electron diffraction\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Absolute structure determination of Berkecoumarin by X-ray and electron diffraction

crossmark logo

aChemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA, and bInstitute of Physics of the CAS, Na Slovance 1999/2, Prague 19200, Czech Republic
*Correspondence e-mail: daniel.decato@umontana.edu, andrea.stierle@mso.umt.edu

Edited by G. P. A. Yap, University of Delaware, USA (Received 5 March 2024; accepted 8 April 2024; online 10 April 2024)

X-ray and electron diffraction methods independently identify the S-enanti­omer of Berkecoumarin [systematic name: (S)-8-hy­droxy-3-(2-hy­droxy­prop­yl)-6-meth­oxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom com­position (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination.

1. Introduction

The Stierle lab has dedicated nearly 30 years to investigating extremophilic fungi derived from an acid mine waste lake in Butte, Montana. Situated within the largest United States Environmental Protection Agency Superfund site, the Berkeley Pit Lake system encompasses an abandoned open-pit copper mine, measuring 1500 feet in depth and one mile across. As infiltrating groundwater inter­acts with the pit, rich veins of pyrite and other minerals dissolve, resulting in acid generation. The Pit holds nearly 35 billion gallons of water, with a daily inflow of >2.5 million gallons, characterized by an acidic nature (pH 2.7) and contamination with elevated metal sulfates (e.g. 1000 ppm iron, 150 ppm copper, and 600 ppm zinc) (Gammons & Duaime, 2006[Gammons, C. H. & Duaime, T. E. (2006). Mine Water Environ. 25, 76-85.]) (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Berkeley Pit Lake.

While research on the chemistry and potential remediation strategies of the Berkeley Pit Lake spans almost 40 years, the microbial ecology was neglected until the Stierles began their investigation of the secondary metabolites of the resident fungal extremophiles. Although the Berkeley Pit was assumed to be too toxic to support life due to the low pH and high metal content, the Stierles, in collaboration with Grant Mitman, isolated over 40 fungi, protists, algae, protozoans, and bacteria from its water and sediments (Mitman, 1999[Mitman, G. (1999). Mine Waste Technology Program Activity IV, Project 10. US EPA National Risk Management Lab. IAG # DW89938513-01-0-4.]). Despite the toxic conditions for conventional aqua­tic biota, the Pit Lake system provides an ideal environment for extremophiles, potentially fostering new species to produce unique secondary metabolites. The challenge of natural products drug discovery lies in devising methods to target the bioactive compounds within these organisms.

In 2004, the Stierle lab isolated Berkecoumarin, from a Berkeley Pit Lake Penicillium sp. (Stierle et al., 2004[Stierle, A. A., Stierle, D. B. & Kemp, K. (2004). J. Nat. Prod. 67, 1392-1395.]). Initial analysis using high-resolution electrospray ionization mass spectrometry revealed the mol­ecular formula as C13H14O5. A series of NMR studies facilitated structural elucidation, as depicted in Scheme 1[link]. Berkecoumarin is among the rare 3-alkyl-6,8-di­oxy­coumarins sourced from fungi, with another instance being 3-hy­droxy­methyl-6,8-di­meth­oxy­coumarin from Talaromyces flavus (Ayer & Racok, 1990[Ayer, W. A. & Racok, J. S. (1990). Can. J. Chem. 68, 2085-2094.]).

The bioactivity of Berkecoumarin has been explored. One study demonstrated the ability of Berkecoumarin to traverse cell membranes and inhibit caspase-3, suggesting a potential neuroprotective effect post-stroke (Stierle et al., 2017[Stierle, A., Stierle, D., Newman, D. J., Cragg, G. M. & Grothaus, P. G. (2017). Chemical Biology of Natural Products, pp. 333-385. Boca Raton: CRC Press.]). Des­pite previous studies, the absolute configuration of Berkecoumarin remained elusive. In this article, we present the absolute structure of Berkecoumarin, employing both X-ray diffraction methods and dynamical refinement of microcrystal electron-diffraction data.

