)
H40.3226090.2414770.8737370.024*
C40.30749 (7)0.1180 (3)0.7009 (2)0.0182 (6)
C50.32184 (7)0.0481 (3)0.5976 (2)0.0193 (6)
H10.3046410.0010300.5264740.023*
C60.36131 (7)0.0470 (3)0.5983 (2)0.0189 (6)
H20.3712350.0029960.5285690.023*
C70.21591 (7)0.1143 (3)0.7977 (2)0.0189 (6)
C80.20127 (7)0.0432 (3)0.9007 (2)0.0217 (6)
H70.2182700.0077770.9705670.026*
C90.16185 (7)0.0469 (3)0.9011 (2)0.0204 (6)
H80.1518530.0054800.9697700.024*
C100.13691 (7)0.1264 (3)0.8022 (2)0.0177 (6)
C110.15198 (7)0.2021 (3)0.7018 (2)0.0211 (6)
H60.1351670.2590730.6347170.025*
C120.19107 (7)0.1952 (3)0.6988 (2)0.0197 (6)
H50.2009510.2457210.6291530.024*
H1N0.0074 (8)0.178 (4)0.902 (3)0.046 (9)*
H2N0.0243 (9)0.255 (4)1.028 (3)0.068 (11)*
H3N0.0210 (9)0.348 (4)0.900 (3)0.065 (12)*
H4N0.0141 (10)0.327 (4)0.963 (3)0.081 (12)*
H5N0.0911 (8)0.092 (3)0.870 (3)0.036 (9)*
H6N0.0856 (7)0.223 (4)0.775 (2)0.038 (9)*
H1W0.4271 (8)0.525 (4)0.892 (3)0.040 (10)*
H2W0.4346 (9)0.622 (4)1.000 (3)0.065 (12)*
H3W0.0192 (6)0.044 (3)0.757 (3)0.049 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0178 (3)0.0194 (3)0.0217 (4)0.0012 (3)0.0044 (3)0.0010 (3)
O10.0187 (10)0.0243 (10)0.0269 (10)0.0035 (8)0.0046 (7)0.0055 (9)
O20.0190 (10)0.0197 (10)0.0370 (11)0.0025 (8)0.0038 (8)0.0025 (8)
O30.0229 (10)0.0360 (12)0.0202 (9)0.0035 (9)0.0087 (7)0.0004 (8)
O1W0.0314 (12)0.0306 (13)0.0240 (13)0.0036 (10)0.0038 (9)0.0001 (10)
O2W0.0249 (17)0.0245 (16)0.0294 (15)0.0000.0109 (13)0.000
N10.0201 (12)0.0199 (12)0.0226 (12)0.0003 (10)0.0058 (9)0.0003 (11)
N20.0186 (12)0.0218 (12)0.0234 (12)0.0003 (10)0.0066 (9)0.0005 (10)
N30.0201 (13)0.0218 (14)0.0276 (14)0.0016 (12)0.0064 (10)0.0020 (12)
N40.0245 (14)0.0216 (15)0.0237 (15)0.0005 (12)0.0058 (12)0.0015 (13)
C10.0166 (13)0.0121 (13)0.0188 (13)0.0001 (12)0.0039 (10)0.0060 (12)
C20.0186 (14)0.0163 (13)0.0178 (13)0.0021 (12)0.0011 (10)0.0012 (11)
C30.0213 (14)0.0211 (14)0.0186 (13)0.0011 (12)0.0068 (11)0.0005 (12)
C40.0158 (13)0.0173 (13)0.0215 (14)0.0019 (12)0.0037 (10)0.0048 (12)
C50.0225 (15)0.0195 (14)0.0140 (13)0.0016 (12)0.0022 (11)0.0027 (11)
C60.0199 (14)0.0205 (14)0.0173 (14)0.0022 (12)0.0064 (11)0.0002 (12)
C70.0168 (14)0.0176 (13)0.0219 (14)0.0007 (12)0.0023 (11)0.0041 (12)
C80.0214 (15)0.0242 (14)0.0184 (14)0.0013 (12)0.0008 (11)0.0004 (12)
C90.0246 (15)0.0199 (14)0.0184 (14)0.0031 (12)0.0085 (11)0.0006 (12)
C100.0185 (14)0.0141 (13)0.0214 (14)0.0002 (12)0.0057 (11)0.0016 (12)
C110.0217 (14)0.0199 (14)0.0204 (14)0.0044 (12)0.0004 (11)0.0009 (12)
C120.0204 (14)0.0197 (14)0.0195 (14)0.0026 (12)0.0043 (11)0.0001 (12)
Geometric parameters (Å, º) top
S1—O11.4564 (17)C1—C61.394 (3)
S1—O21.4612 (17)C2—C31.381 (3)
S1—O31.4630 (16)C2—H30.9500
S1—C11.765 (2)C3—C41.396 (3)
O1W—H1W0.83 (3)C3—H40.9500
O1W—H2W0.88 (3)C4—C51.389 (3)
O2W—H3W0.867 (10)C5—C61.387 (3)
O2W—H3Wi0.867 (10)C5—H10.9500
N1—N21.260 (2)C6—H20.9500
N1—C41.423 (3)C7—C121.390 (3)
N2—C71.423 (3)C7—C81.394 (3)
N3—C101.403 (3)C8—C91.387 (3)
N3—H5N0.85 (3)C8—H70.9500
N3—H6N0.86 (3)C9—C101.387 (3)
N4—H1N0.90 (3)C9—H80.9500
N4—H2N0.94 (3)C10—C111.394 (3)
N4—H3N0.86 (3)C11—C121.382 (3)
N4—H4N0.98 (4)C11—H60.9500
C1—C21.391 (3)C12—H50.9500
O1—S1—O2112.10 (10)C5—C4—C3120.3 (2)
O1—S1—O3113.23 (10)C5—C4—N1117.3 (2)
O2—S1—O3110.97 (10)C3—C4—N1122.4 (2)
O1—S1—C1105.93 (10)C6—C5—C4119.9 (2)
O2—S1—C1107.36 (10)C6—C5—H1120.0
O3—S1—C1106.79 (10)C4—C5—H1120.0
H1W—O1W—H2W104 (3)C5—C6—C1119.9 (2)
H3W—O2W—H3Wi106 (4)C5—C6—H2120.1
N2—N1—C4113.20 (18)C1—C6—H2120.1
N1—N2—C7113.92 (19)C12—C7—C8119.7 (2)
C10—N3—H5N112.2 (18)C12—C7—N2123.3 (2)
C10—N3—H6N114.9 (18)C8—C7—N2116.9 (2)
H5N—N3—H6N113 (3)C9—C8—C7119.9 (2)
H1N—N4—H2N106 (3)C9—C8—H7120.0
H1N—N4—H3N108 (3)C7—C8—H7120.0
H2N—N4—H3N115 (3)C10—C9—C8120.6 (2)
H1N—N4—H4N115 (3)C10—C9—H8119.7
H2N—N4—H4N103 (2)C8—C9—H8119.7
H3N—N4—H4N110 (3)C9—C10—C11119.0 (2)
C2—C1—C6119.9 (2)C9—C10—N3121.1 (2)
C2—C1—S1120.53 (17)C11—C10—N3119.8 (2)
C6—C1—S1119.54 (18)C12—C11—C10120.8 (2)
C3—C2—C1120.3 (2)C12—C11—H6119.6
C3—C2—H3119.8C10—C11—H6119.6
C1—C2—H3119.8C11—C12—C7119.9 (2)
C2—C3—C4119.6 (2)C11—C12—H5120.1
C2—C3—H4120.2C7—C12—H5120.1
C4—C3—H4120.2
C4—N1—N2—C7175.90 (19)C4—C5—C6—C11.4 (4)
O1—S1—C1—C221.1 (2)C2—C1—C6—C50.5 (3)
O2—S1—C1—C298.82 (19)S1—C1—C6—C5179.20 (18)
O3—S1—C1—C2142.10 (19)N1—N2—C7—C1223.1 (3)
O1—S1—C1—C6159.19 (18)N1—N2—C7—C8158.6 (2)
O2—S1—C1—C680.9 (2)C12—C7—C8—C92.9 (4)
O3—S1—C1—C638.2 (2)N2—C7—C8—C9178.7 (2)
C6—C1—C2—C31.7 (3)C7—C8—C9—C102.4 (4)
S1—C1—C2—C3178.02 (18)C8—C9—C10—C110.3 (4)
C1—C2—C3—C41.0 (4)C8—C9—C10—N3178.9 (2)
C2—C3—C4—C50.9 (4)C9—C10—C11—C121.4 (3)
C2—C3—C4—N1177.6 (2)N3—C10—C11—C12177.2 (2)
N2—N1—C4—C5147.6 (2)C10—C11—C12—C71.0 (3)
N2—N1—C4—C335.6 (3)C8—C7—C12—C111.2 (3)
C3—C4—C5—C62.1 (4)N2—C7—C12—C11179.5 (2)
N1—C4—C5—C6179.0 (2)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N···O2W0.90 (3)2.00 (3)2.850 (3)157 (2)
N4—H2N···O1ii0.94 (3)1.93 (3)2.862 (3)167 (3)
N4—H2N···O1Wii0.94 (3)2.57 (3)3.039 (3)111 (2)
N4—H3N···O2iii0.86 (3)2.14 (3)2.963 (3)161 (3)
N4—H3N···O3iii0.86 (3)2.66 (3)3.351 (3)139 (3)
N4—H4N···O3iv0.98 (4)2.07 (4)2.987 (3)155 (3)
N3—H5N···O1Wii0.85 (3)2.23 (3)3.067 (3)168 (2)
N3—H6N···O2iii0.86 (3)2.17 (3)3.015 (3)165 (2)
O1W—H1W···N3iii0.83 (3)2.21 (3)3.011 (3)162 (3)
O1W—H2W···O3v0.88 (3)1.99 (3)2.861 (3)169 (3)
O2W—H3W···O1vi0.87 (1)1.97 (1)2.792 (3)159 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iii) x+1/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y+1, z+1/2; (vi) x1/2, y1/2, z.
Ammonium 4-(2-{4-[bis(2-hydroxyethyl)amino]phenyl}diazen-1-yl)benzenesulfonate monohydrate (NH44) top
Crystal data top
NH4+·C16H18N3O5S·H2OZ = 4
Mr = 400.45F(000) = 848
Triclinic, P1Dx = 1.437 Mg m3
a = 8.4933 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.0977 (2) ÅCell parameters from 8751 reflections
c = 17.1657 (3) Åθ = 1.0–27.9°
α = 90.970 (1)°µ = 0.22 mm1
β = 103.180 (1)°T = 123 K
γ = 95.132 (1)°Cut plate, yellow orange
V = 1850.43 (5) Å30.5 × 0.5 × 0.15 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
Rint = 0.043
Radiation source: sealed tubeθmax = 28.0°, θmin = 1.2°
phi and ω scansh = 1111
16736 measured reflectionsk = 1717
8841 independent reflectionsl = 2222
5911 reflections with I > 2σ(I)
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.4114P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8841 reflectionsΔρmax = 0.57 e Å3
550 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17962 (6)0.40832 (4)0.11851 (3)0.02084 (13)
S1A0.89947 (6)0.10864 (4)0.81730 (3)0.02110 (13)
O10.35205 (17)0.38875 (12)0.11656 (9)0.0329 (4)
O1A0.88697 (18)0.00026 (10)0.79522 (9)0.0297 (4)
O20.12780 (18)0.51596 (10)0.11604 (9)0.0303 (4)
O2A0.7922 (2)0.13162 (13)0.86831 (9)0.0399 (4)
O30.13347 (18)0.34429 (11)0.05857 (8)0.0275 (3)
O3A1.06745 (17)0.14814 (11)0.85103 (9)0.0270 (3)
O40.3424 (2)0.03149 (12)0.90342 (9)0.0310 (4)
O4A0.3842 (2)0.50130 (13)0.07514 (9)0.0298 (4)
O50.6302 (2)0.14218 (13)0.77988 (9)0.0299 (4)
O5A0.5451 (2)0.69228 (13)0.07851 (9)0.0338 (4)
N10.0781 (2)0.23905 (13)0.43773 (10)0.0220 (4)
N1A0.6312 (2)0.32623 (13)0.52115 (10)0.0239 (4)
N20.1444 (2)0.15696 (13)0.43423 (10)0.0236 (4)
N2A0.7053 (2)0.41022 (13)0.50930 (10)0.0230 (4)
N30.3017 (2)0.08822 (12)0.69994 (10)0.0213 (4)
N3A0.4234 (2)0.61579 (12)0.23547 (10)0.0204 (4)
N40.1309 (3)0.30779 (17)0.02165 (13)0.0305 (5)
N50.6587 (3)0.15278 (17)1.00084 (13)0.0289 (4)
C10.0800 (2)0.36624 (14)0.21287 (12)0.0187 (4)
C1A0.8318 (2)0.17296 (15)0.72803 (12)0.0200 (4)
C20.0972 (3)0.41491 (15)0.28276 (12)0.0228 (5)
H20.1499570.4761520.2799430.027*
C2A0.6835 (3)0.13752 (15)0.67789 (12)0.0227 (5)
H2A0.6243610.0772290.6900800.027*
C30.0375 (2)0.37424 (15)0.35638 (12)0.0222 (5)
H30.0471850.4083540.4040980.027*
C3A0.6224 (3)0.19002 (15)0.61039 (12)0.0235 (5)
H3A0.5208520.1658190.5762140.028*
C40.0369 (2)0.28326 (15)0.36042 (12)0.0198 (4)
C4A0.7085 (3)0.27817 (15)0.59206 (12)0.0219 (5)
C50.0585 (2)0.23671 (15)0.29092 (12)0.0214 (4)
H50.1125350.1759690.2939150.026*
C5A0.8571 (3)0.31410 (16)0.64225 (13)0.0248 (5)
H5A0.9158880.3744390.6298830.030*
C60.0020 (2)0.27789 (15)0.21743 (12)0.0220 (4)
H60.0188720.2463000.1701520.026*
C6A0.9192 (3)0.26163 (15)0.71037 (12)0.0239 (5)
H6A1.0204510.2858880.7447580.029*
C70.1810 (2)0.10273 (15)0.50505 (12)0.0223 (5)
C7A0.6255 (3)0.45964 (15)0.44071 (12)0.0215 (4)
C80.2579 (3)0.01469 (16)0.49867 (13)0.0253 (5)
H80.2818470.0029800.4489980.030*
C8A0.7089 (3)0.54725 (15)0.41917 (12)0.0226 (5)
H8A0.8119050.5721310.4516360.027*
C90.3005 (3)0.04780 (16)0.56259 (12)0.0245 (5)
H90.3552530.1065730.5566260.029*
C9A0.6442 (2)0.59843 (15)0.35140 (12)0.0217 (4)
H9A0.7044690.6570260.3373060.026*
C100.2635 (2)0.02522 (15)0.63652 (12)0.0205 (4)
C10A0.4899 (2)0.56516 (14)0.30270 (12)0.0195 (4)
C110.1840 (2)0.06468 (15)0.64191 (12)0.0231 (5)
H110.1584800.0826240.6911480.028*
C11A0.4039 (3)0.47813 (15)0.32746 (12)0.0221 (4)
H11A0.2987070.4543790.2968320.026*
C120.1430 (2)0.12635 (15)0.57798 (12)0.0225 (5)
H120.0883980.1854100.5832950.027*
C12A0.4703 (3)0.42788 (15)0.39475 (12)0.0233 (5)
H12A0.4096230.3705070.4103640.028*
C130.2643 (3)0.06521 (16)0.77689 (12)0.0240 (5)
H13A0.2589910.1295750.8059960.029*
H13B0.1556240.0395340.7669940.029*
C13A0.2716 (3)0.57465 (16)0.18036 (12)0.0241 (5)
H13C0.2319580.6288910.1434510.029*
H13D0.1890950.5575880.2117850.029*
C140.3863 (3)0.01328 (16)0.82977 (12)0.0257 (5)
H14A0.4953970.0118790.8404830.031*
H14B0.3914700.0783720.8015700.031*
C14A0.2853 (3)0.48032 (17)0.13115 (13)0.0300 (5)
H14C0.3321000.4273770.1675570.036*
H14D0.1752680.4522620.1017610.036*
C150.3707 (3)0.18485 (15)0.69021 (13)0.0237 (5)
H15A0.3189310.2157190.6364090.028*
H15B0.3437010.2328290.7302190.028*
C15A0.5049 (3)0.71091 (15)0.21544 (12)0.0232 (5)
H15C0.5655400.7474370.2657970.028*
H15D0.4212970.7548380.1886570.028*
C160.5525 (3)0.17382 (16)0.69951 (13)0.0262 (5)
H16A0.5889760.2402190.6860070.031*
H16B0.5823180.1224390.6624180.031*
C16A0.6218 (3)0.69837 (17)0.16185 (13)0.0277 (5)
H16C0.7064540.7571980.1723500.033*
H16D0.6763850.6352620.1758440.033*
O1W0.3971 (2)0.22906 (13)0.08102 (10)0.0413 (4)
H1W0.473 (2)0.2803 (14)0.0933 (14)0.050*
H2W0.393 (3)0.2095 (18)0.1295 (8)0.050*
O2W0.0195 (3)0.09867 (17)0.05014 (14)0.0781 (7)
H3W0.043 (4)0.073 (3)0.0998 (10)0.094*
H4W0.040 (7)0.043 (3)0.025 (2)0.094*0.5
H5W0.114 (5)0.085 (6)0.038 (3)0.094*0.5
H1H0.260 (4)0.065 (2)0.8945 (19)0.074 (11)*
H2H0.704 (4)0.099 (2)0.7780 (17)0.053 (9)*
H3H0.461 (4)0.469 (2)0.0886 (18)0.068 (11)*
H4H0.482 (4)0.626 (2)0.0679 (17)0.062 (9)*
H1N0.050 (3)0.3194 (18)0.0005 (15)0.035 (7)*
H2N0.145 (3)0.373 (2)0.0441 (15)0.047 (8)*
H3N0.095 (3)0.260 (2)0.0613 (17)0.046 (8)*
H4N0.234 (5)0.274 (3)0.021 (2)0.104 (12)*
H5N0.703 (3)0.133 (2)0.9597 (17)0.051 (8)*
H6N0.561 (5)0.176 (3)0.985 (2)0.089 (12)*
H7N0.724 (4)0.209 (3)1.0321 (19)0.076 (10)*
H8N0.642 (4)0.094 (2)1.0311 (18)0.068 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0168 (3)0.0223 (3)0.0236 (3)0.0022 (2)0.0046 (2)0.0025 (2)
S1A0.0208 (3)0.0229 (3)0.0204 (3)0.0026 (2)0.0060 (2)0.0013 (2)
O10.0154 (8)0.0475 (10)0.0362 (9)0.0040 (7)0.0054 (7)0.0123 (7)
O1A0.0321 (9)0.0203 (8)0.0336 (9)0.0030 (6)0.0027 (7)0.0030 (6)
O20.0352 (9)0.0209 (8)0.0338 (9)0.0033 (7)0.0052 (7)0.0063 (6)
O2A0.0398 (10)0.0631 (12)0.0252 (9)0.0237 (9)0.0168 (8)0.0112 (8)
O30.0302 (9)0.0301 (8)0.0225 (8)0.0062 (7)0.0054 (7)0.0005 (6)
O3A0.0230 (8)0.0249 (8)0.0293 (8)0.0019 (6)0.0002 (6)0.0015 (6)
O40.0336 (10)0.0337 (9)0.0266 (9)0.0067 (8)0.0072 (7)0.0019 (7)
O4A0.0287 (9)0.0379 (9)0.0254 (9)0.0094 (8)0.0091 (7)0.0008 (7)
O50.0239 (9)0.0340 (9)0.0295 (9)0.0038 (7)0.0041 (7)0.0016 (7)
O5A0.0416 (10)0.0343 (10)0.0299 (9)0.0067 (8)0.0155 (8)0.0070 (7)
N10.0200 (9)0.0224 (9)0.0235 (9)0.0030 (7)0.0042 (7)0.0002 (7)
N1A0.0293 (11)0.0220 (9)0.0219 (9)0.0034 (8)0.0084 (8)0.0004 (7)
N20.0241 (10)0.0210 (9)0.0248 (10)0.0033 (8)0.0036 (8)0.0017 (7)
N2A0.0285 (10)0.0212 (9)0.0216 (9)0.0043 (8)0.0098 (8)0.0005 (7)
N30.0216 (10)0.0212 (9)0.0217 (9)0.0042 (7)0.0051 (7)0.0028 (7)
N3A0.0193 (9)0.0204 (9)0.0209 (9)0.0010 (7)0.0047 (7)0.0007 (7)
N40.0379 (13)0.0289 (12)0.0270 (11)0.0040 (10)0.0154 (10)0.0051 (10)
N50.0321 (13)0.0323 (12)0.0232 (11)0.0018 (10)0.0088 (9)0.0012 (9)
C10.0148 (10)0.0180 (10)0.0231 (11)0.0012 (8)0.0050 (8)0.0019 (8)
C1A0.0208 (11)0.0208 (10)0.0201 (11)0.0046 (8)0.0076 (9)0.0018 (8)
C20.0229 (12)0.0175 (10)0.0286 (12)0.0041 (8)0.0061 (9)0.0003 (9)
C2A0.0249 (12)0.0192 (10)0.0240 (11)0.0007 (9)0.0071 (9)0.0014 (8)
C30.0227 (11)0.0202 (11)0.0243 (11)0.0002 (9)0.0078 (9)0.0038 (8)
C3A0.0236 (12)0.0227 (11)0.0234 (11)0.0013 (9)0.0044 (9)0.0026 (9)
C40.0160 (10)0.0201 (10)0.0223 (11)0.0017 (8)0.0037 (8)0.0003 (8)
C4A0.0254 (12)0.0216 (11)0.0200 (11)0.0055 (9)0.0073 (9)0.0012 (8)
C50.0168 (11)0.0217 (11)0.0257 (11)0.0054 (8)0.0038 (9)0.0004 (9)
C5A0.0258 (12)0.0215 (11)0.0287 (12)0.0004 (9)0.0101 (9)0.0030 (9)
C60.0170 (11)0.0249 (11)0.0246 (11)0.0030 (9)0.0053 (9)0.0027 (9)
C6A0.0215 (11)0.0252 (11)0.0249 (11)0.0005 (9)0.0056 (9)0.0008 (9)
C70.0211 (11)0.0233 (11)0.0208 (11)0.0024 (9)0.0015 (9)0.0007 (8)
C7A0.0248 (12)0.0219 (11)0.0185 (11)0.0055 (9)0.0055 (9)0.0011 (8)
C80.0299 (13)0.0243 (11)0.0224 (11)0.0040 (9)0.0074 (9)0.0016 (9)
C8A0.0212 (11)0.0238 (11)0.0224 (11)0.0031 (9)0.0042 (9)0.0008 (9)
C90.0276 (12)0.0218 (11)0.0240 (11)0.0051 (9)0.0049 (9)0.0024 (9)
C9A0.0225 (11)0.0195 (10)0.0237 (11)0.0010 (8)0.0078 (9)0.0006 (8)
C100.0160 (11)0.0218 (11)0.0222 (11)0.0002 (8)0.0022 (8)0.0010 (8)
C10A0.0218 (11)0.0189 (10)0.0201 (11)0.0041 (8)0.0091 (9)0.0021 (8)
C110.0219 (11)0.0276 (11)0.0210 (11)0.0029 (9)0.0073 (9)0.0019 (9)
C11A0.0224 (11)0.0215 (11)0.0222 (11)0.0002 (9)0.0058 (9)0.0026 (8)
C120.0198 (11)0.0222 (11)0.0249 (11)0.0040 (9)0.0031 (9)0.0014 (9)
C12A0.0296 (13)0.0178 (10)0.0253 (11)0.0003 (9)0.0132 (9)0.0013 (8)
C130.0253 (12)0.0234 (11)0.0237 (11)0.0000 (9)0.0077 (9)0.0031 (9)
C13A0.0209 (11)0.0288 (12)0.0218 (11)0.0010 (9)0.0044 (9)0.0014 (9)
C140.0289 (13)0.0244 (11)0.0233 (12)0.0011 (9)0.0056 (9)0.0009 (9)
C14A0.0258 (13)0.0357 (13)0.0278 (12)0.0045 (10)0.0081 (10)0.0087 (10)
C150.0260 (12)0.0177 (10)0.0266 (12)0.0018 (9)0.0046 (9)0.0022 (8)
C15A0.0233 (12)0.0209 (11)0.0257 (12)0.0041 (9)0.0055 (9)0.0031 (9)
C160.0278 (13)0.0239 (11)0.0271 (12)0.0039 (9)0.0064 (10)0.0012 (9)
C16A0.0239 (12)0.0262 (12)0.0343 (13)0.0024 (9)0.0091 (10)0.0046 (10)
O1W0.0530 (12)0.0355 (10)0.0374 (10)0.0040 (8)0.0141 (9)0.0100 (8)
O2W0.114 (2)0.0569 (14)0.0507 (14)0.0083 (15)0.0009 (13)0.0128 (11)
Geometric parameters (Å, º) top
S1—O21.4431 (15)C5—H50.9500
S1—O11.4566 (15)C5A—C6A1.389 (3)
S1—O31.4592 (15)C5A—H5A0.9500
S1—C11.770 (2)C6—H60.9500
S1A—O2A1.4462 (16)C6A—H6A0.9500
S1A—O3A1.4559 (15)C7—C81.390 (3)
S1A—O1A1.4579 (15)C7—C121.399 (3)
S1A—C1A1.765 (2)C7A—C8A1.394 (3)
O4—C141.420 (3)C7A—C12A1.397 (3)
O4—H1H0.84 (3)C8—C91.381 (3)
O4A—C14A1.429 (3)C8—H80.9500
O4A—H3H0.80 (3)C8A—C9A1.380 (3)
O5—C161.424 (3)C8A—H8A0.9500
O5—H2H0.81 (3)C9—C101.408 (3)
O5A—C16A1.428 (3)C9—H90.9500
O5A—H4H0.97 (3)C9A—C10A1.411 (3)
N1—N21.264 (2)C9A—H9A0.9500
N1—C41.439 (2)C10—C111.421 (3)
N1A—N2A1.261 (2)C10A—C11A1.422 (3)
N1A—C4A1.430 (3)C11—C121.373 (3)
N2—C71.405 (2)C11—H110.9500
N2A—C7A1.416 (3)C11A—C12A1.371 (3)
N3—C101.374 (2)C11A—H11A0.9500
N3—C131.460 (3)C12—H120.9500
N3—C151.464 (3)C12A—H12A0.9500
N3A—C10A1.373 (2)C13—C141.518 (3)
N3A—C15A1.455 (2)C13—H13A0.9900
N3A—C13A1.467 (3)C13—H13B0.9900
N4—H1N0.87 (3)C13A—C14A1.513 (3)
N4—H2N0.95 (3)C13A—H13C0.9900
N4—H3N0.89 (3)C13A—H13D0.9900
N4—H4N1.13 (4)C14—H14A0.9900
N5—H5N0.91 (3)C14—H14B0.9900
N5—H6N0.89 (4)C14A—H14C0.9900
N5—H7N0.96 (4)C14A—H14D0.9900
N5—H8N0.96 (3)C15—C161.509 (3)
C1—C21.392 (3)C15—H15A0.9900
C1—C61.397 (3)C15—H15B0.9900
C1A—C2A1.389 (3)C15A—C16A1.516 (3)
C1A—C6A1.397 (3)C15A—H15C0.9900
C2—C31.384 (3)C15A—H15D0.9900
C2—H20.9500C16—H16A0.9900
C2A—C3A1.379 (3)C16—H16B0.9900
C2A—H2A0.9500C16A—H16C0.9900
C3—C41.393 (3)C16A—H16D0.9900
C3—H30.9500O1W—H1W0.875 (10)
C3A—C4A1.390 (3)O1W—H2W0.882 (9)
C3A—H3A0.9500O2W—H3W0.907 (10)
C4—C51.387 (3)O2W—H4W0.889 (10)
C4A—C5A1.393 (3)O2W—H5W0.899 (10)
C5—C61.380 (3)
O2—S1—O1112.96 (9)C9—C8—H8119.1
O2—S1—O3113.85 (9)C7—C8—H8119.1
O1—S1—O3111.27 (9)C9A—C8A—C7A121.04 (19)
O2—S1—C1107.12 (9)C9A—C8A—H8A119.5
O1—S1—C1104.63 (9)C7A—C8A—H8A119.5
O3—S1—C1106.25 (9)C8—C9—C10120.62 (19)
O2A—S1A—O3A112.58 (10)C8—C9—H9119.7
O2A—S1A—O1A112.66 (10)C10—C9—H9119.7
O3A—S1A—O1A111.19 (9)C8A—C9A—C10A121.12 (18)
O2A—S1A—C1A105.65 (9)C8A—C9A—H9A119.4
O3A—S1A—C1A107.50 (9)C10A—C9A—H9A119.4
O1A—S1A—C1A106.79 (9)N3—C10—C9121.13 (18)
C14—O4—H1H109 (2)N3—C10—C11121.97 (18)
C14A—O4A—H3H106 (2)C9—C10—C11116.90 (18)
C16—O5—H2H107 (2)N3A—C10A—C9A121.74 (17)
C16A—O5A—H4H106.9 (17)N3A—C10A—C11A121.25 (18)
N2—N1—C4111.31 (16)C9A—C10A—C11A116.99 (18)
N2A—N1A—C4A113.71 (17)C12—C11—C10121.86 (19)
N1—N2—C7116.79 (17)C12—C11—H11119.1
N1A—N2A—C7A113.68 (17)C10—C11—H11119.1
C10—N3—C13121.50 (17)C12A—C11A—C10A121.17 (19)
C10—N3—C15120.47 (17)C12A—C11A—H11A119.4
C13—N3—C15117.88 (16)C10A—C11A—H11A119.4
C10A—N3A—C15A120.69 (17)C11—C12—C7120.38 (19)
C10A—N3A—C13A121.44 (16)C11—C12—H12119.8
C15A—N3A—C13A117.84 (16)C7—C12—H12119.8
H1N—N4—H2N98 (2)C11A—C12A—C7A121.10 (19)
H1N—N4—H3N108 (2)C11A—C12A—H12A119.5
H2N—N4—H3N109 (2)C7A—C12A—H12A119.5
H1N—N4—H4N114 (2)N3—C13—C14114.18 (17)
H2N—N4—H4N122 (2)N3—C13—H13A108.7
H3N—N4—H4N105 (2)C14—C13—H13A108.7
H5N—N5—H6N114 (3)N3—C13—H13B108.7
H5N—N5—H7N111 (3)C14—C13—H13B108.7
H6N—N5—H7N104 (3)H13A—C13—H13B107.6
H5N—N5—H8N108 (2)N3A—C13A—C14A114.69 (17)
H6N—N5—H8N106 (3)N3A—C13A—H13C108.6
H7N—N5—H8N114 (3)C14A—C13A—H13C108.6
C2—C1—C6119.76 (18)N3A—C13A—H13D108.6
C2—C1—S1119.93 (15)C14A—C13A—H13D108.6
C6—C1—S1119.99 (16)H13C—C13A—H13D107.6
C2A—C1A—C6A120.26 (18)O4—C14—C13110.98 (17)
C2A—C1A—S1A118.50 (15)O4—C14—H14A109.4
C6A—C1A—S1A121.11 (16)C13—C14—H14A109.4
C3—C2—C1120.12 (18)O4—C14—H14B109.4
C3—C2—H2119.9C13—C14—H14B109.4
C1—C2—H2119.9H14A—C14—H14B108.0
C3A—C2A—C1A119.88 (19)O4A—C14A—C13A112.62 (18)
C3A—C2A—H2A120.1O4A—C14A—H14C109.1
C1A—C2A—H2A120.1C13A—C14A—H14C109.1
C2—C3—C4119.95 (19)O4A—C14A—H14D109.1
C2—C3—H3120.0C13A—C14A—H14D109.1
C4—C3—H3120.0H14C—C14A—H14D107.8
C2A—C3A—C4A120.4 (2)N3—C15—C16114.16 (17)
C2A—C3A—H3A119.8N3—C15—H15A108.7
C4A—C3A—H3A119.8C16—C15—H15A108.7
C5—C4—C3119.75 (18)N3—C15—H15B108.7
C5—C4—N1123.30 (17)C16—C15—H15B108.7
C3—C4—N1116.82 (18)H15A—C15—H15B107.6
C3A—C4A—C5A119.94 (18)N3A—C15A—C16A115.20 (17)
C3A—C4A—N1A114.97 (18)N3A—C15A—H15C108.5
C5A—C4A—N1A125.08 (18)C16A—C15A—H15C108.5
C6—C5—C4120.56 (18)N3A—C15A—H15D108.5
C6—C5—H5119.7C16A—C15A—H15D108.5
C4—C5—H5119.7H15C—C15A—H15D107.5
C6A—C5A—C4A119.94 (19)O5—C16—C15109.56 (18)
C6A—C5A—H5A120.0O5—C16—H16A109.8
C4A—C5A—H5A120.0C15—C16—H16A109.8
C5—C6—C1119.72 (19)O5—C16—H16B109.8
C5—C6—H6120.1C15—C16—H16B109.8
C1—C6—H6120.1H16A—C16—H16B108.2
C5A—C6A—C1A119.6 (2)O5A—C16A—C15A113.46 (18)
C5A—C6A—H6A120.2O5A—C16A—H16C108.9
C1A—C6A—H6A120.2C15A—C16A—H16C108.9
C8—C7—C12118.44 (18)O5A—C16A—H16D108.9
C8—C7—N2114.54 (18)C15A—C16A—H16D108.9
C12—C7—N2126.97 (18)H16C—C16A—H16D107.7
C8A—C7A—C12A118.49 (18)H1W—O1W—H2W99.8 (17)
C8A—C7A—N2A116.70 (18)H3W—O2W—H4W97 (2)
C12A—C7A—N2A124.81 (18)H3W—O2W—H5W95 (2)
C9—C8—C7121.8 (2)H4W—O2W—H5W97 (7)
C4—N1—N2—C7176.00 (16)N1A—N2A—C7A—C12A7.7 (3)
C4A—N1A—N2A—C7A177.76 (16)C12—C7—C8—C91.6 (3)
O2—S1—C1—C256.35 (18)N2—C7—C8—C9179.29 (19)
O1—S1—C1—C263.79 (18)C12A—C7A—C8A—C9A3.7 (3)
O3—S1—C1—C2178.39 (16)N2A—C7A—C8A—C9A177.34 (18)
O2—S1—C1—C6130.20 (16)C7—C8—C9—C101.5 (3)
O1—S1—C1—C6109.65 (17)C7A—C8A—C9A—C10A1.5 (3)
O3—S1—C1—C68.16 (19)C13—N3—C10—C9179.78 (19)
O2A—S1A—C1A—C2A69.61 (18)C15—N3—C10—C94.7 (3)
O3A—S1A—C1A—C2A169.97 (15)C13—N3—C10—C110.8 (3)
O1A—S1A—C1A—C2A50.56 (18)C15—N3—C10—C11174.65 (18)
O2A—S1A—C1A—C6A106.12 (18)C8—C9—C10—N3178.38 (19)
O3A—S1A—C1A—C6A14.30 (19)C8—C9—C10—C111.0 (3)
O1A—S1A—C1A—C6A133.71 (17)C15A—N3A—C10A—C9A4.9 (3)
C6—C1—C2—C31.9 (3)C13A—N3A—C10A—C9A173.20 (18)
S1—C1—C2—C3171.55 (15)C15A—N3A—C10A—C11A173.48 (18)
C6A—C1A—C2A—C3A0.0 (3)C13A—N3A—C10A—C11A8.4 (3)
S1A—C1A—C2A—C3A175.81 (16)C8A—C9A—C10A—N3A179.49 (18)
C1—C2—C3—C41.4 (3)C8A—C9A—C10A—C11A1.1 (3)
C1A—C2A—C3A—C4A0.2 (3)N3—C10—C11—C12178.63 (19)
C2—C3—C4—C53.4 (3)C9—C10—C11—C120.8 (3)
C2—C3—C4—N1172.66 (18)N3A—C10A—C11A—C12A179.79 (18)
N2—N1—C4—C54.0 (3)C9A—C10A—C11A—C12A1.4 (3)
N2—N1—C4—C3179.91 (18)C10—C11—C12—C70.9 (3)
C2A—C3A—C4A—C5A0.3 (3)C8—C7—C12—C111.3 (3)
C2A—C3A—C4A—N1A179.21 (18)N2—C7—C12—C11178.69 (19)
N2A—N1A—C4A—C3A174.69 (17)C10A—C11A—C12A—C7A0.9 (3)
N2A—N1A—C4A—C5A4.2 (3)C8A—C7A—C12A—C11A3.4 (3)
C3—C4—C5—C62.2 (3)N2A—C7A—C12A—C11A177.73 (19)
N1—C4—C5—C6173.63 (18)C10—N3—C13—C1481.0 (2)
C3A—C4A—C5A—C6A0.2 (3)C15—N3—C13—C14103.4 (2)
N1A—C4A—C5A—C6A179.01 (19)C10A—N3A—C13A—C14A71.0 (2)
C4—C5—C6—C11.1 (3)C15A—N3A—C13A—C14A107.2 (2)
C2—C1—C6—C53.2 (3)N3—C13—C14—O4179.84 (16)
S1—C1—C6—C5170.31 (15)N3A—C13A—C14A—O4A66.8 (2)
C4A—C5A—C6A—C1A0.0 (3)C10—N3—C15—C1684.3 (2)
C2A—C1A—C6A—C5A0.1 (3)C13—N3—C15—C16100.0 (2)
S1A—C1A—C6A—C5A175.79 (16)C10A—N3A—C15A—C16A90.8 (2)
N1—N2—C7—C8178.25 (18)C13A—N3A—C15A—C16A87.4 (2)
N1—N2—C7—C124.3 (3)N3—C15—C16—O566.0 (2)
N1A—N2A—C7A—C8A173.40 (18)N3A—C15A—C16A—O5A85.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.88 (1)1.93 (1)2.802 (2)176 (3)
O1W—H2W···O5ii0.88 (1)1.84 (1)2.711 (2)168 (2)
O2W—H3W···O1Aii0.91 (1)2.05 (1)2.945 (2)172 (3)
O2W—H4W···O2Wiii0.89 (1)2.29 (4)3.031 (5)141 (6)
O4—H1H···O3Aiv0.84 (3)2.05 (3)2.885 (2)169 (3)
O5—H2H···O1A0.81 (3)1.90 (3)2.698 (2)169 (3)
O4A—H3H···O1i0.80 (3)1.96 (3)2.756 (2)177 (3)
O5A—H4H···O4A0.97 (3)1.79 (3)2.734 (2)165 (3)
N4—H1N···O30.87 (3)2.09 (3)2.957 (3)176 (2)
N4—H2N···O2v0.95 (3)1.92 (3)2.841 (3)163 (2)
N4—H3N···O3Avi0.89 (3)2.05 (3)2.923 (3)167 (2)
N4—H4N···O1W1.13 (4)1.69 (4)2.818 (3)176 (3)
N5—H5N···O2A0.91 (3)1.89 (3)2.784 (3)164 (2)
N5—H6N···O5Avii0.89 (4)2.21 (4)2.935 (3)138 (3)
N5—H6N···O1Wviii0.89 (4)2.51 (4)3.094 (3)123 (3)
N5—H7N···O3ix0.96 (4)2.03 (4)2.952 (3)159 (3)
N5—H8N···O4x0.96 (3)2.00 (3)2.943 (3)168 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x1, y, z1; (vii) x+1, y+1, z+1; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x+1, y, z+2.