2. Experimental

2.1. Metabolite generation and isolation

The collection, extraction, and isolation of Berkecoumarin has been described previously (Stierle et al., 2004[Stierle, A. A., Stierle, D. B. & Kemp, K. (2004). J. Nat. Prod. 67, 1392-1395.]).

2.2. X-ray data collection and processing

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. All non-H atoms were refined with anisotropic displacement parameters. It was possible to identify H-atom positions from the difference Fourier maps. H atoms bound to O atoms were placed and refined. Those bound to C atoms were placed in geometrically calculated positions and refined using a riding model. Isotropic displacement parameters of the placed H atoms were fixed at 1.2 times the Ueq value of the atoms to which they are linked (1.5 times for methyl groups).

Table 1
Experimental details

Crystal data
Chemical formula C13H14O5
Mr 250.24
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 4.9524 (2), 11.0302 (4), 20.9007 (7)
V3) 1141.72 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.95
Crystal size (mm) 0.54 × 0.04 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.547, 0.751
No. of measured, independent and observed [I > 2σ(I)] reflections 9121, 1575, 1463
Rint 0.053
θmax (°) 57.8
(sin θ/λ)max−1) 0.549
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.07
No. of reflections 1575
No. of parameters 173
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.20
Absolute structure Flack x determined using 555 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (11)
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2019 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

2.3. MicroED data collection and processing

Very fine needles of Berkecoumarin, obtained by slow evaporation of a deuterated chloro­form solution, were ground, then deposited on a pre-clipped continuous carbon film on Cu 200 mesh (Ted Pella 01840). The grid was then plunged into liquid nitro­gen, and transferred under cryogenic conditions to the microscope. Continuous rotation electron-diffraction data were recorded using a Thermo Fisher Scientific Glacios Cryo Transmission Electron Microscope (operating at 200 keV) equipped with a CETA-D detector. Automated tilt series data collection was carried out using Leginon software (Cheng et al., 2021[Cheng, A., Negro, C., Bruhn, J. F., Rice, W. J., Dallakyan, S., Eng, E. T., Waterman, D. G., Potter, C. S. & Carragher, B. (2021). Protein Sci. 30, 136-150.]). A total of nine dif­frac­tion data sets were collected under parallel illumination conditions and under cryogenic temperature (≃ 105 K). After visual inspection, four data sets were removed due to poor quality, leaving a total of five data sets for data reduction and further analysis. A 20 µm condenser aperture was used during data collection, resulting in a ≃ 0.6 µm diameter beam on the specimen.

2.4. Dynamical refinement processing

The data were processed by the program PETS2 (Palatinus et al., 2019[Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512-522.]). The processing revealed high mosaicity for all five data sets considered, sometimes accompanied with reflection splitting. These traits are unfavorable for dynamical refinement, which is, in its current implementation, based on the assumption of a perfect crystal. In the case of imperfect crystals, the results of the dynamical refinement tend to be less accurate. However, the absolute structure determination is sufficiently robust to provide reliable results even in these unfavorable cases. Therefore, the best three data sets were selected for the dynamical refinement. Their processing statistics are summarized in Table 2[link].

Table 2
MicroED processing and dynamical refinement experimental details

Experimentation information    
Collection method Continuous-rotation data collection from three crystals
Tilt ranges and stepa Data set αmin, αmax, Δα (°)
  1 −33.34, 34.15, 0.444
  2 −20.46, 17.33, 0.444
  3 −16.02, 27.93, 0.444
Exposure time (ms) 222  
Beam diameter (nm) 600  
Camera length (mm) 788.2  
     