Ammonium 3-{2-(4-hydroxyphenyl)diazen-1-yl]benzenesulfonate (NH45) top
Crystal data top
NH4+·C12H9N2O4SDx = 1.533 Mg m3
Mr = 295.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 3229 reflections
a = 12.6592 (3) Åθ = 1.0–27.5°
b = 28.3597 (7) ŵ = 0.27 mm1
c = 7.1268 (2) ÅT = 123 K
V = 2558.60 (11) Å3Cut needle, yellow-orange
Z = 80.30 × 0.10 × 0.05 mm
F(000) = 1232
Data collection top
Enraf–Nonius KappaCCD
diffractometer
Rint = 0.069
Radiation source: sealed tubeθmax = 27.5°, θmin = 1.8°
phi and ω scansh = 1616
5346 measured reflectionsk = 3636
2923 independent reflectionsl = 99
1850 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0361P)2 + 2.7325P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2923 reflectionsΔρmax = 0.29 e Å3
201 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94027 (5)0.56239 (2)0.18127 (9)0.01749 (18)
O10.85668 (15)0.55115 (7)0.0463 (3)0.0287 (5)
O21.04360 (14)0.56367 (7)0.0953 (3)0.0278 (5)
O30.93547 (16)0.53174 (7)0.3437 (3)0.0301 (5)
O41.24530 (16)0.93197 (7)0.0369 (3)0.0255 (5)
N11.02393 (17)0.73916 (8)0.2062 (3)0.0203 (5)
N20.99241 (18)0.78005 (9)0.2434 (3)0.0203 (5)
N30.6639 (2)0.50958 (11)0.1885 (4)0.0229 (6)
C10.9119 (2)0.62035 (10)0.2584 (3)0.0168 (6)
C20.9772 (2)0.65733 (10)0.2101 (4)0.0180 (6)
H21.0397500.6516240.1398880.022*
C30.9512 (2)0.70309 (10)0.2644 (4)0.0176 (6)
C40.8602 (2)0.71133 (10)0.3688 (4)0.0206 (6)
H40.8423410.7424870.4061150.025*
C50.7955 (2)0.67381 (10)0.4181 (4)0.0222 (7)
H50.7334230.6793680.4895830.027*
C60.8209 (2)0.62841 (10)0.3640 (4)0.0202 (6)
H60.7765970.6028090.3984880.024*
C71.0619 (2)0.81667 (10)0.1844 (4)0.0181 (6)
C81.1588 (2)0.80929 (10)0.0944 (4)0.0220 (6)
H81.1818830.7781070.0680940.026*
C91.2208 (2)0.84727 (10)0.0436 (4)0.0208 (6)
H91.2865940.8423250.0174540.025*
C101.1862 (2)0.89298 (10)0.0825 (4)0.0182 (6)
C111.0895 (2)0.90081 (10)0.1682 (4)0.0200 (6)
H111.0657320.9320150.1919290.024*
C121.0278 (2)0.86232 (10)0.2188 (4)0.0191 (6)
H120.9613880.8673540.2776830.023*
H1N0.673 (3)0.4784 (13)0.204 (5)0.042 (10)*
H2N0.731 (3)0.5206 (11)0.146 (5)0.046 (10)*
H3N0.641 (2)0.5235 (11)0.292 (4)0.026 (8)*
H4N0.619 (3)0.5176 (12)0.096 (5)0.048 (11)*
H1H1.306 (3)0.9239 (14)0.020 (6)0.063 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0153 (3)0.0193 (3)0.0179 (3)0.0001 (3)0.0004 (3)0.0010 (3)
O10.0239 (11)0.0337 (13)0.0287 (11)0.0064 (9)0.0101 (9)0.0126 (10)
O20.0172 (10)0.0255 (11)0.0407 (12)0.0015 (9)0.0095 (9)0.0013 (10)
O30.0488 (13)0.0207 (11)0.0208 (10)0.0014 (10)0.0054 (10)0.0055 (9)
O40.0188 (10)0.0256 (12)0.0319 (11)0.0016 (10)0.0045 (10)0.0032 (10)
N10.0191 (11)0.0208 (13)0.0211 (12)0.0016 (10)0.0006 (10)0.0001 (11)
N20.0211 (13)0.0203 (13)0.0194 (12)0.0017 (11)0.0025 (9)0.0018 (10)
N30.0259 (14)0.0243 (15)0.0185 (13)0.0008 (12)0.0015 (13)0.0021 (13)
C10.0166 (14)0.0197 (15)0.0141 (13)0.0011 (12)0.0008 (11)0.0025 (12)
C20.0138 (13)0.0220 (15)0.0182 (14)0.0010 (12)0.0001 (11)0.0002 (12)
C30.0135 (13)0.0231 (15)0.0163 (13)0.0053 (12)0.0040 (11)0.0036 (12)
C40.0185 (13)0.0198 (16)0.0235 (14)0.0025 (12)0.0007 (12)0.0006 (13)
C50.0168 (14)0.0278 (18)0.0218 (15)0.0033 (12)0.0023 (12)0.0002 (13)
C60.0165 (13)0.0239 (16)0.0200 (14)0.0017 (12)0.0003 (12)0.0025 (13)
C70.0173 (12)0.0212 (14)0.0156 (13)0.0023 (12)0.0055 (12)0.0001 (12)
C80.0217 (14)0.0219 (16)0.0225 (15)0.0016 (12)0.0022 (12)0.0031 (13)
C90.0162 (14)0.0270 (17)0.0193 (14)0.0004 (12)0.0000 (11)0.0023 (13)
C100.0172 (14)0.0211 (16)0.0163 (14)0.0034 (12)0.0031 (11)0.0014 (12)
C110.0193 (13)0.0186 (15)0.0222 (14)0.0020 (11)0.0021 (12)0.0007 (13)
C120.0158 (13)0.0241 (16)0.0174 (13)0.0008 (12)0.0015 (11)0.0007 (13)
Geometric parameters (Å, º) top
S1—O21.4449 (19)C3—C41.392 (4)
S1—O31.449 (2)C4—C51.387 (4)
S1—O11.4648 (19)C4—H40.9500
S1—C11.770 (3)C5—C61.382 (4)
O4—C101.374 (3)C5—H50.9500
O4—H1H0.82 (4)C6—H60.9500
N1—N21.254 (3)C7—C121.387 (4)
N1—C31.437 (3)C7—C81.400 (4)
N2—C71.425 (3)C8—C91.381 (4)
N3—H1N0.90 (4)C8—H80.9500
N3—H2N0.96 (4)C9—C101.396 (4)
N3—H3N0.89 (3)C9—H90.9500
N3—H4N0.90 (4)C10—C111.386 (4)
C1—C21.379 (4)C11—C121.390 (4)
C1—C61.395 (4)C11—H110.9500
C2—C31.394 (4)C12—H120.9500
C2—H20.9500
O2—S1—O3113.06 (12)C3—C4—H4120.2
O2—S1—O1112.41 (12)C6—C5—C4120.4 (3)
O3—S1—O1111.33 (12)C6—C5—H5119.8
O2—S1—C1106.97 (12)C4—C5—H5119.8
O3—S1—C1107.48 (12)C5—C6—C1119.7 (3)
O1—S1—C1105.04 (12)C5—C6—H6120.2
C10—O4—H1H109 (3)C1—C6—H6120.2
N2—N1—C3113.2 (2)C12—C7—C8119.6 (3)
N1—N2—C7114.5 (2)C12—C7—N2115.9 (2)
H1N—N3—H2N105 (3)C8—C7—N2124.6 (2)
H1N—N3—H3N112 (3)C9—C8—C7120.1 (3)
H2N—N3—H3N114 (3)C9—C8—H8120.0
H1N—N3—H4N114 (3)C7—C8—H8120.0
H2N—N3—H4N105 (3)C8—C9—C10119.6 (3)
H3N—N3—H4N107 (3)C8—C9—H9120.2
C2—C1—C6120.4 (3)C10—C9—H9120.2
C2—C1—S1120.5 (2)O4—C10—C11117.1 (2)
C6—C1—S1119.2 (2)O4—C10—C9122.0 (2)
C1—C2—C3119.8 (2)C11—C10—C9120.9 (3)
C1—C2—H2120.1C10—C11—C12119.0 (3)
C3—C2—H2120.1C10—C11—H11120.5
C4—C3—C2120.0 (2)C12—C11—H11120.5
C4—C3—N1124.4 (3)C7—C12—C11120.8 (3)
C2—C3—N1115.6 (2)C7—C12—H12119.6
C5—C4—C3119.7 (3)C11—C12—H12119.6
C5—C4—H4120.2
C3—N1—N2—C7178.9 (2)C4—C5—C6—C10.3 (4)
O2—S1—C1—C28.3 (3)C2—C1—C6—C50.8 (4)
O3—S1—C1—C2130.0 (2)S1—C1—C6—C5177.2 (2)
O1—S1—C1—C2111.3 (2)N1—N2—C7—C12178.2 (2)
O2—S1—C1—C6173.6 (2)N1—N2—C7—C80.8 (4)
O3—S1—C1—C651.9 (2)C12—C7—C8—C91.3 (4)
O1—S1—C1—C666.7 (2)N2—C7—C8—C9179.7 (2)
C6—C1—C2—C31.0 (4)C7—C8—C9—C100.1 (4)
S1—C1—C2—C3177.0 (2)C8—C9—C10—O4179.3 (2)
C1—C2—C3—C40.6 (4)C8—C9—C10—C111.3 (4)
C1—C2—C3—N1179.6 (2)O4—C10—C11—C12179.2 (2)
N2—N1—C3—C46.4 (4)C9—C10—C11—C121.3 (4)
N2—N1—C3—C2173.9 (2)C8—C7—C12—C111.3 (4)
C2—C3—C4—C50.1 (4)N2—C7—C12—C11179.6 (2)
N1—C3—C4—C5179.8 (2)C10—C11—C12—C70.1 (4)
C3—C4—C5—C60.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O2i0.90 (4)2.48 (3)3.002 (4)118 (3)
N3—H1N···O4ii0.90 (4)2.35 (3)2.913 (4)121 (3)
N3—H1N···O4iii0.90 (4)2.50 (4)3.162 (4)131 (3)
N3—H2N···O10.96 (4)1.94 (4)2.893 (3)171 (3)
N3—H3N···O1iv0.89 (3)1.97 (3)2.822 (3)159 (3)
N3—H4N···O3v0.90 (4)1.97 (4)2.831 (3)160 (3)
O4—H1H···O2vi0.82 (4)2.00 (4)2.707 (3)144 (4)
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x1/2, y1/2, z; (iii) x+2, y1/2, z+1/2; (iv) x+3/2, y, z+1/2; (v) x+3/2, y, z1/2; (vi) x+5/2, y+3/2, z.
Poly[aqua{4-[2-(4-hydroxyphenyl)diazen-1-yl]benzenesulfonato}potassium] (K1) top
Crystal data top
[K(C12H9N2O4S)(H2O)]Z = 4
Mr = 334.39F(000) = 688
Triclinic, P1Dx = 1.633 Mg m3
a = 5.9620 (7) ÅSynchrotron radiation, λ = 0.689 Å
b = 7.2033 (11) ÅCell parameters from 10143 reflections
c = 31.929 (5) Åθ = 2.5–26.0°
α = 83.852 (14)°µ = 0.51 mm1
β = 86.361 (15)°T = 150 K
γ = 88.868 (15)°Plate, yellow
V = 1360.5 (3) Å30.20 × 0.14 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
4405 reflections with I > 2σ(I)
Radiation source: Daresbury SRS Station 9.8Rint = 0.032
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 77
Tmin = 0.751, Tmax = 1.000k = 99
10143 measured reflectionsl = 4039
5691 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1366P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5691 reflectionsΔρmax = 0.59 e Å3
403 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.36696 (11)0.01827 (9)0.75009 (2)0.02505 (19)
K21.04941 (11)0.53233 (10)0.77938 (2)0.02465 (19)
S10.11322 (12)0.24184 (10)0.69389 (2)0.01926 (19)
S20.54537 (12)0.32684 (11)0.83209 (2)0.0213 (2)
O10.0904 (4)0.2355 (3)0.71678 (6)0.0268 (5)
O20.2642 (4)0.0810 (3)0.69821 (6)0.0277 (5)
O30.2304 (4)0.4194 (3)0.70500 (7)0.0281 (5)
O40.5925 (4)0.2727 (3)0.32948 (6)0.0285 (5)
O50.6597 (4)0.4995 (3)0.82126 (7)0.0306 (5)
O60.6621 (4)0.1604 (4)0.81212 (7)0.0371 (6)
O70.3080 (4)0.3207 (3)0.82324 (6)0.0254 (5)
O80.9857 (4)0.0787 (3)1.18624 (6)0.0246 (5)
O1W0.9915 (4)0.7663 (3)0.70673 (7)0.0294 (5)
O2W1.4663 (4)0.6612 (3)0.75731 (7)0.0267 (5)
N10.1526 (4)0.2478 (4)0.51080 (8)0.0241 (6)
N20.3607 (4)0.2444 (4)0.50057 (8)0.0244 (6)
N30.6433 (4)0.2553 (3)1.01425 (7)0.0211 (5)
N40.8446 (4)0.2370 (3)1.02266 (8)0.0219 (5)
C10.0256 (5)0.2344 (4)0.63988 (8)0.0188 (6)
C20.1890 (5)0.3011 (4)0.62818 (9)0.0224 (6)
H20.2897840.3431680.6491690.027*
C30.2539 (5)0.3054 (4)0.58561 (9)0.0229 (6)
H30.3997760.3489970.5773310.027*
C40.1017 (5)0.2448 (4)0.55507 (9)0.0210 (6)
C50.1142 (5)0.1801 (5)0.56692 (9)0.0261 (7)
H50.2167260.1408380.5460510.031*
C60.1768 (5)0.1740 (4)0.60948 (9)0.0221 (6)
H60.3218760.1288630.6178220.027*
C70.4134 (5)0.2564 (4)0.45656 (9)0.0223 (6)
C80.6279 (5)0.2012 (4)0.44089 (9)0.0240 (6)
H80.7319880.1628980.4594820.029*
C90.6902 (5)0.2017 (4)0.39842 (9)0.0223 (6)
H90.8343660.1589820.3876030.027*
C100.5398 (5)0.2654 (4)0.37162 (9)0.0214 (6)
C110.3261 (5)0.3279 (5)0.38736 (9)0.0250 (6)
H110.2254480.3741060.3691660.030*
C120.2637 (5)0.3213 (5)0.42974 (9)0.0251 (7)
H120.1184440.3612260.4405810.030*
C130.5661 (5)0.3265 (4)0.88708 (9)0.0201 (6)
C140.3888 (5)0.2573 (4)0.91189 (9)0.0239 (6)
H140.2504020.2213330.8999810.029*
C150.4177 (5)0.2415 (4)0.95442 (9)0.0227 (6)
H150.2974840.1975640.9718700.027*
C160.6237 (5)0.2906 (4)0.97118 (9)0.0192 (6)
C170.7970 (5)0.3667 (4)0.94658 (9)0.0219 (6)
H170.9342090.4054920.9585990.026*
C180.7675 (5)0.3852 (4)0.90454 (9)0.0235 (6)
H180.8841380.4376720.8876530.028*
C190.8724 (5)0.2009 (4)1.06517 (8)0.0199 (6)
C201.0813 (5)0.1333 (4)1.07323 (9)0.0216 (6)
H201.1960390.1160931.0511880.026*
C211.1211 (5)0.0912 (4)1.11342 (9)0.0214 (6)
H211.2631610.0447191.1188990.026*
C220.9530 (5)0.1169 (4)1.14585 (9)0.0209 (6)
C230.7465 (5)0.1886 (4)1.13802 (9)0.0222 (6)
H230.6333360.2078171.1603210.027*
C240.7039 (5)0.2324 (4)1.09797 (9)0.0214 (6)
H240.5633780.2826821.0928020.026*
H4H0.736 (2)0.251 (5)0.3235 (11)0.025 (9)*
H8H1.121 (4)0.034 (7)1.1861 (17)0.075 (17)*
H1W0.909 (6)0.666 (3)0.7025 (12)0.040 (11)*
H2W0.908 (7)0.862 (5)0.7037 (16)0.060 (15)*
H3W1.510 (7)0.619 (6)0.7314 (6)0.043 (11)*
H4W1.541 (7)0.598 (6)0.7737 (12)0.051 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0278 (4)0.0274 (4)0.0203 (3)0.0015 (3)0.0027 (3)0.0038 (3)
K20.0222 (4)0.0303 (4)0.0206 (3)0.0020 (3)0.0018 (2)0.0010 (3)
S10.0225 (4)0.0210 (4)0.0138 (3)0.0025 (3)0.0000 (3)0.0006 (3)
S20.0225 (4)0.0284 (4)0.0133 (3)0.0015 (3)0.0034 (3)0.0025 (3)
O10.0307 (12)0.0315 (12)0.0184 (10)0.0001 (9)0.0038 (8)0.0022 (9)
O20.0298 (12)0.0324 (12)0.0202 (11)0.0116 (9)0.0018 (8)0.0032 (9)
O30.0328 (12)0.0253 (12)0.0248 (11)0.0031 (9)0.0047 (9)0.0007 (9)
O40.0298 (12)0.0408 (14)0.0146 (10)0.0061 (10)0.0013 (8)0.0032 (9)
O50.0295 (12)0.0425 (14)0.0223 (11)0.0108 (10)0.0040 (9)0.0148 (10)
O60.0503 (15)0.0400 (15)0.0209 (11)0.0217 (12)0.0086 (10)0.0043 (10)
O70.0260 (11)0.0308 (12)0.0206 (10)0.0020 (9)0.0076 (8)0.0054 (9)
O80.0288 (12)0.0326 (12)0.0127 (9)0.0007 (9)0.0031 (8)0.0034 (8)
O1W0.0303 (13)0.0298 (13)0.0277 (12)0.0033 (10)0.0002 (9)0.0034 (10)
O2W0.0299 (12)0.0301 (12)0.0201 (11)0.0065 (9)0.0039 (9)0.0046 (9)
N10.0303 (14)0.0253 (14)0.0169 (12)0.0039 (10)0.0013 (10)0.0038 (10)
N20.0268 (13)0.0285 (14)0.0173 (12)0.0021 (10)0.0004 (10)0.0011 (10)
N30.0247 (13)0.0244 (13)0.0145 (11)0.0036 (10)0.0051 (9)0.0027 (9)
N40.0292 (14)0.0206 (13)0.0162 (11)0.0042 (10)0.0030 (9)0.0037 (9)
C10.0262 (15)0.0155 (13)0.0146 (13)0.0017 (11)0.0016 (10)0.0020 (10)
C20.0247 (15)0.0246 (15)0.0174 (13)0.0030 (11)0.0010 (11)0.0007 (11)
C30.0207 (14)0.0276 (16)0.0195 (14)0.0047 (11)0.0004 (11)0.0007 (11)
C40.0218 (14)0.0246 (15)0.0163 (13)0.0020 (11)0.0007 (10)0.0014 (11)
C50.0242 (15)0.0342 (18)0.0187 (14)0.0072 (12)0.0029 (11)0.0018 (12)
C60.0190 (14)0.0270 (16)0.0200 (14)0.0043 (11)0.0036 (11)0.0004 (11)
C70.0264 (15)0.0251 (15)0.0147 (13)0.0057 (11)0.0021 (11)0.0010 (11)
C80.0267 (15)0.0255 (16)0.0210 (15)0.0001 (12)0.0020 (11)0.0080 (12)
C90.0228 (14)0.0226 (15)0.0213 (14)0.0006 (11)0.0003 (11)0.0017 (11)
C100.0247 (15)0.0240 (15)0.0149 (13)0.0057 (11)0.0025 (10)0.0005 (11)
C110.0235 (15)0.0318 (17)0.0201 (14)0.0042 (12)0.0055 (11)0.0037 (12)
C120.0216 (15)0.0320 (17)0.0207 (14)0.0034 (12)0.0008 (11)0.0001 (12)
C130.0255 (15)0.0218 (14)0.0131 (12)0.0022 (11)0.0056 (10)0.0007 (10)
C140.0230 (15)0.0292 (16)0.0189 (14)0.0035 (11)0.0007 (11)0.0005 (11)
C150.0250 (15)0.0252 (16)0.0182 (13)0.0028 (11)0.0003 (11)0.0039 (11)
C160.0233 (14)0.0170 (14)0.0172 (13)0.0010 (10)0.0024 (10)0.0004 (10)
C170.0227 (14)0.0252 (15)0.0187 (14)0.0033 (11)0.0071 (11)0.0040 (11)
C180.0240 (15)0.0307 (16)0.0161 (13)0.0067 (12)0.0029 (11)0.0040 (11)
C190.0282 (15)0.0212 (14)0.0110 (12)0.0085 (11)0.0057 (10)0.0042 (10)
C200.0164 (13)0.0290 (16)0.0192 (14)0.0004 (11)0.0012 (10)0.0019 (11)
C210.0222 (14)0.0228 (15)0.0193 (14)0.0012 (11)0.0039 (11)0.0012 (11)
C220.0274 (15)0.0201 (14)0.0148 (13)0.0041 (11)0.0040 (11)0.0012 (10)
C230.0263 (15)0.0248 (15)0.0147 (13)0.0000 (11)0.0000 (11)0.0002 (11)
C240.0201 (14)0.0225 (15)0.0213 (14)0.0001 (11)0.0044 (11)0.0009 (11)
Geometric parameters (Å, º) top
K1—O12.642 (2)N3—N41.258 (4)
K1—O2Wi2.688 (3)N3—C161.437 (4)
K1—O2ii2.728 (2)N4—C191.429 (4)
K1—O62.829 (3)C1—C61.396 (4)
K1—O8iii2.957 (2)C1—C21.400 (4)
K1—O73.027 (2)C2—C31.393 (4)
K1—O4iv3.116 (2)C2—H20.9500
K1—O1Wi3.149 (2)C3—C41.404 (4)
K1—S23.4555 (11)C3—H30.9500
K1—K2i4.1142 (12)C4—C51.403 (4)
K1—K2v4.1810 (12)C5—C61.391 (4)
K2—O52.625 (2)C5—H50.9500
K2—O2W2.713 (2)C6—H60.9500
K2—O7ii2.736 (2)C7—C81.393 (4)
K2—O1ii2.769 (2)C7—C121.396 (4)
K2—O8vi2.904 (2)C8—C91.383 (4)
K2—O3ii3.020 (2)C8—H80.9500
K2—O1W3.050 (3)C9—C101.395 (4)
K2—C22vi3.285 (3)C9—H90.9500
K2—C23vi3.414 (3)C10—C111.404 (4)
K2—S1ii3.4353 (11)C11—C121.386 (4)
K2—S23.7108 (11)C11—H110.9500
K2—H1W2.91 (4)C12—H120.9500
K2—H4W2.96 (4)C13—C181.395 (4)
S1—O11.460 (2)C13—C141.397 (4)
S1—O21.466 (2)C14—C151.396 (4)
S1—O31.469 (2)C14—H140.9500
S1—C11.765 (3)C15—C161.395 (4)
S2—O71.460 (2)C15—H150.9500
S2—O61.464 (2)C16—C171.397 (4)
S2—O51.470 (2)C17—C181.385 (4)
S2—C131.768 (3)C17—H170.9500
O4—C101.368 (3)C18—H180.9500
O4—H4H0.880 (10)C19—C201.395 (4)
O8—C221.374 (4)C19—C241.408 (4)
O8—H8H0.876 (11)C20—C211.386 (4)
O1W—H1W0.872 (10)C20—H200.9500
O1W—H2W0.877 (10)C21—C221.395 (4)
O2W—H3W0.875 (10)C21—H210.9500
O2W—H4W0.878 (10)C22—C231.392 (4)
N1—N21.262 (4)C23—C241.389 (4)
N1—C41.429 (4)C23—H230.9500
N2—C71.432 (4)C24—H240.9500
O1—K1—O2Wi143.99 (8)S1ii—K2—H4W110.8 (9)
O1—K1—O2ii96.82 (7)S2—K2—H4W149.6 (4)
O2Wi—K1—O2ii94.96 (7)K1vii—K2—H4W54.5 (6)
O1—K1—O6122.07 (7)H1W—K2—H4W102.9 (8)
O2Wi—K1—O693.29 (8)O1—S1—O2113.45 (14)
O2ii—K1—O681.29 (7)O1—S1—O3111.38 (13)
O1—K1—O8iii91.74 (7)O2—S1—O3111.79 (13)
O2Wi—K1—O8iii78.80 (7)O1—S1—C1106.56 (13)
O2ii—K1—O8iii171.32 (7)O2—S1—C1106.74 (13)
O6—K1—O8iii92.97 (7)O3—S1—C1106.42 (13)
O1—K1—O781.20 (7)O1—S1—K2v51.36 (9)
O2Wi—K1—O7124.81 (7)O2—S1—K2v122.43 (9)
O2ii—K1—O7112.15 (7)O3—S1—K2v61.34 (10)
O6—K1—O748.56 (6)C1—S1—K2v130.60 (10)
O8iii—K1—O767.71 (6)O7—S2—O6111.40 (15)
O1—K1—O4iv94.29 (7)O7—S2—O5112.83 (14)
O2Wi—K1—O4iv59.54 (7)O6—S2—O5111.82 (15)
O2ii—K1—O4iv67.50 (6)O7—S2—C13108.58 (13)
O6—K1—O4iv134.83 (7)O6—S2—C13106.38 (14)
O8iii—K1—O4iv113.39 (6)O5—S2—C13105.38 (13)
O7—K1—O4iv175.43 (7)O7—S2—K160.88 (9)
O1—K1—O1Wi71.39 (7)O6—S2—K153.06 (10)
O2Wi—K1—O1Wi72.75 (7)O5—S2—K1117.59 (9)
O2ii—K1—O1Wi114.51 (7)C13—S2—K1136.61 (10)
O6—K1—O1Wi159.23 (7)O7—S2—K2132.58 (9)
O8iii—K1—O1Wi69.63 (6)O6—S2—K277.99 (12)
O7—K1—O1Wi127.79 (6)O5—S2—K234.05 (10)
O4iv—K1—O1Wi50.58 (6)C13—S2—K2112.84 (10)
O1—K1—S299.79 (5)K1—S2—K2100.28 (2)
O2Wi—K1—S2113.31 (6)S1—O1—K1145.40 (14)
O2ii—K1—S293.51 (5)S1—O1—K2v104.32 (11)
O6—K1—S224.42 (5)K1—O1—K2v101.16 (7)
O8iii—K1—S283.59 (5)S1—O2—K1v133.87 (12)
O7—K1—S224.92 (4)S1—O3—K2v93.40 (11)
O4iv—K1—S2157.67 (5)C10—O4—K1iv135.45 (18)
O1Wi—K1—S2151.14 (5)C10—O4—H4H110 (2)
O1—K1—K2i111.21 (5)K1iv—O4—H4H72 (2)
O2Wi—K1—K2i40.61 (5)S2—O5—K2127.68 (14)
O2ii—K1—K2i131.67 (5)S2—O6—K1102.52 (12)
O6—K1—K2i112.19 (6)S2—O7—K2v133.41 (13)
O8iii—K1—K2i44.90 (5)S2—O7—K194.20 (10)
O7—K1—K2i110.51 (5)K2v—O7—K192.89 (6)
O4iv—K1—K2i71.74 (5)C22—O8—K2vi93.35 (16)
O1Wi—K1—K2i47.40 (5)C22—O8—K1iii126.30 (17)
S2—K1—K2i118.03 (2)K2vi—O8—K1iii89.15 (6)
O1—K1—K2v40.53 (5)C22—O8—H8H107 (4)
O2Wi—K1—K2v157.68 (5)K2vi—O8—H8H114 (4)
O2ii—K1—K2v106.51 (6)K1iii—O8—H8H120 (4)
O6—K1—K2v84.18 (5)K2—O1W—K1vii83.14 (6)