Crystal information    
Empirical formula C13H14O5  
Z, Z 4, 1  
Space group P212121  
a, b, c (Å) 4.99 (5), 11.22 (5), 21.23 (17)
Apparent mosaicities (°) 0.48, 0.17, 0.35  
Completeness (%) 65.2  
sin (θmax)/λ−1) 0.55  
Nobs, Nall 2551, 4111  
Refined parameters 145  
R(obs), mR(obs)b (I > 3σ; %) 12.82, 9.49  
R(all), mR(all)b (%) 17.73, 12.23  
wR(all), mwR(all)b (%) 12.80, 9.33  
Notes: (a) range of usable frames, not the entire recorded range. (b) The dynamical refinement proceeds against unmerged data and, therefore, the R and wR values are calculated on unmerged data. Therefore, the mR and mwR are also reported. These values are calculated on the merged data (Klar et al., 2023[Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848-855.]).

3. Results and discussion

3.1. Mol­ecular structure and packing (X-ray)

Small needles suitable for X-ray diffraction were obtained by slow evaporation of a deuterated chloro­form solution of Berkecoumarin. Berkecoumarin crystallized in the ortho­rhom­bic space group P212121 and Fig. 2[link] highlights the asymmetric unit.

[Figure 2]
Figure 2
The asymmetric unit of Berkecoumarin with the atomic numbering scheme. Displacement ellipsoids are presented at the 50% probability level.

The mol­ecule contains two alcohol groups, each participating in hydrogen-bonding inter­actions [Fig. 3[link](a) and Table 3[link]]. The phenolic alcohol group inter­acts with the tertiary alcohol group of an adjacent mol­ecule, with a hydrogen-bond distance and angle for the O3—H3⋯O5i inter­action of 2.723 (3) Å and 161 (4)°, respectively. This hydrogen bond forms helical chains that propagate along the crystallographic a axis. This chain described in graph-set notation is C(10) [Fig. 3[link](b)]. The helix is right-handed and seems like a main building block in the crystal assembly. In fact, this helix is further supported by a hydrogen bond between the tertiary alcohol group and the coumarin carbonyl group of a mol­ecule directly above it in the helical column assembly [Fig. 3[link](c)]. The hydrogen-bond distance and angle of this inter­action (O5—H5⋯O1ii) are 2.915 (3) Å and 170 (4)°, respectively.

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.88 (4) 1.87 (4) 2.723 (3) 161 (4)
O5—H5⋯O1ii 0.93 (4) 2.00 (4) 2.915 (3) 170 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+1, y, z].
[Figure 3]
Figure 3
Hydrogen-bond images of Berkecoumarin. (a) The two different hydrogen bonds within the Berkecoumarin structure. Hydrogen bonds are displayed by both red and neon green dotted lines. (b) Highlighted in neon green is the C(10) helical chain formed by the hydrogen bond of the phenolic alcohol group of one mol­ecule to the tertiary alcohol group of an adjacent species. (c) The hydrogen bond (red dotted line) of the tertiary alcohol group to the coumarin carbonyl group. Mol­ecules of similar color schemes are `above' each other.

Together we suspect this is what ultimately leads to the needle morphology of the crystals, as evaluations of packing diagrams highlight minimal strong inter­molecular inter­actions between adjacent helical columns (Fig. 4[link]). The inter­action that is most striking is a C—H⋯O hydrogen bond from the methyl ether group to the phenol O atom; the C13—H13B⋯O3(−x + 1, y − [1 \over 2], −z + [3 \over 2]) hydrogen-bond parameters are 2.60 Å and 162.1°. The distance between the H and O atoms is less than the sum of the van de Waals radii, with an angle greater than 130°. This inter­action is categorized as strong according to the parameters put forth by Johnson and co-workers (Fargher et al., 2022[Fargher, H. A., Sherbow, T. J., Haley, M. M., Johnson, D. W. & Pluth, M. D. (2022). Chem. Soc. Rev. 51, 1454-1469.]). Besides this inter­action, there are minimal additional inter-column inter­actions.

[Figure 4]
Figure 4
Packing diagram of Berkecoumarin as viewed down the crystallographic a axis.

3.2. Absolute structure determination analysis from X-ray data

From the X-ray diffraction data, we have determined the Flack parameter to be 0.01 (11) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) (Table 1[link]). Calculation of the Friedif(Cu) value (36) suggests that the u value ob­tain­ed here is about the best we could obtain given the chemical make-up of Berkecoumarin and the use of Cu Kα radiation (Flack & Shmueli, 2007[Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257-265.]; Flack, 2008[Flack, H. D. (2008). Acta Chim. Slov. 55, 689-691.]). The standard uncertainty (u) (0.11) is on the edge of what is considered to be acceptable for an established enanti­opure compound (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.], 2008[Flack, H. D. & Bernardinelli, G. (2008). Chirality, 20, 681-690.]). While the u value obtained is 0.01 units beyond the recommendation, we feel confident that we have determined the proper enanti­omer. One reason is that chiral natural products are often produced in an optically pure form and cases of generating enanti­omeric or scalemic products are rare (Finefield et al., 2012[Finefield, J. M., Sherman, D. H., Kreitman, M. & Williams, R. M. (2012). Angew. Chem. Int. Ed. 51, 4802-4836.]). Furthermore, analysis of the absolute structure using like­li­hood methods (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]) also supports the assignment, with a Hooft parameter of 0.02 (0.9). Finally, the probability statistics indicate that the absolute configuration has been correctly assigned, with a P2(true) value of 1.00.

3.3. Absolute structure determination from electron-diffraction data

There is no anomalous dispersion for electron-diffraction data, so determination of the enanti­omer is not possible with a kinematical refinement of the data. However, dynamical refinement has proven to be a powerful and reliable method for determining the absolute configuration of chiral mol­ecules (Brázda et al., 2019[Brázda, P., Palatinus, L. & Babor, M. (2019). Science, 364, 667-669.]; Klar et al., 2023[Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848-855.]; Palatinus, Petříček et al., 2015[Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235-244.]; Palatinus, Corrêa et al., 2015[Palatinus, L., Corrêa, C. A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M. C., Cámara, F. & Petříček, V. (2015). Acta Cryst. B71, 740-751.]).

Three data sets were imported in JANA2020. The model obtained from the X-ray refinement was used as a starting model, although the structure could also be solved by ab initio methods directly from the MicroED data. A wedge-shaped crystal model was used to model the thickness variation (Palatinus, Petříček et al., 2015[Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235-244.]). The refinement proceeded smoothly, and the refinement statistics are summarized in Table 2[link]. The overall R1(obs) value calculated on all three data sets is 12.82%. This is a relatively large number for dynamical refinement (likely attributable to the high mosaicity of the samples), but it can still be considered acceptable.

The absolute structure was determined by a method described previously (Klar et al., 2023[Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848-855.]). Once the refinement of the S-enanti­omorph was finalized, an inverted model was created, and, without changing any parameters, it was also refined with the dynamical refinement approach. The correct enanti­omorph can usually be determined directly by com­paring the R values of the two refinements. In the current case, the R values of the S-enanti­omer model are clearly lower than those of the R-enanti­omer (Table 4[link]). The reliability of this qualitative assessment can be qu­anti­fied by the z-score method (Klar et al., 2023[Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848-855.]), which provides the confidence level of the hypothesis that one of the enanti­omorphs is the correct one. The results in Table 4[link] show that each of the three data sets alone provides statistically significant evidence for the S-enanti­omorph (z-score larger than 3). The combined z-score calculated from all three data sets is 6.39, which corresponds to the probability of an incorrect absolute structure assignment of <10−6. The absolute structure is thus unambiguously determined.

Table 4
Absolute structure determination by the dynamical refinement

Values of z-score above 3 indicate, in a statistically significant manner, that the corresponding enanti­omorph is the correct one.