O8iii—K1—K2v79.19 (5)K2—O1W—H1W72 (3)
O7—K1—K2v40.81 (4)K1vii—O1W—H1W155 (3)
O4iv—K1—K2v134.64 (5)K2—O1W—H2W134 (3)
O1Wi—K1—K2v102.80 (5)K1vii—O1W—H2W93 (3)
S2—K1—K2v60.30 (2)H1W—O1W—H2W108 (4)
K2i—K1—K2v120.54 (2)K1vii—O2W—K299.23 (7)
O5—K2—O2W160.56 (7)K1vii—O2W—H3W103 (3)
O5—K2—O7ii99.88 (7)K2—O2W—H3W112 (3)
O2W—K2—O7ii79.33 (7)K1vii—O2W—H4W139 (3)
O5—K2—O1ii108.12 (7)K2—O2W—H4W97 (3)
O2W—K2—O1ii91.20 (7)H3W—O2W—H4W106 (4)
O7ii—K2—O1ii84.47 (7)N2—N1—C4113.4 (3)
O5—K2—O8vi83.48 (7)N1—N2—C7113.7 (3)
O2W—K2—O8vi79.34 (7)N4—N3—C16112.2 (2)
O7ii—K2—O8vi114.54 (7)N3—N4—C19114.2 (2)
O1ii—K2—O8vi156.28 (7)C6—C1—C2121.0 (3)
O5—K2—O3ii81.94 (7)C6—C1—S1119.4 (2)
O2W—K2—O3ii113.62 (7)C2—C1—S1119.5 (2)
O7ii—K2—O3ii130.17 (7)C3—C2—C1119.7 (3)
O1ii—K2—O3ii49.17 (6)C3—C2—H2120.2
O8vi—K2—O3ii115.13 (7)C1—C2—H2120.2
O5—K2—O1W109.02 (7)C2—C3—C4119.4 (3)
O2W—K2—O1W74.07 (7)C2—C3—H3120.3
O7ii—K2—O1W151.04 (7)C4—C3—H3120.3
O1ii—K2—O1W84.82 (7)C5—C4—C3120.8 (3)
O8vi—K2—O1W71.71 (6)C5—C4—N1116.1 (3)
O3ii—K2—O1W54.96 (6)C3—C4—N1123.1 (3)
O5—K2—C22vi75.97 (8)C6—C5—C4119.5 (3)
O2W—K2—C22vi84.63 (7)C6—C5—H5120.3
O7ii—K2—C22vi92.32 (7)C4—C5—H5120.3
O1ii—K2—C22vi175.16 (7)C5—C6—C1119.7 (3)
O8vi—K2—C22vi24.68 (7)C5—C6—H6120.1
O3ii—K2—C22vi135.03 (7)C1—C6—H6120.1
O1W—K2—C22vi96.36 (7)C8—C7—C12120.0 (3)
O5—K2—C23vi91.18 (7)C8—C7—N2116.5 (3)
O2W—K2—C23vi70.03 (7)C12—C7—N2123.5 (3)
O7ii—K2—C23vi71.42 (7)C9—C8—C7120.4 (3)
O1ii—K2—C23vi151.52 (7)C9—C8—H8119.8
O8vi—K2—C23vi43.13 (7)C7—C8—H8119.8
O3ii—K2—C23vi158.09 (7)C8—C9—C10119.5 (3)
O1W—K2—C23vi109.00 (7)C8—C9—H9120.3
C22vi—K2—C23vi23.89 (7)C10—C9—H9120.3
O5—K2—S1ii92.88 (6)O4—C10—C9122.4 (3)
O2W—K2—S1ii106.08 (5)O4—C10—C11117.1 (3)
O7ii—K2—S1ii105.92 (5)C9—C10—C11120.6 (3)
O1ii—K2—S1ii24.32 (5)C12—C11—C10119.3 (3)
O8vi—K2—S1ii139.42 (5)C12—C11—H11120.4
O3ii—K2—S1ii25.26 (4)C10—C11—H11120.4
O1W—K2—S1ii71.45 (5)C11—C12—C7120.2 (3)
C22vi—K2—S1ii160.14 (6)C11—C12—H12119.9
C23vi—K2—S1ii175.50 (5)C7—C12—H12119.9
O5—K2—S218.27 (6)C18—C13—C14120.9 (3)
O2W—K2—S2166.25 (6)C18—C13—S2118.7 (2)
O7ii—K2—S288.14 (5)C14—C13—S2120.3 (2)
O1ii—K2—S293.22 (5)C15—C14—C13119.1 (3)
O8vi—K2—S2101.09 (5)C15—C14—H14120.4
O3ii—K2—S278.85 (4)C13—C14—H14120.4
O1W—K2—S2119.29 (5)C16—C15—C14119.8 (3)
C22vi—K2—S290.29 (5)C16—C15—H15120.1
C23vi—K2—S2100.72 (5)C14—C15—H15120.1
S1ii—K2—S282.67 (2)C15—C16—C17120.7 (3)
O5—K2—K1vii127.22 (6)C15—C16—N3115.7 (2)
O2W—K2—K1vii40.16 (5)C17—C16—N3123.6 (3)
O7ii—K2—K1vii112.89 (5)C18—C17—C16119.6 (3)
O1ii—K2—K1vii114.97 (5)C18—C17—H17120.2
O8vi—K2—K1vii45.95 (4)C16—C17—H17120.2
O3ii—K2—K1vii104.05 (5)C17—C18—C13119.8 (3)
O1W—K2—K1vii49.46 (5)C17—C18—H18120.1
C22vi—K2—K1vii62.99 (5)C13—C18—H18120.1
C23vi—K2—K1vii63.93 (5)C20—C19—C24120.4 (3)
S1ii—K2—K1vii114.76 (2)C20—C19—N4116.1 (2)
S2—K2—K1vii145.49 (3)C24—C19—N4123.5 (3)
O5—K2—H1W100.8 (7)C21—C20—C19119.9 (3)
O2W—K2—H1W86.6 (5)C21—C20—H20120.0
O7ii—K2—H1W153.4 (8)C19—C20—H20120.0
O1ii—K2—H1W73.3 (6)C20—C21—C22120.1 (3)
O8vi—K2—H1W84.4 (5)C20—C21—H21119.9
O3ii—K2—H1W38.4 (2)C22—C21—H21119.9
O1W—K2—H1W16.6 (2)O8—C22—C23117.9 (2)
C22vi—K2—H1W108.8 (6)O8—C22—C21122.1 (3)
C23vi—K2—H1W124.5 (4)C23—C22—C21119.9 (3)
S1ii—K2—H1W56.5 (4)O8—C22—K2vi61.97 (14)
S2—K2—H1W107.2 (5)C23—C22—K2vi83.25 (17)
K1vii—K2—H1W66.0 (2)C21—C22—K2vi123.43 (19)
O5—K2—H4W153.1 (7)C24—C23—C22120.7 (3)
O2W—K2—H4W17.1 (4)C24—C23—K2vi129.2 (2)
O7ii—K2—H4W62.3 (4)C22—C23—K2vi72.86 (16)
O1ii—K2—H4W90.9 (9)C24—C23—H23119.6
O8vi—K2—H4W86.3 (8)C22—C23—H23119.6
O3ii—K2—H4W124.8 (7)K2vi—C23—H2370.0
O1W—K2—H4W91.1 (4)C23—C24—C19118.9 (3)
C22vi—K2—H4W84.4 (9)C23—C24—H24120.6
C23vi—K2—H4W64.8 (9)C19—C24—H24120.6
O2—S1—O1—K122.5 (2)N2—C7—C8—C9177.6 (3)
O3—S1—O1—K1149.71 (19)C7—C8—C9—C102.7 (5)
C1—S1—O1—K194.6 (2)K1iv—O4—C10—C975.6 (4)
K2v—S1—O1—K1136.2 (2)K1iv—O4—C10—C11105.2 (3)
O2—S1—O1—K2v113.68 (12)C8—C9—C10—O4178.8 (3)
O3—S1—O1—K2v13.50 (14)C8—C9—C10—C110.3 (4)
C1—S1—O1—K2v129.16 (11)O4—C10—C11—C12179.3 (3)
O1—S1—O2—K1v95.7 (2)C9—C10—C11—C121.6 (4)
O3—S1—O2—K1v31.2 (2)C10—C11—C12—C71.1 (5)
C1—S1—O2—K1v147.23 (17)C8—C7—C12—C111.2 (5)
K2v—S1—O2—K1v37.8 (2)N2—C7—C12—C11179.6 (3)
O1—S1—O3—K2v11.99 (12)O7—S2—C13—C18161.7 (2)
O2—S1—O3—K2v116.08 (11)O6—S2—C13—C1878.3 (3)
C1—S1—O3—K2v127.74 (11)O5—S2—C13—C1840.6 (3)
O7—S2—O5—K2133.50 (15)K1—S2—C13—C18131.3 (2)
O6—S2—O5—K27.0 (2)K2—S2—C13—C185.3 (3)
C13—S2—O5—K2108.19 (16)O7—S2—C13—C1422.4 (3)
K1—S2—O5—K265.57 (17)O6—S2—C13—C1497.6 (3)
O7—S2—O6—K118.44 (16)O5—S2—C13—C14143.5 (3)
O5—S2—O6—K1108.85 (13)K1—S2—C13—C1444.6 (3)
C13—S2—O6—K1136.60 (12)K2—S2—C13—C14178.8 (2)
K2—S2—O6—K1112.84 (9)C18—C13—C14—C152.0 (5)
O6—S2—O7—K2v114.81 (18)S2—C13—C14—C15173.8 (2)
O5—S2—O7—K2v11.9 (2)C13—C14—C15—C161.6 (4)
C13—S2—O7—K2v128.36 (16)C14—C15—C16—C174.2 (4)
K1—S2—O7—K2v97.99 (15)C14—C15—C16—N3175.1 (3)
K2—S2—O7—K2v21.6 (2)N4—N3—C16—C15155.9 (3)
O6—S2—O7—K116.82 (14)N4—N3—C16—C1723.3 (4)
O5—S2—O7—K1109.92 (12)C15—C16—C17—C183.1 (4)
C13—S2—O7—K1133.65 (11)N3—C16—C17—C18176.1 (3)
K2—S2—O7—K176.44 (11)C16—C17—C18—C130.5 (5)
C4—N1—N2—C7177.2 (2)C14—C13—C18—C173.1 (5)
C16—N3—N4—C19179.8 (2)S2—C13—C18—C17172.8 (2)
O1—S1—C1—C6157.8 (2)N3—N4—C19—C20164.3 (3)
O2—S1—C1—C636.3 (3)N3—N4—C19—C2416.5 (4)
O3—S1—C1—C683.2 (3)C24—C19—C20—C212.0 (4)
K2v—S1—C1—C6149.3 (2)N4—C19—C20—C21178.8 (3)
O1—S1—C1—C226.5 (3)C19—C20—C21—C220.2 (4)
O2—S1—C1—C2148.1 (2)K2vi—O8—C22—C2364.3 (3)
O3—S1—C1—C292.4 (3)K1iii—O8—C22—C2327.1 (4)
K2v—S1—C1—C226.4 (3)K2vi—O8—C22—C21113.8 (3)
C6—C1—C2—C30.7 (5)K1iii—O8—C22—C21154.8 (2)
S1—C1—C2—C3176.3 (2)K1iii—O8—C22—K2vi91.41 (16)
C1—C2—C3—C40.8 (5)C20—C21—C22—O8179.4 (3)
C2—C3—C4—C50.0 (5)C20—C21—C22—C231.3 (4)
C2—C3—C4—N1178.8 (3)C20—C21—C22—K2vi103.9 (3)
N2—N1—C4—C5157.3 (3)O8—C22—C23—C24179.2 (3)
N2—N1—C4—C323.8 (4)C21—C22—C23—C241.0 (4)
C3—C4—C5—C60.8 (5)K2vi—C22—C23—C24125.9 (3)
N1—C4—C5—C6179.7 (3)O8—C22—C23—K2vi53.2 (2)
C4—C5—C6—C10.8 (5)C21—C22—C23—K2vi124.9 (3)
C2—C1—C6—C50.1 (5)C22—C23—C24—C190.7 (4)
S1—C1—C6—C5175.5 (2)K2vi—C23—C24—C1993.2 (3)
N1—N2—C7—C8162.4 (3)C20—C19—C24—C232.3 (4)
N1—N2—C7—C1218.4 (4)N4—C19—C24—C23178.5 (3)
C12—C7—C8—C93.1 (5)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x+2, y1, z+2; (vii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4H···O1Wviii0.88 (1)1.83 (2)2.676 (3)160 (3)
O8—H8H···O6ix0.88 (1)1.93 (3)2.748 (3)155 (5)
O1W—H1W···O3ii0.87 (1)1.95 (2)2.801 (3)165 (4)
O1W—H2W···O2vii0.88 (1)1.93 (1)2.803 (4)177 (5)
O2W—H3W···O3x0.88 (1)2.20 (3)2.866 (3)133 (4)
O2W—H3W···O4viii0.88 (1)2.29 (3)2.905 (3)127 (3)
O2W—H4W···O5ii0.88 (1)1.92 (2)2.778 (3)165 (4)
Symmetry codes: (ii) x+1, y, z; (vii) x+1, y1, z; (viii) x+2, y1, z+1; (ix) x+2, y, z+2; (x) x+2, y, z.
Poly[diaqua{4-[2-(4-aminophenyl)diazen-1-yl]benzenesulfonato}potassium] (K3) top
Crystal data top
[K(C12H10N3O3S)(H2O)2]Z = 8
Mr = 351.42F(000) = 1456
Triclinic, P1Dx = 1.591 Mg m3
a = 13.3058 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6247 (2) ÅCell parameters from 13626 reflections
c = 18.4664 (3) Åθ = 0.4–27.5°
α = 88.373 (1)°µ = 0.53 mm1
β = 73.971 (1)°T = 123 K
γ = 66.313 (1)°Sheet, yellow
V = 2933.52 (8) Å30.7 × 0.3 × 0.02 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
Rint = 0.023
Radiation source: sealed tubeθmax = 27.5°, θmin = 1.6°
ω and phi scansh = 1717
26000 measured reflectionsk = 1717
13392 independent reflectionsl = 2323
10848 reflections with I > 2σ(I)
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0423P)2 + 2.5026P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
13392 reflectionsΔρmax = 0.80 e Å3
895 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.36432 (3)0.16149 (3)0.04727 (2)0.01821 (9)
K20.56585 (4)0.34009 (3)0.00078 (2)0.02089 (10)
K30.91040 (4)0.14309 (4)0.03328 (3)0.03042 (11)
K41.11003 (4)0.34080 (3)0.05349 (2)0.02172 (10)
S10.60885 (4)0.15844 (4)0.13423 (2)0.01617 (10)
S1A0.58680 (4)0.12938 (4)0.11362 (2)0.01558 (10)
S1B0.90352 (4)0.37392 (4)0.11946 (2)0.01655 (10)
S1C0.88336 (4)0.33155 (4)0.12057 (2)0.01540 (10)
O10.66126 (12)0.04249 (11)0.14108 (8)0.0230 (3)
O1A0.56604 (12)0.04564 (11)0.07064 (7)0.0224 (3)
O1B0.99145 (14)0.26429 (11)0.09571 (8)0.0291 (3)
O20.50128 (12)0.19267 (11)0.11594 (8)0.0235 (3)
O1W0.17161 (13)0.17402 (12)0.16143 (8)0.0256 (3)
O2A0.49160 (12)0.23543 (11)0.08722 (8)0.0234 (3)
O2B0.93443 (13)0.45183 (11)0.07491 (8)0.0268 (3)
O30.68945 (12)0.19462 (11)0.08320 (7)0.0225 (3)
O2W0.38778 (13)0.44516 (13)0.13668 (9)0.0281 (3)
O3A0.69498 (12)0.13426 (13)0.11593 (8)0.0279 (3)
O3B0.79182 (13)0.37860 (15)0.12144 (9)0.0365 (4)
O3W0.60988 (13)0.50992 (12)0.05734 (8)0.0257 (3)
O4W0.90005 (13)0.02527 (12)0.13023 (9)0.0282 (3)
O5W1.12711 (13)0.00124 (12)0.05792 (9)0.0293 (3)
H9W1.1620 (18)0.0209 (19)0.0100 (6)0.035*
H10W1.1896 (14)0.0422 (17)0.0707 (12)0.035*
O6W1.22994 (13)0.13309 (11)0.03169 (8)0.0233 (3)
O7W1.24230 (13)0.37602 (11)0.03183 (8)0.0255 (3)
O8W1.31574 (13)0.33491 (12)0.15548 (9)0.0275 (3)
H15W1.3758 (15)0.3093 (17)0.1379 (13)0.033*
H16W1.324 (2)0.3912 (13)0.1745 (13)0.033*
O1C0.76263 (16)0.35833 (19)0.08326 (10)0.0220 (4)0.878 (4)
O2C0.91077 (19)0.42551 (14)0.12630 (9)0.0228 (4)0.878 (4)
O3C0.95984 (17)0.24694 (16)0.08543 (11)0.0239 (4)0.878 (4)
O4C0.7885 (13)0.3113 (13)0.0773 (8)0.0220 (4)0.122 (4)
O5C0.8522 (14)0.4454 (11)0.1293 (7)0.0228 (4)0.122 (4)
O6C0.9823 (14)0.2762 (13)0.1002 (9)0.0239 (4)0.122 (4)
N10.49955 (13)0.33938 (12)0.44977 (9)0.0172 (3)
N1A0.62709 (13)0.03685 (12)0.43692 (9)0.0173 (3)
N1B0.87099 (13)0.46335 (12)0.44147 (9)0.0176 (3)
N1C1.00015 (13)0.16488 (12)0.44137 (9)0.0168 (3)
N20.58070 (13)0.34190 (12)0.47114 (9)0.0171 (3)
N2A0.63343 (13)0.05449 (12)0.45571 (9)0.0176 (3)
N2B0.86504 (13)0.55398 (12)0.46122 (9)0.0173 (3)
N2C0.92154 (13)0.15932 (12)0.46417 (9)0.0174 (3)
N30.46770 (17)0.50272 (14)0.77320 (9)0.0212 (3)
N3A0.69006 (15)0.15131 (16)0.76079 (10)0.0226 (4)
N3B0.81564 (15)0.63159 (16)0.76852 (10)0.0238 (4)
N3C1.04330 (17)0.00391 (14)0.76838 (9)0.0221 (4)