Data set wR(all) (Enanti­omer S) wR(all) (Enanti­omer R) z-score for Enanti­omer S
1 15.15 16.69 3.78
2 11.82 12.96 3.81
3 12.30 13.80 3.51
Combined 12.87 14.26 6.39

4. Conclusion

Here we have reported the absolute structure configuration of Berkecoumarin, a natural product isolated from extremophilic microbes living in a toxic mining pit lake in Butte, Montana. The chemical make-up of this light-atom mol­ecule pushes the limits of a routine in-house X-ray diffraction absolute structure determination from anomalous scattering. A combination of Flack and Hooft parameters, and probability statistics, indicate the S-enanti­omer. To further support this finding, MicroED data were collected, and dynamical refinement was conducted. Despite the high mosaicity and low com­plete­ness, the dynamical method was able to determine the absolute configuration as the S-enanti­omer as well, further confirming the assignment. Overall, this work further demonstrates that dynamical refinement of MicroED structures is a powerful and robust method for the absolute structure elucidation of light-atom chiral mol­ecules.

Supporting information


Computing details top

(S)-8-Hydroxy-3-(2-hydroxypropyl)-6-methoxy-2H-chromen-2-one top
Crystal data top
C13H14O5Dx = 1.456 Mg m3
Mr = 250.24Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 7488 reflections
a = 4.9524 (2) Åθ = 4.2–57.7°
b = 11.0302 (4) ŵ = 0.95 mm1
c = 20.9007 (7) ÅT = 100 K
V = 1141.72 (7) Å3Needle, colourless
Z = 40.54 × 0.04 × 0.02 mm
F(000) = 528
Data collection top
Bruker D8 VENTURE Duo
diffractometer
1575 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµus1463 reflections with I > 2σ(I)
Double Bounce Multilayer Mirror monochromatorRint = 0.053
Detector resolution: 10.5 pixels mm-1θmax = 57.8°, θmin = 4.2°
ω and φ scansh = 55
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1210
Tmin = 0.547, Tmax = 0.751l = 2219
9121 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.14 e Å3
1575 reflectionsΔρmin = 0.20 e Å3
173 parametersAbsolute structure: Flack x determined using 555 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.01 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0901 (3)0.68560 (16)0.53504 (8)0.0208 (5)
O20.9293 (4)0.89438 (16)0.77962 (8)0.0206 (5)
O30.2545 (4)1.03245 (16)0.64010 (10)0.0223 (5)
H30.193 (8)1.011 (3)0.602 (2)0.075 (14)*
O40.1590 (3)0.80255 (15)0.59658 (8)0.0177 (5)
O50.5982 (4)0.48285 (17)0.48453 (9)0.0199 (5)
H50.678 (8)0.553 (4)0.5006 (19)0.087 (15)*
C10.1003 (5)0.6908 (2)0.57172 (12)0.0174 (6)
C20.2688 (5)0.5891 (2)0.59160 (12)0.0166 (6)
C30.4620 (5)0.6062 (2)0.63590 (13)0.0176 (6)
H3A0.5668580.5388360.6494200.021*
C40.5149 (5)0.7233 (2)0.66349 (12)0.0161 (6)
C50.7124 (5)0.7443 (2)0.71054 (12)0.0171 (6)
H5A0.8188380.6794590.7266000.021*
C60.7489 (5)0.8616 (2)0.73308 (13)0.0172 (6)
C70.5964 (5)0.9571 (2)0.70827 (12)0.0188 (6)
H70.6271481.0370600.7234940.023*
C80.4029 (5)0.9379 (2)0.66229 (12)0.0164 (6)
C90.3617 (5)0.8193 (2)0.64084 (13)0.0168 (6)
C100.2179 (5)0.4709 (2)0.55813 (12)0.0183 (6)
H10A0.0224960.4522540.5598190.022*
H10B0.3152410.4054190.5808560.022*
C110.3097 (5)0.4737 (3)0.48815 (13)0.0176 (6)
H110.2265670.5451800.4662510.021*
C120.2325 (5)0.3592 (2)0.45283 (13)0.0212 (6)
H12A0.2878040.3659240.4079510.032*
H12B0.0364560.3478560.4551190.032*
H12C0.3231500.2896120.4725310.032*
C131.0813 (5)0.7985 (2)0.80812 (13)0.0224 (7)
H13A1.1959860.7604650.7756140.034*
H13B0.9575530.7379360.8259080.034*
H13C1.1947280.8313850.8424110.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (10)0.0227 (11)0.0215 (11)0.0018 (9)0.0009 (9)0.0013 (8)
O20.0214 (10)0.0198 (11)0.0205 (10)0.0014 (8)0.0081 (9)0.0011 (8)
O30.0253 (11)0.0192 (11)0.0223 (12)0.0044 (9)0.0053 (9)0.0022 (9)
O40.0185 (10)0.0171 (11)0.0175 (10)0.0003 (7)0.0027 (8)0.0011 (9)
O50.0179 (10)0.0213 (11)0.0206 (11)0.0027 (8)0.0020 (8)0.0013 (9)
C10.0167 (14)0.0201 (16)0.0154 (15)0.0027 (12)0.0042 (12)0.0013 (12)
C20.0171 (14)0.0177 (15)0.0149 (15)0.0013 (12)0.0057 (11)0.0010 (12)
C30.0188 (15)0.0166 (16)0.0173 (15)0.0026 (12)0.0046 (12)0.0032 (13)
C40.0169 (13)0.0180 (17)0.0135 (15)0.0003 (11)0.0051 (11)0.0010 (12)
C50.0170 (13)0.0192 (16)0.0150 (15)0.0025 (12)0.0007 (11)0.0027 (12)
C60.0135 (14)0.0237 (17)0.0145 (15)0.0012 (11)0.0026 (12)0.0013 (12)
C70.0190 (14)0.0174 (15)0.0200 (15)0.0008 (12)0.0019 (12)0.0026 (12)
C80.0148 (14)0.0170 (17)0.0175 (15)0.0017 (11)0.0026 (12)0.0009 (11)
C90.0145 (15)0.0230 (16)0.0128 (14)0.0012 (12)0.0014 (11)0.0006 (12)
C100.0178 (14)0.0175 (15)0.0196 (16)0.0018 (12)0.0013 (12)0.0003 (12)
C110.0152 (14)0.0191 (15)0.0186 (15)0.0005 (11)0.0011 (12)0.0002 (12)
C120.0214 (15)0.0199 (16)0.0224 (16)0.0014 (11)0.0016 (13)0.0020 (12)
C130.0209 (14)0.0265 (17)0.0199 (15)0.0027 (13)0.0058 (13)0.0016 (13)
Geometric parameters (Å, º) top
O1—C11.217 (3)C5—C61.389 (4)
O2—C61.369 (3)C6—C71.396 (4)
O2—C131.428 (3)C7—H70.9500
O3—H30.88 (4)C7—C81.374 (4)
O3—C81.358 (3)C8—C91.397 (4)
O4—C11.369 (3)C10—H10A0.9900
O4—C91.378 (3)C10—H10B0.9900
O5—H50.93 (4)C10—C111.532 (4)
O5—C111.434 (3)C11—H111.0000
C1—C21.459 (4)C11—C121.512 (4)
C2—C31.344 (4)C12—H12A0.9800
C2—C101.501 (4)C12—H12B0.9800
C3—H3A0.9500C12—H12C0.9800
C3—C41.439 (4)C13—H13A0.9800
C4—C51.406 (3)C13—H13B0.9800
C4—C91.386 (4)C13—H13C0.9800
C5—H5A0.9500
C6—O2—C13116.4 (2)O4—C9—C4121.7 (2)
C8—O3—H3107 (3)O4—C9—C8116.6 (2)
C1—O4—C9122.0 (2)C4—C9—C8121.7 (2)
C11—O5—H5118 (3)C2—C10—H10A109.2
O1—C1—O4116.5 (2)C2—C10—H10B109.2
O1—C1—C2125.9 (2)C2—C10—C11112.2 (2)
O4—C1—C2117.6 (2)H10A—C10—H10B107.9
C1—C2—C10116.0 (2)C11—C10—H10A109.2
C3—C2—C1119.7 (2)C11—C10—H10B109.2
C3—C2—C10124.2 (2)O5—C11—C10110.3 (2)
C2—C3—H3A118.9O5—C11—H11109.3