C10.57751 (15)0.21914 (14)0.22572 (10)0.0147 (3)
C1A0.59373 (15)0.10016 (14)0.20806 (10)0.0146 (3)
C1B0.89745 (15)0.40302 (14)0.21380 (10)0.0152 (3)
C1C0.91372 (15)0.27882 (14)0.21423 (10)0.0149 (3)
C20.46687 (16)0.25495 (14)0.27370 (10)0.0174 (4)
H20.4068980.2527560.2562840.021*
C2A0.59565 (16)0.00262 (15)0.23074 (10)0.0173 (4)
H2A0.5898600.0476900.1948920.021*
C2B0.89368 (16)0.50142 (15)0.23675 (10)0.0174 (4)
H2B0.8971180.5525800.2011820.021*
C2C0.82832 (15)0.27106 (14)0.24037 (10)0.0166 (4)
H2C0.7530330.2915700.2072180.020*
C30.44475 (16)0.29419 (15)0.34773 (11)0.0184 (4)
H30.3693020.3185960.3812980.022*
C3A0.60606 (15)0.02100 (15)0.30590 (10)0.0169 (4)
H3A0.6071990.0873540.3215510.020*
C3B0.88492 (15)0.52458 (15)0.31145 (10)0.0169 (4)
H3B0.8824560.5914790.3272160.020*
C3C0.85370 (16)0.23313 (14)0.31523 (10)0.0166 (4)
H3C0.7960560.2268940.3333170.020*
C40.53297 (16)0.29782 (14)0.37283 (10)0.0156 (4)
C4A0.61481 (15)0.05321 (14)0.35826 (10)0.0158 (4)
C4B0.87976 (15)0.44910 (15)0.36324 (10)0.0162 (4)
C4C0.96408 (15)0.20436 (14)0.36353 (10)0.0154 (3)
C50.64367 (15)0.26369 (14)0.32360 (10)0.0168 (4)
H50.7033100.2676340.3405290.020*
C5A0.61020 (16)0.15177 (15)0.33499 (10)0.0179 (4)
H5A0.6141250.2028450.3705570.022*
C5B0.88510 (16)0.35028 (15)0.34002 (10)0.0179 (4)
H5B0.8826860.2987790.3754790.022*
C5C1.04950 (16)0.21144 (15)0.33698 (10)0.0179 (4)
H5C1.1247080.1911970.3701850.022*
C60.66621 (16)0.22407 (15)0.24999 (11)0.0180 (4)
H60.7414260.2003890.2161810.022*
C6A0.59988 (16)0.17544 (14)0.25996 (10)0.0167 (4)
H6A0.5970330.2424550.2440750.020*
C6B0.89394 (16)0.32676 (15)0.26520 (10)0.0176 (4)
H6B0.8975440.2594280.2492720.021*
C6C1.02495 (16)0.24797 (15)0.26216 (10)0.0173 (4)
H6C1.0832680.2519670.2436970.021*
C70.54673 (16)0.38451 (14)0.54765 (10)0.0157 (4)
C7A0.64460 (15)0.07259 (14)0.53316 (10)0.0158 (4)
C7B0.85779 (15)0.56769 (15)0.53871 (10)0.0162 (4)
C7C0.95806 (16)0.11810 (14)0.54119 (10)0.0155 (4)
C80.43404 (16)0.42187 (15)0.59522 (10)0.0173 (4)
H80.3747910.4202910.5766790.021*
C8A0.65069 (15)0.17206 (15)0.55619 (11)0.0178 (4)
H8A0.6461070.2223750.5201230.021*
C8B0.84642 (16)0.66756 (15)0.56518 (11)0.0182 (4)
H8B0.8468410.7212220.5312500.022*
C8C0.87466 (16)0.11037 (15)0.56976 (10)0.0177 (4)
H8C0.7984420.1317040.5378950.021*
C90.40933 (16)0.46096 (15)0.66906 (11)0.0186 (4)
H90.3329440.4854410.7012150.022*
C9A0.66334 (16)0.19812 (15)0.63115 (11)0.0180 (4)
H9A0.6674360.2660820.6461250.022*
C9B0.83449 (16)0.68896 (15)0.64097 (11)0.0190 (4)
H9B0.8260490.7574450.6586310.023*
C9C0.90248 (16)0.07160 (15)0.64467 (11)0.0185 (4)
H9C0.8450550.0669930.6638570.022*
C100.49517 (16)0.46511 (14)0.69734 (10)0.0168 (4)
C10A0.67011 (15)0.12459 (15)0.68493 (10)0.0175 (4)
C10B0.83482 (15)0.61027 (15)0.69145 (10)0.0177 (4)
C10C1.01397 (16)0.03949 (14)0.69172 (10)0.0167 (4)
C110.60659 (16)0.42965 (15)0.64948 (11)0.0181 (4)
H110.6654650.4326190.6678030.022*
C11A0.66057 (16)0.02318 (15)0.66082 (11)0.0197 (4)
H11A0.6630130.0280640.6964780.024*
C11B0.85061 (16)0.50880 (15)0.66346 (11)0.0192 (4)
H11B0.8534770.4539060.6967470.023*
C11C1.09807 (16)0.04553 (15)0.66239 (11)0.0187 (4)
H11C1.1745970.0229440.6940080.022*
C120.63237 (16)0.38987 (15)0.57499 (11)0.0186 (4)
H120.7085520.3662920.5426390.022*
C12A0.64776 (16)0.00269 (15)0.58628 (11)0.0179 (4)
H12A0.6410580.0715060.5708130.021*
C12B0.86200 (16)0.48764 (15)0.58844 (11)0.0181 (4)
H12B0.8727540.4184890.5703890.022*
C12C1.07081 (16)0.08399 (15)0.58800 (10)0.0175 (4)
H12C1.1285720.0873030.5685680.021*
H1N0.395 (2)0.554 (2)0.7950 (14)0.031 (6)*
H2N0.516 (2)0.518 (2)0.7822 (15)0.033 (7)*
H3N0.673 (2)0.200 (2)0.7689 (15)0.039 (8)*
H4N0.666 (2)0.097 (2)0.7876 (15)0.036 (7)*
H5N0.852 (2)0.576 (2)0.7920 (15)0.037 (7)*
H6N0.831 (2)0.685 (2)0.7808 (15)0.035 (7)*
H7N0.991 (2)0.009 (2)0.7789 (16)0.043 (8)*
H8N1.111 (2)0.047 (2)0.7869 (14)0.031 (7)*
H1W0.155 (2)0.1254 (19)0.1873 (15)0.064 (10)*
H2W0.1166 (15)0.1971 (18)0.1402 (12)0.031 (7)*
H3W0.3304 (17)0.4996 (15)0.1291 (17)0.056 (9)*
H4W0.358 (2)0.3993 (17)0.1527 (17)0.063 (10)*
H5W0.581 (2)0.531 (3)0.1053 (7)0.082 (12)*
H6W0.6785 (12)0.4633 (18)0.0554 (15)0.049 (8)*
H7W0.8265 (9)0.0080 (19)0.1414 (16)0.047 (8)*
H8W0.9269 (19)0.0950 (8)0.1270 (16)0.045 (8)*
H11W1.187 (2)0.110 (2)0.0020 (12)0.050 (9)*
H12W1.275 (2)0.0765 (15)0.0625 (13)0.057 (9)*
H13W1.1940 (18)0.4350 (14)0.0606 (13)0.052 (9)*
H14W1.2900 (18)0.400 (2)0.0029 (13)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01762 (19)0.0189 (2)0.01943 (19)0.00785 (16)0.00678 (15)0.00224 (15)
K20.0220 (2)0.0183 (2)0.0234 (2)0.00772 (16)0.00867 (17)0.00016 (16)
K30.0264 (2)0.0278 (2)0.0359 (3)0.0133 (2)0.0032 (2)0.00333 (19)
K40.0225 (2)0.0200 (2)0.0208 (2)0.00755 (17)0.00514 (17)0.00190 (16)
S10.0161 (2)0.0179 (2)0.0145 (2)0.00651 (17)0.00479 (17)0.00092 (16)
S1A0.0172 (2)0.0162 (2)0.0146 (2)0.00747 (17)0.00571 (17)0.00230 (16)
S1B0.0171 (2)0.0197 (2)0.0143 (2)0.00834 (18)0.00570 (17)0.00287 (17)
S1C0.0157 (2)0.0162 (2)0.0139 (2)0.00658 (17)0.00328 (17)0.00098 (16)
O10.0270 (7)0.0178 (7)0.0206 (7)0.0065 (6)0.0051 (6)0.0022 (5)
O1A0.0317 (8)0.0200 (7)0.0152 (6)0.0124 (6)0.0034 (6)0.0026 (5)
O1B0.0400 (9)0.0211 (7)0.0234 (7)0.0050 (6)0.0159 (7)0.0036 (6)
O20.0198 (7)0.0300 (8)0.0218 (7)0.0090 (6)0.0092 (6)0.0023 (6)
O1W0.0237 (7)0.0269 (8)0.0246 (7)0.0088 (6)0.0068 (6)0.0037 (6)
O2A0.0293 (8)0.0171 (7)0.0213 (7)0.0045 (6)0.0112 (6)0.0021 (5)
O2B0.0412 (9)0.0249 (7)0.0153 (7)0.0181 (7)0.0031 (6)0.0030 (6)
O30.0229 (7)0.0296 (8)0.0167 (7)0.0136 (6)0.0045 (6)0.0044 (6)
O2W0.0238 (8)0.0273 (8)0.0330 (8)0.0092 (7)0.0102 (7)0.0027 (7)
O3A0.0242 (7)0.0443 (9)0.0244 (7)0.0199 (7)0.0127 (6)0.0090 (7)
O3B0.0242 (8)0.0722 (12)0.0224 (8)0.0264 (8)0.0114 (6)0.0106 (8)
O3W0.0290 (8)0.0219 (7)0.0251 (8)0.0075 (6)0.0105 (6)0.0018 (6)
O4W0.0220 (8)0.0272 (8)0.0359 (9)0.0093 (6)0.0101 (7)0.0025 (7)
O5W0.0285 (8)0.0292 (8)0.0333 (8)0.0107 (7)0.0159 (7)0.0064 (7)
O6W0.0253 (8)0.0214 (7)0.0206 (7)0.0071 (6)0.0060 (6)0.0036 (6)
O7W0.0297 (8)0.0208 (7)0.0230 (7)0.0084 (6)0.0059 (6)0.0009 (6)
O8W0.0272 (8)0.0265 (8)0.0303 (8)0.0103 (6)0.0122 (7)0.0040 (6)
O1C0.0169 (9)0.0284 (12)0.0186 (7)0.0099 (9)0.0004 (6)0.0047 (8)
O2C0.0276 (12)0.0219 (8)0.0209 (8)0.0156 (8)0.0011 (8)0.0036 (6)
O3C0.0296 (10)0.0208 (10)0.0174 (9)0.0041 (7)0.0102 (8)0.0018 (7)
O4C0.0169 (9)0.0284 (12)0.0186 (7)0.0099 (9)0.0004 (6)0.0047 (8)
O5C0.0276 (12)0.0219 (8)0.0209 (8)0.0156 (8)0.0011 (8)0.0036 (6)
O6C0.0296 (10)0.0208 (10)0.0174 (9)0.0041 (7)0.0102 (8)0.0018 (7)
N10.0179 (8)0.0182 (8)0.0163 (7)0.0079 (6)0.0054 (6)0.0003 (6)
N1A0.0177 (8)0.0191 (8)0.0155 (7)0.0076 (6)0.0052 (6)0.0009 (6)
N1B0.0176 (8)0.0194 (8)0.0169 (8)0.0079 (6)0.0059 (6)0.0013 (6)
N1C0.0181 (8)0.0173 (7)0.0156 (7)0.0076 (6)0.0049 (6)0.0001 (6)
N20.0182 (8)0.0168 (8)0.0168 (7)0.0074 (6)0.0052 (6)0.0003 (6)
N2A0.0163 (8)0.0198 (8)0.0160 (8)0.0066 (6)0.0046 (6)0.0010 (6)
N2B0.0152 (7)0.0193 (8)0.0163 (8)0.0060 (6)0.0043 (6)0.0008 (6)
N2C0.0182 (8)0.0175 (8)0.0163 (7)0.0067 (6)0.0054 (6)0.0005 (6)
N30.0243 (9)0.0227 (9)0.0179 (8)0.0096 (8)0.0079 (7)0.0004 (7)
N3A0.0252 (9)0.0265 (9)0.0183 (8)0.0116 (8)0.0081 (7)0.0016 (7)
N3B0.0217 (9)0.0293 (10)0.0182 (8)0.0073 (8)0.0069 (7)0.0027 (7)
N3C0.0244 (9)0.0233 (9)0.0165 (8)0.0070 (8)0.0064 (7)0.0016 (7)
C10.0159 (8)0.0132 (8)0.0147 (8)0.0058 (7)0.0045 (7)0.0018 (7)
C1A0.0121 (8)0.0167 (8)0.0137 (8)0.0052 (7)0.0030 (7)0.0009 (7)
C1B0.0128 (8)0.0182 (9)0.0138 (8)0.0059 (7)0.0035 (7)0.0010 (7)
C1C0.0173 (9)0.0136 (8)0.0138 (8)0.0064 (7)0.0044 (7)0.0006 (6)
C20.0152 (9)0.0183 (9)0.0195 (9)0.0070 (7)0.0061 (7)0.0013 (7)
C2A0.0177 (9)0.0176 (9)0.0181 (9)0.0084 (7)0.0058 (7)0.0039 (7)
C2B0.0180 (9)0.0178 (9)0.0172 (9)0.0081 (7)0.0055 (7)0.0045 (7)
C2C0.0146 (8)0.0173 (9)0.0172 (9)0.0065 (7)0.0034 (7)0.0011 (7)
C30.0142 (9)0.0198 (9)0.0199 (9)0.0067 (7)0.0034 (7)0.0000 (7)
C3A0.0177 (9)0.0157 (9)0.0182 (9)0.0077 (7)0.0051 (7)0.0009 (7)
C3B0.0168 (9)0.0157 (9)0.0190 (9)0.0078 (7)0.0046 (7)0.0018 (7)
C3C0.0173 (9)0.0166 (9)0.0174 (9)0.0080 (7)0.0057 (7)0.0012 (7)
C40.0187 (9)0.0127 (8)0.0158 (8)0.0064 (7)0.0053 (7)0.0011 (7)
C4A0.0130 (8)0.0186 (9)0.0161 (9)0.0064 (7)0.0048 (7)0.0021 (7)
C4B0.0128 (8)0.0202 (9)0.0147 (8)0.0057 (7)0.0044 (7)0.0020 (7)
C4C0.0171 (9)0.0126 (8)0.0153 (8)0.0057 (7)0.0036 (7)0.0010 (7)
C50.0151 (8)0.0179 (9)0.0191 (9)0.0075 (7)0.0066 (7)0.0009 (7)
C5A0.0193 (9)0.0178 (9)0.0178 (9)0.0083 (7)0.0064 (7)0.0051 (7)
C5B0.0203 (9)0.0172 (9)0.0172 (9)0.0084 (7)0.0059 (7)0.0045 (7)
C5C0.0150 (9)0.0200 (9)0.0174 (9)0.0067 (7)0.0030 (7)0.0004 (7)
C60.0153 (9)0.0193 (9)0.0187 (9)0.0069 (7)0.0039 (7)0.0007 (7)
C6A0.0187 (9)0.0151 (8)0.0173 (9)0.0077 (7)0.0058 (7)0.0019 (7)
C6B0.0183 (9)0.0165 (9)0.0181 (9)0.0079 (7)0.0043 (7)0.0009 (7)
C6C0.0156 (9)0.0198 (9)0.0182 (9)0.0078 (7)0.0066 (7)0.0012 (7)
C70.0181 (9)0.0137 (8)0.0161 (8)0.0072 (7)0.0054 (7)0.0018 (7)
C7A0.0145 (8)0.0179 (9)0.0152 (8)0.0068 (7)0.0045 (7)0.0006 (7)
C7B0.0131 (8)0.0193 (9)0.0150 (8)0.0061 (7)0.0029 (7)0.0005 (7)
C7C0.0185 (9)0.0138 (8)0.0137 (8)0.0059 (7)0.0052 (7)0.0020 (7)
C80.0168 (9)0.0184 (9)0.0179 (9)0.0082 (7)0.0055 (7)0.0027 (7)
C8A0.0156 (9)0.0189 (9)0.0197 (9)0.0071 (7)0.0065 (7)0.0038 (7)
C8B0.0168 (9)0.0182 (9)0.0205 (9)0.0073 (7)0.0067 (7)0.0023 (7)
C8C0.0169 (9)0.0175 (9)0.0184 (9)0.0069 (7)0.0050 (7)0.0021 (7)
C90.0169 (9)0.0202 (9)0.0176 (9)0.0075 (7)0.0033 (7)0.0021 (7)
C9A0.0166 (9)0.0170 (9)0.0205 (9)0.0067 (7)0.0055 (7)0.0003 (7)
C9B0.0163 (9)0.0189 (9)0.0218 (9)0.0067 (7)0.0060 (7)0.0029 (7)
C9C0.0190 (9)0.0185 (9)0.0207 (9)0.0081 (7)0.0095 (8)0.0029 (7)
C100.0229 (9)0.0134 (8)0.0157 (8)0.0081 (7)0.0073 (7)0.0039 (7)
C10A0.0118 (8)0.0216 (9)0.0179 (9)0.0054 (7)0.0045 (7)0.0009 (7)
C10B0.0113 (8)0.0235 (9)0.0171 (9)0.0057 (7)0.0041 (7)0.0012 (7)
C10C0.0223 (9)0.0123 (8)0.0150 (8)0.0057 (7)0.0067 (7)0.0023 (7)
C110.0175 (9)0.0176 (9)0.0226 (9)0.0079 (7)0.0101 (8)0.0019 (7)
C11A0.0213 (9)0.0214 (9)0.0192 (9)0.0109 (8)0.0073 (8)0.0060 (7)
C11B0.0196 (9)0.0219 (9)0.0182 (9)0.0096 (8)0.0072 (7)0.0051 (7)
C11C0.0182 (9)0.0197 (9)0.0181 (9)0.0083 (7)0.0042 (7)0.0023 (7)
C120.0169 (9)0.0172 (9)0.0213 (9)0.0069 (7)0.0048 (7)0.0010 (7)
C12A0.0191 (9)0.0174 (9)0.0195 (9)0.0089 (7)0.0072 (7)0.0023 (7)
C12B0.0175 (9)0.0186 (9)0.0190 (9)0.0081 (7)0.0053 (7)0.0005 (7)
C12C0.0156 (9)0.0196 (9)0.0185 (9)0.0073 (7)0.0066 (7)0.0018 (7)
Geometric parameters (Å, º) top
K1—O22.6531 (14)N2C—C7C1.421 (2)
K1—O1Ai2.6570 (14)N3—C101.402 (2)
K1—O6Wii2.7388 (15)N3—H1N0.92 (3)
K1—O7Wii2.7669 (15)N3—H2N0.81 (3)
K1—O1W2.7806 (15)N3A—C10A1.382 (2)
K1—O1A2.8284 (14)N3A—H3N0.82 (3)
K1—O2A2.9928 (15)N3A—H4N0.88 (3)
K1—S1A3.4580 (6)N3B—C10B1.392 (2)
K1—K4ii4.1781 (6)N3B—H5N0.90 (3)
K1—K24.2073 (6)N3B—H6N0.88 (3)
K1—K1i4.4315 (8)N3C—C10C1.405 (2)
K2—O32.7462 (14)N3C—H7N0.86 (3)
K2—O1C2.7536 (17)N3C—H8N0.87 (3)
K2—O4C2.784 (14)C1—C21.385 (2)
K2—O2A2.7929 (14)C1—C61.399 (3)
K2—O2W2.8559 (16)C1A—C2A1.393 (3)
K2—O3Wiii2.8666 (15)C1A—C6A1.395 (2)
K2—O3W2.8901 (16)C1B—C6B1.393 (3)
K2—O23.0708 (15)C1B—C2B1.395 (3)
K2—O3A3.1446 (16)C1C—C2C1.392 (3)
K2—S13.4381 (6)C1C—C6C1.396 (3)
K2—S1A3.4869 (6)C2—C31.391 (3)
K2—K2iii3.9929 (8)C2—H20.9500
K2—H6W3.00 (3)C2A—C3A1.390 (3)
K3—O32.6206 (14)C2A—H2A0.9500
K3—O3C2.649 (2)C2B—C3B1.386 (3)
K3—O1B2.7285 (16)C2B—H2B0.9500
K3—O5Wiv2.8713 (16)C2C—C3C1.391 (2)
K3—O4W2.8932 (16)C2C—H2C0.9500
K3—O5W2.9166 (15)C3—C41.394 (3)
K3—O6C3.181 (17)C3—H30.9500
K3—O3B3.2009 (19)C3A—C4A1.396 (3)
K3—O4C3.261 (16)C3A—H3A0.9500
K3—O4Wiv3.2971 (17)C3B—C4B1.393 (3)
K3—S1B3.5219 (7)C3B—H3B0.9500
K3—K3iv3.6855 (9)C3C—C4C1.393 (3)
K3—H9Wiv2.48 (2)C3C—H3C0.9500
K4—O6C2.542 (17)C4—C51.395 (3)
K4—O2Bv2.6854 (15)C4A—C5A1.394 (3)
K4—O6W2.7164 (15)C4B—C5B1.393 (3)
K4—O2B2.7701 (15)C4C—C5C1.393 (3)
K4—O8W2.8338 (16)C5—C61.384 (3)
K4—O7W2.8395 (16)C5—H50.9500
K4—O3C2.954 (2)C5A—C6A1.388 (3)
K4—O2C3.097 (2)C5A—H5A0.9500
K4—O1B3.1503 (16)C5B—C6B1.389 (3)
K4—S1B3.4918 (6)C5B—H5B0.9500
K4—S1C3.6089 (6)C5C—C6C1.387 (2)
S1—O21.4497 (14)C5C—H5C0.9500
S1—O31.4565 (14)C6—H60.9500
S1—O11.4664 (14)C6A—H6A0.9500
S1—C11.7680 (18)C6B—H6B0.9500
S1A—O1A1.4452 (14)C6C—H6C0.9500
S1A—O3A1.4564 (14)C7—C121.395 (3)
S1A—O2A1.4691 (14)C7—C81.401 (3)
S1A—C1A1.7690 (18)C7A—C8A1.396 (3)
S1B—O2B1.4447 (14)C7A—C12A1.404 (3)
S1B—O3B1.4519 (15)C7B—C8B1.395 (3)
S1B—O1B1.4635 (15)C7B—C12B1.399 (3)
S1B—C1B1.7706 (18)C7C—C8C1.393 (3)
S1C—O6C1.380 (16)C7C—C12C1.400 (3)
S1C—O4C1.421 (15)C8—C91.380 (3)
S1C—O5C1.453 (13)C8—H80.9500
S1C—O1C1.4562 (18)C8A—C9A1.386 (3)
S1C—O2C1.4592 (17)C8A—H8A0.9500
S1C—O3C1.4715 (18)C8B—C9B1.390 (3)
S1C—C1C1.7670 (18)C8B—H8B0.9500
O1W—H1W0.871 (10)C8C—C9C1.390 (3)
O1W—H2W0.869 (9)C8C—H8C0.9500
O2W—H3W0.866 (10)C9—C101.401 (3)
O2W—H4W0.869 (10)C9—H90.9500
O3W—H5W0.867 (10)C9A—C10A1.402 (3)
O3W—H6W0.869 (10)C9A—H9A0.9500
O4W—H7W0.873 (10)C9B—C10B1.400 (3)
O4W—H8W0.867 (10)C9B—H9B0.9500
O5W—H9W0.870 (9)C9C—C10C1.391 (3)
O5W—H10W0.888 (9)C9C—H9C0.9500
O6W—H11W0.866 (10)C10—C111.392 (3)
O6W—H12W0.862 (10)C10A—C11A1.409 (3)
O7W—H13W0.873 (10)C10B—C11B1.404 (3)
O7W—H14W0.876 (10)C10C—C11C1.401 (3)
O8W—H15W0.882 (9)C11—C121.391 (3)
O8W—H16W0.870 (9)C11—H110.9500
N1—N21.260 (2)C11A—C12A1.378 (3)
N1—C41.425 (2)C11A—H11A0.9500
N1A—N2A1.265 (2)C11B—C12B1.377 (3)
N1A—C4A1.430 (2)C11B—H11B0.9500
N1B—N2B1.263 (2)C11C—C12C1.381 (3)
N1B—C4B1.429 (2)C11C—H11C0.9500
N1C—N2C1.259 (2)C12—H120.9500
N1C—C4C1.429 (2)C12A—H12A0.9500
N2—C71.421 (2)C12B—H12B0.9500
N2A—C7A1.415 (2)C12C—H12C0.9500
N2B—C7B1.420 (2)
O2—K1—O1Ai93.46 (5)O1A—S1A—K2112.62 (6)
O2—K1—O6Wii176.42 (5)O3A—S1A—K264.38 (6)
O1Ai—K1—O6Wii88.31 (4)O2A—S1A—K250.50 (6)
O2—K1—O7Wii96.46 (5)C1A—S1A—K2139.34 (6)
O1Ai—K1—O7Wii166.72 (5)K1—S1A—K274.573 (13)
O6Wii—K1—O7Wii82.29 (4)O2B—S1B—O3B114.07 (10)
O2—K1—O1W106.10 (5)O2B—S1B—O1B111.81 (9)
O1Ai—K1—O1W81.52 (4)O3B—S1B—O1B110.35 (10)
O6Wii—K1—O1W77.24 (5)O2B—S1B—C1B107.17 (9)
O7Wii—K1—O1W87.25 (5)O3B—S1B—C1B106.78 (9)
O2—K1—O1A86.00 (4)O1B—S1B—C1B106.18 (8)
O1Ai—K1—O1A72.27 (5)O2B—S1B—K449.10 (6)
O6Wii—K1—O1A91.58 (4)O3B—S1B—K4120.29 (6)
O7Wii—K1—O1A117.16 (4)O1B—S1B—K464.44 (6)
O1W—K1—O1A151.82 (4)C1B—S1B—K4132.51 (6)
O2—K1—O2A84.65 (4)O2B—S1B—K3121.36 (6)
O1Ai—K1—O2A121.15 (4)O3B—S1B—K365.35 (8)
O6Wii—K1—O2A91.77 (4)O1B—S1B—K346.46 (6)
O7Wii—K1—O2A68.76 (4)C1B—S1B—K3129.95 (6)
O1W—K1—O2A154.89 (4)K4—S1B—K379.306 (14)
O1A—K1—O2A48.89 (4)O6C—S1C—O4C113.4 (8)
O2—K1—S1A83.01 (3)O6C—S1C—O5C117.1 (8)
O1Ai—K1—S1A96.24 (3)O4C—S1C—O5C112.0 (8)
O6Wii—K1—S1A93.70 (3)O1C—S1C—O2C112.83 (10)
O7Wii—K1—S1A93.72 (3)O1C—S1C—O3C112.65 (11)
O1W—K1—S1A170.69 (4)O2C—S1C—O3C110.62 (11)
O1A—K1—S1A24.01 (3)O6C—S1C—C1C105.1 (6)
O2A—K1—S1A25.02 (3)O4C—S1C—C1C105.8 (6)
O2—K1—K4ii138.74 (3)O5C—S1C—C1C101.8 (5)
O1Ai—K1—K4ii127.69 (3)O1C—S1C—C1C107.36 (9)
O6Wii—K1—K4ii39.82 (3)O2C—S1C—C1C106.53 (9)
O7Wii—K1—K4ii42.49 (3)O3C—S1C—C1C106.40 (9)
O1W—K1—K4ii80.55 (3)O6C—S1C—K431.8 (7)
O1A—K1—K4ii107.32 (3)O4C—S1C—K4126.2 (6)
O2A—K1—K4ii76.73 (3)O5C—S1C—K485.8 (7)
S1A—K1—K4ii93.909 (13)O1C—S1C—K4132.42 (7)
O2—K1—K246.70 (3)O2C—S1C—K458.12 (9)
O1Ai—K1—K2126.75 (3)O3C—S1C—K452.50 (9)
O6Wii—K1—K2129.93 (3)C1C—S1C—K4120.10 (6)
O7Wii—K1—K266.47 (3)O6C—S1C—K354.9 (7)
O1W—K1—K2135.07 (3)O4C—S1C—K358.5 (7)
O1A—K1—K271.44 (3)O5C—S1C—K3139.2 (5)
O2A—K1—K241.51 (3)O1C—S1C—K380.14 (9)
S1A—K1—K253.027 (11)O2C—S1C—K3126.37 (8)
K4ii—K1—K299.729 (12)O3C—S1C—K332.52 (9)
O2—K1—K1i89.53 (3)C1C—S1C—K3119.03 (6)
O1Ai—K1—K1i37.44 (3)K4—S1C—K374.665 (13)
O6Wii—K1—K1i89.99 (3)S1A—O1A—K1i148.88 (8)
O7Wii—K1—K1i151.03 (4)S1A—O1A—K1103.22 (7)
O1W—K1—K1i118.31 (3)K1i—O1A—K1107.73 (5)
O1A—K1—K1i34.83 (3)S1B—O1B—K3110.66 (8)
O2A—K1—K1i83.71 (3)S1B—O1B—K490.78 (7)
S1A—K1—K1i58.808 (12)K3—O1B—K498.91 (4)
K4ii—K1—K1i123.824 (16)S1—O2—K1152.11 (8)
K2—K1—K1i98.949 (14)S1—O2—K291.86 (7)
O3—K2—O1C89.81 (6)K1—O2—K294.34 (4)
O3—K2—O4C78.8 (3)K1—O1W—H1W132 (2)
O3—K2—O2A109.42 (4)K1—O1W—H2W104.3 (16)
O1C—K2—O2A110.70 (5)H1W—O1W—H2W99.6 (18)
O4C—K2—O2A108.2 (3)S1A—O2A—K2105.55 (7)
O3—K2—O2W90.13 (4)S1A—O2A—K195.50 (7)
O1C—K2—O2W136.34 (5)K2—O2A—K193.24 (4)
O4C—K2—O2W141.4 (3)S1B—O2B—K4v148.49 (9)
O2A—K2—O2W110.39 (5)S1B—O2B—K4107.69 (7)
O3—K2—O3Wiii166.01 (5)K4v—O2B—K4103.59 (5)
O1C—K2—O3Wiii103.96 (6)S1—O3—K3139.98 (8)
O2A—K2—O3Wiii68.31 (4)S1—O3—K2105.64 (7)
O2W—K2—O3Wiii78.26 (4)K3—O3—K2113.39 (5)
O3—K2—O3W91.51 (4)K2—O2W—H3W113 (2)
O1C—K2—O3W64.79 (5)K2—O2W—H4W105 (2)
O4C—K2—O3W71.9 (3)H3W—O2W—H4W102.9 (19)
O2A—K2—O3W158.82 (4)S1A—O3A—K290.93 (7)
O2W—K2—O3W71.57 (5)S1B—O3B—K390.31 (8)
O3Wiii—K2—O3W92.17 (4)K2iii—O3W—K287.83 (4)
O3—K2—O248.75 (4)K2iii—O3W—H5W101 (2)
O1C—K2—O2137.53 (6)K2—O3W—H5W118 (2)
O4C—K2—O2125.3 (3)K2iii—O3W—H6W156.1 (18)
O2A—K2—O280.89 (4)K2—O3W—H6W89.1 (19)
O2W—K2—O263.80 (4)H5W—O3W—H6W101.7 (19)
O3Wiii—K2—O2117.99 (4)K3—O4W—K3iv72.75 (4)
O3W—K2—O2116.97 (4)K3—O4W—H7W98.2 (17)
O3—K2—O3A79.15 (4)K3iv—O4W—H7W125.5 (19)
O1C—K2—O3A75.40 (5)K3—O4W—H8W138.6 (18)
O4C—K2—O3A67.3 (3)K3iv—O4W—H8W66.2 (18)
O2A—K2—O3A47.21 (4)H7W—O4W—H8W101.3 (18)
O2W—K2—O3A146.90 (4)K3iv—O5W—K379.10 (4)
O3Wiii—K2—O3A106.42 (4)K3iv—O5W—H9W54.9 (17)
O3W—K2—O3A139.15 (4)K3—O5W—H9W94.2 (15)
O2—K2—O3A86.27 (4)K3iv—O5W—H10W105.4 (16)
O3—K2—S124.08 (3)K3—O5W—H10W173.6 (15)
O1C—K2—S1113.82 (5)H9W—O5W—H10W92.1 (15)
O4C—K2—S1102.4 (3)K4—O6W—K1vi99.97 (5)
O2A—K2—S197.78 (3)K4—O6W—H11W110.5 (18)
O2W—K2—S174.17 (3)K1vi—O6W—H11W102 (2)
O3Wiii—K2—S1142.21 (4)K4—O6W—H12W132.8 (19)
O3W—K2—S1102.89 (3)K1vi—O6W—H12W104 (2)
O2—K2—S124.93 (3)H11W—O6W—H12W103.3 (18)
O3A—K2—S184.46 (3)K1vi—O7W—K496.35 (5)
O3—K2—S1A90.20 (3)K1vi—O7W—H13W138.7 (18)
O1C—K2—S1A97.37 (4)K4—O7W—H13W103.0 (19)
O4C—K2—S1A90.9 (3)K1vi—O7W—H14W108.2 (17)
O2A—K2—S1A23.95 (3)K4—O7W—H14W109.1 (19)
O2W—K2—S1A126.29 (4)H13W—O7W—H14W99.4 (17)
O3Wiii—K2—S1A90.46 (3)K4—O8W—H15W114.6 (16)
O3W—K2—S1A162.07 (4)K4—O8W—H16W124.1 (16)
O2—K2—S1A76.98 (3)H15W—O8W—H16W98.9 (16)
O3A—K2—S1A24.68 (3)S1C—O1C—K2160.77 (14)
S1—K2—S1A85.573 (14)S1C—O2C—K498.29 (10)
O3—K2—K2iii135.69 (3)S1C—O3C—K3130.10 (12)
O1C—K2—K2iii82.24 (5)S1C—O3C—K4104.22 (11)
O2A—K2—K2iii114.18 (3)K3—O3C—K4105.93 (6)
O2W—K2—K2iii67.98 (3)S1C—O4C—K2161.7 (10)
O3Wiii—K2—K2iii46.33 (3)S1C—O4C—K399.6 (7)
O3W—K2—K2iii45.84 (3)K2—O4C—K395.5 (4)
O2—K2—K2iii131.69 (3)S1C—O6C—K4131.6 (9)
O3A—K2—K2iii138.62 (3)S1C—O6C—K3104.4 (9)
S1—K2—K2iii136.779 (19)K4—O6C—K3102.3 (5)
S1A—K2—K2iii133.976 (19)N2—N1—C4113.70 (15)
O3—K2—H6W78.2 (4)N2A—N1A—C4A113.11 (15)
O1C—K2—H6W55.3 (4)N2B—N1B—C4B113.55 (15)
O4C—K2—H6W59.6 (5)N2C—N1C—C4C113.74 (15)
O2A—K2—H6W164.9 (5)N1—N2—C7113.51 (15)
O2W—K2—H6W82.1 (4)N1A—N2A—C7A114.38 (15)
O3Wiii—K2—H6W107.5 (3)N1B—N2B—C7B113.58 (15)
O3W—K2—H6W16.8 (2)N1C—N2C—C7C113.67 (15)
O2—K2—H6W113.1 (5)C10—N3—H1N117.5 (15)
O3A—K2—H6W125.1 (3)C10—N3—H2N113.3 (19)
S1—K2—H6W93.8 (5)H1N—N3—H2N111 (2)
S1A—K2—H6W149.7 (3)C10A—N3A—H3N114.1 (19)
K2iii—K2—H6W61.5 (3)C10A—N3A—H4N115.9 (17)
O3—K3—O3C111.17 (5)H3N—N3A—H4N112 (3)
O3—K3—O1B116.49 (5)C10B—N3B—H5N115.7 (17)
O3C—K3—O1B81.50 (6)C10B—N3B—H6N115.6 (17)
O3—K3—O5Wiv75.72 (5)H5N—N3B—H6N106 (2)
O3C—K3—O5Wiv90.88 (6)C10C—N3C—H7N112.5 (19)
O1B—K3—O5Wiv167.29 (5)C10C—N3C—H8N115.8 (16)
O3—K3—O4W77.80 (4)H7N—N3C—H8N113 (2)
O3C—K3—O4W162.84 (5)C2—C1—C6121.15 (17)
O1B—K3—O4W108.15 (5)C2—C1—S1119.32 (14)
O5Wiv—K3—O4W76.90 (5)C6—C1—S1119.41 (14)
O3—K3—O5W141.48 (5)C2A—C1A—C6A120.45 (16)
O3C—K3—O5W107.21 (5)C2A—C1A—S1A120.64 (14)
O1B—K3—O5W72.00 (4)C6A—C1A—S1A118.89 (14)
O5Wiv—K3—O5W100.90 (4)C6B—C1B—C2B120.54 (17)
O4W—K3—O5W64.31 (4)C6B—C1B—S1B118.77 (14)
O3—K3—O6C114.4 (3)C2B—C1B—S1B120.67 (14)
O1B—K3—O6C75.9 (3)C2C—C1C—C6C120.71 (17)
O5Wiv—K3—O6C96.3 (3)C2C—C1C—S1C120.99 (14)
O4W—K3—O6C164.5 (3)C6C—C1C—S1C118.28 (14)
O5W—K3—O6C104.1 (3)C1—C2—C3119.08 (17)
O3—K3—O3B72.30 (4)C1—C2—H2120.5
O3C—K3—O3B83.22 (5)C3—C2—H2120.5
O1B—K3—O3B46.78 (4)C3A—C2A—C1A119.91 (17)
O5Wiv—K3—O3B142.66 (4)C3A—C2A—H2A120.0
O4W—K3—O3B113.80 (5)C1A—C2A—H2A120.0
O5W—K3—O3B116.10 (4)C3B—C2B—C1B120.03 (17)
O6C—K3—O3B80.1 (3)C3B—C2B—H2B120.0
O3—K3—O4C72.3 (3)C1B—C2B—H2B120.0
O1B—K3—O4C100.0 (3)C3C—C2C—C1C119.71 (17)
O5Wiv—K3—O4C79.8 (3)C3C—C2C—H2C120.1
O4W—K3—O4C145.7 (3)C1C—C2C—H2C120.1
O5W—K3—O4C145.8 (3)C2—C3—C4120.20 (17)
O6C—K3—O4C42.6 (4)C2—C3—H3119.9
O3B—K3—O4C72.6 (3)C4—C3—H3119.9
O3—K3—O4Wiv131.51 (4)C2A—C3A—C4A119.70 (17)
O3C—K3—O4Wiv55.72 (5)C2A—C3A—H3A120.1
O1B—K3—O4Wiv107.63 (4)C4A—C3A—H3A120.1
O5Wiv—K3—O4Wiv59.69 (4)C2B—C3B—C4B119.58 (17)
O4W—K3—O4Wiv107.25 (4)C2B—C3B—H3B120.2
O5W—K3—O4Wiv70.16 (4)C4B—C3B—H3B120.2
O3B—K3—O4Wiv136.67 (4)C2C—C3C—C4C119.64 (17)
O3—K3—S1B96.20 (3)C2C—C3C—H3C120.2
O3C—K3—S1B78.29 (4)C4C—C3C—H3C120.2
O1B—K3—S1B22.88 (3)C3—C4—C5120.29 (17)
O5Wiv—K3—S1B163.31 (4)C3—C4—N1114.87 (16)
O4W—K3—S1B116.15 (4)C5—C4—N1124.83 (16)
O5W—K3—S1B94.47 (3)C5A—C4A—C3A120.20 (17)
O6C—K3—S1B73.5 (3)C5A—C4A—N1A115.36 (16)
O3B—K3—S1B24.35 (3)C3A—C4A—N1A124.43 (17)
O4C—K3—S1B83.8 (3)C5B—C4B—C3B120.33 (17)
O4Wiv—K3—S1B121.09 (3)C5B—C4B—N1B114.82 (16)
O3—K3—K3iv115.28 (4)C3B—C4B—N1B124.84 (17)
O3C—K3—K3iv104.25 (4)C5C—C4C—C3C120.44 (17)
O1B—K3—K3iv121.03 (4)C5C—C4C—N1C114.83 (16)
O5Wiv—K3—K3iv50.99 (3)C3C—C4C—N1C124.72 (16)
O4W—K3—K3iv58.69 (3)C6—C5—C4119.71 (17)
O5W—K3—K3iv49.91 (3)C6—C5—H5120.1
O3B—K3—K3iv165.36 (4)C4—C5—H5120.1
O4Wiv—K3—K3iv48.56 (3)C6A—C5A—C4A120.13 (17)
S1B—K3—K3iv143.90 (2)C6A—C5A—H5A119.9
O3—K3—H9Wiv62.8 (4)C4A—C5A—H5A119.9
O3C—K3—H9Wiv105.2 (4)C6B—C5B—C4B120.25 (17)
O1B—K3—H9Wiv173.2 (4)C6B—C5B—H5B119.9
O5Wiv—K3—H9Wiv16.7 (3)C4B—C5B—H5B119.9
O4W—K3—H9Wiv65.0 (4)C6C—C5C—C4C120.11 (17)
O5W—K3—H9Wiv104.2 (5)C6C—C5C—H5C119.9
O3B—K3—H9Wiv134.4 (5)C4C—C5C—H5C119.9
O4Wiv—K3—H9Wiv75.7 (3)C5—C6—C1119.55 (17)
S1B—K3—H9Wiv158.7 (4)C5—C6—H6120.2
K3iv—K3—H9Wiv56.5 (5)C1—C6—H6120.2
O6C—K4—O6W87.6 (3)C5A—C6A—C1A119.56 (17)
O2Bv—K4—O6W158.58 (5)C5A—C6A—H6A120.2
O6C—K4—O2B92.2 (4)C1A—C6A—H6A120.2
O2Bv—K4—O2B76.41 (5)C5B—C6B—C1B119.26 (17)
O6W—K4—O2B111.99 (4)C5B—C6B—H6B120.4
O6C—K4—O8W119.9 (4)C1B—C6B—H6B120.4
O2Bv—K4—O8W75.67 (5)C5C—C6C—C1C119.36 (17)
O6W—K4—O8W87.78 (5)C5C—C6C—H6C120.3
O2B—K4—O8W143.65 (5)C1C—C6C—H6C120.3
O6C—K4—O7W163.8 (4)C12—C7—C8119.49 (17)
O2Bv—K4—O7W80.59 (5)C12—C7—N2116.54 (16)
O6W—K4—O7W81.35 (4)C8—C7—N2123.96 (16)
O2B—K4—O7W81.20 (5)C8A—C7A—C12A119.35 (17)
O8W—K4—O7W71.68 (4)C8A—C7A—N2A116.26 (16)
O2Bv—K4—O3C119.29 (5)C12A—C7A—N2A124.38 (16)
O6W—K4—O3C81.43 (5)C8B—C7B—C12B119.37 (17)
O2B—K4—O3C88.02 (5)C8B—C7B—N2B116.68 (16)
O8W—K4—O3C126.13 (5)C12B—C7B—N2B123.95 (17)
O7W—K4—O3C154.52 (5)C8C—C7C—C12C119.49 (17)
O2Bv—K4—O2C72.75 (5)C8C—C7C—N2C116.32 (16)
O6W—K4—O2C126.89 (4)C12C—C7C—N2C124.18 (16)
O2B—K4—O2C81.89 (5)C9—C8—C7119.86 (17)
O8W—K4—O2C111.10 (5)C9—C8—H8120.1
O7W—K4—O2C151.11 (4)C7—C8—H8120.1
O3C—K4—O2C46.87 (5)C9A—C8A—C7A120.66 (17)
O6C—K4—O1B79.0 (4)C9A—C8A—H8A119.7
O2Bv—K4—O1B123.67 (4)C7A—C8A—H8A119.7
O6W—K4—O1B66.06 (4)C9B—C8B—C7B120.32 (17)
O2B—K4—O1B47.47 (4)C9B—C8B—H8B119.8
O8W—K4—O1B147.95 (4)C7B—C8B—H8B119.8
O7W—K4—O1B85.73 (4)C9C—C8C—C7C120.29 (17)
O3C—K4—O1B70.13 (5)C9C—C8C—H8C119.9
O2C—K4—O1B99.72 (4)C7C—C8C—H8C119.9
O6C—K4—S1B81.9 (4)C8—C9—C10121.02 (17)
O2Bv—K4—S1B99.57 (3)C8—C9—H9119.5
O6W—K4—S1B90.68 (3)C10—C9—H9119.5
O2B—K4—S1B23.22 (3)C8A—C9A—C10A120.26 (17)
O8W—K4—S1B158.02 (4)C8A—C9A—H9A119.9
O7W—K4—S1B86.41 (3)C10A—C9A—H9A119.9
O3C—K4—S1B75.16 (4)C8B—C9B—C10B120.45 (17)
O2C—K4—S1B87.21 (3)C8B—C9B—H9B119.8
O1B—K4—S1B24.78 (3)C10B—C9B—H9B119.8
O6C—K4—S1C16.6 (3)C8C—C9C—C10C120.35 (17)
O2Bv—K4—S1C96.17 (4)C8C—C9C—H9C119.8
O6W—K4—S1C104.10 (3)C10C—C9C—H9C119.8
O2B—K4—S1C84.45 (3)C11—C10—C9118.90 (17)
O8W—K4—S1C121.29 (3)C11—C10—N3121.55 (17)
O7W—K4—S1C165.64 (3)C9—C10—N3119.54 (18)
O3C—K4—S1C23.28 (4)N3A—C10A—C9A121.31 (18)
O2C—K4—S1C23.58 (3)N3A—C10A—C11A119.94 (18)
O1B—K4—S1C84.49 (3)C9A—C10A—C11A118.71 (17)
S1B—K4—S1C80.317 (14)N3B—C10B—C9B121.73 (18)
O2Bv—K4—K1vi120.62 (4)N3B—C10B—C11B119.62 (18)
O6W—K4—K1vi40.21 (3)C9B—C10B—C11B118.61 (17)
O2B—K4—K1vi99.50 (3)C9C—C10C—C11C119.19 (17)
O8W—K4—K1vi75.67 (3)C9C—C10C—N3C121.44 (18)
O7W—K4—K1vi41.16 (3)C11C—C10C—N3C119.35 (18)
O3C—K4—K1vi119.71 (4)C12—C11—C10120.48 (17)
O2C—K4—K1vi166.57 (3)C12—C11—H11119.8
O1B—K4—K1vi72.38 (3)C10—C11—H11119.8
S1B—K4—K1vi89.108 (13)C12A—C11A—C10A120.94 (17)
S1C—K4—K1vi142.993 (15)C12A—C11A—H11A119.5
O2—S1—O3112.68 (8)C10A—C11A—H11A119.5
O2—S1—O1113.18 (9)C12B—C11B—C10B120.96 (17)
O3—S1—O1111.78 (8)C12B—C11B—H11B119.5
O2—S1—C1107.16 (8)C10B—C11B—H11B119.5
O3—S1—C1106.88 (8)C12C—C11C—C10C120.65 (17)
O1—S1—C1104.50 (8)C12C—C11C—H11C119.7
O2—S1—K263.22 (6)C10C—C11C—H11C119.7
O3—S1—K250.28 (6)C11—C12—C7120.23 (17)
O1—S1—K2141.39 (6)C11—C12—H12119.9
C1—S1—K2113.31 (6)C7—C12—H12119.9
O1A—S1A—O3A113.91 (9)C11A—C12A—C7A120.02 (17)
O1A—S1A—O2A111.82 (8)C11A—C12A—H12A120.0
O3A—S1A—O2A110.19 (9)C7A—C12A—H12A120.0
O1A—S1A—C1A107.12 (8)C11B—C12B—C7B120.22 (17)
O3A—S1A—C1A106.79 (8)C11B—C12B—H12B119.9
O2A—S1A—C1A106.56 (8)C7B—C12B—H12B119.9
O1A—S1A—K152.78 (6)C11C—C12C—C7C120.01 (17)
O3A—S1A—K1126.06 (6)C11C—C12C—H12C120.0
O2A—S1A—K159.48 (6)C7C—C12C—H12C120.0
C1A—S1A—K1127.14 (6)
O3A—S1A—O1A—K1i55.79 (18)O2B—S1B—C1B—C2B15.16 (17)
O2A—S1A—O1A—K1i178.46 (14)O3B—S1B—C1B—C2B107.45 (16)
C1A—S1A—O1A—K1i62.06 (18)O1B—S1B—C1B—C2B134.79 (15)
K1—S1A—O1A—K1i173.9 (2)K4—S1B—C1B—C2B64.89 (17)
K2—S1A—O1A—K1i126.67 (14)K3—S1B—C1B—C2B179.04 (11)
O3A—S1A—O1A—K1118.15 (8)O6C—S1C—C1C—C2C147.2 (8)
O2A—S1A—O1A—K17.61 (9)O4C—S1C—C1C—C2C26.9 (7)
C1A—S1A—O1A—K1124.01 (7)O5C—S1C—C1C—C2C90.2 (7)
K2—S1A—O1A—K147.27 (7)O1C—S1C—C1C—C2C1.15 (19)
O2B—S1B—O1B—K3113.15 (9)O2C—S1C—C1C—C2C119.97 (17)
O3B—S1B—O1B—K314.94 (11)O3C—S1C—C1C—C2C121.98 (17)
C1B—S1B—O1B—K3130.29 (8)K4—S1C—C1C—C2C177.73 (12)
K4—S1B—O1B—K399.83 (7)K3—S1C—C1C—C2C89.32 (15)
O2B—S1B—O1B—K413.32 (9)O6C—S1C—C1C—C6C34.6 (8)
O3B—S1B—O1B—K4114.77 (7)O4C—S1C—C1C—C6C154.9 (7)
C1B—S1B—O1B—K4129.88 (7)O5C—S1C—C1C—C6C87.9 (7)
K3—S1B—O1B—K499.83 (7)O1C—S1C—C1C—C6C179.31 (16)
O3—S1—O2—K193.56 (19)O2C—S1C—C1C—C6C58.20 (18)
O1—S1—O2—K134.5 (2)O3C—S1C—C1C—C6C59.85 (18)
C1—S1—O2—K1149.16 (17)K4—S1C—C1C—C6C4.11 (17)
K2—S1—O2—K1102.90 (19)K3—S1C—C1C—C6C92.51 (15)
O3—S1—O2—K29.33 (8)C6—C1—C2—C31.4 (3)
O1—S1—O2—K2137.39 (7)S1—C1—C2—C3174.55 (14)
C1—S1—O2—K2107.94 (7)C6A—C1A—C2A—C3A1.3 (3)
O1A—S1A—O2A—K2101.94 (8)S1A—C1A—C2A—C3A177.25 (14)
O3A—S1A—O2A—K225.82 (9)C6B—C1B—C2B—C3B0.8 (3)
C1A—S1A—O2A—K2141.32 (7)S1B—C1B—C2B—C3B177.75 (14)
K1—S1A—O2A—K294.92 (6)C6C—C1C—C2C—C3C0.6 (3)
O1A—S1A—O2A—K17.03 (9)S1C—C1C—C2C—C3C177.50 (13)
O3A—S1A—O2A—K1120.74 (7)C1—C2—C3—C40.4 (3)
C1A—S1A—O2A—K1123.77 (7)C1A—C2A—C3A—C4A0.2 (3)
K2—S1A—O2A—K194.92 (6)C1B—C2B—C3B—C4B0.1 (3)
O3B—S1B—O2B—K4v62.58 (19)C1C—C2C—C3C—C4C0.7 (3)
O1B—S1B—O2B—K4v171.33 (15)C2—C3—C4—C51.0 (3)
C1B—S1B—O2B—K4v55.38 (19)C2—C3—C4—N1179.85 (16)
K4—S1B—O2B—K4v172.7 (2)N2—N1—C4—C3179.97 (16)
K3—S1B—O2B—K4v137.35 (14)N2—N1—C4—C50.9 (3)
O3B—S1B—O2B—K4110.12 (10)C2A—C3A—C4A—C5A1.6 (3)
O1B—S1B—O2B—K415.96 (10)C2A—C3A—C4A—N1A179.28 (17)
C1B—S1B—O2B—K4131.92 (7)N2A—N1A—C4A—C5A178.53 (16)
K3—S1B—O2B—K435.35 (9)N2A—N1A—C4A—C3A2.4 (3)
O2—S1—O3—K3156.23 (11)C2B—C3B—C4B—C5B1.0 (3)
O1—S1—O3—K327.45 (15)C2B—C3B—C4B—N1B179.82 (17)
C1—S1—O3—K386.33 (13)N2B—N1B—C4B—C5B179.28 (16)
K2—S1—O3—K3167.08 (16)N2B—N1B—C4B—C3B1.8 (3)
O2—S1—O3—K210.85 (9)C2C—C3C—C4C—C5C1.2 (3)
O1—S1—O3—K2139.64 (7)C2C—C3C—C4C—N1C179.76 (16)
C1—S1—O3—K2106.59 (8)N2C—N1C—C4C—C5C179.89 (16)
O1A—S1A—O3A—K2104.72 (7)N2C—N1C—C4C—C3C1.0 (3)
O2A—S1A—O3A—K221.89 (8)C3—C4—C5—C61.3 (3)
C1A—S1A—O3A—K2137.24 (7)N1—C4—C5—C6179.62 (17)
K1—S1A—O3A—K244.44 (7)C3A—C4A—C5A—C6A1.7 (3)
O2B—S1B—O3B—K3114.97 (8)N1A—C4A—C5A—C6A179.15 (16)
O1B—S1B—O3B—K311.87 (8)C3B—C4B—C5B—C6B0.9 (3)
C1B—S1B—O3B—K3126.84 (7)N1B—C4B—C5B—C6B179.90 (16)
K4—S1B—O3B—K359.70 (7)C3C—C4C—C5C—C6C0.4 (3)
O2C—S1C—O1C—K2150.2 (3)N1C—C4C—C5C—C6C179.56 (16)
O3C—S1C—O1C—K224.1 (3)C4—C5—C6—C10.3 (3)
C1C—S1C—O1C—K292.7 (3)C2—C1—C6—C51.1 (3)
K4—S1C—O1C—K283.3 (3)S1—C1—C6—C5174.87 (14)
K3—S1C—O1C—K224.8 (3)C4A—C5A—C6A—C1A0.2 (3)
O1C—S1C—O2C—K4126.88 (9)C2A—C1A—C6A—C5A1.2 (3)
O3C—S1C—O2C—K40.33 (10)S1A—C1A—C6A—C5A177.32 (14)
C1C—S1C—O2C—K4115.57 (7)C4B—C5B—C6B—C1B0.0 (3)
K3—S1C—O2C—K432.34 (10)C2B—C1B—C6B—C5B0.8 (3)
O1C—S1C—O3C—K31.26 (17)S1B—C1B—C6B—C5B177.75 (14)
O2C—S1C—O3C—K3126.05 (13)C4C—C5C—C6C—C1C0.9 (3)
C1C—S1C—O3C—K3118.63 (12)C2C—C1C—C6C—C5C1.4 (3)
K4—S1C—O3C—K3125.70 (15)S1C—C1C—C6C—C5C176.79 (14)
O1C—S1C—O3C—K4126.95 (9)N1—N2—C7—C12179.85 (16)
O2C—S1C—O3C—K40.35 (11)N1—N2—C7—C80.9 (2)
C1C—S1C—O3C—K4115.67 (8)N1A—N2A—C7A—C8A179.35 (16)
K3—S1C—O3C—K4125.70 (15)N1A—N2A—C7A—C12A0.5 (3)
O6C—S1C—O4C—K2145 (3)N1B—N2B—C7B—C8B177.56 (16)
O5C—S1C—O4C—K210 (3)N1B—N2B—C7B—C12B2.8 (3)
C1C—S1C—O4C—K2100 (3)N1C—N2C—C7C—C8C179.80 (16)
K4—S1C—O4C—K2112 (3)N1C—N2C—C7C—C12C1.4 (3)
K3—S1C—O4C—K2145 (3)C12—C7—C8—C91.7 (3)
O6C—S1C—O4C—K30.0 (9)N2—C7—C8—C9179.36 (16)
O5C—S1C—O4C—K3135.2 (6)C12A—C7A—C8A—C9A2.0 (3)
C1C—S1C—O4C—K3114.7 (3)N2A—C7A—C8A—C9A179.08 (16)
K4—S1C—O4C—K333.8 (8)C12B—C7B—C8B—C9B2.7 (3)
O4C—S1C—O6C—K4121.5 (11)N2B—C7B—C8B—C9B177.61 (16)
O5C—S1C—O6C—K411.3 (15)C12C—C7C—C8C—C9C1.6 (3)
C1C—S1C—O6C—K4123.4 (10)N2C—C7C—C8C—C9C179.58 (16)
K3—S1C—O6C—K4121.5 (13)C7—C8—C9—C100.7 (3)
O4C—S1C—O6C—K30.0 (10)C7A—C8A—C9A—C10A0.1 (3)
O5C—S1C—O6C—K3132.8 (6)C7B—C8B—C9B—C10B0.6 (3)
C1C—S1C—O6C—K3115.1 (4)C7C—C8C—C9C—C10C0.4 (3)
K4—S1C—O6C—K3121.5 (13)C8—C9—C10—C110.4 (3)
C4—N1—N2—C7179.35 (14)C8—C9—C10—N3178.37 (17)
C4A—N1A—N2A—C7A179.46 (15)C8A—C9A—C10A—N3A175.81 (17)
C4B—N1B—N2B—C7B179.25 (14)C8A—C9A—C10A—C11A1.8 (3)
C4C—N1C—N2C—C7C178.85 (14)C8B—C9B—C10B—N3B175.77 (17)
O2—S1—C1—C220.81 (17)C8B—C9B—C10B—C11B1.7 (3)
O3—S1—C1—C2141.83 (15)C8C—C9C—C10C—C11C0.8 (3)
O1—S1—C1—C299.54 (15)C8C—C9C—C10C—N3C177.53 (17)
K2—S1—C1—C288.45 (15)C9—C10—C11—C12