C2—C3—C4122.1 (2)O5—C11—C12106.5 (2)
C4—C3—H3A118.9C10—C11—H11109.3
C5—C4—C3123.7 (2)C12—C11—C10112.0 (2)
C9—C4—C3116.7 (2)C12—C11—H11109.3
C9—C4—C5119.6 (2)C11—C12—H12A109.5
C4—C5—H5A120.6C11—C12—H12B109.5
C6—C5—C4118.8 (2)C11—C12—H12C109.5
C6—C5—H5A120.6H12A—C12—H12B109.5
O2—C6—C5124.9 (2)H12A—C12—H12C109.5
O2—C6—C7114.7 (2)H12B—C12—H12C109.5
C5—C6—C7120.4 (2)O2—C13—H13A109.5
C6—C7—H7119.3O2—C13—H13B109.5
C8—C7—C6121.4 (3)O2—C13—H13C109.5
C8—C7—H7119.3H13A—C13—H13B109.5
O3—C8—C7119.9 (2)H13A—C13—H13C109.5
O3—C8—C9122.0 (2)H13B—C13—H13C109.5
C7—C8—C9118.1 (2)
O1—C1—C2—C3175.5 (2)C3—C4—C9—O43.3 (3)
O1—C1—C2—C106.7 (4)C3—C4—C9—C8177.4 (2)
O2—C6—C7—C8178.5 (2)C4—C5—C6—O2178.5 (2)
O3—C8—C9—O41.0 (4)C4—C5—C6—C71.5 (4)
O3—C8—C9—C4179.7 (2)C5—C4—C9—O4177.5 (2)
O4—C1—C2—C34.1 (4)C5—C4—C9—C81.7 (4)
O4—C1—C2—C10173.7 (2)C5—C6—C7—C81.5 (4)
C1—O4—C9—C41.1 (3)C6—C7—C8—O3178.7 (2)
C1—O4—C9—C8179.6 (2)C6—C7—C8—C90.1 (4)
C1—C2—C3—C41.9 (4)C7—C8—C9—O4177.5 (2)
C1—C2—C10—C1170.1 (3)C7—C8—C9—C41.7 (4)
C2—C3—C4—C5179.1 (2)C9—O4—C1—O1177.0 (2)
C2—C3—C4—C91.8 (4)C9—O4—C1—C22.7 (3)
C2—C10—C11—O567.3 (3)C9—C4—C5—C60.1 (3)
C2—C10—C11—C12174.2 (2)C10—C2—C3—C4175.7 (2)
C3—C2—C10—C11107.6 (3)C13—O2—C6—C52.6 (4)
C3—C4—C5—C6179.0 (2)C13—O2—C6—C7177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.88 (4)1.87 (4)2.723 (3)161 (4)
O5—H5···O1ii0.93 (4)2.00 (4)2.915 (3)170 (4)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y, z.
MicroED processing and dynamical refinement experimental details top
Experimentation information
Collection methodContinuous-rotation data collection from three crystals
Tilt ranges and step*Data setαmin, αmax, Δα (°)
1-33.34, 34.15, 0.444
2-20.46, 17.33, 0.444
3-16.02, 27.93, 0.444
Exposure time (ms)222
Beam diameter (nm)600
Camera length (mm)788.2
Crystal information
Empirical formulaC13H14O5
Z, Z'4, 1
Space groupP212121
a, b, c (Å)4.99 (5), 11.22 (5), 21.23 (17)
Apparent mosaicities (°)0.48, 0.17, 0.35
Completeness (%)65.2
sin(θmax)/λ-1)0.55
Nobs, Nall2551, 4111
Refined parameters145
R(obs), mR(obs)1 (I>3σ; %)12.82, 9.49
R(all), mR(all)1 (%)17.73, 12.23
wR(all), mwR(all)1 (%)12.80, 9.33
Note: (*) range of usable frames, not the entire recorded range. Note: the dynamical refinement proceeds against unmerged data and, therefore, the R and wR values are calculated on unmerged data. Therefore, the mR and mwR are also reported. These values are calculated on the merged data (Klar et al., 2023).
Absolute structure determination by the dynamical refinement top
The column z-score gives the z-score for enantiomer S. Z-score values above 3 indicate statistically significantly that the corresponding enantiomorph is the correct one.
Data setwR(all) (Enantiomer S)wR(all) (Enantiomer R)z-score for enantiomer S
115.1516.693.78
211.8212.963.81
312.3013.803.51
Combined12.8714.266.39
 

Acknowledgements

The MicroED data collection was performed at the National Center for CryoEM Access and Training (NCCAT) and the Simons Electron Microscopy Center located at the New York Structural Biology Center, supported by the NIH Common Fund Transformative High Resolution Cryo-Electron Microscopy program and by grants from the Simons Foundation and NY State Assembly. MicroED data were collected as part of a EPSCoR Research Infrastructure Improvement (RII) Track-4 grant award No. 2132227. LP acknowledges the support by the Czech Science Foundation.

Funding information

Funding for this research was provided by: National Institutes of Health, National Institute of General Medical Sciences (grant No. P30GM103546); National Science Foundation (grant No. CHE1337908); National Institutes of Health (grant No. U24 GM129539); Simons Foundation (grant No. SF349247); Czech Science Foundation (grant No. 21-05926X).

References

First citationAyer, W. A. & Racok, J. S. (1990). Can. J. Chem. 68, 2085–2094.  CrossRef CAS Web of Science Google Scholar
First citationBrázda, P., Palatinus, L. & Babor, M. (2019). Science, 364, 667–669.  Web of Science PubMed Google Scholar
First citationBruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, A., Negro, C., Bruhn, J. F., Rice, W. J., Dallakyan, S., Eng, E. T., Waterman, D. G., Potter, C. S. & Carragher, B. (2021). Protein Sci. 30, 136–150.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFargher, H. A., Sherbow, T. J., Haley, M. M., Johnson, D. W. & Pluth, M. D. (2022). Chem. Soc. Rev. 51, 1454–1469.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFinefield, J. M., Sherman, D. H., Kreitman, M. & Williams, R. M. (2012). Angew. Chem. Int. Ed. 51, 4802–4836.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (2008). Acta Chim. Slov. 55, 689–691.  CAS Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2008). Chirality, 20, 681–690.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257–265.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGammons, C. H. & Duaime, T. E. (2006). Mine Water Environ. 25, 76–85.  CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848–855.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMitman, G. (1999). Mine Waste Technology Program Activity IV, Project 10. US EPA National Risk Management Lab. IAG # DW89938513-01-0-4.  Google Scholar
First citationPalatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPalatinus, L., Corrêa, C. A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M. C., Cámara, F. & Petříček, V. (2015). Acta Cryst. B71, 740–751.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPalatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStierle, A. A., Stierle, D. B. & Kemp, K. (2004). J. Nat. Prod. 67, 1392–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStierle, A., Stierle, D., Newman, D. J., Cragg, G. M. & Grothaus, P. G. (2017). Chemical Biology of Natural Products, pp. 333–385. Boca Raton: CRC Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds